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Preface

The 16th International Conference on Parallel Computing Technologies (PaCT 2021)
was a four-day event held in Kaliningrad, Russia. It was organized by the Institute of
Computational Mathematics and Mathematical Geophysics of the Russian Academy of
Sciences (Novosibirsk) in cooperation with the Immanuel Kant Baltic Federal
University (Kaliningrad), Novosibirsk State University, and Novosibirsk State Tech-
nical University.

Previous conferences of the PaCT series were held in various Russian cities
every odd year beginning with PaCT 1991, which took place in Novosibirsk
(Akademgorodok), whilst the 15th Conference took place in Almaty, Kazakhstan.
Since 1995, all the PaCT proceedings have been published by Springer in the LNCS
series.

The aim of the PaCT 2021 conference was to provide a forum for an exchange of
views among the international community of researchers in the field of the develop-
ment of parallel computing technologies. The PaCT 2021 Program Committee selected
papers that contributed new knowledge in methods and tools for parallel solution of
topical large-scale problems. The papers selected for PaCT 2021

– propose and study tools for parallel program development such as languages,
performance analysers, and automated performance tuners,

– examine and optimize the processes related to management of jobs, data, and
computing resources at high performance computing centers,

– propose new computer simulation models and algorithms specifically targeted to
parallel computing architectures, and

– theoretically study practically relevant properties of parallel programming models
and parallel algorithms.

Authors from 15 countries submitted 62 papers. The submitted papers were subject
to a single blind reviewing process, with papers receiving an average of 2.8 reviews.
The Program Committee selected 24 full papers and 12 short papers for presentation at
PaCT 2021.

Many thanks to our sponsors: the Ministry of Science and Higher Education of the
Russian Federation, the Russian Academy of Sciences, and the RSC Group.

September 2021 Victor Malyshkin
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Trace-Based Optimization of Fragmented
Programs Execution in LuNA System

Victor Malyshkin1,2,3 and Vladislav Perepelkin1,2(B)

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

perepelkin@ssd.sscc.ru
2 Novosibirsk State University, Novosibirsk, Russia

3 Novosibirsk State Technical University, Novosibirsk, Russia

Abstract. Automatic construction of high performance distributed numerical
simulation programs is used to reduce complexity of distributed parallel programs
development and to improve code efficiency as compared to an average manual
development. Development of such means, however, is challenging in general
case, that’s why a variety of different languages, systems and tools for parallel
programs construction exist and evolve. Program tracing (i.e. journaling execu-
tion acts of the program) is a valuable source of information, which can be used
to optimize efficiency of constructed programs for particular execution conditions
and input data peculiarities. One of the optimization techniques is trace playback,
which consists in step-by-step reproduction of the trace. This allows reducing run-
time overhead, which is relevant for runtime system-based tools. The experimental
results demonstrate suitability of the technique for a range of applications.

Keywords: Automatic program construction · Fragmented programming
technology · LuNA system · Trace playback

1 Introduction

Development of high performance scientific parallel programs for supercomputers is
often complicated and hard due to the necessity to decompose data and computations,
organize parallel data processing, provide non-functional properties of the programs.
Such properties may include efficiency (execution time, memory consumption, network
load, etc.), static or dynamic workload balancing, fault tolerance, checkpointing, etc. All
this requires in-depth knowledge of hardware architecture, skill in parallel programming,
familiaritywith appropriate parallel programmingmethods and tools. Thismakesmanual
programming troublesome for an average supercomputer user, who is an expert in the
subject domain, not in system parallel programming. Usage of parallel programming
automation systems, languages and tools allows to significantly reduce complexity of
parallel programming, improve quality of produced programs and reduce knowledge
and skill requirements a programmer has to possess.

© Springer Nature Switzerland AG 2021
V. Malyshkin (Ed.): PaCT 2021, LNCS 12942, pp. 3–10, 2021.
https://doi.org/10.1007/978-3-030-86359-3_1
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4 V. Malyshkin and V. Perepelkin

In general automatic construction of an efficient parallel program is algorithmically
hard, which why no effective general approach is expected to exist, so a diversity of var-
ious approaches, heuristics, languages and programming systems are being constantly
developed to support parallel programming automation in different particular cases and
subject domains. One of the promising approaches of parallel programs automatic opti-
mization is trace-based optimization. This approach assumes that a program is first run
on some characteristic input data, and its performance is being recorded as a trace of
events (computational, communicational, etc.). The trace is then analyzed to extract
quantitative information and pass it to a programming system (compiler, interpreter,
etc.) to produce more efficient code. This is similar to profile-based optimization, except
that a profile contains statistical information, while a trace contains the full log of sig-
nificant events. In particular, trace can be used to reproduce the computation process
recorded (“trace playback”), which can be more efficient than the normal program exe-
cution if the latter involves dynamic decision-making or other overhead, which can be
omitted with trace playback. This, however, is not always possible, because change in
input data or the computing system state may cause inconsistent execution. This paper is
devoted to implementation of this idea in LuNA system for distributed parallel programs
construction [1].

The rest of the paper is organized as follows. Section 2 contains a brief necessary
introduction into LuNA system computational model in comparison with other sys-
tems. Section 3 describes how trace gathering and playback are implemented in LuNA.
Section 4 presents results of the experimental study.

2 Trace Playback in LuNA System

2.1 LuNA System

LuNA (Language for Numerical Algorithms) is a language and a system for automatic
construction of numerical distributed parallel programs for distributed memory parallel
computers (multicomputers). It is an academic project of the Institute of Computational
Mathematics andMathematical Geophysics of the Siberian Branch of Russian Academy
ofSciences.The system is basedon the theoryof structured synthesis of parallel programs
[2], and its purpose is to support the active knowledge technology [3]. LuNA program
is a high-level coarse-grained explicitly-parallel description of a numerical algorithm,
which is basically a description of a bipartite oriented graph of computational fragments
(CFs) and data fragments (DFs). DF is an immutable piece of data, the result of data
decomposition. Each CF is a conventional subroutine call, which takes a number of DFs
as inputs to compute values of a number of other DFs (these production-consuming
relations correspond to arcs in the graph). So, LuNA program defines a set of informa-
tionally dependent tasks (CFs), which have to be executed in an order, which satisfies
the dependencies. To execute such program LuNA has to distribute CFs to computing
nodes, performDFs transfer from producers to consumers and execute CFs after all their
input DFs are available at the node. Efficiency of such execution is conditioned by the
CFs distribution and execution order, by DFs network transfer delays and by the run-
time system overhead. As our previous works show [4–11] the performance of LuNA
programs is 1–100 times less than that of manually developed programs, depending on
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the subject domain. We continue to improve LuNA system algorithms to provide better
performance for practical application classes, and thiswork is one of such improvements.
More details on LuNA system can be found in [1] and in its public repository1.

2.2 Trace Playback in LuNA System

Since LuNA program execution consists eventually of CFs executions, the trace infor-
mation includes CF execution start and end times and the node on which the CF was
executed. This information is sufficient to completely reproduce the computation of
LuNA program. Once the trace is recorded, its playback on each computing node may
be organized as follows:

1. Pick the earliest unexecuted CF a from the trace (on the node).
2. For each input DF x of the CF a find in the trace the CF b, which produced it.
3. If CF b was executed on the same computing node where CF a was executed, then

DF x is available on the node; otherwise receive DF x as a message from CF b’s
node.

4. Invoke the conventional subroutine, related to CF a with input DFs passed to it.
5. For each output DF x of the CF a find all CFs c, which take DF x as input. If CF c is

located on the same node as CF a, then store DF x locally, otherwise send DF x as a
message to CF c’s node.

This is an essential scheme, although some more or less obvious tuning should be
done in practical implementation. For example, if multiple CFs are located on the same
computing node and take the same DF as input, then only one copy of the DF should be
passed via network. Note that trace playback can be performed in multiple threads for
each node (normal LuNA operation is also multi-threaded on each computing node).

This scheme misses the garbage collection, which takes place with normal LuNA
operation. It can be straightforwardly implemented by recording to the trace the relative
time point where DF deallocation took place. However, this appeared to be redundant,
since all actualDFs consumptions are explicitly seen in the trace, thus theDFdeallocation
is performed as soon as last consumption on the node has occurred.

With trace playback the run-time overhead is reduced to the minimum. No decision
making onCFs distribution, CFs execution ordering or DFs garbage collection is needed.
In particular, LuNA dynamically balances workload by redistributing CFs to computing
nodes, but only a final location where execution took place matters. All multi-hop DF
transfers become single-hop transfers. Reduction of most kinds of overhead is the main
source of performance improvement for trace playback as compared to normal LuNA
operation.

Note, that LuNAprograms execution is non-deterministic in sense ofCFs distribution
and execution ordering, and in sense of timings. Even minor factors (such as network
delays or external CPU load) may influence the decisions LuNA system makes and
implements. Dynamic load balancing is especially sensible to such factors. The trace,
however, is much more deterministic, since most events are rigidly fixed.

1 https://gitlab.ssd.sscc.ru/luna/luna.

https://gitlab.ssd.sscc.ru/luna/luna
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3 Discussion and Related Works

3.1 Analysis and Discussion

The main drawback of the approach is that the set of CFs may depend on input data. As
long as the task graph (the set of CFs) persists trace playback produces valid execution
for any input data. But, for example, if the number of loop iterations depends on input
data, then trace playbackmay be erroneous. This drawback can be partially compensated
by two factors. First, there are a lot of applications where tasks graph does not depend
on input data (e.g. dense linear algebra operations). Second, the fact that the task graph
appeared to be different for given input can be detected automatically. In particular, in
LuNA there are three operators, which can produce data-dependent task graphs:if,for
and while. Each of the operators can be supplied with straightforward checks, which
will ensure that each if condition was resolved to the sametrue/false value and that
every for and while operator has the same iteration range. So, trace playback engine
can inform the user on unsuccessful playback (rather than silently perform erroneous
execution) and suggest normal program execution.

To some extent this drawback can be overcome further. E.g. some kind of induction
techniques can be used to stack for or while loop iterations into a parametric range-
independent form. For the if operator both then and else branches can be traced at first
precedent, and after that the execution of both branches can be done via trace playback.
Study of these possibilities is out of the scope of the paper.

Another drawback of the approach is that no decisions on CFs distribution and
execution order are made – only the decisions made by LuNA system in the traced
run are recorded and reproduced. These decisions may be not good for a number of
reasons. E.g., hardware configuration or its external load may be different; CF execution
time may depend on input data; absence of run-time system overhead may influence
timings, etc. The decisions themselves, that LuNA system has made, can be not good,
because LuNA system algorithms are not perfect. This brings us to the idea of trace
optimization and tuning before doing the playback. Study of the idea is beyond the
current work, but a brief overview of the problem can be given. Firstly, the trace can be
analyzed for work imbalance or inefficient CFs execution order. Secondly, any CF can
be reassigned to another node with no risk of bringing error to the execution. Also, CFs
execution can be reordered unless informational dependencies are violated. Such trace
transformations can either eliminate work imbalance or retarget the trace to another
hardware configuration (computing nodes number, network topology, relative nodes
performance, etc.).

Besides trace optimization, trace execution engine can be improved. For example,
the above mentioned thread pool-based execution is one of such possible optimizations.
More dynamic improvements can be made. For example, dynamic workload balancing
may be employed to eliminate work imbalance that occurs during trace playback. Study
of these possibilities is also out of the scope of the paper.

3.2 Related Works

Trace playback is practical in LuNA system because of the computational model it
employs. In particular, the “computational” part of a LuNA program is separate from
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distributed management logic, which allows to replace the latter with a trace playback
engine. There are other programming languages and systems, where trace playback
may be of use. For manually developed conventional distributed parallel programs trace
playback appears to be inapplicable, since it is impossible to distinguish the essential
computational part from the rest of the code, which organizes parallel computations,
communications and data storage.

Specialized computational models, such as the map-reduce model [12, 13], allow
to distinguish the computational part and computations structure since it is explicitly
formulated in the code. This, in turn, allows to trace execution and playback the trace.
For example, such systems implement dynamic workload balancing, which causes some
run-time overhead. It can be reduced by the trace playback technique. Of course, this
makes sense for a series of computations where imbalance is known to be the same. The
rest of overhead is usually negligible.

Task-based systems, such as Charm++ [14] or OpenTS [15] allow trace playback
mostly the same way it is possible in LuNA system. In Charm++, however, it may
be harder to implement, because chares (Charm++ decomposition units) may behave
differently depending on the order in which they receive messages from other chares. To
allow safe trace playback some additional constraints to chare codes may be required.

For systems with explicit program behavior control, such as PaRSEC [16] or
Legion [17] trace playback seems to be as easily implemented as in LuNA, since the
computational part is explicitly formulated in the computational model.

Some possibilities of trace playback exist in systems for automated serial code par-
allelization, such as DVM-H [18]. Here a serial code is annotated (either manually or
automatically) with “parallelization pragmas”, and a parallel program is generated auto-
matically. In particular, a dynamic workload balancing mechanismmay be included into
the generated program. Code annotations allow identifying the computational part, and
since the distributed code is generated automatically, it can be instrumented to trace
events, necessary to perform the playback.

It can be concluded, that trace playback is a reasonable technique for programming
languages, systems and tools, which employ run-time systems, or at least provide some
dynamic properties (such as dynamic load balancing) at cost of some overhead.

4 Experiments

To playback a trace a series of actions to perform is generated for each computing node.
Possible actions are invocation of a serial subroutine, DF transfer to another node and
DF deletion. Such series is easily constructed from trace. Implementation of the series
of actions on each node causes the trace playback.

The naïve way to implement trace playback is to generate the series of actions as a
conventional (e.g. MPI-based) program. Such an approach possesses minimal possible
overhead. In practice, however, such source code listing grows large and takes too much
time to be compiled into binary (e.g. hours of compilation for a large program). To
overcome this issue the series of events was encoded into a binary file (to reduce size),
and a trivial interpreter was developed, which decodes the file and performs the actions
using a worker thread pool on each node. This decoding does add some overhead, but it
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is usually negligible due to coarse granularity of CFs. A separate thread was dedicated
to receiving messages from other nodes.

For experimental performance evaluation a Particle-In-Cell application for self-
gravitating dust-cloud simulation [19] was used as an example of a rather complicated
real supercomputing-targeted application. Tests were conducted on MVS-10p cluster
of Joint Supercomputing Center of Russian Academy of Sciences2. The testing was
conducted for various parameters (see Table 1) to investigate performance in different
conditions.

Table 1. Experimental results

Parameters Execution time (sec.)

Mesh
size

Particles Cores MPI LuNA-TB LuNA

1003 106 64 5.287 13.69 355.5

1503 106 64 18.896 31.088 732.833

1503 107 64 23.594 111.194 2983

1503 107 125 23.352 118.32 3086.411

1503 106 343 33.697 39.651 1008.655

Two programs, developed by S. Kireev for [20], which implement the same algo-
rithm, were used. The first program is a conventional C++ distributed parallel program,
based on Message Passing Interface (MPI). The second one is a LuNA program. Execu-
tion time for these programs is shown in Table 1. There is also a column labeled LuNA-
TB. This is the execution time of the same LuNA program, but using the trace-playback
technique. The MPI program can be considered as a reference point, its efficiency is
what one can expect as a result of manual development of an experienced applied pro-
grammer. The LuNA program is an automatically constructed program using a general
approach, and its efficiency is expectedly much lower, than that of the MPI program.
And the LuNA-TB is somewhere in the middle, an automatically generated program
using the particular trace playback approach.

The main result of the testing is that LuNA-playback indeed significantly speeds up
execution of LuNA programs. This confirms that the trace playback is a useful technique
for optimizing efficiency of automatically constructed parallel programs. Its efficiency
is still lower than that of the MPI program, but this is obviously a practically usable
result, considering that it is obtained automatically.

It can also be seen from Table 1 that trace playback approach is more advanta-
geous for programs with finer granularity, where fragments are of lesser size. The
advantage is the bigger the more computing nodes are involved in computation. This
is also expected, since dynamic decentralized algorithms employed in LuNA produce
significant overhead, which is cut off with trace playback.

2 http://www.jscc.ru.

http://www.jscc.ru
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5 Conclusion

The trace playback technique is investigated as a distributed programs optimization tech-
nique for parallel programming automation systems. Trace playback was implemented
for LuNA system for automatic numerical parallel programs construction. The exper-
iments showed a significant improvement of the efficiency of constructed programs.
Possible improvements of the technique, aimed at overcoming its drawbacks are briefly
discussed. It can be concluded that the trace playback technique is practical for high
performance distributed parallel programs construction automation, which can be used
automatically (along with other particular system algorithms and heuristics). In future
we plan to further investigate the approach within LuNA system to widen the application
class this technique is applicable to.

Acknowledgements. The work was supported by the budget project of the ICMMG SB RAS
No. 0251-2021-0005.
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Abstract. The performance of collective operations has been a critical
issue since the advent of Message Passing Interface (MPI). Many algo-
rithms have been proposed for each MPI collective operation but none of
them proved optimal in all situations. Different algorithms demonstrate
superior performance depending on the platform, the message size, the
number of processes, etc. MPI implementations perform the selection of
the collective algorithm empirically, executing a simple runtime decision
function. While efficient, this approach does not guarantee the optimal
selection. As a more accurate but equally efficient alternative, the use of
analytical performance models of collective algorithms for the selection
process was proposed and studied. Unfortunately, the previous attempts
in this direction have not been successful.

We revisit the analytical model-based approach and propose two inno-
vations that significantly improve the selective accuracy of analytical
models: (1) We derive analytical models from the code implementing the
algorithms rather than from their high-level mathematical definitions.
This results in more detailed models. (2) We estimate model parameters
separately for each collective algorithm and include the execution of this
algorithm in the corresponding communication experiment.

We experimentally demonstrate the accuracy and efficiency of our
approach using Open MPI broadcast algorithms and two different
Grid’5000 clusters.

Keywords: Message Passing · Collective communication algorithms ·
Communication performance modelling · MPI

1 Introduction

The message passing interface (MPI) [1] is the de-facto standard, which provides
a reliable and portable environment for developing high-performance parallel
applications on different platforms. The study [2] shows that collective operations
consume more than eighty percent of the total communication time of a typical
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MPI application. Therefore, a significant amount of research has been invested
into optimisation of MPI collectives. Those researches have resulted in a large
number of algorithms, each of which comes up optimal for specific message sizes,
platforms, numbers of processes, and so forth. Mainstream MPI libraries [3,4]
provide multiple collective algorithms for each collective routine.

213 215 217 219 221

0

5 · 10−2

0.1

0.15

0.2

0.25

Message size

T
im

e(
se
c)

Binary tree
Binomial tree

(a)

213 215 217 219 221

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Message size

T
im

e(
se
c)

Binary tree
Binomial tree

(b)

Fig. 1. Performance estimation of the binary and binomial tree broadcast algorithms by
the traditional analytical models in comparison with experimental curves. The exper-
iments involve ninety processes (P = 90). (a) Estimation by the existing analytical
models. (b) Experimental performance curves.

There are two ways how this selection can be made in the MPI program.
The first one, MPI T interface [1], is provided by the MPI standard and allows
the MPI programmer to select the collective algorithm explicitly from the list
of available algorithms for each collective call at run-time. It does not solve the
problem of optimal selection delegating its solution to the programmer. The
second one is transparent to the MPI programmer and provided by MPI imple-
mentations. It uses a simple decision function in each collective routine, which
is used to select the algorithm at runtime. The decision function is empirically
derived from extensive testing on the dedicated system. For example, for each
collective operation, both MPICH and Open MPI use a simple decision routine
selecting the algorithm based on the message size and number of processes [5–7].
The main advantage of this solution is its efficiency. The algorithm selection is
very fast and does not affect the performance of the program. The main dis-
advantage of the existing decision functions is that they do not guarantee the
optimal selection in all situations.

As an alternative approach, the use of analytical performance models of col-
lective algorithms for the selection process has been proposed and studied [8].
Unfortunately, the analytical performance models proposed in this work could
not reach the level of accuracy sufficient for selection of the optimal algorithm
(Fig. 1).
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In this paper, we revisit the model-based approach and propose a number of
innovations that significantly improve the selective accuracy of analytical models
to the extent that allows them to be used for accurate selection of optimal
collective algorithms.

The main contributions of this paper can be summarized as follows:

– We propose and implement a new analytical performance modelling approach
for MPI collective algorithms, which derives the models from the code imple-
menting the algorithms.

– We propose and implement a novel approach to estimation of the param-
eters of analytical performance models of MPI collective algorithms, which
estimates the parameters separately for each algorithm and includes the mod-
elled collective algorithm in the communication experiment, which is used to
estimate the model parameters.

– We experimentally validate the proposed approach to selection of optimal
collective algorithms on two different clusters of the Grid’5000 platform.

The rest of the paper is structured as follows. Section 2 reviews the exist-
ing approaches to performance modelling and algorithm selection problems.
Section 3 describes our approach to construction of analytical performance mod-
els of MPI collective algorithms by deriving them from the MPI implementation.
Section 4 presents our method to measure analytical model parameters. Section 5
presents experimental validation of the proposed approach. Section 6 concludes
the paper with a discussion of the results and an outline of the future work.

2 Related Work

In order to select the optimal algorithm for a given collective operation, we have
to be able to accurately compare the performance of the available algorithms.
Analytical performance models are one of the efficient ways to express and
compare the performance of collective algorithms. In this section, we overview
the state-of-the-art in analytical performance modelling, measurement of model
parameters and selection of the optimal collective algorithms.

2.1 Analytical Performance Models of MPI Collective Algorithms

Thakur et al. [5] propose analytical performance models of several collective
algorithms using the Hockney model [9]. Chan et al. [10] build analytical perfor-
mance models of Minimum-spanning tree algorithms and Bucket algorithms for
MPI Bcast, MPI Reduce, MPI Scatter, MPI Gather, MPI Allgather collectives
and later extend this work for multidimensional mesh architecture in [11]. Nei-
ther of the studies listed above uses the build models for selecting the optimal col-
lective algorithms. Pjevsivac-Grbovic et al. [8] study selection of optimal collec-
tive algorithms using analytical performance models for barrier, broadcast, reduce
and alltoall collective operations. The models are built up with the traditional
approach using high-level mathematical definitions of the collective algorithms.
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In order to predict the cost of a collective algorithm by analytical formula, model
parameters are measured using point-to-point communication experiments. After
experimental validation of their modelling approach, the authors conclude that
the proposed models are not accurate enough for selection of optimal algorithms.

2.2 Measurement of Model Parameters

Hockney [9] presents a measurement method to find the α and β parameters of
the Hockney model. The set of communication experiments consists of point-to-
point round-trips. Culler et al. [12] propose a method of measurement of param-
eters of the LogP model, namely, L, the upper bound on the latency, os, the
overhead of processor involving sending a message, or, the overhead of processor
involving receiving a message, and g, the gap between consecutive message trans-
mission. Kielmann et al. [13] propose a method of measurement of parameters
of the PLogP (Parametrized LogP) model. PLogP defines its model parame-
ters, except for latency L, as functions of message size. All approaches listed
above to measure model parameters are based on point-to-point communication
experiments.

From this overview, we can conclude that the state-of-the-art analytical per-
formance models are built using only high-level mathematical definition of the
algorithms, and methods for measurement of parameters of communication per-
formance models are all based on point-to-point communication experiments.
The only exception from this rule is a method for measurement of parameters
of the LMO heterogeneous communication model [14–16]. LMO is a communi-
cation model of heterogeneous clusters, and the total number of its parameters
is significantly larger than the maximum number of independent point-to-point
communication experiments that can be designed to derive a system of inde-
pendent linear equations with the model parameters as unknowns. To address
this problem and obtain the sufficient number of independent linear equations
involving model parameters, the method additionally introduces simple collec-
tive communication experiments, each using three processors and consisting of
a one-to-two communication operation (scatter) followed by a two-to-one com-
munication operation (gather). This method however is not designed to improve
the accuracy of predictive analytical models of communication algorithms.

In this work, we propose to use collective communication experiments in the
measurement method in order to improve the predictive accuracy of analytical
models of collective algorithms. A more detailed survey in analytical performance
modelling and estimation of the model parameters can be found in [17].

2.3 Selection of Collective Algorithms Using Machine Learning
Algorithms

Machine learning (ML) techniques have been also tried to solve the problem of
selection of optimal MPI algorithms.

In [18], applicability of the quadtree encoding method to this problem is stud-
ied. The goal of this work is to select the best performing algorithm and segment
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size for a particular collective on a particular platform. The experimental results
show that the decision function performs poorly on unseen data. Applicability
of the C4.5 algorithm to the MPI collective selection problem is explored in [19].
The C4.5 algorithm [20] is a decision tree classifier, which is employed to generate
a decision function, based on a detailed profiling data of MPI collectives. While
the accuracy of the decision function built by the C4.5 classification algorithm is
higher than that of the decision function built by quadtree encoding algorithm,
still, the performance penalty is higher than 50%.

Most recently Hunold et al. [21] studied the applicability of six different
ML algorithms including Random Forests, Neural Networks, Linear Regressions,
XGBoost, K-nearest Neighbor, and generalized additive models (GAM) for selec-
tion of optimal MPI collective algorithms. First, it is very expansive and difficult
to build a regression model even for a relatively small cluster. There is no clear
guidance how to do it to achieve better results. Second, even the best regression
models do not accurately predict the fastest collective algorithm in most of the
reported cases. Moreover, in many cases the selected algorithm performs worse
than the default algorithm, that is, the one selected by a simple native decision
function.

To the best of the authors’ knowledge, the works outlined in this subsection
are the only research done in MPI collective algorithm selection using ML algo-
rithms. The results show that the selection of the optimal algorithm without
any information about the semantics of the algorithm yields inaccurate results.
While the ML-based methods treat a collective algorithm as a black box, we
derive its performance model from the implementation code and estimate the
model parameters using statistical techniques. The limitations of the application
of the statistical techniques (AI/ML) to collective performance modelling and
selection problem can be found in a detailed survey [22].

3 Implementation-Derived Analytical Models of
Collective Algorithms

As stated in Sect. 1, we propose a new approach to analytical performance
modelling of collective algorithms. While the traditional approach only takes
into account high-level mathematical definitions of the algorithms, we derive
our models from their implementation. This way, our models take into account
important details of their execution having a significant impact on their per-
formance. Open MPI uses six tree-based broadcast algorithms to implement
MPI Bcast including Linear tree algorithm, Chain tree algorithm, Binary tree
algorithm, Split binary tree algorithm, K-Chain tree algorithm and Binomial
tree algorithm. Because of the limited space, we present our analytical modelling
approach by applying it to only binomial tree broadcast algorithm implemented
in Open MPI.

To model point-to-point communications, we use the Hockney model, which
estimates the time Tp2p(m) of sending a message of size m between two processes
as Tp2p(m) = α + β · m, where α and β are the latency and the reciprocal
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bandwidth respectively. For segmented collective algorithms, we assume that
m = ns ·ms, where ns and ms are the number of segments and the segment size
respectively. We assume that each algorithm involves P processes ranked from
0 to P − 1.

3.1 Binomial Tree Broadcast Algorithm
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4

Fig. 2. Balanced binomial
tree

In Open MPI, the binomial tree broadcast algorithm
is segmentation-based and implemented as a combi-
nation of linear tree broadcast algorithms using non-
blocking send and receive operations. The height of
the binomial tree is the order of the tree, H = �log2 P �
(Fig. 2).

Figure 3 shows the stages of execution of the bino-
mial tree broadcast algorithm. Each stage consists of
parallel execution of a number of linear broadcast
algorithms using non-blocking communication. The
linear broadcast algorithms running in parallel have a
different number of children. Therefore, the execution

time of each stage will be equal to the execution time of the linear broadcast
algorithm with the maximum number of children. The execution time of the
whole binomial broadcast algorithm will be equal to the sum of the execution
times of these stages.

Fig. 3. Execution stages of the binomial tree broadcast algorithm, employing the non-
blocking linear broadcast (P = 8, ns = 3). Nodes are labelled by the process ranks.
Each arrow represents transmission of a segment. The number over the arrow gives the
index of the broadcast segment.

In the non-blocking linear broadcast algorithm, P −1 non-blocking sends will
run on the root concurrently. Therefore, the execution time of the linear broad-
cast algorithm using non-blocking point-to-point communications and buffered
mode, Tnonblock

linear bcast(P,m), can be bounded as follows:

Tp2p(m) ≤ Tnonblock
linear bcast(P,m) ≤ (P − 1) · Tp2p(m). (1)
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We will approximate Tnonblock
linear bcast(P,m) as

Tnonblock
linear bcast(P,m) = γ(P,m) · (α + m · β), (2)

where

γ(P,m) =
Tnonblock
linear bcast(P,m)

Tp2p(m)
. (3)

In Open MPI, the binomial tree broadcast algorithm employs the balanced
binomial tree virtual topology (Fig. 2). Therefore, the number of stages in the
binomial broadcast algorithm can be calculated as

Nsteps = �log2P � + ns − 1. (4)

Thus, the time to complete the binomial tree broadcast algorithm can be
estimated as follows:

Tbinomial bcast(P,m, ns) =
�log2P�+ns−1∑

i=1

max
1≤j≤min(�log2P�,ns)

Tnonblock
linear bcast(Pij ,

m

ns
), (5)

where Pij denotes the number of nodes in the j-th linear tree of the i-th stage.
Using the property of the binomial tree and Formula 2, we have

Tbinomial bcast(P,m, ns) = (ns · γ(�log2 P � + 1)

+
�log2 P�−1∑

i=1

γ(�log2 P � − i + 1) − 1) · (α +
m

ns
· β). (6)

4 Estimation of Model Parameters

4.1 Estimation of γ(P )

The model parameter γ(P ) appears in the formula estimating the execution time
of the linear tree broadcast algorithm with non-blocking communication, which
is only used for broadcasting of a segment in the tree-based segmented broad-
cast algorithms. Thus, in the context of Open MPI, the linear tree broadcast
algorithm with non-blocking communication will always broadcast a message of
size ms to a relatively small number of processes.

According to Formula 3,

γ(P ) =
Tnonblock
linear bcast(P,ms)

Tp2p(ms)
=

Tnonblock
linear bcast(P,ms)

Tnonblock
linear bcast(2,ms)

.

Therefore, in order to estimate γ(P ) for a given range of the number of processes,
P ∈ {2, ..., Pmax}, we need a method for estimation of Tnonblock

linear bcast(P,ms). We
use the following method:
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– For each 2 ≤ q ≤ Pmax, we measure on the root the execution time T1(P,N) of
N successive calls to the linear tree with non-blocking communication broad-
cast routine separated by barriers. The routine broadcasts a message of size
ms.

– We estimate Tnonblock
linear bcast(P,ms) as T2(P ) = T1(P,N)

N .

The experimentally obtained discrete function T2(P )
T2(2)

is used as a platform-
specific but algorithm-independent estimation of γ(P ).

From our experiments, we observed that the discrete estimation of γ(P ) is
near linear. Therefore, as an alternative for platforms with very large numbers
of processors, we can build by linear regression a linear approximation of the
discrete function T2(P )

T2(2)
, obtained for a representative subset of the full range of

P , and use this linear approximation as an analytical estimation of γ(P ).

(ns1 · γ(�log2 P � + 1) +
�log2 P�−1∑

i=1
γ(�log2 P � − i + 1) − 1) · (α + m1

ns1
· β) + (P − 1) · (α + mg1 · β) = T1

(ns2 · γ(�log2 P � + 1) +
�log2 P�−1∑

i=1
γ(�log2 P � − i + 1) − 1) · (α + m2

ns2
· β) + (P − 1) · (α + mg2 · β) = T2

. . .

(nsM · γ(�log2 P � + 1) +
�log2 P�−1∑

i=1
γ(�log2 P � − i + 1) − 1) · (α + mM

nsM
· β) + (P − 1) · (α + mgM · β) = TM

⇓

α + β ·
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�log2 P�−1∑
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γ(�log2 P�−i+1)−1)· m1
ns1

+(P−1)·mg1

(ns1 ·γ(�log2 P�+1)+
�log2 P�−1∑

i=1
γ(�log2 P�−i+1)−1)+P−1

= T1(
(ns1 ·γ(�log2 P�+1)+

�log2 P�−1∑
i=1

γ(�log2 P�−i+1)−1)+P−1

)

α + β ·
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�log2 P�−1∑
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γ(�log2 P�−i+1)−1)· m2
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)

Fig. 4. A system of M non-linear equations with α, β, γ(�log2 P �+1) and γ(�log2 P �−
i + 1) as unknowns, derived from M communication experiments, each consisting of
the execution of the binomial tree broadcast algorithm, broadcasting a message of size
mi (i = 1, ..., M) from the root to the remaining P −1 processes, followed by the linear
gather algorithm without synchronisation, gathering messages of size mgi(mgi �= ms)
on the root. The execution times, Ti, of these experiments are measured on the root.
Given γ(�log2 P � + 1) and γ(�log2 P � − i + 1) are evaluated separately, the system
becomes a system of M linear equations with α and β as unknowns.

4.2 Estimation of Algorithm Specific α and β

To estimate the model parameters α and β for a given collective algorithm, we
design a communication experiment, which starts and finishes on the root (in
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order to accurately measure its execution time using the root clock), and involves
the execution of the modelled collective algorithm so that the total time of the
experiment would be dominated by the time of its execution.

For example, for all broadcast algorithms, the communication experiment
consists of a broadcast of a message of size m (where m is a multiple of segment
size ms), using the modelled broadcast algorithm, followed by a linear-without-
synchronisation gather algorithm, gathering messages of size mg(mg �= ms) on
the root. The execution time of this experiment on P nodes, Tbcast exp(P,m),
can be estimated as follows:

Tbcast exp(P,m) = Tbcast alg(P,m) + Tlinear gather(P,mg) (7)

The execution time of the linear-without-synchronisation gather algorithm,
gathering a message size of mg on the root from P−1 processes where mg �= ms,
is estimated as follows,

Tlinear gather(P,mg) = (P − 1) · (α + mg · β) (8)

Using Formula 6 and 8 for each combination of P and m this experiment
will yield one linear equation with α and β as unknowns. By repeating this
experiment with different p and m, we obtain a system of linear equations for α
and β. Each equation in this system can be represented in the canonical form,
α + β × mi = Ti (i = 1, ...,M). Finally, we use the least-square regression to
find α and β, giving us the best linear approximation α + β × m of the discrete
function f(mi) = Ti (i = 1, ...,M).

Figure 4 shows a system of linear equations built for the binomial tree broad-
cast algorithm for our experimental platform. To build this system, we used the
same P nodes in all experiments but varied the message size m ∈ {m1, ...,mM}
and mg ∈ {mg1 , ...,mgM }. With M different message sizes, we obtained a system
of M equations. The number of nodes, P , was approximately equal to the half of
the total number of nodes. We observed that the use of larger numbers of nodes
in the experiments will not change the estimation of α and β.

5 Experimental Results and Analysis

This section presents experimental evaluation of the proposed approach to selec-
tion of optimal collective algorithms using Open MPI broadcast operation. In all
experiments. We use the default Open MPI configuration (without any collective
optimization tuning).

5.1 Experiment Setup

For experiments, we use Open MPI 3.1 running on a dedicated Grisou and Gros
clusters of the Nancy site of the Grid‘5000 infrastructure [23]. The Grisou cluster
consists of 51 nodes each with 2 Intel Xeon E5-2630 v3 CPUs (8 cores/CPU),
128 GB RAM, 2x558 GB HDD, interconnected via 10 Gbps Ethernet. The Gros
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cluster consists of 124 nodes each with Intel Xeon Gold 5220 (18 cores/CPU),
96 GB RAM, 894 GB SSD, interconnected via 2 × 25 Gb Ethernet.

To make sure that the experimental results are reliable, we follow a detailed
methodology: 1) We make sure that the cluster is fully reserved and dedicated
to our experiments. 2) For each data point in the execution time of collective
algorithms, the sample mean is used, which is calculated by executing the appli-
cation repeatedly until the sample mean lies in the 95% confidence interval and
a precision of 0.025 (2.5%) has been achieved. We also check that the individual
observations are independent and their population follows the normal distribu-
tion. For this purpose, MPIBlib [24] is used.

In our communication experiments, MPI programs use the one-process-per-
CPU configuration, and the maximal total number of processes is equal to 90 on
Grisou and 124 on Gros clusters. The message segment size, ms, for segmented
broadcast algorithms is set to 8 KB and is the same in all experiments. This
segment size is commonly used for segmented broadcast algorithms in Open
MPI. Selection of optimal segment size is out of the scope of this paper.

5.2 Experimental Estimation of Model Parameters

First of all, we would like to stress again that we estimate model parameters for
each cluster separately.

Table 1. Estimated values
of γ(P ) on Grisou and Gros
clusters.

P γ(P )
Grisou Gros

3 1.114 1.084
4 1.219 1.17
5 1.283 1.254
6 1.451 1.339
7 1.540 1.424

Estimation of parameter γ(p) for our experi-
mental platforms follows the method presented in
Sect. 4.1. With the maximal number of processes
equal to 90 (Grisou) and 124 (Gros), the maxi-
mal number of children in the linear tree broadcast
algorithm with non-blocking communication, used
in the segmented Open MPI broadcast algorithms,
will be equal to seven. Therefore, the number of
processes in our communication experiments ranges
from 2 to 7 for both clusters. By definition, γ(2) = 1.
The estimated values of γ(p) for p from 3 to 7 are
given in Table 1.

After estimation of γ(p), we conduct communi-
cation experiments to estimate algorithm-specific values of parameters α and β
for six broadcast algorithms following the method described in Sect. 4.2. In these
experiments we use 40 processes on Grisou and 124 on Gros. The message size,
m, varies in the range from 8 KB to 4 MB in the broadcast experiments. We
use 10 different sizes for broadcast algorithms, {mi}10i=1, separated by a constant
step in the logarithmic scale, log mi−1− log mi = const. Thus, for each collective
algorithm, we obtain a system of 10 linear equations with α and β as unknowns.
We use the Huber regressor [25] to find their values from the system.

The values of parameters α and β obtained this way can be found in Table 2.
We can see that the values of α and β do vary depending on the collective algo-
rithm, and the difference is more significant between algorithms implementing
different collective operations. The results support our original hypothesis that
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the average execution time of a point-to-point communication will very much
depend on the context of the use of the point-to-point communications in the
algorithm. Therefore, the estimated values of the α and β capture more than just
sheer network characteristics. One interesting example is the Split-binary tree
and Binary tree broadcast algorithms. They both use the same virtual topology,
but the estimated time of a point-to-point communication, α+β ×m, is smaller
in the context of the Split-binary one. This can be explained by a higher level
of parallelism of the Split-binary algorithm, where a significant part of point-to-
point communications is performed in parallel by a large number of independent
pairs of processes from the left and right subtrees.

Table 2. Estimated values of α and β for the Grisou and Gros clusters and Open MPI
broadcast algorithms.

Collective algorithm α(sec) β ( sec
byte

)

Broadcast

Linear tree 2.2 × 10−12 1.8 × 10−8

K-Chain tree 5.7 × 10−13 4.7 × 10−9

Chain tree 6.1 × 10−13 4.9 × 10−9

Split-binary tree 3.7 × 10−13 3.6 × 10−9

Binary tree 5.8 × 10−13 4.7 × 10−9

Binomial tree 5.8 × 10−13 4.8 × 10−9

Collective algorithm α(sec) β ( sec
byte

)

Broadcast

Linear tree 1.4 × 10−12 1.1 × 10−8

K-Chain tree 5.4 × 10−13 4.5 × 10−9

Chain tree 4.7 × 10−12 3.8 × 10−8

Split-binary tree 5.5 × 10−13 4.5 × 10−9

Binary tree 5.8 × 10−13 4.7 × 10−9

Binomial tree 1.2 × 10−13 1.0 × 10−9

5.3 Accuracy of Selection of Optimal Collective Algorithms Using
the Constructed Analytical Performance Models

The constructed analytical performance models of the Open MPI broadcast col-
lective algorithms are designed for the use in the MPI Bcast routines for runtime
selection of the optimal algorithm, depending on the number of processes and
the message size. While the efficiency of the selection procedure is evident from
the low complexity of the analytical formulas derived in Sect. 3, the experimental
results on the accuracy are presented in this section.

Figure 5 shows the results of our experiments for MPI Bcast. We present
results of experiments with 50, 80 and 90 processes on Grisou, and 80, 100
and 124 on Gros. The message size, m, varies in the range from 8 KB to
4 MB in the broadcast experiments. We use 10 different sizes for broadcast
algorithms, {mi}10i=1, separated by a constant step in the logarithmic scale,
log mi−1 − log mi = const. The graphs show the execution time of the collective
operation as a function of message size. Each data point on a blue line shows the
performance of the algorithm selected by the Open MPI decision function for the
given operation, number of processes and message size. Each point on a red line
shows the performance of the algorithm selected by our decision function, which
uses the constructed analytical models. Each point on a green line shows the
performance of the best Open MPI algorithm for the given collective operation,
number of processes and message size.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of the selection accuracy of the Open MPI decision function and
the proposed model-based method for MPI Bcast. (a–c) and (d–f) present performance
of collectives on Grisou and Gros clusters respectively.

Table 3. Comparison of the model-based and Open MPI selections with the best
performing MPI Bcast algorithm. For each selected algorithm, its performance degra-
dation against the optimal one is given in braces.

P=90, MPI Bcast, Grisou

m (KB) Best Model-based (%) Open MPI (%)

8 binomial binary (3) split binary (160)

16 binary binary (0) split binary (1)

32 binary binary (0) split binary (0)

64 split binary binary (1) split binary (0)

128 binary binary (0) split binary (1)

256 split binary binary (2) split binary (0)

512 split binary binary (2) chain (111)

1024 split binary binary (3) chain (88)

2048 split binary binary (2) chain (55)

4096 split binary binary (1) chain (20)

P=100, MPI Bcast, Gros

m (KB) Best Model-based (%) Open MPI (%)

8 binary binomial (3) split binary (549)

16 binomial binomial (0) split binary (32)

32 binomial binomial (0) split binary (3)

64 split binary binomial (8) split binary (0)

128 split binary binomial (8) split binary (0)

256 binary binary (0) split binary (6)

512 binary binary (0) chain (7297)

1024 split binary binary (7) chain (6094)

2048 split binary binary (4) chain (3227)

4096 split binary binary (9) chain (2568)

Table 3 presents selections made for MPI Bcast using the proposed model-
based runtime procedure and the Open MPI decision function. For each message
size m, the best performing algorithm, the model-based selected algorithm, and
the Open MPI selected algorithm are given. For the latter two, the performance
degradation in percents in comparison with the best performing algorithm is
also given. We can see that for the Grisou cluster, the model-based selection
either pick the best performing algorithm, or the algorithm, the performance of
which deviates from the best no more than 3%. Given the accuracy of measure-
ments, this means that the model-based selection is practically always optimal
as the performance of the selected algorithm is indistinguishable from the best
performance. The Open MPI selection is near optimal in 50% cases and causes
significant, up to 160%, degradation in the remaining cases. For the Gros clus-
ter, the model-based selection picks either the best performing algorithm or the
algorithm with near optimal performance, no worse than 10% in comparison
with the best performing algorithm. At the same time, while near optimal in
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40% cases, the algorithms selected by the Open MPI demonstrate catastrophic
degradation (up to 7297%) in 50% cases.

The Open MPI decision functions select the algorithm depending on the
message size and the number of processes. For example, the Open MPI broadcast
decision function selects the chain broadcast algorithm for large message sizes.
However, from Table 3 it is evident that chain broadcast algorithm is not the best
performing algorithm for large message sizes on both clusters. From the same
table, one can see that the model-based selection procedure accurately picks
the best performing binomial tree broadcast algorithm for 16 KB and 32 KB
message sizes on the Gros cluster, where Open MPI only selects the binomial
tree algorithm for broadcasting messages smaller than 2 KB.

6 Conclusions

In this paper, we proposed a novel model-based approach to automatic selec-
tion of optimal algorithms for MPI collective operations, which proved to be
both efficient and accurate. The novelty of the approach is two-fold. First, we
proposed to derive analytical models of collective algorithms from the code of
their implementation rather than from high-level mathematical definitions. Sec-
ond, we proposed to estimate model parameters separately for each algorithm,
using a communication experiment, where the execution of the algorithm itself
dominates the execution time of the experiment.

We also developed this approach into a detailed method and applied it to
Open MPI 3.1 and its MPI Bcast. We experimentally validated this method
on two different clusters and demonstrated its accuracy and efficiency. These
results suggest that the proposed approach, based on analytical performance
modelling of collective algorithms, can be successful in the solution of the prob-
lem of accurate and efficient runtime selection of optimal algorithms for MPI
collective operations.
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Abstract. Multicore processors are becoming standard called as COTS
(Commercial Off The Shelf) processors but can not be fully used in the
context of critical real time systems. OpenMP is one of the most used
programming models to build parallel programs able to exploit such mul-
ticore processors. A lot of work try to tackle the issue of the determin-
ism of parallel programming models. The critical real time system face an
unpredictability wall of parallel programs. This paper presents Determin-
istic OpenMP, a new runtime for OpenMP programs, and the Little Big
Processor (LBP) manycore processor design. Their aim is to help to solve
the non determinism problem at the programming level but also at the
execution level. When run on LBP, a Deterministic OpenMP code pro-
duces cycle by cycle deterministic computations. LBP and Deterministic
OpenMP are particularly suited to safely accelerate real time embedded
applications through their parallel execution.

1 Introduction

Multicore processor is becoming the standard for embedded applications and
also for real-time critical applications. OpenMP [1,2] is a reference and widely
used to parallelize applications on such microarchitectures. OpenMP is based on
well known operating system multithreading primitives such as Pthreads [3]. A
lot of recent works have been done to control execution time on such microar-
chitectures [4,5]. Recently, great efforts aimed at reducing the overhead of such
OS kernel threads with user light-weight threads [6,7].

Non-determinism makes parallel programs hard to debug as a bug may be
non repeatable and the action of a debugger may alter the run in a way which
eliminates the emergence of the bug.

Effort have been done to build a deterministic parallel programming model as
in DOMP [8] based on a subset of OpenMP API. Even if these works mainly deal
with the non determinism of the results at the programming model level, the
runtime determinism is still an important issue for critical real-time systems.

c© Springer Nature Switzerland AG 2021
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One side effect is that parallelization can hardly benefit to real time critical
applications [9] as a precise timing cannot be ensured.

In this paper, we introduce Deterministic OpenMP, Parallel Instruction Set
Computer (PISC) and the Little Big Processor (LBP). They were designed to
ensure at the same time, determinism at the programming model level but also
at the execution level. From Deterministic OpenMP source we build self par-
allelizing binary programs and we run them on a bare-metal parallel multicore
hardware, i.e. with no operating system to manage.

The rest of the paper is organized as follows: Sect. 2 presents Deterministic
OpenMP, Sect. 3 introduces PISC instruction set extension, Sect. 4 shows LBP
microarchitecture, Sect. 5 presents some experimental results and Sect. 6 shows
the conclusions.

2 Deterministic OpenMP

}

void main(){
int t;

/*... (1);*/

#pragma omp parallel for

#define NUM_HART 8
void thread(/*...*/){

omp_set_num_threads(NUM_HART);

#include <det_omp.h>

for (t=0; t<NUM_HART; t++)
thread(/*...*/);

/*... (2);*/
}

(a) Source program.

#define NUM_HART 8
#define HART_PER_CORE 4
unsigned omp_num_threads;
typedef struct type_s{int t; /*...*/} type_t;
type_t st;
void thread ( void *arg ){

type_t *pt=(type_t *)arg;
/*...(1);*/

}
static inline void
fork_on_current(void(*f)(void*), void *data){/*p_fc(data);*/}
static inline void
fork_on_next(void(*f)(void*), void *data){/*p_fn(data);*/}

omp_num_threads=NUM_HART;
LBP_parallel_start(
/*...(2);*/

}

thread , (void *)&st);

void main(){

void LBP_parallel_start(void(*f)(void*), void *data){
type_t *pt=(type_t *)data;
unsigned nt=omp_num_threads, h, t;
for (t=0; t<nt−1; t++){
h=t%HART_PER_CORE;
pt−>t=t;
if (h<HART_PER_CORE−1) fork_on_current(f, data);
else fork_on_next(f, data);

}
pt−>t=nt−1;
f(data);

}

(b) Transformed program.

Fig. 1. The Deterministic OpenMP program transformation.

A Deterministic OpenMP program is quite not distinguishable from a classic
OpenMP one [1]. Figure 1a shows an example of a Deterministic OpenMP code
to distribute and parallelize a thread function on a set of eight harts. A hart is a
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hardware thread as defined into the riscv specification [10]. The difference with
a pure OpenMP version lies in the header file inclusion (det omp.h instead of
omp.h, in red on the figure).

In a classic OpenMP implementation, the parallel for pragma builds a team
of OMP NUM THREADS threads which the OS maps on the available harts,
optionally balancing their loads. In the Gnu implementation, this is done through
the GOMP parallel function (OMP API [2]). In Deterministic OpenMP, a team
of harts -not threads- is created, each matching a unique and constant placement
on the processor. One drawback is that on LBP, load balancing is the problem
of the programmer. It is her responsability to evenly divide her job into parallel
tasks. If properly done, the efficiency is improved compared to a dynamic load
balancing handled by the OS because dynamic load balancing implies costly
thread migrations.

The Deterministic OpenMP code in Fig. 1a is translated into the code in
Fig. 1b. The text in black on the figure comes from the original OpenMP source
code on Fig. 1a. The green text is added by the translator (i.e., the compiler).

The LBP parallel start function creates and starts the team of harts. It orga-
nizes the distribution of the copies of function thread on the harts. It calls
fork on current which creates a new hart on the current core or fork on next
which creates a new hart on the next core (LBP cores are ordered). The machine
code for fork on current is given in Sect. 3. The LBP parallel start function fills
the harts available in a core before expanding to the next one.

Functions fork on current and fork on next do not interact with the OS by
calling a forking or cloning system call. Instead, they directly use the hardware
capability to fork the fetch point, running the thread function locally and the
continuation remotely (on the same core or on the next one).

The hardware fork mechanism has two advantages over the classic OS one:

– it concatenates the continuation thread to the creating one in the sequential
referential order, on which the hardware is able to synchronize and connect
producers and consumers,

– it places the continuation thread on a fixed hart, in the same or next core.

In a classic OpenMP run of the code on Fig. 1a, all the function thread copies
would become non-ordered and independent threads. In contrast in Deterministic
OpenMP, the created harts are ordered (in the iterations order) which simplifies
communications: a creating hart sends continuation values to the created one
through direct core-to-core links.

LBP offers the programmer the possibility to map her code and data on the
computing resources according to the application structure. A producing func-
tion can be parallelized on the same set of cores and harts than the consuming
one, eliminating any non local memory access. The OS is not able to do the same
for OpenMP runs as it has no knowledge of which thread produces and which
thread consumes. The OS can only act on load balancing. The task of good
mapping in classic OpenMP is the programmer’s duty. To do her job properly,
she has to deal with her application, but also with the OS and the computing
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and memory resources (e.g. load balancing, pagination). This leads to difficult
decisions, with a complexity proportional (if not worse) to the number of cores.

The next section describes the PISC ISA extension which is an extension
of the RISCV ISA (Instruction Set Architecture) [10] needed to implement the
Deterministic OpenMP library.

3 The PISC ISA

syntax

p_lwcv rd, offset

p_swcv rs1, rs2, offset

p_lwre rd, offset

p_swre rs1, rs2, offset

p_jal rd, rs1, offset

semantic

restore rd from local stack at offset

save rs2 on rs1 hart stack at offset (allocated hart)

restore rd from local result buffer number offset

save rs2 to rs1 hart (any prior hart) result buffer number offset

send pc+4 to rs1 hart (allocated hart)
clear rd
goto pc+offset

if rs1==0 && rs2==−1: exit
if rs1==0 && rs2!=current hart: end current hart

send ending hart signal to next hart
if rs1==0 && rs2==current hart: keep current hart waiting

p_set rd, rs1

p_syncm

p_jalr rd, rs1, rs2

p_fc rd

p_fn rd

p_merge rd, rs1, rs2

rd=(rs1&0x0000ffff) | ((4*core+hart)<<16) | 0x80000000

stop fetch until all decoded memory accesses in local hart are run

if rs1!=0: send rs1 to rs2 hart (join hart)

send pc+4 to rs2 hart (allocated hart)
clear rd
goto rs1

rd=(4*c+allocated hart)
allocate a free pc on current core (fork)

allocate a free pc on next core (fork)

rd=(rs1&0x7fff0000) | (rs2&0x0000ffff)

rd=(4*(c+1)+allocated hart)

p_jalr zero, rs1, rs2
(p_ret) send ending hart signal to next hart

Fig. 2. The X PAR RISCV PISC ISA extension.

The PISC ISA extension is a set of 12 new machine instructions. A RISCV
extension named X PAR has been defined. It is summarized on Fig. 2.

The p swcv and p lwcv instructions (cv stands for continuation value) serve
to achieve a hardware synchronized communication between a producer and a
consumer of the same team, for example to transmit an input argument from
member to member (e.g. the iteration loop index). The consumer should be the
hart next after the producer (same or next core).

The p swre and p lwre instructions (re stands for result) serve to achieve
a hardware synchronized communication between a producer and a consumer
of different teams, with the consumer physically preceding the producer (same
or preceding core; the connection used to transmit the value is the intercore
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backward link). They allow for example a team to produce a reduction value
and have its last member send it to the join hart.

The p jal instruction is a parallelized call. Instead of pushing the return
address on the stack, it sends it to an allocated continuation hart. The p jalr
instruction is the indirect variant of the p jal one. It can also be used as a return
from a parallelized hart (pseudo instruction p ret standing for p jalr zero, rs1,
rs2).

The p fc and p fn instructions serve to allocate a new hart, either on the
same core or on the next one.

The p merge and p set are instructions used to manipulate hart identities.
They are used to prepare and propagate the first team member identity to allow
the join from the last team member back to the first.

The p syncm instruction serves to synchronize memory accesses within a hart.
In a hart, loads and stores are unordered. The hardware provides no control on
the out-of-order behaviour of loads and stores. For example, to ensure a load
depending on a store is run after it, a p syncm instruction should be inserted
between them. The p syncm acts by blocking the fetch (as soon as it is decoded)
until all the in flight memory accesses of the hart are done.

More details on PISC can be found at URL [11].

main : l i t0 ,−1 #t0 = ex i t code
addi sp , sp ,−8 #a l l o c a t e two words on l o c a l s tack
sw ra , 0 ( sp ) #save reg . ra on l o c a l stack , o f f s e t 0
sw t0 , 4 ( sp ) #save reg . t0 on l o c a l stack , o f f s e t 4
p s e t t0 #t0 = 4∗ core+hart ( current hart i d en t i t y )
l i a0 , thread #a0 = thread func t i on po in te r
l i a1 , data #a1 = po in te r on data s t ru c tu r e
j a l LBP pa r a l l e l s t a r t

rp : / ∗ . . . ( 2 ) ∗ /
lw ra , 0 ( sp ) #re s t o r e ra from l o c a l stack , o f f s e t 0
lw t0 , 4 ( sp ) #re s t o r e t0 from l o c a l stack , o f f s e t 4
addi sp , sp , 8 #f r e e two words on l o c a l s tack
p re t #ra==0 && t0==−1 => e x i t

Fig. 3. The PISC RISCV code for the main function.

Figures 3, 4 and 5 show the machine instructions compiled for the Determin-
istic OpenMP code on Fig. 1b. The target processor is assumed to be bare-metal
(no OS). The LBP processor implemented in the FPGA directly starts running
the main function and stops when the p ret instruction is met (with register
ra=0 and register t0=-1, meaning exit).

Figure 3 shows the compiled PISC RISCV code for the main function. Reg-
isters ra and t0 play a special role. Register ra has its normal usage: it holds the
return address. When LBP parallel start is called, ra receives the future team
join address (labeled rp on the figure). Register t0 holds the current hart number
set with the p set instruction and propagated along the team members through
register transmission (t0 contains a value combining the hosting core and the
current hart identity in the core). The LBP parallel start function creates the
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team of harts to run the parallelized loop. It returns to rp label when a p ret
instruction in the last created team member is reached. The ending hart sends
ra to hart t0 (i.e. core 0, hart 0 in the example), which resumes the run at rp
label.

There are four types of team member endings (continuation after a p ret
instruction) according to the received ra and t0:

1. ra is null and t0 is not the current hart: the hart ends,
2. ra is null and t0 is the current hart: the hart waits for a join,
3. ra is null and t0 is −1: the process exits,
4. ra is not null: the hart ends and sends ra to the t0 hart which restarts fetch

(the parallel section ends and is continued by a sequential one).

The p ret instructions are committed in-order (in the sequential referential
order) to implement a hardware separation barrier between a team of concurrent
harts and the following sequential OpenMP section. The barrier is implemented
as a hardware signal transmitted from hart to hart along the team members.
Hence, the harts are released in order (each hart commits its p ret only when it
has received the ending hart signal from its predecessor; it sends its own ending
hart signal to its successor after this commit).

Figure 4 shows how function LBP parallel start calls the last occurrence of
function thread with a RISCV jalr a0 indirect call instruction. This last call is
run by the last created team member on the last allocated hart (i.e. no fork).
The same hart runs the code after the return point at rp2 label. The ending
p ret instruction joins with the following sequential ending part of main (team
member ending type 4 with ra being not null).

addi sp , sp ,−8 #a l l o c a t e two words on l o c a l s tack
sw ra , 0 ( sp ) #save reg . ra on stack , o f f s e t 0
sw t0 , 4 ( sp ) #save reg . t0 on stack , o f f s e t 4
p s e t t0 #t0 = 4∗ core+hart ( current hart i d en t i t y )
j a l r a0 #a0 i s the po in te r on func t i on thread

rp2 : lw ra , 0 ( sp ) #re s t o r e reg . ra from stack , o f f s e t 0
lw t0 , 4 ( sp ) #re s t o r e reg . t0 from stack , o f f s e t 4
addi sp , sp , 8 #f r e e two words on l o c a l s tack
p re t #ra !=0 => end and send ra to t0 hart

Fig. 4. The PISC RISCV code for the end of the LBP parallel start function.

The fork on current function called in LBP parallel start (Fig. 1b) is a fork
protocol composed of the machine instructions presented on Fig. 5. The code
allocates a new hart on the current core (p fc X PAR machine instruction; the
allocated hart identity is saved to the destination register t6), sends registers
to the allocated hart (three p swcv X PAR instructions; a1 holds a pointer on
the data argument), starts the new hart (p jalr X PAR instruction; a0 holds
the thread address) which receives the transmitted registers (three matching
p lwcv X PAR instructions; the join address is restored from stack to ra, the join
core/hart to t0 and the data pointer to a1).
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p f c t6 #t6 = a l l o c a t e d hart number (4∗ core+hart )
p swcv ra , t6 , 0 #save ra on t6 hart stack , o f f . 0
p swcv t0 , t6 , 4 #save t0 on t6 hart stack , o f f . 4
p swcv a1 , t6 , 8 #save a1 on t6 hart stack , o f f . 8 ( data )
p merge t0 , t0 , t6#merge reg . t0 and t6 in to t0
p syncm #block f e t ch un t i l mem. a c c e s s e s are done
p j a l r ra , t0 , a0#c a l l thread l o c a l l y , s t a r t pc+4 remotely
p lwcv ra , 0 #re s t o r e ra from stack , o f f . 0
p lwcv t0 , 4 #re s t o r e t0 from stack , o f f . 4
p lwcv a1 , 8 #re s t o r e a1 from stack , o f f . 8 ( data )

Fig. 5. The PISC RISCV forking protocol. (Color figure online)

The seven first instructions (in red; down to the p jalr) are run by the forking
hart and the three last ones (in blue) are run by the forked hart. The p jalr
instruction calls the thread function on the local hart and sends the return
address1 to the allocated hart, which starts fetching at the next cycle. After
the p jalr instruction has been issued, the function called and the code after
return are run in parallel by two different harts.

The p syncm X PAR instruction synchronizes the send/receive transmission
protocol (p swcv and p lwcv pairs). The sending hart is blocked until all memory
writes are done (ra, t0 and a1 registers saved on the allocated hart stack). The
allocated hart starts only when its arguments have been copied on its stack by
the allocating hart.

This new PISC ISA extension is strongly connected to its microarchitecture
implementation named LBP to ensure the execution time and cycle by cycle
determinism. The next section presents the LBP processor implementing X PAR.

4 The LBP Parallelizing Processor

4.1 The Cores

Figure 6 shows the general structure of the 64-core LBP processor as it is imple-
mented on the FPGA2. Cores are represented by blue squares labeled c. Links
between cores are represented by magenta and blue arrows. Dashed lines repre-
sent optional extensions, either to have a larger manycore or to connect multiple
LBP chips. There are 64 ordered cores. The first core in order (core 0) is sur-
rounded by a red circle (top of the figure). Its successor is just aside, on the left.
The last core (core 63) is surrounded by a green circle (at the right of core 0).
The line of cores has a serpentine shape. The last core is not connected to the
first one. Hence, teams may only expand along successive cores until the last
one, no further.

Each core is directly connected to its successor (blue arrow). Each core is
indirectly connected to any predecessor through a unidirectional line (magenta
arrows). The direct connections (blue arrows) are used to allocate harts (fork

1 pc+4 points on the p lwcv instruction just following the p jalr one.
2 The FPGA implementation uses a small FPGA which limits the processor to 8 cores.
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Fig. 6. The LBP processor.

with p fc or p fn), send continuation values (p swcv) and propagate ending hart
signals (p ret). The backward line (magenta arrows) is used to send join addresses
(p ret), function results and reduction values (send a result with p swre).

4.2 The Pipeline

Figure 7 shows the LBP core pipeline. It has a classic five stages out-of-order
organization. Each stage selects one active hart at every cycle as shown on Figs. 8
and 9. In one cycle, a core fetches one instruction for the selected fetching hart,
renames one instruction of the selected renaming hart, issues one instruction of
the selected issuing hart, writes back one result to the register file of the selected
writing hart and commits one instruction for the selected committing hart. The
five selections are independent from each other.

A hart may be selected to fetch if its pc is full (a thread is running), if it has
not been suspended and if the fetched instruction may be saved in the decode
stage instruction buffer (labeled ib on Fig. 8) (the buffer remains full until the
hart is selected for decode/rename).

In particular, a hart is suspended after fetch until the next pc is known, at
best after the decoding which produces nextPC as shown on Fig. 7 (pc+1 or the
target of an unconditional direct branch). During the suspension, other active
harts on the core are selected. LBP hides branch latency through multithreading
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Fig. 8. Fetch and decode/rename stages.

instead of eliminating it through prediction (because every hart is suspended
after fetch, at least two full harts are necessary to fill the pipeline).

A hart may be selected for renaming if its instruction buffer is full with a
fetched instruction, if there are available resources to do the renaming (renaming
table labeled rt on Fig. 8, decode/rename stage) and there is a free entry in the
hart reorder buffer (labeled rob in the commit stage on Fig. 9). Once renamed
an instruction is saved in the hart instruction table (labeled it in the issue stage)
and in the hart reorder buffer.

A hart may be selected for issue if it has at least one ready instruction in its
instruction table (renamed instructions wait in the hart instruction table until
the sources are ready; there is one table per hart) and if the result buffer of the
hart in the write back stage is empty (labeled rb in the write back stage; hence, a
multicycle computation blocks the hart for issue until the result has been written
back, releasing the result buffer). Once issued, the renamed instruction reads its
renamed sources in the renaming register file (labeled rrf), crosses a single or
multiple cycle functional unit (labeled fu) and saves the result in the hart result
buffer.

A hart may be selected for write back if its result buffer is full and the
commit buffer of the hart is empty (labeled cb). The selected result is written to
the renaming register file of the hart. The written back instruction is notified as
terminated in the hart reorder buffer.
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Fig. 9. Issue, write back and commit stages.

A hart may be selected for commit if its reorder buffer tail entry is terminated.
If the instruction is a hart ending p ret, the ending hart signal must have been
received from the preceding hart.

The pipeline has the minimum hardware to make the out-of-order engine
work (to keep each core as simple as possible, which allows either to maximize
the number of cores on the die for a high performance manycore or to build a
very low-cost parallelizing microcontroller with one core and 4 harts).

A consequence is that a hart may have to wait in multiple situations: to fetch
because the pc is unknown (after a branch; this is frequent), to decode because
there is no renaming register available to rename the destination (this is rare)
or to issue because the result buffer is occupied (waiting for a computation in
progress or waiting to be selected for write back; this is frequent in programs
with a lot of memory accesses and/or a lot of multiplications/divisions). However,
our experiments have shown that when the 4 harts are active, the core pipeline
achieves a rate close to the peak of one instruction per cycle.

Even though harts are interleaved in the pipeline on a cycle by cycle basis,
this interleaving keeps deterministic as it only involves harts belonging to the
same application.

4.3 The Memory

Figure 6 shows the LBP manycore with its memory organization. Each core is
associated to a set of memory banks (red square labeled m). There are three
banks per core. One bank holds the code, another holds local data (a stack) and
the last one is used as a shared global memory.

The shared banks have two access ports. One port is used for a local access
and the other port is used for distant accesses through a hierarchy of routers
which interconnect the banks3.

3 The routers are not yet implemented on the FPGA but simulated for the reported
experiment.
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Each core has a bidirectional access to a level one router (green rectangle
labeled r1 and shared by four cores). Each r1 router is connected to a level two
r2 router (shared by four r1). Eventually, r2 routers are connected through a
level three router r3. The pattern is extensible (for example to extend the shared
memory out of the LBP chip or for future extensions of an LBP manycore).

Each r1 router is able to handle one access per link per cycle (i.e. 8 transac-
tions with the connected cores plus 4 transactions with the connected memory
banks; the router has the necessary internal buffers to pipeline the transactions
from core to memory and back to core). Every cycle, each r2 router is able to
receive 4 incoming requests from the 4 connected r1, send 4 outgoing request
results to the 4 r1, propagate one request to r3 and receive one request result
from r3. Eventually, every cycle the r3 router is able to propagate 4 requests
and 4 results to/from the 4 connected r2.

5 A Matrix Multiplication Program Example Experiment

Figure 10 shows a Deterministic OpenMP program to multiply integer matrices.
Except for the det omp.h reference in red, the remaining of the text is standard
OpenMP code and can be compiled with gcc -fopenmp.

This program (the base) has been run on three sizes of a vivado HLS simu-
lation (Xilinx High Level Synthesis tool, version 2019.2) of the LBP processor
(4, 16 and 64 cores). Four other versions have also been implemented and run
on the simulated LBP: copy, distributed, d+c and tiled. The different codes are
shown at URL [11].

The aim of the experience is to show that the LBP design is able to fill the
harts pipelines with instructions all along the run, thanks to the high level of
distant ILP exhibited by the Deterministic OpenMP parallelization, despite the
multiple latencies each hart has to wait for. A second goal is to verify that the
shared memory interconnection is dimensioned proportionally to the number of
harts. As the number of cores is increased in LBP, the distant memory access
requests are more frequent and have a longer latency. The experience should
check that the hardware is able to sustain a high proportion of distant accesses
without stalling the harts, i.e. keeping the IPC as close as possible to its peak.

Each run multiplies a matrix X with h lines and h/2 columns and a matrix
Y with h/2 line and h columns, where h is the number of harts (i.e. 16, resp. 64
and resp. 256 for a 4, resp. 16 and resp. 64 core LBP processor).

The copy code copies a line of matrix X in the local stack to avoid its multiple
accesses in the shared memory. The distributed code distributes and interleaves
the three matrices evenly on the memory banks (four lines of X, two lines of Y
and four lines of Z in each bank), to avoid the concentration of memory accesses
on the same banks (which happens if matrix Y is not distributed). The c+d
version copies and distributes. The tiled version is the classic five nested loops
tiled matrix multiplication algorithm. Each tile has h/2 elements for matrices X
and Y (

√
h ∗ √

h/2) and h for the result matrix Z (
√
h ∗ √

h).
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void thread(int t){
int i, j, k, l, tmp;
for (l=0, i=t*LINE_Z/NUM_HART; l<LINE_Z/NUM_HART; l++, i++)
for (j=0; j<COLUMN_Z; j++)
tmp=0;
for (k=0; k<COLUMN_X; k++)
tmp+=*(X+(i*COLUMN_X+k)) * *(Y+(k*COLUMN_Y+j));

*(Z+(i*COLUMN_Z+j))=tmp;
}

}
void main(){
int t;
omp_set_num_threads(NUM_HART);

#pragma omp parallel for
for (t=0; t<NUM_HART; t++) thread(t);

}

#include <stdio.h>
#include <det_omp.h>
#define LINE_X
#define COLUMN_X
#define LINE_Y
#define COLUMN_Y
#define LINE_Z
#define COLUMN_Z
#define NUM_HART
int X[LINE_X*COLUMN_X]={[0...LINE_X*COLUMN_X−1]=1};
int Y[LINE_Y*COLUMN_Y]={[0...LINE_Y*COLUMN_Y−1]=1};
int Z[LINE_Z*COLUMN_Z];

16
8

16
COLUMN_X

LINE_X
COLUMN_Y
16

Fig. 10. A Deterministic OpenMP matrix multiplication program.

Figures 11, 12 and 13 show nine histograms (number of cycles, IPC and
number of retired instructions) for the five codes on the three sizes of LBP.
These values are reproducible thanks to cycle determinism. The three bot-
tom histograms also include the best measures done on a Xeon Phi2 for the
tiled version (MCDRAM configured in flat mode and all-to-all cluster mode;
OMP NUM THREADS = 256, OMP PLACES = threads, OMP PROC BIND
= close). The measures are the minimum ones after 1000 runs. They were
obtained with a PAPI instrumentation of the original tiled version.

What matters is the number of cycles, i.e. the duration of the run. The IPC
is an indication whether the parallelization is effective. However, a high IPC
does not mean that useful work is done. The number of retired instructions is
important to see the overcost of parallelization.

On a 4-core LBP (Fig. 11), even though the tiled version has the highest
IPC (3.67 for a peak at 4), the base version is better as it is twice faster. The
innermost loop has seven instructions (two loads, one multiplication, one addi-
tion, two address incrementations and a conditional branch), which are repeated
h3/2 times, i.e. 14336 instructions when h = 16. The base version has 16722
retired instructions, which leaves 2386 instructions for the two outer loops, the
parallelization and its control (creation of 16 threads and their join).
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Fig. 11. Number of cycles, IPC and retired instructions for the matrix multiplication
five versions on a 4-core LBP (16 harts).

Fig. 12. Number of cycles, IPC and retired instructions for the matrix multiplication
five versions on a 16-core LBP (64 harts).

On a 16-core LBP (Fig. 12), the fastest is the copy version. The base version
achieves a poor 12.7 IPC when the copy version IPC is over 15 (for a peak of 16),
saving more than 10000 cycles (16% faster). The overhead is moderate (14500
instructions, i.e. 1.5%).

On the 64-core LBP (Fig. 13), the tiled version is the best because it saves
many long distance communications and because it distributes the remaining
ones more evenly over time and space. It is twice faster than the distributed
version and four times faster than the base version (1.18M cycles vs 2.08M and
4.14M). The IPC is 61.7 (for a peak of 64), showing that the LBP interconnect is
strong enough to handle the high demand. The tiling overhead is not negligible
(73M instructions versus 59M for the base version, i.e. +23%).

The 64-core LBP is not as fast as the Xeon Phi2 (1.18M cycles vs 391K,
3 times more). Firstly, there is no vector unit in LBP, which explains that the
Xeon runs 32M instructions and LBP runs 73M, i.e. 2.28 times more. Secondly,
LBP peak performance is 1 IPC per core when the Xeon peak is 6 (2 int, 2 mem
and 2 vector ops per cycle). Hence, LBP reaches 0.96 IPC per core (96% of 1
IPC peak) and the Xeon reaches 1.28 IPC per core (81.86/64 ; 21% of 6 IPC
peak). LBP is aiming embedded applications and should keep low-power and
energy efficient, which the Xeon Phi2 is not.
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Fig. 13. Number of cycles, IPC and retired instructions for the matrix multiplication
five versions on a 64-core LBP (256 harts).

6 Conclusion and Perspectives

Safety critical real time applications can benefit from parallel manycore pro-
cessors, if a high level of determinism is ensured to guarantee repeatable tim-
ings, as on the LBP processor. Moreover, the reported experiment shows that a
low-power manycore processor can be built for the embedded high performance
computations. The design of the LBP processor is suited to either offer par-
allelism to microcontrollers or to safely accelerate computations through their
parallelization and capture the distant ILP by hundreds of distributed harts.

Deterministic OpenMP is subset of the standard OpenMP with a new run-
time. For the programmer, the difference resides in the new det omp.h header
file and the hardware placement of code and data according to the program
structure. The main difference between OpenMP classic runtime and Determin-
istic OpenMP new one comes from the ordering of harts in a parallel team.
This ordering is optional in standard OpenMP but mandatory in Deterministic
OpenMP because the hardware synchronization which ensures safety relies on
the referential sequential order. As an example, a producing hart has to precede
a consuming one in the referential sequential order to exhibit the read-after-write
dependency linking the producer to the consumer. In Deterministic OpenMP, a
later hart cannot send anything to a prior one (a data cannot go back in time).

In a future work, we will extend the actual 8-core FPGA implementation of
LBP to fit a 16 core and two levels of routers on the Xilinx ZCU106 development
board. We will also complete the Deterministic OpenMP translator to automa-
tize the translation of standard OpenMP codes into our LBP specific machine
code.

References

1. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5, 46–55 (1998)

2. OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 5.0 (2018). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf


40 B. Goossens et al.

3. Padua, D.: Encyclopedia of Parallel Computing, pp. 1592–1593. Springer, Boston
(2011). ISBN 978-0-387-09766-4. https://doi.org/10.1007/978-0-387-09766-4 447

4. Lee, E.: The problem with threads. Computer 39(5), 33–42 (2006). ISSN 0018–9162
5. Pinho, L.M., et al.: High-Performance and Time-Predictable Embedded Comput-

ing. River Publishers, Wharton (2018).ISBN 8793609698
6. Shiina, S., Iwasaki, S., Taura, K., Balaji, P.: Lightweight preemptive user-level

threads. In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2021, Virtual Event Republic of Korea,
17 February 2021, pp. 374–388. ACM (2021). ISBN 978-1-4503-8294-6. https://doi.
org/10.1145/3437801.3441610. https://dl.acm.doi.org/10.1145/3437801.3441610

7. Iwasaki, S., Amer, A., Taura, K., Balaji, P.: Analyzing the performance trade-off in
implementing user-level threads. IEEE Trans. Parallel Distrib. Syst. 31, 1859–1877
(2020). https://doi.org/10.1109/TPDS.2020.2976057

8. Aviram, A., Ford, B.: Deterministic OpenMP for race-free parallelism. In: Proceed-
ings of the 3rd USENIX Conference on Hot Topic in Parallelism, HotPar 2011, p.
4. USENIX Association, Berkeley (2011)

9. Lee, E.A.: What is real time computing? A personal view. IEEE Design Test 35,
64–72 (2018). https://doi.org/10.1109/MDAT.2017.2766560
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Abstract. The SAPFOR and DVM systems were primary designed to
simplify the development of parallel programs of scientific-technical cal-
culations. SAPFOR is a software development suite that aims to produce
a parallel version of a sequential program in a semi-automatic way. Fully
automatic parallelization is also possible if the program is well-formed
and satisfies certain requirements. SAPFOR uses the DVMH directive-
based programming model to expose parallelism in the code. The DVMH
model introduces CDVMH and Fortran-DVMH (FDVMH) programming
languages which extend standard C and Fortran languages by parallelism
specifications. We present MPI-aware extension of the SAPFOR system
that exploits opportunities provided by the new features of the DVMH
model to extend existing MPI programs with intra-node parallelism. In
that way, our approach reduces the cost of parallel program maintain-
ability and allows the MPI program to utilize accelerators and multi-core
processors. SAPFOR extension has been implemented for both Fortran
and C programming languages. In this paper, we use the NAS Parallel
Benchmarks to evaluate the performance of generated programs.

Keywords: SAPFOR · Automation of parallelization · Additional
parallelization · MPI programs · Heterogeneous computational
clusters · GPUs · DVMH

1 Introduction

Since the first release of the Message Passing Interface (MPI) [1] standard in
1994, a lot of parallel MPI applications have been written to utilize available
high-performance clusters. Currently, MPI is one of the most common pro-
gramming models used to develop compute-intensive applications on distributed-
memory systems. However, every single node in a cluster tends to provide intra-
node parallelism. Current trends in architecture make heterogeneous systems
mainstream. To write portable code and to exploit multi-level program paral-
lelism today’s developers are challenged to use a variety of parallel programming
models.

Moreover, a choice of the best-suited programming model becomes very
important. Low-level models, such as POSIX Threads, CUDA, OpenCL give
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programmers fine-grained control over the program execution and allow them
to gain the best performance. At the same time, these models make the code
less portable. Thus, the migration between different architectures, for example,
NVIDIA and AMD GPUs, requires additional effort from software developers.

The possible solution is the use of higher-level programming approaches, such
as directive-based programming models, DSL compilers [2–4], or general-purpose
libraries [5,6]. While DSLs are restricted to a given domain and demand to
study narrowly specialized language constructs, directive-based models and high-
performance libraries preserve the sequential code written in general-purpose
programming languages.

A great effort has been made to extend the OpenMP [7] standard to sup-
port heterogeneous architectures. With new features, added to the standard, it
becomes possible to use accelerators as well as cores of the central processor
unit. Unfortunately, many compilers have only limited implementation of these
features, and there is no full support of the latest OpenMP 5.1 specification in
any compiler [8]. OpenACC [9], which emerged in 2011, is another well-known
directive-based programming model. It defines an abstract model for accelerated
computing to ensure support for currently available devices and for future ones
as well.

However, even though these models simplify parallel programming and
increase software maintainability, they still demand developers to be very aware
of GPU programming. To gain parallel program performance the user has to
understand how certain high-level specifications affect program execution. Imple-
mentation details may differ between the compilers. Thus, diving into a particu-
lar compiler implementation is desirable to understand optimization reports and
find out appropriate optimization options and necessary program transforma-
tions. Moreover, the absence of convenient tools to debug and tune OpenMP and
OpenACC programs executed on accelerators makes the developers use lower-
level tools, such as Nvidia Visual Profiler.

Parallel programming automation tools are very much desirable in this case.
Unfortunately, automatic compilers often suffer from the inability to reveal par-
allelism in arbitrary applications.

We advocate the use of a blended approach that comprises three layers: a
directive-based programming model, automation tools, and user participation.
The foundation is the DVMH [10,11] parallel programming model that pro-
vides high-level directives to expose parallelism in C and Fortran code. The
DVMH-based programming preserves the sequential C code and allows experi-
enced users to write parallel programs manually or tune existing ones if neces-
sary. The advanced runtime system manages the program execution and adapts
it to all available resources. Since it is aware of program execution as well as
higher-level parallelism specifications, the DVM system provides tools for pro-
gram debugging and performance analysis.

The next layer is the System FOR Automated Parallelization (SAPFOR) [12,
13] which is a software development suite that aims to produce a parallel ver-
sion of a sequential program in a semi-automatic way. The SAPFOR core is an
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automatic parallelizing compiler [14] that relies on static [15] and dynamic [16]
analysis techniques to reveal available parallelism in a source code. However,
unlike conventional automatic parallelizing compilers, which may suffer from a
lack of user participation, SAPFOR relies on an implicitly parallel programming
model and involves the user in the parallelization process.

If necessary, the developer uses the interactive subsystem of SAPFOR [17] or
manually inserts directives in a sequential source code to assert high-level pro-
gram properties. Although some assertions break the sequential semantics, they
do not require programmers to understand parallel programming under the hood.
The system also provides the user with a set of automatically performed source-
to-source transformations (inline expansion, dead code elimination, expression
propagation and other) that he can apply to the original sequential program.

SAPFOR produces a parallel version according to DVMH programming
model. Hence, the developer can pay attention to the decisions SAPFOR has
been made. Moreover, DVMH-based parallelizations allow SAPFOR to transfer
some decision-making (for example, low-level data transfer optimization) to the
DVMH system runtime library.

Initially, if the DVMH programming model is used, it utilizes all available
computational resources. It takes control over inter-node data transfer and dis-
tributed computations. Utilizing multi-core processors and accelerators, it also
manages parallelism inside a compute node. The presence of a large number of
MPI applications convinces us to extend the DVMH model, as well as SAPFOR,
and to enable DVMH-based parallelization of MPI programs.

In summary, our main contributions are:

– the blended approach (a directive-based programming model, automation
tools, and user participation) to the exploitation of intra-node parallelism
in existing MPI programs (C and Fortran),

– MPI-aware extension of the SAPFOR system that exploits opportunities pro-
vided by the new features of the DVMH model to extend existing MPI pro-
grams with intra-node parallelism,

– experimental evaluation of our blended approach on some programs from the
NAS Parallel Benchmark.

The rest of the paper is organized as follows. Section 2 outlines implemen-
tation details of MPI-aware program parallelization in SAPFOR. It also briefly
describes some useful program transformations on the example of programs from
the NAS Parallel Benchmarks [18]. Section 3 presents the performance of the
NAS Parallel Benchmarks execution on heterogeneous computational clusters.
We examine the DVMH programs obtained in a semi-automatic way from MPI
versions of this benchmark. Fortran and C sources are considered. Section 4 dis-
cusses the related work and finally, Sect. 5 concludes this paper.

2 MPI-Aware Parallelization in SAPFOR

Initially, DVMH-based program parallelization requires the developer to dis-
tribute array elements between the processors and then to map iterations of
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parallel loops on the elements of these distributed arrays. If the MPI program
is parallelized, the DVMH model does not imply any distributed data, so it
is not necessary to set the mapping on distributed arrays. However, to enable
compile-time and runtime optimizations a relation between loop iterations and
array elements has to be specified. The new DVMH specification tie was intro-
duced [19] to imply this relation. In this context, it is possible not to specify any
distributed arrays in terms of the DVMH model and at the same time use the
capabilities of the DVM system:

– to use parallelism on shared memory with using CPU cores (OpenMP threads)
or to use graphics accelerators;

– to perform the automatic data transformation on GPUs, and to use simplified
management of data movements between CPU and GPUs memories;

– to select optimization parameters of DVMH runtime system;
– to use tools for debugging and performance analyzing of parallel programs.

To place the tie specification in the code in an automatic way we add the
corresponding analysis techniques to SAPFOR.

In the first step, SAPFOR searches for the outermost perfect loop nests to
execute in parallel. It examines whether some properties of the loop nest prevent
its parallel execution (safety of control flow and memory accesses, canonical loop
form, etc.) [14]. It determines the direction of data usage to place the correspond-
ing specification (in, out, local) because the DVMH compilers do not implement
interprocedural analysis and they have to make conservative assumptions.

In the next step, SAPFOR explores memory accesses inside the loop nest
body. It relies on expression propagation and scalar evolution techniques to
determine the presence of the loop induction variable in subscript expressions.
As we do not use DVMH to expose data distribution in MPI programs, we do
not determine memory access patterns properly. This allows us to also process
non-affine expressions.

After parallel loop nests are identified, the MPI program will be divided
into computational regions, which can be executed on different computational
devices (multi-core CPU and accelerators), and into sequential code fragments.
SAPFOR places neighboring parallel nests at the same level of a loop tree in
a single computational region to decrease initialization overhead at the region
entry point.

To ensure the memory consistency between CPU and GPUs SAPFOR needs
to determine points to put the actualization specifications. The deferred semantic
of actualization directives allows DVMH runtime system to avoid redundant data
transfer. For example, if the user inserts two identical consecutive directives into
his program, the copying will be performed only once. Moreover, there is no
difference whether all regions are executed on GPU or a part of them is targeted
to the CPU-only execution. Actualization directives affect only transfer between
regions and sequential code fragments outside them. The DVMH runtime system
will manage the necessary data transfer in an automatic way.

This approach helps SAPFOR to automatically place these directives and to
decrease communication overhead. The goal of SAPFOR is to determine data to
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be updated. It uses the previously collected information that identifies the direc-
tion of data usage. It also applies alias analysis to determine indirect memory
accesses in C programs. The only variables, which are accessed inside the region
body, need to be updated. According to this information, SAPFOR places the
actual directive, which specifies variables that have the newest values in CPU
memory, after each assignment to the variable outside computational regions.
The get actual directive, which specifies variables to copy from GPU to CPU
memory, is placed before each statement which uses the variable changed in any
DVMH region.

Industrial programs usually comprise a large number of procedures (functions
or subroutines). Initially, SAPFOR divided all procedures into three groups:
built-in routines (intrinsic Fortran procedures and functions from the C standard
library), user-defined procedures, and external procedures.

As the body of the external procedure is not available, SAPFOR unable to
determine the variables to be used in a procedure call. In this case, the system
inserts the actualization specifications before and after this procedure call for all
variables accessed in any computational region. To avoid redundant data transfer
the user may manually specify the memory the procedure accesses. For example,
it is possible to insert SAPFOR assertion to mark the absence of side effects.

SAPFOR treated MPI procedures as external procedures, so we add the
fourth group of procedures to SAPFOR (MPI procedures) and specify the data
usage direction for procedures in this group.

If the reduction variable participates in MPI communications, SAPFOR was
not able to analyze it because the corresponding argument in a data transfer
function has a pointer type. We use SAPFOR intermediate representation of the
program to make an implicit copy of the scalar variables that cause data depen-
dencies. In that way, we break the explicit relation between reduction variables
and MPI functions to force the reduction variable analysis in SAPFOR. However,
we do not modify the original source code and perform necessary transformations
implicitly. These transformations extend the support of reduction computations
in SAPFOR.

One of the most important transformations that allows us to analyze large
programs is function inlining [14]. We also use SAPFOR intermediate repre-
sentation to implement function inlining implicitly. We determine function calls
that degrade analysis and automatically schedule them to inline before SAPFOR
analysis passes are executed. At the same time, we do not affect the source code.

Unfortunately, manual source-to-source transformations are still necessary
to parallelize some sources. The accelerator memory has a limited size and a
large number of threads in conjunction with large privitizable arrays prevents
offloading computations to GPU. An example is the main computational loop
in the EP application from the NAS Parallel Benchmarks [18] (Listing 1.1).
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Listing 1.1. Parallel loop with a large privitizable array in the EP benchmark

double x [2∗NK] ; // NK i s 65536 , NP depends on an input
#pragma dvm p a r a l l e l ( [ k ] ) p r i va t e ( x ) . . .
for ( k = 1 ; k <= NP; k++) {

. . .
for ( i = 0 ; i < NK; i++) {

. . .
x [ i ] = r46 ∗ (∗ x4 ) ;

}
for ( i = 0 ; i < NK; i++) {

x1 = 2 .0 ∗ x [ 2 ∗ i ] − 1 . 0 ;
x2 = 2 .0 ∗ x [ 2 ∗ i + 1 ] − 1 . 0 ;
t1 = x1 ∗ x1 + x2 ∗ x2 ;
. . .

}
. . .

}

In order to eliminate the array x, we manually fused two adjacent loops into
a single loop (the first loop initializes this array and the second loop accesses
the calculated values) and added a re-calculation of the required elements (two
neighboring array elements) at each iteration of the new loop. As a result, the
array was replaced with two scalar variables (Listing 1.2).

Listing 1.2. The result of fusion of i-loops in Listing 1.1

#pragma dvm p a r a l l e l ( [ k ] ) . . .
for ( k = 1 ; k <= NP; k++) {

. . .
for ( i = 0 ; i < NK; i++) {

double x 2 i , x 2 i 1 ;
{ . . .

x 2 i = r46 ∗ (∗ x4 ) ;
}
{ . . .

x 2 i 1 = r46 ∗ (∗ x4 ) ;
}
x1 = 2 .0 ∗ x 2 i − 1 . 0 ;
x2 = 2 .0 ∗ x 2 i 1 − 1 . 0 ;
. . .

}
. . .

}
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3 Results

In this section, we use the NAS Parallel Benchmarks [18] to demonstrate the
capabilities of SAPFOR to embed DVMH specifications in MPI programs. The
BT, CG, and EP applications are considered. The performance of the resulting
MPI programs with DVMH extensions and parallel programs, using only MPI,
was evaluated on the K60 supercomputer [20] which is equipped with Intel Xeon
Gold 6142v4 CPUs and NVIDIA V100 GPUs (Volta architecture).

Each node of K60 (GPU partition) has two 16-cores processors and four
GPUs V100. Two processors are linked by a shared memory (NUMA architec-
ture). A single node has about 60 TFPLOS single-precision performance and
about 30 TFLOPS double-precision performance. Hence, we can use a small
number of nodes to achieve the high performance of our parallel programs. For
all experiments, we use the total power of two nodes: for MPI programs we use
up to 64 cores, for MPI programs with DVMH extensions we use up to 64 cores
and 8 GPUs.

Table 1 and Table 2 show the execution time of different MPI programs writ-
ten in Fortran and C languages, respectively.

Table 1. Times in seconds of Fortran programs, NPB 3.3 class D.

MPI programs Transformed MPI programs MPI programs + FDVMH

BT CG EP BT CG EP BT CG EP

1 node 665.1 397.5 93.68 785.29 376.8 83.34 63.3 80.99 0.62

2 nodes 361.6 209.6 46.53 428.07 229.61 42.06 50.3 42.6 0.38

The first group of columns called MPI programs represents the original ver-
sion written by the developers of the NAS Parallel Benchmark. Actually, in the
suite, there are no built-in C versions of analyzed programs, so we translated
Fortran to C manually. The second group called Transformed MPI programs
represents versions that were obtained as a result of automated transformations
(functions inlining, loop fusion, loop distribution, and etc.) using the SAPFOR
system. Also, some transformations we did manually since at the moment they
have not been implemented in SAPFOR yet. And finally, the last group called
MPI programs + DVMH represents the results of automatic parallelization of
Transformed MPI programs using the SAPFOR system.

Table 2. Times in seconds of C programs, NPB 3.3 class D.

MPI programs Transformed MPI programs MPI programs + CDVMH

BT CG EP BT CG EP BT CG EP

1 node 694.6 326.16 98.41 768.5 328.8 99.37 97.7 186.12 0.67

2 nodes 386 218.9 49.29 421.3 214.3 50.05 75.7 96.75 0.38



48 N. Kataev and A. Kolganov

For each node, we use the maximum number of CPU cores to execute original
and transformed versions. To execute DVMH versions we use all GPUs available
in the node. We can see that the transformations do not lead to severe per-
formance degradation. And in doing so, SAPFOR parallelizes the transformed
versions in an automatic way and offloads computations to GPU.

The lack of some useful analyzes in the CDVMH compiler explains the differ-
ence in the speedup of Fortran and C applications. The analysis capability of the
Fortran DVMH compiler has been expanded. The compiler analyses imperfectly
nested loops inside a parallel loop nest. If it is able to determine the presence
of reduction computations, the compiler exploits additional parallelism inside
the parallel loop nest. A lot of indirect accesses in the CG application make
this approach especially effective because it allows the compiler to parallelize
imperfect loop nests.

The maximum speedup of BT application, if GPUs are used, is 10.5 times
compared to 32 MPI processes and is 7.18 times compared to 64 cores. The
maximum speedup of CG application is 4.9 times in both configurations. And
the maximum speedup of EP application is 151 times in both configurations.

The difference in the complexity of these applications leads to different
speedup of parallel programs. EP executes a large number of independent opera-
tions without accessing the device memory. While CG implements sparse matrix-
vector multiplication which produces indirect accesses to the device memory.

And finally, BT is a compute-intensive application with a lot of memory
accesses, and loops with regular dependencies. As a result, a large number of
communications affect the program performance. Figure 1 shows the ratio of
computation time to communication time. It shows that communication time
between MPI processes (total communications) does not depend on the total
number of cores. As MPI API is separated from DVMH runtime, SAPFOR
cannot affect this time, so the CPU-to-GPU data transfer remains the same.
However, the computation time decreases in proportion to the number of GPUs.

Fig. 1. The ratio of computation time to communication time in the BT application
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4 Related Works

There are two different approaches to program parallelization. The first one,
adopted by SAPFOR, is a stepwise transformation of a source code in the direc-
tion of a parallel program. There are a lot of typical techniques like loop fusion,
loop reversal, loop distribution, function inlining, expression propagation and
etc. [21]. Some of them have been already implemented in SAPFOR and could
be chosen automatically to apply or the user may guide SAPFOR through a
desirable transformation sequence. Model-based parallelization is another app-
roach that uses a mathematical model to represent program fragments to be
parallelized. The main advantage of this approach is the ability to represent the
entire transformation sequence as a single transformation and discover it in an
automatic way using mathematical optimization methods.

The latter approach is more suitable for automatic compilers than for
automation tools that depend on active user participation. In the context of
model-based approach, it may be difficult to understand the decisions made by
the compiler. The following compilers adopt this approach [22,23,25,26,28].

Pluto [22] focuses on loop transformations to optimize data locality and to
exploit OpenMP level parallelism as well as to vectorize loops. PPCG [23] was
designed to offload data-parallel computation to a GPU and uses CUDA or
OpenCL to expose parallelism in a source code.

Both these tools use only C code as input and do not support Fortran lan-
guage. In spite of these tools implement source-to-source program transformation
and use high-level language to expose available parallelism, they still suffer from
readability issues. For example, PPCG relies on CUDA and OpenCL low-level
models that require the user to well understand GPU programming.

Moreover, to apply the polyhedral model the well-structured code fragments
(SCoPs) should be revealed. The user has to insert corresponding specifications
(for example, a scop pragmas) into a source code. The way these specifications
are inserted may affect the performance of the resulting parallel code. For exam-
ple, PPCG handles data transfer separately for each static control loop nest.
Hence, if adjacent loop nests are placed in different SCoPs, the data transfer
happens at the beginning and at the end of each loop nest. As a result, this
leads to drastic performance degradation. Pluto and PPCG also suffer from an
inability to reveal reduction computations and to support them in a parallel
code.

The LLVM-based [24] compilers Polly [25] and Polly-ACC [26] solve some
of the mentioned problems. A reduction-enabled scheduling approach has been
implemented in Polly [27]. These compilers also implement automatic detection
of SCoPs. Actually, Polly-ACC is an extension of Polly enabling accelerator
support in LLVM-based compilers. Therefore, it maintains the parallelization
for different languages if the corresponding front-end for LLVM-project exists.

On the other hand, it operates with low-level LLVM IR. That makes it impos-
sible for the user to explore the parallel program. Even though Polly automat-
ically detects SCoPs in the source code it may require the user to change the
original program if the code cannot be analyzed. In this context, the user has
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to explore the hierarchy of SCoPs and be aware of LLVM IR (Intermediate
Representation).

Unlike all mentioned tools, Apollo [28] optimizer, which also relies on the
polyhedral model, applies speculative optimizations at run time. Thus, it over-
comes static analysis issues, but it does not offload computations to accelerators.

If we summarize all mentioned issues, all these tools are not suitable to
parallelize the NAS Parallel Benchmarks. The direct application of PPCG and
Polly has not given any performance impact. It increases program execution time
instead.

5 Conclusion

The paper examines the approach to additional parallelization of existing MPI
programs which was implemented in SAPFOR and DVM systems. We present
performance evaluation results of the built programs on the example of some
applications from the NAS Parallel Benchmarks.

SAPFOR relies on the new features of the DVM system that allows us to
offload computations in MPI programs to a GPU in a semi-automatic way. We
advocate the use of a blended approach to parallel programming that comprises
three layers: a directive-based programming model, automation tools, and user
participation. In this context, SAPFOR and DVM complement each other and
bring advantages over other parallel programming models, like MPI+OpenMP
or MPI+OpenACC.

Firstly, the SAPFOR system implements an automatic parallelizing compiler
that is suitable to parallelize well-formed programs. If the complexity of the
original program hinders its analysis the user may assert program properties or
guide SAPFOR through the sequence of source-to-source transformations. It is
important, that available assertions do not require programmers to understand
parallel programming in detail.

To gain parallel program performance the SAPFOR system can rely on vari-
ous optimizations implemented in the DVMH compiler and runtime system: data
transformation at runtime to choose the right memory access pattern, dynamic
CUDA handler compilation during the program runtime, parallel execution of
loops with regular loop carried dependences on GPU and other. These optimiza-
tions are hidden from the user, and to enable them SAPFOR uses higher-level
parallelism specifications that do not affect source code readability and main-
tainability.

Moreover, the DVM system provides performance analysis tools that operate
in terms understandable to a user. These tools accumulate the characteristics of
parallel program performance and associate them with DVMH constructs. SAP-
FOR can use these performance characteristics to perform further optimizations.

Thus, the SAPFOR and DVM systems can significantly reduce the effort
required to embed intra-node parallelism into the existing MPI programs and
to utilize available architectures such as multi-core CPUs or GPUs. We believe
that they can also help to develop and to optimize scalable algorithms for super-
computers.
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Abstract. Sparse system solution methods (S3M) is a collection of
interoperable linear solvers and preconditioners organized into a C++
header-only library. The current set of methods in the collection span
both rather traditional Krylov space acceleration methods and smoothers
as well as advanced incomplete factorization methods and rescaling and
reordering methods. The methods can be integrated into algebraic multi-
grid and multi-stage fashion to construct solution strategies for complex
linear systems that originate from coupled multi-physics problems. Sev-
eral examples are considered in this work, that includes Constrained
Pressure Residual (CPR) multi-stage strategy for oil & gas problem and
Schur complement method for the system obtained with mimetic finite
difference discretization for anisotropic diffusion problem.

Keywords: Sparse linear system · Numerical modeling · Constrained
pressure residual · Mimetic finite difference · Parallel efficiency

1 Introduction

Modern industrial applications require numerical analysis of large complex cou-
pled multi-physics problems. Strong coupling of a variety of physical processes of
different nature and properties result in inability or inefficiency in solving arising
linear systems using usual methods such as algebraic multigrid or incomplete fac-
torization. To gain traction in solving such systems the problem is subdivided
into systems with known properties and then solved in a multi-stage fashion
with each part addressed with the best possible preconditioner. A weak precon-
ditioner for the whole system or block Gauss–Seidel method is used to resolve
the coupling. The examples are two-stage constrained pressure residual (CPR)
method [1] for multiphase oil recovery problems, its three-stage extension when
thermal effects are considered [2], Uzawa method for the Navier–Stokes systems,
the fixed-stress method for coupled fluid-structure interaction [3]. The Sparse
System Solution Methods (S3M) package is designed to tackle such linear sys-
tems and solution strategies.
c© Springer Nature Switzerland AG 2021
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There is a number of various open-source packages directed at solving com-
plex problems in parallel, such as PETSc [4], Hypre [5], Trilinos [6], AMGCL [7],
INMOST [8–10]. All of them are tailored to address either close to elliptic
diagonally-dominant systems (PETSc GAMG, Hypre BoomerAMG, Trilinos
ML, AMGCL, and others) or for raw utilization of parallel computing power.
Among the commercially available solvers, the notable example is SAMG [11],
the successor of the first commercially-successful AMG1R5 multigrid solver [12].
SAMG implements a number of strategies to address various industrial prob-
lems [13,14]. On the other side the distributed direct solvers such as open-source
MUMPS [15] and SuperLU [16] or commercial PARDISO [17] are available but
are limited by linear system size even in distributive memory implementations.

INMOST software platform was developed earlier by the authors (see [9,10]).
It is mainly based on distributed and partially shared memory parallel implemen-
tations. The built-in methods are ubiquitously based on the additive Schwartz
method that, with a large number of cores, may either drastically reduce the
performance or require much memory to locally store the overlapped matrix.
The flagship preconditioner is the multi-level second-order inverse-based incom-
plete factorization method [18]. The robustness of this built-in preconditioner is
provided based on adaptive tuning of dropping tolerances [19] and efficiency of
Schur complement approximation [20] that becomes memory hungry and non-
tractable for large complex systems. To some extent, the S3M package serves as a
test bed for the linear solver subsystem in INMOST, especially once MPI-based
distributed-memory parallelization is implemented.

Section 2 describes the structure of the S3M package. Section 3 clarifies the
mathematical aspects of the implemented algorithms. In Sect. 4, the main prop-
erties of the S3M package are formulated. Section 5 contains the results of numer-
ical experiments. The final section summarizes the findings.

2 S3M Package Structure

The basic idea of S3M structure organization is the use of C++ templates. Each
template class is placed in its own header file along with the implementation of
all the methods. In this way, the S3M package is organized into a C++ header-
only library and a separate set of ready-to-use programs for the linear system
solution. In Fig. 1 the general structure of S3M library is presented.

The respective header files allows one to support:

– Data storage. These data structures are used at all levels, from operations on
vectors to operations on sparse matrices.

• CSR matrix. Matrix data is stored in the most widely used Compressed
Sparse Row (CSR) format. It allows to load and save matrix in Matrix-
Market and internal binary formats, provide functionality to multiply a
vector by direct and transpose matrix as wells as transposition, multipli-
cation, addition and subtraction of sparse matrices and some other helpful
accessory methods.
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Fig. 1. The S3M library structure of methods and class.

◦ class CSRMatrix<KeyType>, where KeyType is the type of matrix values.
• CSR matrix graph. Matrix graph has a similar structure expect it does

not store values.
◦ class CSRGraph.

• Sparse row accumulator. This class is used for SAXPY operations on
sparse vectors. For a survey on the implementation of row accumulators,
see [21].
◦ class RowAccumulator<KeyType>, where KeyType is the type of sparse
row values.

• Vector operations. At the present, this file contains the set of operations
over std::vector<double> vectors. The functionality covers loading and
saving MatrixMarket and binary file formats and computing dot product
and vector norm.

– Iterative schemes. A set of iterative schemes is implemented.
• Preconditioned Conjugate Gradient method. This iterative scheme should

only be used for linear systems with symmetric positive definite matrices.
Class PCG contains the coefficient matrix and the preconditioner.
◦ class PCG< Preconditioner >, here and further Preconditioner
stands for the class defining preconditioning method.
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• Biconjugate gradient stabilized method. The most popular iterative
scheme for nonsymmetric systems of linear equations.
◦ class BICGSTAB< Preconditioner >.

• Generalized minimal residual method. The method approximates the solu-
tion by the vector in a Krylov subspace with minimal residual. The
Arnoldi iteration is used to find this vector. The working memory required
by this method depends on the number of restarting iterations (the default
value is restart = 25).
◦ class GMRES< Preconditioner >.

• Transpose-Free Quasi-Minimal Residual method.
◦ class TFQMR< Preconditioner >.

– Relaxation methods. These methods mainly serve as smoothers for algebraic
multigrid method.

• Conjugate Gradient. The Conjugate Gradient method contains no pre-
conditioner. This iterative scheme should be used for linear systems with
symmetric positive definite matrices.
◦ class ConjugateGradient.

• Jacobi method. The Jacobi method with relaxation parameter ω.
◦ class Jacobi.

• Gauss–Seidel method. The Gauss–Seidel method with alternate backward
and forward substitutions as well as relaxation parameter ω.
◦ class GaussSeidel.

• Multicolor Gauss–Seidel method. The multicolor Gauss–Seidel method
includes the multicoloring reordering based on parallel maximal indepen-
dent set algorithm to uncover the parallelism. It is equivalent to symmet-
ric Gauss–Seidel method if the number of iterations is even, or symmetric
successive over-relaxation (SSOR) if relaxation parameter ω > 1.
◦ class MulticolorGaussSeidel.

• Chebyshev polynomial method. The Chebyshev polynomial method can
be used as a standalone iterative process or as an AMG smoother with
the eigenvalues estimated using Gershgorin’s disks.
◦ class Chebyshev.

• Simple-iteration method. The simple-iteration method can also be used
as an AMG smoother.
◦ class SimpleIteration.

• Dummy method. This is the do-nothing method.
◦ class DummySolver.

– Triangular factorizations. Both complete and incomplete triangular factoriza-
tions are implemented. It can be used as a standalone preconditioner or as a
smoother to algebraic multigrid method.

• LU factorization method. This method uses full pivoting and is applied
to a dense matrix.
◦ class LU.

• The second-order ILU factorization method. The second-order row-
wise ILU factorization [22] or a two thresholds ILU(τ1, τ2) factorization
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provides a robust preconditioner for sparse matrices. A setting τ2 = τ1 = τ
coarsens it to a regular 1-st order ILU(τ) factorization.
◦ class ILU2.

• Second-order Crout incomplete LDU factorization. The Crout version of
the second-order ILU factorization using the estimation on the norms of
the inverse triangular factors described in [18]. It is the most powerful
method to construct an accurate preconditioner for sparse ill-conditioned
matrices. The method also has diagonal perturbation parameter τD.
Increasing this parameter reduces factorization accuracy and complex-
ity. It proves to be helpful for large systems.
◦ class ILDUC2.

• Crout incomplete LDU factorization. This is a simplified version without
a second-order threshold and equivalent to the one in [23].
◦ class ILDUC.

– Preprocessing. The preprocessing stage includes matrix scaling and matrix
reordering algorithms. Preprocessing is an important part of the linear system
solution. It may provide relevant properties for the matrix [24,25].

• Symmetric scaling method. The scaling algorithm is implemented follow-
ing [24]. Note, that description of the method in Sect. 4.3 (see [24, p. 353])
and Algorithm 4.1 (see [24, p. 354]) contain square roots. The current
implementation uses the power of quarter instead.
◦ class SymmetricScaling< Solver >, here and further Solver is the
class of the subsequent solution method.

• Sinkhorn scaling method. The row-column alternating scaling algorithm
to doubly-stochastic form is implemented following [26].
◦ class SinkhornScaling< Solver >.

• Multicoloring algorithm. Multicoloring algorithm is implemented using
either sequential RCM-like approach or using parallel maximum indepen-
dent set algorithm for matrix reordering.
◦ class Multicolor< Solver >.

• Triangle reordering algorithm. This method tries to reorder the system
as much as possible to lower-triangular matrix.
◦ class TriangleReorder< Solver >.

• Maximal transversal algorithm. This algorithm constructs both scaling
and reordering to provide the use of maximal pivots during factorization.
Maximal transversal algorithm is implemented following [25,27]. It is the
most powerful instrument for preprocessing the ill-conditioned linear sys-
tems.
◦ class MaximalTransversal< Solver >.

• Dummy preprocessing method. This is the do-nothing algorithm.
◦ class DummyPreprocessor< Solver >.

– A set of wrappers. The wrappers provides parameter-based choice of partic-
ular method.
◦ class KrylovWrapper< Preconditioner >;
◦ class PreprocessorWrapper< Solver >;
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◦ class PreconditionerWrapper;
◦ class SmootherWrapper.

– Two-stage and AMG solution strategies.
• Two-stage method. This is the method that applies two different precon-

ditioners to the linear system. The first preconditioner is applied to a
(usually pressure) sub-block of the system. The second preconditioner is
applied to the full system with the account of the solution of the first sys-
tem in the right-hand side. The method requires definition of sub-block
via parameters. For details see Subsect. 3.4.
◦ class TwoStage< BlockSolver, SystemSolver >.

• Two-stage Gauss–Seidel method. The symmetric block Gauss–Seidel
method for two blocks. The method requires definition of sub-block via
parameters. For details see Subsect. 3.5.
◦ class TwoStageGaussSeidel< Block1Solver, Block2Solver >.

• Algebraic multigrid method. The AMG method is implemented follow-
ing [28]. It accepts matrix preprocessing on each level, similar to the
approach in multi-level methods.
◦ class AMG< Smoother, Preprocessor, CoarsestSolver >.

• Ruge–Stüben algebraic multigrid method. The classical Ruge–Stüben
AMG class is implemented following [29]. For the details of the AMG
implementation see Sect. 3.
◦ class AMGRugeStuben< Smoother, CoarsestSolver>.

– Schur complement. Some methods based on Schur complement are imple-
mented.

• Schur complement method. This method is used for solve the linear sys-
tems appeared after mixed hybrid finite elements or mimetic finite differ-
ence discretizations. This method uses the fact that the leading block of
the matrix is diagonal.
◦ class SchurMFD< SchurSolver >.

• Schur complement series. This method uses power series to solve block
system but avoid constructing Schur complement.
◦ class SchurSeries< BSolver, CSolver >.

– Constrained Pressure Residual method. The method involves preliminary
matrix scaling and a two-stage approach. This method is implemented fol-
lowing [30,31]. For details see Subsect. 3.3.
◦ class CPR< PSolver, SSolver, TwoStageMethod >.

– Dynamic Row Scaling method. A smarter matrix scaling method that pre-
servers diagonal-dominance of pressure system. The implementation follows
by [13,32,33].
◦ class DRS< PSolver, SSolver, TwoStageMethod >.

– Parallelization method. An OpenMP based parallelization strategy based on
block-Jacobi method for a serial solver.
◦ class BlockJacobi< Solver >.

It should be noted, that partial parallelization is currently only performed at
the OpenMP level. OpenMP directives are incorporated in the code wherever it
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is required. In addition, there is a special structure for thread-safe construction
of a sparse matrix using OpenMP.

As a result of the organization of C++ classes, the CPR method based
on block Gauss–Seidel approach with the pressure system solved by multigrid
method with the smoother based on Crout incomplete factorization method
acting on symmetrically pre-scaled matrix and saturation system solved by par-
allel Gauss–Seidel method can be expressed as an object of the class CPR< AMG
RugeStuben< SymmetricScaling< ILDUC >, LU >, MulticolorGaussSeidel,
TwoStageGaussSeidel>. Here the direct LU method is used at the coarsest
level. It translates into CPR method with:

– PSolver equals to AMGRugeStuben with
• Smoother equals to SymmetricScaling with Solver equal to ILDUC;
• CoarsestSolver equals to LU;

– SSolver equals to MulticolorGaussSeidel;
– TwoStageMethod equals to TwoStageGaussSeidel.

3 Mathematical Aspects

In this section, we describe in detail some of the algorithms involved in S3M
package and used in the above numerical experiments. The methods described
below are used as a preconditioner to one of Krylov subspace methods.

3.1 AMG Method

AMG algorithm is implemented following the classic description from [28]. It pre-
pares the coarse space and operators of prolongation, restriction, and relaxation.
In the following we denote the matrix on level m by Am =

{
am
ij

}
, i, j ∈ 1, Nm.

Currently, the preparation of the coarse space is sequential, the parallel alterna-
tives are PMIS, HMIS, CLJP and others [34] that we intend to implement later
as alternative choice. In the original Ruge & Stuben algorithm [29] an extension
of coarse space is performed. This step is optionally available in our implemen-
tation, but we do not exercise this option in numerical tests and thus omit its
presentation.

3.2 Smoothers

Further in numerical tests we use multi-color Symmetric Gauss–Seidel method,
polynomial Chebyshev method and Crout incomplete factorization as relaxation
methods in AMG. In numerical experiments we compare the results of AMG
methods to the single-level second-order variant of the Crout incomplete fac-
torization with the dropping tolerances tuned according to the inverse-based
condition estimation [19]. The description and algorithms corresponding to the
method can be found in [18].
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3.3 Constrained Pressure Residual Algorithm

The CPR method is specifically tailored to address the linear systems arising in
fully-implicit reservoir simulators. The method mimics IMPES solution strategy,
that stands for “implicit pressure explicit saturation”, by uncoupling the pressure
equations from saturations. Let the linear system Ax = b be split into “pressure”
and “saturation” parts

[
App Aps

Asp Ass

]
·
[

p
s

]
=

[
bp
bs

]
. (1)

After left scaling by S =
[
I −DpsD

−1
ss

0 I

]
the system is transferred to

[
Bpp Zps

Asp Ass

]
·
[

p
s

]
=

[
bp − DpsD

−1
ss bs

bs

]
, (2)

where Bpp ≡ App − DpsD
−1
ss Aps and Zps ≡ Aps − DpsD

−1
ss Ass ≈ 0 is assumed.

The solution is similar to the inexact Uzawa iteration:

1. Solve pressure system

Bpp p̃ = bp − DpsD
−1
ss bs.

2. Solve full system

x = A−1

(
b − A ·

[
p̃
0

])
+

[
p̃
0

]
.

The two variants of CPR method may be considered based on choice of Dps

and Dss:

– “true-IMPES”: Dps = colsum(Aps), Dss = colsum(Ass);
– “quasi-IMPES”: Dps = diag(Aps), Dss = diag(Ass).

Here, diag(·) is the diagonal of the matrix, while colsum(·) is the diagonal matrix
with the respective column sums. Besides, since Dps may not be square, it is
also assumed that the first order upstream method is used for the mobility
advection and the diagonal terms are negative. This is true for oil-water system
of equations. As a result the method automatically detects the diagonal of the
block, corresponding to saturations by negative value.

3.4 Two-Stage Method

Let the preconditioned linear system has the form

(AM−1)(Mx) = b,

where a general multi-stage preconditioner M−1 is formally written as [2]:

M−1 = M−1
1 +

nst∑

i=2

M−1
i

i−1∏

j=1

(I − AM−1
j ),
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with nst the number of stages and M−1
j the jth preconditioner for A. Then

the CPR method represents a special case of two-stage algorithm, where the
preconditioner matrices are defined as follows:

M−1
1 =

[
0 0
0 M−1

pp

]
, M−1

pp ≈ B−1
pp , M−1

2 ≈ (SA)−1.

3.5 Two-Stage Symmetric Gauss–Seidel Algorithm

The alternative to the two-stage algorithm considered in [1] is a block Gauss–
Seidel algorithm. Here we consider its symmetric variant. Let the linear system
(1) after left-scaling be presented in two-by-two block form (2).

Let M−1
1 ≈ B−1

pp and M2 ≈ A−1
ss be some preconditioners for the matrix

diagonal blocks in (1). Then the solution process can be presented as follows:
[

x̃p

x̃s

]
=

[
Bpp

Asp Ass

]−1([
bp
bs

]
−

[
0 Zps

0

]
·
[

xp

xs

])
,

[
xp

xs

]
=

[
Bpp Zps

Ass

]−1([
bp
bs

]
−

[
0

Asp 0

]
·
[

x̃p

x̃s

])
.

In this way the next approximation to the solution x can be computed by

x̃p = M−1
1 (bp − Zpsxs), xs = M−1

2 (bs − Aspx̃p), xp = M−1
1 (bp − Zpsxs).

4 S3M Properties

The S3M package properties can be summarized as follows:

(a) Cross-platform software. The S3M package is written in pure C++ and does
not use any platform dependant components. The S3M library was success-
fully tested on Linux, UNIX-based, Windows, and Mac OS systems. Com-
pilation with Visual Studio posed a challenged due to old OpenMP stan-
dard. We defined specific signed integer type for parallel loops and replaced
OpenMP task constructs.

(b) Ease to install. To install the S3M library “cmake” is used. It is sufficient
to download S3M package which consists of a set of headers (include files)
in the main directory and a set of ready-to-use C++ examples located in
“utils” directory. All solvers can be invoked from the command line with the
parameters “matrix.mtx [rhs.mtx] [sol.mtx]”.

(c) Simple to change and construct linear solvers. To change the linear solver,
the modification of the solver type is required (see Sect. 2).

(d) Ease to change the linear solvers’ parameters. An easy way to change the
solver parameters is to run the executable file without parameters. The file
“params default.txt” with default parameters will appear in the current direc-
tory (see Fig. 2). If necessary, it can be changed with any text editor and
copied to “params.txt” for further reading by an executable file. For example,
the main default parameters of “AMGRugeStuben” solver are:
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Method:
name = BICGSTAB
dtol = 1e+50
rtol = 1e-06
tol = 1e-08
maxiters = 5000
true_residual = 0
verbosity = 1
Preconditioner:

name = AMGRugeStuben
check = 1
cycle = V
level = *
operator_type = 2
order = 0
phi = 0.25
refine_splitting = 0
verbosity = 1
write_matrix = 0
CoarsestSolver:

name = LU
verbosity = 0

/
Smoother:

name = Chebyshev
maxiters = 2
tol = 0
verbosity = 1

/
/

/

Fig. 2. The default parameters set for the AMG solver.

– Method parameters (the name of the iterative method name = BICGSTAB,
drop tolerance tol = 10−8, relative tolerance rtol = 10−6, maximal
number of outer iterations maxiters = 5000);

– Preconditioner solver parameters (the name of the preconditioner solver
name = AMG, the type of the inner loop cycle = V, the maximal number
of levels level = ∗, where “*” means “unlimited”);

– The coarsest solver parameters (the name of the coarsest solver name =
LU);

– Smoother parameters (the name of the smoother name = Chebyshev,
maximal number of iterations maxiters = 2).

Most of the solver stages contain a “verbosity” parameter to output the
solution trace.

(e) Traditional sparse storage format (CSR). This simplifies the development
of new linear solver components and also makes loading data from external
files more standard.

(f) Support for external data format, MatrixMarket’s format (MTX). This
makes it possible to use for testing collections of sparse matrices, which pri-
marily support this particular format of storing sparse matrices. The use of
data recording in text form makes the MTX format a universal and machine-
independent tool.

(g) Availability of internal binary data format. The binary data format allows
using up to 3 times less storage space and also speeds up the matrix reading
by up to 100 times.
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(h) Parallel implementation. For now, most parts of S3M are shared memory
parallel using OpenMP. We have used the standard approach of paralleliza-
tion by OpenMP directives for loops with independent data, such as all of
the vector operations, sparse matrix-vector and sparse matrix-matrix multi-
plications. So far it is sufficient as the package is still a research one.But we
are working on distributed memory parallelization using MPI and discover
the modern ability of OpenMP to offload task to the GPU.

(i) Open access. The simplified version of S3M is now uploaded to “github” as
the basis for practical training for students [35]. When MPI parallelization
is complete and the package has passed extensive testing, it will be released
for public use.

5 Numerical Experiments

5.1 Symmetric Matrices

The variety of combinations of methods available within S3M is very large. For
brevity we test the following combinations:

– “MT-ILUC2”: Biconjugate gradient stabilized method with inverse-based
second-order Crout incomplete factorization as preconditioner with the
matrix pre-ordered to maximize diagonal product and rescaled into I-
dominant matrix. This solver is identical to the INNER MPTILUC method
from the INMOST package.
◦ class BICGSTAB< MaximalTransversal< ILDUC2 > >.

– “AMG-GS”: Biconjugate gradient stabilizedgradient method with algebraic-
multigrid method utilizing multicolor Gauss–Seidel smoother and direct LU
factorization on the coarsest level.
◦ class PCG< AMGRugeStuben< MulticolorGaussSeidel,LU > >

– “AMG-CHEB”: Preconditioned conjugate gradient method with algebraic-
multigrid method utilizing polynomial Chebyshev smoother and direct LU
factorization on the coarsest level.
◦ class PCG< AMGRugeStuben< Chebyshev,LU> >

– “AMG-ILU”: Biconjugate gradient stabilized method with algebraic-multi-
grid method utilizing Crout incomplete factorization as smoother and direct
LU factorization on the coarsest level.
◦ class BICGSTAB< AMGRugeStuben< ILDUC,LU> >

– “AMG-MT-GS”: Biconjugate gradient stabilized method with algebraic-
multigrid method utilizing multicolor Gauss–Seidel smoother and direct LU
factorization on the coarsest method.
◦ class BICGSTAB< AMGRugeStuben< MaximalTransversal< Multicolor
GaussSeidel >, LU> >

Although it is possible to construct stronger smoothers within the package, we
limit our considerations to simpler smoothers.
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Fig. 3. The solution to a problem with two wells by three different schemes: tpfa (left),
finite-volume for saddle-point formulation (middle), mfd (right).

First, we consider a set of symmetric matrices of various nature:

– “poisson(N)”: A discretization of Poisson problem (−∇·∇p = 0) with Dirich-
let boundary conditions on a 3D structured grid in unit cube with N3 ele-
ments.

– “two-wells(scheme)”: An anisotropic diffusion problem (−∇ · K∇p = 0) with
Dirichlet boundary conditions on a unit cube with 11×11×11 elements. Two
elements are extracted as on Fig. 3 and the pressure is defined to represent
wells. The problem is usually used to test the monotonicity properties of
discretization schemes.

– “Norne(scheme)”: An anisotropic diffusion problem (−∇ · K∇p = 0) with
Neumann boundary conditions and two wells on realistic data of Norne oil
field [36]. The solution to the problem with two different schemes is demon-
strated in Fig. 4.

The scheme choices are:

– “tpfa”: A conventional two-points flux approximation method. The method
produces a symmetric positive definite system, but does not correctly honor
problem anisotropy and results in a monotone but the incorrect solution.
Due to the good properties of the system, the method remains the industry
standard.

– “mfd”: A mimetic finite difference method [37,38], also known as the mixed
hybrid finite element method. The method requires additional degrees of free-
dom at interfaces that help enforce continuity of the flux. The resulting system
is symmetric and has a block structure with a diagonal leading block.

– “saddle”: A finite volume method applied to the mixed form of the Darcy
equation [39]. Velocity and pressure unknowns are introduced for each cell.
The method results in a symmetric quasi-definite system, correctly captures
the anisotropy, and produces a monotone solution.

The solvers are run on a single node of the INM RAS cluster with 24 cores
and 128 GB memory [40]. Each problem is solved at least 50 times or 1 s, what-
ever happens earlier, and the average time for the iterations (Tit), solver setup
(Ts), and total time (T) are reported. In addition to that, we report the num-
ber of iterations in the Krylov solver (Nit), number of levels in multigrid (Lvl),
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Fig. 4. The solution to a problem with two wells by two different schemes: tpfa (left),
finite-volume for saddle-point formulation (right).

and memory usage during solve phase (Mem). The peak memory usage dur-
ing preconditioner construction may be higher. The time required for memory
allocation is hidden due to averaging. The numerical results are presented in
Table 1. Most of the tests were successfully solved up to 107 times reduction
of the initial residual norm. The AMG-CHEB method showed the fastest per-
formance on simple matrices but the weakest reliability, while all the others
demonstrate a small number of iterations and an acceptable solution time. MT-
ILUC2 appears to be quite a robust choice but usually requires substantially
more memory than simpler AMG-GS and AMG-CHEB methods. AMG-MT-GS
shows the smallest iteration count and the best performance on linear systems
of the Norne oil field. The current implementation of rescaling and reordering
requires reassembling the matrix which is not memory efficient. A special class
should be introduced to represent such matrices.

The need to solve problems of large dimensions requires the use of paral-
lelization to obtain a solution in a reasonable time. To analyze the scalability
of S3M parallelization by means of OpenMP, the solution to the poisson(100)
problem was chosen with the AMG-CHEB solver. The corresponding speedup
values when solving from 1 to 24 OpenMP threads for the total solution time
and time for iterations are given in Table 2. The insufficiently high efficiency of
calculations is due not so much to the properties of S3M code parallelization as
to the hardware features of the computational nodes of the INM RAS cluster.

5.2 Schur Complement Method for Mimetic Finite Difference
Scheme

With mimetic finite difference method it is possible to assemble the system in
such a way that it has symmetric structure

A

[
pc
pf

]
=

[
B E
ET C

] [
pc
pf

]
=

[
q
0

]
, (3)
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Table 1. Several test problems solved by S3M. †The system not solved to prescribed
tolerances.

MT-ILUC2 AMG-GS AMG-CHEB AMG-ILUC AMG-MT-GS

poisson(10) T 0.0056 0.015 0.0078 0.011 0.018

size 1000 Ts 0.0047 0.0068 0.0027 0.0084 0.0072

nnz 6400 Tit 0.00088 0.0086 0.0051 0.0021 0.011

Nit 8 9 15 7 6

Lvl — 5 5 5 5

Mem 0.38 MB 0.23 MB 0.24 MB 0.59 MB 0.47 MB

poisson(100) T 10 8.1 4.1 24.1 9.1

size 1 000 000 Ts 6.0 5.3 2.6 8.8 5.5

nnz 6 940 000 Tit 4.1 2.8 1.5 15.3 3.5

Nit 57 25 36 63 16

Lvl — 10 10 10 10

Mem 578 MB 272 MB 277 MB 761 MB 563 MB

two-wells(tpfa) T 0.3 0.26 0.11 0.75 0.30

size 35 883 Ts 0.21 0.16 0.068 0.32 0.18

nnz 244 539 Tit 0.089 0.10 0.04 0.43 0.11

Nit 35 17 21 43 11

Lvl — 8 8 8 8

Mem 19.1 MB 9.6 MB 9.9 MB 33.7 MB 20.7 MB

two-wells(mfd) T 7.9 3.5 1.5 236.7 5.4

size 146 745 Ts 2.7 0.74 0.29 1.1 0.83

nnz 1 651 909 Tit 5.2 2.8 1.2 235.5 4.6

Nit 160 160 227 5001† 117

Lvl — 9 9 9 9

Mem 132.5 MB 31.6 MB 32.3 MB 155.5 MB 78.0 MB

two-wells(saddle) T 3.5 2.1 56.3 11.3 2.6

size 143 532 Ts 2.9 0.68 0.29 2.1 0.97

nnz 1 206 738 Tit 0.59 1.4 56.0 9.2 1.6

Nit 24 59 5001† 214 30

Lvl — 10 10 10 10

Mem 127.1 MB 45.1 MB 46.1 MB 106.2 MB 98.9 MB

Norne(tpfa) T 0.60 0.35 11.5 2.3 0.34

size 44 915 Ts 0.22 0.19 0.067 0.29 0.22

nnz 316 867 Tit 0.38 0.15 11.4 2.0 0.11

Nit 130 22 5001† 182 9

Lvl — 9 9 9 9

Mem 17.9 MB 10.0 MB 10.3 MB 26.6 MB 22.4 MB

Norne(saddle) T 3.1 34.2 78.7 130.2 25.1

size 179 660 Ts 1.6 1.7 0.50 1.6 1.9

nnz 5 069 872 Tit 1.4 32.4 78.2 128.6 23.1

Nit 114 686 5001† 2368 234

Lvl — 11 11 11 11

Mem 103.2 MB 55.6 MB 56.8 MB 110.3 MB 164.5 MB
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Table 2. The speedup S and Sit for solution of problem poisson(100) by AMG-CHEB
solver for total solution time and iterations stage, respectively.

p 2 4 8 12 16 24

S 1.41 1.57 1.87 2.34 2.30 2.64

Sit 1.72 2.92 4.37 4.89 5.76 5.3

where B is a diagonal matrix corresponding to the cell-centered pressure
unknowns pc. We compare the methods directly applied to system (3) with the
methods applied to the Schur complement S = C − ETB−1E.

The methods we compare are:

– “MT-ILUC2”: Similar to the method from Subsect. 5.1.
◦ class BICGSTAB< MaximalTransversal<ILDUC2> >

– “S-MT-ILUC2”: The same method but applied to the Schur complement.
◦ class SchurMFD< BICGSTAB< MaximalTransversal<ILDUC2> > > >

– “AMG-GS”: Similar to the algebraic multigrid method with Gauss–Seidel
smoother described in Subsect. 5.1.
◦ class PCG< AMGRugeStuben< MulticolorGaussSeidel, LU> > >

– “S-AMG-GS”: The same method but applied to the Schur complement.
◦ class SchurMFD< PCG< AMGRugeStuben< MulticolorGaussSeidel, LU
> > >

First, we consider a problem with two wells, illustrated in Fig. 3 on a coarse
11 × 11 × 11, a medium 33 × 33 × 33 and the finest 99 × 99 × 99 grids. Then
we consider a large mesh, generated from the SPE10 dataset [41] that is char-
acterized by a high anisotropy ratio. The mesh is vertically distorted and the
permeability tensor is rotated following the distortion resulting in a full 3 × 3
permeability tensor. The original dataset has 60× 220× 85 dimensions resulting
in 1122000 cells. We additionally consider refinement of each cell by 3 × 3 × 1
resulting in 10098000 cells. All boundary conditions are Neumann, thus to avoid
system singularity we pick five random cells and place a source in it with well
index (connection strength) equal to 1000 and random bottom hole pressure
equal to 100 ± 50 bar.

The results with the tests are presented in Table 3 and the mesh and solu-
tion are demonstrated in Fig. 5. From the results, one may find that the reduced
system has less nonzeroes and is solved slightly faster. However, it requires stor-
ing the reduced system, and typically the number of iterations and multigrid
levels do not change between full and reduced system. For MT-ILUC2 and S-
MT-ILUC2 methods applied to “spe10(mfd)” matrices we have to tune diagonal
perturbation parameter to rather large value of τD = 5 · 10−2. Otherwise, the
method gets either stuck in the matrix factorization step (with too low τD) or
iterations diverge (with moderate τD). Nevertheless, MT-ILUC2 variants are not
able to solve the system to prescribed tolerance. In the best case, they are able
to reduce the initial tolerance by only ∼ 103. During factorization of the 10 M
test case, the methods MT-ILUC2 and S-MT-ILUC2 used 47 GB and 38 GB of
memory, respectively.
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Fig. 5. The porosity of SPE10 dataset (left) and a solution to the anisotropic diffusion
problem (right).

Fig. 6. Pressure (left) and water saturation (right) after 1000 days of simulation in a
middle cutaway of the grid.

5.3 CPR for Two-Phase Oil Recovery Problem

Finally, we consider a two-phase oil recovery problem using a two-point flux
approximation scheme on the same meshes originating from the spe10 dataset.
In addition, we consider the 3 × 3 × 3 refinement of each block resulting in
30 294 000 cells. We prescribe the wells in the corners of the mesh, i.e. to the
cells with the first index and the last index, and assign them well indices 10 and
10 and bottom hole pressures 4500 psi and 3900 psi, respectively. Initial water
saturation is Sw = 0.25 and pressure P = 4000 psi. The detailed oil and water
properties are omitted for brevity, see [42] for details. The gravity and capillarity
are taken into account.

We consider the first nonlinear iteration after 10 days of simulation and out-
put the matrix. The comparison of the following solution methods is performed
on this matrix:
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Table 3. Comparison of solvers for linear systems arising from mimetic finite difference
discretization. †The system not solved to prescribed tolerances.

MT-ILUC2 S-MT-ILUC2 AMG-GS S-AMG-GS

two-wells(mfd) T 0.11 0.1 0.58 0.49

size 5 673 Ts 0.08 0.07 0.04 0.05

nnz 61 333 Tit 0.03 0.02 0.54 0.44

S size 4 344 Nit 34 28 130 104

S nnz 44 094 Lvl — — 6 6

Mem 4.4 MB 5 MB 1 MB 1.8 MB

two-wells(mfd) T 7 5 3.5 2.6

size 146 745 Ts 2.9 2.8 0.74 0.65

nnz 1 651 909 Tit 4.1 2.2 2.8 1.95

S size 110 862 Nit 138 116 160 139

S nnz 1 186 272 Lvl — — 9 8

Mem 133 MB 147 MB 32 MB 47 MB

two-wells(mfd) T 819 317 121 80

size 3 904 281 Ts 90 79 26.4 22.7

nnz 44 577 664 Tit 730 238 94.8 57.6

S size 2 935 440 Nit 767 431 189 201

S nnz 31 990 950 Lvl — — 12 11

Mem 4 GB 4.4 GB 927 MB 1.3 GB

spe10(mfd) T 2211 1656 279 211

size 4 525 000 Ts 73 83 35 33

nnz 51 649 000 Tit 2138 1573 245 178

S size 3 403 000 Nit 5001† 5001† 368 357

S nnz 37 063 000 Lvl — — 12 12

Mem 1.9 GB 2.3 GB 1.4 GB 2 GB

spe10(mfd) T 26062 21429 32723 10724

size 40 582 200 Ts 767 852 310 297

nnz 464 698 200 Tit 25295 20577 32413 10427

S size 30 484 200 Nit 5001† 5001† 4733 2029

S nnz 333 424 200 Lvl — — 14 13

Mem 22GB 20 GB 12GB 18 GB

– “MT-ILUC2”: Equivalent to the method from Subsect. 5.1.
◦ class BICGSTAB< MaximalTransversal< ILDUC2 > >

– “CPR-MT-ILUC2”: The method MT-ILUC2 is applied to the pre-scaled
matrix according to the Quasi-IMPES method. The two-stage strategy is
not used in this case.
◦ class BICGSTAB< CPRScaling< MaximalTransversal< ILDUC2 > > >
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Table 4. Comparison of solvers for the linear system after 10 days of simulation of
two-phase oil recovery problem.

MT-ILUC2 CPR-MT-ILUC2 CPR-TS CPR-TSGS

spe10 (tpfa) T 283 187 92 46

size 2 244 000 Ts 99 63 71 16

nnz 31 120 000 Tit 184 123.7 20 29

Nit 405 356 38 76

Lvl — — 10 10

Mem 2.5 GB 2.2 GB 2.6 GB 1.4 GB

spe10 (tpfa) T 4332 2940 1067 975

size 20 196 000 Ts 687 522 597 150

nnz 281 222 400 Tit 3645 2417 470 825

Nit 1065 799 93 225

Lvl — — 12 12

Mem 21 GB 19 GB 22 GB 13 GB

spe10 (tpfa) T 20857 20276 3758 3976

size 60 588 000 Ts 1693 1440 1564 466

nnz 845 568 000 Tit 19164 18836 2194 2510

Nit 2156 2241 150 321

Lvl — — 12 12

Mem 54 GB 52 GB 63 GB 39 GB

– “CPR-TS” Quasi-IMPES variant of CPR with two-stage strategy. The MT-
ILUC2 method is used as the full system preconditioner.
◦ class CPR< AMGRugeStuben< MulticolorGaussSeidel, LU >, Maximal
Transversal< ILDUC2 >, TwoStage >

– “CPR-TSGS”: Quasi-IMPES variant of CPR with two-stage block symmet-
ric Gauss-Seidel strategy. The MT-ILUC2 method is used as the saturation
system preconditioner.
◦ class CPR< AMGRugeStuben< MulticolorGaussSeidel, LU >, Maximal
Transversal< ILDUC2 >, TwoStageGaussSeidel >

From Table 4 it follows that complex strategies significantly outperform the
plain MT-ILUC2 method both in terms of speed and memory. Although MT-
ILUC2 serves as a full system preconditioner for CPR-TS, its setup phase is faster
for the pre-scaled matrix as also seen from the results with CPR-MT-ILUC2.
Apparently, the application of the algebraic multigrid method to the pressure
block significantly improves the convergence. CPR-TSGS shows to outperform
CPR-TS due to an even smaller setup time but slightly larger iterations time. In
10 M case the iterations time becomes large enough to make methods on par, and
in 30 M case CPR-TS is slightly faster. However, the block Gauss–Seidel variant
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consumes far less memory. For all system sizes we used diagonal perturbation
parameter τD = 10−7 in incomplete factorization method.

Note that the peak memory, consumed during factorization step of MT-
ILUC2 in spe10 example with 20 M unknowns is 58 GB for the unscaled system
in MT-ILUC2 and 46 GB for the scaled system in CPR-MT-ILUC2 and CPR-
TS. When only the saturations system is factored in CPR-TSGS, only 9 GB is
required. In spe10 example with 60 M unknowns these numbers are 127.5 GB for
the unscaled system, 115 GB for the scaled system, and only 31 GB for satura-
tions system. Most of this memory is discarded after the factorization due to
second-order fill-in, but this may severely impact the ability to perform large-
scale simulations.

The simulation of 1000 days of oil recovery with the maximal time step of
50 days using CPR-TSGS on a mesh with 1 M cells is illustrated in Fig. 6. The
method used from the S3M package has solved all the linear systems arising at
each nonlinear iteration, despite the high condition number for matrices of these
linear systems and changes in their properties during simulation. It indicates
that the method is a robust choice for the simulator.

Conclusions

The S3M library was designed and implemented as a collection of interoperable
linear solvers and preconditioners organized into a C++ header-only library. S3M
provides the ability to construct Krylov-type iterative solution methods with
multilevel and algebraic multigrid preconditioners using rescaling and reordering.
A description of the S3M library structure is presented, as well as a detailed
review of the literature on the methods used in the library.

The main feature of the S3M library is its flexibility that allows finding the
most optimal solution method. Numerical experiments both with a set of test
linear systems and in solving real-life problems allow us to conclude about the
superiority of the considered complex solution strategies.

Acknowledgements. This work has been supported by Russian Science Foundation
grant 21-71-20024.
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19. Bollhöfer, M.: A robust ILU with pivoting based on monitoring the growth of the
inverse factors. Linear Algebra Appl. 338(1–3), 201–218 (2001)
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Abstract. Usually, an information graphwith associative operations has a sequen-
tial (“head/tail”) or parallel (“half-splitting”) topology with invariable quantity of
operational vertices. If computational resource is insufficient for the implementa-
tion of all vertices, the reduction transformations of graphswith basic structures do
not allow for the creation of an efficient resource-independent program for recon-
figurable computer systems. In this paper, we propose to transform the topology
of a graph with associative operations into a combined variant with sequential and
parallel fragments of calculations. The resultant combined topology depends on
computational resource of a reconfigurable computer system, and such transfor-
mation provides the improvement of specific performance for the reduced comput-
ing structure. We develop an algorithm for the conversion of the initial sequential
graph to various combined topologies or to the limiting case of the “half-splitting”
topology with regard to available hardware resource. This technique is described
using the Set@l programming language.

Keywords: Associative operations · Resource-independent programming ·
Reconfigurable computer systems · Performance reduction · Set@l · “Head/tail”
and “half-splitting” attributes

1 Introduction

Associativity is a fundamental property of binary operations, which determines the
independence of the calculation result from the order of actions [1, 2]. There are two basic
variants for the topology of such graphs with the same number of vertices: sequential (a
linear or a “head/tail” structure) and parallel (a pyramid or a “half-splitting” structure)
[3–5]. In fact, besides two aforementioned cases, multiple combined topologies exist,
and they are composed of alternating parallel and sequential fragments of calculations
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[6]. Usually, combined topologies are more efficient in terms of time required for the
problem solution when there is a lack of hardware resources in the case of processing
large amounts of data.

To scale parallel calculations for the solution of applied problems on computer sys-
tems with reconfigurable architecture [7–10], performance reduction methods are used
[11]. Reduction transformations of associative information graphs with sequential and
parallel topologies do not provide the creation of an efficient resource-independent par-
allel program. Therefore, for the synthesis of computational structure for graphs with
sequential and parallel topologies, it is reasonable to use the combined structure, which
contains isomorphic subgraphs with a maximal degree of operation parallelism. In paper
[12], it is shown that for a given computational resource it is possible to synthesize an
information equivalent graph containing set of hardware implemented isomorphic sub-
graphs and a single block for processing intermediate results with a sequential topol-
ogy. In contrast to traditional parallel programming languages, the Set@l (Set Aspect-
Oriented Language) [13–15] allows to describe many variants of topologies for different
configurations of a computer system in the form of an entire aspect-oriented program
and shift between different implementations by converting types and partitions of sets
without the source code changing.

Paper [12] provides the example of resource-independent topology description for
information graph with associative operations in the Set@l programming language.
However, it considers the idealized case of operational vertices with a unit latency. In
practice, the latency of a vertex performing an associative operation (e.g. the addition
or multiplication of fixed-point numbers) typically exceeds one cycle. So, the transfor-
mation technique proposed in [12] does not provide the obtainment of efficient pipeline
implementation of calculations: if the delay of feedback circuit is increased to the latency
of an operational vertex, the addition of all partial sums appeared at the output of the
pyramid structure is not ensured. To take into account the non-unit latency of opera-
tional vertices and to form the correct sequence of partial sums’ adding, we propose
to modify the topology of the information graph with associative operations. By com-
bining sequential and parallel fragments of calculations, it is possible to synthesize the
topology in accordance with the available amount of computing resource and latency of
the operating vertex and reduce the total time to solve the problem by providing a dense
data flow at the input of the computing structure. The description of the information
graph in the aspect-oriented Set@l programming language as a set with parameterized
partition allows to transform the topology when the source code remains unchanged.

2 Topological Modification of Graphs with Associative Operations

If the available computational resource R of a reconfigurable computer system is not suf-
ficient to realize the full information graph with associative operations and the latency
L of one vertex exceeds one cycle, the conversion technique for groups of associative
vertices proposed in paper [12] does not ensure an efficient pipeline implementation of
the problem, since an intermediate data tuplewill be formed at the output of the computa-
tional structure, but not the required final result of operations. For the further synthesis of
an efficient computational structure, additional transformations of the original topology
are generally needed.
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Let us divide all operational vertices of the original information graph with the
“head/tail” topology into l groups Gr1,Gr2, . . . ,Grl of Q = �(N − l + 1)/l� vertices
in each, where N is the dimension of the processed data array (N >> l), � � is the floor
function. Between neighboring groups, leave one vertex for processing intermediate
data, as shown in Fig. 1-a. If the last group includes less than Q elements, add several
operational vertices in order to reach the required dimension. Next, convert the vertices
in each selected group according to the algorithm discussed in paper [12]. As a result
of this transformation, we obtain the topology given in Fig. 1-b. The i-th group Gri
contains:

• m isomorphic subgraphs psG(i−1)·m+1, psG(i−1)·m+2, . . . , psGi·m with the “half-
splitting” topology and k vertices in each one;

• one block for processing intermediate results hsGi with the “head/tail” topology and
(m – 1) operational vertices.

The parameters of the information graph partition m, k and l depend on the amount
of available computational resource R and on the latency of operational vertex L. They
are determined further during the computational structure synthesis.

Gr1 Gr2 Grl

(a)

Gr1

hsG1

psG1

Gr2

psGm

(b) 

Fig. 1. Conversion of the information graph with associative operations: the selection of groups
of operational vertices in the original “head/tail” graph (a); vertex reorganization in each group
according to the algorithm developed in [12] (b)

In the next stage of topological modification, we apply the transformation, the prin-
ciple of which is represented in Fig. 2. Consider adjacent “head/tail” blocks hsG linked
by the single operational vertex (Fig. 2-a). If the pairs “single vertex + group of ver-
tices” are converted according to the principle discussed in paper [12], we obtain the
fragment of topology shown in Fig. 2-b. After performing this transformation, the set
of single vertices is rearranged so that each of them has a common arc with at least one
more vertex. Then, the transformation [12] is carried out again. As a result, the graph
fragments are brought to pyramid view, as demonstrated in Fig. 2-c.
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(a) (b) 

(c)

Fig. 2. Conversion of sequential fragments in the information graph: initial topology (a); “single
vertex+ vertex group” transformation (b); bringing the group of single vertices to pyramidal form
(c)

After the conversion of the topology shown in Fig. 1-b according to the principle
proposed in Fig. 2, we obtain the modified information graph with associative opera-
tions G (see Fig. 3-a). It contains l isomorphic subgraphs Gr1,Gr2, . . . ,Grl connected
by means of the “half-splitting” principle through the pyramid subgraph pG. Each sub-
graphGri is formed using the combined principle “half-splitting+ head/tail”: it includes
m isomorphic and pyramid subgraphs psG(i−1)·m+1, psG(i−1)·m+2, . . . , psGi·m and one
sequential unit hsGi that calculates intermediate results and incorporates (m – 1) opera-
tional vertices. In turn, each pyramid subgraph psGj processes k elements of the original
data array. It is worth noting that the final topology and the original “head/tail” structure
have the same number of operational and input vertices, but the proposed topological
transformation allows for the synthesis of more efficient computing structure for arbi-
trary hardware resource and latency of operational vertex. If l = 1, the subgraph pG does
not contain operational vertices and the topology corresponds to the limit case described
in paper [12].

3 Synthesis of Computing Structure

Treat the conversion of the information graph topology shown in Fig. 3 into a computing
structure for the structural and procedural implementation of a problem on a computer
system with reconfigurable architecture. At the first stage, the information-independent
subgraphs psG(i−1)·m+1, psG(i−1)·m+2, . . . , psGi·m in each subgraphGri are transformed
into a subcadr Ci [16] (see Fig. 3-b). In the cadr, tuples of data elements are supplied to
the inputs of Ci. The block hsGi of information-dependent operational vertices form an
additional vertex vi with the feedback circuit delay of l cycles. However, the computing
structure obtained at this stage is inefficient, since it is impossible to supply the data
element to the inputs of its fragments mGr1,mGr2, . . . ,mGrl as a dense stream. In
order to process all intermediate results correctly, it is necessary to cut the input data
stream so that its duty cycle (data supply interval) becomes equal to l. Obviously, the
l-fold increase in duty cycle leads to the same growth of time required for the problem
solution.
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Gr2 Grl

pG

(a)

pG

mGr1

mGr2

mGrl

C1 v1

<a1, ak+1, … >
<a2, ak+2, … >

(b) 

Fig. 3. The modified topology of the information graph with associative operations (a); the first
step of forming the computing structure corresponding to themodified topology of the information
graph with associative operations (b)

The computing structure given in Fig. 3-b processes intermediate results using the
pG fragment with the “half-splitting” topology. In this case, l values should be supplied
to the pG inputs simultaneously, and such mode leads to increase in duty cycle of
data flows at the inputs of the blocks mGr1,mGr2, . . . ,mGrl . To reduce the time of the
problem solution, it is reasonable to perform the optimization of the first-stage computing
structure. At the second stage of the transformation, the pG fragment is replaced with
the advanced pG* structure, which performs associative operation on l elements per l
cycles: the correct result of processing of l operands appears at the output during the
last l-th cycle. For this purpose, every data element is delayed for the corresponding
number of cycles from 0 to (l – 1) as shown in Fig. 4. At the same time, the blocks
mGr1,mGr2, . . . ,mGrl are replaced with the single fragmentMG, to the inputs of which
flows or tuples of input data with the duty cycle of 1 are supplied. In this case, the data
streams at each input are represented as nested tuples of elements of the original set.

Consider the pG* fragment of the computing structure given in Fig. 4. Operational
vertices located in this part of the structure perform (l – 1) actions in l cycles. So, at
every time step only one operation is performed, and this feature allows to reduce the
number of vertices in pG*. For the convenience of further transformations, rearrange the
pG* delays as shown in Fig. 5 to highlight isomorphic blocks W that contain a vertex
with a single delay at one of the inputs.
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pG

MG
<<a1, ak+1, … >, <amk+1, am(k+1)+1, … >, … >

1

2

l‒1

pG*

<<a2, ak+2, … >, <amk+2, am(k+1)+2, … >, … > v

Fig. 4. The second stage of forming the computing structure that corresponds to the modified
topology of the information graph with associative operations

As mentioned above, fragments W (see Fig. 5-a) calculate intermediate results
sequentially. Therefore, according to the “embedded pipeline” principle [16], it is rea-
sonable to replace them by the structure represented in Fig. 5-b. The serial connection
of the multiplexer (MX in Fig. 5-b) and demultiplexer (DMX) with the delays can be
reduced by leaving the single W fragment. After the analogous transformation of each
iteration in the pyramid P (see Fig. 5-a), we obtain the accumulating pipeline structure
with operational vertices and delays that is shown in Fig. 6.

Fig. 5. The transformation of the pG* fragment of the computing structure (a); the further
conversion of multiple W blocks with delays (b)

Fig. 6. The accumulating pipeline structure with associative operations

At the output of the block v with the feedback (see Fig. 4), we obtain l interme-
diate results y1 = f (x1, xl+1), y2 = f (x2, xl+2), . . . , yl = f (xl, x2l), and there is a
need to perform additional operations f on these data elements. In order to calculate
f (y1, y2), f (y2, y3), . . . , f (yl−1, yl), the first vertex of the accumulating pipeline struc-
ture (see Fig. 6) is supplied with the same stream of operands delayed for one cycle. In
2nd, 4th, 8th etc. cycles, at the output of the first vertex, we get the result of executing
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operation f on data elements y1 and y2, y3 and y4, y5 and y6 etc. At this stage, the size of
the intermediate data sequence is l/2. Therefore, for the second vertex, data operands are
delayed by two cycles, and its output gives l/4 results f (y1, y2, y3, y4), f (y5, y6, y7, y8)
etc. Similarly, in the third and fourth vertices, the delays are 4 and 8 cycles, respectively.
At the output of the last vertex with the number log2(l)+ 1, after passing the entire array
of input data, we obtain the result of performing associative operation f on two operands
that is equal to the result of processing all elements included in the initial data array.

It is possible to organize the described computing structure only if the value of l
is equal to the integer degree of two. Otherwise, the data flow is extended by neutral
elements, and the feedback circuit is supplemented with additional delay elements up to
the following value:

l = 2�log2 L�, (1)

where � � is the ceil function; L is the latency of the operational vertex. Only in this
case the correct result is achieved, because each vertex of the structure in Fig. 6 perform
operation f on exactly half of the operands received at the inputs of the previous block.
The final form of the computing structure is shown in Fig. 7. Using the value of l
calculated by formula (1), it is possible to estimate other parameters of the information
graph partition according to the following equations:

k = �R/R0� − log2 l; (2)

m =
⌈

N

l · (
floor(R/R0) − log2 l

)
⌉
, (3)

where R0 is the hardware resource required for the implementation of single operational
vertex. It is worth noting that if l = 1, the computing structure discussed in paper [12]
is obtained.

1 2 l/24

l

log2l

Fig. 7. The resultant computing structure that corresponds to the modified topology of the
information graph with associative operations shown in Fig. 3-a

4 Description of Basic Topologies for Information Graphs
with Associative Operations in Set@l Programming Language

Traditional parallel programming methods tend to operate with information graphs with
fixed structures. Therefore, their application for the description of topological trans-
formations in accordance with the proposed algorithm (see Fig. 1, 2 and 3) is quite
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cumbersome and inefficient. In terms of classical programming languages, the code of
resource-independent program that implements the aforementioned graph conversions
consists of multiple subprograms connected by conditional operators. Each subprogram
specifies only one variant of topology. In contrast to the multiprocedural paradigm,
the capabilities of the Set@l architecture-independent programming language allows to
describe the principles of graph constructing in the form of special processing method
attributes assigned to the basic set of data A. In this case, the program source code
describes not individual implementations, but the whole set of possible graph topolo-
gies for given dimension of the computational problem. Aspects select specific topology
with regard to the values of computer system’s configuration parameters. To modify the
structure of the information graph, it is enough to edit the type and partition of the basic
set A, while the source code of the program remains unchanged in general.

Let us consider the description of the “head/tail” and “half-splitting” principles for
the standard topologies of information graphs with associative operations (see Fig. 8) in
the Set@l programming language.

f
f

f

f

f
f

f

Res

a1
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a7
a8
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for description
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s1
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s4
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s6

f

f

f

Direction of movement 
for description

(a) (b)

Fig. 8. Topologies of graphs with two-place associative operations f based on the “head/tail” (a)
and “half-splitting” (b) principles

Using the attribute syntax construct [17], introduce additional features with
the code given in Fig. 9. Attribute of the basic associative operation f is specified
in generalized form: the certain operation type Op is declared in another module of
parallel program and can take different values (e.g. “+” or “*”). The operand directive
describes the types of objects to which an attribute can be assigned.

Figure 10 demonstrates the description of the “head/tail” principle (H/T, see graph
in Fig. 8-a) in the Set@l programming language. The attribute of serial operations Lf
is declared recursively (Rec) using the previously mentioned basic binary operation f
(see code in Fig. 9) and defines the relation between the set of processed data A and
the result of calculations Res. The graph is built in the direction from the output vertex
to the inputs. At each iteration, the sequential set of operations Lf on the elements of
collection A can be represented as the combination of sequential operations Lf on the
“tail” of set A and separate vertex f. The “head” of set A and intermediate result s of
Tail(A) sequential processing are the inputs of the selected vertex, and its output Res
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Fig. 9. Attributes of abstract binary operation (f), of allocation of “head” (Head) and “tail”
(Tail) in a set, and of the partition of a collection into two subsets with the same cardinality (d2)
in the Set@l programming language

is the final or intermediate result of calculations (see line 5 in Fig. 10). Syntax construct
break[<condition>:<operation>] (line 4 in Fig. 10) highlights the termi-
nation condition of recursion and describes the operation that completes formation of the
graph structure. If the condition is met, the last operator Lf is converted into a special
vertex, the inputs of which are supplied with two remaining elements of set A.

Fig. 10. The code of Lf attribute in the Set@l programming language; it implements the
“head/tail” principle (H/T) for constructing the information graph with associative operations
f

Using the same method of recursive description, it is possible to define the parallel
“half-splitting” principle of graph constructing (DIV2, graph in Fig. 8-b) in the Set@l
programming language. Figure 11 demonstrates the code where information graph is
described in the direction from the output vertex to the input. At each iteration, attribute
d2 divides original set A into two subsets A1 and A2 with the same number of elements
(line 3 in Fig. 11). In this case, the pyramid of operations Pf on elements in A can
be represented as the combination of parallel operations Pf on elements in subset A1,
parallel operations Pf on elements in subset A2 and separate vertex f (line 6 in Fig. 11).
Intermediate results s1, s2 of performing pyramid operations Pf on subsets of the
collection A are the inputs of this vertex f, and its output Res is the final or intermediate
result of calculations. Recursion completes if the condition shown in line 5 of Fig. 11
is met. Parallelization of calculations is achieved by doubling the number of recursion
branches at each step of the transformation.

Thus, the architecture-independent Set@l programming language allows to describe
the basic principles for the construction of graphs with single-output associative oper-
ations in the form of special attributes of processing method H/T and DIV2, which
are assigned to the set of input data A. In contrast to previously proposed parallelism
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Fig. 11. The code of Pf attribute in the Set@l programming language; it implements the “half-
splitting” principle (DIV2) for the description of parallel information graph with associative
operations f

types par, seq, pipe, conc and imp [13, 14] that specifies methods of calculations’
parallelizing, these attributes determine the general structure of an information graph
and modify it according to the architecture and configuration of a parallel computer sys-
tem. If the “head/tail” and “half-splitting” principles are described once, it is possible
to obtain various topologies without the change in program’s source code. Some exam-
ples of code fragments using H/T and DIV2 processing types to synthesize different
information graphs are given in Fig. 12.

Fig. 12. Code fragments that employs the “head/tail” (H/T) and “half-splitting” (DIV2) attributes
of set processing to describe different information graphs based on associative single-output
operations

The structure of the information graph G (see program code in Fig. 12) is determined
by the relation Gf between the processed set A and the result of calculations Res. For the
user, it is enough to change only the type of collection A to obtain an information graph
with a completely different interconnection structure, while the generalized descriptions
of the “head/tail” and “half-splitting” attributes remain unchanged. The type of basic
associative operationf defines the functionality of operational vertices in the synthesized
information graph.

5 Development of Resource-Independent Program in Set@l
Language

Utilizing the processing method attributes H/T and DIV2 (see code in Fig. 10 and 11),
it is possible to describe the topological transformation of the information graph with
associative operations according to the amount of available computing resource R and
latency of operational vertex L as a change in the typing and partitioning of processed
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data set A. In general, collection A should have the following form, which ensures the
further conversion into the efficient computing structure:

A = DIV2 [AsG1, AsG2, . . . , AsGl]; (4)

AsGi = H/T{Ap(i−1)·m+1, Ap(i−1)·m+2, . . . , Api·m}; (5)

Apj = DIV2 [a(j−1)·k+1, a(j−1)·k+2, . . . , aj·k ], (6)

where AsGi is the set of input vertices of the i-th subgraph Gri with the “half-splitting
+ head/tail” topology (see Fig. 3-a); Apj is the set of input vertices of the j-th subgraph
psGj with the pyramid structure; az is the z-th element of the processed set A. In the
source code of resource-independent program in the Set@l language, set A that defines
the information graph topology is declared generally in accordance with Eqs. (4)–(6)
(see Fig. 13). Within the source code, parameters m, k, l and, consequently, the specific
partition of the collection A and the topology of the information graph are not defined.

Fig. 13. General description of the topology of the information graph with associative operations
(see Fig. 3-a) in the source code of the resource-independent program in Set@l

After the translation of the source code shown in Fig. 13, the following sets with
imposed types of parallelism are formed:

G = �{{Gr1, Gr2, . . . , Grl}, pG�}; (7)

Gri = �{{psG(i−1)·m+1, psG(i−1)·m+2, . . . , psGi·m}, hsGi�}; (8)

hsGi = �{vi,1, vi,2, . . . , vi,m−1�}, (9)

where G is the full information graph; Gri, psGj, hsGi are the subgraphs allocated in

Fig. 3-a; vi,q is the vertex of the sequential unit hsGi;
−→{ −→} , {} are the parallel-dependent

and parallel-independent types of processing. During the formation of the computing
structure shown in Fig. 3-b, each Gri set is converted as follows:

mGri = <psG(i−1)·m+1, �{psG(i−1)·m+2, vi,1�}, . . . ,�{psGi·m, vi,m−1�}>, (10)

where < > is the pipeline processing type. The code of aspect in Set@l that performs
this transformation is given in Fig. 14.

After the next stage of the transformation, when we obtain the computing structure
shown in Fig. 4, set G takes the following form:

mG1 = �{ < mGr1,mGr2, . . . ,mGrl >, pG∗�}; (11)
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Fig. 14. Code of the aspect in the Set@l programming language, which forms the computing
structure, shown in Fig. 3-b

pG∗ = �{ds, pG�}; (12)

ds = {del(0), del(1), . . . , del(l−1)}, (13)

where del(i) is the set element that describes the circuit unit providing delay for i cycles.
The code of the aspect in the Set@l programming language, which defines the transition
from the original collectionG to the modified setmG1, is represented in Fig. 15-a. At the
final transformation stage (when we form the computing structure shown in Fig. 7), the
pyramid fragment pG* is replaced with the updated structure mpG with multiple delay
blocks (see Fig. 6):

mG2 = �{ < mGr1,mGr2, . . . ,mGrl >, pG∗�}; (14)

mpG = �{{del(0), del(1)}, f1, {del(0), del(2)}, f2, . . . , {del(0), del(l/2)}, flog2 l�},
(15)

where f i is the i-th operational vertex in the accumulating fragment of the computing
structure. The program code in the Set@l language that corresponds to the considered
conversion of the original set mG1 into a set mG2 is shown in Fig. 15-b.

The considered technique for resource-independent description of information
graphs with associative operations allows to synthesize the topology and corresponding
computing structure optimized for the specified hardware resource R of reconfigurable
computer system and basic operation latency L. Herewith, a dense flow of input data
is provided, and the time of the problem solution is reduced by approximately L times
compared to the non-optimized implementation.

From the user’s point of view, the topological transformation and creation of an
efficient computing structure are described by the following one-line code fragment in
the Set@l programming language

:where AsG is the attribute that forms the information graph with associative oper-
ations; f is the type of basic operation (addition, multiplication, search for a maximum
or minimum etc.).
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Fig. 15. Fragments of the Set@l program code describing the formation of the computing
structures shown in Fig. 4 and Fig. 7

6 Conclusions

Thus, in this paper, we propose the method that rearrange the vertices of information
graph with associative operations and perform further optimization of computing struc-
ture in order to reduce the time of problem solution by the number of times correspond-
ing to the latency of operational vertex. The designed general graph topology combines
sequential and parallel fragments of calculations and provides the formation of dense data
flow at available hardware resource. The developed method extends the technique con-
sidered in our previous paper [12] tomultiple caseswhen the latency of associative vertex
exceeds one cycle. The architecture-independent Set@l programming language allows
to describe the transformations in compact resource-independent form. In comparison to
traditional parallel programming languages, in which the change of information graph
topology requires the modification of the program source code, Set@l specifies many
implementation variants in one program. The synthesis of particular computing structure
is performed automatically according to the configuration parameters specified by the
user (the amount of available computational resource and latency of basic operation).
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Abstract. In the paper we review high-level synthesis software tools for special-
purpose hardware circuit configurations for reconfigurable computer systems that
consist of a numerous FPGA chips interconnected by a spatial communication
system. The distinctive feature of the software tools is mapping of the source
C-program into the completely parallel form (an information graph) which is
transformed into the resource-independent parallel pipeline form and automati-
cally scaled. As a result, a reasonable solution for an available hardware resource
is generated. The information graph consists of tasks with data dependencies and
different rates of data flows. The parallel-pipeline form is scaled by the methods
of performance reduction with the same reduction coefficient for all subgraphs.
Owing to this, the different fragments of the problem have the same data process-
ing rate. The result of the transformations is balanced and reasonable computing
structure of the whole problem with the same rate of data flows among its frag-
ments. Besides, we review the results of the suggested methods applied to several
implemented problems.

Keywords: High-level synthesis · Translation of programs · C-language ·
Performance reduction · Reconfigurable computer system · Programming of
multiprocessor computer systems

1 Introduction

The main aim of high-performance computations is decreasing of the problem solution
time due to speedup of calculations. We can achieve this by increasing the performance
of the computational nodes of a computer system, or by the maximal parallelization of
computing operations [1]. At present, it is almost impossible to increase the performance
of computational nodes, because technological capabilities of design improvement have
practically achieved their limits. Therefore, increasing attention is being paid to both
promising computing architectures based on GPU [2], FPGA [3] and hybrid computers,
as well as new methods for parallelization and speedup of calculations.

In the paper, we consider transformation of a sequential C-program into an informa-
tion graph, and its automatic scaling for the available hardware resource of the selected
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reconfigurable computer system with multiple FPGAs [4]. The distinctive feature of this
approach is performance and hardware costs reduction for scaling of calculations. It con-
siderably decreases the number of variants of parallel calculations to be analyzed when
a reconfigurable computer system computing structure is synthesized. The synthesized
target design has the performance not less than 50% in comparison with the solution,
designed by a circuit engineer. The number of steps, required to get this balanced solution
is considerably less in comparison with parallelizing compilers, so the overall time to
get good performance is significantly reduced. Along with functional similarities with
Xilinx Vivado HLS and Xilinx Vitis, our software tools support scaling of the target
design for a numerous of interconnected FPGA chips and automatic synchronization of
data and control signals.

In this paper, we consider the automated calculation scaling methods for high level
synthesis of a target solution for multichip reconfigurable computer systems from C-
programs. This topic is extensive enough for a detailed consideration in one article, so
detailed descriptions of some algorithms of scalable solution synthesis are given in [5,
6]. For example, [5] describes the methods and algorithms for analysis of information
dependencies (Sect. 4.1 and 4.2 of the paper) and the methods for synthesis of a scalable
parallel-pipeline form. The paper [6] is devoted to the methods of performance and
hardware costs reduction (Sect. 4.4 and 4.5 of the paper), which are the mathematical
basis for calculation scaling. This article is focused on calculation scaling (Sect. 3) for
reconfigurable computer systems, and on calculation of the parallelism parameters to
ensure balanced processing of the subtasks with different data flow rates (Sect. 4.4 and
4.5).

Here is the structure of the paper. In the secondpartwemake a reviewof existing high-
level synthesis (HLS) tools for automatic translation of sequential programs. In the third
part we review methods of calculation scaling in RCSs. In the fourth part we consider
principles of development of scalable solutions for our complex of high-level synthesis.
In the fifth part we present the main steps and the methodology of sequential C-program
transformation into reconfigurable computer system scalable solutions. The sixth part
contains descriptions of the results obtained during translation of test applications. In
conclusion we generalize the obtained results.

2 A Review of Existing High-Level Synthesis Tools

The translators that transform sequential C-programs into a circuit configuration of
special-purpose hardware tools in HDL-languages [5, 7–14], are called high-level syn-
thesis tools orHLS-compilers. According to the type of the input programming language,
we can divide HLS-tools into two main types (see Fig. 1) [7] such as translators of
domain-specific languages and translators of general-purpose languages. Domain Spe-
cific Languages are the versions of the C-language, adapted to some problem domain.
General Purpose Languages are the dialects of the C-languagewith some special features
and limitations. At present, both academic (DWARV [8], BAMBU [9] i LEGUP [10])
and commercial (CatapultC, Intel HLSCompiler [11], Cadence Stratus[12], VivadoHLS
[13], Vivado Vitis [14]) complexes are being actively developed and used for design of
high-performance and power efficient solutions.
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DWARV is an academicHLS-compiler, developed at Delft University of Technology
on basis of the commercial compiler CoSy[8] with modular infrastructure, which allows
extension of functionality due to optimizationmodules that can be easily added.DWARV
contains 255 kinds of transformations and optimizations, available as self-units such as
transformations of conditional statements, pipelining of operations, memory extension,
simple analysis of capacity (for standard integer data types), and loops unrolling (for
performance optimization).

High-Level Synthesis Tools

Domain Specific Languages

NEW Languages C-Extended Languages

Generic Languages

Object-Oriented LanguagesProcedural Languages

CyberWorkBench (BDL)
Bluespec (BSV)
COLAMO
HercuLeS (NAC)
PipeRench (DIL)

CoDeveloper (ImpulseC)
DK Design Suite (HandelC)
eXCite (CSP pragmas)
ROCCC (C extended)
SA-C (SA-C)
Garp (C pragmas)
Napa-C (C pragmas)

Maxeler (MaxJ)
Cynthesizer (SystemC)
KIWI (C#)
SeaCucumber (Java)

Vivado HLS
Vivado Vi s
CatapultC
Intel HLS 
compiler
LegUp
Bambu
DWARV (CoSy)
GAUT
SynphHLS
CtoS
CHC

MatLab HDL 
coder
Stratus HLS
CHIMPS
Trident
Gcc2verilog
SPARK
CtoVerilog
C2H
MATCH
AccelDSP
DEFACTO

Fig. 1. Classification of high-level synthesis tools based on the type of the input language and
the problem domain (In Use, Not Available,  Abandoned)

BAMBU [9] is an academic HLS-tool developed at Politecnico di Milano and first
released in 2012. BAMBU is based on the GCC compiler and multiple optimiza-
tions developed specially for it. Owing to this, it supports complex structures of an
input program (for example, function calls, pointers, multidimensional arrays and struc-
tures). BAMBU generates microarchitectures (IP-cores) with the optimal proportion
between the solution time and the required resources, including support of floating point
operations.

LEGUP [10] was developed in 2011, at Toronto University, on basis of the LLVM-
compiler specially for Altera FPGAs of various families. LEGUP supports the Pthreads
andOpenMP technologieswith automatic synthesis of dataflow-based parallel-operating
hardware devices and automatic variation of the capacity of processing data, and register
optimization for multicycle paths. At present, only Microchip PolarFire FPGAs are
supported. The detailed review and comparison analysis of these high-level synthesis
tools are given in [6].

Concerning commercial HLS-compilers, we should mention Intel HLS Compiler
[11], Cadence Stratus HLS [12], Xilinx Vivado HLS [13] and a new tool Xilinx Vitis
[14] which provide powerful optimization of designed solutions. Xilinx Vivado HLS
and Vitis support the most part of the complex structures of the C-language and use the
comprehensive library of optimization transformations of computing structures from the
earlier development environments Xilinx ISE and Vivado.
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Themost of existingHLS-compilers analyze the computationally extensive fragment
of a C-program and transform it into a special-purpose calculator (an IP-core), based
of a finite automata or a processor paradigm. Despite of a considerable computing
speed gain in comparison with a processor [7], they generate an IP-core which takes
relatively small hardware resource. All data flows required for this IP-core, and scaling
(even within an FPGA chip) should be organized by the user. Therefore, in spite of
automatic translation of the C-program, the user is completely responsible to obtain the
solution of the whole problem on the available hardware resource. The problem becomes
much more complex when we use several FPGAs of multichip reconfigurable computer
systems interconnected by a spatial communication system [2] because calculations
scaling becomes obligatory.

3 Calculation Scaling for Reconfigurable Computer System

3.1 Calculation Scaling Based on Inductive Programs Technology

When a problem is implemented in an multichip reconfigurable computer system, it is
represented as an information graph [15], i.e. an oriented graph with vertices distributed
into layers and iterations (see Fig. 2) so that its number of vertices is equal to the
dimension of the problem (the number of data operations).

For example, Fig. 2 shows the information graph of forward elimination of the
Gaussian method, corresponding to the source C-program (Fig. 5, Sect. 4.2). Here, each
subgraph gij,k describes the calculation of the element m[j][k] from the internal cycle of
forward elimination of the Gaussian method (Fig. 5). The layers contain vertices with no
data dependences among the vertices. The iterations describe data dependences among
the vertices of the different layers and have only forward connections from every current
iteration to the next iterations. The layers and iterations of the information graph contain
complex objects such as subgraphs gij,k that consist of several interconnected operations.

For structural procedural organization of calculations [15], a functionally complete
subgraph (or a fragment) of the information graph is chosen. Such subgraph is called a
basic subgraph g (g01,0, . . . g

0
N ,N , . . . g

1
2,1, . . . g

i
j,k , . . . , g

N−1
N ,N ). The basic subgraph of the

information graph is selected according to three requirements such as:

– the subgraph g must be isomorphic within the computational problem structure;
– it is possible to create the general mapping functions for layers/iterations with basic
subgraph;

– hardware implementation of the basic subgraph g as a cadr, i.e. as a computing
structure and the input and output data flows, within the available hardware resource.

The basic subgraph g is always selected manually for each problem and depends
not only on the problem’s structure and data dependences, but also on the developer’s
experience. The basic subgraph g was always implemented by a performance engineer
as a pipeline computing structure with the minimal possible interval of data processing
to minimize the overall problem solution time. To scale problems with the implemented
basic subgraph g the technology of inductive programs is used. If the reconfigurable
computer system’s hardware resource is available, then the number of hardwarily (as a
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Fig. 2. The information graph of a problem with regular structure

pipeline) implemented basic subgraphs g is inductively increasing. Since the hardware
implementation of the basic subgraph g keeps all data dependences then its scaled version
keeps all dependences among the layers and iterations in the structure of the problem
too. Figure 3 shows the way of scaling of structural procedural calculations.

The layers L and iterations It move from the start point with the coordinates (1,1)
which corresponds to the minimal cadr structure g. The vertical dashed line corresponds
to the number of distributed memory channels (DMC) for the implementation of several
data independent basic subgraphs g. The horizontal dashed line corresponds to the gener-
alized hardware resource of FPGAs ARCS (including LookUp Tables (LUT andMLUT),
Flip-Flops (FF), Block RAM (BRAM) and other FPGA resources). Inductive increasing
of the number of implemented basic subgraphs g was performed, first of all, by layers
due to small available FPGA resource [2] which in the early 2000s was barely enough
for hardware implementation of even one basic subgraph g. With increasing of FPGA
hardware resource, data independent replication of cadr structures g are limited not by
resource, but by the number of distributed memory channels. Therefore, to scale the
problems with an iteration structure (the solution of SLAEs by the method of Gaussian
elimination, the Jacob method, the Gauss-Seidel method, etc.), we use parallelizing by
iterations [15], i.e. increasing of data dependent cadr structures g – moving along It-axis
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Fig. 3. Scaling of parallel calculations based on the technology of inductive programs

from (L1, 1) to (L1, It1) and from (L2, 1) to (L2, It2) in Fig. 3). The extreme variant
of problem scaling for unlimited (endless) hardware resource is a cadr structure which
corresponds to the hardware implementation of the information graph (Lmax, Itmax) in
Fig. 3. The main problem for the technology of inductive programs is manual selec-
tion and obligatory high performance pipeline implementation of the basic subgraph g
performed by a circuit engineer.

3.2 Calculation Scaling Based on Performance and Hardware Costs Reduction

In contrast to well-known calculation parallelizing methods that are used in parallelizing
compilers, scaling of a problem with the help of methods of performance and hardware
costs reduction [6] is based on an operation which is inverse of parallelizing. Let us call
it de-parallelizing or sequencing. Parallelizing distributes calculations of a sequential
program into multiprocessor computer system nodes according to the data dependences
of the problem in order to minimize the solution time. De-parallelizing works with the
completely parallel form of the problem, which requires a huge hardware resource, and
which is scaled into a less parallel (or parallel-pipeline) structure implementable on the
available reconfigurable computer system hardware resource. To illustrate the differ-
ences between the principles of the inductive scaling and the principles of the developed
complex of high-level synthesis tools, let us represent problem scaling as a trajectory in
a 3D-space. The space has three axes such as “Number of layers-Data width”, “Number
of iterations-Commands”, and “Time-Interval” (see Fig. 4). The conditional “origin of
coordinates” (like that in Fig. 3) is the structural pipeline implementation of the basic
subgraph g [15]. The first and the seventh octants contain the points that describe 2
boundary (opposite) variants of organization of calculations such as the completely par-
allel hardware implementation of the information graph (all operations of the problem)
and the completely sequential bitwise implementation of every operation of the prob-
lem. For the technology of inductive programs, scaling means tracing in the plane of
layers and iterations from the basic subgraph g to the completely parallel hardware
implementation of the information graph (the dashed line in Fig. 4).
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In the case of reduction of performance and hardware costs [6], we move from the
point (Lmax, Itmax,Tmin) in the upper octant to the area of the available hardware resource
(the solid line) first by decreasing layers, then by decreasing iterations. So, at first we
decrease the number of data independent basic subgraphs g and then the number of data
dependent subgraphs g. In the lower octant, for the problems whose basic subgraph g
exceeds the available hardware resource, the number of devices, the datawidth (capacity)
and the data processing interval are decreasing. In this case the performance reduction
always increases the problem solution time and the data processing interval, but in several
cases leads to decreasing of the resource for hardware implementation. Such approach to
scaling does not require manual selection of the basic subgraph g and provides solution
when the available hardware resource is insufficient to implement even the minimal
cadr structure g. Here, the calculations are reduced to special computational structures
– micro-cadrs (or m-cadrs) [6] that sequentially perform the operations of the basic
subgraph g on a lower hardware resource. Both m-cadrs and the minimal cadr structure
g can be inductively scaled in the plane of layers and iterations to get a reasonable
solution.

For this approach, well-known scaling technologies that required participation of a
circuit engineer, are united into the single automatic methodology within the developed
complex. The methodology is oriented to inductive scaling of computing structures,
and reduction in case of lack of hardware resource for structural implementation of
calculations.
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4 The Methodology of High-Level Synthesis for Scalable Solutions
of C-Programs

The methodology of high-level synthesis is based on the principles of reasonable com-
puting structure search in the space of calculations (see Fig. 4). The source program
written in the C-language (ISO/IEC 9899:1999) is translated into a program written in
the dataflow programming language COLAMO. The transformations of translation and
high-level synthesis are performed by the software tools [5]:

– the Angel translator which transforms the C-program into the completely parallel
COLAMO-form (the information graph);

– theMermaid processor which transforms the completely parallel COLAMO-program
into the resource independent parallel pipeline form;

– theProcrustesprocessorwhich scales the resource independent program for the recon-
figurable computer system architecture, estimating and modifying the parameters of
the COLAMO-program;

– the Nutcracker processor which performs the performance reduction if the hardware
resource is insufficient.

The translation of the generated COLAMO-program into FPGA VHDL files of
multichip reconfigurable computer systems is performed by the COLAMO-translator
and the synthesizer Fire!Constructor. The synthesis of bitstream files (*.bit) is performed
by the synthesizer of the Xilinx Vivado CAD-system for every separate FPGA. Let us
consider transformations of the input program according the suggested methodology.

4.1 Creation of the Problem Information Graph

At this stage, the input C-program is transformed into the completely parallel form – the
information graph. TheAngel translator transforms the sequential programwithmemory
random access into the parallel program working with data flows when all arrays of the
source program are transformed into the arrays with parallel (vector) access [15] of the
COLAMO-program. The detailed review of this transformation is given in [5].

4.2 Analysis of the Structure of the Problem Information Graph

At this stage, the Angel translator selects tasks, defines the number of layers and iter-
ations for every fragment, analyzes data dependences of every task and among all of
them, splitting of the scalar variables, and distributes the arrays into the iterations to
avoid violations of the single assignment and the single substitution rules. On the base
of the structure of the source program (loops, functions, and procedures), the information
graph is represented as a set of tasks. In every task, one or several functional subgraphs
(FS) are selected. In other words, the functional subgraphs are the loops of the source
program, or the fragments of calculations with the specified functions of scaling by lay-
ers and iterations. The number of layers and the number of iterations of every fragment
is defined on the base of the loop analysis [16–18]. Besides, the data dependencies of
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the variable and arrays of the loop body are taken into account. So, for the fragment
of the sequential program of the SLAE (system of linear algebraic equations) problem
solved by the Gaussian method for the specified matrix (see Fig. 5), the Angel translator
selects (and marks with #FuncGraph) three functional subgraphs such as forward elim-
ination(#FuncGraph_0), calculation of the last unknown variable (#FuncGraph_1), and
backward substitution (#FuncGraph_2).

#FuncGraph_0
for (i = 0; i < N; i++) {

for (j = i+1 ; j < N ; j++) {
d = (m[j][i]/m[i][i]); 
for (k = i; k < N+1 ; k++)

m[j][k] = m[j][k] - (m[i][k]*d);
}

}
#EndFuncGraph
#FuncGraph_1
otvet[N-1] = m[N-1][N-1]/m[N-1][N];
#EndFuncGraph
#FuncGraph_2
for (t=N-2;t >= 0;t --) {

d=0;
for (r=0;r<N-t-1;r ++)

d = d - (otvet[N-r-1]*m[t][N-r-1]);
otvet[t]=(m[t][N]+d)/m[t][t];

}
#EndFuncGraph

Fig. 5. The functional subgraphs in the source C-program for the SLAE problem

Forward elimination is represented as the triple loop, calculation of the last unknown
variable – as the single assignment expression, and backward substitution – as the loop
over the rows of the matrix The number of iterations of the loops by every variable corre-
sponds to the number of layers and iterations. The functional subgraph that calculates the
last unknown variable, consists of one expression. The functional subgraph of backward
substitution contains three subgraphs because each of them has its own number of layers
and iterations (and has its own loop). For the selected functional subgraphs, the Angel
translator performs all transformations and generates a well-formedCOLAMO-program
in the completely parallel form similar to the “Initial description” and “Initial loop” (see
Fig. 6).

4.3 Transformation of the Information Graph into the Scalable Parallel Pipeline
Form

Owing to the scalable parallel pipeline form, generated by the Mermaid processor, it
is possible to automatically recalculate the number of implemented subgraphs and the
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size of their data flows for the dimension of every array (data flow) with the help of
the only one constant (the degree of parallelism). For this purpose, we describe every
dimension of every array of the program with two interrelating parameters such as the
vector parameter with parallel access, and the stream parameter with sequential access.
That is why on this stage, theMermaid processor adds the stream parameter to all vector
dimensions of the arrays and splits all loops of the COLAMO-program as follows (see
Fig. 7). It is clear, that the product of the vector and stream dimensions is equal to the
size of the initial array in the sequence program. If we set the values of the parallelism
parameters (dp1, dp2, etc.) equal to their initial values, we obtain the initial parallel
program generated by the Angel translator.

Ini�al descrip�on Transformed descrip�on 
M: Array [N: Vector,

N+1: Vector]
M: Array [dp1: Vector, (N+dp1-

1)/dp1: Stream;
dp2: Vector,
(N+dp2-1)/dp2: Stream]

Ini�al loop Transformed loop 

For i:= 0 To N-1-1
Step 1 Do
For j:= i+1 To N-1
Step 1 Do
d:= m[j,i] / m[i,i];
For k:=i To N+1-1
Step 1 Do
m[j,k]:=m[j,k]- 
m[i,k]*d; 

For vi:= 0 to dp1-1 Step 1 Do
For si:=0 to (N+dp1-1)/dp1-1

Step 1 Do
For vj:=0 to dp2-1 Step 1 Do
For sj:=0 to (N+dp2-1)/dp2-1

Step 1 Do
d:= m[vj,sj,vi,si] /  

m[vi,si,vi,si]
For vk:= 0 to dp2-1 Step 1 Do

For sk:=0 to (N+dp2-1)/dp2-1
Step 1 Do

m[vj,sj,vk,sk]:=m[vj,sj,vk,sk]-
m[vi,si,vk,sk]*d

Fig. 6. The transformed loops with access to the variables in the scalable parallel pipeline form

As a result of this transformation, the completely parallel COLAMO-form turns into
the parallel-pipeline one, and we can control parallelism with the help of parameters
(dp1, dp2, etc.) with automatic recalculation of the stream parameter according to the
syntax requirements.

4.4 Calculation of the Problem Parallelism Parameters for the Available
Hardware Resource

At this stage, the Procrustes processor calculates the possible values of the scaling
parameters of every functional subgraph according to the available hardware resource and
the number of memory channels. Starting from the point (Lmax, Itmax,Tmin) and tracing
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along layers, iterations and instructions of every functional subgraph (see Fig. 4), the
Procrustes processor searches the reasonable computing structure of the whole problem.
This transformation is themost complicated part of the consideredmethodology because
we have to find a solution with balanced rates of data flows for various fragments of
the problem, taking into account the data dependences among the fragments, and the
reasonable implementation of the solution on the available hardware resource. For every
functional subgraph, it is necessary to choose the most reasonable form of organization
of calculations according to the computing structures of other subgraphs and the whole
problem.

The scaling strategy is based on the idea that the total problem solution time depends
on the most computationally expensive fragment most of all. Therefore, it is necessary to
implement such fragment in themost efficient way; ideally, as a (multi) pipeline structure
with the minimal data processing interval. The functional subgraph, which requires the
largest part of the hardware resource (the product of the resource, taken by the loop
body, and the number of the loop iterations), is the start point for scaling and matching
of the parameters of all subgraphs of the problem. Let us call such functional subgraph
a “flagship”. The problem structure can contain several “flagships” that take a similar
hardware resource. In this case, we start scaling from the largest fragment (or from any
fragment if they are equal). Let us call all other functional subgraphs “boats”, i.e. rather
small functional subgraphs of a task or a problem that require considerably smaller
resource in comparison with the “flagship”. We do not claim that our classification of
problems is comprehensive; however, it is possible to emphasize the most wide-spread
variants of their data dependences (see Fig. 7).For example, for the SLAE problem
solved by the Gaussian method (see Fig. 5) forward elimination (#FuncGraph_0) is a
“flagship”. Calculation of the last unknown variable (#FuncGraph_1), and backward
substitution (#FuncGraph_2) both are “boats” because of less number of loop iterations
comparing with forward elimination.

During scaling, the “boats” take the available hardware resource after implementation
of the “flagship”. The reduction of the “flagship” is based on hardware implementation
of the iteration loop with all iteration steps (i.e. with no reduction) because it decreases
the problem solution time, does not change (does not increase) the number of memory
channels, and occupies the hardware resource that is quite enough inmodern FPGAs. If it
is impossible then several iteration steps, interconnected by a feedback, are implemented.
The data processing interval increases due to a feedback, but it can be decreased with
the help of the optimization transformations to prevent increasing of the interval of the
whole problem.

The complex of high-level synthesis is based on a set of rules that decrease the num-
ber of analyzed variants and the total problem solution time, and provide reasonable
scaling. Within a functional subgraph, if it contains several expressions (or operators),
we use the same approach: the largest expression, which requires the largest resource,
is scaled (or reduced) first. A “boat”, especially if its hardware costs are small, can be
implemented hardwarily with no reduction methods. Since such functional subgraphs
do not considerably increase the hardware resource of the problem, their reduction can
increase hardware costs due to the complex communication system of the reduced struc-
ture. To achieve the specified performance reduction coefficient, it is better to increase
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the data processing interval for small functional subgraphs. If there is a data dependence
among the layers (i.e. a graph is functionally irregular), it is necessary to reduce the
functional subgraph and implement it as a procedure.
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Fig. 7. The structures of the information graphs for some problems: a) a data independent “flag-
ships”; b) a data dependent “flagships”; c) a “flagship” – a “boat”; d) a “flagship” – several
“boats”

To scale the problem, i.e. to proportionally increase/decrease its tasks, it is necessary
to provide one and the same reduction coefficient for all tasks, and proportional variation
of the rate of data flows among the tasks. In the context of reduction, it means that it
is reasonable to use the same types of reduction with the same coefficients if we want
(and if it is possible) to keep the rate of data flows. If we use different types of reduction
in different tasks, then, in the general case, it is necessary to match the rates of data
flows. As a rule, this leads to additional hardware costs and increasing of the problem
solution time, because hardware implementation of match units requires delay elements
with multiplexers/demultiplexers, buffers, internal dual-port RAM (BRAM).

4.5 Data Processing Interval Optimization for the Generated Problem Solution

To match the rates of data flows after scaling of all functional subgraphs of the problem,
the Procrustes processor applies the optimization methods that decrease the data pro-
cessing interval, increased during reduction procedure, to its minimal value (ideally to 1)
balanced for all subgraphs. To decrease the data processing interval [19], it is necessary
to transform the problem into a pipeline of pipelines [15] or into a macro pipeline [15].

It is necessary to decrease the data processing interval when the number of imple-
mented iteration steps is less than it is required for implementation of the whole iteration.
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In this case we have an inevitable feedback, and the data processing interval increases.
In the case of a feedback, the data processing interval is equal to the ratio of the latency
of the implemented iteration steps to the number of registers of the feedback. So, if we
cannot increase the number of implemented iteration steps, it is necessary to increase the
number of registers in the feedback up to the latency. We decrease the data processing
interval and get the contiguous data flow. This is the sense of transformation to a pipeline
of pipelines (or a nested pipeline, a pipeline in a pipeline). Here, the data processing
interval can be decreased to its minimal value of a unity. It is utterly important for scaling
the “flagship” due to its influence on the total problem solution time. The transformation
into a macro pipeline is also aimed at decrease of the data processing interval, but is
applied for the fragments implemented as procedures. The sense of this transformation
is to increase the number of procedural fragments up to the number of clock cycles of
one procedural device. As a result, we get at least one unit free for the next part of a
contiguous data flow, processed with the data processing interval equal to unity.

Owing to the described system of limitations and optimizations, it is possible to
synthesize a reasonable solution such as a pipeline in a pipeline or a macro pipeline for
the most computationally expensive “flagship”. As a result, the total problem solution
time is reduced.

5 Results of Experimental Research for the Developed Complex

With the help of the prototype version of our HLS-complex, which contains the Angel
translator, and the processors Mermaid and Procrustes, we have successfully imple-
mented several problems of linear algebra on various reconfigurable computer systems
[4, 20]. Table 1 shows the solution time and speedup results for the SLAE problem,
solved by the Gaussian forward elimination for matrices of 8000 × 8001 elements on
the reconfigurable computer system Tertius [4] with a clock rate of 250MHz, and on the
personal computer based on Intel i5-7300 with a clock rate of 2500 MHz. Target design
was obtainedwith the help of themethod of parallelizing by iterations, i.e. reconfigurable
computer system hardware implementation of the steps of the algorithm interconnected
due to data dependences. These resultswere obtained automatically,without anypragmas
like in the Xilinx Vivado HLS or other HLS-compilers. Instead, we use the methodology
of high-level synthesis for scalable solutions, discussed in Sec.4. The first three rows (1,
10 and 100 steps of the target design) correspond to one FPGA, and 830 steps correspond
to 4 FPGAs of the reconfigurable computer system Tertius. It is clear, that the personal
computer based on Intel i5 is 10 times faster than Tertius, but even in this case one FPGA
provides 10-fold speedup. If we increase the number of computational FPGAs (the last
row), the performance ramps.

The time of translation of sequential C-programs into COLAMO-programs with the
help of the prototype version of our HLS-complex does not exceed 10 min for 830 steps
for the 4 FPGAs of the Tertius. The time of synthesis of FPGA VHDL-files for this
design was about 4,5–5 h with average utilization 94% for each FPGA. The specific
performance of the generated solutions is not less than 85% in comparison with those
designed by software developers in the programming language COLAMO, and is not
less than 70% in comparison with the solutions designed by circuit engineers.
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Table 1. The time results for the SLAE problem, solved by the Gaussian elimination on the
Tertius reconfigurable computer system

Number of iteration steps Personal computer, sec Tertius reconfigurable
computer system, sec

Speedup

1 step 0.023 0.029 0.8

10 steps 0.91 0.28 3.25

100 steps 12.8 1.21 10.6

830 steps 103.07 1.67 61

6 Conclusion

The developed complex for high-level synthesis of scalable solutions for reconfigurable
computer systems is based on the original methodology of transformation of sequential
C-programs into FPGA configuration files. In contrast to well-known HLS-compilers,
the complex provides scaling of the problem, which consists of fragments with different
computational complexity, and generates the computing structurewith the balanced rates
of data flows. Each fragment and the whole problem are scaled by the Procrustes proces-
sor with the help of the methods of performance and hardware costs reduction without
any pragmas. In contrast to the most part of HLS-compilers, the complex provides
automatic synchronization of data and control signals for multichip solutions.

Owing to the experimental results of the translation of several tests, it is possible to
conclude that the developed complex is applicable to automatic high-level synthesis of
scalable solutions of linear algebra computational problems with complex structure.
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Abstract. This article proposes precompilers to accelerate the solvers
of the application software package. The substantiations of this approach
are given. The precompiler can be most valuable for programs that are
intended to be ported to different computing architectures. There are
given some examples of speeding up programs that implement iterative
numerical methods using a precompiler in this paper. In particular, skew
tiling and parallelization of loops with a linear recurrent dependence
are implemented in the presented precompilers. The results of numerical
experiments demonstrate the acceleration of programs by the precom-
piler by tens of percents and sometimes tens of times.

Keywords: High-performance computing · Optimizing compilers ·
Loop nest · Loop tiling · Program transformations · Parallel computing

Introduction

A precompiler is a preliminary source-to-source compiler. It is a compiler that
transforms high-level source program code into the same language code, which
will execute faster than original program (after compilation by the standard
compiler).

Program performance became more and more dependent on efficient using
of memory hierarchy and parallel computing devices [1]. Consequently, other
optimizations became more essential. These transformations are not processor
specific. Such as the block allocation of matrices in RAM [2], parallelization
of loops with a linear recurrent dependence [3,4], optimization of work with
structures [5], etc. Many of such transformations (for example, aimed at data
localization) can be useful for various modern computation systems with different
command systems. The transformations can be added to the compiler only if it
has open source code, for example, GCC or LLVM compilers. But popular and,
in many cases, most effective (see Table 1) compilers, such as Intel or PGI, are
proprietary. In many libraries, solvers are created not for a single problem, but
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a set of similar problems that differ in parameter values. At the same time,
different optimizing transformations can be optimal for different values of the
parameters. For example, with some kinds of data dependence, rectangular tiling
can be used, and with others, skew tiling; loop parallelizing with linear recurrent
dependency can speed the code up in some cases and slowdown in others.

Optimized program code may be larger and more complex than source pro-
gram code. For different values of the parameters, the code differs not only in the
values of the parameters, but also in the text: for example, loop unrolling with
5 iterations contains 5 copies of the original loop body, and with 10 iterations -
10 ones; inlining in one case can be done for 10 function calls, and in the other -
for 1000 [6]. The parallelization of the Floyd-Warshall algorithm is correct if the
graph weights matrix contain only non-negative numbers. Notice, the compiler
is not aware of the signs of the graph weights matrix elements. Thus, a compiler
intended for a wide range of users (such as GCC, LLVM, ICC) cannot parallelize
such an algorithm automatically. But within the specific package framework of
applied programs with appropriate documentation, such the transformation can
be implemented [7].

Compilers of the LLVM family can transform loop nests by using Polly [7].
In particular, the possibility of tiling was stated. To do this, compilers must
receive a lot of instructions, since Polly does not determine the optimal tile
sizes, etc. The skewed tiling is not implemented in Polly. Intel C++ compiler
provides the ability to apply loop tiling (loop blocking) [9,10] for loop nests
(perfect loop nests) by using compiler’s pragma directive #pragma block loop
factor (int) level (int), where factor(int) is the block size, level(int)
are the numbers of the loops to which tiling will be applied. If the compiler
directive is used without parameters, tiling is applied to all loops, and the tile
sizes are determined automatically based on the processor type and memory
access patterns. The loop-carried dependencies are ignored during the processing
of block loop pragmas, it means that user is responsible for the transformation’s
correctness.

Even classic program transformations are not always used effectively. There
are dozens of program transformations. For example, the list of LLVM transfor-
mations [11]. Some transformations conflict with each other. For example, the
expression ab + ac + bc can be replaced with a(b + c) + bc or ab + (a + b)c, but
two substitutions cannot exist at the same time. There are transformations with
parameters. For example, loop unrolling decreases the number of loop iterations
by a factor of k, but at the same time increases the size of the body of the
loop by a factor of k. Choosing a desirable combination of transformations can
turn out to be an even more complex intellectual task [12], which is not solved
by modern compilers. For a specific program, the developer can create his own
combinations of transformations within the precompiler.

The article [13] acknowledges that optimizing linear algebra software can
be a tedious and time consuming process. The programmer must understand
the architecture, how the memory hierarchy can be used to provide data in an
optimum fashion. Care must be taken to optimize the operations to account for
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many parameters such as blocking factors, loop unrolling depths, loop ordering,
register allocations. However, compiler technology is far from mature enough to
perform these optimizations automatically. Compilers for less widely marketed
machines are almost certain not to be developed. Many cases in which optimizing
compilers poorly optimize are described in [14].

The article [15] describes the Source-to-Source outliner developed by the
authors, based on an open infrastructure for creating compilers and related util-
ities ROSE (ROSE Compiler).

The results presented in this article confirm the conclusions [16] that modern
optimizing compilers do not optimize programs well enough.

This article presents new transformations that speed up programs signif-
icantly and can be done both manually and automatically: parallelization of
recurrent loops, skewed tiling, and their parallel execution of skewed tiles. The
last transformation gives an acceleration of more than 10 times. Numerical exper-
iments have shown that the code transformed with skewed tiling can be further
accelerated by classical compiler transformations. It is shown that the compil-
ers GCC, MS-VS, ICC do not perform the classic optimizing transformations
available to them in combination with the new transformations presented in the
article. To create fast and portable programs, the article suggests creating pre-
liminary compilers. The cost of creating a precompiler can be justified for the
solvers of applied software packages.

Precompilers can be created for the specific program that receives parame-
ters. Such a precompiler can be useful in case if this program is intended to be
ported to another architectures while maintaining high efficiency.

The precompilers are presented in this paper are oriented to the solvers of the
ACELAN-COMPOS application software package [17,18]. The article presents a
solver for SLE with a block-band matrix. A special representation of the block-
band matrix ensures high performance of the iterative algorithm. A new special
parallel algorithm for solving SLE with a tridiagonal matrix has been developed
for this solver. The article presents a Dirichlet problem solver that combines
skewed tiling and OpenMP parallelization. The acceleration of this solver is
more than 20 times compared to the sequential algorithm.

A precompiler is useful if the following conditions are met: 1) the usual opti-
mizing compiler speeds up the program poorly; 2) you know the transformations
that can speed up the program; 3) more than one variant of the solver is required.

1 Precompiler for Accelerating Solvers for SLE with
Block-Band Matrix

A SLE (System of Linear Equations) with a block-band matrix arises in the
mathematical modeling when using such numerical methods as finite difference
method or finite element method.

The solver is designed for a set of similar types of certain problems. It receives
some initial data of the problem, for example, size of the block and other as a
parameters.
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1.1 Iterative Algorithms for Solving the Target SLEs

Consider a system of linear equations
Ax = b0.
and the iterative algorithm for solving it

xk+1 = B · xk + b
B = I − t · C−1 ·A, b = t · C−1 · b0
where k is an iteration number, b0 is an initial approximation, C is a non-

singular matrix; t is a positive numerical parameter. For the iterative process
convergence, the spectral radius of matrix B must be less than 1.

It is assumed that C is a block-tridiagonal matrix.
After LU -decomposition of matrix C (or C = L · D · L∗ for a symmetric

matrix), C−1 · x can be quickly calculated at each iteration of the algorithm. In
SLEs with saddle point singularity [19] the matrix C can be symmetric.

Programs for solving SLE with block-band matrix have their own features. By
understanding these features, the performance of the algorithm can be improved.

After LU decomposition (shown in Fig. 1), the blocks of matrices L and U
located on the main diagonals have a triangular shape

Fig. 1. LU -decomposition of the block-tridiagonal matrix. The blocks on the main
diagonal have a triangular form. The decomposition of the symmetric matrix can be
obtained by the Cholesky method [20]

The program for solving the system of linear equations with block matrices
contains double loops with square and triangular iteration space (these double
loops scan square and triangular blocks of data, respectively). The number of
iterations in these loops is small, which means that full loop unrolling could
be applied. The unrolling of such loops can give a noticeable acceleration, as
confirmed by numerical experiments.

Matrix blocks are stored in memory in one-dimensional arrays. It improves
data localization but complicates array index computing. The index expressions
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of arrays depend on loop counters as affine functions. Optimization of calcula-
tion of such index expressions can be achieved by transformations: “Common
Subexpression Elimination”; “Loop-invariant code motion” [21–24].

The authors of the article have developed the first version of solver for the
SLEs with block-band matrices with saddle point singularity in C language.

1.2 Precompiler for the Solver for SLE

The precompiler for the solver is based on the OPS (Optimizing paralleling sys-
tem), which is the technology developed and distributed by the authors of this
article [25,26]. OPS is a parallelizing system owned by Southern Federal Univer-
sity designed to transform programs written in C. It is a system that consists
of a high-level internal representation, program dependency analyzers, program
transformation library, and helper functions. The next program transformations
were used: carried invariants out of loops, linearization, loop unrolling, and loop
canonization.

Example 1.
A chain of transformations for the next perfect loop nest is considered:

for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)

B_C[b * 4 + 4 + j] -= A_X[b * BLK_SZ_2 + i * 4 + j]
* B_C[b * 4 + i];

The following optimizations are performed: loop-invariant code motion, lin-
earization, full loop unrolling. The following is the fragment of the transformed
code for i = 0 and i = 1 (for values i = 2 and i = 3, code similar to consider).

__a = b * BLK_SZ_2;
// i = 0

__b = b * 4;
__c = B_C[__b];
B_C[4 + __b] = B_C[4 + __b] - A_X[__a] * __c;
B_C[5 + __b] = B_C[5 + __b] - A_X[1 + __a] * __c;
B_C[6 + __b] = B_C[6 + __b] - A_X[2 + __a] * __c;
B_C[7 + __b] = B_C[7 + __b] - A_X[3 + __a] * __c;
// i = 1

__b = 4 + b * 4;
__c = B_C[1 + __b];
B_C[4 + __b] = B_C[4 + __b] - A_X[4 + __a] * __c;
B_C[5 + __b] = B_C[5 + __b] - A_X[5 + __a] * __c;
B_C[6 + __b] = B_C[6 + __b] - A_X[6 + __a] * __c;
B_C[7 + __b] = B_C[7 + __b] - A_X[7 + __a] * __c;

...
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Note that the optimized code is much larger than the source code. If the
block-size would be 12 instead 4, then the size of the converted code would be 9
times larger than result code in this Example.

1.3 Numerical Experiments with the Solver for SLEs with
Block-Band Matrices

The solver was tested on a computer with the following characteristics:

– Processor: Intel i7-9700; 3.00 GHz; Core - 8; L1 - 256 KB (for each core); L2
- 2 MB (for each core); L3 - 12 MB

– System bus frequency 8 GT/s; Max. 41.6 GB/s Bandwidth
– RAM: DDR4 16 GB; Min. frequency 1600 MHz; Max. frequency 2666 MHz

The iterative algorithm stops when the norm of the difference between the
results of the iterations k and (k+1) is less than some positive number. Numerical
experiments were performed for the algorithm with the following characteristics.

Parameters of the problem in numerical experiments: number of blocks -
999999, block size - 4, scalar matrix size - 3999996, number of non-zero elements
in one triangular block - 6, number of iterations in one step - 50, error - 0.001;
Matrix A has a saddle point, the number of positive eigenvalues is twice more
than negative; matrix C is assumed to be symmetric represented in the form
C = L ·L∗ (i.e. in the expansion C = L ·D ·L∗ diagonal matrix is the identity).

Table 1. Results of numerical experiments for the transformed program for different
compilers.

Compiler and key GCC, O2 GCC, O3 ICC, O2 ICC, O3 MSVS O2

Original program 5.035 5.313 7.014 6.763 10.157

Transformed program 4.919 4.609 4.259 4.208 9.270

The table of numerical experiments (shown in Table 1) shows that the opti-
mizing precompiler speeds up the solver by 30% (when the fastest code is pro-
duced by the ICC proprietary compiler). This acceleration is obtained without
parallelization, which is considered in the next section.

1.4 Parallelization of a Loop with Linear Recurrent Dependence

The solution of a SLE with matrix C can sometimes be accelerated by paral-
lelization using OpenMP. This problem is reduced to the parallelization of loops
with a linear recurrent dependence, which is effective for some parameter sets of
the algorithm and some computational architectures [3,4].

For example, if the block sizes are equal to 1 and the Intel processor is used,
the algorithm [4] can speed up the solution of the SLE with the matrix C.

The loop below solves a SLE with a two-diagonal matrix.
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for (i = 0; i < N; i++)
x[i] -= a[i] * x[i-1] + b[i];

After LU decomposition of the matrix C, the algorithm [4] can be applied
both for solving SLEs with lower triangular and upper triangular matrices. The
program is implemented for the case when the block size is 1 (that is, there are
only three non-zero diagonals in the matrix).

It should be noted that in the case of multiple iterations of calculations (in
an iterative algorithm), an unchanging matrix, but the changing right side, some
auxiliary calculations of the algorithm can be done only once and then reused.
In addition, since the column on the right side of the SLE does not need to
be saved, the resulting vector can be written in its place. This also leads to
an acceleration of the parallel version of the program. The results of numerical
experiments are presented in the Table 2.

Table 2. Results of numerical experiments for parallelizing a loop with a linear recur-
rent dependence.

Compiler and key GCC, O2 GCC, O3 ICC, O2 ICC, O3 MSVS O2

Original program 2.189 1.940 2.000 1.895 2.197

Transformed program 1.314 1.216 1.231 1.236 1.221

It can be assumed that for processors with addressable local memory [27–29]
or GPU, algorithms [3] or [4] will give the acceleration even in the case of block
sizes greater than 1, since intermediate data can be left in the processor without
writing to the RAM (Intel processor cache does not have this feature).

2 Precompiler for Accelerating the Gauss-Seidel
Algorithm for Solving the Dirichlet Problem

2.1 Automatic Tiling for the Gauss-Seidel Algorithm for Solving
the Dirichlet Problem

The loop nest of the original program:

for (int k = 0; k < K; ++k)
for (int i = 1; i < N - 1; ++i)

for (int j = 1; j < M - 1; ++j)
u[i][j] = (u[i - 1][j] + u[i + 1][j]

+ u[i][j - 1] + u[i][j + 1]) / 4.0;

The code of the transformed program for solving the Dirichlet problem with
the Gauss-Seidel algorithm:
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int i, j, k;
for(int jjjj = 0; jjjj < ((((((M - 1) - 1) + K - 1) - 1)
/ d3 + 1) + (((((N - 1) - 1) + K - 1) - 1) / d2 + 1) - 1)
+ K / d1 - 1; jjjj += 1) {

int j14, k18, k19;
if (0 > (jjjj - ((((((M - 1) - 1) + K - 1) - 1) / d3 + 1)
+ (((((N - 1) - 1) + K - 1) - 1) / d2 + 1) - 1)) + 1)

k18 = 0;
else

k18 = (jjjj - ((((((M - 1) - 1) + K - 1) - 1) / d3
+ 1) + (((((N - 1) - 1) + K - 1) - 1) / d2 + 1)
- 1)) + 1;

if (K / d1 < jjjj + 1)
k19 = K / d1;

else
k19 = jjjj + 1;

for (int kk = k18; kk < k19; kk += 1) {
int i15, i16;
j14 = jjjj - kk;
if (0 > (j14 - (((((M - 1) - 1) + K - 1) - 1) / d3
+ 1)) + 1)

i15 = 0;
else

i15 = (j14 - (((((M - 1) - 1) + K - 1) - 1)
/ d3 + 1)) + 1;

if (((((N - 1) - 1) + K - 1) - 1) / d2 + 1 < j14
+ 1)

i16 = ((((N - 1) - 1) + K - 1) - 1) / d2 + 1;
else

i16 = j14 + 1;
for (int iii = 15i; iii < 16i; iii += 1) {

jjj = j14 - iii;
for (int k = kk * d1; k < (kk + 1) * d1; k += 1) {

int i10, i11;
if (k > iii * d2)

i10 = k;
else

i10 = iii * d2;
if (((N - 1) - 1) + k < (iii + 1) * d2)

i11 = ((N - 1) - 1) + k;
else

i11 = (iii + 1) * d2;
for (int ii = i10; ii < i11; ii += 1) {

int j12, j13;
if (k > jjj * d3)



Precompiler for the Solver 111

j12 = k;
else

j12 = jjj * d3;
if (((M - 1) - 1) + k < (jjj + 1) * d3)

j13 = ((M - 1) - 1) + k;
else

j13 = (jjj + 1) * d3;
for (int jj = j12; jj < j13; jj += 1)
{

i = ii - k;
j = jj - k;
u[(1 + i)][(1 + j)] = (((u[((1
+ i) - 1)][(1 + j)] + u[((1 + i)
+ 1)][(1 + j)]) + u[(1 + i)][((1
+ j) - 1)]) + u[(1 + i)][((1 + j)
+ 1)]) / 4.;

}
}

}
}

}
}

The code of transformed program was obtained by the precompiler for Gauss-
Seidel problem, variable names were changed for readability.

Note that the optimized code is not only larger but also much more complex.
For a three-dimensional problem, the code would be even more complicated. The
code has parameters - the size of the tile. For different processors, these optimal
sizes will be different.

Table 3. Results of numerical experiments of the Gauss-Seidel algorithm for solving
the Dirichlet problem.

Compiler and key GCC, O2 GCC, O3 ICC, O2 ICC, O3 MSVS O2

Original program 16.431 11.634 18.888 18.611 20.565

Transform program 1.247 1.003 1.085 0.875 2.235

The table of numerical experiments (shown in Table 3) shows that the opti-
mizing precompiler speeds up the solver on all compilers.

The manually obtained code (considering the peculiarities of the issue) has
a much higher speedup, which means that the precompiler for this program has
potential for development.

The paper [30] presents a method for combining parallelization on distributed
memory and skewed tiling with OpenMP parallelization. So, the Gauss-Seidel
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algorithm presented in this section for the Dirichlet problem can be used in a
parallel algorithm for solving this problem on a supercomputer with nodes based
on Intel Core i7 CPUs. The acceleration of such an algorithm can be equal to
the product of the number of processors and the acceleration of this algorithm
on one processor (20 times).

2.2 Linearization of Expressions in the OPS

OPS is a tool for developing C2C (C-language to C-language) accelerating con-
verters. The OPS consists of an IR (internal representation), a library of program
transformations, a set of program analyzers and other functions.

The transformation “linearization of expressions” [31], implemented in Opti-
mising Parallelising System (OPS), is used to convert expressions to a standard
form before constructing a data dependence graph and for other purposes. Lin-
earization is achieved by constant propagation [32] and simplifying arithmetic
expressions. Linearization was applied only to expressions in assignment oper-
ators in the previous version of OPS. The application of this transformation is
extended in this paper.

Linearization in the new version is redefined for comparison operations of
the form a @ b, where a and b are integer expressions, and @ is the comparison
operator. This operation is replaced by (a− b)@0, and then an attempt is made
to calculate the difference to reduce the given expression to some constant value
that can be compared to zero. Such comparison operations, which are identical
to zero or one, can occur in the program after automatic code transformations.

Extension of linearization for a composite operator is a sequential application
of optimization for each operator of this block. For a conditional operator of the
form

IF condition THEN thenBlock ELSE elseBlock

linearization consists of two steps: the first step is optimization of a logical
expression in condition statement. If after linearization the expression degener-
ates into a constant, then, depending on its value, the conditional operator is
replaced by a composite operator thenBlock or elseBlock. The second step is
the linearization of composite operators.

For a loop operator of the form

for (I = Expr1; I op Expr2; I = I + Step)
LoopBody

explicit linearization of the I op Expr2 operation can lead to violation of the
canonical form of the loop, which is required for further transformations.

We need to linearize the expression Expr1 op Expr2 and check if it is iden-
tically false.

If the expression Expr1 op Expr2 is not identically false, the Step expression
and the LoopBody will be linearized. Otherwise, the loop operator is replaced
by the assignment operator I = Expr1.
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2.3 Gauss-Seidel Algorithm Accelerating by Expression
Linearization

Example 2. We consider a code fragment in the “transformed program of Dirich-
let problem solution by Gauss-Seidel algorithm” (Sect. 2.1), highlighted in bold.
This code, obtained by applying the “automatic tiling” transformation, contains
expressions to which linearization can be applied. The transformed code of the
selected program fragment:

for ( int jjjj = 0; jjjj < (-4 + K + M) / d3
+ (-4 + K + N) / d2 + K / d1 ; jjjj += 1 ) {

int j14, k18, k19;
if (0 < jjjj - ((-4 + K + M) / d3
+ (-4 + K + N) / d2 + K / d1))

k18 = 0;
else

k18 = (-4 + K + M) / d3 + (-4 + K + N) / d2 + K / d1;
}

3 On the Problem of High-Efficiency Software Portability

On the one hand, CS (computing systems) architectures are getting more com-
plicated every year. On the other hand, their diversity is expanding. The popular
X86 and ARM processor architectures are evolving, changing, in particular, the
characteristics of the cache memory, the possibility of parallelization and vec-
torization, and other elements that affect performance. The usage of Nvidia
graphics cards as accelerators is expanding. It is impossible not to notice the
success of the line of Russian processors “Elbrus” with the VLIW architecture.
Recently, manycore processors with addressable local memory have appeared:
Tile64 processor (2007, 64 asynchronous cores) [27]; Epiphany processor - 1024
cores [28]; developed in Russia manycore system on a chip “1879VM8Ya” from
“Module” [29].

The increasing diversity and complexity of architectures lead to the com-
plication of high-performance software development. Moreover, there is a well-
known problem of software portability from one CS to another. But for portable
high-performance software, an additional problem of maintaining high efficiency
arises. Here, high efficiency is understood as the fraction of the peak CS per-
formance to which the software is ported. Indeed, there are many types of
high-performance software for which the consumer would like even better per-
formance. Such are, for example, solvers of application software package for
problems of mathematical modeling, bioinformatics, weather forecasts, artificial
intelligence, nanotechnology, etc. Such packages are always desired to be ported
to new CS in order to obtain higher performance.

The OpenCL language standard has been developed for porting parallel pro-
grams. But a simple porting of such programs can lead to a significant loss of
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efficiency since for high performance it is necessary to take into account not only
parallelism and memory stability [33].

Fast programs are developed in high-level languages. The compilers included
in the processor system software optimize the mapping of instructions to the
microarchitecture of that processor. Optimizing program transformations are
performed in low-level (register) internal representations of popular open-source
compilers GCC, LLVM and in closed-source compilers MS-compiler, ICC, LCC
(“Elbrus”).

Table 1 shows the advantages of the Intel compiler [34] for generating code
for the Intel processor. If we want to transform the program with our own trans-
formation using the precompiler, and then get better performance on the Intel
processor, then the Intel compiler should be used after the precompiler. We
cannot develop a precompiler in IR ICC (Intel Compiler Intermediate Represen-
tation), since we can’t obtain the source code of the compiler. This means that
the output of the precompiler must be a language that is input to the Intel: C
or Fortran. Similarly, if after the precompiler optimizations we need to gener-
ate the GPU code with the closed-source PGI compiler, then the output of the
precompiler should also contain a program in C/C++ or Fortran languages.

So we come to the conclusion that the portability of a high-performance solver
while maintaining high performance implies that the solver must be written in
a high-level portable language. Pre-optimization of the program (solver) should
return code in this language.

Many memory optimizations can be performed independently of the pro-
cessor microarchitecture. Such transformations include tiling, alignment, block
allocation of matrices in RAM, linearization of multidimensional arrays, etc.
Thus, transformations that minimize memory accesses can be common for dif-
ferent CS. You can perform high-level transformations in the precompiler, and
low-level transformations in the optimizing compiler. The precompiler can carry
out the portable part of the optimizations that don’t depend on the microarchi-
tecture of the processor, and the compiler can create machine code.

Transformations such as tiling or block allocation of matrices use param-
eters (block sizes). These parameters can be selected taking into account the
characteristics of the algorithm and memory modules.

Complex array index expressions may appear after high-level transforma-
tions such as tiling or block matrix placements. This is solved by additional
optimization with several traditional transformations. The resulting code after
such automatic conversions can become so complex (see Fig. 1) that well-known
compilers with the necessary transformations will not be able to optimize it well
- this can be seen from Table 3.

It is reasonable to develop precompilers in program transformation systems
such as Rose source to source compiler [35], OPS [25,26] and others.

Conclusion

The article substantiates the need for precompilers for high-performance pro-
grams. Precompilers based on OPS for two solvers written for Intel processors
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are presented in this article. The results of numerical experiments demonstrat-
ing acceleration are presented. This document may be useful for developers of
application software packages or application libraries, especially those who are
focused on software portability.
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Abstract. Non-Volatile Random Access Memory (NVRAM) is a novel
type of hardware that combines the benefits of traditional persistent
memory (persistency of data over hardware failures) and DRAM (fast
random access). In this work, we describe an algorithm that can be
used to execute NVRAM programs and recover the system after a hard-
ware failure while taking the architecture of real-world NVRAM sys-
tems into account. Moreover, the algorithm can be used to execute
NVRAM-destined programs on commodity persistent hardware, such as
hard drives. That allows us to test NVRAM algorithms using only cheap
hardware, without having access to the NVRAM. We report the usage
of our algorithm to implement and test NVRAM CAS algorithm.

Keywords: Concurrency · Shared memory · Persistency · NVRAM

1 Introduction

For a long time the industry assumed the existence of two distinct types of the
memory. The first one is a persistent memory that preserves its content even
in the presence of hardware (e.g., power) failures. This type of memory was
assumed to support mainly sequential block access with the poor performance
of random access. Due to its ability to persist data this kind of memory is widely
used to recover the system after a hardware failure: one can load the data from
the persistent memory and restore the state of the application before the crash.
The second type of the memory is DRAM that supports fast random byte-
addressable access but loses its content on hardware failures. Due to its speed,
this kind of memory is widely used in high-performance computations.

Nowadays, we can get benefits from both of these worlds due to the invention
of Non-Volatile Random Access Memory (NVRAM)—a novel type of hardware
that combines both the persistency and the fast random access. This allows us to
implement low-latency persistent data structures that require random access to
the memory, e.g., binary search trees, linked lists, and etc. A lot of work has been
done to come up with data structures, hand-tuned for the NVRAM [10,11,13].
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Some authors propose techniques, that can be used to transform DRAM-resident
data structures into the ones suitable for the NVRAM [9,12].

Despite the speed of the NVRAM is compatible with the speed of the DRAM,
the NVRAM is not expected to replace volatile memory totally since processor
registers and the NVRAM cache are expected to remain volatile. Thus, even on
NVRAM systems, a system failure leads to: 1) the loss of the results of recent
computations since x86 computations are performed using volatile processor
registers, and 2) the loss of data that was written to the NVRAM cache and has
not been flushed to the NVRAM.

To make sure that the written data becomes persistent, we should flush one
or several cache lines to the NVRAM. Flush of a single cache line is an atomic
action: if a crash occurs during cache line flushing, the whole cache line is either
persisted or not. However, if we want to flush multiple cache lines at a time, a
crash event can occur between flushes—in such a case, only a part of the data
becomes persistent while the rest is lost.

This yields one of the major challenges of NVRAM. If a system failure hap-
pens during a complex update, when some updated values have been flushed to
the NVRAM from the cache while others still reside in the cache, non-flushed
memory is lost and after the restart the NVRAM appears to be in an inconsistent
state.

Due to the difficulty of ensuring storage consistency in the presence of the
volatile NVRAM cache, a lot of works assume the absence of such cache [3–5,7].
However, in this work we consider real-life systems, thus we take the volatility
of the NVRAM cache into account.

Another problem with the NVRAM is defining which executions are consid-
ered “correct” in the presence of hardware failures, that can lead to the loss of
data. Despite a lot of correctness conditions were defined in the previous years
[1,3,5,14,17], only Nesting Safe Recoverable Linearizability [3] describes the work
with nested functions. Thus, maintaining persistent call stack is a crucial part of
systems based on this concept. However, while methods of maintaining NVRAM
heap are well-studied [6,8], methods of maintaining the persistent program stack
are not studied at all: other works just assume the existence of a persistent call
stack [3,4,12].

Moreover, the persistent stack allows us to design and implement novel com-
plex system recovery algorithms, which can be faster than traditional log-based
system recovery methods. Previously, such complex algorithms were considered
impractical for traditional persistent memory systems due to the high latency
of random access of traditional persistent memory, following directly from its
mechanical nature, but on NVRAM-based systems such complex algorithms may
be found useful.

In this work, we describe an algorithm, based on the implementation of the
persistent call stack, that can be used to execute NVRAM programs and recover
the system after a hardware failure while taking the architecture of real-world
NVRAM systems into account. Moreover, the algorithm can be used to execute
NVRAM-destined programs on commodity persistent hardware, such as hard
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drives. That allows us to test NVRAM algorithms using only cheap persistent
hardware, such as HDD, SSD, etc., without having access to the NVRAM. We
report the usage of our algorithm to implement and test correct and incorrect
versions of the NVRAM CAS algorithm [3]. Also, we describe a method, that
can be used to verify executions of NVRAM CAS algorithm for serializability.

The rest of the work is organized as follows. In Sect. 2, we discuss the sys-
tem model, various failure models, operation execution model and talk about
different correctness conditions, suitable for the NVRAM. In Sect. 3, we discuss
the concept of the persistent program stack and its implementation. In Sect. 4
we present the solutions for the challenges we faced during the implementation
of our algorithm. Also, we show there the architecture of the system along with
the system recovery algorithm. In Sect. 5, we discuss the usage of our algorithm
to implement and verify the NVRAM CAS algorithm, along with the method of
checking executions of the NVRAM CAS algorithm for serializability. In Sect. 6,
we discuss the directions of the future research. We conclude our work with
Sect. 7.

2 Model

2.1 System Model

Our system model is based on the model described in [3].
There are N processes {pi}Ni=1 executing operations concurrently. Also, there

are M objects {Oj}Mj=1 located in the shared non-volatile memory. Processes
communicate with each other by executing operations on shared objects (see
Fig. 1a), that can support read, write or read-modify-write [15] operations.

In our model, all shared memory is considered non-volatile, i.e., it does not
lose its content even after a crash event. However, we assume the existence of a
volatile memory in the system. Each object LO, located in the volatile memory,
is considered local to some process p. In other words, only process p can access
object LO. Thus, besides being able to execute operations on shared objects,
each process can access its local objects. Such objects support only read and
write operations (see Fig. 1b).

However, our model still does not reflect some properties of the real-world
hardware: for example, it does not take into account the existence of the volatile
NVRAM cache and the existence of shared volatile memory.

2.2 Failure Model

There exist two general failure models:

– Individual crash-recovery model [3]. In such a model, each process can face
a crash event independently of all other processes. When a process faces a
crash event, it stops working until it is restarted. All data, stored in the
volatile memory of the failed process, is lost. However, all data persisted to
the NVRAM is not lost and remains available to the failed process after its
restart.
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(a) Execution of operations on shared
objects

(b) Execution of operations on local ob-
jects

Fig. 1. System execution model

– System crash-recovery model. In such a model, a crash event happens in
the whole system instead of an individual process. The whole systems stops
working until it is restarted. After the system restarts, the contents of all the
volatile memory is lost. As in the previous model, the data, persisted in the
NVRAM, is not lost and remains available to all processes after the system
restarts.

Note, that the system crash-recovery model is a special case of the individual
crash-recovery model, since a crash of the whole system can be represented as a
set of N simultaneous crash events of individual processes—one crash event per
each process. Despite the fact that individual crash-recovery model is a more
general model, in this work we focus mainly on system crash-recovery model.
In real-world shared memory systems multiple computational units are placed
in a single server and thus a failure of a single computational unit is impossible
without a failure of the entire system. That is why, in our opinion, system crash-
recovery model describes more accurately the real-life crash event—for example,
power loss.

2.3 Operation Execution

We say that function F is being executed by process p if execution of F has been
started by p but has not been finished yet. As described in [3], we work with
the nested invocation of functions: at any moment, multiple functions can be
executed by any process. It happens when function F invokes function G. Thus,
executed functions in each process form a nested sequence. In the above example
execution of G is nested into the execution of F.

To allow the recovery of the system, we provide each function F with a dual
function F.Recover, which receives the same arguments as F. F.Recover is called
after the system restart to perform system recovery and it should either finish
the execution of F or roll back F.
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To perform the system recovery, for each process p we should call F.Recover
for each function F being executed by p at the crash moment. Moreover, recovery
functions should be called in the certain order: if the execution of G is nested
into the execution of F, G.Recover should be called before F.Recover. Thus,
each process should perform the recovery in the LIFO (stack) order.

Also we should consider the possibility of repeated failures—failures which
happen during the recovery procedure. Consider the system failure after F was
invoked. After the restart, we should call F.Recover to complete the recovery.
Suppose another system failure happens before F.Recover is finished. After the
second restart, we should again continue the recovery at executing F.Recover.
It means that there is no difference between the system failure happening during
the execution of F or during the execution of F.Recover: in both cases, we should
call F.Recover to complete the recovery. Thus, F.Recover should be designed
so that it can complete the operation (or roll it back) no matter whether the
crash occurred when executing F or F.Recover.

2.4 Correctness

Multiple correctness conditions for NVRAM exist. Here, we outline three most
important (from the strongest to the weakest):

1. Nesting Safe Recoverable Linearizability [3]. It requires each invoked function
F to be completed even if a crash event occurs while executing F. Thus, under
that correctness condition, F.Recover should finish the execution of F either
by completing it successfully or by rolling it back.

2. Durable Linearizability [17]. It requires that each function F, execution of
which has finished before a crash, should be completed. If a crash event occurs
while executing function F, such function may be either completed or not.

3. Buffered Durable Linearizability [17]. It is a weaker form of Durable Lineariz-
ability. Its difference is in that it allows function F not to be completed even
if its execution finished before a crash. However, that correctness condition
requires each object to provide sync operation—all functions, finished before
a call to sync must be completed, even if a crash event occurs.

In this work, we propose an algorithm that can be used to run NVRAM-
destined programs under Nesting Safe Recoverable Linearizability—the strongest
correctness condition.

3 Persistent Stack

3.1 Program Stack Concept

In order to execute programs for NVRAM, for each thread1 t we maintain an
information about functions, which were executed by t when a crash occurred.
1 When talking about practical aspects of concurrent programming, we use the word

“thread” in the same context, as the word “process” in the theory of concurrent
programming.
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Also, to invoke recover functions in the correct order we maintain the order in
which these functions were invoked.

We maintain that order by using the notion of program stack: each thread t
has its own NVRAM-located stack, and each function executed by t corresponds
to a single frame of the stack. When a function is invoked, the corresponding
frame is added to the top of the stack. After the end of the execution, the
frame is removed from the top. Therefore, when a crash occurs, the stack of
thread t contains frames, that correspond to functions that were executed by t
at the crash moment. Moreover, such frames are located in the correct order: if
execution of G was nested into the execution of F, a frame of G is located closer
to the top of the stack, than a frame of F.

3.2 Issues of Existing Implementations

The functionality of the program stack is already implemented by standard exe-
cution systems: for example, x86 program stack. However, we cannot use them
as-is, even if we transfer it from the DRAM to the NVRAM.

Here we remind the implementation of the function call via the x86 stack.
Suppose function F calls function G using x86 command CALL G. To perform
such an invocation, we should store a return address on the stack—the address
of the instruction in function F that follows the instruction CALL G. After the
execution of G is finished, we continue execution of F from that instruction. This
is exactly how x86 instruction RET works—it simply reads the return address
from the stack and performs JMP to that address, allowing it to the continue the
execution from the desired point.

Note that such a program stack implementation has a number of drawbacks,
that makes it impossible for us to use such implementation as a persistent stack:

– After the system restart due to the crash, the code segment may be relocated,
i.e., have a different offset in the virtual address space. That will make us
incapable of identifying which functions were executed at the crash moment—
we simply won’t be able to match return address from the stack with an
address of some instruction after the code segment relocation.

– We cannot guarantee an atomicity of adding a new frame to the stack or
removing a frame from the top of the stack – if a crash occurs during adding
or removing stack frame, after the system restarts the stack might be in an
inconsistent state.

Thus, instead of using existing program stack implementations, we present
our persisted stack structure that overcomes the above drawbacks.

3.3 Persistent Stack Structure

Each thread has an access to its own persistent stack. For simplicity, in this
section we assume that the persistent stack is allocated in the NVRAM as a
continuous memory region of constant size. However, we explain how to make a
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stack of unbounded size in Appendix A of the full version of the paper, available
at [2].

Persistent stack consists of consequent persistent stack frames—one frame
per function that accesses NVRAM.2 Each frame ends with a one-byte end
marker: it is 0x1 (stack end marker) if the frame is the last frame of the stack;
otherwise, it is 0x0 (frame end marker). Any data located after the stack end
marker is considered invalid—it should never be read or interpreted in any way
(see Fig. 2).

Fig. 2. Persistent stack structure

To finish the description of the data layout, each persistent stack frame con-
sists of: 1) a unique identifier of the invoked function that allows us to call the
appropriate recover function during the system recovery; 2) arguments of the
function, serialized into a byte array—during the system recovery we pass them
to the recover function; 3) a one-byte end marker (either 0x0 or 0x1).

3.4 Update of the Persistent Stack

The persistent stack should be updated: 1) when the function is invoked—a new
frame should be added to the top of the stack, 2) when the function execution
is finished—the top frame of the stack should be removed.

Adding the New Frame to the Top of the Stack. Suppose the stack at
the beginning of the operation has two frames in it (see Fig. 3a):

To add a new frame to the top of the stack, we perform the following actions:

1. After the stack end marker, we write a new frame with the stack end marker
set. Note that the new frame (frame 3) is located after the stack end marker
of the previous frame (frame 2). Therefore, the new frame is not considered
as a stack frame, while the previous frame (frame 2) is still the last stack
frame (see Fig. 3b).

2. Change the end marker of the current last stack frame (frame 2) from 0x1
to 0x0. Thus, the last stack frame (frame 2) becomes the penultimate stack
frame and the new frame (frame 3) becomes the last stack frame (see Fig. 3c).
We name that one-byte end marker changing operation as moving the stack
end forward.

2 Each such function must have a recover version, as described above.
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(a) Persistent stack before the function invocation

(b) Persistent stack after writing the new frame after the stack
end marker

(c) Persistent stack after adding the new frame to the top of the
stack

Fig. 3. Adding new frame to the top of the stack

Removing the Top Frame from the Stack. Suppose the stack at the begin-
ning of the operation has three frames in it (see Fig. 4a):

To remove the top frame from the stack, we simply change the end marker
of the penultimate stack frame (frame 2) from 0x0 to 0x1, thus making the
penultimate stack frame the last stack frame (see Fig. 4b). We name that one-
byte end marker changing operation as moving the stack end backward. Note,
that frame 3 becomes the part of the invalid data and, therefore, it will not be
considered as a stack frame anymore.

(a) Persistent stack before exiting from a function

(b) Persistent stack after exiting from a function

Fig. 4. Removing the top frame from the stack

Dummy Frame. Note that both frame removal and frame addition procedures
assume the existence of at least one frame in the stack, besides the one that
is being removed or added. Particularly, this assumption implies that the bot-
tom stack frame cannot be removed from the stack. We can simply satisfy that
assumption by introducing a dummy frame—the stack frame, located at the bot-
tom of the stack (i.e. the first frame, added to the stack). That frame is added
to the stack at the initialization of the stack and is never removed. By that, we
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ensure that there is always at least one frame, thus making it possible for us to
use the stack update procedures, described above.

Flushing Long Frames. Note that sometimes a new stack frame does not
fit into a single cache line—for example, that can happen when some function
receives arguments list with length greater than the cache line size. In such case,
we will not be able to add such frame to the stack atomically (since only single
cache line can be persisted atomically). Therefore, we can face a crash event that
will force us to write the new frame partially (see Fig. 5).

Fig. 5. Persistent stack with partially flushed frame

In our algorithm, we, at first, add a new frame to the stack, and only after the
new frame has been written successfully we move the stack end forward. Thus,
even if the crash event happens, the stack will remain consistent: partially written
frame will be located after the stack end marker and will not be considered as
a stack frame. Therefore, this scenario does not brake Nesting-safe Recoverable
Linearizability, since the last function invocation was not linearized before the
crash event. We can simply think that the crash happened before the function
invocation and the function was never invoked.

The Atomicity of the Stack Update. We can say that a function invocation
linearizes only when we move the stack end forward. This requires only the
flushing of a single byte to the NVRAM. Since a single byte always resides in a
single cache line, this flush always happens atomically.

The same observation can be made for moving the stack end backward : an
execution of the function is finished when we change the end marker of the
penultimate stack frame from 0x0 to 0x1. As was described above, such action
happens atomically.

Persistent Stack and the NVRAM. The procedure of adding and removing
a stack frame requires only the ability to flush a single byte atomically and not
the entire cache line—this makes us capable of implementing the stack main-
tenance algorithm on a hardware that does not support atomic flushing of an
entire cache line. Thus, the algorithm described above, can be easily emulated
without having access to an expensive NVRAM hardware, using almost any
existing persistent hardware such as HDD, SSD, etc.

For the above reasoning to remain correct, we should maintain two following
invariants:
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1. We should flush the new stack frame before moving the stack end forward.
Suppose we violate that rule. Consider a crash event that happens at some
time after the moving the stack end forward. Suppose also, that new stack
frame (frame 3) has been written to the volatile NVRAM cache and was lost
during the crash. After the system restart we will not be able to call the
recover function for frame 3, because we have lost that frame (see Fig. 6a).

2. When changing the end marker of some frame (either from 0x0 to 0x1 or
vice versa) we should immediately flush it before staring the execution of the
invoked function or continuing the execution of the caller function.
Suppose we violate that rule. Consider a crash event, happening while exe-
cuting function F, corresponding to frame 3. Also consider that the frame end
marker, written to frame 2, has been written to the volatile NVRAM cache
and thus has been lost (see Fig. 6b). After the system restart, we do not con-
sider frame 3 as a stack frame, and, thus, we do not even invoke F.Recover.

(a) New stack frame has been lost due to volatility
of the NVRAM cache

(b) End marker has been lost due
to volatility of the NVRAM cache

Fig. 6. Results of violating flushing invariants

4 System Implementation

4.1 Pointers to the Memory in NVRAM

When working with pointers to the NVRAM we face the problems similar to
those we faced when working with function addresses (Sect. 3.2). Suppose we
have acquired pointer ptr pointing to the NVRAM. We store ptr in the NVRAM
(for example, in some persistent stack frame, as an argument of some function F).
After that, we face a crash event. And when we restart the system, the mapping
of the NVRAM into the virtual address space can change, thus, making pointer
ptr invalid, since it does not point to the NVRAM anymore.

The same problem happens when we emulate NVRAM using HDDs, mapped
to the virtual address space using mmap syscall: on each system restart, HDD is
mapped to a different location in the virtual address space.

This problem has a very simple solution: instead of using direct pointers to
the NVRAM, we shall use offsets from the beginning of the NVRAM mapping
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into the virtual address space. Suppose the mapping of the NVRAM begins at
address MAP ADDR. Then, instead of storing ptr we store ptr - MAP ADDR—an
offset of the desired memory location. Note that such an offset does not depend
on an exact location of the mapping, thus making it safe for us to store it in the
NVRAM and use after the system restart.

4.2 Handling Return Values

Traditionally, on x86 architecture, functions return value using the volatile
memory—either in x86 register EAX, if the return value is an integer, or in FPU
register ST0, if the return value is floating-point. For example, cdecl, one of the
most popular x86 calling conventions, implies the above rules for return value.

However, in our case we cannot use volatile processor registers to store return
value. Consider a crash event occurring after the callee function G has saved the
return value to the EAX and finished its execution by moving the stack end back-
ward. At that time, the caller function F has not persisted the return value from
EAX to the NVRAM. After the system restart, we will not invoke G.Recover, but
start from F.Recover instead. However, we cannot execute F.Recover properly,
because we have lost the result of G.

That is why functions should store their results directly in the NVRAM. We
could come up with two approaches where to store them:

1. on the persistent stack. For example, we can use an especially-allocated place
in a persistent stack frame for that purpose.

2. in the NVRAM heap. In such a case, the caller can preallocate a memory
location for the answer before invoking the callee, and pass the pointer to
that memory location in callee’s arguments (note, that as was mentioned in
Sect. 4.1, we should use offsets instead of pointers to the NVRAM). After
that, callee can store its answer in that memory location.

In both cases, the callee should flush the answer to the NVRAM before
moving the stack end backward. Our implementation supports returning of small
values (up to 8 bytes) on the persistent stack, while big values are returned in
the NVRAM heap.

4.3 Architecture of the System

The system consists of a single main thread and N worker threads.
Main thread can run in either a standard mode or a recovery mode.
When running in the standard mode, the main thread performs the following

steps.

1. Initialize the NVRAM heap. This may include the initialization of the memory
allocator, the mapping of the NVRAM to the virtual address space and the
consequent initialization of the variable MAP ADDR, mentioned in Sect. 4.1

2. Initialize N new persistent stacks.
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3. Start N worker threads, giving each worker thread pointer to the beginning
of its persistent stack.

4. Receive task that should be executed by the system and add them to the
producer-consumer queue.

When running in the standard mode, worker threads receive tasks from the
producer-consumer queue and execute them.

In case of a crash, the main thread starts in the recovery mode and performs
the following steps:

1. Initialize the NVRAM heap.
2. Start N recovery threads, giving each recovery thread the pointer to a persis-

tent stack of some worker thread.
3. Wait for all recovery threads to finish.
4. Restart the system in normal mode.

Each recovery thread executes the following algorithm:

1. Traverse its persistent stack from the top to the bottom.
2. Execute the corresponding recover operation for each stack frame.
3. After the recovering of an operation on the top of the stack is finished, pop

the top frame.
4. After all the frames (except for the dummy one) are removed from the stack,

finish the execution.

System recovery happens in parallel, which allows for a faster recovery than
an ordinary single-threaded recovery.

We note that our algorithm deals well with repeated failures. If such a failure
happens during the recovery, the new recovery continues not from the beginning,
but from where the previous recovery was interrupted. More formally, consider a
frame, corresponding to a function F. If during the recovery we have completed
execution of F.Recover and removed that frame from the stack, even after the
repeated failure we will not run a recover function for that frame once more.
Thus, we achieve the progress even in the presence of repeated failures.

5 Verification

The described algorithm of the persistent stack can be used to implement and
verify CAS algorithm for NVRAM, described in [3]. That paper assumes the
absence of the volatile NVRAM cache, i.e., all writes are performed right into
the memory. To emulate this, we should flush each written cache line to the
NVRAM immediately after the corresponding write. Also, we should implement
the algorithm so that each written value never crosses the border of a cache line
to allow atomic flush of each written value.

Multiple correctness conditions for concurrent algorithms exist: the most
popular are linearizability [16], sequential consistency and serializability [18]. We
want to perform the verification against some of these correctness conditions.
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From now on we take CAS algorithm for the NVRAM as the running example.
Consider the following execution. Multiple threads run a set of CAS operations
on a single register Reg: {CAS(Reg, oldi, newi)}Ni=1, and the initial value of Reg
is init. And for each operation we know whether it was finished successfully or
not.

We present an algorithm, that can be used to check such an execution for
serializability in a polynomial time.

5.1 Serializability

To verify the execution for serializability in polynomial time, we build a graph
〈V,E〉, G = {oldi}Ni=1 ∪ {newi}Ni=1 ∪ {init} and construct the set of edges E the
following way: a → b ∈ E if and only if there exists a successful CAS(Reg, a, b)
in the execution. Also, we read the final value of the register. We can read it
after all the CAS operations are finished.

Since each edge of G corresponds to a successful CAS, each successful CAS
was executed exactly once, and each successful CAS(Reg, a, b) changed value of
Reg from a to b, to verify the execution for serializability we should find some
Eulerian circuit that starts in the initial value of the register and ends in the
final value of the register—such a circuit corresponds to the sequential execution.
Thus, the execution is serializable if and only if such a circuit can be found3.

5.2 Running Examples

We have implemented the algorithm, described above, using HDD-based
memory-mapped files to emulate the NVRAM. We used UNIX utility kill to
interrupt the system at random moments by that emulating system crashes.

We have generated random executions of the algorithm in the following way:

1. Generate an initial integer value of the register;
2. Generate {newi}Ni=1 and {oldi}Ni=1 as integer values, uniformly sampled from

some range: either wide range [−105, 105]), or narrow range ([−10, 10]);
3. Start the system in the normal mode, add descriptors of {CAS(Reg, oldi,

newi)}Ni=1 operations to the producer-consumer queue in the random order;
4. Run 4 working threads that execute these CAS operations;
5. At random moment, emulate system failure using the kill utility;
6. Restart the system in the recovery mode waiting for all CAS operations, that

were executing at the crash moment, to complete;
7. Restart the system in the normal mode, add all remaining descriptors to the

queue;
8. Run steps 4–7 until all operations are completed;
9. Get answers of all CAS operations, get the final value of the register, and,

finally, verify the execution for serializability.

3 Please, note that we can simply serialize unsuccessful operation at the times when
the register holds a value different from oldi.
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We have verified a lot of random executions along with emulated system
failures at random moments. All executions of the CAS algorithm presented in
[3] were found to be serializable. We also verified the executions of incorrect CAS
algorithm with especially-added bugs: we have removed the matrix R from the
CAS algorithm. The executions of such a wrong implementation were reported
to be non-serializable.

The implementation is publicly available at https://github.com/KokorinIlya/
NVRAM runner.

6 Future Work

We find three interesting directions for the future work: 1) implement and test
other NVRAM algorithms; 2) find the polynomial algorithm that verifies exe-
cutions of CAS algorithm for linearizability and sequential consistency, or prove
that the problem of such a verification is NP-complete; 3) develop a plugin for
one of the modern C++ compilers that can be used to reduce the boilerplate
code: e.g., automatically create a new stack frame on each function call, remove
the top frame when a function execution finishes, and etc.

7 Conclusion

In this paper we presented an algorithm that can be used to run NVRAM
programs. The described algorithm takes into consideration different aspects
of real-world NVRAM systems. Moreover, the algorithm can be used to run
NVRAM-destined programs on commodity persistent hardware, which can be
useful for implementing and testing novel NVRAM algorithms without having
an access to an expensive NVRAM hardware. The algorithm was successfully
used to implement and verify the CAS algorithm for NVRAM.
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Abstract. Parallel application can be studied with the means of the
supercomputer performance monitoring system. The monitoring system
agent activates during the parallel program run to collect data from
system sensors. It occupies program’s resources and causes perturbation
in the monitored program workflow. The influence of the performance
monitoring system on parallel applications is poorly studied. We propose
to measure the monitoring system noise using a benchmark based on
MPI collective operations All-to-All and Barrier—the noise detector. We
present measurements of the detector execution time under influence of
a real monitoring system and without it. The results demonstrate that
monitoring system agent has negligible influence on the detector when
the agent and the detector have different CPU core affinity. On the other
hand, monitoring system agent impact is statistically significant on the
execution of All-to-All and Barrier when bound to the same logical core
as the collective operations.

Keywords: Supercomputer · Performance monitoring · Monitoring
system noise · Parallel job slowdown

1 Introduction

Modern supercomputers have very complex and sophisticated architecture, they
contain many hardware and software components. Development of correct par-
allel applications designed for scientific problem modeling on HPC systems is a
difficult task itself. Optimization of the parallel program for the target system is
a challenge as well. Supercomputer resources provide a wide selection of instru-
ments and ample opportunities for parallel application design. The structure
of the user applications is often complicated, making its optimization difficult.
Full utilization of allocated resources is desirable and reaching the maximum
possible performance of parallel application and decreasing its execution time
is vital. Researchers may obtain information from the monitoring system of the
supercomputer to configure the program optimally for the HPC system.
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Parallel application can be studied by the means of performance monitoring
systems. Monitoring system agents collect data from hardware and software sen-
sors during the execution of parallel programs. Collected data contain different
performance metrics such as cache misses, FLOPS, CPU load etc. Monitoring
system agent is launched on the same supercomputer node as the monitored
application. Agent aggregates statistics from the system sensors at fixed inter-
vals and sends the data for further processing. Monitoring system agent shares
resources with the monitored program. It interrupts application workflow, inter-
feres with the program. In this paper we call this phenomenon monitoring system
noise. Developers often say that monitoring system noise is insignificant and has
no effect on parallel application performance, but provide no data supporting
this statement. Generally, the influence of the monitoring system agent on a
parallel application is poorly studied. We use a benchmark based on MPI col-
lective operations to study performance monitoring system noise. We call the
benchmark a monitoring system noise detector. We present the results using
the detector. The detector is launched in presence of DiMMon monitoring sys-
tem [11] and without it on the Lomonosov-2 supercomputer [13]. We consider
several cases of the mutual detector and monitoring system agent allocation on a
supercomputer node. The results show that the monitoring system agent under
standard conditions has a negligible influence on the parallel application. We
also show that the monitoring system noise has a statistically significant impact
on the detector, which allocates all logical cores of a node. We study influence
of the monitoring system with a higher frequency to complete the research and
compare it with the standard frequency 1 Hz.

The main contribution of this paper is a method for estimating the noise
produced by a performance monitoring system of a supercomputer. We apply
this method to a real performance monitoring system and show the cases when
the noise of the monitoring system is negligible and when it is not.

2 Background and Related Work

There is a wide selection of performance monitoring systems. The list includes
systems like Supermon [10], NWPerf [7], HPCToolkit [1], LIKWID [9,12], Per-
formance Co-Pilot [4], LDMS [2]. Authors of the HPCToolkit [1], Performance
Co-Pilot [4] and LIKWID [9,12] tools state that the listed systems are lightweight
i.e. noise generated by them does not influence the workflow of parallel applica-
tions. However, there are neither reported results that can prove such finding nor
descriptions of conducted experiments. Only papers [7] and [2] contain surveys
on monitoring system noise.

NWPerf monitoring system agent is known to be a Linux kernel module.
NWPerf reads systems sensors once per minute in the standard configuration.
NWPerf influence on performance of collective operations All-to-All and All-
Reduce was reported in [7]. A loop of 10 000 collective operations was launched
on 128 nodes, 256 cores with and without NWPerf. All-to-All execution was 27%
longer and All-Reduce execution was 9.46% longer, when the monitoring rate
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was ten times higher than the standard (0,17 Hz). However, OS noise concealed
NWPerf perturbation, when the monitoring rate was standard. On the other
hand, LDMS [2] monitoring system was tested on two HPC clusters and its
influence on performance of MPI collective operations was shown to be small.
LDMS with the frequency 1 Hz has almost no effect on the time of MPI parallel
application execution.

The results of the two studies are hard to generalize. NWPerf with high
monitoring rate has a significant influence on MPI collective operations, while the
noise of the second system is negligible. The contradictory results can be caused
by the difference in target platforms, where the experiments were conducted.
Moreover, NWPerf system is 10 years older than LDMS. Therefore the result
described in the LDMS paper is more reliable and relevant but still is very
specific. To summarize, there is still no clear understanding about the influence
of monitoring systems on MPI collective operations.

There are more surveys dedicated to the problem of OS noise and its influence
on supercomputer applications. Authors of the article [3] report that unsyn-
chronised OS noise can cause a notable slowdown of Barrier and All-Reduce.
Survey [8] describes an optimization of SAGE application on ASCI Q supercom-
puter. All-Reduce performance was shown to be significantly influenced by OS
noise. The paper authors concluded that well synchronized parallel applications
may be influenced by frequent but weak OS noise.

Noise generated by monitoring systems is expected to be weaker than the OS
noise. However, we assume that MPI collective operations might “sense” the low
impact of the monitoring system agent. We showed the decrease in MPI collective
operations performance under influence of a lightweight noise generator in our
previous work [6]. We investigate whether execution of DiMMon performance
monitoring system causes notable desynchronization of a highly parallel MPI
code in this paper.

3 The Proposed Method

3.1 Monitoring System Detector

We study an influence of the monitoring system on parallel applications that
use MPI collective operations. We use a benchmark, which we call a monitoring
system noise detector, to model MPI programs. The noise detector is outlined
in Algorithm 1. We can vary the number of collective operations, set collective
operation type and choose message size to configure the detector. In our previous
study [6] we showed that MPI Barrier and MPI All-to-All with message size 2 KB
are sensitive to an interference of a small artificial noise. We focus on the listed
collective operations and find out whether their performance is influenced by
injection of a real monitoring system. The following notation is used to indicate
the detector configuration: [Operation type] N[number of nodes in use] [number
of iterations in the loop]it. [message length for All-to-All only]. For example,
All-to-All N4 1000 it. 2 KB.
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Algorithm 1. Monitoring System Detector
start timer
for iteration count do

MPI Collective Operation
end for
stop timer

3.2 Statistical Criteria

Hence we need to identify whether monitoring system influences the performance
of the detector, we use statistical methods described in [5] to compare execu-
tion time of the detector in presence of the performance monitoring system and
without it.

Tno−mon is the detector time execution sample without the monitoring sys-
tem.
Tx Hz is the detector time execution sample with the monitoring system of
x Hz frequency.

Criterion 1 is based on the use of 99% confidence intervals. The criterion is
applied for samples of a relatively small size, 10 elements in our case. We claim
that the collective operations are slowed down by the monitoring system, if

boundary gap = lower bound 99%CI(TxHz) − upper bound 99%CI(Tno−mon)
(1)

has a positive value, where 99%CI(S) is 99% confidence interval of sample S.
Therefore,

mean gap = mean(Tx Hz) −mean(Tno−mon) (2)

would be positive. CIs mutual positions are shown in Fig. 1.

Fig. 1. Criterion 1. Left figure represents CIs position when noise is insignificant. Right
figure represents CIs position when noise is significant.
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Criterion 2 is based on the use of Tno−mon inlier range. The criterion is applied
for large samples that contain hundreds of elements. We claim that the perfor-
mance of collective operations statistically decreases under the influence of the
monitoring system if elements in Tx Hz can be classified as outliers comparing
to elements in Tno−mon. The range for inlier values of Tno−mon is expressed via
formula

inlier range = [Q25% − 1.5 × IQR,Q75% + 1.5 × IQR] (3)

where Q25% and Q75% are the lower and upper quartiles, IQR—interquartile
range.

3.3 Experimental Setup

We conduct the experiments on the Lomonosov-2 supercomputer [13]. Each node
of the supercomputer has 14 cores Intel Haswell-EP E5-2697v3 processor. We
launch the detector in the test queue of the supercomputer, which has a 15 min
time limit for users’ programs runtime. It allows us to avoid waiting in a busy
main queue of the supercomputer. We set the number of collective operations
based on the time limit of the test queue of the supercomputer. DiMMon moni-
toring system [11] is installed on the supercomputer. Its frequency is set 1 Hz by
default—it reads system sensors once per second. The frequency 1 Hz is typical
for many monitoring tools nowadays and allows to collect enough data about
running applications [11]. One DiMMon agent per node is launched to collect
data about running application.

3.4 Allocation of the Detector

We distinguish the following three cases in the experiments:

I. The detector is launched on all logical cores of a node (28 cores).
II. The detector is launched on the number of logical cores equal to the number

of physical cores of a node (14 cores).
III. Case II, but affinity for the detector and the monitoring system is set man-

ually.

Case I. The performance of collective operations All-to-All and Barrier
decreases under influence of a small artificial noise, when hyper-threading is
utilized [6]. We study the influence of the monitoring system on a parallel appli-
cation that uses all available logical cores.

Case II. A regular way to submit a parallel job to the supercomputer is to
request number of processes per node equal to the number of physical cores.
The detector is launched on the number of cores equal to the number of physical
cores.

Criterion 1 is used for both Cases I and II.
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Case III. We conduct additional experiments to draw a conclusion whether
monitoring system with standard monitoring rate influences collective operations
All-to-All and Barrier. When the detector is launched on half of the logical cores
per node, free resources are left to OS for computations planning and workflow
optimization. The detector and the monitoring system can be set on the same
logical cores by the OS, as well as they can be set apart. This uncertainty in
experiments causes a lower reproducibility of the detector execution, which leads
to appearance of outliers in time measurements. Core affinity is set manually for
the monitoring system and for the detector to remove the uncertainty in the
experiments. We highlight the following cases:

A—NO monitoring system.
B—logical cores for the detector and the monitoring system have different
numbers.
C—the monitoring system agent is bound to the same logical core as the
detector.

We split the loop (See Algorithm 1) into chunks of collective operations to
collect bigger samples and eliminate chunks, which were influenced by external
non-periodic noise. We choose chunk size (number of loop iterations) to have an
execution time between 10 s and 20 s for each type of collective operation. We
use Criterion 2 in Case III to identify performance monitoring influence on
execution of MPI collective operations.

4 Experimental Results

4.1 Using All Logical Cores

Execution time of the detector with the monitoring system is higher than without
it as seen in Fig. 2.

Fig. 2. Case I. 28 cores per node. The bins are scaled by the mean Tno−mon for
every detector configuration. The experiments are conducted on 4 and 8 supercomputer
nodes.

Collective operations pure execution time statistically differs from execution
of MPI operations with monitoring system 1 Hz rate. The mean time overhead
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for every configuration is between 1,38% and 2,73% or 8s–16 s for 10 min runs of
the detector without the monitoring system. The overhead becomes the higher
the more nodes are used. The interference of the delays caused by the effects
of the monitoring system and by the overhead on communication between the
nodes may be the reason for this effect.

4.2 Using Only Physical Cores

The results of Case II experiments are shown in Fig. 3.

Fig. 3. Case II. 14 cores per node. Y-axis is time scaled by the mean(Tno−mon)
for every detector configuration. The whiskers are 99%CIs median. Gray—
99%CI median(Tno−mon). CI(Tno−mon) and CI(Tx Hz) overlap. boundary gap (1)
is negative for every configuration.

At first we considered monitoring system of 1 Hz frequency. The confidence
intervals for Tno−mon and T1 Hz overlap, MPI collective operations don’t differ
statistically in two cases. Therefore, we increased the frequency of monitoring
system 5 Hz 10 Hz to see whether the detector is sensitive to a more intensive
noise. As it is seen in Fig. 3, all confidence intervals overlap i.e. monitoring sys-
tem noise is not recognizable for all considered configurations and monitoring
system rates. The collected data samples are inconsistent—lengths of confidence
intervals varies from 5 s to 10 s for 10 min runs.
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4.3 Setting Core Affinity

Results for All-to-All and Barrier collective operations with set affinity are shown
in Fig. 4 and Fig. 5 respectively.

Fig. 4. Case III. All-to-All. 14 cores per node. Affinity is set. 4, 8, 15 and 30 super-
computer nodes are used. Y-axis is time sample scaled by the median(TA). Gray—
inlier range (3) for TA.

The results for All-to-All and Barrier can be generalized. Collective opera-
tions execution time in case C is classified as an outlier to execution time in case
A. The collective operations chunk slowdown in case C, All-to-All and Barrier
on 4, 8 and 15 nodes, is about 1–4%. For Barrier on 30 nodes the slowdown is
12%. The more nodes are used, the more influence monitoring system has on
collective operations in case C. To summarize, the monitoring system noise has
statistically significant impact on collective operations, when monitoring system
agents are bound to the same logical cores as the parallel application.

On the other hand, the influence of monitoring system noise is not distin-
guishable, when monitoring system and the detector are bound to different log-
ical cores—the majority time elements in case B fall in inlier range for TA.
The only exception is All-to-All N15 5000 it. 2 KB. However, the overhead in
case B for this configuration (See Fig. 4) is less than 1% and can be considered
insignificant.
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Fig. 5. Case III. Barrier. 14 cores per node. Affinity is set. 4, 8, 15 and 30 super-
computer nodes are used. Y-axis is time sample scaled by the median(TA). Gray—
inlier range (3) for TA

4.4 Increased Monitoring Frequency

We showed 1 Hz monitoring system does not influence the performance of col-
lective operations All-to-All and Barrier, whether the monitoring system and
the detector are being bound to different logical cores. In this section we study
the limit for monitoring system rate. We try to answer the question: what is
a borderline frequency for monitoring system to have no significant effect? The
results of the experiments are shown in Fig. 6.

The monitoring system frequency is gradually increased until the noise has
visible effects on the performance of MPI collective operation. The decrease in
performance of Barrier grows gradually and becomes significant 20 Hz monitoring
rate. The performance of All-to-All is influenced only by 100 Hz noise. The other
studied monitoring rates have equal impact on the execution time of All-to-All
operation. It is shown that monitoring system noise of a higher rate can have no
significant impact on performance of All-to-All, when the agents are launched
on separate logical cores.
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Fig. 6. Increased monitoring frequency. Affinity to logical cores is set as in case B. 8
supercomputer nodes are used. Y-axis is time sample scaled by the median(Tno−mon).
Gray—inlier range (3) for Tno−mon

5 Conclusion

In summary, we have demonstrated a method for estimating the noise produced
by the performance monitoring system of a supercomputer. The method is based
on using MPI collective operations All-to-All and Barrier. We have considered
several cases of the mutual monitoring system and collective operations allo-
cation on a supercomputer node. We have shown that All-to-All and Barrier
execution time are statistically significantly influenced by the noise of a real per-
formance monitoring system when the monitoring system agent and a parallel
program are bound to the same logical cores. On the other hand, monitoring
system 1 Hz rate has insignificant impact on the performance of the collective
operations when affinity is set to different logical cores for the monitoring sys-
tem agent and the parallel program. We have also shown that the monitoring
system with increased up 40 Hz frequency has the same influence on All-to-All
operation as the monitoring system with standard rate 1 Hz. The difference in
the performance of Barrier has been observed 20 Hz frequency. In conclusion,
we have demonstrated that the performance monitoring system under standard
configuration does not influence the performance of a parallel program with MPI
collective operations, which is launched on the supercomputer a regular way.

The proposed method allows us to compare influence of the monitoring sys-
tems configured to collect data from different set of system sensors. We also plan
to study the impact of the performance monitoring system noise on compute and
memory bound parallel applications in our future work.
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University.
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Abstract. Automatic synthesis of efficient scientific parallel programs for super-
computers is in general a complex problem of system parallel programming.
Therefore various specialized synthesis algorithms and heuristics are of use. LuNA
system for automatic construction of distributed parallel programs provides a basis
for accumulation of such algorithms to provide high-quality parallel programs
generation in particular subject domains. If no specialized support is available in
LuNA for given input, then the general synthesis algorithm is used, which does
construct the required program, but its efficiency may be unsatisfactory. In the
paper a specialized run-time system for LuNA is presented, which provides run-
time support for dense linear algebra operations implementation on distributed
memory multicomputers. Experimental results demonstrate, that automatically
generated parallel programs of the class outperform corresponding ScaLAPACK
library subroutines, which makes LuNA system practically applicable for gener-
ating high performance distributed parallel programs for supercomputers in the
dense linear algebra application class.

Keywords: Parallel programming automation · Fragmented programming
technology · LuNA system · Distributed dense linear algebra subroutines

1 Introduction

This paper is devoted to the problem of efficient parallel program construction automa-
tion in the field of high performance scientific computations on supercomputers. Effi-
ciency is amandatory requirement for suchprograms.Otherwise costly highperformance
computing resources are wasted. Provision of efficiency of a parallel program is a hard
problem (NP-hard in general case), which makes such program construction automa-
tion challenging. The complexity of efficiency provision arises from the necessity to
decompose data and computations and organize parallel data processing in such a way
that as much of hardware resources as possible are loaded fully and evenly with useful
computations. Manual development of efficient parallel programs requires knowledge
of distributed hardware architecture, familiarity with methods and tools for distributed
parallel programming, skills in system parallel programming. Such expertise is different
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from the expertise in the subject domains, to which computations are related. Manual
parallel programs development compels users to possess expertise in both domains. This
conditions the importance of program construction automation tools, which allow one
to describe computations with a higher level programming language (or an API), and
expect an efficient parallel program to be constructed and executed automatically. Such
an approach allows encapsulating much of the expertise a parallel programmer needs
to possess into a programming system and automatically apply the encapsulated knowl-
edge for program construction. Since no general solution exists, of practical interest are
particular and heuristic solutions, capable of providing satisfactory efficiency for certain
application classes. Also of practical interest are approaches, aimed at accumulation and
automatic application of various particular solutions.

Nowadays the need in parallel programming automation means tends to increase,
since supercomputers’ hardware and software grow more complex. Heterogeneity of
hardware increases, number of nodes and cores per node increases, network andmemory
subsystems becomemore lagging behind cores and thereforemore critical, co-processors
usage becomes essential to maximize performance, etc. Taking all this into account is
both necessary and hard, so research in the field of parallel programming automation is
more and more demanding.

Many programming systems, languages and tools exist and evolve to assist or replace
programmers [1, 2].

Charm++ [3, 4] is an open-source parallel system which consists of distributed run-
time system which is able to execute a distributed computational tasks (chares) graph on
a supercomputer. Each task is able to communicate with others by sending and receiving
messages. An applied programmer has to program communications between tasks by
hand using low-level C++ interface. The task-based computational model, employed
in Charm++ allows using particular system algorithms to support various classes of
applications, but in general the peculiarities of the model make Charm++ programs
partially opaque to the system because of low-level message passing means employed.
That impedes Charm++’s capability to accumulate particular system algorithms.

PaRSEC [5] is a parallel programming system, designed specifically for automated
generation of efficient parallel programs, which implement linear algebra operations. An
applied programmer describes a tasks graph using the built-in high level language. This
simplifies the process of development of high performance parallel programs. PaRSEC
is able to generate programs only for the restricted class of linear algebra algorithms.

Legion [6], Regent [7–9] and LuNA [10] systems are also able to execute an algo-
rithm described as a task graph on a supercomputer. These systems use general system
algorithms to distribute tasks to computing nodes and execute the graph. The systems
also provide powerful means to provide specialized support of program construction
and execution, because execution control algorithms are excluded from the algorithm
description, thus program construction and execution can be varied freely to support
efficient execution of applied algorithms in particular subject domains. The systems
are therefore suitable for accumulating various system algorithms for different subject
domains.

It can be seen that a great effort is being put into automating programming. It is also
clear that the efficiency problem is far from being solved for many subject domains.
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In the presented work we employ LuNA as the system capable for particular sys-
tem algorithms accumulation. LuNA is a system for automatic construction of scien-
tific parallel programs for multicomputers. It is an academic project of the Institute of
Computational Mathematics and Mathematical Geophysics of the Siberian Branch of
Russian Academy of Sciences. This system is aimed at automatic construction of high
performance distributed parallel programs for conducting numerical computations on
supercomputers. It focuses on providing to a user an ability to describe computations,
that need to be conducted, in a high-level platform-independent form. Also it provides
some high level means (called recommendations) to express a programmer idea on how
to organize efficient parallel execution on a supercomputer. This approach is based on the
structured synthesis theory [11] and conforms to the active knowledge technology [12].
It allows to significantly reduce the complexity of efficient parallel program generation
problem without the need for the programmer to do low-level parallel programming.
Source code of LuNA system can be found in its public repository1.

In this paper we investigate how satisfactory efficiency can be achieved in LuNA by
making a specific system support for a particular subject domain, namely, dense linear
algebra operations. This support is implemented as a particular run-time system, which
is capable of execution of LuNA programs (or subprograms) of particular form, com-
mon for many dense linear algebra operations. The run-time system takes into account
peculiarities of the operations to achieve high efficiency, comparable with that of ScaLA-
PACK, which is a widely used library for such operations. This demonstrates that LuNA
system can be a useful tool for practical construction of high performance scientific
programs for subject domains, reasonably supported by specialized system algorithms.

The rest of the paper is organized as follows. Section 2 describes the proposed
approach to support dense linear algebra operations in LuNA. Section 3 presents the
experimental results, where LuNA performance is compared to that of ScaLAPACK on
some operations. Conclusion ends the paper.

2 Particular Execution Algorithms Approach

2.1 Main Idea

This section describes the overall idea of the proposed solution. For the class of numeri-
cal algorithms particular distributed run-time system algorithms are developed and inte-
grated to LuNA system. LuNA system analyzes the input algorithm description written
in LuNA language and determines the class to which the input algorithm description
belongs. Then LuNA compiler selects particular system algorithms which are used to
automatically generate a parallel program by the input algorithm description. The result
of compilation is a C++ code, which can be compiled by a conventional C++ compiler
and linked against a library, which implements the run-time system. Then it is able to
be executed on a supercomputer.

In this paper only a single class of numerical algorithms is considered to demonstrate
the approach. This class contains widely usedmatrix algorithms such as LU, LLT, LDLT

and similar matrix factorization algorithms. One of the advantages of the approach is

1 https://gitlab.ssd.sscc.ru/luna/luna.

https://gitlab.ssd.sscc.ru/luna/luna
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that it is possible to identify whether input algorithm belongs to the class or not. No
sophisticated information dependencies analysis is required for that.

2.2 Main Definitions and Class of Algorithms Description

For further discussion the model of algorithm is described as it is one of the most
important thingswhen developing parallel programming systems. Firstly let some formal
definitions be given. Secondly, the main idea of the model is given. Then the class of
algorithms is described formally.

Definition 1. A data fragment (DF) is a the following tuple: 〈N ,V 〉, whereN is a name
(a regular string), V is an arbitrary value.

Definition 2. DFs array is the following set: {x|x = 〈h1, ..., hN 〉, df 〈h1,...,hN 〉,∀i ∈
{1, ...,N } : 0 ≤ hi < Mi, hi ∈ N0}, where df 〈h1,...,hN 〉 is a DF, Mi is the size of i-th
dimension of the array, 〈h1,..., hN 〉,N ∈ N,∀i ∈ {1, ...,N } : 0 ≤ hi < Mi is a tuple of
array element indices.

Definition 3. Let concept of task argument now be defined as follows:

1. Every DF is a task argument
2. The following tuple is a task argument: 〈A, 〈h1,..., hN 〉〉, whereA is anN-dimensional

array of DFs. This kind of argument is also called array-argument.

Definition 4. A task is the following tuple: 〈n, I ,O〉, where n – name (regular string),
I = {

a1,..., aM
}
,M ∈ N0 - set of task arguments called input arguments, O ={

b1,..., bK
}
,K ∈ N0 - set of task arguments called output arguments.

Definition 5. Algorithm is a tuple 〈A,D,T 〉, where A – is a finite set of DFs arrays, D
– is a finite set of DFs, T – is a set of tasks.

Let the main idea of the algorithm model now be explained. An applied programmer
describes the data processed by a numerical algorithm with a set of DFs and DFs arrays
(the description is the input for the system). Each DF is associated with a value which
may store arbitrary data. For example, the value of some DF may store a dense matrix
block, a vector part or a single value of some type. For each DFs array the applied pro-
grammer provides a mapping function. The mapping function maps DFs array elements
to some memory location depending on array element indices and the computing node
to which an array element is distributed. Many DFs array elements may be mapped
to the same memory location. In this case, the applied programmer is responsible for
avoiding collisions, i.e. when different elements, mapped to the same location, are in
use at the same time span. Then the applied programmer describes a set of tasks. Each
task transforms the values of its input DFs to the values of its output DFs by calling
associated external routine. Such routine is implemented by the applied programmer
with some conventional language, such as C, C++ or Fortran. For example, there may
be implemented an external routine that multiplies two dense matrix blocks, represented
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as DFs. Multiple tasks may be associated with the same external routine. At run-time
this external routine with the values of the input DFs forms a task that can be executed
by LuNA system when all values of the input DFs are computed. After the task is exe-
cuted the values of its output DFs become computed, so some other tasks may become
executable.

Consider now a class of algorithms that is handled by the developed particular sys-
tem algorithms. The class of algorithms consists of algorithms that meet the following
requirements:

1. Every task within the algorithm has either only one output array-argument or all
array element indices of all output array-arguments of the task are pairwise equal.

2. Dimension of all DFs arrays is the same, and the sizes of each dimension are pairwise
equal.

For example, Cholesky (LLT) factorization algorithm mentioned above meets the
requirements. Also this class contains many other matrix algorithms such as LU
factorization, LDLT factorization and others.

2.3 Compiler

One of the important components of the developed LuNA system extension is a compiler
that checks if the input algorithmdescription belongs to the supported class of algorithms.
If the input numerical algorithm meets the above requirements the compiler generates
a parallel program according the following principle. For each task described within
the input algorithm description compiler generates a C++ lambda function (it is called
run-time task). The body of the lambda-function consists of a C++ call statement of the
routine associated with the task. Then compiler generates a call to the run-time library
that implements distributed execution of the input algorithm (the execution algorithm is
described in Sect. 2.4). This call submits the task to the executor.

At run-time a set of tasks with their arguments forms a bipartite directed acyclic
tasks graph (DAG) which is submitted to a distributed executor implemented in the run-
time library. The executor distributes DFs and DFs arrays to nodes and asynchronously
executes the tasks graph on the multicomputer. Figure 1 shows the overall structure of
generated program.

2.4 Run-Time Library and Task Graph Execution

Consider now the distributed tasks graph executor that is implemented in the run-time
library. At first, consider the data distribution algorithm. The value of each DF (not an
DFs array element) is stored in the memory of all computing nodes. Each DFs array is
distributed according to the block-cyclic [13] principle. The parameters of the block-
cyclic distribution may be set by the applied programmer. The dimension of the block-
cyclic distribution is equal to the dimension of the DFs arrays declared in the input
algorithm description.

Consider now the principle of tasks mapping to computing nodes and execution
of the tasks graph. At run-time each task is mapped to the computing node to which
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Fig. 1. Structure of generated program.

its output DFs arrays elements is mapped (according the requirements indices of all
output array-arguments of a task are pairwise equal and thus all corresponding DFs
array elements are mapped to the same computing node). If an input argument of a task
is mapped to a different node, an asynchronous message is sent after the producer task
execution. In addition, each computing node runs a receiver loop in a dedicated thread.
When some task argument value is received, corresponding consumer tasks are found.
When the values of all input arguments of a consumer task are obtained, it is executed.
The process continues until all tasks are executed.

3 Performance Evaluation

Tomeasure the performance of the implemented extension of LuNA system, a test imple-
mentation of the Cholesky factorization of a dense matrix was developed with LuNA
language. Such factorization is an example of an algorithm with complex structure and
information dependencies. For performance evaluation the same test was implemented
using a ScaLAPACK [14] implementation of Cholesky factorization. ScaLAPACK is
a widely used library, where Cholesky factorization is implemented. Execution times
of both implementations were compared. Both implementations used two-dimensional
block cyclic distribution of the input matrix into square matrix of square blocks, and the
block size was a parameter. OpenBLAS library (version 0.3.15) [15] implementation of
BLAS and LAPACK subroutines was used for both tests. Both implementations used
right-looking blocked Cholesky factorization algorithm [16].

Two square dense double-precision matrices of sizes 32768 and 65536 were used
as input data. For each of the matrices a number of experiments were conducted using
different matrix block sizes ranging from 256 to 2048. Execution times of both tests
were measured.

Testing was conducted on MVS-10P cluster of the Joint Supercomputing Centre of
Russian Academy of Sciences2 on a two-dimensional grid of 2 × 2 computing nodes.

2 http://www.jscc.ru.

http://www.jscc.ru
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Each node contains 32 cores and 16 GB of memory. All 32 cores of each CPUwere used
in all tests.

Figure 2 shows execution times comparison of the ScaLAPACK and the LuNA
implementations for the input matrix of sizes 32768 (left) and 65536 (right).
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Fig. 2. Performance evaluation result for a square matrix of 32768 (left) and 65536 (right)
elements.

Here in both cases the LuNA implementation outperforms the ScaLAPACK imple-
mentation of Cholesky factorization (by 2.4 times for matrix of 32768 elements and
block size of 512 and by 2.1 for matrix of 65536 elements and block size of 1024).

The above results demonstrate that LuNA is able to generate an efficient parallel
program from an algorithm description with complex information dependencies. The
performance of the generated parallel program is approximately 2 times better than that
of library developed by experts (for the studied test).

4 Conclusion

Automatic construction of efficient parallel programs generally requires different con-
struction algorithms for different subject domains. LuNA system is capable of accu-
mulating such algorithms. This ability was demonstrated by adding specialized support
for dense linear algebra operations class. The achieved performance is comparable with
that of a widely used library ScaLAPACK. This makes LuNA a practical tool for auto-
matic construction of high performance distributed parallel programs for the applications
class. Other classes of applications can also be particularly supported in LuNA in order
to improve performance of automatically constructed programs if programs, constructed
by general LuNA algorithms are not efficient enough.

Acknowledgments. The work was supported by the budget project of the ICMMG SB RAS No.
0251-2021-0005.
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Abstract. HPC modeling of gas dynamic and aerodynamic problems is
very important for the development of aircrafts, missiles and space vehi-
cles and requires a lot of processor time. For this reason, the numerical
codes for such simulations must be efficiently parallelized. This paper
presents a technological approach that greatly simplifies the paralleliza-
tion of problems with unstructured grids. The paper introduces the prin-
ciple of a unified mathematical address space of the problem for all used
cluster nodes. This technology also simplifies grid partitioning. Paral-
lelization of the code is carried out with minimal effort, without chang-
ing the main parts of the program. As a result, a single computational
code is produced for all regimes – sequential, multi-threaded, and cluster.
Performance measurements confirm the good scalability of the method.

Keywords: Computational aerodynamics · Navier-Stokes equation ·
Unstructured grids · Cuthill-McKee algorithm · Grid partitioning ·
Parallelization · OpenMP · MPI

1 Introduction

The numerical study of gas dynamics and aerodynamics of high-speed aircrafts
and hypersonic vehicles requires very large computing resources. The main rea-
son for this is the need for large grids (tens or hundreds of million of grid cells) to
resolve thin boundary layers and shock waves at high speeds. Modeling complex
multiphysics, chemical and radiation processes complicates the structure of the
numerical code and further increases the requirements for computer resources
[1,2]. With the proliferation of high-performance clusters and supercomputers, it
becomes possible to dramatically accelerate modeling by massively parallelizing
computational codes [3,4].

Massive parallelization in CFD is possible only if certain requirements are
met. First of all, the problem must possess natural parallelism (usually geomet-
ric). This determines the choice of a numerical method and a time integration
scheme – as a rule, this is a finite volume method [5] and an explicit integration
scheme [6].
c© Springer Nature Switzerland AG 2021
V. Malyshkin (Ed.): PaCT 2021, LNCS 12942, pp. 153–165, 2021.
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The use of structured or unstructured grids defines different approaches to
partitioning the computational domain. Structured grids allow to implement a
simple partition of the domain in several spatial directions [7]. In turn, unstruc-
tured grids that provide discretization of regions of arbitrary shape [8] require
the use of complex algorithms for optimal partitioning [9,10].

The requirement to minimize exchanges between subdomains necessitates
optimization of cell numbering. The graph of connections of grid cells corre-
sponds to a sparse matrix, therefore optimization turns into reducing the band-
width of this matrix by renumbering the matrix entries [11].

Finally, software environment is an important element of massive paralleliza-
tion. For multicore processors and multiprocessor systems, the most natural
and economical approach is to use shared memory parallelization environment
(usually OpenMP [12]). For systems with distributed memory (supercomputer
clusters), a software tool is required to exchange data between nodes (MPI [13]).
Accordingly, for clusters built of nodes with multi-core processors, it is natural
to use the hybrid OpenMP + MPI approach [6,14]. At the same time, additional
attention should be paid to the peculiarities of optimal programming for systems
with non-uniform memory access (NUMA) [15].

However, despite the accumulated practice, parallelization still remains a
very difficult task and requires a lot of effort and experience, as well as training
and coordination among programmers when creating new codes or adapting old
ones. In this regard, it becomes more and more important to develop techno-
logical principles that could simplify and accelerate the process of parallelizing
existing computational codes and creating new ones. Within these principles, it
is desirable to ensure that the existing sequential code remains as unchanged as
possible and that the grid partitioning scheme does not affect the structure of
the code. At the same time, the efficiency of parallelization of new code should
not be sacrificed much over a more complex (and less technological) approach.

The previous paper of the author in this area [16] discussed a hybrid par-
allelization approach for OpenMP and MPI environments based on a unified
address space for an MPI-parallel program. The paper presents an example of
such parallelization for the CFD problem in the domain of regular geometry.
The current paper extends this approach and formulates the principle of a single
mathematical address space for problems with unstructured grids. This principle
fulfills the above requirements for both code structure and grid partitioning.

The rest of the paper is organized as follows. Section 2 briefly introduces
the mathematical model. Section 3 presents the general organization of the code
and illustrates the optimization of the grid. Section 4 describes OpenMP paral-
lelization with non-uniform memory (NUMA) specific features. Section 5 gives
all the details of MPI parallelization technology and grid partitioning. Finally,
Sect. 6 presents and briefly analyzes the performance results for massive cluster
parallelization.
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2 Mathematical Model

The numerical code used in this work was developed for the analysis of aerother-
modynamics of high-speed aircrafts and space vehicles and is applicable over a
wide range of Mach numbers and altitudes. The code is based on solving the
three-dimensional Navier-Stokes equation:

∂w
∂t

+
∂F x(w)

∂x
+

∂F y(w)
∂y

+
∂F z(w)

∂z
=

∂Gx(w)
∂x

+
∂Gy(w)

∂y
+

∂Gz(w)
∂z

with w = ρ, ρu, ρv, ρw, ρE, where w represents the conservative variables, and
F and G are convective and diffusive flux vectors, respectively.

The system of equations is integrated numerically using the HLLE method
[17]. The method is an approximate solution to the Riemann problem. This app-
roach can be classified as a method that extends the concept of calculating flows
using the Riemann solver proposed by S. Godunov [18]. The time integration
scheme is explicit, with a local time step.

The finite volume discretization of the computational domain is carried out
using unstructured grids with two types of cells – tetrahedrons and prisms. To
compute the boundary conditions, dummy cells are used next to the inner cells.

The computational code is written in Fortran. Figure 1 presents two examples
of numerical simulations performed by this code.

Fig. 1. Some results of numerical simulations: pressure distribution around Expert
space vehicle [19] (left); temperature distribution near Apollo lander [20] (right)

3 General Organization of the Computational Code

The organization and structure of the computational code is determined by the
use of an unstructured grid to discretize the computational domain.

Calculations are made in accordance with order of cells (control volumes).
The main data structures for storing physical quantities and auxiliary variables
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have the dimension (N) or (M, N), where N is either the total number of cells
including fictive cells outside the computational domain (N = Ntot), or the
number of internal cells in the domain (N = Nsum), and M is the number of
cell faces (4 or 5). Arrays of size (N) are used for values located within a cell,
and arrays of size (M, N) – for values calculated on cell faces (for example,
numerical fluxes) or belonging to adjacent cells. All fictive elements in arrays of
dimension (Ntot) are placed at the end of the arrays, after the internal elements.
Computations are organized in the form of DO-loops from 1 to Nsum.

The links between cells are defined in the array NB(M, N) which contains the
addresses of the adjacent cells for each internal cell of the domain. Mathemat-
ically, this array is a sparse matrix, each row of which contains 4 or 5 nonzero
elements. The positions of these elements in the rows of the matrix correspond to
the adjacent cells’ numbers. When carrying out calculations involving adjacent
cells, the elements of different arrays are referred to by these numbers (indices).
Algebraically, the processing of such arrays can be represented as y = A ⊗ x,
where A is the matrix representation of the array NB, x is the array indexed by
this matrix, y is the result of calculations, and ⊗ is the operator performing cal-
culations on the indexed elements of the array x. This representation is similar
to the operator of multiplication of a sparse matrix by a vector.

Depending on how the cells are numbered in the computational domain,
nonzero elements in the matrix A will be placed in a more or less regular way.
If such elements are located as close as possible to the diagonal of the matrix,
then the indexed elements of the arrays will be grouped into small subsets that
can fit in the cache memory. Subsequent fetches of elements of this subset come
from the cache memory, which leads to a decrease of the computation time.

In practice, grid generation programs enumerate nodes and cells in a non-
optimal way. In this regard, the cells are renumbered using a simplified variant
of the Cuthill-McKee method [11]. Due to such renumbering, the computation
time can be reduced by 15–25% (depending on the quality of the original grid).
Another goal of grid renumbering is to provide efficient partitioning for cluster
parallelization.

Figure 2 shows examples of portraits of matrix A for the original and renum-
bered grids (left and center, respectively).

Fig. 2. Grid renumbering: portraits of the original (left) and renumbered (center) grid
matrices; middle part of the renumbered matrix, enlarged 25 times (right)
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It can be seen that the matrix A after renumbering has a band structure,
and its bandwidth determines the spread of addresses at which memory accesses
occur. With sufficiently optimal renumbering, the maximum bandwidth for a
three-dimensional domain is approximately O(N

2
3 ) (this corresponds to natural

numbering in a cubic or spherical domain).
The quality of the renumbered matrix may depend on the choice of the cell

from which the new numbering begins. The program uses an adaptive algorithm
with checking three options for the initial cell and choosing the option with the
minimum bandwidth.

4 Shared Memory Parallelization in the OpenMP
Environment

Parallelization in the OpenMP model is done in a standard way, using Fortran
“!$OMP DO” operators. As a result of applying this operator, DO-loops of
dimension N are automatically split into approximately equal parts, which are
executed in parallel threads. With such a partitioning, most of the accesses to
indexed array elements occur due to grid optimization within a small subset
allocated in the cache.

Parallelization for shared memory computers with two or more processors
requires special optimization due to the fact that such systems have a non-
uniform memory organization (NUMA). Processors in NUMA systems are con-
nected by high-speed channels, and each processor has its own memory block.
When a program thread is executing, accessing data in the memory of its own
processor occurs at full speed, while accessing data in another processor can
become significantly slower. To ensure the correct data placement, special ini-
tialization of the main arrays is required in parallel loops, which are identical to
the main computational loops of the algorithm. As a result, all physical pages
with data are allocated in the local memory of the corresponding processor.

It should be noted that for some configurations of the problem it is beneficial
to run one MPI process per processor rather than per node. In this case, the
overhead of explicit MPI exchanges can become less than the loss due to slower
access to remote memory in threads near interprocessor boundaries.

Running jobs on a shared-memory system must be performed with binding
threads to processor cores. This is especially important for NUMA systems (e.g.,
dual-processor cluster nodes), since thread migration can lead to the fact that
threads and their data fall into different processors, and the computation speed
will noticeably decrease. On Linux, thread-bound jobs can be launched using the
“taskset” or “numactl” command, and on Windows using the “start” command.

5 Cluster Parallelization Approach

Parallelization for distributed memory computers (clusters) requires splitting
the computational domain into subdomains and organizing the work in such
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a way that computations within subdomains alternate with exchanges of near-
boundary data.

Data exchanges between the cluster nodes are performed using calls to the
MPI library routines. Typically, for such parallelization, the special computa-
tional code is created with the organization of independent data structures in
each cluster node and with explicit calls for exchanges with neighboring nodes in
accordance with the structure of the partition of the computational domain [21].
In this case, splitting the computational domain means dividing each original
data array of dimension (N) into subarrays with independent numbering of ele-
ments, as well as preparing special data structures that describe the boundaries
between subdomains and data exchange strategies.

5.1 Grid Optimization and Partitioning

In this work, a technological approach is used while maintaining a unified end-to-
end numbering of cells and corresponding data arrays [16]. The splitting of the
computational domain is performed algebraically by dividing each original array
of dimension (N) into subarrays of equal size. In this case, the unified subarray
index space is used (a single mathematical address space of the problem).

Algebraic partitioning of data arrays means that in main calculations, which
have the form y = A ⊗ x, there will be overlap at the boundaries between the
subarrays. Figure 3 illustrates data access patterns when computing A ⊗ x → y
within a subarray (left) and near the boundary (right).

⊗ → •
node n

node n+1

n

n+1

overlap

overlap
get

get

Fig. 3. Data access patterns: without overlap (left); with overlap and exchange of data
between subdomains (right)

It can be seen that for each array that is accessed as a vector x, additional
overlap areas need to be added when allocating subarrays. The size of each area
of overlap is about half of the bandwidth of the matrix A at that position.
After each computation of the form y = A ⊗ x, the overlapping areas must be
transferred between the corresponding cluster nodes. Simultaneous exchanges of
data in opposite directions should be performed to save time.

In the current implementation, all exchanges between nodes are synchronous.
With a moderate number of cluster nodes, it does not result in high overhead.
Asynchronous exchanges require more complex data processing patterns. This
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extension of the method will be implemented later when larger clusters become
available.

The algebraic partitioning method, being simple and straightforward, is not
the most optimal one. There are sophisticated domain decomposition techniques
that minimize the size of the boundary areas between subdomains [9,10,22].
Figure 4 provides examples of near-optimal partitioning using advanced tech-
niques.

Fig. 4. Illustration of near-optimal partitioning into 8 subdomains in 2D [22] (left) and
64 subdomains in 3D [21] (right)

However, such near-optimal partitioning methods have several disadvantages.
As a rule, subdomains after such a partition have a large (and different) number
of neighbors with unequal sizes of the boundaries. As a result, the exchange
patterns become complex, which complicates the parallelization algorithm and
makes its optimal implementation more difficult. Thus, these methods are most
efficient only for a large number of subdomains.

On the other hand, when using the algebraic partitioning method, each sub-
domain has only two neighbors, and the sizes of the boundaries between the
subdomains not differ much. These properties partially compensate for the non-
optimal nature of this method, especially if synchronous exchanges are used.

When using the Cuthill-McKee method, the cells are numbered layer by
layer, while the character of the frontal layer propagation over the computational
domain depends on variations in the grid density. In the presence of strong grid
compression, the frontal layer may bend and the number of cells in the layer
may increase. In the places where the domain is split, this value determines the
number of boundary cells between the subdomains and, accordingly, half of the
bandwidth of the matrix A, which corresponds to the amount of data exchanges
between the cluster nodes.

Figure 5 shows examples of splitting domains into 8 subdomains using this
method. Here you can see the bending of the boundaries between the subdo-
mains. The number of grid cells N and half the bandwidths H for these examples
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are as follows: N = 12 million, H = 78000 (left), N = 6 million, H = 28000
(right). The values H/N

2
3 indicating the relative bandwidth are 1.48 and 0.84,

respectively. This means that both grid divisions are of acceptable quality, but
the second one is slightly better.

Fig. 5. Examples of grid partitioning using algebraic splitting

5.2 Structure of the Code

Technically, calculations in subdomains are organized as follows. For all data
subarrays sharing a unified index space of the problem, corresponding index
variables are defined, denoting the ranges of placement of internal (real) cells,
dummy cells and areas of overlap. Figure 6 illustrates the structure of a subarray
and the character of data exchanged between subdomains.

node
n-1

node
n

node
n+1

fictive

fictive

real

gap

fictive

real

gap
Idown

Istart

Iend
Itot
Iup

Fig. 6. Structure of subarrays in a unified index space and illustration of the exchange
of overlapping areas
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The main index variable ranges are Istart:Iend to handle DO-loops and
Idown:Ip to allocate subarrays. The index spaces of the subarrays in the neigh-
boring cluster nodes overlap with the following relationship between local index
variables: Itot+1 for node n is equal to Istart for node n + 1.

Computations in the cluster nodes are performed with parallelization in the
OpenMP model. After the completion of each stage of computations, exchanges
are carried out with both neighboring nodes. The MPI SENDRECV routine is
used, which simultaneously receives data from a neighboring node and transfers
data to this node.

Technologically, all data exchange procedures are separated from the compu-
tational code and placed in the special file XCH.F. All basic exchanges between
adjacent sub-domains are implemented in the XCH subroutine, which is called
once after each processing stage. The subroutine determines by itself, based on
node’s number and the total number of nodes, with which nodes and in what
order to perform exchanges. In case the job is run on a single node, the subroutine
will not do any work.

Figure 7 (left) demonstrates how the XCH subroutine works. Internally, it
makes two calls of MPI SENDRECV routine in appropriate order to exchange
with both neighboring cluster nodes.

call XCH

noden noden+1 noden+2 noden+3... ...

call XSUM

node0 node1 node2 node3

Σ Σ Σ Σ

Σ Σ Σ Σ

Fig. 7. Structure of basic exchanges between subdomains (left); algorithm of logarith-
mic complexity for reduction operations (right)

Similarly, the reduction routines are implemented to calculate the sum of the
values of variables in all nodes, as well as their maximum and minimum values
(XSUM, XMAX, XMIN). For these calculations, a butterfly-type algorithm is
used (similar to that used in the Fast Fourier Transform) (Fig. 7, right).

Also, unified procedures are implemented for distributing data between clus-
ter nodes after input and for collecting data from nodes before output.

Separating all calls to the MPI library routines into a special file allows the
main code to be compiled with a regular compiler. A compiler that supports MPI
is only required for the final build using this file. Also, the program can be com-
piled without the MPI library – for this case, a set of subroutines is implemented
that simulate execution on one node without exchanges (XCH NOMPI.F).
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Figure 8 illustrates the evolution of computer code – sequential, OpenMP-
parallel, and cluster-parallel. The principal changes of the basic DO-loop are
highlighted in the picture.

do I=1,Nsum

...

A(I)= ...

B(K,I)= ...

...

enddo

!$OMP DO

do I=1,Nsum

...

A(I)= ...

B(K,I)= ...

...

enddo

!$OMP END DO

!$OMP DO
do I=Istart,Iend

...
A(I)= ...
B(K,I)= ...
...

enddo
!$OMP END DO
!$OMP SINGLE

call XCH(...,A)
call XCH(...,B)

!$OMP END SINGLE

Fig. 8. Evolution of computer code

Thus, the technology of cluster parallelization with a single mathematical
address space of the problem makes it possible to implement a unified compu-
tational code for all modes – single-threaded, multi-threaded in the OpenMP
shared memory model, and cluster in the hybrid OpenMP + MPI model. At
the same time, parallelization of the code for the cluster mode is provided with
minimal effort, without altering the main parts of the program, and under the
only condition – the presence of a natural parallelization potential in the algo-
rithm (for example, when using an explicit method of time integration). The
parallelization method provides a sufficiently good quality of partitioning the
computational domain, at which the number of boundary cells between subdo-
mains does not exceed the level O(N

2
3 ).

6 Performance Results

The new parallelization algorithm was evaluated and tested on a cluster of dual-
processor nodes containing Intel Xeon processors with 16 cores and a clock fre-
quency range of 2.6 to 2.9 GHz. The cluster nodes are interconnected by Omni-
Path links at a speed of 100 Gbps. The results of parallel performance when
solving the aerothermodynamic problem with 33 million grid cells are shown
in Fig. 9. The problem was running on up to 24 cluster nodes containing 768
processor cores (1536 parallel threads due to Hyperthreading).

Here, the computation time for one time-step is 57.8 s for serial run, 2.22 s
for single-node run, and 0.135 s for 24 nodes. The loss of parallel efficiency is
mainly due to the overhead of synchronous exchanges between nodes.

The above results demonstrate the good scalability of the parallelization
method. The saturation effect of parallel performance begins to be observed only
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#nodes speedup efficiency

1 1 100%

2 1.95 97.4%

4 3.79 94.7%

6 5.54 92.3%

8 7.18 89.8%

12 10.4 86.4%

16 13.1 83.1%

24 16.4 68.2%  1

 2

 4

 8

 16

 32

 1  2  4  8  16  32

sp
ee
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p

nodes

Fig. 9. Parallel speedup and efficiency of the method

at 24 nodes. Based on 26x speedup on a single cluster node versus a single thread,
the total speedup across 24 nodes is as much as 425. Thus, this comparison
illustrates the wide range of computing platforms on which this technique can
be effectively used.

7 Conclusion

In this paper, we present a technological approach for efficient cluster paralleliza-
tion of gas dynamic and aerodynamic problems using unstructured grids. This
approach is based on a single mathematical address space of the problem data
for all cluster nodes of the job. Due to this, parallelization of the code is carried
out with minimal effort, without changing the main parts of the program. Also,
grid partitioning is greatly simplified with this approach.

Additionally, we propose some techniques to simplify the work with
exchanges between cluster nodes. In particular, all calls to the MPI library rou-
tines are separated from the main code.

As a result of applying the above approaches, it becomes possible to imple-
ment a single code for all computational modes – sequential, multi-threaded
(shared memory), and cluster (distributed memory).

Performance measurements demonstrate good scalability of the proposed par-
allelization method.
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Abstract. The prediction of environmental disasters, both technogenic
and natural, is currently based on advances in mathematical modeling.
The high cost and costly maintenance of computing clusters actualizes
the research in the field of heterogeneous computing. One of the direc-
tions of them is to maximize the use of all available hardware resources,
including the central processor and the video adapters (GPU). The pur-
pose of the research is to develop an algorithm and a software mod-
ule that implements it for solving a system of linear algebraic equa-
tions (SLAE) by the modified alternating-triangular iterative method
(MATM) (self-adjoint and non-self-adjoint cases) for the hydrodynamics
problem of shallow water using NVIDIA CUDA technology. The con-
ducted experiment with the flow distribution along the Ox and Oz axes
of the computational grid at a fixed value of the grid nodes along the Oy
axis allowed reducing the implementation time of one step of the MATM
on the GPU. A regression equation was obtained at the experimental
data processing in the Statistica program, on the basis of which it was
found that the implementation time of one step of the MATM on the
GPU is affected only by the number of threads along the axis Oz. The
optimal two-dimensional configuration of threads in a computing unit
executed on a single thread multiprocessor is determined, in which the
calculation time on the GPU for one step of the MATM is minimal.

Keywords: Mathematical modeling · Parallel algorithm · Graphics
accelerator

1 Introduction

The prediction process of environmental disasters of natural and technogenic
nature requires an operational approach in order to reduce the negative con-
sequences on the environment and the population living in the surrounding

Supported by Russian Science Foundation, project № 21-71-20050.

c© Springer Nature Switzerland AG 2021
V. Malyshkin (Ed.): PaCT 2021, LNCS 12942, pp. 166–177, 2021.
https://doi.org/10.1007/978-3-030-86359-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86359-3_13&domain=pdf
http://orcid.org/0000-0002-5875-1523
http://orcid.org/0000-0001-8234-3194
http://orcid.org/0000-0002-8323-6005
http://orcid.org/0000-0001-7257-962X
http://orcid.org/0000-0003-3699-7255
http://orcid.org/0000-0001-5468-3626
https://doi.org/10.1007/978-3-030-86359-3_13


Computational Aspects of Solving Grid Equations 167

areas. Hydrophysical processes have a significant impact on the water shoreline,
coastal protection structures and coastal constructions. Currently, the research
of hydrodynamical processes in waters with complex bathymetry is one of the
most important problems. This problem can be effectively solved using mathe-
matical modeling methods.

Mathematical modeling of hydrodynamical processes is based on the Navier-
Stokes motion equations, the continuity equations, as well as the heat and salt
transfer equations. As a result of numerical implementation, a continuous mathe-
matical model is transformed into a discrete one, the solution of which is reduced
to the solution of a system of linear algebraic equations (SLAE).

Many Russian and foreign scientists are engaged in research and forecasting
of aquatic ecosystems. Representatives of the scientific school by G.I. Marchuk
study the computational aspects of atmospheric and ocean physics. Compre-
hensive re-searches of the environment and biota in the Azov and Black Seas
are performed under the leadership of G.G. Matishov. Bonaduce A., Staneva J.
proposed the mathematical models of sea level dynamicss [1]. Marchesiello P.,
Androsov A., etc. scientists are engaged in improving ocean models [2,3]. Devel-
oped software systems, designed for monitoring and forecasting the state of
waters (SALMO, CHARISMA, MARS3D, CHTDM, CARDINAL, PHOENICS,
Ecointegrator), have a number of advantages, are easy to use, and allow solv-
ing computationally labors problems for a wide range of research areas. The
disadvantages include the lack of consideration of the spatially inhomogeneous
transport of water environment, the lack of accuracy in modeling the vortex
structures of currents, the shore and bottom topography [1–4].

The team of authors developed the AZOV3D software, which uses the spatial-
three-dimensional models of the hydrodynamics of shallow waters (coastal sys-
tems). These models include the motion equations in all three coordinate direc-
tions and taking into account the wind stress, bottom friction, complex geometry
of the shore and bottom of water, Coriolis force, precipitation evaporation, as
well as the nonlinear character of microturbulent exchange in the vertical direc-
tion [5]. Testing of this software was performed during the reconstruction of the
extreme storm surge of water on September 23–24, 2014 in the port area of
Taganrog, when the level rise was more than 4 m at the average depth of the
bay is about 5 m. The prediction was performed with the error of 3–5%.

The complex geometry of the computational domain requires the use of com-
putational grids with a large number of nodes in spatial coordinates. As a result,
it’s necessary to solve the SLAE with dimension from 107, 109 and more [6]. The
implementation of such calculations for the time interval from the occurrence of
an emergency to the receipt of forecasting results, established by regulatory acts,
is very difficult without the use of parallel computing and supercomputer tech-
nologies. The high cost and costly maintenance of computing clusters actualizes
research in the field of heterogeneous computing, which aims to maximize the
use of all available hardware resources, which include video adapters along with
the central processor. Modern video adapters have a large amount of VRAM
(up to 24 GB) and stream processors, the number of which can achieve the sev-
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eral thousand. There are software interfaces that allow you to implement the
computing process on a graphics accelerator, one of which is NVIDIA CUDA.
International research teams are actively conducting research in this area [7,8].

The purpose of the research is to develop algorithms for solving large-dimen-
sional SLAE in a limited time, and their software implementation in the envi-
ronment of heterogeneous computing systems.

2 Grid Equations Solving Method

Let A be is linear, positive definite operator (A > 0) and in a finite-dimensional
Hilbert space H it is necessary to solve the operator equation [9, 10]

Ax = f,A : H → H. (1)

For the grid Eq. (1), iterative methods are used, which in canonical form can be
represented by the equation [9,10]

B
xm+1 − xm

τm+1
+ Axm = f,B : H → H, (2)

where m is the iteration number, τm+1 > 0 is the iteration parameter, B is the
preconditioner. Operator B is constructed proceeding from the additive repre-
sentation of the operator A0 – the symmetric part of the operator A

A0 = R1 + R2, R1 = R∗
2, (3)

where A = A0 + A1, A0 = A∗
0, A1 = −A∗

1.
The preconditioner is formed as follows

B = (D + ωR1) D−1 (D + ωR2) ,D = D∗ > 0, ω > 0, (4)

where D is the diagonal operator, R1, R2 are the lower- and upper-triangular
operators respectively.

The algorithm for calculating the grid equations by the modified alternating-
triangular method of the variational type is written in the form:

rm = Axm − f,B(ωm)wm = rm, ω̃m =

√
(Dwm, wm)

(D−1R2wm, R2wm)
,

s2m = 1 − (A0w
m, wm)2

(B−1A0wm) (Bwm, wm)
, k2

m =

(
B−1A1w

m, A1w
m

)
(B−1A0wm, A0wm)

, (5)

θm =
1 −

√
s2
mk2

m

(1+k2
m)

1 + k2
m (1 − s2m)

, τm+1 = θm
(A0w

m, wm)
(B−1A0wm, A0wm)

,

xm+1 = xm − τm+1w
m, ωm+1 = ω̃m,
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where rm is the residual vector, wm is the correction vector, the parameter sm

describes the rate of convergence of the method, km describes the ratio of the
norm of the skew-symmetric part of the operator to the norm of the symmetric
part.

The method convergence rate is:

ρ ≤ ν∗ − 1
ν∗ + 1

, (6)

where ν∗ = ν
(√

1 + k2 + k
)2

, where ν is the condition number of the matrix
C0, C0 = B−1/2A0B

−1/2.
The value ω is optimal for

ω =

√
(Dwm, wm)

(D−1R2wm, R2wm)
(7)

and the condition number of the matrix is estimated C0:

ν = max
y �=0

(
1
2

+

√
(Dy, y)(D−1R2y,R2y)

(A0y, y)

)
≤ 1

2

(
1 +

√
Δ

δ

)
=

1 +
√

ξ

2
√

ξ
, (8)

where ξ = δ
Δ , D ≤ 1

δ A0, R1D
−1R2 ≤ Δ

4 A0.

3 Software Implementation of the Method for Solving
Grid Equations

To solve the hydrodynamics problem, a computational grid is introduced as [11]

w̄h = tn = nτ, xi = ihx, yi = jhy, zk = khz;n = 0, nt − 1, i = 0, n1 − 1,

j = 0, n2 − 1, k = 0, n3 − 1, ntτ = T, n1hx = lx, n2hy = ly, n3hz = lz,

where τ is the time step; hx, hy, hz are space steps; nt is the time layers number;
T is the upper bound on the time coordinate; n1, n2, n3 are the nodes number by
spatial coordinates; lx, ly, lz are space boundaries of a rectangular parallelepiped
in which the computational domain is inscribed.

At discretization the hydrodynamics model, we obtained a system of grid
equations. Each equation of the system can be represented in a canonical form.
We will use a seven-point template (Fig. 1):

c(m0)u(m0) −
6∑

i=1

c(m0,mi)u(mi) = F (m0),

m0(xi, yj , zk) is the template center, M ′(P ) = {m1(xi+1, yj , zk), m2(xi−1,
yj , zk), m3(xi, yj+1, zk),m4(xi, yj−1, zk),m5(xi, yj , zk+1),m5(xi, yj , zk−1)} is the
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Fig. 1. Grid template for solving hydrodynamic equations.

neighborhood of the template center, c0 ≡ c(m0) is the template center coeffi-
cient, ci ≡ c(m0,mi) are coefficients of the neighborhood of the template center,
F is the vector of the right parts, u is the calculated vector.

The developed software module uses one-dimensional arrays. The transi-
tion from a three-dimensional representation of the grid node (i, j, k) to a one-
dimensional (node number) is performed using the following formula:

m0 = i + jn1 + kn1n2.

The numbers of nodes in the neighborhood of the template center are calculated
by the formulas:

m1 = m0 + 1,m2 = m0 − 1,m3 = m0 + n1,
m4 = m0 − n1,m5 = m0 + n1n2,m6 = m0 − n1n2.

The MATM algorithm consists of four stages:

– calculating the values of the residual vector rm and its uniform norm;
– calculating the correction vector wm;
– calculating the scalar products and iterative parameters based on them

τm+1, ωm+1;
– transition to the next iterative layer.

The computational process is performed until the norm of the residual vector
reaches the specified accuracy.

The most laborious part of the algorithm is the calculation of the correction
vector from the equation:

(D + ωR1)ym = rm, (D + ωR2)wm = Dym.

The algorithm fragment of solving SLAE with the lower-triangular matrix is
given below (Algorithm 1).
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Algorithm 1. matm(IN: c0, c1, c2, c3, c4, c5, c6, ω; OUT: r)
1: for k ∈ [1; n3 − 2] do
2: for i ∈ [1; n1 − 2] do
3: for j ∈ [1; n2 − 2] do
4: m0 ← i + n1 · j + n1 · n2 · k
5: if c0[m0] > 0 then
6: m2 ← m0 − 1; m4 ← m0 − n1; m6 ← m0 − n1 · n2

7: r[m0] ← (ω · (c2[m0] · r[m2] + c4[m0] · r[m4] + c6[m0] · r[m6]) +
r[m0])/((0.5 · ω + 1) · c0[m0])

8: for k ∈ [n3 − 2; 1] do
9: for i ∈ [n1 − 2; 1] do

10: for j ∈ [n2 − 2; 1] do
11: m0 ← k + n3 · j + n2 · n3 · i
12: if c0[m0] > 0 then
13: m1 ← m0 + n2 · n3; m3 ← m0 + n3; m5 ← m0 + 1
14: r[m0] ← (ω · (c1[m0] · r[m1] + c3[m0] · r[m3] + c5[m0] · r[m5]) +

r[m0] · c0[m0])/((0.5 · ω + 1) · c0[m0])

The residual vector is calculated in 14N arithmetic operations, where N is
a basic arithmetic operation such as adding, multiplying etc. The complexity of
calculating the values of the correction vector is 19N arithmetic operations (9N
and 10N each for solving SLAE of upper-triangular and lower-non-triangular
types, respectively). The transition to the next iteration will require 2N arith-
metic operations. In total, the total number of arithmetic operations required to
solve the SLAE with a seven-diagonal matrix using MATM in the case of known
iterative parameters τm+1, ωm+1 is 35N .

We determine the complexity of adaptive optimization of the minimum cor-
rection MATM. The calculation of A0w

m, A1w
m and R2w

m vectors requires
13N , 11N and 7N operations each. The multiplication of vectors by diagonal
operators D−1 and D will require N operations each. The conversion B to deter-
mine vectors B−1A0w

m and B−1A1w
m will require 19N operations each. It is

also necessary to calculate 6 scalar products, each of which will require 2N oper-
ations. Thus, each adaptive optimization of the minimum correction MATM
requires 83N arithmetic operations in the non-self-adjoint case and 49N in the
self-adjoint case. The calculation process of iterative parameters τm+1, ωm+1 is
laborious, but its establishment is observed quite quickly at solving grid equa-
tions in the adaptive case. As a result, these parameters do not need to be
calculated at each iteration.

4 Parallel Implementation

Parallel algorithms focused on heterogeneous computing systems were developed
for numerical implementation of the proposed hydrodynamics model. Each com-
puting node of the system can contain from 1 to 2 central processing units (CPU)
containing from 4 to 32 cores, and from 1 to 4 NVIDIA video accelerators with
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Fig. 2. Decomposition of the computational domain. Node1, Node2, Node3 are com-
putational nodes; CPU , GPU are fragments of the computational domain, calculated
on the CPU and GPU, respectively; blockDim.x, blockDim.z – dimensions of the com-
puting CUDA block.

CUDA technology (GPU), having from 192 (NVIDIA GeForce GT 710) to 5120
(NVIDIA Tesla V100) CUDA cores. Data exchange between nodes is performed
using MPI (Message Passing Interface) technology. An algorithm that controls
all available CPU and GPU threads performs the organization of calculations
on each node. The computational domain is divided into subdomains assigned
to the computational nodes. Next, each subdomain is divided into fragments
assigned to each CPU core and each GPU computing unit (Fig. 2).

The solution of mathematical modeling problems using numerical methods,
in particular, the finite difference method (FDM) on equal-dimensional grids,
leads to the necessary to use with sparse matrices, the elements of which for
internal nodes are a repeating sequence. This leads to inefficient memory con-
sumption in the case of high-dimensional problems. Using the CSR (Compressed
Sparse Row) matrix storage format avoids the necessary to store null elements.
However, all non-zero elements, including many duplicate ones, are stored in
the corresponding array. This disadvantage is not critical at using computing
systems with shared memory. However, it can negatively affect the performance
at data transferring between nodes in heterogeneous and distributed computing
systems. A CSR1S modification of the CSR format was developed to improve
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the efficiency of data storage with a repeating sequence of elements for modeling
hydrodynamic processes by the finite difference method. In this case, to change
the differential operator, instead of repeatedly searching and replacing values in
an array of non-zero elements, it is enough to simply change them in an array
that preserves a repeating sequence.

Let’s consider the conversion of a sparse matrix from CSR1S to CSR for-
mat. The input data of the algorithm is an object of the matrix class with
repeated elements SMatrix1Seq, encapsulating an array of non-zero elements
V alues; the array of indexes of columns, containing non-zero elements ColIdx;
the array of indexes of non-zero elements that are first in the rows (the last
element of the array is the total number of non-zero elements) RowIdx; the
array for storing a repeating sequence; the array for storing the indexes of
columns, containing the first elements of a repeating sequence. In this case,
the V alues, ColIdxandRowIdx arrays indicate elements that are not part of a
repeating sequence. The output data – an object of the MatrixCsr class – a
sparse matrix in CSR format containing arrays V alues, ColIdxandRowIdx. The
data types and array assignments are similar to the corresponding arrays of the
SMatrix1Seq class. We present an algorithm for converting a sparse matrix from
the CSR1S to CSR format.

1. Calculation the size of the MatrixCsr class arrays (output arrays).
2. Reserving of RAM for storing output arrays.
3. Saving the resultV alues array size value.
4. Copying the non-repeating elements from the V alues input array to the

resultV alues output array.
5. Filling the resultV alues array with duplicate elements using CUDA.
6. Copying the column indexes of non-repeating elements.
7. Copying the column indexes of duplicate elements using CUDA.
8. Copying the indexes of rows, containing non-repeating elements.
9. Copying the indexes of rows, containing duplicate elements using CUDA.

10. Generating an output object of the MatrixCsr class, containing the
resultV alues array of non-zero elements, an array of column indexes of non-
repeating elements, and an array of row indexes, containing non-repeating
elements.

11. Clearing the resources, returning the result to the calling method.

Let’s estimate the memory capacity in the CSR format:

Pcsr = NnzBnz + (Nnz + R + 1)Bidx,

in the CSR1S format:

Pcsr1s = (Nnz − Nseq(Rseq + 1))Bnz + (Nnz − Rseq(Nseq + 1) + R + 1)Bidx,

where R is the number of matrix rows; Rseq is the number of matrix rows,
containing a repeating sequence of elements; Nnz is the number of non-zero
matrix elements; Nseq is number of elements in a repeating sequence; Bnz is
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the memory capacity to store a single non-zero element; Bidx to store a single
non-zero element to store a single index.

Let’s introduce the coefficients kr = Rseq/R and ki = Bidx/Bnz. After arith-
metic transformations, we obtained the following:

Pcsr1s = Bnz[Nnz(ki + 1) − Nseq(kikrR + krR + 1) − ki(krR − R − 1)].

Efficient function libraries have been developed to solve the system of grid
equations that arise during the sampling process in CSR format on GPUs using
CUDA technology. The developed algorithm for solving the problem uses the
modified CSR1S data storage format with further conversion to the CSR format
to solve the resulting SLAE on a graphics accelerator using NVIDIA CUDA
technology. In this case, there is the problem of developing a matrix conversion
algorithm the from CSR1S to CSR format in the shortest possible time.

Experimental researches of the dependence of the execution time of the trans-
formation algorithm on the number of elements of the repeated sequence Nseq

and the ratio of the matrix rows containing the sequence to the total number
of rows kr were performed. According to the obtained results, the algorithm
with using NVIDIA CUDA technology is more efficient at Nseq > 7. The point
of equal efficiency decreases starting from kr = 0.7. The resulting regression
equation kr = −0.02Nseq + 0.08329 with the determination coefficient 0.9276
describes the boundary of equal time consumption of the sequential algorithm
and the algorithm using NVIDIA CUDA. Thus, we can calculate the minimum
value kr, by substituting a value Nseq into it, above which the second algorithm
will be more efficient than the first.

The part of the computational load is passed to the graphics accelerator to
increase the efficiency of calculations. For this, the corresponding algorithm and
its software implementation on the CUDA C language were developed [12].

An algorithm for finding a solution to a system of equations with a lower-
triangular matrix (straight line) on CUDA C is given (Algorithm 2).

The input parameters of the algorithm are the vectors of the coefficients
of the grid equations c0, c2, c4, c6 and the constant ω. The output parame-
ter is the vector of the water flow velocity r. Before running the algorithm,
we must programmatically set the dimensions of the CUDA computing block
blockDim.x, blockDim.z in spatial coordinates x, z, respectively. The CUDA
framework runs this algorithm for each thread; in this case, the values of the vari-
ables threadIdx.x, threadIdx.z, blockIdx.x, blockIdx.z automatically initialized
by the indexes of the corresponding threads and blocks. Global thread indexes
are calculated in rows 1 and 2. The row index i, the layer index k, which the
current thread processes, are calculated in rows 3 and 5. The variable j is initial-
ized in row 4, representing a counter by coordinate y. The calculation pipeline
is organized as a loop in line 6. The indexes of the central node of the grid tem-
plate m0 and surrounding nodes m2,m4,m6 are calculated in rows 8, 10–12. The
two-dimensional array cache is located in the GPU shared memory and designed
to store the calculation results of on the current layer by the coordinate y. This
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allows us to reduce the number of reads from slow global memory and accelerate
the calculation process by up to 30%.

The conducted researches represent a significant dependence of the imple-
mentation time of the algorithm for calculating the preconditioner on the ratio
of threads in spatial coordinates.

Algorithm 2. matmKernel(IN: c0, c2, c4, c6, ω IN/OUT: r;)
1: threadX ← blockDim.x · blockIdx.x + threadIdx.x
2: threadZ ← blockDim.z · blockIdx.z + threadIdx.z
3: i ← threadX + 1
4: j ← 1
5: k ← threadZ + 1
6: for s ∈ [3; n1 + n2 + n3 − 3] do
7: if (i + j + k = s) ∧ (s < i + n2 + k) then
8: m0 ← i + (blockDim.x + 1) · j + n1 · n2 · k
9: if c0[m0] > 0 then

10: m2 ← m0 − 1; m4 ← m0 − n1; m6 ← m0 − n1 · n2

11: rm4 ← 0
12: if (s > 3 + threadX + threadZ) then
13: rm4 ← cache[threadX][threadZ]
14: else
15: rm4 ← r[m4]

16: rm2 ← 0
17: if (threadX �= 0) ∧ (s > 3 + threadX + threadZ) then
18: rm2 ← cache[threadX − 1][threadZ]
19: else
20: rm2 ← r[m2]

21: rm6 ← 0;
22: if (threadZ �= 0) ∧ (s > 3 + threadX + threadZ) then
23: rm6 ← cache[threadX][threadZ − 1]
24: else
25: rm6 ← r[m6]

26: rm0 ← (ω·(c2[m0]·rm2+c4[m0]·rm4+c6[m0]·rm6)+r[m0])/((0.5·
ω + 1) · c0[m0])

27: cache[threadX][threadZ] ← rm0
28: r[m0] ← rm0

29: j ← j + 1

GeForce MX 250 video adapter was used in experimental researches; it specifi-
cations: the VRAM capacity is 4 GB, the core clock frequency is 1518–1582 MHz,
the memory clock frequency is 7000 MHz, the video memory bus bit rate is
64 bits, and the number of CUDA cores is 384.

The purpose of the experiment is to determine the flow distribution along
the Ox and Oz axes of the computational grid at fixed value of grid nodes along
the Oy axis, equal to 10000, so that the implementation time on the GPU of
one MATM step is minimal.
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Two values are taken as factors: X is the number of threads on the axis Ox,
Z is the number of threads on the axis Oz. The criterion function TGPU is the
implementation time of a single MATM step on GPU, ms.

The composition of the streams X and Z must not exceed 1024. This restric-
tion is imposed by CUDA, since 1024 is the number of threads in a single block.
Therefore, the levels of variation of the factors X and Z were chosen as shown
in the Table 1.

Table 1. Experiment results.

X Z TGPU , ms

16 64 64

32 32 65

64 16 81

128 8 109

256 4 100

512 2 103

The regression equation was obtained in the result of experimental data pro-
cessing:

TGPU = 119.797 − 9.371 log2 Z, (9)

where TGPU is the implementation time of a single MATM step on GPU, ms;
Z is the number of threads on the axis Oz. The coefficient of determination was
0.78.

As a result of the analysis of experimental data, it was found that only the
number of threads along the axis Oz affects the implementation time of one
MATM step on GPU. The implementation time of one MATM step on GPU is
inversely proportional to the number of nodes of the computational grid along
the axis Oz. The calculation time decreases according to the logarithmic law at
increasing the number of nodes along the axis Oz. Therefore, it is advisable to
perform the domain decomposition in the form of parallelepipeds, in which the
size on the Oz axis is maximum, and on the Ox axis is minimal.

Due to the conducted experimental researches, we established the optimal
values of X and Z, which were equaled to the 16 and 64, respectively.

5 Conclusion

The algorithm and software unit that implements it were developed in the result
of the conducted researches to solve the SLAE, which arises during the sampling
of the hydrodynamics problem of shallow water, MATM using NVIDIA CUDA
technology. The method of domain decomposition, applicable for heterogeneous
computing systems, was described. The developed modification of the CSR –
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CSR1S format made it possible to increase the efficiency of data storage with
a repeating sequence of elements. It is determined that the algorithm using the
NVIDIA CUDA technology is more effective at Nseq > 7. In this case, the point of
equal efficiency decreases, starting from kr = 0.7. The optimal two-dimensional
configuration of threads in a computing unit, implemented on a single thread
multiprocessor, was determined, in which the implementation time on GPU of
a single MATM step is minimal and equaled to the 64 ms.

References

1. Bonaduce, A., Staneva, J., Grayek, S., Bidlot, J.-R., Breivik, Ø.: Sea-state contribu-
tions to sea-level variability in the European Seas. Ocean Dyn. 70(12), 1547–1569
(2020). https://doi.org/10.1007/s10236-020-01404-1

2. Marchesiello, P., Mc.Williams, J., Shchepetkin, A.: Open boundary conditions for
long-term integration of regional oceanic models. Oceanic Modell. J. 3, 1–20 (2001)

3. Androsov, A.: Straits of the world ocean. General approach to modeling, St. Peters-
burg (2005)

4. Nieuwstadt, F., Westerweel, J., Boersma, B.: Turbulence. Introduction to Theory
and Applications of Turbulent Flows. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31599-7

5. Sukhinov, A., Atayan, A., Belova, Y., Litvinov, V., Nikitina, A., Chistyakov, A.:
Data processing of field measurements of expedition research for mathematical
modeling of hydrodynamic processes in the Azov Sea. Comput. Continuum Mech.
13(2), 161–174 (2020). https://doi.org/10.7242/1999-6691/2020.13.2.13

6. Sukhinov, A., Chistyakov, A., Shishenya, A., Timofeeva, E.: Predictive modeling
of coastal hydrophysical processes in multiple-processor systems based on explicit
schemes. Math. Models Comput. Simul. 10(5), 648–658 (2018)

7. Oyarzun, G., Borrell, R., Gorobets, A., Oliva, A.: MPI-CUDA sparse matrix-vector
multiplication for the conjugate gradient method with an approximate inverse pre-
conditioner. Comput. Fluids 92, 244–252 (2014)

8. Zheng, L., Gerya, T., Knepley, M., Yuen, D., Zhang, H., Shi, Y.: GPU implemen-
tation of multigrid solver for stokes equation with strongly variable viscosity. In:
Yuen, D., Wang, L., Chi, X., Johnsson, L., Ge, W., Shi, Y. (eds.) GPU Solutions to
Multi-scale Problems in Science and Engineering. Lecture Notes in Earth System
Sciences, pp. 321–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-16405-7 21

9. Konovalov, A.: The steepest descent method with an adaptive alternating-
triangular preconditioner. Differ. Eqn. 40, 1018–1028 (2004)

10. Sukhinov, A., Chistyakov, A., Litvinov, V., Nikitina, A., Belova, Y., Filina, A.:
Computational aspects of mathematical modeling of the shallow water hydrobio-
logical processes. Numer. Methods Program. 21(4), 452–469 (2020). https://doi.
org/10.26089/NumMet.v21r436 https://doi.org/10.26089/NumMet.v21r436

11. Samarsky, A., Vabishchevich, P.: Numerical methods for solving convection-
diffusion problems. URSS, Moscow (2009)

12. Browning, J., Sutherland, B.: C++20 Recipes. A Problem-Solution Approach.
Apress, Berkeley (2020)

https://doi.org/10.1007/s10236-020-01404-1
https://doi.org/10.1007/978-3-319-31599-7
https://doi.org/10.1007/978-3-319-31599-7
https://doi.org/10.7242/1999-6691/2020.13.2.13
https://doi.org/10.1007/978-3-642-16405-7_21
https://doi.org/10.1007/978-3-642-16405-7_21
https://doi.org/10.26089/NumMet.v21r436
https://doi.org/10.26089/NumMet.v21r436
https://doi.org/10.26089/NumMet.v21r436


Optimized Hybrid Execution of Dense
Matrix-Matrix Multiplication on Clusters

of Heterogeneous Multicore and
Many-Core Platforms

Gerassimos Barlas(B)

Computer Science and Engineering Department, College of Engineering,
American University of Sharjah, POB 26666, Sharjah, UAE

gbarlas@aus.edu

Abstract. In this paper we analytically solve the partitioning prob-
lem for dense matrix-matrix multiplication, running on a cluster of het-
erogeneous multicore machines, equipped with a variety of accelerators.
Closed-form solutions are provided, that can yield an optimum partition-
ing in linear time with respect to the number of cores in the system.

We also show that a run-time, online calculation of system parameters
for the application of DLT is feasible, allowing the easy deployment of
DLT frameworks without a costly a-priori benchmarking procedure.

The paper concludes with an extensive experimental study that shows
that our DLT framework coupled with online parameter calculation,
can outperform dynamic partitioning while leveraging existing optimized
Dense Linear Algebra (DLA) libraries, such as NVidia’s cuBLAS and
Intel’s MKL.

Keywords: Divisible load theory · Dense linear algebra ·
Heterogeneous parallel computing · Hybrid numerical computation

1 Introduction

Divisible Load Theory (DLT) allows the optimum load partitioning and schedul-
ing of operations on the assumptions that the load can be arbitrary divisible, and
that there is no dependence between the computations on different nodes. DLT
has been previously employed for solving problems in many domains including
image registration, video encoding and distribution, cloud resource allocation
and scheduling [1], and others. It can be also combined with genetic algorithms
[2], linear programming or other techniques for fine tuning the resources com-
mitted to solving a problem.

DLT analyses have been largely based on linear or affine cost models [3].
More recently, there have been successful attempts for the solution of problems
where the computational cost is a second-order function of the problem size [4].
In this work we tackle the DLT partitioning of matrix-matrix multiplication over
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a heterogeneous cluster, with nodes equipped with different types of accelerators.
We distinguish accelerators into two categories, based on their access to main
memory. The ones that do have access we call on-chip, and the ones that do not
we call off-chip accelerators, the latter having their own memory space.

Matrix multiplication (MM) is an integral component of a wide variety of
applications. The associated computation complexity has driven the develop-
ment of multicore and many-core implementations, as delivered by software
packages such as LAPACK, MAGMA, MKL and cuBLAS. CPU execution on
clusters has been also targeted by ScaLAPACK.

DLT-derived schedules are typically static in the sense that they are deter-
mined a priori, although dynamic scheduling can be also accommodated in cer-
tain applications. Static schedules can result in substantial performance benefits
(e.g. Song et al. report a 2.5x improvement for Cholesky factorization [5]). In
this paper we employ a dynamic calculation of system parameters between runs,
to enable the accurate derivation of near-optimum static schedules.

The major contributions of this paper are:

– We derive closed-form solutions for optimizing MM on a heterogeneous net-
work with on-chip and off-chip accelerators.

– Our model accounts for every significant overhead, including both data dis-
tribution and collection times, involving network and the PCIe bus transfers.

– We examine both cases of data locality, i.e. the case where data are resident
in one of the nodes and the case where the data are fetched remotely.

– We illustrate how the cost parameters needed for applying the proposed equa-
tions can be computed at run-time, without the hassle of a-priori testing.

– We prove that cubic complexity workloads can be successfully partitioned
with DLT, with closed-form solutions.

In the following section we discuss related work, while Sect. 3 presents the
target execution platform, notations and cost models used for our analysis. The
intra-node ordering problem is examined in Sect. 4 and the closed-form solu-
tions are presented in Sect. 5. The methodology for the online calculation of the
cost parameters is described in Sect. 6. Finally, Sect. 7 presents our experimental
findings, as tested on a small-scale GPU-equipped cluster.

2 Related Work

Khan et al. in [6] utilize Strassen’s/Winograd’s algorithm for performing dense
MM on many-core architectures. A depth-first search of the recursive matrix
decomposition required by Strassen’s algorithm, is performed, followed by a
switch to cuBLAS or MKL when the recursion depth exceeds a certain limit.
While Strassen’s algorithm does allow for a reduced computational complexity,
the authors target only single accelerators. In this paper we utilize the “brute-
force” algorithm to model our computation cost.

Kang et al. also employ Strassen’s algorithm in HPMaX [7] to multiply matri-
ces on both CPUs and GPUs. Apart from the implied limitation on matrix sizes,
HPMaX cannot utilize heterogeneous networks like the proposed work.
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Single multicore CPUs and GPUs are also targeted by Kelefouras et al. in
[8], where the architectural characteristics of a machine, e.g. number of registers,
cores, cache size and number of cache levels, are used to derive near optimal tiling
arrangements for the execution of the classical dense MM algorithm.

Solomonik and Demmel [9] proposed a 2.5D block-based partitioning (an
evolution of Cannon’s algorithm) where additional data replication provides for
optimal execution on a 2D grid of homogeneous CPUs. More recently, Lazzaro et
al. [10] showed how 2.5D partitioning can be used for sparse matrix multiplica-
tion using one-sided MPI communications, on homogeneous machines equipped
with GPU accelerators. In contrast, our work targets platforms mixing hetero-
geneous CPUs and different types of accelerators.

Hybrid GPU execution of LU factorization is examined in [11]. Tomov et al.
split the matrix between the CPU cores and the GPU based on an empirically
determined setting that is dependent on the input size.

KBLAS [12] provides implementations for a subset of BLAS level-2 routines,
that can utilize multiple GPUs on a single node. Adbelfattah et al. are concerned
with the kernel execution configuration (grid and block design) and data layout
on multiple GPUs in order to obtain the highest speedup possible.

In [13] the authors use a block-based dynamic distribution of workload to the
CPU and GPU computing resources of a heterogeneous cluster, while employing
machine-learning for fine-tuning the GPU kernel execution configuration, based
on the block dimensions.

Malik and Lastovetsky prove that three partitioning schemes are optimal
under different circumstances for the case of three heterogeneous processors
[14]. In [15] they also consider energy consumption due to the communication
involved. The extension to a larger platform is an open problem.

A first attempt at solving the MM partitioning problem using DLT was made
in [16], but that work allowed the use of only a single discrete accelerator in each
system node. In this paper we significantly extend the work published in [16] to
account for nodes with an arbitrary number of accelerators, and with different
access to a node’s main memory.

3 System Model

We assume that our computing platform is made-up of E interconnected Multi-
core Nodes (MNs), each hosting an arbitrary number of CPU cores and acceler-
ators. In our treatment of the problem we assume that each CPU core and each
accelerator (regardless of how many cores it may contain), can be the individual
targets of computational load. In this paper we use the term core to refer to
either a CPU core or an accelerator.

In order to cover the greatest possible range of setups, we assume that a
system may be equipped with multiple CPU cores, oN-chip Accelerators (NAs),
such as integrated GPUs, or the big cores in a big.LITTLE ARM machine,
and ofF-chip Accelerators (FAs) such as discrete GPUs. The key attribute for
distinguishing accelerator types is how they access main memory: NAs share the
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Table 1. Model parameter notations and associated typical units.

aj oN-chip Accelerators in node j

b communication latency (sec)

cj number of CPU cores in node j

E total number of MN in the system

ej constant overhead for starting computation on a CPU core of node j (sec)

ej,fa constant overhead associated with computation on an FA of node j (sec)

ej,na constant overhead associated with computation on an NA of node j (sec)

fj number of oFf-chip Accelerators in node j

K the number of columns of A and rows of B

l inverse of the communication speed between LON and a MN (sec/byte)

lPj inverse of the PCIe communication speed of MN j (sec/byte)

M the number of rows of A and C

N the number of columns of B and C

nj total computing devices/cores in node j, i.e. nj = cj + aj + fj

pj inverse of core j’s computational speed (sec)

pj,fa inverse of FA’s speed in node j (sec)

pj,na inverse of NA’s speed in node j (sec)

partj,i percent of matrix C computed by core i of node j

s bytes used in the representation of the matrices elements

t
(i)
j total execution time of MN j, which is of type i (i ∈ 1, 2, 3)

CPU memory, while FAs are typically housed on PCIe expansion cards and have
separate memory spaces. MNs are heterogeneous but we assume that within each
MN the different types of cores are homogeneous.

Assuming that we have to multiply two matrices, A (MxK) and B (KxN),
we assign each MN in the system a number of rows of the result matrix C.
Computation at a node can start after the whole of B is transmitted and the
corresponding rows of A are also received. Computation at a core can commence
after the rows of A corresponding to its own part of the C matrix are collected.
This means that computation at a MN starts in a staggered fashion. This also
necessitates a core ordering, e.g. specifying which cores should start processing
first in order to minimize the overall execution time.

Block-wise partitioning could certainly be a valid alternative that does not
require one of the operand matrices to be broadcasted to all MNs. Block-wise
partitioning in the context of DLT, is an open problem. However, if K·N > M ·K,
i.e. the communication cost of A is lower than B’s, we can switch to column wise
partitioning, where A is broadcasted and B is partitioned. The formulas that we
derive would be equally applicable in that case, with slight modifications (e.g.
switching where appropriate M to K and K to N).
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We use affine models for the communication and computation costs. Thus,
the time required for downloading B is (summary of notations in Table 1)

t(B)
comm = l K N s + b (1)

where s is the size in bytes of the type used to represent matrix elements, l is
the inverse of the communication speed and b is the communication latency.

We assume that t
(B)
comm is a cost incurred by all MNs, except from the “load

originating node” (LON), i.e. the machine originally holding A and B, and where
C is ultimately collected. We also assume that it takes place in the form of a
broadcast. We examine two possible configurations as far as the LON is con-
cerned: (a) LON does not compute, and (b) LON participates in the computa-
tion.

The number of C matrix rows assigned to a core i of node j are calculated
as a percent partj,i of M . Thus the time needed to communicate the required
part of A is

t(A)
comm(j, i) = l M K partj,i s + b (2)

Enforcing the assignment of all the workload means (aka the normalization
equation):

E−1∑

j=0

nj−1∑

i=0

partj,i = 1 (3)

where nj is the total number of computing devices/cores in node j.
Inter-node communications are assumed to take place concurrently, thus, all

MNs receive data at the same time. However each MN receives B followed by A
parts in sequence.

FAs also incur an additional communication cost for having to transfer data
across the PCIe bus. This is assumed to be a linear function of the transferred
data:

t
(B)
PCI = lPj

K N s (4)

t
(A)
PCI(j, i) = lPj

M K partj,i s (5)

The FA-to-host communications are assumed to be also sequential during
matrix C parts collection (in the presence of multiple FAs). This does not apply
for the dissemination of matrix B as contemporary PCIe switches have multicast
capabilities, allowing the transfer of B to all the FAs in an MN in one step.

The computational cost for a CPU core i of node j is:

t(CPU)
comp (j, i) = pj M K N partj,i + ej (6)

where pj is the inverse of the computational speed of core j, and ej corre-
sponds to its constant setup overhead. pj is essentially the time spent per pair
of input elements processed towards the calculation of C. A similar equation
applies for NAs and FAs:
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GPU 0

GPU 1

GPU 0

GPU 1

(1)

(2)

Time

Time

Comm. of A part

PCI broadcast of B

PCI transfer of C part

Comm. of B

PCI transfer of A part

Comm. of C

Δ1 Δ2

A part for GPU 0

A part for GPU 1

A part for GPU 1Δ1 Δ2

A part for GPU 0

Fig. 1. Two possible timing configurations for distributing load to two FA/discrete
GPUs. Timing gaps Δ1 and Δ2 represent arbitrary interruptions in the delivery and
collection sequences that correspond to operations concerning other cores/accelerators.

t(NA)
comp(j, i) = pj,na M K N partj,i + ej,na (7)

t(FA)
comp(j, i) = pj,fa M K N partj,i + ej,fa (8)

It should be noted that a multicore CPU can be treated in our framework as
one computational unit, the same way that a GPU is. The benefit of recognizing
the individual cores is that it allows computation and communication to overlap.
A CPU core can start computing as soon as its part of the matrix A arrives,
instead of requiring the communication for the whole CPU as a unit to complete.

4 The Ordering Problem

The ordering problem is the determination of which core type should receive its
part of the workload first. We will start by considering pairs of cores, before we
attempt to generalize further. There are three pairings that need to be considered
based on access to main memory:

– On-chip accelerator, CPU-core pair
– Off-chip accelerator, CPU-core pair (the latter could also be an NA)
– Pair of off-chip accelerators

For the first two cases, it can be proven that there exists no universal rule-of-
thumb for ordering them.

In the case of the two FAs, the two possible orderings are shown in Fig. 1. The
Δ1 and Δ2 time gaps represent times where communications are conducted by
other cores/accelerators. In the following discussion we will assume that Δ1 and
Δ2 are constant, effectively focusing on the relative distribution of load between
the two FAs shown.
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PCI broadcast of B

PCI transfer of A part

PCI transfer of C part

Comm. of B

Comm. of A part

Comm. of CTime

GPU 0

GPU i

GPU j

... ... ...

...
...

...

GPU n−1

Δ1 Δ2

Fig. 2. A sequence that violates Lemma 1 for n off-chip accelerators.

Calculating the time difference between the two configurations produces the
following

t(1) − t(2) =
MKNllP s2 + ((Nb + Δ1N)lP + Δ2 Kl)s

((N + 2K)lP + Kl)s + 2KNpfa
> 0 ⇒ t(1) > t(2) (9)

We can extend this result to an arbitrary set of identical off-chip accelerators:

Lemma 1. For minimizing the processing on a set of identical off-chip acceler-
ators, the load distribution sequence must match the result collection sequence.

Proof. Let us assume that another optimum sequence exists that violates the
lemma. This means that there must be at least one pair of accelerators i and
j as shown in Fig. 2, that matches configuration (1) in Fig. 1. However, Eq. (9)
dictates that we can switch the collection order for i and j, reducing the execution
time for the two, without affecting the other accelerators. Hence we have a
contradiction. ��

Although it is impossible to pre-determine an optimum sequence for the dis-
tribution of the A matrix parts, except for the case of FAs, it can be empirically
shown by calculating the execution times for alternative orderings, that for the
current state-of-the-art hardware, the optimum workload assignment order is
FAs, NAs, followed by CPU cores. For this reason and in order to reduce the
complexity of the problem, we will assume that the distribution sequence for the
cores of a node is precisely this. The collection sequence for the FAs matches
their load assignment order as dictated by Lemma 1.

5 Closed-Form Solutions

5.1 Case I: LON Does Not Compute

We assume that each system node j is equipped with fj FAs, aj NAs, and cj
CPU cores, totaling nj computing devices/cores. Following the notations used in
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the previous sections, partj,0 to partj,fj−1 are the assignments to FAs, partj,fj
to partj,fj+aj−1, are the assignments to NAs, and partj,fj+aj

to partj,nj−1 are
the CPU core assignments.

In order to derive a closed-form solution to the partitioning problem, we have
to establish the timing relationships between the participating nodes. Optimality
dictates that all nodes finish delivering their part of matrix C at the same time
instance. Hence we must have for any two MNs j and i:

tj = ti (10)

Figure 3 illustrates the timing of communication and computation phases for
MN j. Accordingly, the total time spent by node j is:

tj = lsKN + b + // Communication of B

lsMK

nj−1∑

m=0

partj,m + njb + // Communication of A parts

pjMKNpartj,nj−1 + ej + // Computation on last CPU core

lsMN

nj−1∑

m=0

partj,m + b // C collection (11)

We start by associating the parts assigned to the MN j’s cores to the part
assigned to the last CPU core partj,nj−1. For the last two cores in a system,
(assuming they are both CPUs) it can be shown that:

partj,nj−2 = partj,nj−1(1 +
ls

pjN
) +

b

pjMKN
(12)

Using a similar logic for the third to last CPU core we can get:

partj,nj−3 = partj,nj−1(1 +
ls

pjN
)2 +

b

pjMKN
(1 + (1 +

ls

pjN
)) (13)

Which can be generalized for any CPU core r ∈ [fj + aj , nj) to:

partj,r = partj,nj−1(1 +
ls

pjN
)nj−r−1 +

b

lsMK

(
(1 +

ls

pjN
)nj−r−1 − 1

)
(14)

Equation (14) can be rewritten for r ∈ [0, cj) as:

partj,fj+aj+r = partj,nj−1A(j, r) + B(j, r) (15)

where A and B are shown in Table 2.
For the last-in-order NA, and in relation to the first in order CPU core

we must have (expressing time span 1 in Fig. 3 as the sum of the individual
operations):

pj,naMKNpartj,nj−cj−1 + ej,na = lsMKpartj,nj−cj + b+ pjMKNpartj,nj−cj + ej ⇒

partj,nj−cj−1 = partj,nj−cj

ls+ pjN

pj,naN
+

b+ ej − ej,na

pj,naMKN
(16)
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Fig. 3. Sequence of communication and computation operations for accelerators and
CPU cores for a MN.

Which by utilizing Eq. (15) becomes (D and F are shown in Table 2):

partj,nj−cj−1 = partj,nj−1D(j) + F (j) (17)

For a pair of successive NAs q and q + 1 we can show that:

partj,q = partj,q+1

(
1 +

ls

pj,naN

)
+

b

pj,naMKN
(18)

Which can be extended to :

partj,q = partj,q+r

(
1 +

ls

pj,naN

)r

+
b

pj,naMKN

r−1∑

m=0

(
1 +

ls

pj,naN

)m

(19)

Or in another form, with 0 ≤ r < aj (O and P are shown in Table 2):

partj,fj+r = partj,fj+aj−1O(j, r) + P (j, r) (20)

Given fj + aj − 1 = nj − cj − 1, we can combine (17) and (20) as:

partj,fj+r = partj,nj−cj−1O(j, r) + P (j, r) = partj,nj−1Q(j, r) + R(j, r) (21)

where Q and R are shown in Table 2.
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Table 2. Functions for a MN j and one of its cores r, used to abbreviate formulas.
Functions A′(r) to J ′(r) are derived from their similarly named counterparts, by setting
j ← E − 1, and by replacing l with l′ and b with b′.

CPU cores, r ∈ [0, cj)

A(j, r) = (1 + ls
pjN

)cj−r−1 B(j, r) = b
lsMK

(A(j, r) − 1)

NA accelerators, r ∈ [0, aj)

D(j) = A(j, 0)
ls+pjN

pj,naN
F (j) = B(j, 0)

ls+pjN

pj,naN
+

ej−ej,na+b

pj,naMKN

O(j, r) = (1 + ls
pj,naN

)aj−r−1 P (j, r) = b
lsMK

(O(j, r) − 1)

Q(j, r) = D(j)O(j, r) R(j, r) = F (j)O(j, r) + P (j, r)

FA accelerators, r ∈ [0, fj)

G(j, r) =

(
K(s(l+lPj

)+pj,faN)

lPj
s(K+N)+pj,faKN

)fj−1−r

H(j, r) = b
M

G(j,r)−1
s(lK−lPj

N)

I(j, r) = Q(j, 0)G(j, r)
K(ls+pj,naN)

lPj
s(K+N)+pj,faKN

J(j, r) = R(j, 0)G(j, r)
K(ls+pj,naN)

lPj
s(K+N)+pj,faKN

+
b+ej,na−ej,fa

M(lPj
s(K+N)+pj,faKN)G(j, r) + H(j, r)

For the last-in-order FA, and in relation to the first in order NA (fj) we can
get by expressing time span 2 in Fig. 3 as the sum of the individual operations:

partj,fj−1 = partj,fj
K(ls + pj,naN)

lPj
s(K + N) + pj,faKN

+
b + ej,na − ej,fa

M(lPj
s(K + N) + pj,faKN)

(22)
We can associate two successive FAs r and r + 1, with r ∈ [0, fj − 1), with:

partj,r = partj,r+1

K(s(l + lPj
) + pj,faN)

lPj
s(K + N) + pj,faKN

+
b

M(lPj
s(K + N) + pj,faKN)

(23)
Thus we can express the part assigned to an arbitrary FA 0 ≤ r < fj as:

partj,r = partj,fj−1

(
K(s(l + lPj

) + pj,faN)
lPj

s(K + N) + pj,faKN

)fj−1−r

+

b

M(lPj
s(K + N) + pj,faKN)

·
fj−r−2∑

m=0

(
K(s(l + lPj

) + pj,faN)
lPj

s(K + N) + pj,faKN

)m

=

partj,fj−1G(j, r) + H(j, r) (24)

where G and H are shown in Table 2.
Establishing a relationship between partj,r in the above equation and

partj,nj−1, is a matter of utilizing (22) and (21), with I and J as shown in
Table 2):

(24)
via(22),(21)⇒ partj,r = partj,nj−1I(j, r) + J(j, r) (25)
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Table 3. Formulas for the calculation of the U(j) and V (j) functions for MN j. Helper
functions u(j) and v(j) are also shown.

U(j) = M(pjKN + ls(K + N)u(j))

V (j) = lsM(K + N)v(j) + (nj + 2)b + ej + lsKN

u(j) =
∑fj−1

m=0 I(j, m) +
∑aj−1

m=0 Q(j, m) +
∑cj−1

m=0 A(j, m))

v(j) =
∑fj−1

m=0 J(j, m) +
∑aj−1

m=0 R(j, m) +
∑cj−1

m=0 B(j, m)

Given the above, the total execution time (see (11)) for MN j is:

tj = partj,nj−1M

⎛
⎝pjKN + ls(K +N)

⎛
⎝

fj−1∑
m=0

I(j,m) +

aj−1∑
m=0

Q(j,m)+

cj−1∑
m=0

A(j,m)

⎞
⎠

⎞
⎠ + lsM(K +N)

⎛
⎝

fj−1∑
m=0

J(j,m) +

aj−1∑
m=0

R(j,m) +

cj−1∑
m=0

B(j,m)

⎞
⎠ +

(nj + 2)b+ ej + lsKN (26)

Equation (10) allows us to establish inter-node part relationships:

tj = ti
via (26)⇒ partj,nj−1 = parti,ni−1S(i, j) + T (i, j) (27)

where (U and V are shown in Table 3)

S(i, j) =
U(i)
U(j)

and T (i, j) =
V (i) − V (j)

U(j)
(28)

With this result, we can associate the individual parts with the part assigned
to the last CPU core of MN 0:

– For the CPU cores, 0 ≤ r < cj :

partj,fj+aj+r = part0,n0−1S(0, j)A(j, r) + T (0, j)A(j, r) + B(j, r) (29)

– For the NAs, 0 ≤ r < aj :

partj,fj+r = part0,n0−1S(0, j)Q(j, r) + T (0, j)Q(j, r) + R(j, r) (30)

– For the FAs, 0 ≤ r < fj :

partj,r = part0,n0−1S(0, j)I(j, r) + T (0, j)I(j, r) + J(j, r) (31)

We can the use the normalization Eq. (3) to produce:

part0,n0−1 =
1 − ∑E−1

j=0 T (0, j)u(j) − ∑E−1
j=0 v(j)

∑E−1
j=0 S(0, j)u(j)

(32)

where u(j) and v(j) are shown in Table 3.
Equipped with (32), (29), (30) and (31) we can calculate the partitioning in

linear time and space complexity with respect to the total number of computing
devices Θ(

∑E−1
j=0 nj). Because only the S(0, j) and T (0, j) terms are present in

these equations, only E of each of these terms are required instead of E2.
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5.2 Case II : LON Participates in the Computation

We assume that MN E −1 serves as the LON, to allow us to reuse the Equations
derived for Case I. The total execution time for the LON, made up of the reading
of B, the “communication” of the A parts, the computation on the last CPU
core and the writing of C is:

tE−1 = l′sKN + b′ + l′sMK

nE−1−1∑

m=0

partE−1,m + nE−1b
′ +

pE−1MKNpartE−1,nE−1−1 + eE−1 + l′sMN

nE−1−1∑

m=0

partE−1,m + b′ (33)

where l′ and b′ correspond to the local data access cost. Similarly to (26), we
can show that:

tE−1 = partE−1,nE−1−1M

(
pE−1KN + l′s(K +N)

( fE−1−1∑
m=0

I′(m) +

aE−1−1∑
m=0

Q′(m)

+

cE−1−1∑
m=0

A′(m)

))
+ l′sM(K +N)

( fE−1−1∑
m=0

J ′(m) +

aE−1−1∑
m=0

R′(m) +

cE−1−1∑
m=0

B′(m)

)

+ (nE−1 + 2)b′ + eE−1 + l′sKN (34)

where the A′ to J ′ are derived from the similarly named functions shown in
Table 2, by setting j ← E − 1, and by replacing l with l′ and b with b′. For
example, for the CPU cores 0 ≤ r < cE−1 we have:

partE−1,fE−1+aE−1+r = partE−1,nE−1−1A
′(r) + B′(r) (35)

Following the same logic we can prove that:

t
(1)
E−1 = t

(1)
0 ⇒ partE−1,nE−1−1 = part0,n0−1S

′(0) + T ′(0) (36)

where

S′(0) =
U(0)

U ′(E − 1)
and T ′(0) =

V (0) − V ′(E − 1)
U ′(E − 1)

(37)

Which allows the use of the normalization Eq. (3) to produce:

part0,n0−1 =
1 − ∑E−2

j=0 T (0, j)u(j)
∑E−2

j=0 S(0, j)u(j) + S′(0)u′(E − 1)
−

∑E−2
j=0 v(j) + T ′(0)u′(E − 1) + v′(E − 1)
∑E−2

j=0 S(0, j)u(j) + S′(0)u′(E − 1)
(38)

where v′(E − 1) =
∑fE−1−1

m=0 J ′(m) +
∑aE−1−1

m=0 R′(m) +
∑cE−1−1

m=0 B′(m) and
u′(E − 1) =

∑fE−1−1
m=0 I ′(m) +

∑aE−1−1
m=0 Q′(m) +

∑cE−1−1
m=0 A′(m)) as per the

convention mentioned above for the prime functions.
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Fig. 4. Load assignment (expressed as a percent of the total) for one GPU and for the
CPU, and execution time over 10 runs, for multiplying two square matrices with a size
of 1000, 10000, 20000 and 30000.

6 On-Line Estimation of Cost Parameters

Typically, DLT-based partitioning requires the a-priori estimation of all the cost
parameters needed. This is problematic for heterogeneous installations, and the
situation is further complicated by the fact that thermal throttling is common
in contemporary hardware, leading to performance variations that a fixed set of
parameters fails to address properly [17].

In this paper we use a dynamic approach for updating the computation cost
parameters at the end of each execution. Generic values are used to initialize
these parameters when previous timing data do not exist. Then, after each exe-
cution of our program, the part of the workload assigned to a core i of a MN j,
i.e. partj,i ·M ·K ·N , along with the measured time it took to complete it, are fed
to a routine performing linear regression in order to update the corresponding p
and e parameters.

The following rules are used for the update process:

– The most recent of the time measurements are used to perform linear regres-
sion. At least two measurements are required before regression is attempted.

– The data are indexed by the M , K and N values, so that a different speed p
can be calculated for each core and for each problem size.

– All the data accumulated for a particular type of core are used to derive the
constant overhead e. This is attempted only if there are data for at least two
sets of M , K and N values.

During the experiments described in Sect. 7, a sequence of 10 runs was ade-
quate for getting from a generic p to a one closely matching the speed of a
core.

Figure 4 illustrates how partitioning and the corresponding execution times
evolved over 10 runs, when executing on the dune-1080 node (see details in the
next section). For the first run, p was set to 1 and e to 0.



Optimized Hybrid Dense Matrix-Matrix Multiplication 191

7 Experimental Results

For testing we used square matrices with M , K and N ranging from 1000 to
30000. The matrices were randomly generated for data types float, double
and complex<double> / cuDoubleComplex, in order to test how partitioning is
influenced by larger communication costs and the relative inefficiency of GPUs
in processing higher precision floating point data.

Our test platform details are shown in Table 4. Preliminary testing of the
CPUs and GPUs with the MKL and cuBLAS libraries respectively, showed that
they all exhibit an affine computational cost in relation to the M ·K ·N product
of the input matrices, validating our assumption. For example, for float inputs,
i7-8700k had an execution time approximated by t = 3.36 ·10−8 ·M ·K ·N +284
msec with Pearson’s R2 = 0.986. A similar equation applied for Titan-X: t =
3.9 · 10−10 · M · K · N + 321 msec with R2 = 0.967, and the same behavior was
observed for all input types.

The communication parameters were obtained by using a “ping-pong” pro-
cedure, and they were found to be l = 8.50 · 10−5msec/byte (11.2 MB/s),
b = 0.891msec and lP = 1.638 · 10−7 msec/byte (5.68 GB/s).

Intel’s MKL library has the capability to use multiple cores natively, without
the programmer’s intervention. In our tests, we discovered that performance
was boosted when MKL handled the CPU workload, but only if the input
was of type float. In the other two input type cases, launching one thread
per logical core and using MKL individually from every thread (by calling
mkl set num threads local(1)), proved a better alternative. The reason for
this behavior is unknown.

In order to validate our results and quantitatively measure the performance
benefits afforded by our mathematical framework, we compared it against a
dynamic scheduler that breaks matrix A into blocks of fixed number of rows r.
Thus, each core calculated r · N elements of the C matrix, before requesting
more data to process, etc. As r is a critical parameter for the performance of the
dynamic scheduler, we tested for values of 50, 100, 200, 500 and 1000, and used
the best overall time as the execution time.

Table 4. Hardware and software specifications of the test platform used in our experi-
ments. Theoretical single-precision performance is also shown for each component. All
machines had hexa core CPUs with hyperthreading enabled, and they were connected
via 1 Gb Ethernet.
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Fig. 5. Average performance for processing square input matrices. The hardware con-
figurations of the nodes are detailed in Table 4. The best results produced for any of
the tested r are used for the dynamic scheduler curves.

In terms of competing frameworks, we were unable to find a readily available
one that offers hybrid computation. For example, the MAGMA library does
not currently (as of v2.5.4) offer a hybrid option for their magma *gemm routines,
opting for either CPU or GPU based execution. Additionally ScaLAPACK offers
only CPU-based execution. We still used MAGMA/cuBLAS to gauge the benefit
that the addition of a CPU offers in hybrid execution.

Figure 5 shows the average performance over 10 runs for the various scenarios
examined, as executed individually on our two fastest platforms. It is evident
that our proposed partitioning outperforms the best a dynamic scheduler has to
offer, by a good margin. Exclusive CPU and GPU results are also shown, clearly
indicating that our proposed solution can leverage the best that each computing
device can offer.

However, there is no improvement for relatively small inputs i.e. below
roughly 5k× 5k elements. The execution time is low enough in this case, to
warrant the dynamic partitioning superior. This is caused by two factors, the
first being the frequency scaling characteristics of modern CPUs. Modern CPUs
can maintain a maximum operating frequency for one or a handful of cores, but
they have to scale back when all the cores are running at full speed. The val-
ues of r that perform best reveal this characteristic, as small matrices favor the
higher values of r, leading to processing in as few cores as possible. On the other
hand, bigger inputs favor modest to small values of r that lead to better load
balancing.

The second factor is the delay introduced by the collection/reading of the
hardware characteristics and the calculation of the partitioning. This is however a
small delay (measured during the tests to 1–2 hundreds of a second), which means
that further investigation on the number of cores utilized for a computation is
required under the prism of frequency boosting and throttling. This is beyond
the scope of this paper.

The benefits of our framework would become even more apparent if a net-
worked platform were to be utilized. Unfortunately, due to the relatively slow
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Fig. 6. (a) Performance and (b) percent improvement of the proposed partitioning
method (labeled DLT), against a dynamic scheduler, for node sets comprising of 2, 3,
and 4 nodes. The master/LON is not participating in the computation of the float-
type input.

1 Gb/s Ethernet network interconnect, none of the possible multinode configura-
tions we tested, resulted in a DLT-partitioning that utilized anything more than
a single node, even when the LON was not participating in the computation.

We tested a configuration where dune-frg would serve as the LON node
without participating in the computation, and dune-1080, dune-titan and
dune-970 would be added -in this order- in MPI node sets consisting of 2, 3
and 4 nodes respectively (dune-frg serving as the master). For all the tests,
a single MPI process was launched per node and C++11 threads were used to
utilize the available computing devices.

Our analytical framework allows us to predict the performance of all the pos-
sible configurations, disregarding nodes despite their availability, because using
them would degrade performance. In our test, for all configurations only the
fastest (dune-1080) was picked based on the predicted results, and the measured
performance especially in comparison with the dynamic scheduler as shown in
Fig. 6, justifies this choice. As observed in Fig. 6 adding more nodes increases
the execution times as a consequence of the slow network. There is also a small
degradation for DLT, caused by the initial node characteristics data collection,
which is required before the partitioning is done.

8 Conclusion and Future Work

This paper presents a generic analytical framework that yields closed-form solu-
tions to the problem of dense matrix-matrix multiplication on a heterogeneous
network of machines equipped with multicore CPUs and a variety of acceler-
ators. Our work constitutes the first successful attempt at applying DLT to
the partitioning of cubic complexity workloads. We also demonstrated that the
online calculation of the parameters needed for the application of DLT frame-
works is feasible and accurate enough to eliminate the requirement for lengthy
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offline benchmarks, while also allowing for some form of adaptation to platform
changes between runs.

As proven by our experimental study, our framework produces significant
performance benefits for processing large matrices compared to a dynamic sched-
uler, optimizing the use of the available computing resources by balancing the
best of what CPU and GPU domains can offer.

Arguably, a multi-installment strategy, which is analogous to the tiling used
by heuristic schedulers, could boost performance even further. How the beneficial
effects of this approach could be counter-balanced by the increased communica-
tion delays due to latency, is a open question. Furthermore, energy and memory
constraints could be noteworthy additions to be considered.
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This paper represents parallel multigrid cycle, algebraic and geometric
approaches to parallelization, estimation of the parallel RMT efficiency
and parallel multigrid component analysis.

Keywords: Boundary value problems · Robust multigrid technique ·
OpenMP · Parallel solvers

1 Introduction

Multigrid algorithms are well known for being the fastest numerical methods
for solving elliptic boundary-value problems. There are two trends with respect
to the choice of multigrid components [5]:

– in optimized multigrid algorithms, one tries to tailor the components to the
problem at hand in order to obtain the highest possible efficiency for the
solution process;

– in robust multigrid algorithms, one tries to choose the components indepen-
dently of the given problem, uniformly for as large a class of problems as pos-
sible.

At the end of the 70ies and at the beginning of the 80ies there was a real
boom in research on the multigrid methods. Very interesting multigrid approach
had been proposed and developed in Theoretical Division of the Los Alamos
National Laboratory. In paper [1], P.O. Frederickson and O.A. McBryan studied
efficiency of parallel superconvergent multigrid method (PSMG). The basic idea
behind PSMG is the observation that for each fine grid there are two natural
coarse grids – the even and odd points of the fine grid. Authors tries to develop
optimized multigrid algorithm by combination of these coarse grid solutions for
more accurate fine grid correction. The PSMG and related ideas essentially refer
to massively parallel computing. To keep all processors of a massively parallel
system busy especially on coarse grids, PSMG works simultaneously on many
different grids, instead of working only on the standard coarse grid hierarchy [5].

Also in 1990, S.I. Martynenko (Baranov Central Institute of Aviation Motors,
Moscow) suggested to use similar multiple coarse grid correction strategy for
development of robust multigrid method for black-box software. To avoid termi-
nological confusion, we define software to be black-box if it does not require any
additional input from the user apart from the physical problem specification con-
sisting of the domain geometry, boundary and initial conditions, the enumeration
of equations to be solved (heat conductivity equation, Navier–Stokes equations,
Maxwell equations, etc.) and mediums. The user does not need to know any-
thing about numerical methods, or high-performance and parallel computing [2].
Developed solver is called the Robust Multigrid Technique (RMT), RMT history
is given in [3]. For a theoretical description of RMT and corresponding parallel
analysis, we refer to [2].
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To overcome the problem of robustness, the essential multigrid principle1

has been used in the single-grid solver. RMT has the least number of problem-
dependent components, close-to-optimal algorithmic complexity and high pa-
rallel efficiency for large class of boundary value problems. Application field
of the RMT is mathematical modelling of complex physical and chemical pro-
cesses described by the systems of nonlinear strongly coupled partial differen-
tial equations. As a result, RMT can use not only a segregated smoothers, but
also the coupled Vanka-type smoothers in the multigrid iterations. RMT can
be used as efficient solver on structured grids or as a multigrid preconditioner
on unstructured grids in black-box software [2]. It should be noted that RMT
has close-to-optimal algorithmic complexity: the number of multigrid iterations
needed for solving the boundary value problems is independent of the number
of unknowns, but computational cost of each multigrid iteration is O(N log N)
arithmetic operations. Loss in computational efforts compared to classic multi-
grid (∼ log N arithmetic operations) is a result of true robustness of RMT [2].

In [5], important aspects of parallel classic multigrid are summarized:

– on coarse grids, the ratio between communication and computation becomes
worse than on fine grids, up to a (possibly) large communication overhead
on very coarse grids;

– on very coarse grids we may have (many) idle processes;
– on coarse grids, the communication is no longer local.

The simplest way to construct a parallel multigrid algorithm is to parallelize
all of its components. Although suitable multigrid components may be highly
parallel, the overall structure of standard multigrid is intrinsically not fully par-
allel for two reasons. The first reason is that the grid levels are run through
sequentially in standard multigrid. The second reason is that the degree of par-
allelism of multigrid is different on different grid levels (i.e. small on coarse grids)
[5]. In addition, parallelizing the multigrid components will only allow construct-
ing a small-scale granulated algorithm, it means small tasks can be performed
in parallel.

The Chan-Tuminaro and the Gannon-van Rosendale algorithms both belong
to the class of concurrent methods. The basic approach is to generate indepen-
dent sub-problems for the different grid levels by projection onto orthogonal
sub-spaces. The algorithms differ in the way this decomposition is performed
and the way solutions are combined again.

The algorithm of Fredrickson and McBryan follows a completely different
approach. Opposed to standard multigrid, the method does not employ a single
grid to compute a coarse grid correction, but composes on each level several
coarse grid problems. Ideally, the additional information obtained from these
multiple coarse grids can be used to improve the convergence rate of the multigrid
method, thus improving not only parallel efficiency, but also actual run-time [1]
1 The essential multigrid principle is to approximate the smooth (low frequency) com-

ponents of the error on the coarse grids. The nonsmooth (high frequency) compo-
nents are reduced with a small number (independent of mesh size) of smoothing
iterations on the fine grid [6].
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Large-scale granularity means large tasks that can be performed indepen-
dently in parallel. Goal of the paper is to analyse granularity of the basic com-
ponents of parallel RMT using OpenMP technology. Now the presented approach
is suitable for use only with shared memory systems.

2 Parallel RMT

Let NG0 points form the computational grid G0. We assume that it is possible
to form non-overlapping subgrids Gi ∈ G0 of NGi

points, such what

G0 =
I⋃

i=1

Gi and Gn ∩ Gm = ∅, n �= m.

All subgrids Gi, i = 1, 2, . . . , I form the first grid level and

I∑

i=1

NGi
= NG0 ,

but the finest grid G0 forms zero level. There are a number of the subgrid ge-
neration strategy, but we will be interested in an optimal strategy that minimizes
the approximation error on the coarse grids Gi.

Let 1D uniform grid for the finite volume discretization is defined as

xv
i =

i − 1
N0

x

= (i − 1)hx, i = 1, 2, . . . , N0
x + 1,

xf
i =

xv
i + xv

i+1

2
=

2i − 1
2

hx, i = 1, 2, . . . , N0
x ,

where N0
x is a discretization parameter and hx = 1/N0

x is a mesh size. Points xv
i

and xf
i can be vertices or faces in the finite volume discretization of mathematical

model equations. Figure 1 represents a triple coarsening used in RMT. In this
case, each finite volume on the coarser grids is union of three finite volumes on
the finer grid. It it easy to see that the smoothing steps on different grid of the
same level are independent of each other and can be performed in parallel.

This grid hierarchy will be called a multigrid structure generated by the
finest grid G0. Note that each grid of the multigrid structure can generate own
multigrid structure. The triple coarsening and the finite volume discretization
lead to the problem-independent restriction and prolongation operators [2].

Multigrid cycle of RMT is smoothing on the multigrid structure as shown
on Fig. 2. The multigrid schedule of RMT is sawtooth cycle, i.e. a special case
of the V-cycle, in which smoothing before the coarse grid correction (presmoo-
thing) is deleted [6].

OpenMP is an implementation of multithreading, a method of parallelizing
whereby a primary thread (a series of instructions executed consecutively) forks
a specified number of sub-threads and the system divides a task among them
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Fig. 1. Triple coarsening in RMT: the finest grid and three coarse grids of the first
level.

[8]. The threads then run concurrently, with the runtime environment allocating
threads to different processors. OpenMP uses a portable, scalable model that
gives programmers a simple and flexible interface for developing parallel RMT
for platforms ranging from the standard desktop computer to the supercomputer.

From the parallel point of view, RMT has the following attractive features:

1. All coarse grids of the same level have no common points and the smoothing
iterations can be performed in parallel.

2. The number of grids (known in advance) on each level predicts the number
of threads for parallel RMT.

3. Almost the same number of points on each grid of the same level leads
to almost uniform load balance.

4. The most powerful coarse grid correction strategy used in RMT makes it pos-
sible to use the weak smoothers in the parallel multigrid iterations.

Each grid level of the multigrid structure consists of 3dl grids (the problem
dimension d = 1, 2, 3; l = 0, 1, . . . , L+), where L+ is the coarsest level. Therefore
we should use p = 3κ (κ = 1, . . . , L+) threads for uniform load balance. Case
κ = 0 corresponds to sequential implementation.

Fig. 2. Sequential multigrid cycle of RMT for solving 1D problems.
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Fig. 3. Distribution of the coarse grids of the first level to p = 3d threads.

If we use p = 3κ (κ = 1, . . . , L+) threads for parallel RMT, we have to dis-
tinguish two cases:

– algebraic parallelism κ > dl (finer levels). In the first case, multicoloured
unknown ordering could be viewed as a specific way to parallelize a smoothing
iterations independently of the computational grid [4];

– geometric parallelism κ ≤ dl (coarse levels). In the second case, RMT has
almost full parallelism independently of the smoothing procedure. Distribu-
tion of the coarse grids of the first level to p = 3d (or κ = d = 2, 3) threads is
shown on Fig. 3.

Remember the common measure of parallelism [4]:

Definition 1. The efficiency E of a parallel algorithm is

E =
1
p

T (1)
T (p)

,

where T (1) is an execution time for a single thread and T (p) is an execution
time using p threads.

Now we analyse parallel multigrid cycles. Since RMT has almost full paral-
lelism on the coarse levels (κ ≥ dl), it is possible to perform extra smoothing
iterations on these levels. Figure 4 demonstrates a parallel multigrid cycle with
two extra multigrid iterations on the coarse levels (q∗ = 3). It is clear that par-
allel efficiency of the smoothing iterations of the finest grid will be critical for
the parallel RMT efficiency.

In addition to abovementioned common measure of parallelism, we introduce
measure of parallel properties of the smoothers:
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Fig. 4. Parallel multigrid cycle (q∗ = 3).

Definition 2. The efficiency El of a parallel smoother is

El =
1
p

Tl(1)
Tl(p)

, (1)

where Tl(1) is an execution time for a single thread of the smoother, Tl(p)
is an execution time using p processors and l = 0, 1, . . . , L+ is serial number
of the grid levels.

Since all grids of the same level have the same number of points, it is expected
the execution time for the smoothing iterations is l-independent: Tl(1) = const.
For example, the execution time of the sequential multigrid iteration of RMT
becomes

T (1) = T0(1) + q∗
L+
∑

l=1

Tl(1) =
(
1 + q∗L+

)
T0(1),

where q∗ is the number of the multigrid iterations on coarse levels. Efficiency
of the parallel multigrid cycle shown of Fig. 4 can be estimated as

E ≈ q∗L+ + 1

q∗L+ +
1
E0

.

This estimation predicts that E > E0.
For this cycle, solution u of a boundary value problem should be represented

as
u = c + cd + û,

where c is the coarse grid correction (defined on the finest grid), cd is the coarse
grid correction (defined on the multigrid structures generated by the coarse
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Fig. 5. Simplified parallel multigrid cycle (q∗ = 2).

grids of the first level) and û is approximation to the solution u. This approach
is difficult to use for nonlinear boundary value problems.

Simplified parallel multigrid cycle is shown on Fig. 5. This cycle makes it
possible to apply standard Σ-modification of the solution used in RMT [2].
In this case, efficiency of parallel RMT depends on the number of the multigrid
iterations q:

E(+∞) =
L+ + 1

L+ +
1
E0

< E(q) <
q∗L+ + 1

q∗L+ +
1
E0

= E(1).

To illustrate the simplified parallel multigrid cycle, we consider the model
Dirichlet boundary value problem for the Poisson equation

u′′
xx + u′′

yy + u′′
zz = −f(x, y, z) (2)

in domain Ω = (0, 1)3. Substitution of the exact solution

ua(x, y, z) = exp(x + y + z), (3)

into (2) gives the right-hand side function

f(x, y, z) = −3 exp(x + y + z)

and the boundary conditions.
Let us define error of the numerical solution as

‖e‖∞ = max
ijk

|ua(xi, yj , zk) − ûh
ijk|, (4)

where ûh
ijk is approximation to the solution u.
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As smoother, we use 3 × 3 × 3 block Gauss–Seidel iterations (Vanka–ty-
pe smoother [7]). This means that all 27 unknowns are updated collectively.
As a rule, the Vanka–type smoother is used for solving systems of PDEs including
saddle points problems. Of course, the discrete Poisson problem on an uniform
grid does not require application of the Vanka–type smoother, since for the alge-
braic system that results from the seven-point discretization a point smoother is
efficient, but this algorithm can be used for algorithmic complexity estimation
in simulation of the coupled physicochemical phenomena.

Figure 6 represents reduction of the error (4) in the first multigrid iteration
of the simplified parallel cycle (Fig. 5) starting the iterand zero. After four multi-
grid iterations steps on the multigrid structures generated by the coarse grids
of the first level, error of approximation to the solution of (2) composed from
solutions of 27 independent problems becomes small.

This error can be estimated as follows: for second-order discretization of (2),
we have

‖ua − uh‖ = Ch2.

Second-order seven-point discretization of (2) on coarse grids of the first level
with mesh size 3h results in

‖ua − u3h‖ = C(3h)2 = 9Ch2.

Error estimation becomes

‖uh − u3h‖ ≤ ‖ua − uh‖ + ‖ua − u3h‖ = Ch2 + 9Ch2 = 10Ch2.

i.e. difference between numerical solution and approximation to the solution
is one significant digit.

Compared to the traditional single-grid Seidel method, RMT has a sin-
gle extra problem-dependent component – the number of smoothing iterations.
Numerical experiments are intended for studying efficiency of the parallel com-
ponents of RMT as a function of the unknowns number (or the number N of
grid points used for the boundary problem approximation).

3 Algebraic Parallelism of RMT

Efficiency of Gauss–Seidel method depends strongly on the ordering of equations
and unknowns in many applications. Also, the possibility of parallel computing
depends strongly on this ordering. The equations and unknowns are associated
in a natural way with blocks of the unknowns. It suffices, therefore, to discuss
orderings of the unknown blocks. Figure 7 represents three coloured block order-
ing in one dimension. Multicoloring allows the parallel execution of Gauss–Seidel
relaxation. In d dimensions, such multicoloured block ordering defines the par-
allel block plane smoothing.

If the number of threads is less than the number of grids forming the given
level, unknown blocks partitioning is a natural approach to algebraic parallelism
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Fig. 6. Reduction of the error (4) in 27 independent subproblems (the first multigrid
iteration).

Fig. 7. 1D three coloured ordering of the unknown blocks.

of RMT. In this approach, the set of unknown blocks is split into C3κ (κ =
1, 2, . . .) subsets, such that 3κ available threads can jointly solve the underlying
discrete problem. Here C is the number of colours in the used multicoloured
ordering of the unknown blocks.

Personal computers (Intel(R) Core(TM) i7-4790 CPU@3.60 GHz) and com-
puter cluster K-60 of Keldysh Institute of Applied Mathematics [9] (Russian
Academy of Sciences) are used for the computational experiments for study
of the parallel smoothing efficiency E0 (1) on the finest grid.

Figure 8 represents results of the parallel computations. Reduction of the
parallel RMT efficiency is observed in 27 thread implementation. Smoothing
iterations on the finest grid is small-scale granulated component of RMT, but
large algorithmic complexity of the Vanka-type smoother (∼ N3 arithmetic oper-
ations, for each box, one has to solve a N × N system of equations to obtain
corrections for the unknowns) leads to almost full parallelism.
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Fig. 8. Parallel smoothing efficiency E0 (1) on the finest grid.

4 Geometric Parallelism of RMT

Remember that the problem of the very coarse grids leads to multigrid specific
parallel complications which do not occur in classical single-grid algorithms. This
crucial impact of the coarse grids increases, the more often the coarse grids are
processed in each cycle. A parallel W-cycle, for example, has a substantially
different parallel complexity from that of a parallel V-cycle [5].

An important advantage of the geometric approach to parallelization is the
reduction of the discrete boundary value problem to the set of 3κ independent
problems, which can be solved in parallel without data exchange between pro-
cessors for any used solver. Therefore one aim of parallel RMT is to perform as
little work as possible on the finest grid and to do as much work as possible on
the coarse levels. Extra multigrid iterations on the coarse levels lead to a con-
siderably better parallel efficiency of RMT. Smoothing iterations on the coarse
levels is large-scale granulated component of RMT.

Figure 9 represents results of the parallel solution of the model boundary
value problem (2) on the coarse levels. We perform four multigrid iterations
on the multigrid structures generated by the coarse grids of the first level. Also
reduction of the parallel RMT efficiency is observed in 27 thread implementation.
This test demonstrates a significant loss of efficiency for solving 27 independent
subproblems. It means that the memory access pattern for computing those
multigrid iterations need to be carefully designed, as their performance is very
dependent on the memory bandwidth. Our study illustrates that memory band-
width is a major bottleneck for multigrid. The role of memory and the deepening
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Fig. 9. Parallel smoothing efficiency on the coarse levels.

memory hierarchy on contemporary processors in the performance in numerical
codes cannot be overstated.

Parallel RMT allows one to avoid a load imbalance and communication over-
head on very coarse grids.

5 Parallel Multigrid Iteration

First parallel multigrid iteration of RMT shown on Fig. 5 consists of four multi-
grid iterations on the independent multigrid structures generated by the coarse
grids of the first level (geometric parallelism of RMT) and parallel smoothing on
the finest grid based on the multicoloured block Gauss–Seidel iterations (alge-
braic parallelism of RMT). Figure 10 represents efficiency of the first parallel
multigrid iteration.

6 Remarks on Parallel Implementation

Inefficient memory access is one of the most common performance problems
in parallel programs. The speed of loading data from memory traditionally lags
behind the speed of their processor processing. The trend of placing more and
more cores on a chip means that each core has a relatively narrower channel
for accessing shared memory resources. On NUMA computers, accessing remote
RAM is slower than accessing local memory. Therefore, to access the RAM
of another socket it is necessary to access the QPI or HyperTransport bus, which
is slower than the local RAM access bus. The program analysis performed by the



208 S. Martynenko et al.

Fig. 10. Efficiency of the first parallel multigrid iteration.

Intel VTune Performance Analyzer shows that when 27 thread implementation
using 2 Intel Xeon Gold 6142 v4 processors leads to 15–18% of memory accesses
are accesses to remote memory. It results in reduction of the parallel program
efficiency. This problem does not arise if all threads go to one processor.

Our future work is development of approaches to made memory-bandwidth
efficient for parallel RMT.

7 Conclusions

The RMT has been developed for application in black-box software, because
it has the least number of the problem-dependent components. This technique
can solve many (non)linear problems to within truncation error at a cost of
CN log N arithmetic operations, where N is the number of unknowns and C
is a constant that depends on the problem. Large-scale granularity of the par-
allel RMT (geometric parallelism) coupled with the multicoloured Gauss-Seidel
iterations (algebraic parallelism) lead to almost full parallelism of the multi-
grid iterations. The geometric approach, based on a decomposition of the given
problem into a number of subproblems without an overlap, should be used to
overcome the problems of large communication overhead and idling processors on
the very coarse grids independent of the smoother. Results of numerical experi-
ments on shared memory architectures show the high parallel efficiency of RMT
components.
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Abstract. The report discusses the problem of exact calculation and
evaluation of network reliability. We consider two common reliability
measures for networks with unreliable edges: all-terminal network relia-
bility and diameter constrained network reliability. For each of them the
problem of its calculation is NP-hard. Parallel algorithms for calculating
and evaluating these characteristics with use of GPUs are proposed. The
results of numerical experiments are presented.

Keywords: Network reliability · Random graph · Diameter
constraint · Monte Carlo method · Associative algorithm · GPU

1 Introduction

The task of network reliability calculation is an important component of network
topology design and optimization. In practice, elements of a network can fail, as
in any other technical system. For networks for various purposes, such elements
are nodes and edges that fail due to breakage, wear, or other reasons. Typically,
such a system is represented by an undirected random graph, in which the ver-
tices are network nodes, and the edges are network communication channels. We
study the case of unreliable edges, and the nodes are assumed to be perfectly
reliable. Thus, for each edge its presence probability is given.

The classic measure of network reliability R(G) is the all-terminal network
reliability (ATR), i.e. the probability that any two nodes are connected by a
path of workable edges [1]. However, since in practice the number of transit
nodes always matters when establishing a connection [2], another measure of the
reliability RK(G,D) is also investigated: the network reliability with diameter
constraint (NRDC). NRDC is the probability that any two nodes from a given
set of terminals K ⊆ V are connected by a path of workable edges and the
number of edges in each path is not greater than a given integer D [3,4]. The
problems of exact calculations of these measures are NP-hard [1,5].

To solve the problems of network reliability analysis, both sequential and
parallel methods are actively studied. There are parallel methods for exact relia-
bility calculation [6,7] and evaluation [8–10]. Note that all of these methods were
c© Springer Nature Switzerland AG 2021
V. Malyshkin (Ed.): PaCT 2021, LNCS 12942, pp. 210–219, 2021.
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designed to run on supercomputers with CPUs only. Recently, GPUs have also
been used to analyze the reliability of systems (based on Markov chains) [11],
but they have not yet been used to solve network reliability analysis problems.
This paper introduces such methods for the first time.

We propose new methods designed to run on a GPU: a parallel matrix method
for calculating NRDC and parallel methods for estimating and exact calculating
ATR. Methods for calculating ATR are based on an associative algorithm for
checking connectivity, which was developed for an abstract model of associative
parallel processors (STAR-machine) [12]. However, for ATR calculation we need
to check a large number of subgraphs. Therefore, a new modification for checking
of a batch of subgraphs in parallel is designed with use of CUDA and cuRand
library. Unlike the algorithm in [12], it does not use the implementation of the
STAR machine on GPU.

An analysis of the numerical experiments, including experiments conducted
on Siberian Supercomputer Center of SB RAS, shows the effectiveness and appli-
cability of these methods. Due to the almost linear scalability of the reliability
evaluation by Monte Carlo method, the proposed evaluation technique based on
associative algorithms opens up new possibilities for solving such problems using
high-performance hybrid clusters with GPUs.

The rest of the paper is organized as follows: basic notations and definitions
are given in the Sect. 2, Sects. 3 and 4 describe the methods for calculation of
ATR and NRDC respectively along with the results of numerical experiments.
Section 5 is the brief conclusion.

2 Notations and Definitions

Let G = (V,E) be an non-oriented graph; V is the set of vertices and E is the
set of edges. For each edge e a real number pe, 0 ≤ pe ≤ 1, is given. pe value is
the presence probability of edge e.

Discrete probabilistic space W = (Ω,P ) is defines as follows. Here Ω is the
space of elementary events (realizations), formed by various subgraphs of G,
determined by the presence or absence of each edge. For the given elementary
event, the present edges are named operational and the absent edges are referred
to as failing. Space Ω may be represented as union of all binary vectors of length
|E|, therefore, Ω consists of 2|E| elements.

The probability of an elementary event w ∈ Ω is defined as the product of
probabilities of the presence of operational edges, multiplied by the product of
probabilities of the absence of failing edges:

P (w) =
∏

e∈wa

pe

∏

e∈wb

(1 − pe).

Here wa is the set of operational edges, wb is the set of failing edges of subgraph
w.

All-terminal network reliability is defined by the following expression:

R(G) =
∑

w∈Ω

P (w) · μ(w), (1)
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where μ is the connectivity indicator function:

μ(w),=
{

1, if w is connected,
0, otherwise.

Let us also assume that integer value D and subset K of nodes (terminals)
are given. Network reliability with diameter constraint is used when each pair
of terminals should be connected by path of length not greater than D (D-
connected). Then, diameter constrained network reliability is defined as:

RK(G,D) =
∑

w∈Ω

P (w) · χ(w), (2)

where χ is the D-connectivity indicator function:

χ(w),=
{

1 if w is D-connected,
0 otherwise.

3 ATR Calculation Using GPU

For calculation of the all-terminal network reliability with unreliable edges, in
accordance with the definition of this indicator, it is necessary to process all
subgraphs (realizations) of the network graph. The number of such subgraphs
grows exponentially with the number of edges of this graph. For each subgraph,
the fact of its connectivity should be established. Then, the probabilities of
connected realizations are summed up to obtain the network reliability value.
For example, to calculate the reliability of the 4 × 4 grid network (16 vertices,
24 edges), it is necessary to check the connectivity of more than 2.5 million
subgraphs.

Earlier [6,7], we study the possibility of supercomputers with distributed or
shared memory using for exact reliability calculation. Here we carry on develop
parallel methods, using GPU for faster reliability calculation. In our implemen-
tation, the subgraphs are processed in batches of 8196, which takes about 1.3 s
for 4 × 4 grid using an Nvidia GeForce 920m graphics card. However, for the
5 × 5 grid network, calculation cannot be performed in a reasonable time.

Therefore, instead of the exhaustive enumeration of all subgraphs, we can
generate a given number L of random subgraphs (taking into account the prob-
abilities of the presence of edges) and, on its basis, estimate the reliability using
the Monte Carlo method [10,13], which is equal to the ratio of the number of
connected realizations to the number of all realizations. For ATR, the L value
can be defined before the calculations in order to achieve given accuracy by the
3-sigma rule [10].

To check a random subgraph for connectivity, we represent the graph as list
of edges. Since the subgraph connectivity check can be performed independently
for each subgraph, each block of GPU is used to generate and to check subgraphs
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from a certain subset, whereas a thread corresponds to an edge. This approach
allows us to minimize communications between CPU and GPU. Only the initial
graph is sent from CPU to GPU.

Fig. 1. Structure of data

The Fig. 1 shows the chosen structure for the data representation. Arrays sV
and eV are the list of edges for 3×3 grid. Variable d ed is an array of arrays. Its
i-th element defines subgraph for checking by i-th block. The result of checking
added to d res[i].

At the first, subgraphs are generated using the cuRAND library. Then the
connectivity of the each subgraph is checked. The technique used is similar to
the associative parallel algorithm from [12]. Note that the each block i performs
Li generations of random subgraphs and checks their connectivity. The value of
Li depends on the initial L and the number of blocks that can be physically
executed in parallel by a GPU.

The listing 1.1 shows the step of Dejkstra’s algorithm for connectivity check-
ing of a subgraph. Here the variable iter obtains the value only if any vertex is
marked as passed on this step. Arrays sV [M ] and eV [M ] determine the original
graph, which is the same for all blocks. Array ed[M ] specifies the processed sub-
graph (ed = d ed[blockId.x]). Array d0[N ] marks vertices passed in the previous
step. Array d1[N ] marks vertices passing at the current step.

Listing 1.1. “Step of connectivity checking.”

d e v i c e void d e j k s t r a s t e p ( i n t i t , i n t ∗ i t e r , i n t ∗sV ,
i n t ∗eV , Pointer ed , Po inter d0 , Po inter d1 )
{

i n t k=threadIdx . x ;
i n t s t=sV [ k ] ;
i n t en=eV [ k ] ;
i f ( ed [ k]==1)
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{
i f ( d0 [ s t ]<d0 [ en ] )

{
d1 [ s t ]=d0 [ en ] ;

∗ i t e r=i t ;
}
i f ( d0 [ s t ]>d0 [ en ] )
{

d1 [ en]=d0 [ s t ] ;
∗ i t e r=i t ;

}
}

}
Figure 2 shows how the algorithm works for the connectivity checking of a

subgraph of the 3 × 3 grid network. Initially, the vertex 0 is marked as passed
(Fig. 2 (a)). Then the procedure dejkstra step is called, until the variable iter
becomes updated (Fig. 2 (b)-(f)). The subgraph is connected if all vertices are
marked as passed.

Fig. 2. An example of the connectivity checking of a subgraph

The result of the first stage is an array, where i-th element contains the
number of connected subgraphs on the i-th block. Thereafter, the all elements
are summed, and the obtained value is sent to CPU.

Numerical experiments were performed with use of PC with GeForce 920 m.
Another series of experiments were conducted on the Kepler K40 computational
cluster (Siberian Supercomputer Center of SB RAS). As the graph topology
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Fig. 3. Tested network

the GEANT network structure in 2009 (Fig. 3) was chosen in assumption that
reliabilities of all edges are equal with each other. Let us denote this value by
P . The dependence of the running time on the parameters P and L is presented
in Tables 1–2 (in seconds). The difference in the computation time follows from
the graphic accelerators characteristics.

Table 1. Running time of ATR calculation with use of GeForce 920M

L P=0.75 P=0.9 P=0.99 P=0.999

105 22.85 23.00 23.16 23.18

106 27.18 29.1 30.65 30.77

107 69.6 88.5 103.65 104.81

108 493.72 680.85 833.82 843.92

Analysis of the experimental data shows that for a fixed number L of realiza-
tions, the dependence of reliability calculation time on P value is approximated
by the function t = a ∗ P 1.42. The main reason is not big difference for con-
nectivity checking disconnected and connected subgraphs. The dependence of
computational time on L for a fixed P is linear, taking into account an additive
constant, which is determined by the number of edges of a graph. When calcu-
lating on the GeForce 920M card, the additive constant is approximately equal
22 s, while on Kepler K40 computational cluster it is an order of magnitude lower
( 2 s) for the same graph.
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Table 2. Running time of ATR calculation with use of K40

L P=0.75 P=0.9 P=0.99 P=0.999

105 2.09 2.11 2.16 2.16

106 2.94 3.39 3.70 3.73

107 11.38 15.69 18.93 19.09

108 95.67 138.69 170.83 172.70

Table 3 shows the comparison of the time of GEANT network reliability
estimation by Monte Carlo method with use of GPU (GeForce 920M) and CPU
in the case of L = 107. The CPU has Intel Core Duo 2.4 GHz processor; the
GPU is GeForce 920M.

Table 3. Running time of ATR calculation with use of GPU and CPU

Edge reliability value P=0.75 P=0.9 P=0.99 P=0.999

Calculation time with use of CPU 45 72 314 402

Calculation time with use of GPU 70 89 104 105

Another experiments were performed for ATR evaluation of linear wireless
sensor networks. Despite their linear physical structure, the corresponding lon-
gitudinal graph may be not linear due to links between not only neighbor nodes
[14]. Such graphs can be not series-parallel, so the reliability evaluation meth-
ods are in demand for the linear wireless sensor networks analysis. Numerical
experiments (Table 4) were conducted on graphs obtained by the recursive pro-
cedure of joining to an already formed longitudinal graph of a complete graph
on 4 vertices K4, provided that two vertices of these graphs coincide. K4 is also
taken as an initial graph. The longitudinal graph obtained by this procedure of
union of k − 1 graphs K4 we denote by Kk

4 (Fig. 4). Calculated reliability values
with an accuracy of 5 decimal places for K100

4 were 0.98208 and 0.45341 for
P = 0.9 and P = 0.75 respectively. For K100

4 , evaluated reliability was 0.989024
in case of P = 0.9 and 0.65684 in case of P = 0.75. Use crude evaluation [10]
in case of L = 108 , an error for the calculated values is 0.00015. The depen-
dencies of the calculation time on P and L differ from similar dependencies for
the GEANT network. This can be explained by different graph densities and
different proportions of connected implementations.

The analysis of execution shows the following. On the one hand, the process-
ing time for a connected subgraph is slightly longer than for an disconnected one.
On the other hand, the proportion of connected subgraphs among the generated
subgraphs significantly decreases with P decreasing. Obviously, the runtime lin-
early depends on L, taking into account the additive constant. As the results
show, the main advantage of using GPU in comparison with CPU for network
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Fig. 4. Graph K5
4

Table 4. Running time of Kk
4 ATR calculation with use of GeForce 920M

L P=0.75 (K50
4 ) P=0.9 (K50

4 ) P=0.75 (K100
4 ) P=0.9 (K100

4 )

105 1.33 1.41 24.27 24.91

106 7.43 8.19 44.69 50.52

107 66.48 73.86 243.62 301.87

108 656.8 729.94 2232.26 2810.87

reliability evaluation is the weak dependence between runtime and an edge reli-
ability value. This advantage is especially noticeable for networks with highly
reliable edges. Note that such networks are common in various real-world appli-
cations.

4 Calculating NRDC Using GPU

The next proposed method is based on the usage of GPU and CUDA for fast
NRDC calculation. It is well-known, that if T is an adjacency matrix of a graph
G and W = TD, then W [i, j] �= 0 if and only if nodes i and j are connected
by some path of the length D (some edges may be used more than once). Thus,
summarizing all Wd = T d for d = 1, . . . , D we obtain matrix WD in which non-
zero element WD[i, j] shows possibility of reaching node j by not more than D
steps starting from the node i. If all WD[i, j] are non-zero, then the diameter
of G is equal or lesser than D. If all WD[i, j], i, j,∈ K are non-zero, then G is
reliable from point of view of NRDC (D-connected).

As it was mentioned above (2), we can obtain NRDC value of by summa-
rizing probabilities of all D-connected graph realizations, the number of which
is 2|E|. Thus, for implementing this approach we need to generate all possible
realizations of G which number is very large. For example, lattice 4 × 4 has 16
nodes and 24 edges, thus it has 224 = 16777216 possible realizations. Unlike the
approach above for ATR calculation, the realizations are prepared in CPU and
loaded by parts according operative memory of GPU.

With help of GPU, we obtain for each realization all matrices Wd = V d for
d = 1, . . . , D, summarizing them simultaneously. Obtained matrix is sent from
GPU to CPU, where it checked for D-connectivity. If a matrix, corresponding to
realization under consideration, is D-connected, then its probability is calculated
as production of pe for existent edges e and 1 − pe for failed ones, and added to
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NRDC value, which is initially equal to 0. Thus, for NRDC calculation we use
GPU just for matrices multiplication.

Experiments show that this method is effective only in case of large D val-
ues and |K| values near to |V |. Otherwise, the sequential factoring method [1]
on CPU is more effective. For example, RV (G, 6) and RV (G, 23) calculation
for the mentioned lattice 4 × 4 take 56.0 and 56.5 s on GPU, correspondingly.
Calculation time with use of CPU was 1.5 s and 24.5 min, correspondingly. It
should be taken into account that the calculation on the CPU is carried out
by the factorization method, which is much faster than implementation of the
enumeration. Therefore, time of computation by CPU grows significantly with
the diameter value increasing. The same can be said about the dependence of
time on the number of terminals. At the same time, computational time with
use of GPU is practically independent of the diameter value or the number of
terminals. The PC with CPU intel i7 4790, 8 GB RAM, and GPU GeForce 780
Ti 3 GB was used for experiments. It seems advisable to use this approach on
hybrid computers (CPUs+GPUs), which allows us significantly speed up the
calculation compared to using only CPUs.

5 Conclusion

Parallel algorithms for networks reliability calculation with use of GPUs are pre-
sented. Algorithms are based on the enumeration of all graph implementations
and on the analysis of a sample of graph implementations, i.e. on the Monte Carlo
simulation. The complexity of the first approach is exponential. With the help
of the second approach, we carry out the calculation with a given accuracy, hav-
ing previously determined the required number of implementations. The main
advantage of such approach is not so strong dependence between runtime and
an edge reliability as for Monte Carlo network reliability evaluation with use of
CPU. For diameter constrained network reliability, GPU is used for fast expo-
nentiation of the adjacency matrix of a graph. This approach has proved quite
useful for large diameter values and large proportion of terminals.
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Abstract. The programming process for modern parallel processors
including multi-core CPUs and many-core GPUs (Graphics Processing
Units) represents a significant challenge for application developers. We
propose to use the widely-popular programming language C++ for paral-
lel programming in a portable way, allowing the same program to be run
on different target architectures. In this paper we extend our framework
PACXX (Programming Accelerators in C++) with an additional com-
pilation pass which simplifies data management for the programmer and
makes the programming process less error-prone. These changes result in
a significant reduction of execution stalls caused by memory throttling.
We describe the implementation of the new data layout optimization
and we report experimental results that confirm the advantages of our
approach.

Keywords: GPU programming · High-performance computing ·
Memory access optimization · Unified parallel programming · C++

1 Introduction

Many current high-performance applications exploit modern parallel processor
architectures like multi-core processors (CPUs) and so-called accelerators, most
notably Graphics Processing Units (GPU). Computers with accelerators offer the
user a higher computation power due to many cores working in parallel, but at
the same time they pose new challenges with respect to their programming. One
of the major difficulties in programming such systems is that two distinct pro-
gramming models are required: 1) the host code for the CPU is usually written
in C/C++ with a restricted, C-like API for memory management, 2) the device
code for the accelerator has to be written using a device-dependent, explicitly
parallel programming model, e.g., OpenCL (Open Computing Language) [9] or
CUDA (Compute Unified Device Architecture) [17].

This makes the programming process complicated and error-prone and
requires expert-level knowledge from the application developer.

We are developing PACXX (Programming Accelerators in C++) [7] - a novel
framework that simplifies accelerator program development by allowing appli-
cation developers to write programs in a widely used language, C++, with all
c© Springer Nature Switzerland AG 2021
V. Malyshkin (Ed.): PaCT 2021, LNCS 12942, pp. 223–234, 2021.
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the comfortable features of the modern C++14/17 standards [3]. A mechanism
of implicit memory management [12] in PACXX shortens the program code and
makes the programming process less error-prone. Implicit memory management
in the framework is implemented by a custom compilation pass which gener-
ates additional host code using the Clang front-end and LLVM intermediate
representation (IR) [14] for data transfers between host and accelerator, trans-
parently for the developer. However, data restructuring is still required to avoid
performance problems due to memory throttling, that are caused by the limited
memory transfer bandwidth of an accelerator. Especially in applications with
complicated memory access patterns, this remains a significant problem which
requires a manual data layout optimization.

In this paper, we extend the PACXX framework to further improve the state
of the art in programming parallel systems with accelerators. Our main contri-
bution is introducing and implementing in PACXX an implicit, i.e., automatic
optimization of the data layout on the accelerator, thereby removing a major
cause for execution stalls (memory throttling) and liberating the programmer
from the need for manual data restructuring.

The remainder of this paper is structured as follows. In Sect. 2, we compare
the existing PACXX framework to the two most popular approaches, CUDA
and OpenCL, and also to related work on using C++ for parallel program-
ming. Section 3 describes our idea of automatic data layout optimization in
PACXX. In Sect. 4 we explain the design choices we make to implement this
extension of the PACXX framework. Our examples and experiments through-
out the paper demonstrate that our approach helps the programmer to avoid
performance issues caused by memory throttling in applications with complex
memory access patterns.

2 Programming for Accelerators: PACXX vs. State
of the Art

Currently, OpenCL and CUDA are the most popular approaches to parallel
programming for high-performance systems with accelerators. They combine
two different programming models: restricted C/C++ with the corresponding
OpenCL- or CUDA-specific features. This makes several programming aspects
significantly more complex and tedious as compared to the modern capabilities
of C++ programming for traditional computers.

In particular, memory for static and dynamic arrays must be allocated explic-
itly and this has to be done twice, first in the host memory and then again in
the device memory. In addition, the restricted, C-like API for memory manage-
ment implies significantly longer boilerplate code as compared to the modern
C++. Furthermore, the developer is responsible for performing synchronization
between the host and device memories and for the proper error handling, because
both CUDA and OpenCL provide C-like API error codes that must be checked
for each function call. This results in unnecessarily long, complicated, and error-
prone program code.
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Figure 1 shows a simple example code in C++ for performing the addition
of two vectors; it requires only 7 Lines of Code (LOCs) in standard C++.

1 int main() {

2 vector <int > a(1024) , b(1024) , c(1024);

3 auto vadd = [&]{

4 for (size_t i = 0; i < a.size (); ++i)

5 c[i] = a[i] + b[i];

6 };

7 }

Fig. 1. Simple code example: Vector addition in plain C++

The simple vector addition example shown in Fig. 1 was also programmed
in the tutorials on CUDA and OpenCL by the developers of these approaches,
i.e., by the experts in the field. The results are quite disillusioning as the new
programs are an order of magnitude longer: the CUDA version [6] requires 70+
LoCs, while OpenCL requires 110+ LoCs for this very simple example [18].
There have been efforts to extend the use of C++ for accelerator programming:

1. The C++ AMP approach [16] extends standard C++ by an explicit data-
parallel construct, and so-called array views provide functions for memory
transfers. However, the developer still needs to write more than one line of
code for each allocation and has to use the C++ AMP views instead of the
original C++ data types if synchronization is to be handled transparently.

2. VectorPU [15] follows a similar approach by providing special classes (so-
called smart containers) that handle the memory transfers, but still forces the
developer to use smart-containers instead of the original C++ data types.

3. SYCL [10] is similar to VectorPU, but with altered naming convention: buffers
and accessors instead of smart containers. The supported accelerator types
vary based on the implementation.

4. NVIDIA Thrust [8] and AMD Bolt [2] are libraries implementing the func-
tionality of the C++ Standard Template Library (STL) in a data-parallel
way, but they are restricted to GPUs from the corresponding vendor and do
not support modern C++ language features.

5. Annotation-based approaches like OpenMP [5] and OpenACC [1] expect the
user to use parallelism-oriented directives in addition to C++.

6. STAPL [4] offers STL functionality which is executed in parallel by an
underlying runtime system; it targets distributed-memory systems with MPI,
OpenMP and PThreads, rather than GPUs.

We develop PACXX [7] - a framework for programming systems with acceler-
ators, which offers a unified programming model based on the newest C++ stan-
dard, without any language extensions and uniformly covers both host (CPU)
and accelerator (GPU) programming. It is implemented by a custom compiler
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1 int main() {

2 auto& exec = Executor ::get();

3 vector <int > a(1024) , b(1024) , c(1024);

4 auto vadd = [=, &c](auto &config ){

5 auto i = config.get_global (0);

6 if ( i >= a.size ()) return;

7 c[i] = a[i] + b[i];

8 };

9 KernelConfiguration config ({1, 1, 1}, {a.size(), 1, 1});

10 exec.launch(vadd , config );

11 }

Fig. 2. Vector addition expressed in PACXX with our previous additions [12]

which generates accelerator code using the Clang front-end and LLVM IR [14]
and modifies the host code for kernel execution transparently for the developer.

Using our previous enhancement of PACXX [12], the developer can trans-
form the sequential, CPU-only C++ program in Fig. 1 into a portable parallel
application shown in Fig. 2: it is capable of running on accelerators of different
vendors with significantly fewer changes and additions (4 LOCs) when compared
to CUDA (70+ LOCs) [6] or OpenCL (110+ LOCs) [18].
The new PACXX code in Fig. 2 requires only a modest additional programming
effort compared to CUDA or OpenCL:

– The auto type is used throughout the program to rely on type inference of
the compiler instead of specifying the complete type name by hand.

– The accelerator initialization is handled by PACXX internally. The provided
Executor class allows such simplified initialization using the get() method
that automatically detects available accelerator and prepares the appropriate
back-end for it (line 2).

– The returned Executor object gives access to kernel management (line 10).
– The kernel is represented as the original lambda function from Fig. 1 with

an additional argument generated by the PACXX runtime, which provides
access to common execution thread identifying information, such as global
thread id (line 5); the capture type of the kernel lambda defines the data
transfer behaviour.

– To launch a kernel (line 10), the developer specifies the degree of parallelism
in up to three dimensions (line 9).

Figure 3 shows PACXX code for a more complicated example of matrix mul-
tiplication which has a comparatively complex memory access pattern. The code
demonstrates that, despite our previous improvements [12], difficulties remain
when writing PACXX code for parallel systems with accelerators. An inher-
ent problem in this code is that no matter how one selects the thread indices
(lines 6–7), the memory addresses in line 10 will be out of order for neighboring
threads.
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1 int main() {

2 auto& exec = Executor ::get (0);

3
4 double a[1024][1024] , b[1024][1024] , c[1024][1024];

5 auto matmul = [=, &c](auto &config) {

6 auto row = config.get_global (0);

7 auto column = config.get_global (1);

8 double val = 0.0;

9 for (unsigned i = 0; i < width; ++i)

10 val += a[row * width + i] * b[i * width + column ];

11 c[row * width + column] = val;

12 };

13
14 KernelConfiguration config ({width / threads , width},

{threads , 1}, 0);
15 exec.launch(matmul , config );

16 exec.synchronize ();

17 }

Fig. 3. Matrix multiplication expressed in PACXX with our previous additions [12]

Figure 4 shows the profiling results measured on an Intel Xeon E5-1620 v2
with a NVIDIA Tesla K20c on the GPU backend for the code of Fig. 3 using
our profiling interface [11] that in this case relies on the CUDA Profiling Toolkit
CUPTI: they demonstrate that in applications with increasingly complicated
memory access patterns the execution stalls caused by memory throttling (i.e.,
memory access delays) also increase correspondingly (up to 72% in this example),
becoming a significant factor that damages the overall application performance.

In the following, we present our automatic approach to avoid the execution
stalls caused by memory throttling. We also aim at further reducing the required
additional LoCs in complex applications that employ application frameworks like
DUNE [13]. Altogether, our approach improves both the programmability and
the performance of applications with complicated memory access patterns.

3 Data Layout Optimization: From Manual to Automatic

The currently used, low-level parallel programming approaches like OpenCL
and CUDA offer only one way to transfer data between the host and the accel-
erator, namely a memcpy-like interface, which corresponds to what happens at
the hardware level. The developer can manage (allocate, transfer, etc.) only a
single continuous block of raw memory at a time. The previous additions to
PACXX [12] simplify the management of complex data structures by replicating
the data layout between host and accelerator.

In this section, we further improve the PACXX framework by making the
data layout optimization on the accelerator fully automatic. The data on the
host is usually laid out based on its meaning (for example, as shown in the
matrix multiplication, line 4 in Fig. 3):
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Fig. 4. Execution stalls distribution for the code in Fig. 3.

– The member fields of an object are grouped together in a structure placed in
a continuous block of memory.

– Multiple structures of the same type are placed one after another in an array.
– All arrays together form the data structure of the program.

Such data layout as a structure of arrays of structures is useful for preserving
the meaning of the program. However, to reduce the memory-related execution
stalls during parallel data processing, we propose the following organization of
the application data:

– All processing threads in a work group are executing in lock step, so loading
the same member field of each object has to be completed before any of the
threads resume execution. Since threads in a work group share a single local
cache block, the requested data for the whole work group has to be located
in a continuous block of memory. Therefore we arrange the member fields of
all objects required for the work group one after another in an array.

– Multiple work groups execute independently and have private cache memory.
To further increase the efficiency of each local cache block we arrange the
required arrays one after another in a single structure - a data set for each
work group.

– All work group data sets can be arranged one after another in an array to
allow an arbitrary amount of work group processing tasks.

This proposed organization of the application data will be further discussed
in Sect. 4 (Fig. 7, Fig. 8). Summarizing, our idea is to use an array of structures
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of arrays of application data in order to improve the efficiency of the memory
controllers available on the accelerators.

Figure 5 shows an example of the additional data layout manipulations
required by applications with complicated memory access patterns like the
matrix multiplication in Fig. 3. By employing the new mechanism described in
Sect. 4, such additional data layout manipulations are now performed automati-
cally by the PACXX framework, thus reducing the amount of required additional
LoCs and making the applications less error-prone.

1
...

2 a[1024][1024] , b[1024][1024] , c[1024][1024];(Fig. 3 line 4)

3 a = transpose a

4 segmented_a = a split into segments of length threads

5 segmented_b = b split into segments of length threads

6 data_set [2][1024][1024]

7 foreach a_segment in a and b_segment in b:

8 data_set.append(a_segment)

9 data_set.append(b_segment)

10 auto matmul = [=data_set , &c](auto &config) {(Fig. 3 line 5)

11
...

12 segmented_results [1024*1024/ threads/threads ][ threads ][ threads]

13 c = regroup segmented_results

Fig. 5. The pseudocode for the additional data layout manipulations in code of Fig. 3
for avoiding memory access stalls.

4 Implicit Data Layout: Design and Implementation

Figure 6 shows how we extend the PACXX framework by introducing an implicit
data layout optimization, where parts of the figure are labelled with the numbers
of steps as explained below:

1. The PACXX compiler performs the following additional steps during compi-
lation as compared to the usual Clang front-end [7]:
(a) Code is generated for data transfers between host and accelerator.
(b) Data transfer code is adjusted for optimized data layout on the accelerator

(grey box, Fig. 6).
(c) LLVM Intermediate Representation (IR) for the kernels is generated.
(d) During compilation for the host, the kernel IR is integrated into the final

executable.
(e) Calls to the PACXX runtime, additionally linked to the executable, are

generated for memory and accelerator management.
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2. The kernel IR code is compiled by the online compiler (PACXX runtime) for
the available accelerator.

3. The PACXX runtime automatically performs all necessary steps to launch
kernels.

4. Different back-ends allow to create programs for diverse hardware (e.g.,
AMD/NVIDIA GPUs).

Fig. 6. The PACXX framework with our extension (grey box)

In our implementation of PACXX, performing additional data manipulations
is best done as a Clang AST (Abstract Syntax Tree) pass, because it retains all
the original data type information [12]. The new Clang AST Pass implementing
the data layout optimization is called by the modified Clang front-end (1b above)
after the implicit memory management pass and before exporting the application
code to LLVM IR. This pass analyzes the provided AST and inserts new AST
nodes or replaces existing AST nodes containing the memory transfer operations.

The improved PACXX framework described in this paper initially analyzes
all memory load/store instructions in the kernel code. Any memory load/store
instruction with addresses that are constant or depend on application data value
is left as is. All remaining memory load/store instructions, with processing thread
index dependent addresses, are considered for optimizing of the memory con-
troller usage according to Sect. 3: for each referenced array element in these
memory load/store instructions, if the array element’s size is smaller than the
distance between the addresses of two neighboring processing threads, then the
memory page accessed by the memory controller contains unused data.

Figure 7 and Fig. 8 show that in order to improve the efficiency of the memory
load/store instructions, the originally generated data transfer code [12] (Fig. 7a,
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Fig. 8a) is split and rearranged using looped multiple per-element memory oper-
ations (Fig. 7b, Fig. 8b). A more detailed explanation of the introduced modifi-
cations is as follows:

Fig. 7. Data transfer upload replacement (Numbers refer to the numbered steps
described under “From host to accelerator”)

– From host to accelerator (Fig. 7):
1. All elements of the referenced array are transferred into multiple array

segments of a parameterized length, which is assigned with the size of the
thread group of the hardware at runtime (grey boxes in Fig. 7b).

2. The memory address in the kernel’s memory load/store instruction for
the referenced array element is replaced with the new relocated address,
thereby improving the efficiency of the memory page access.

3. The transfer code for the remaining data is replaced with individual trans-
fer operations for the data segments around the processed array elements.
This preserves the expected addresses of objects which have not yet been
analyzed or will not be analyzed due to having constant or application
data dependent addresses (black boxes in Fig. 7b) and avoids transferring
duplicate data.

– From accelerator to host for variables captured by reference by the kernel
lambda (Fig. 8):
1. All elements of the referenced array are individually transferred from

multiple array segments of a parameterized length, which is assigned with
the size of the thread group of the hardware at runtime, into the original
memory addresses (grey boxes in Fig. 8b).
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Fig. 8. Data transfer download replacement (Numbers refer to the numbered steps
described under “From accelerator to host”)

2. The transfer code for the remaining data is replaced with individual trans-
fer operations for the data segments around the processed array elements.
This preserves the expected addresses of objects which have not been ana-
lyzed yet or will not be analyzed due to having constant or application
data dependent addresses (black boxes in Fig. 8b) and avoids transferring
duplicate data.

After analyzing and adjusting the relevant memory load/store instructions,
if the kernel code contains no memory load/store instructions with addresses
that depend on application data value, the generated data transfer operations
are analyzed. If any transferred objects of the original data structure are not
referenced by the kernel code, they can be exempted from the data transfer
to avoid placing unused objects in the accelerator’s memory. Such exemption
is done by replacing the existing memory transfer operation with individual
memory transfer operations for the data segments around the exempted objects.

Finally, the generated segmented memory operations are checked for zero
length segments, which are removed from the generated data transfer code.

Figure 9 shows the effect of implementing the data layout changes described
above. We observe a substantial performance improvement for the code example
in Fig. 3 by avoiding execution stalls caused by memory throttling. It can be
seen that the throttling effect has been significantly reduced (from 72% to 0,1%),
effectively removing execution stalls caused by memory throttling.
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Fig. 9. Execution stalls distribution for Fig. 3, profiled after applying the new data
layout optimization approach introduced in this paper

Summarizing, due to our improvements the PACXX framework can fully
automatically address the following two aspects:

– The layout of the data required by the kernel is automatically adjusted on
the accelerator.

– Memory no longer has to be duplicated and rearranged explicitly, but instead
its layout is automatically optimized.

5 Conclusion

This paper describes the design and implementation of data layout optimiza-
tion that significantly reduces the code size required to program accelerators
in a portable fashion in C++, while simultaneously improving the program’s
performance by eliminating memory access induced stalls, which are typical for
manual data layout approaches. Our extensive profiling results demonstrate that
our automatic optimization of the data layout removes the major cause of exe-
cution stalling due to memory access delays.

The introduced changes to the PACXX framework relieve the developer of
the necessity to optimize the accelerator’s memory manually in applications
with complicated memory access patterns such as matrix multiplication and
real-world application frameworks like DUNE [13].
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Abstract. The GPU-native CFD framework with dynamical adap-
tive mesh refinement (AMR) requires periodical execution of memory
compaction operations to relieve memory expenses. The present paper
addresses several different parallel GPU memory defragmentation algo-
rithms for octree-based AMR grids. These algorithms are tested on
benchmark CFD problems typical for AMR transformation. The results
show that the memory defragmentation algorithm based on the prefix
scan procedure is not only 1–2 order faster compared to algorithm based
on space filling curve (z-curve) but also surprisingly and dramatically
impacts on CFD solver performance by reducing total GPU runtime for
some problems up to 37%.

Keywords: AMR · CUDA · CFD · Octree

1 Introduction

The CFD framework we develop for the last few years was initially based on
three-dimensional Cartesian type grids. It efficiently performed on supercom-
puters equipped with hundreds of GPUs due to a simple static domain decom-
position [1]. However structured Cartesian grids have very limited flexibility
for managing different local mesh resolutions inside the computational domain
and often lead to excessive computational cost increase when applied to solv-
ing spatial CFD problems with features of much different length scales. To
overcome this difficulty, one can implement one of adaptive mesh refinement
(AMR) approaches. In our opinion, the octree-based AMR is the most promis-
ing approach for massively-parallel scalable CFD solver implementations since
one efficiently supports simple dynamic load balancing by exploiting (Morton
or Hilbert) space filling curve linearly ordering all grid cells. For pure unstruc-
tured AMR dynamic load balancing is the main factor limiting scalability on
supercomputers.

Exploiting Cartesian grids with recursive refinements forming quad-/octree
graphs requires adaptation of CFD numerical methods and AMR metadata man-
agement for corresponding grid structures arising as the result of the cell coarsen-
ing and refinement procedures. In conventional approaches for GPU-accelerated
c© Springer Nature Switzerland AG 2021
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CFD codes, the AMR function is partially or fully performed on CPU. This
requires regular GPU↔CPU data transfers which lead to GPU stalls. As opposed
to that, in the CFD framework we develop one of main features is the AMR man-
agement module natively executing on GPU without back and forth grid data
transferring to/from CPU RAM. For this module, all AMR procedures including
cells refinement and coarsening, neighbors (cells with common face) searching,
cell geometry extracting have been developed to efficiently perform on GPU. The
comparison with the P4est (MPI octree-based AMR framework) [2] has shown
clear advantages of our implementation for GPU-native AMR [3].

Combined with the Godunov-type CFD solver, our AMR module brings only
2% runtime overhead on Nvidia Tesla V100 in test problems with grid coarsen-
ing and refinement performed every timestep iteration [4]. During such grid
transformations newly coarsen and refined cells are consequently stored in the
free memory region whereas the memory for corresponding parent cells is not
used anymore. That leads to fragmentation and exhaustion of available GPU
memory. To fight this issue in our AMR module, a memory defragmentation
procedure is implemented on GPU. In fact, this procedure occurs to be the most
time-consuming part of the AMR module. The main purpose of this paper is
to optimize the GPU memory defragmentation kernel and to investigate the
influence of this procedure on the overall CFD solver performance.

In conventional approach, as one mentioned before, CFD solver is performed
on GPU while AMR procedures are fully or partially executed on CPU since they
are hardly implemented in multi-threaded programming model. To the author
knowledge there are only couple of papers describing fully-native GPU AMR
management [5,6] which are limited by employment only of two-dimensional
triangular grids. Unfortunately, the details of the memory management during
GPU grid refinement and coarsening aren’t provided in [5]. Authors of [6] solved
the memory fragmentation and exhaustion problem by tracking and reusing free
spaces (left after cell refinement/coarsening) directly in grid modification kernels
while we always add newly modified cells in the end of the corresponding arrays
and then separate defragmentation kernel is launched. In case when total grid
resolution is considerably decreased original in-place compaction algorithm is
used in [6] which actually represents some sort of memory defragmentation. It
would be interesting to compare our approach with [6] but that paper doesn’t
provide implementation details about direct tracking and reusing free memory
spaces.

The paper is organized as follows. In Sect. 2, the baseline numerical method
on octree-based grids in our framework is described. In Sect. 3, different opti-
mizations for GPU memory defragmentation are considered. In Sect. 4, numerical
results for different memory defragmentation implementations and CFD prob-
lems are presented.

2 Discrete Model on a Cartesian Grid with AMR

The finite volume method is used for discretizing the system of governing gas
dynamics equations on AMR Cartesian grid. For increasing the order of approx-
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imation, the piece-wise linear sub-cell reconstruction of the solution is imple-
mented with the MUSCL interpolated scheme [7]. The Godunov method is
employed to approximate the function of numerical flux with implementing the
exact solution to the face-based Riemann problem [8].

Time integration of the system of semi-discrete equations is fulfilled with
the explicit second-order predictor-corrector scheme that ensures the max norm
diminishing property, if the time step meets the CFL condition. This scheme is
known in literature as Godunov-Kolgan-Rodionov scheme. Details of the scheme
can be seen in [9], for example.

A limited gradient of the primitive state vector defined in each computational
cell is used for calculating face-related interpolated state vectors. This gradient
represents a linear cell reconstruction of the solution vector that maintains the
strong monotonicity condition: (uj −ui)(uσ

j −uσ
i ) ≥ 0, where the subscripts i and

j denote neighboring cells, the superscript σ indicates the face interpolated value.
Commonly, the limited gradient for Cartesian grids is introduced by applying a
1D slope limiter procedure to each coordinate direction. We extend this approach
to non-conformal locally adaptive octree-based grids. It should be noted that the
proposed extension is reduced to the conventional directional limited gradient
for Cartesian grids without adaptation.

The limiting algorithm is based on the least square method (LSM) applied to
a stencil consisting of the current cell and all neighboring cells having a common
face (or its part) with the current face. Let xj

i = xj−xi is the radius-vector of the
j-th neighbor. The subscript i is used here for the current cell. Δjui = uj −ui is
the difference between the values of a function u in the neighbor and current cells.
First, we calculate the cell LSM gradient (unlimited gradient) that is reduced
to central difference approximations for regular grids with no adaptation. Then,
we consider the derivative along the direction to j-th neighbor, ∂jui = (∇ui,x

j
i )

|xj
i | ,

and introduce the following one-sided derivatives

∂+
j ui =

Δjui

|xj
i |

, ∂−
j ui = 2∂jui

Δjui

|xj
i |

(1)

Finally, we define the limited derivative along the direction to j-th neighbor
as follows:

∂̄jui = φ(θj
i )∂

+
j ui, θ

j
i =

∂−
j ui

∂+
j ui

(2)

where φ(x) is the limiter function. There are several options for choosing
this function, which in 1D calculations guarantee the monotonicity condition,
e.g., MINMOD, MC, SUPERBEE, NOTVD (for definition see [4]). The limited
gradient is calculated with the LSM in the similar way as unlimited one.

The linear subcell reconstruction of the solution with the limited gradient
defined by derivatives (2) is used to calculate face-related values required for
numerical flux approximations and also for projecting the solution from the
coarse to fine grid in the refinement grid procedure.
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The AMR procedure is done with accordance to the refinement criterion
proposed in [10]. This criterion is local, just avoiding any global operations,
bounded by 0 and 1 that permits preset tolerances, and also non-dimensional, so
that specific physical parameters can be used without problems of dimensioning.
Its extension to multidimensional case and grids of arbitrary topology can be
suggested in the following way:

χ(u)i =
√∑

i,j

(Aij)2
/ ∑

i,j

(Bij + εCij)2. (3)

where the summation is taken over the number of space dimension, and

Aij =
∑

σ

(
∂u

∂xi

)
σ

nσ,jSσ, Bij =
∑

σ

∣∣∣∣
(

∂u

∂xi

)
σ

∣∣∣∣∣∣nσ,jSσ

∣∣, (4)

Cij =

∑
σ

|u|
∣∣∣∣nσ,j

∣∣∣∣Sσ · ∑
σ

|u|
∣∣∣∣nσ,j

∣∣∣∣Sσ

V ol
.

where V ol is the cell volume. The derivatives at cell interfaces in (4) are cal-
culated by averaging the gradients with cell volumes. The threshold values for
cell refinement and coarsening are generally model dependent. However, numer-
ical experiments show that these values can be chosen as χrf ∼ [0.2, 0.25],
χcr ∼ [0.05, 0.15] [11]. The constant ε is given a value of 0.01; it switches off
unnecessary refinement in regions of small oscillations appearing due to loss of
monotonicity.

The value assigned to the cell at the coarsening procedure is computed on
the base of conservative vectors, qcr =

∑
i

qcr(i)/8 (or/4 for 2D grids), the index

cr(i) indicates children cell to be coarsen into the cr cell. In the refinement
procedure, the values assigned to the arising children cells are computed on the
base of the conservative and the limited gradient of the refined cell: qcr(i) =
qcr + ∂q

∂z ∇zcr

(
xcr(i) − xcr

)
. This ensures the conservative property in both the

refinement and coarsening procedure.

3 Parallel Defragmentation Algorithms

The computational domain is initially discretized by a Cartesian grid which we
refer to as the base grid (Fig. 1). The cells (shown as “�”) of the grid are the roots
for local octrees when recursively refined. The dangling or leaf nodes (shown as
“�”) in octrees are physical cells actually used in the CFD solver. Other octree
cells are called anchored or virtual cells; they are shown in Fig. 1 as “�”. Three
arrays of base, anchored, and dangling cells with corresponding links between
their elements represent full tree structure of the AMR grid.

Once a cell of the AMR grid is refined, its position in the dangling cell array
is marked as “empty” (“×” on Fig. 1) and new cells resulted from the refine-
ment are atomically added to the end of the array. Corresponding updates are
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Fig. 1. Grid, corresponding graph and arrays before (left) and after (right) coarsen-
ing/refining.

performed in the anchored node array with relinking between the octree cells to
represent changes in the updated grid structure. The cell coarsening procedure
is performed in the same way (see Fig. 1). One may see that multiple procedures
of refining and coarsening lead to “holes” (denoted as “×”) in the arrays of dan-
gling and anchored cells and fast exhaustion of free space in the end of these
arrays. Therefore, one needs to periodically perform memory defragmentation
(compaction) procedure. In this paper, we propose solutions to the defragmen-
tation problem for dangling cells; the proposed solutions are easy implemented
also for anchored cells in nearly the same way.

The first defragmentation algorithm which was initially implemented in our
framework we refer to as octree-centered. In this algorithm, each n-th CUDA
warp is assigned one base cell with Sn ≥ 1 – number of dangling cells in its local
octree and prefix scan operation is performed:

Bn =
n∑

i=1

Si. (5)

Fig. 2. Initial grid arrays (left); octree-based (center, above) and cell-based (center,
bottom) defragmentation algorithms; defragmented arrays (right).
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After that all dangling cells of the local octree are consequently copied to
a new array in the place starting from the index Bn in the order defined by
“Z” space filling curve (SFC) (z-curve linearly orders all leaf nodes in the quad-
/octrees), Fig. 2. Since the size of the base grid in tests conducted is not so large
(about 103 − 104 cells) and octree traversing over z-curves (to copy cells in new
arrays) in different threads of warp (if each thread is assigned to separate octree)
may lead to warp divergence problems, it is decided to perform all operations in
only one of 32 warp threads. Obviously this reduces GPU resources utilization
but permits to spread octrees traversing over all GPU Streaming Multiprocessors
(SMs) rather than to concentrate them into one or few SMs letting other ones
to stall.

Prefix scan for (5) was naively implemented via polling and consequential
incrementing volatile variables inside each warp with appropriate threadfence()
synchronization calls. This led to partial serialization of warp execution and, con-
sequently, to overall performance decrease. Test results on different GPUs show
that the defragmentation procedure is the most time-consuming one compared to
another AMR kernels [3]; hence, it becomes the primary target for optimization.

The first attempt to increase the defragmentation performance is to exploit
the CUDA-optimized prefix scan implementation [12] so that the operation (5)
is performed in separate kernels preceding octree traversing. Having optimized
prefix scan in our framework, we can easily implement the new defragmentation
algorithm which we called cell-centered. It is based on the stream compaction
operation which exploits prefix scan. Stream compaction accepts the array of
dangling cells as the input vector and its predicate is just the cell flag (actual
physical cell (“�”) or “empty” (“×”)). Prefix scan is performed over the array
generated by predicate, which consists of 0 or 1. An i-th dangling non-“empty”
cell is then copied to a new defragmented array at the index equals to “i”-
th result of the previous prefix scan, Fig. 2. In other words, the cell-centered
algorithm compacts the array of dangling nodes by just eliminating “holes”
without changing the ordering of nodes.

The octree-centered algorithm is initially developed since it orders dangling
nodes in accordance with the z-curve thus preserving in some degree the mem-
ory locality i.e. when the reference to geometrically nearby physical cells in
the CFD solver is performed at nearby addresses. Our assumption is that the
octree-centered algorithm despite significant runtime due to octrees traversing
nevertheless possibly may allow to gain a higher solver performance thanks to
better memory locality in the defragmented array compared to the cell-centered
algorithm, which, in general, doesn’t aware of grid cells geometrical neighbor-
hood. However, the tests carried out (see below) show that the cell-centered
algorithm is not only significantly faster than the octree-centered one, but also
unexpectedly leads to considerable increase in the solver performance, so that
further optimizations in the octree-centered algorithm lose edge and importance.
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4 Numerical Results

The test problems are calculated on NVidia Tesla K20c (CUDA 7.5). To validate
our AMR framework, 2D Riemann problems from [13] are considered, namely,
the configuration 6 and 16. The computational domain for these problems is
a [0; 1] × [0; 1] quad and the base grid resolution is 50× 50 × 2 (since 2D solu-
tion is actually calculated on a 3D grid); 1- and 2-level maximum adaptations
are used. Refinement and coarsening are performed each timestep whereas the
defragmentation procedure is executed every 20-th timestep.

Fig. 3. Density fields for configuration 6 problem, 1- (left) and 2-level (right) adaptation
of 50 × 50 base grid.

Fig. 4. Density fields for configuration 16 problem, 1- (left) and 2-level (right) adap-
tation of 50 × 50 base grid.
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Fig. 5. (a) times per timestep 20 (233998 cells), 1020 (108747 cells) for cell-based (c-b)
and octree-based algorithm with naive prefix scan (o-b naive), optimized prefix scan
(o-b opt); (b) total runtime for different defragmentation algorithms.

2D slices for numerical solutions are presented in Fig. 3, 4. The AMR code
correctly captures eddy formations in the center of the computational domain
for configuration 6 and tracks specific low-density zone near the (0.5; 0.6) point;
the higher adaptation level permits to obtain more detailed and precise solution,
as expected. One should note that the grid size for configuration 6 is only about
2 × 104 cells, which is not enough for full GPU SMs utilization, so the perfor-
mance results only for configuration 16 are presented in Fig. 5. As one can see,
the optimized scan for the octree-centered algorithm reduces the defragmenta-
tion time in 2.8–7.7 times compared to naive scan version but almost doesn’t
impact on the total runtime. In contrast, the cell-centered algorithm is 14.3–
16.5 times faster than the octree-centered one and leads to 8.5% reduction of
the total runtime. Since the cell-centered defragmentation runtime is negligible
compared to solver iterations, one additional solver execution is performed with
the defragmentation procedure executed each timestep (“c-b every ts” in Fig. 5).
This leads to a further performance improvement; one able to gain 37% total
runtime reduction compared to the octree-centered algorithm.

The second test problem is the Sedov blast wave problem [14]. It is solved on
20×20×20 base grid; other parameters are identical to ones used in the previous
paper [4]. Numerical solution is also described in [4]. Here we only discuss the
performance results obtained with different defragmentation algorithms (Fig. 6).
Refinement and coarsening are performed each timestep, whereas defragmen-
tation is executed every 40-th timestep. Here we can see that optimized scan
for the octree-centered algorithm reduces the defragmentation time by 7–42%
but the cell-centered algorithm is 19–215 times faster and, more importantly,
leads to total runtime reduction by 23.5%. Performing the cell-centered defrag-
mentation every timestep (instead of every 40-th timestep) does not introduce
additional performance overhead but even brings further reducing of the total
runtime by 26.7%.
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Fig. 6. (a) times per timestep 40 (70496 cells), 1440 (2733576 cells) for cell-based (c-b)
and octree-based algorithm with naive prefix scan (o-b naive), optimized prefix scan
(o-b opt); (b) total runtime for different defragmentation algorithms.

5 Conclusions

Different defragmentation algorithms for dynamically updated GPU-native
octree-based grids used in the AMR CFD framework have been considered.
Numerical tests performed with these algorithms have shown that the simple
cell-centered algorithm is 14.3–215 times faster than the octree-centered one. A
more important and unexpected result obtained is that the cell-centered algo-
rithm which, in general, doesn’t aware of grid cells geometrical neighborhood
leads to better memory locality and decrease in the total runtime for the test
CFD problems considered by 26.7–37% compared to the octree-centered algo-
rithm, which actually preserves memory locality in some degree thanks to cells
ordering in accordance with Z-SFC.
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Abstract. Adaptive mesh refinement (AMR) is a dynamic approach to
non-uniform grids which is commonly used to cut the simulation costs of
multiscale problems in mathematical modeling of physical phenomena.

In this work, we propose a new dynamic data structure for AMR
implementations which is based on a Z-order curve and tiles with vari-
able size. It is a generalization of classical octree and various tile-based
octrees, which can be seen as special cases of it. The tree height is dynam-
ically decreased wherever possible by adjusting the number of children
of nodes, increasing the size of tiles. Thus, the events of access to neigh-
boring tiles become less frequent, and the complexity of access becomes
less. Trivial data serialization presents another advantage of the data
structure. In a specific case where the refinement level is constant over
some region, the sub-tree height is equal to one, thus the neighbor access
is just as simple as in a uniform multidimensional mesh. The structure
inherits the locality properties of the Z-order space-filling curve.

In the text, the detailed description of the structure, algorithms for
traversal, random access, neighbor search, and mesh adaptation are
described.

Keywords: AMR · Grid refinement · Data structure · Z-curve · aiwlib

1 Introduction

Adaptive mesh refinement (AMR) [2] is a dynamic approach to non-uniform grids
which is commonly used to cut the simulation costs of multiscale problems in
mathematical modeling of physical phenomena. The implementation of simula-
tion codes which use AMR is, however, a complicated problem. The efficiency of
the simulation algorithms is very important in practical large-scale applications.
Many numerical simulation schemes are memory-bound problems [24], thus the
efficiency of the algorithm depends on the data structure, which should support
efficient traversal, neighbor access, serialization, and load balancing [6].

In problems with complex geometry, the cell data is stored with all necessary
data for the mesh topology [9,12]. This way, the cell coordinates, the cell size
and shape parameters, the address of the neighbor cell data, are all stored along
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with the cell in an AoS (array of structure) fashion. Such method provides means
for free generation of meshes of any type, and any type of subdivision, however,
the data overhead for the storage of the mesh topology data is high.

By imposing rules on the structure of the mesh and its subdivision rules,
some of the information in the cell data may be omitted. In the block struc-
tured AMR [1,3,13,20,25] the data is divided into several blocks, which may be
represented as separate meshes. The absolute and relative position, shape and
size parameters are stored not for each cell, but for each patch, this way the
data overhead for topology is less. However, at the regions where coarse and fine
patches overlap, often only one patch is relevant, that is, the patch with a finer
grid. Thus, data overhead for spurious storage of cell data is possible.

The hierarchical tree data structure is especially efficient for storage of adap-
tively refined meshes. The cell data are associated with a tree node, and the
cells, produced in the refinement, are associated with the children of the node.
If, in a refinement, a node is subdivided into two parts in each direction the
tree is a binary tree, quadtree or octree for 1D, 2D and 3D mesh subdivision
correspondingly. Thus, for generality, we talk about 2D-binary trees [19] (D is
the number of space dimensions).

In the traditional pointer-based implementation [5], each node contains point-
ers to its parent and children. It is relatively simple and the mesh refinement
operation is cheap [14,22]. Its shortcoming is low data access locality. Mesh
traversal and search for the nearest neighbors that is required for application
of a numerical scheme stencil are difficult, since they require a large number
of conditional tests. This leads to lower efficiency of the simulation codes that
are built with such structures. The mean number of operations required for the
neighbor cell access increases with the tree height.

Various tile-based octrees [21], in which the tree nodes contain a block of
cells instead of just one tree node, show higher data locality since many neighbor
access operations address cells in the same tile. However, storage of larger tiles
in the tree nodes produce large overhead in the memory footprint.

Many optimizations for the tree-based structures exist in the computer graph-
ics [19]. However, the specifics of image processing and physical simulation are
different. The tree volume data storage popular in computer graphics [16] is opti-
mal for sparse volume representation, while the volume data for mathematical
modelling are often dense and the priority is in the reducing the cost of neighbor
access.

Thus, the tree structures for mathematical modelling may also contain point-
ers to neighbors. This way, the stencil data access is faster at the cost of larger
storage overhead. The pointers to the node children may be reused to point to
the node neighbors if the children do not exist [8,18].

Another approach is the use of ‘heavy’ and ‘light’ tiles [11]. In it, the tiles
which exist in the tree structure but their cells are not used in the simulation (e.g.
they are overshadowed by a finer grid) store the data of another tile instead of the
superfluous information. The data of the ‘light’ tiles is stored in the unused space
of the ‘heavy’ tiles. That approach shows significant improvement in reducing
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storage space in multi-dimensional simulation, shows excellent access locality,
and allows implementation of the advanced parallel algorithms [10]. However,
the efficient implementation of such structure remains a complex problem.

Fig. 1. The traditional indexation of a 2D array (a) and indexation with the Morton
Z-curve (b). In each cell the binary representation of its number is shown. The color
distinguishes bits representing different coordinate axis.

Linear representation of octree [19] stores only the leaf nodes, each one with a
locational code. This kind of implementation reduces the required storage space,
which is the priority for GPU simulations [4,17]. The order in which the leaves
are stored is defined with a space-filling curve. The traditional storage order,
where the data is looped over in the axes direction one axis after another is not
efficient for many-dimensional stencil codes. Hierarchically defined space-filling
curves are more suitable for AMR data representation [4,19,20,23].

In this work, a new AMR data structure based on the Morton Z-curve [15]
is proposed. It is a forest of 2RD-binary trees, where R is a variable parameter
which depends on the current mesh refinement structure. A traditional 2D-binary
tree hierarchy and its tile-based variants may be described as its special cases.
The use of the Z-order curve allows to decrease the tree height by dynamically
increasing the size (number of children) of a node from 2D to 2RD.

The properties of the Z-order curve help to increase the search complex-
ity to O(1) for any node. Data organization into tiles with size 2RD provides
high data access locality by simplifying mesh traversal and neighbor access in a
scheme stencil. The memory storage overhead is observed to be less than in the
traditional 2D-tree data structures.

2 Data Structure

A traditional indexation of a D-dimensional array allows to compute the index f
of a cell in an array with size Ni × Nj × Nk × . . . from its coordinates i, j, k... as

f = i + Nij + NiNjk + ...

For a cube-shaped array with an edge length equal to 2R a change in any
coordinate leads to the change in the corresponding group of R bits of the number
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f (Fig. 1 a). The Morton Z-curve [15] is an alternative indexation. In it, the bits
representing each coordinate axis are interleaved (Fig. 1 b).

Efficient algorithms are known for computing f from i, j, k... and back [15].
The computation of the nearest neighbors is not difficult as well.

Z-curve indexation leads to a higher data access locality in comparison with
the traditional indexation, and this is especially important in dealing with big
memory-bound problems [24]. For the implementation of AMR-compatible data
structures, it is important for Z-curve to provide the same data traversal order as
a 2D tree. This property allows compressing segments of the tree that implements
the AMR data. This leads to advantages in all aspects of the code implementa-
tion.

In Fig. 2 a the traditional AMR data structure based on the octree is
shown [19]. The application of the Z-curve indexation to the tree leaves allows
enlarging the data block, which, in turn, improves data locality, simplifies traver-
sal, random access, and the search of neighbor cells inside one block (Fig. 2 b).

The next step is the application of a similar compression to the tree nodes
which are not leaves. The change in the data block size and the number of sub-
nodes in a node results in different options for data organization (Fig. 3 a, b, c),
while the cell traversal remains unchanged.

We propose the following data structure. The mesh is built as a forest of trees.
The tree nodes are placed in the cells of a rectangular grid with a traditional
indexation. Some cells may be vacant. With this approach the simulation areas
with complex non-rectangular shapes can be described.

Let S be the level of refinement. The size of the cells at level S is 2S times
smaller than the size of the cells at level S − 1. At each level a separate Z-curve
may be introduced. Let the tile of rank R be a cube-shaped mesh segment with
the edge length in 2R cell so that the cells of this segment are positioned in
a sequence on the Z-curve. This means that the binary representations of the
Z-curve indexes of cells in a tile have equal bits in all positions higher than RD.

A 64-bit structure ptile t is introduced. It contains one signal bit, six bits
for the tile rank R, and 57 bits for the integer index f . For example,

struct ptile_t{
uint64_t blob;
void set(bool sign, uint32_t rank, uint64_t off)
{ blob = uint64_t(sign)|((rank&0x3F)<<1)|(off<<7); }
bool get_sign() const { return blob&1; }
uint32_t get_rank() const { return (blob>>1)&0x3F; }
uint64_t get_off() const { return blob>>7; }

};
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Fig. 2. AMR data organization. (a)—traditional D-binary tree, (b)—Z-curve. Blue
color represent data blocks. Green lines show tree branches. The cell traversal rule
remains the same (red dotted line). (Color figure online)

Fig. 3. The three options of implementations of a tree-based AMR data structure with
the Z-curve (a, b, c) and linking structure for option a (d)
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The tree data structure is

struct tree_t {
ptile_t root; // tree root
std::vector<ptile_t> tree; // tree description
std::vector<T> data; // data
int Smin, Smax; // minimal and maximal

}; // levels of refinement

If the signal bit is set, the ptile t structure instance addresses a tile (tree
node) that is in the tree array. Otherwise, the tile in the data array is addressed
(Fig. 3 d). The tile size is determined from the rank as 2RD. The tiles are placed
one by one in the array. The beginning of the tile is pointed at by the index f .
The elements of a tile are indexed with a Z-curve. Each tile is a tree node with
2RD children. The elements of a data tile are the tree leaves.

The data structure that is described here is a generalization of 2D-binary
trees, where the nodes have a dynamically variable degree 2RD. The increase in
R leads to a decrease in the tree height, which leads to better data access locality.
With lower trees, the number of pointer access operations is lower for neighbor
search in the most non-local access events. The tree control structure is more
compact in comparison to the traditional tree implementation. This increases
caching ability which may lead to better performance.

The new data structure is named ZAMR, where Z emphasizes the compact-
ness and the use of a Z-order curve. ZAMR is better than the data structure
proposed in [11] both in terms of data locality and implementation simplicity.
The ‘light’ tiles in [11] require one additional pointer access operation to address
their data. The simple implementation of ZAMR allows for the use of efficient
algorithms for better performance in mathematical simulation.

For unrestricted use, the AMR implementation has to provide the following
capabilities:

1. random access to the cells by their coordinates (to implement initial condi-
tions and sources);

2. sequential traversal of the cells in a mesh segment, and the traversal of the
cells on a specific level of refinement (to implement cell updates according to
a numerical scheme).

3. access to the cell neighbors according to the scheme stencil;
4. mesh adaptation;
5. data serialization (read/write data on disc).

The trivial data serialization/deserialization is one of the advantages of
ZAMR. The structure does not contain pointers and can be saved and loaded in
three parts (root, tree, data) by a byte-to-byte copy operation.

2.1 Random Access and Sequential Traversal

Let fS be the position f on a Z-order curve on the level S. For a transition to
the Z-curve on the level S′ only a bit shift in (S′ −S) bits is required. A positive
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(S′ − S)D is a left shift, a negative value is a right shift, and some bits of f are
lost in this case. For addressing a specific cell its index fS on a uniform Z-curve
on the level S is sufficient. The search algorithm is as follows:

1. fS value is transformed into fS max;
2. the ptile t cursor = root and int Sres = 0; (final refinement level)

variables are created;
3. while cursor is indexing the tree node (the signal bit is set):

(a) the current refinement level is incremented
Sres += cursor.get_rank();

(b) the tile cell position under the pointer is computed
uint64_t c = f>>D*(Smax-Sres);

(c) the remaining bits of the shift f are computed:
f -= c<<D*(Smax-Sres);

(d) cursor is set to the next cell, and this corresponds to a descent in a tree
by one node

cursor = tree[cursor.get_off()+c];
4. the resulting refinement level is computed, the lower bits of f are truncated,

and the cell index is computed

Sres += cursor.get_rank();
f >>= (Smax-Sres)*D;
T &cell = data[curosr.get_off()+f];

This algorithm allows an arbitrary definition of the original level of refinement
S, while the fS index should be consistent with it. If S is less than Stot then
the cell at the beginning of the Z-curve is found. If S is larger than Stot, the
lower bits of f are discarded.

For the implementation of a numerical scheme, all cells have to be traversed
in sequential order. The sequence is according to the data placement in memory,
thus it amounts to an increment in a cell address. However, the cell position
in space should be accessible. The algorithm for extracting x, y, z from uniform
Z-curve indexes are known, thus, the Z-curve index should be computed from
its address. To find it, the cell position in a tile (defined in the previous section)
has to be known. If the incremented index value is inside the tile the position
of the cell in the Z-curve and the cell index are incremented. Otherwise, the
cell with an incremented position is found with the random access algorithm.
However, such misses are sufficiently rare.

The traversal of only the cells on a specified level of refinement S is a separate
problem. For this, a field is added into the ptree t data structure:

std::vector<std::vector<std::pair<ptile_t, uint64_t> > > index;

For each level of refinement S an array of pairs, that is, a pointer to a tile,
position of a tile on the Z-curve of a tree, is created. This is enough for an
efficient traversal. The index is updated in each mesh adaptation.
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2.2 Algorithms for Neighbor Search

Let us consider the problem of the neighbor search for a cell cS
i,j,k... ≡ c, where

i, j, k, ... are the coordinates, S is the degree of refinement. Let fS be the position
of c on the Z-curve at level S. The neighbor cell ci+di,j+dj,k+dk... ≡ c′ may be
addressed with a tuple of D numbers di, dj, dk, ..., which defines its shift relative
to the c position in the units of length that are 2−S smaller than the cell size of
the initial, unrefined mesh. The algorithm for the neighbor search is as follows.

1. The position f ′
S of a cell c′ on the Z-curve is found. If it is in another tree, f ′

S

may be negative. To overcome this problem, D higher bits from the position
SD and upward are added to the f beforehand. This provides positive f ′

S

values with any reasonable shift into the current and neighboring trees.
2. If the higher fS and f ′

S bits match, that is, (f>>R*D)==(f’>>R*D), then c′ is
in the same tile as c and the problem is solved.

3. If f ′
S is inside the tree, that is, (f>>S*D)==(f’>>S*D), then the random access

of the cell in the current tree is used. The cell is looked up at the position f ′
S

without its higher D bits.
4. Otherwise, the neighboring tree is found with the higher D bits of f ′

S , and,
inside it, the cell is looked up with random access at the position f ′

S without
its higher D bits.

The constructed algorithm works correctly if the neighbor cells are of the
same size as c or larger than it. Otherwise, the search would hit a smaller cell
(with a larger S). Depending on the chosen numerical scheme, several methods
may be used to resolve the issue.

1. The use of a buffer zone at the refinement boundary, which guarantees the
presence of the cells of the same size in the scheme stencil. The data transfer
in the buffer zone between the levels of refinement is a separate task.

2. Generation of a cell with the same size on the fly, e.g. computation of the
mean value across the closest cells. This solution corresponds to a virtual
buffer zone.

3. For numerical schemes with fluxes, it is often enough to access the directly
adjacent cells which share a boundary with the current one. Here, several
smaller cells may share one boundary with the current cell.

The implementation of the first option is not considered in the current work.
For the implementation of the second option, the following modification of the
random access algorithm is proposed.

1. The f ′
S position is converted into fS max;

2. the variables for the resulting level of refinement int Sres = 0;, the remain-
der level of refinement dS = 0;, and ptile t cursor = root are created;

3. while the cursor variable points to a tree node (the signal bit is set) and
Sres<S:
(a) the new level of refinement is computed

dS = cursor.get_rank() - std::min(S-Sres, cursor.get_rank());

Sres += std::min(S-Sres, cursor.get_rank());
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(b) the cell position to which the cursor is pointing is found
uint64_t c = f’>>D*(Smax-Sres);

(c) the remaining bits of the f ′ shift are found:
f’ -= c<<D*(Smax-Sres);

(d) the cursor is switched to the next cell, and this corresponds to a descent
in a tree by one node

cursor = tree[cursor.get_off()+c];

...bj−1
y bi−1

x ...bj−1
y bix10 ...bj−1

y bix11 ...bj−1
y bi+1

x

...bjyb
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i
x
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x 11 ...bjyb

i+1
x 10
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x

Fig. 4. Sample Z-curve shifts for looping over the boundary. Blue denotes bits cor-
responding the y axis, green denotes bits corresponding to the x axis. (Color figure
online)

After this, the recursive algorithm is started. In a loop for i ∈ [f ′
S : f ′

S+2dS D):

1. if the signal bit of the cursor is set, the function for the sum for the cell in
data[cursor.get off()+i] is called;

2. otherwise, the same algorithm for the parameter cursor2 =
data[cursor.get off()+i], dS = cursor2.get rank() is started.

The traversal of the adjacent cells is implemented similarly (Fig. 4). The
boundary is determined by the number of the coordinate axis perpendicular to
it. The bitmask is created. For the neighbors on the right side, the bits corre-
sponding to that axis should be equal to zero, and, for the neighbors on the left
side, these bits should be equal to one. When the level S is reached, the recursive
algorithm is started. The function for the boundary processing is called for the
cells in which the higher bits for the axis corresponding to the boundary match
the corresponding bits of the bitmask.

2.3 Mesh Adaptation Algorithms

The algorithms for mesh adaptation are often the most complicated issue in the
implementation of AMR data structure.

The mesh refinement is infrequent since it is required in the synchronization
instants [10]. Three functions are required. The function f check takes a cell as
an argument and returns −1 if the cell should be coarsened, 0 if the cell remains
the same, and 1 if the cell should be refined. The f join/f split functions
perform the coarsening and refinement of cells.

In the mesh adaptation, the data consistency in the f check, f join, f split
function calls should be provided.

The cell move and cell delete operations may cause undetermined behavior
if the attempt to access the cell as a neighbor is made after them. Moreover, for
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some numerical schemes it may be required to impose rules on mesh nesting [2].
For example, two cells may be prohibited from sharing an edge if their levels of
refinement differ in more than one.

For the parallel implementation of the mesh adaptation it is distributed by
trees. Each tree is processed with a separate thread.

In one tree, the adaptation algorithm consists of the following steps.

1. Execution of the f check function on each cell. The output of f check is
saved into the bit array. Two bits per cell encode three possible states: the
cell persists, the cell is refined or coarsened. Since the coarsening is a non-local
operation and the f check function does not analyze the state of the neighbor
cells, only the cubes of 2D cells in which all cells are ready for coarsening are
to be coarsened.

2. The analysis of the bit array and its correction according to the imposed rules
(such as prohibition of large jumps in the refinement level), if necessary.

3. Creation of a new tree data structure. The unchanged cells are copied bit-
to-bit. The f join/f split functions are called for the cells that have to be
changed. The new data structure is created separately from the old one, and
the old structure remains operable at this stage.

4. The new data structure replaces the old one.

The described algorithm traverses the forest of trees as a wavefront along the
longest dimension of the simulation area. At each cross-section of the simulation
area, initially, the first step is executed. After that, the second and the third
steps are executed with a delay in one step in the forest of trees. Finally, the
fourth step is executed with a delay in one more step.

Let us discuss the third step as the most complicated one. Here, the data
(leaves) are merged into tiles and the structure is organized in a way that is
optimal both for random access and cell traversal. The solution to this prob-
lem is not unique. Let us consider an algorithm that results in a minimal tree
height (Fig. 3 c). A requirement for maximal data tile size presents a polar oppo-
site (Fig. 3 a), however, it would result in a higher tree, thus the neighbor search
outside large tiles becomes more expensive, and the relative size of those tiles
may be small at the same time. In any case, the tree structure affects neither
the data placement in the memory storage nor their locality.

At the beginning of the third step, the new data array and the new data tile
array are created based on the bit array which was built in the first step and
modified at the second step. The data may be efficiently processed in blocks of
32 cells. If the cells should not be changed according to the bitmask, the basic
data copy is executed. Otherwise, the f join/f split functions are called. To
describe a tile, the structure of the following type is used.

struct rebuild_tile_t{

ptile_t p; // the start and the rank of the tile in the data array

uint64_t z; // position of the tile in the Z-curve in a tree

int S; // level of the refinement of the Z-curve

};



Zipped AMR 255

The array of such structures describe the created tiles. In the refinement and
coarsening of the cells from the old tile, the tile is separated into several tiles
of the smaller size. A segment of a tree may be considered. For its definition,
it is sufficient to define a range on a Z-curve and the level of refinement of the
Z-curve S. To address a whole tree, S = 0 and the Z-curve range [0, 1) can be
taken as arguments. With a ΔS increase in S the beginning and the end of the
range are multiplied by 2DΔS . After that, the following recursive algorithm is
started.

1. The range of tiles the data of which are inside the range is found for the tree
segment. In this range, the minimal and the maximal levels of refinement
Smin and Smax are computed.

2. If Smin = Smax, all data tiles are merged into one and become a resulting
data tile. The index of the data tile is complemented.

3. Otherwise, a tree node is constructed as a tile with rank S − Smin. S is
increased up to Smin, and the same algorithm is called for each branch.

3 Implementation

The described data structure is implemented in the aiwlib [7] library as a class

template <typename T, int D> class ZipAdaptiveMesh;

where T is a type of the cell, D is the number of space dimensions.
To access a cell the following structure is defined

struct ZipAdaptiveMesh<T, D>::Cell;

For the data access, the following operations are overloaded

T& operator * ();
T* operator -> ();

For the access to neighbors, the following operations are overloaded

const Cell& operator [](Ind<D> delta);
template <typename F> void cell(Ind<D> delta, F &&f);
template <typename F> void face(int axe, F &&f);

where f is the user function. In its call, it takes one neighbor cell with type const
Cell& as its argument. axe is an axis perpendicular to the chosen boundary. The
−1,−2,−3... values define neighbors to the left of the x, y, z axis correspondingly,
and 1, 2, 3... define the neighbors to the right.

For cell traversal in the ZipAdaptiveMesh class the following methods are
implemented

template <typename F>
size_t foreach(F &&f, int S=-1, bool parallel=false);
template <typename F1, typename F2>
size_t foreach2Xdt(F1 &&f1, F2 &&f2, bool parallel=false);
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the methods return the number of processed cells. Here f, f1, f2 are the functions
applied to the cells with type Cell of the level of refinement S, and to all
cells if S = −1. The parallel flag switches the parallel processing on. The
foreach2Xdt method implements a two-step numerical scheme with a stepwise
traversal rule and with the time step refined in correspondence to the mesh
step [10].

The following method is implemented for mesh adaptation

template <typename F_CHECK, typename F_SPLIT, typename F_JOIN>

void rebuild(F_CHECK &&f_check, F_SPLIT &&f_split, F_JOIN &&f_join);

All required Z-order curve operations are implemented in the header file
aiwlib/zcube.

The class has methods for mesh initialization, random access, various traver-
sal rules, mesh adaptation, save/load of the mesh to the disc in a binary format.
The uplt viewer from the aiwlib library is used for result diagnostics.

4 Benchmarks

For the study of the efficiency of the proposed method we considered the sample
function in 2D and 3D (Fig. 5).

f(r) = exp
[−(|r| − 0.5)2/0.22

]
.

This type of scalar field is relevant for multiscale implementations, for example,
in shock propagation in computational fluid dynamics. The cell refinement level
has been set to S = 5 + (Rmax − 5)f .

Fig. 5. The sample function f (a) and mesh refinement with Rmax = 8 (b).

The dependency of the main efficiency characteristics of the proposed data
structure is presented (Fig. 6). It is observed that in data access according to
the cross stencil, which is relevant is many Finite-Difference, Finite-Element
or Finite Volume numerical schemes, it provides significantly fewer tile misses
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Fig. 6. The characteristics of the proposed AMR versus the maximal level of refinement
Rmax in 2D (a, c, e) and 3D (b, d, f). The same results for the traditional octree are
presented for reference (trad.). (a, b) data tiles; (c, d) tile misses, when the data access
with a cross stencil requires the data from another tile; (e, f) switches, i.e. the average
number of pointers that have to be dereferenced and conditional choices for nearest
neighbor access in a cross stencil.

(when the access to another tile is required) in comparison with a traditional
octree implementation which is taken here for reference. The access complexity
here is measured as the average number of pointers that have to be dereferenced
and instances conditional processing when tile miss is encountered.

5 Conclusion

In this work, we proposed a new data structure ZAMR for the implementation of
AMR in physical simulations. It is a generalization of a traditional octree struc-
ture to an octree with tiles of variable rank. The variable rank allows adapting
the tree structure to current mesh refinement.
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The tree height is dynamically decreased wherever possible. Thus, the events
of access to neighboring tiles become less frequent, and the complexity of access
becomes less. Trivial data serialization presents another advantage of the data
structure. In a specific case where the refinement level is constant over some
region, the sub-tree height is equal to one, thus the neighbor access is just as
simple as in a uniform multidimensional mesh. The structure inherits the locality
properties of the Z-order space-filling curve.

On the flip side, mesh adaptation is relatively computationally complex. How-
ever, the implementation is lightweight, and the performance of mesh adapta-
tion may be further optimized. Nevertheless, mesh adaptation is supposed to
be infrequent and performed only in the synchronization instants [10], thus this
shortcoming is minor. At the same time, higher data access locality and higher
efficiency in neighbor search should increase the performance of stencil simula-
tion problems.
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Abstract. The paper results concern automatic parallel program gener-
ation based on a program dependence approximation technique. Depen-
dence approximation allows us to directly form linear time partition con-
straints necessary for extracting loop nest statement instance schedules
to be used for parallel tiled code generation. The proposed approach was
implemented in the publicly available DAPT optimizing compiler, which
takes on its input the C program and automatically generates parallel
tiled code in the OpenMP C/C++ standard. Empirically, we discovered
that for some dynamic programming codes, DAPT generates tiled code
whose tiles are of a larger dimension than that of tiles yielded with pop-
ular closely related optimizing compilers based on Farkas’ lemma. This
allows us to considerably increase code locality for such applications.

Keywords: Automatic code optimization · Tiling · Program
dependence · Scheduling · OpenMP

1 Introduction

This paper deals with automatic parallel tiled code generation based on deriv-
ing loop nest statement instance schedules. Program loop tiling is a well-known
compiler transformation for both sequential and parallel program optimization.
It allows us to generate parallel high-performance code running on modern archi-
tectures by increasing code granularity and data locality.

State-of-the-art techniques of loop tiling are based on the affine transfor-
mation framework (ATF) [2,5,6,9], which is implemented in many optimizing
compilers.

ATF envisages that the following tasks should be realized. For a given loop
nest, dependences are extracted. They are used to form time partition constraints
[6], which can be resolved to find as many as possible linearly independent solu-
tions. Those solutions are used to form statement instance schedules applied for
parallel tiled code generation.
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In general, time partition constraints are represented with a system of non-
linear integer equations and inequalities. Resolving an integer non-linear system
is NP-hard. Feautrier suggested the application of Farkas’ lemma to linearize
time partition constraints [3,4]. Many state-of-the-art optimizing compilers suc-
cessfully apply Farkas’ lemma to linearize non-linear time partition constraints.
However, such a linearization leads to growing the size of a resulting system of
affine constraints. That increases the computational complexity of target code
generation.

In this paper, we propose an alternative way to form linear time partition
constraints. We suggest to approximate irregular (non-uniform) dependences
with regular (uniform) ones. Then uniform dependences are used for forming
linear time partition constraints.

Under an approximation of a distance vector, we mean deriving a set of
uniform vectors that can be used instead of that vector to form time partition
constraints.

We compare schedules obtained by means of the proposed approximation
with those achieved with the classic linearization of time partition constraints
[3,4] for Polybench benchmarks [8].

The main contributions of the paper are the following.

– Proposition of an approximation of irregular (non-uniform) dependences with
regular (uniform) ones and proving its validity.

– Suggestion of a technique to extract linearly independent solutions to time
partition constraints.

– Implementation of the propositions in a publicly available optimizing com-
piler, DAPT (Dependence Approximation for Parallelism and Tiling) and its
usage for carrying out experiments.

2 Background

The loop nest can expose dependences among statement instances. A depen-
dence is a situations when two statement instances access the same memory
location and at least one of these accesses is write. Each dependence is rep-
resented with its source and destination provided that the source is executed
before the destination.

To extract dependences available in the loop nest, we use the polyhedral
model returned with PET [15] and apply the ISL library to implement calcula-
tions on polyhedral sets and relations in a way presented in paper [14] as well
as the iscc calculator that is an interactive interface to the barvinok counting
library available at http://barvinok.gforge.inria.fr/barvinok.pdf and PET.

For the dependence, a distance vector is the difference between the iteration
vector of its destination and that of its source. If dependences are uniform then
for each distance vector, all its elements are constant.

In this paper, we deal with both perfectly and arbitrarily nested loops. For
imperfectly nested loops, for statements surrounded with the different number

http://barvinok.gforge.inria.fr/barvinok.pdf
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of loops, the length of iteration vectors is different that prevents calculating the
distance vector when the source and destination of a dependence are represented
with iteration vectors of different length. To resolve that problem, we apply the
dependence relation normalization algorithm presented in paper [1]. This allows
us to extract distance vectors such that the length of each of them is the same.
Such a conversion is carried out automatically by means of our DAPT optimizing
compiler whose details are presented in Sect. 7.

We call so calculated distance vectors as normalized ones. Dependences avail-
able in the loop nest can be uniform or non-uniform. Dependences are uniform
when all the distances between dependent loop nest statement instances in the
iteration space are constants; otherwise they are non-uniform.

Automatic tiling and parallelization of loop nests with non-uniform depen-
dences is much difficult than those exposing uniform ones. The reason is that
in general, for irregular dependences, constraints formed to extract affine trans-
formations (to be next applied to tile and parallelize loops) are non-constant,
this considerably increases the computational complexity of extracting affine
transformations.

To optimize a loop nest (parallelize and tile), we should form time-partition
constraints [6] that imply that if one statement instance is dependent upon
the other, then in target code, the dependence destination must be executed
no earlier than the corresponding dependence source. If they are assigned in
the same iteration, then it is understood that the destination will be executed
after than the source within the iteration. Details can be found in papers [2,6]. A
solution to time partition constraints is used to form schedules for each statement
instance of a loop nest.

The schedule defines a strict partial order, i.e., an irreflexive and transitive
relation, on the statement instances that specifies the order in which they are
or should be executed. Obtained schedules are applied to generate parallel code,
details are presented in papers [2,6].

When dependences are non-uniform, time-partition constraints are non-linear
too. Usually, they are linearized by means of applying Farcas’ lemma that leads
to increasing the constraints size and the computation complexity of code gen-
eration.

This is why, in this paper, to directly form affine constraints, we suggest
a way to approximate original non-uniform dependences to uniform ones and
prove the correctness of such an approximation.

We should resolve time partition constraints so to extract as many as possible
linearly independent solutions. The more independent solutions are extracted,
the larger target code parallelism degree and tile dimension are.

In this paper, we examine an alternative way to extract independent solu-
tions to time partition constraints that is simpler than that used in the PLUTO
compiler [2].

Using obtained linear independent solutions, parallel tiled code can be easily
generated [2].
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3 Idea of Dependence Approximation and Code
Generation

The first task of the proposed approach is to approximate each normalized dis-
tance vector whose one or more elements are non-constant with vectors whose all
elements are constants. This allows us to form affine time partition constraints,
i.e., constraints without any non-linear term and to resolve affine constraints
applying the ISL library [14].

3.1 Dependence Approximation

We distinguish the following cases of normalized distance vector elements: i)
element is a constant, for example, 10; ii) element is an expression with a known
lower bound and an unlimited upper bound, for example, n ≥ 2; iii) element
is an expression with a known upper bound and an unlimited lower bound, for
example, n ≤ 2; iv) element is an expression with unlimited upper and lower
bounds, for example, n.

We denote the lower and upper bounds of iterator i as lb(i) and ub(i), respec-
tively.

Let m normalized distance vectors be given Dk, k = 1, 2, ...,m, and the ele-
ments of vector Dk be djk, j = 1, 2, ..., n, where n is the vector length. For each
normalized distance vector, Dk, we form vector, Vk, of length n according to the
following rule.

Rule 1

vj
k = djk if djk is constant,

vj
k = lb(djk) if djk is an expression with a known lower bound and unlimited

upper bound, i.e., lb(dk) ≤ djk ≤ ∞,
vj
k = ub(djk) if djk is an expression with a known upper bound and unlimited

lower bound, i.e., −∞ ≤ djk ≤ ub(djk),
vj
k = 0 if djk is an expression with unlimited lower and upper bounds, i.e.,

−∞ ≤ djk ≤ ∞.

Let us consider vector Dk = (2, n ≥ 4,m ≤ 10, l)T . Then vector Vk is the
following Vk = (2, 4, 10, 0)T .

In addition to vectors Vk, k = 1, 2, ...,m, we form a set of vectors X whose
number is the sum of the number of the non-constant elements of vectors Dk, k =
1, 2, ...,m with an unlimited lower or upper bound.

Elements xi
p, i = 1, 2, ..., n, of vector Xp are formed as follows.

Rule 2. If there exists an element djk with an unlimited upper bound, i.e.,
lb(dk) ≤ djk ≤ ∞, we form the elements of vector X as follows.

xi
p =

{
0 if i �= j
1 if i = j.
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Rule 3. If there exists an element djk with an unlimited lower bound, i.e., −∞ ≤
djk ≤ ub(djk), we form the elements of vector Xp as below.

xi
p =

{
0 if i �= j
−1 if i = j.

Let us again consider vector Dk = (2, n ≥ 4,m ≤ 10, l)T . According to Rule
2, we form vectors X1 = (0, 1, 0, 0)T , X2 = (0, 0, 0, 1)T and according to Rule 3,
we form vectors X3 = (0, 0,−1, 0)T , X4 = (0, 0, 0,−1)T .

So, for vector Dk = (2, n ≥ 4,m ≤ 10, l)T , all vectors formed according to
Rules 1, 2, and 3 are the following.

Vk = (2, 4, 10, 0)T , X1 = (0, 1, 0, 0)T , X2 = (0, 0, 0, 1)T , X3 = (0, 0,−1, 0)T ,
and X4 = (0, 0, 0,−1)T .

It is worth noting that all elements of those vectors are constants.
Applying Rules 1–3 to a normalized distance vector whose all elements are

constants results in forming the same vector while their applying to a normal-
ized distance vector whose one or more elements are non-constant results in an
approximation of this vector with a set of uniform vectors.

For a given normalized distance vector with non-constant elements, D,
extracted for a loop nest of depth dp, a set including vector V and vector(s)
X approximates vector D so that it can be represented as a linear combination
of vector V and vectors X, i.e., each element di, i = 1, 2, ..., dp, of vector D can
be represented as follows.

di = vi +

⎧⎪⎪⎨
⎪⎪⎩

ai ∗ (x1
i (di) = 1) if di ≥ vi

bi ∗ (x2
i (di) = −1) if di < vi

ci ∗ (x3
i (di) = 1) + ei ∗ (x4

i (di) = −1) if
di is unbounded : −∞ ≤ di ≤ ∞,

where ai, bi, ci, ei ≥ 0 are constants, x1
i (di), x

2
i (di), x

3
i (di), x

4
i (di) are the i − th

elements of the corresponding vectors X. For example, vector D = (2, n ≥ 4,m ≤
10, l)T can be represented as follows

D = (2, n ≥ 4,m ≤ 10, l)T = (2, 4, 10, 0)T + a ∗ (0, 1, 0, 0)T + b ∗ (0, 0,−1, 0)T +
c ∗ (0, 0, 0, 1)T + e ∗ (0, 0, 0,−1)T ,∃a, b, c, d ≥ 0.

We form time partition constraints according to paper [6], which state that
if iteration I of statement S1 depends on iteration J of statement S2, then I
must be assigned to a time partition that executes no earlier than the partition
containing J , i.e., schedule(I) ≤ schedule(J), where schedule(I) and schedule(J)
denote the discrete execution time of iterations I and J , respectively.

For the normalized loop nest, the general form of time partition constraints
is the following.

∧n
i=1H • Di ≥ 0,

i.e., each scalar product of vectors H and Di, i = 1, 2, ..., n should be greater or
equal to 0, where H is the unknown vector, Di is the normalized distance vector.
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For example, the time partition constraint for the vector Dk = (2, n ≥ 4,m ≤
10, l)T is the following.

2 ∗ h1 + n ∗ h2 + m ∗ h3 + l ∗ h4 ≥ 0.
That constraint is non-linear. To form affine time partition constraints,

instead of the vector Dk = (2, n ≥ 4,m ≤ 10, l)T , we use a set of vector V
and vectors X and obtain:

2 ∗ h1 + 4 ∗ h2 + 10 ∗ h3 + l ∗ h4 ≥ 0
h2 ≥ 0
h3 ≤ 0
h4 ≥ 0
h4 ≤ 0

or

2 ∗ h1 + 4 ∗ h2 + 10 ∗ h3 + l ∗ h4 ≥ 0
h2 ≥ 0
h3 ≤ 0
h4 = 0.

It is worth noting that the usage of vectors X for forming time partition
constraints results in simple constraints of the form hi ≥ 0, hi ≤ 0, or hi = 0.

To prove the correctness of such a substitution, we fulfil the following trans-
formations. Because h4 = 0, we have.

2 ∗ h1 + n ∗ h2 + m ∗ h3 + l ∗ h4 =
2 ∗ h1 + n ∗ h2 + m ∗ h3 ≥ 0.

Since h2 ≥ 0 and n ≥ 4, we obtain.

2 ∗ h1 + n ∗ h2 + m ∗ h3 ≥
2 ∗ h1 + 4 ∗ h2 + m ∗ h3 ≥ 0.

Finally, because h3 ≤ 0 and m <= 10, we get

2 ∗ h1 + 4 ∗ h2 + m ∗ h3 ≥
2 ∗ h1 + 4 ∗ h2 + 10 ∗ h3 ≥ 0.

So, we have

2 ∗ h1 + n ∗ h2 + m ∗ h3 + l ∗ h4 ≥
2 ∗ h1 + 4 ∗ h2 + 10 ∗ h3 ≥ 0

and consequently we may conclude that if the constraint

2 ∗ h1 + 4 ∗ h2 + 10 ∗ h3 ≥ 0
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is satisfied, then the original non-linear constraint

2 ∗ h1 + n ∗ h2 + m ∗ h3 + l ∗ h4 ≥ 0

is also satisfied.
So, to form time partition constraints, instead of vector Dk we may use a set

of vector V and vectors X.

3.2 Time Partitions Constrains and Finding Linearly Independent
Solutions to Them

In general, given a set of n vectors V and a set of m vectors X, we form linear
time partition constraints as follows.

∧n
i=1 H • Vi ≥ 0 ∧ ∧m

i=1H • Xi ≥ 0, (1)

where H • Vi and H • Xi are the scalar products of vectors H,V and H,X,
respectively, H is an unknown vector.

For example, given vectors V1 = (1, 0)T , V2 = (1, 1)T , X1 = (1, 0)T , X2 =
(0,−1)T , we build the following constraints.

1 ∗ h1 + 0 ∗ h2 ≥ 0 ∧ 1 ∗ h1 + 1 ∗ h2 ≥ 0 ∧
1 ∗ h1 + 0 ∗ h2 ≥ 0 ∧ 0 ∗ h1 + (−1) ∗ h2 ≥ 0.

There may exist many solutions to the time partition constraints above. We
should avoid the zero solution to prevent mapping all statement instances to the
same execution time that averts any parallelism. With this aim, we apply the
following additional constraint:

h1 �= 0 ∨ h2 �= 0 ∨ ... ∨ hdp �= 0, (2)

where hi, i = 1, 2, ..d are the unknown elements of vector H, dp is the loop nest
depth. I.e., we require that at least one element of H should be non-zero.

In addition to the requirement above, we strive to find such vector H that
allows us to obtain the value of |H •Di| for each of n normalized distance vectors
Di, i = 1, 2, ..., n, extracted for a given loop nest that is as close as possible to
its minimal value. The goal is to enhance target code locality, details can be
found in paper [2]. Striving to that goal, we use the following two heuristic: i)
the minimization of the value

dp∑
i=1

|hi|

and ii) the maximization of the number of positive elements of vector H.
We experimentally discovered that satisfying conditions (1) and (2) as well as

applying heuristics i) and ii) allow us 1) to reduce the number of synchronization
events in target code (the number of iterations of the outermost loop), 2) extract
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linearly independent solutions to time partition constraints for all loop nests
examined by us without applying the mathematical method implemented in the
PLUTO compiler [2].

To implement those heuristics, we introduce two additional variables b0 and
c0 as well as the corresponding constraints that allow us to calculate the values
of b0 and |c0| as the minimum of

dp∑
i=1

|hi|

and the maximum of the number of positive elements of vector H, respectively.
Then, we form a set whose tuple elements are b0, c0, h1, h2, ..., hdp and the con-
straints are formed as the conjunction of the time partition constraints defined
above and the constraints imposed on variables b0 and c0.

Finally, we find the lexicographically minimal vector (b0, c0, h1, h2, ..., hdp)T

represented with the tuple of the set constructed as described above.
Let us consider the following example: V = (1, 2)T , X = (0,−1)T . The

resulting constraints for those vectors provided that h1 �= 0 are the following.

{[b0, c0, h1, h2] : h1 �= 0 ∧ ∃ b1, c1, b2, c2 s.t ((b1 = h1 ∧ h1 ≥ 0) ∨ (b1 =
−h1 ∧ h1 < 0)) ∧ ((c1 = −1 ∧ h1 ≥ 0) ∨ (c1 = 0 ∧ h1 < 0)) ∧ ((b2 = h2 ∧ h2 ≥
0) ∨ (b2 = −h2 ∧ h2 < 0)) ∧ ((c2 = −1 ∧ h2 ≥ 0) ∨ (c2 = 0 ∧ h2 < 0)) ∧ b0 >

0 ∧ b0 = b1 + b2 ∧ c0 = c1 + c2 ∧ h2 <= 0 ∧ 1 ∗ h1 + 2 ∗ h2 ≥ 0}.

Applying the iscc lexmin operator to the set above, we obtain the following
solution {[1,−2, 1, 0]}, i.e., b0 = 1, c0 = −2, h1 = 1, h2 = 0.

b0 = 1 means that the sum of |h1| and |h2| is 1, c0 = −2 or |c0| = 2 implies
that the number of non-negative solutions is 2, h1 = 1, h2 = 0 are elements of
vector H1, i.e., H1 = (1, 0)T .

Replacing in the set above the term h1 �= 0 for the term h2 �= 0, we get the
following solution {[3,−1, 2,−1]}. So, vector H2 is the following.

H2 = (2,−1)T .
Let us remind that we try to find as many solutions as the depth of the

original loop nest, dp. We seek for dp solutions applying in the constraints con-
sequentially hi �= 0, i = 1, 2, ..., dp.

In general, the procedure above does not guarantee that all solutions would be
linearly independent. So, finally we check whether each solution is not a linear
combination of the remanding ones. If so, we discard each linearly dependent
solution.

For this purpose, we check whether there exist constants C1, C2, ..., Cdp such
that the equation below is satisfied.

Ci ∗ Hi =
∑
j �=i

Cj ∗ Hj , Ci �= 0, i = 1, 2, ..., dp.

If so, vector Hi is discarded.
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3.3 Parallel Tiled Code Generation

To form parallel tiled code, we apply the well-known algorithm presented in
paper [2] based on affine schedules and wave-fronting technique. To generate
target code with m parallel loops enumerating tile identifiers, we use m+1 vectors
Hi, i = 1, 2, ...,m+1. Let the serial tiled code has iteration vector IT = (ID, I)T ,
where ID = (id1, id2, ..., iddp)T , I = (i1, i2, ..., idp)T . Then, the first iteration
index of a target loop nest is formed as id1 = H1 + H2 + ... + Hm+1, loops
defined with indexes id2, id3, ..., idm+1 are marked as parallel, the reminding
loops are marked as serial.

4 Formal Algorithm

Below we present a formal algorithm to approximate original normalized distance
vectors and extract affine transformations.

Algorithm 1. Extracting affine transformations via dependence approxima-
tion.

Input: n normalized distance vectors Dk, k = 1, 2, ..., n, with the lower and
upper bounds of each non-constant element djk, lb(djk) and ub(djk), respectively,
dp is the loop nest depth.
Output: Affine transformations presented with a set of vectors H.
Method:

1. For each normalized distance vector Dk with elements djk, j = 1, 2, ..., dp form
vector, Vk, of length dp as follows

vj
k = djk if djk is constant,

vj
k = lb(djk) if djk is an expression with a known lower bound and unlimited

upper bound, i.e., lb(dk) ≤ djk ≤ ∞,

vj
k = ub(djk) if djk is an expression with a known upper bound and unlimited

lower bound, i.e., −∞ ≤ djk ≤ ub(djk),

vj
k = 0 if djk is an expression with unlimited lower and upper bounds, i.e.,

−∞ ≤ djk ≤ ∞.

2. In addition to vectors Vk, k = 1, 2, ...,m, form a set of vectors X as follows.
If there exists an element djk with an unlimited upper bound, i.e., lb(dk) ≤
djk ≤ ∞, form the elements of vector X as follows

xi =
{

0 if i �= j
1 if i = j.
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If there exists an element djk with an unlimited lower bound, i.e., −∞ ≤ djk ≤
ub(djk), form the elements of vector X as below

xi
p =

{
0 if i �= j
−1 if i = j.

3. Form time partition constraints as follows

∧n
i=1H • Vi ≥ 0 ∧ ∧m

i=1H • Xi ≥ 0,

where m and n are the numbers of vectors V and X, respectively, H • Vi and
H • Xi mean the scalar product of vectors H,V and H,X, respectively.

4. Try to find dp solutions to the time partition constraints formed in the pre-
vious step satisfying the following requirements i) the minimization of the
value

dp∑
i=1

|hi|,

ii) the maximization of the number of positive elements of vector H; iii)
hi �= 0 for each sequential solution i = 1, 2, ..., dp.

5. Check whether the solutions obtained in the previous step are linearly inde-
pendent. If not, discard each dependent solution. For this purpose, check
whether for each Hi, i = 1, 2, ..., dp, there exists a solution to the equation
below

Ci ∗ Hi =
∑
j �=i

Cj ∗ Hj , Ci �= 0, i = 1, 2, ..., dp.

If so, discard vector Hi.

To prove the correctness of the presented algorithm, let us consider the time
partition constraint built on the basis of an original normalized distance vector
Dk:∑dp

i=1 di ∗ hi ≥ 0,
where hi, i = 1, 2, ..., dp are the elements of vector H.

Let i) the corresponding vector V be the following

V = (v1, v2, .., vdp)T ;

ii) set x1 include the positions of elements of vector X such that there exist two
elements in the same position, say i, and one element is equal to 1 while the
second is equal to −1; such vector positions imply that element hi is 0;
iii) sets x2, x3 include the element positions of vector X whose values are 1 and
−1, respectively, that is equivalent to h2 ≥ 0 and h3 ≤ 0, respectively.

Because each hi, i ∈ x1 is zero, it is evident that
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dp∑
i

di ∗ hi =
dp∑

i,i/∈x1

di ∗ hi.

Since each element hi, i ∈ x2 is greater or equal to 0 (hi ≥ 0) and di ≥ vi,
we obtain

dp∑
i,i/∈x1

di ∗ hi ≥
dp∑

i,i/∈x1,i∈x2

vi ∗ hi +
dp∑

i,i/∈x1,i∈x3

di ∗ hi.

Because each element hi, i ∈ x3 is less than or equal to 0 (hi ≤ 0) and di ≤ vi,
we get

dp∑
i,i/∈x1,i∈x2

vi ∗ ii +
dp∑

i,i/∈x1,i∈x3

di ∗ hi ≥
dp∑

i,i/∈x1,i∈x2

vi ∗ hi +
dp∑

i,i/∈x1,i∈x3

vi ∗ hi =
dp∑

i,i/∈x1

vi ∗ hi ≥ 0.

So,

dp∑
i

di ∗ hi =
dp∑

i,i/∈x1

di ∗ hi ≥
dp∑

i,i/∈x1

vi ∗ hi ≥ 0.

This means that solutions hi satisfying the time partition constraints based
on vectors V and X also satisfy the time partition constraints formed on the basis
of vector Dk. This is true for each of n vectors Dk, k = 1, 2, ..., n representing
all loop nest dependences. Hence, to form time partition constraints, instead of
vectors Dk, we may use a set of vectors V and X. That proves the validity of the
substitution of vectors Dk for vectors V and X with the aim of forming affine
time partition constraints.

5 Related Work

In state-of-the-art techniques, the linearization of time partition constraints is
based on Farkas’ lemma [3,4]. Let us consider the following dependence relation.

R := N → { (i, j) → (j, i) | 0 < i ≤ N ∧ j − i > 1 ∧ 2 ≤ j ≤ N }.

For that relation, the time partition constraints are the following

(h1j + h2i) − (h1i + h2j) ≥ 0, 2 ≤ j ≤ N, 1 ≤ i ≤ N, j − i ≥ 1.

Applying Farkas’ lemma [11], we obtain.

(h2 −h1)i+(h1 −h2)j ≡ λ0 +λ1(N − i)+λ2(N − j)+λ3(j − i− 1)+λ4(i−
1) + λ5(j − 2),

where λ0, λ1, λ2, λ3, λ4, λ5 ≥ 0 are the Farkas multipliers.
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In the equation above, the LHS and RHS coefficients for i, j,N and the
constants are equated to obtain:

h2 − h1 = −λ1 − λ3 + λ4

h1 − h2 = −λ2 + λ5 + λ3

λ1 + λ2 = 0
λ0 − λ3 − λ4 − 2λ5 = 0
λ0 ≥ 0
λ1 ≥ 0
λ2 ≥ 0
λ3 ≥ 0
λ4 ≥ 0
λ5 ≥ 0.

Eliminating the Farkas multipliers through Gaussian and Fourier-Motzkin
eliminations [11] yields:

h1 − h2 ≥ 0.

So, to obtain the constraint above, we should i) apply the Farkas’ lemma to
non-linear constraints, ii) form additional linear constraints to eliminate Farkas
multipliers, iii) eliminate Farkas multipliers from the additional constraints.

Applying the approach presented in this paper, we first calculate the nor-
malized distance vector using the iscc deltas operator to relation R and obtain

D = N → { (i,−i) | 0 < i < N }.

Next according to Algorithm 1, we approximate the vector above to the
following vector

V = (1,−1)T .

Using that vector, we directly obtain the following time partition constraint

h1 − h2 ≥ 0

without applying Farkas’ lemma.
I.e., obtaining linear time partition constraints by means of the proposed

approach is characterized by a lower computational complexity in comparison
with that based on Farkas’ lemma.

Converting non-uniform dependences to a set of uniform ones is considered
in many papers, for example, [10,12,13]. All proposed approaches use the same
basic idea of routing data in a uniform manner through the computation domains
of the system of recurrence equations. They, however, differ in the class of recur-
rence equations considered and the requirements that are imposed in the tech-
nique. Although many uniformization techniques are proposed, their implemen-
tation into publicly available design tools has been limited.

Paper [7] unifies previously published uniformization techniques and also
highlights some of the problems that need to be overcome. The authors demon-
strate how auxiliary transformations can be used to enhance a uniformization
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framework by avoiding pipelining and routing under certain conditions. The
authors have also implemented their algorithms and integrated them into the
MMAlpha system, which is freely available under the GNU public license. But
that paper does not consider any parallel tiled code generation based on depen-
dence uniformization.

So, to our best knowledge, using dependence uniformization to form time
partition constraints with the aim to generate parallel tiled code never was pre-
sented in publications.

6 Experiment

The proposed approach was implemented in the publicly available optimizing
compiler, DAPT (Dependence Approximation for Parallelism and Tiling) by
means of the ISL library [14]. The DAPT sources are available at https://
sourceforge.net/projects/dapt/files/. For a given loop nest, DAPT extracts
dependence relations and next normalizes them to calculate normalized distance
vectors (each vector has the same length), approximates irregular dependences
to regular ones, forms linear time partition constraints, resolves those constraints
to obtain the maximum number of linearly independent solutions to be used for
schedule extraction and generates parallel tiled code in the OpenMP C/C++
standard.

6.1 Comparison of Schedules Generated for Polybench Benchmarks

Using DAPT as well as the ISL scheduler [14], we experimented with PolyBench
(http://www.cs.ucla.edu/pouchet/software/polybench) – a benchmark suite of
30 numerical computations with static control flow, extracted from operations
in various application domains (linear algebra computations, image processing,
physics simulation, dynamic programming, statistics, etc.).

The goal of experiments was forming schedules with the proposed approach
as well as with the ISL scheduler based on deriving affine schedules in the classic
way – linearization with Farkas’ lemma.

Schedules returned with the ISL and DAPT schedulers were obtained for
the same set of normalized dependence relations for each Polybench benchmark.
Those schedules are presented at https://sourceforge.net/projects/dapt/files/.

Analysing schedules returned with ISL and DAPT, we conclude that they
are the same for each benchmark. This means that for examined normalized
loops, target codes generated with those compilers are the same provided that
the same code generation algorithm is used.

6.2 Examining Tile Dimensions for Dynamic Programming Codes

We experimented with various dynamic programming applications to discover
tile dimensions generated with DAPT and PLUTO using Farkas’ lemma to

https://sourceforge.net/projects/dapt/files/
https://sourceforge.net/projects/dapt/files/
http://www.cs.ucla.edu/pouchet/software/polybench
https://sourceforge.net/projects/dapt/files/
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linearize time partition constraints. We observed that for many dynamic pro-
gramming applications that expose irregular dependences, DAPT generates tiles
whose dimension is larger than that of tiles yielded with PLUTO. In this paper,
we present only one example shown below.

for (int c0 = 2; c0 < n; c0 += 1)
for (int c1 = 1; c1 <= n - c0; c1 += 1)
for (int c2 = c0 + c1; c2 <= min(n, 2 * c0 + c1 - 2);

c2 += 1) {
if (2 * c0 + c1 >= c2 + 3)

c[c1][c2]=min(c[c1][c2]),w[c1][c2]+
c[c1][-c0 + c2 + 1]+c[-c0 + c2 + 1][c2]);
c[c1][c2] = min(c[c1][c2]),w[c1][c2]+
c[c1][c0 + c1 - 1]+c[c0 + c1 - 1][c2]);

That code implements an optimal binary search tree dynamic programming
algorithm. For that code, DAPT generates the following parallel tiled code rep-
resenting 3D tiles of size 16 × 16 × 16.

for (int c1=2; c1<=floord(n - 2, 8) + 2; c1 +=1) {
#pragma omp parallel for
for (int c2 = max(-((n + 15) / 16),

-c1 - (n + 14) / 16 + 2);
c2 <= -c1 + c1 / 2; c2 += 1) {

for (int c3 = max(0, -c1 - c2 + (c1 + 1) / 3);
c3 <= -c1 - c2 + c1 / 2; c3 += 1) {

for (int c5 = max(max(2, 16 * c1 +
16 * c2 + 16 * c3 - 15), -8 * c2 -
8 * c3 - 14); c5 <= min(min(min(n - 1,
-16 * c2 - 1), 16 * c1 + 16 * c2 + 16 * c3),
n - 16 * c3); c5 += 1) {
for (int c6 = max(max(-16 * c3 - 15, -n + c5),

16 * c2 + c5);
c6 <= min(min(-1, -16 * c3),
16 * c2 + 2 * c5 + 13); c6 += 1) {

for (int c7 = max(-16 * c2 - 15, c5 - c6);
c7 <= min(min(n, -16 * c2),
2 * c5 - c6 - 2); c7 += 1) {

if (2 * c5 >= c6 + c7 + 3) {
c[-c6][c7] = ((c[-c6][c7] <
((w[-c6][c7] + c[-c6][-c5 + c7 + 1]) +
c[-c5 + c7 + 1][c7])) ? c[-c6][c7] :
((w[-c6][c7] + c[-c6][-c5 + c7 + 1]) +
c[-c5 + c7 + 1][c7]));}

c[-c6][c7] = ((c[-c6][c7] < ((w[-c6][c7] +
c[-c6][c5 - c6 - 1]) +
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c[c5 - c6 - 1][c7])) ? c[-c6][c7] :
((w[-c6][c7] + c[-c6][c5 - c6 - 1]) +
c[c5 - c6 - 1][c7]));}}}}}}

The PLUTO compiler (version 0.11.4) generates code representing only 2D
tiles. That code is much more complex (includes many lines), so we inserted it at
the website https://sourceforge.net/projects/dapt/files/ in the PLUTO catalog,
that code represents tiles of size 16 × 16. This means that for the time partition
constraints formed for that loop nest on the basis of dependence approximation,
DAPT finds and applies for code generation three independent solutions, while
for the time partition constraints formed due to applying Farkas’ lemma, PLUTO
extracts only two independent solutions.

We carried out a performance analysis of those codes on a multicore com-
puter: Intel(R) Xeon(R) CPU X5570 @ 2.93 GHz, 16 cores, 24 GB, 8192 KB
Intel® Smart Cache and discovered that the 3D tiled code is 3 to 7 times faster
than the 2D PLUTO tiled code dependent on the number of threads varied by
us from 2 to 32. Such a performance improving is due to better code locality of
the 3D tiled code in comparison with that of the 2D tiled one.

7 Conclusions

We presented a simple way to approximate non-regular dependences available
in the loop nest to regular ones and proved its correctness. This allows us to
directly form linear time partition constraints necessary for extracting loop nest
statement instance schedules. The approach is implemented in the publicly avail-
able DAPT compiler. We discovered that for some dynamic programming codes,
DAPT generates code representing 3D tiles while closely related compilers using
Farkas’ lemma for constraint linearization, yield code exposing only 2D tiles.
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Abstract. The fast Fourier transform (FFT), is one the most important
tools in mathematics, and it is widely required by several applications
of science and engineering. State-of-the-art parallel implementations of
the FFT algorithm, based on Cooley-Tukey developments, are known
to be communication-bound, which causes critical issues when scaling
the computational and architectural capabilities. In this paper, we study
the main performance bottleneck of FFT computations on hybrid CPU
and GPU systems at large-scale. We provide numerical simulations and
potential acceleration techniques that can be easily integrated into FFT
distributed libraries. We present different experiments on performance
scalability and runtime analysis on the world’s most powerful super-
computers today: Summit, using up to 6,144 NVIDIA V100 GPUs, and
Fugaku, using more than one million Fujitsu A64FX cores.

Keywords: Scalability · Parallel FFT · Hybrid systems

1 Introduction

The fast Fourier transform (FFT) is a key mathematical tool and widely used
in a variety of fields in science and engineering. In essence, the FFT of x, an m-
dimensional vector of size N := N1 × N2 × · · · × Nm is defined by y := FFT (x),
which is obtained as follows,

ỹ :=
N1−1∑

n1=0

N2−1∑

n2=0

· · ·
Nm−1∑

nm=0

x̃ · e
−2πi

(
k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
, (1)

where ỹ = y(k1, k2, . . . , km), and x̃ := x(n1, n2, . . . , nm).
From Eq. 1, we see that the FFT could be directly computed by a tensor

product. However, this would cost O(N
∑m

i=1 Ni), while the advantage of the
FFT is that the cost can be reduced to O(N log2 N) operations.
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The parallel FFT is implemented by a sequence of 1-D or 2-D FFTs, see e.g.,
[13], which are computed using efficient intra-node optimized libraries, such as
FFTW [11] and CUFFT [1]. Figure 1 shows the steps to perform a 3-D FFT,
typical in molecular dynamics, c.f., [14,17]. For some applications the input
data has a shape ready to perform one-dimensional (pencils) or two-dimensional
(slabs) FFTs and no initial nor final reshaping is needed. In [5], authors showed
that saving one reshape step can accelerate the runtime around 25%, since,
asymptotically, the multi-dimensional FFT runtime is dominated by the number
of data-reshapes.

Fig. 1. Sequence for the computation of 3-D FFTs. If slab decomposition is possible,
then an extra reshape step is saved.

In the current state-of-the-art, many authors have reported the impact
of multi-process communication on distributed FFT performance [4,12,16,18],
using both binary and collective MPI communication schemes that are available
in current libraries. In this paper, we study these performance impacts from a
numerical perspective, with a focus on architecture and algorithmic tuning for
better performance. We analyze the effects of the communication bottleneck on
scalability and provide techniques to maintain linear scaling. In Sect. 2, we make
evident how FFT computation halts scaling even using latest efforts on MPI
communication and their ability to perform CUDA-aware communication and
specialized MPI for accelerators such as the NCLL library from NVIDIA [2]. This
is critical for upcoming exascale system with millions of cores [6]. When address-
ing how network topology issues break scalability, we also provide techniques to
prevent them.

Finally, the FFT is a key component for applications ranging from elec-
tronics to molecular dynamics. It is used at small and large scale; as within
software targeting exascale (e.g., LAMMPS [14] and HACC [10]) and those from
the machine learning community [15]. Such applications are being prepared for
very large computing systems, with hybrid components and complex topologies.
Therefore, it is critical to ensure parallel FFT scalability at large-scale.
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2 Parallel FFT Performance Bottleneck

A major issue with distributed hybrid FFTs is that, due to the sheer compute
capabilities of today’s supercomputers, the algorithm quickly becomes commu-
nication bound. Such type algorithms, where already studied and authors in
[8] warned of their effect on upcoming large-scale clusters. In [7], authors per-
formed an extensive theoretical analysis on hybrid systems targeting exascale
and realized that the FFT computation itself would take only a small fraction
of the total run time, while the communication between processors would be
the bottleneck where most of the run-time is spent. Nowadays, computing sys-
tems have greatly increased their computation power but their communication
features have not been increased in the same proportion. For example, Summit
supercomputer uses powerful nodes with two IBM POWER9 processors and six
Nvidia V100 GPUs capable of reaching 42,000 GFlop/s in double precision, but
the interconnect between the nodes is supported by a bandwidth of just 25 GB/s.
Another supercomputer, the Sunway TaihuLight, has SW26010 processors with
260 cores, and 1 execution thread per core, with a unidirectional bandwidth
of 8 GB/s between nodes and 1 μ of latency [9]. It therefore becomes critical
to develop techniques and methodologies that help us of dealing with limited
communication capabilities, together with an ecosystem of integrated tuning
techniques for better communication frameworks. Such approaches are crucial
in general and are paramount for the FFT, where communication can take more
than 95% of total run-time on the latest GPU-accelerated supercomputers [4,5].

2.1 Scalability Issues

The recent developments of parallel FFT libraries capable of handling CPU
and GPU components at the same time, has allowed considerable speedups in
computation. However, this is highly limited by the communication bottleneck
which has a considerable impact even for small-scale problems (due to latency
issues) [5]. The bottleneck behaves different for every architecture and no general
conclusion can be given on optimization criteria. For instance, experiments from
[4,12,18] show that MPI All-to-All communication, was, in general, the best
behaving methodology for data exchange in Summit-like architectures; however,
as it can be seen in Fig. 2, in some systems, such as Fugaku, at large-scale, All-to-
All (A2A) communication drastically fails to scale. An alternative for this case
is to switch to binary MPI communication (P2P) which helps to keep a linear
scaling. Note, however, that for a given problem size, if it is too small compared
with the number of resources, then the scalability will also start to break, due
to increased latency, see for example the P2P curve for the 2563 problem. The
experiment was performed using heFFTe library [3].

2.2 Peak Performance Model

When making a software contribution on parallel implementation, it is important
to see how well the performance approaches to the machine theoretical peak.
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Fig. 2. Strong scaling of a 3-D FFTs. Using 48 A64FX cores per node. Comparing the
scalability of A2A and P2P approaches using double-complex precision data.

Since the bandwidth injection between a single node is, in general, very high
compared to inter-node injection. We developed a mathematical model for the
theoretical performance peak on a supercomputer, c.f., [5, Sec. 3], given as:

Φ :=
5P log(N)B

αr
(GFlops/s), (2)

where, the parameters are explained in Table 1.

Table 1. Parameters for communication model

Symbol Description

N Size of FFT

P Number of nodes

r Number of reshapes (tensor transpose, c.f., Fig. 1)

α Size of datatype (Bytes)

B Theoretical inter-node bandwidth (GB/s)

In Fig. 3, we show the roofline model for heFFTe v.2.0 on Summit and
Fugaku, which have, respectively, 25 and 40.8 GB/s of inter-node theoretical
bandwidth injection.

2.3 Choosing the Fastest FFT Parallel Algorithm

In Fig. 1 we see that there exists different ways to implement the parallel FFT,
and it also depends on the user’s data arrangement at input and output. For
the sake of simplicity, let us consider a 3-D FFT, where the possible reshape
combinations are (B: Bricks, P: Pencils, S: Slabs):

– Pencils: B2P → P2P → P2P → P2B; this approach is the one available in
libraries such as AccFFT [12] and FFTMPI [17].
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Fig. 3. Roof-line performance model—heFFTe performance on a 3-D FFT of size 10243

using 6 MPI/node, 1 GPU-Volta 100 per MPI for Summit, and 48 A64FX per node on
Fugaku.

– Slabs: B2P → P2S → S2B; this approach uses a combination of pencils and
slabs, and it is included in heFFTe library [3].

The choice of a given reshape sequence will depend on the type of architec-
ture. Note that, for example, the number of messages for a P2P reshape is of
the order of P 2/3, where P is the number of processors involved in the communi-
cation, c.f., Fig. 1. Hence, assuming 3-D double-complex data—and using Eq. 2
and the asymptotic number of messages sent by each of the reshape types, with
B = 25 GB/s and L = 1µs—Fig. 4 is a phase diagram for Summit, which allows
to choose the theoretical fastest decomposition to use. This offline pre-processing
tuning strategy can help users to identify which 3-D decomposition to use for
the FFT parallel algorithm. The proposed methodology can easily be extended
to other supercomputers and higher dimension transforms.

Fig. 4. Selection of the best reshape approach based on the 3-D FFT size and the
number of resources.

3 Experimental Results

In this section, we present numerical experiments to support our analysis from
previous sections. Since this paper targets large-scale computation, our results
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were obtained using the two world’s most powerful supercomputers today, with
the following architectures:

– Summit at ORNL - USA, having 4,608 nodes, each consisting of 2 IBM
POWER9 CPUs and 6 NVIDIA V100 GPUs. These 6 GPU accelerators pro-
vide a theoretical double-precision capability of approximately 40 TFLOP/s.
Within the same node, processors have two NVIDIA NVLink interconnects,
each having a peak bandwidth of 25 GB/s (in each direction), hence V100
and P900 can communicate at a peak of 50 GB/s (100 GB/s bi-directional).

– Fugaku at RIKEN - Japan, currently at testing stage, and has 158,976 nodes,
each consisting of Fujitsu A64FX CPU. We use the maximum amount of
number of resources currently allowed with 48 cores per node.

Experiments on this paper where performed using a state-of-the-art library
for parallel FFTs: heFFTe version 2.0 [3], which reportedly provides consider-
able speedups with respect to its peers [4]. If not stated otherwise, our results
display average values of 10 experiments (5 forward and 5 backward 3D-FFT
computations) using double-complex precision random data and 4 data reshapes
per direction (Input → X → Y → Z → Output).

3.1 Strong and Weak Scalability

Several authors have shown that parallel FFT runtime on large problems are
highly due to MPI communication, which asymptotically takes more than 95% of
runtime on hybrid systems, c.f., [4,5,12]. Hence, it is critical to select the fastest
MPI (binary or collective) communication for the data exchanges required by
parallel FFT distributions. In Fig. 5, we present weak and strong scalability on
up to one million A64FX cores on Fugaku, this experiment clearly shows the
effect on scalability of the selection of the Point-to-Point (MP2P) and All-to-
All (A2A) communication frameworks, and its relationship with the number of
resources. When dealing with hybrid systems, such as Summit supercomputer,
the percentage of time spend on communication exploits, making the perfor-
mance scaling highly dependent on the underlying MPI library, we explore the
MPI selection in next subsection.

The strong scalability plot from Fig. 5, sheds light on how P2P communi-
cation is faster for large number of resources, and we verified this for medium
sized allocation and employed the P2P approach for our largest experiments on
the weak scalability plot. Figure 6 shows a weak scaling using AlltoAll commu-
nication on Summit, and using SpectrumMPI 10.3 with data striping enabled,
we can get good linear scaling and this is faster than the P2P approach, which
is the opposite situation compared to Fugaku.
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Fig. 5. Left: Comparison of strong scaling for a 3-D FFT of size 10243, using different
node count. Right Weak scalability for different 3-D FFT sizes. For both experiments
we use heFFTe with FFTW backend and 48 MPI processes (1 MPI processes per
A64FX core) per node.

Fig. 6. Weak scalability for different 3-D FFT sizes on a hybrid architecture (Summit).
Using NVIDIA CUFFT backend and 6 MPI processes (1 MPI processes per Volta 100
GPU) per node.

3.2 MPI Selection for Further Acceleration

In Sect. 3, we showed how the right reshaping algorithm can provide speedups of
over 25% compared to default implementations. Next, assuming that the algo-
rithm is fixed and properly chosen, we observed that to achieve linear scala-
bility, it is very important to figure out how to optimally use the computa-
tional resources and architecture tools from manufactures to manually tune the
port inter-connections to achieve maximum bandwidth injection. Therefore, let
us analyze the parallel computing technologies in both, Summit and Fugaku,
supercomputers:

– Fugaku uses a TofuD network topology, with three different types of options:
torus, mesh, noncont. For our experiments we used MPIFCC provided with
the Fujitsu compiler, and we enabled auto-parallelization using the Kparallel
flag. We observe that the torus and noncont networks provided the best
injection bandwidth. In theory, using the 6 available TofuD ports we can get
a total of 40.8 GB/s theoretical bandwidth injection.
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– Summit inter-node connections are not as fast as the NVLINKS available
intra-nodes, and they are arranged on a non-blocking fat tree topology with
dual-rail EDR InfiniBand network that provides a theoretical bandwidth of
25 GB/s. For our experiments we use IBM SpectrumMPI, which is optimized
for this architecture.

Fig. 7. Comparison of bandwidth injection obtained for different MPI implementations
on Fugaku and Summit.

Information about the interconnections have to be obtained in advance and
can be integrated to state-of-the-art libraries for auto-tuning, this feature is
not, currently, supported by libraries covered in Sect. 1. Next, for a given FFT
computation we can find the message size that will be transferred between nodes
and Fig. 7 shows which MPI implementation offers the best bandwidth injection.
For instance, for a 256× 256× 256 double-complex (16 Bytes) precision FFT on
128 nodes, each processor communicates around 2 MB of data.

4 Conclusion

In this paper, we studied performance and scalability limitations of large-scale
FFT computation on state-of-the-art CPU and GPU distributed systems. We
provided methodologies to further accelerate parallel FFT by targeting soft-
ware improvements on critical algorithm bottlenecks and making them aware of
the underlying architecture. Our numerical studies and bounds on performance
scalability can be generalized to all type of architectures (e.g., those from grid
computing) and can be employed to make performance predictions. We finally
presented experiments on today’s top supercomputers, showing how carefully
chosen system-aware parameters and algorithms can lead to very good linear
strong and weak scalability.

References

1. cuFFT library (2018). http://docs.nvidia.com/cuda/cufft
2. NCLL library (2019). https://github.com/NVIDIA/nccl

http://docs.nvidia.com/cuda/cufft
https://github.com/NVIDIA/nccl


Scalability Issues in FFT Computation 287

3. heFFTe library (2020). https://bitbucket.org/icl/heffte
4. Ayala, A., et al.: Impacts of Multi-GPU MPI collective communications on large

FFT computation. In: 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI)
(2019)

5. Ayala, A., Tomov, S., Haidar, A., Dongarra, J.: heFFTe: highly efficient FFT
for exascale. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol.
12137, pp. 262–275. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50371-0 19

6. Balaji, P., et al.: MPI on a million processors. In: Ropo, M., Westerholm, J.,
Dongarra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 20–30. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03770-2 9

7. Czechowski, K., McClanahan, C., Battaglino, C., Iyer, K., Yeung, P.K., Vuduc, R.:
On the communication complexity of 3D FFTs and its implications for exascale
(2012). https://doi.org/10.1145/2304576.2304604

8. Demmel, J.: Communication-avoiding algorithms for linear algebra and beyond. In:
2013 IEEE 27th International Symposium on Parallel and Distributed Processing
(2013)

9. Dongarra, J.: Report on the sunway TaihuLight system. Technical report (2016)
10. Emberson, J., Frontiere, N., Habib, S., Heitmann, K., Pope, A., Rangel, E.: Arrival

of first summit nodes: HACC testing on phase I system. Technical report, MS ECP-
ADSE01-40/ExaSky, Exascale Computing Project (ECP) (2018)

11. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). Special issue on “Program Generation, Optimization, and
Platform Adaptation’

12. Gholami, A., Hill, J., Malhotra, D., Biros, G.: AccFFT: a library for distributed-
memory FFT on CPU and GPU architectures. CoRR abs/1506.07933 (2015)

13. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Accuracy and Stability of Numer-
ical Algorithms, 2nd edn. Addison Wesley, Boston (2003)

14. Large-scale atomic/molecular massively parallel simulator (2018). https://lammps.
sandia.gov/

15. Lin, S., Liu, N., Nazemi, M., Li, H., Ding, C., Wang, Y., Pedram, M.: FFT-based
deep learning deployment in embedded systems. In: 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), pp. 1045–1050 (2018)

16. Parallel 2d and 3d complex FFTs (2018). http://www.cs.sandia.gov/∼sjplimp/
download.html

17. Plimpton, S., Kohlmeyer, A., Coffman, P., Blood, P.: fftMPI, a library for perform-
ing 2d and 3d FFTs in parallel. Technical report, Sandia National Lab. (SNL-NM),
Albuquerque, NM, USA (2018)

18. Takahashi, D.: Implementation of parallel 3-D real FFT with 2-D decomposition on
Intel Xeon Phi Clusters. In: 13th International Conference on Parallel Processing
and Applied Mathematics (2019)

https://bitbucket.org/icl/heffte
https://doi.org/10.1007/978-3-030-50371-0_19
https://doi.org/10.1007/978-3-030-50371-0_19
https://doi.org/10.1007/978-3-642-03770-2_9
https://doi.org/10.1145/2304576.2304604
https://lammps.sandia.gov/
https://lammps.sandia.gov/
http://www.cs.sandia.gov/~sjplimp/download.html
http://www.cs.sandia.gov/~sjplimp/download.html


High Performance Implementation of Boris
Particle Pusher on DPC++. A First Look

at oneAPI

Valentin Volokitin1, Alexey Bashinov2, Evgeny Efimenko2, Arkady Gonoskov3,
and Iosif Meyerov1(B)

1 Mathematical Center, Lobachevsky University, Nizhni Novgorod 603950, Russia
meerov@vmk.unn.ru

2 Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
3 Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden

Abstract. New hardware architectures open up immense opportunities for super-
computer simulations. However, programming techniques for different architec-
tures vary significantly, which leads to the necessity of developing and supporting
multiple code versions, each being optimized for specific hardware features. The
oneAPI framework, recently introduced by Intel, contains a set of programming
tools for the development of portable codes that can be compiled and fine-tuned
for CPUs, GPUs, FPGAs, and accelerators. In this paper, we report on the expe-
rience of porting the implementation of Boris particle pusher to oneAPI. Boris
particle pusher is one of the most demanding computational stages of the Particle-
in-Cell method, which, in particular, is used for supercomputer simulations of
laser-plasma interactions. We show how to adapt the C++ implementation of the
particle push algorithm from the Hi-Chi project to the DPC++ programming lan-
guage and report the performance of the code on high-end Intel CPUs (Xeon
Platinum 8260L) and Intel GPUs (P630 and Iris Xe Max). It turned out that our
C++ code can be easily ported to DPC++. We found that on CPUs the resulting
DPC++ code is only ~10% on average inferior to the optimized C++ code. The
code is compiled and run on new Intel GPUs without any specific optimizations
and shows the expected performance.

Keywords: Parallel computing · HPC · Heterogeneous computing · oneAPI

1 Introduction

The development of computational architectures in the last decades has led to the emer-
gence of new possibilities for supercomputer simulations. However, the appearance of
devices with fundamentally different architectures required the development of appro-
priate approaches to programming and code optimization. It turned out that the devel-
opment of a universal framework that allows implementing a single code that can be
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compiled and, no less important, work efficiently on different hardware is not straight-
forward. Such frameworks and libraries, in particular, include OpenCL [1], OpenACC
[2], Alpaka [3], Kokkos [4], and many others. In 2020, Intel introduced oneAPI – a new
unified open model for heterogeneous programming, which includes a wide set of tools
and a new DPC++ language [5] for heterogeneous programming based on the SYCL
language. The DPC++ language allows using various computing devices in calculations,
in particular, CPUs, GPUs, and FPGAs.

In this paper, we report on the experience of porting the algorithm of Boris pusher
to DPC++. The Boris pusher is a frequently used algorithm for advancing the classical
state of a charged particle under the action of a given electromagnetic field. It is one
of the main computational cores of the High-Intensity Collisions and Interactions (Hi-
Chi) framework [6, 7], which is an open-source collection of Python-controlled tools for
performing simulations and data analysis in the research area of strong-field particle and
plasmaphysics. In particular,we address the following questions. Firstly,we demonstrate
how such code can be ported to DPC++. Secondly, we analyze the performance of the
DPC++ code on high-end Intel CPUs versus the baseline C++ implementation and show
how the key code optimization techniques affect performance in different simulation
scenarios. Finally, we assess the performance of the DPC++ code on new Intel GPUs
versus CPUs without any additional optimizations for GPUs.

2 Method

In this work we employ the commonly used Particle-in-Cell (PIC) method; a detailed
description is given in [8–12]. The method is used to model the interaction of an elec-
tromagnetic field with plasma using kinetic description. It operates on two distinct sets
of data: grid field data and particle data. The values of electric and magnetic fields are
defined on a spatial grid. The plasma is represented as an ensemble of particles, each
with a charge, mass, position and momentum. Each particle used in simulation is in fact
a macroparticle that represents a cloud of real particles, whose distribution is described
by a fixed localized shape function, also referred to as the form factor of a macroparticle.
A notable feature of the method is that particles do not interact with each other directly;
instead each particle interacts with a set of nearby grid values of the electromagnetic
field, depending on the form factor.

This paper concerns one of the main parts of the PIC method: the integration of
particle motion in electromagnetic fields. This stage, usually called the Particle push, is
of particular interest for performance optimization [13–19], because this stage becomes
the most time consuming for realistic problems due to a large number of macroparticles
(as compared to the number of grid nodes). The numerical code Hi-Chi implements the
commonly used and de-facto standard Boris method [12]. Further we discuss porting
and optimization of this method using the DPC++ language.

3 Data Structures and Algorithm

The developments reported in this paper are a part of the Hi-Chi project [6]. The project
Hi-Chi is an open-source collection of Python-controlled tools for performing simula-
tions and data analysis in the research area of strong-field particle and plasma physics.
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The tools are being developed in C++ and provide high performance using either local
or supercomputer resources. The project is intended to offer an environment for test-
ing, benchmarking and aggregative use of individual components, ranging from basic
routines to supercomputer codes.

AParticle class is the keydata structure used in our simulations. For eachparticle,
we store position and momentum vectors of 3 floating point numbers each, as well as
scalar floating point values of the particle weight and the Lorenz factor γ. Additionally,
we store an integer value of the particle type to determine its mass and charge. These
parameters, corresponding to particles of different types, are stored in a separate table
in a single copy.

The code is implemented so that we can easily switch between using single and
double precision data types. To do this, we abstracted the floating point data type as
FP, which can be float or double depending on the settings. Similarly, the FP3
data type describes a vector of 3 float or double components. In the case of single
precision, storage of each particle requires 34 bytes of memory (36 bytes after memory
alignment), in the case of double precision, each particle takes 66 bytes of memory
(72 bytes after memory alignment). The investigation of the possibility of performing
calculations in single and double precision is beyond the scope of this study. Here we
are only comparing the performance of calculations in single and double precision. We
should also note that in the considered benchmarks, we did not observe any inaccuracies
caused by the use of single precision.

The way of organizing an ensemble of particles deserves special attention. For exam-
ple, in programs for supercomputer modeling of laser plasma by the particle-in-cell
method, two main approaches of representing an ensemble of particles are commonly
used. The first method assumes that each cell stores its own array of particles. This
representation has many advantages, but it requires handling the movement of particles
between cells, which causes an additional overhead when parallelizing computations.
The second way is to store the entire ensemble of particles in a single array. In this
case, we do not need to handle the movement of particles between cells, but we have to
periodically sort the array of particles in order to improve cache locality. In the Hi-Chi
code, we employ the second method.

The next question that arises when choosing data structures to represent an ensemble
of particles is which of the common patterns is better to use: an array of structures (AoS)
or a structure of arrays (SoA). This issue has been studied for a long time as applied to
various problems. It is known that both approaches of data representation have their pro
et contra. For example, the AoS pattern allows us to preserve memory locality. However,
this scheme is not very efficient in the case of code vectorization, since it entails non
unit-stride access to the data of different particles. On the contrary, the SoA pattern is
less efficient in utilizing cache memory, but it allows efficiently loading data for vector
computations and does not use time-consuming scatter/gather operations. In the general
case, none of the schemes is unconditionally better. Everything is determined by the
properties of the algorithm, problem, and target architecture. Therefore, Hi-Chi allows
using any of these patterns. Next, we will compare how the choice of data structures
affects the performance.
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Note that in order to use different ways of storing data, we implement the Parti-
cleProxy class, which completely repeats the functionality of the Particle class,
but stores references to objects. This approach allows us to effectively employ the C++
templates and use the single code regardless of the storage structure.

4 Exploiting Parallelism Using the OneAPI Technology

4.1 Reference Implementation of the Boris Pusher

As a reference implementation, we consider a parallel version implemented using the
OpenMP technology. Parallelism in this version is exploited at the level of particle
processing, and the loop over particles is parallelized and vectorized as follows:

// Numerical integration loop over numSteps time steps 
for (int step = 0; step < numSteps; step++)  { 
  // Run the Pusher for every particle in an ensemble 

#pragma omp parallel for simd 
for (int ind = 0; ind < numParticles; ind++)  { 

      // Run the Boris pusher for particle #ind 
    … 

} 
} 

4.2 Porting the Pusher to DPC++

Smartmemorymanagement is a key factor to achieving goodperformance and scalability
of codes. In the case of using accelerators, this issue becomes even more important.
DPC++ provides two ways to manage memory and access/share/move data between
devices. The first method involves the use of special concepts – buffers, which allow
us to define regions of memory that can be used on the device (buffers), and accessors,
which allow us to plan access to data and their movement between devices. The second
method (Unified Shared Memory, USM) is more low-level and allows us to work in a
style similar to working with C++ pointers. This model is quite convenient for codes
that have been already based on C++ pointers. In this case, porting to DPC++ requires
just minimal modifications to memory allocation instructions.

We employ the USMmodel. It is the simplest, but quite functional option for shared
memory allocation providing data access on a device and a host. We also rely on oneAPI
runtime for memory management. This approach allowed us to quickly port the code
to DPC++, with only minimal changes and reasonable performance. Compared to the
reference implementation, our DPC++ code is quite similar:
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// Numerical integration loop over numSteps time steps 
for (int step = 0; step < numSteps; step++) { 
  // Create a “kernel” function 

auto kernel = [&](sycl::handler& h) { 

      // Work with particles in parallel
h.parallel_for(sycl::range<1>(numParticles), 

                      [=](sycl::id<1> ind) { 
      // Run the Boris pusher for particle #ind 
      … 

}
} 
// Submit the kernel 
device.submit(kernel).wait_and_throw();  

} 

The code, as before, processes the movement of particles in parallel. Unlike typ-
ical C++ code, for processing particles, we create a kernel using special C++ lambda
expression (supported since the C++ 11 standard). This kernel employs a special DPC++
mechanism parallel_for, which calls the Boris pusher in parallel for particles from
the ensemble. Code vectorization is also automatically provided by the compiler. Since
the Boris pusher is implemented as a lambda expression that captures objects by copy,
these objects must have a default copy constructor that will create full copies of objects
with the same addresses inmemory. Therefore, we could not use the standard vector class
to implement an array of particles. Instead, we use a C-style pointer to a buffer, which is
copied without actually copying the contents of the buffer when capturing objects to the
kernel. Such copying is usually a mistake for C++ classes, but in this case it is exactly
the required behavior.

4.3 Improving Scaling Efficiency

DPC++ runtime on a CPU employs the widely used Threading Building Blocks (TBB)
library for parallel computations. Compared to OpenMP, TBB always uses dynamic
scheduling, which can substantially improve performance in complex unbalanced prob-
lems. However, in balanced applications, the overhead of dynamic scheduling may not
be justified. However, a small overhead is a reasonable price to pay for the versatility of
the code that can be compiled and run on different architectures.

Appropriate use of platformswith Non-UniformMemoryAccess (NUMA) architec-
ture deserves a separate discussion. Thus, on modern supercomputers, a configuration
with several (often two) CPUs is typical. In such cases the access of the cores to the
local memory of their processor is much faster than access to the memory of another
processor installed on the same node. This is especially important for memory-bound
applications, in particular for the considered pusher.

In codes parallelized with OpenMP, we can often achieve that the data is localized
in the cache memory of the CPU that will process it. In the case of using TBB (recall
that DPC++ uses this scenario), we can also work with memory in a NUMA-friendly
manner. In this regard we use the DPCPP_CPU_PLACES environment variable with the
value numa_domains. In this case, the iteration space is divided into NUMA domains,
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and TBB performs dynamic scheduling of parallel execution of tasks only within the
corresponding NUMA arena. This ensures that the same particles are processed on the
same CPU at every time step. It will be shown below that this significantly improves
performance and scaling efficiency of the code. In what follows, we will refer to such
launches as ‘DPC++ (NUMA)’.

5 Numerical Results

5.1 Computational Infrastructure

The computational experiments were performed at a node of the supercomputer Endeav-
our with 2x Intel Xeon Platinum 8260L (Caskade Lake, 24 cores each), 48 cores overall,
192 GB RAM, RedHat 4.8.5, Intel C++ Compiler and Intel DPC++ Compiler from the
Intel OneAPI Toolkit Base and HPC (Gold Release 2020) suite. All tests on Intel P630
and Iris Xe Max GPUs were executed on Intel DevCloud. Some preliminary tests were
executed on the Lobachevsky supercomputer at Lobachevsky University. The hardware
parameters are presented in Table 1.

Table 1. Hardware parameters

Parameter 2x Intel Xeon Platinum
8260L

P630 Iris Xe Max

Number of CPU
cores/GPU execution
units

48 24 96

Clock frequency 2.4 GHz
(3.9 GHz Boost)

0.35 GHz
(1.15 GHz Boost)

0.3 GHz
(1.65 GHz Boost)

RAM DDR4 192 GB DDR4 32 GB (CPU
RAM)

LPDDR4X 4 GB

Memory bandwidth 250 GB/sec 40 GB/sec 68 GB/sec

Peak performance
(single precision)

3.6 TFlops 0.441 TFlops 2.5 TFlops

5.2 Benchmarks

We considered two simulation scenarios as benchmarks for analyzing performance. In
the first scenario, all field values are precalculated and stored in the corresponding array.
This scenario allows excluding all operations from measurements except for particle
motion. The second scenario assumes that the fields are specified analytically. In this
case, we do not have to store a large data array. On the contrary, field values are computed
using analytical formulas when they are directly needed in calculations. Both scenarios
are in demand in practice and, hypothetically, can lead to different conclusions regarding
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code optimization, since in the first case, we store much more data, and in the second,
we perform much more calculations.

In order to test our implementations we consider themotion of electrons in the tightly
focused fields in the form of a standing magnetic dipole (m-dipole) wave [20]. This
study is necessary to determine the optimal parameters of a seed target for the vacuum
breakdown inmulti-petawattm-dipolewave [21]. Tight focusing allows decreasing of the
threshold power of this phenomenon [22] that is favourable for upcoming experiments
at 10-PW laser facilities [23]. For this reason, we consider ultimate focusing [24] in a
form of the dipole wave.

The pulsed multi-PW incoming m-dipole wave can ionize matter at its leading edge
and pull unbound electrons to the wave focus. When the wave passes through the focus
the diverging wave appears and electrons start to oscillate in the standing wave. In order
to trigger the vacuum breakdown a number of particles should remain in the focus when
the instantaneous wave power becomes greater than 10 PW [21]. However, due to strong
field inhomogeneity, particles can rapidly escape the focal region while instantaneous
power is not high enough. With the help of simulations of the particle motion in the
standing m-dipole wave the rate of particle escape from the focal region can be obtained.
Based on these results the optimal parameters of the seed target can be chosen.

Particle escape is fastest in the range of powers from approximately 4 GW to 1 PW
when fields are relativistic, but radiative trapping effects [25] are absent. For the test we
consider the wave power P = 0.1 PW. In the simulation the electric and magnetic field
components are set analytically as follows:

Ex = − 2A0y
R(x,y,z)cos(ω0t)f1(R(x, y, z))

Ey = 2A0x
R(x,y,z)cos(ω0t)f1(R(x, y, z))

Ez = 0
Bx = − 2A0xz

R2(x,y,z)
sin(ω0t)f2(R(x, y, z))

By = − 2A0xy
R2(x,y,z)

sin(ω0t)f2(R(x, y, z))

Bz = − 2A0z2

R2(x,y,z)
sin(ω0t)

(
z2

R2(x,y,z)
f2(R(x, y, z)) + f3(R(x, y, z))

)
,

where t is time, x, y, z are Cartesian coordinates, R(x, y, z) = √
x2 + y2 + z2, A0 =

k
√
3P/c, c is the light velocity,ω0 = 2.1×1015 s−1 is thewave frequency corresponding

to the wavelength λ = 0.9μm, k = ω0/c,

f1(R) = sin(kR)

(kR)2
− cos(kR)

kR

f2(R) =
(

3
(kR)3

− 1
kR

)
sin(kR) − 3cos(kR)

(kR)2

f2(R) =
(

1
kR − 1

(kR)3

)
sin(kR) + cos(kR)

(kR)2
.

Initially (t = 0), electrons are at rest and distributed uniformlywithin the sphere with
radius r = 0.6λ. The experimental setup is as follows. In each experiment, 107 particles
were simulated. The equations of motion were integrated over 103 time steps, which
we further refer to as ‘iteration’. During the experiment, 10 successive iterations were
measured. To compare the performance results, we used the NSPSmetric (nanoseconds
per particle per step) calculated as the average time of one iteration in nanoseconds,
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divided by the number of particles (107) and by the number of steps in one iteration
(103).

5.3 Results and Discussion

Experiments on CPUs
First of all, it is necessary to take into account the following fact. When profiling com-
putational codes, we often observe that the first iteration of a method can take work
slower than the rest. This is usually explained by the fact that at the first iteration, the
data has to be loaded from RAM, while at the next iterations, part of the data is loaded
from a cache. In NUMA systems, this effect is sometimes even more pronounced if the
code does not implement a NUMA-friendly memory usage policy. In the case of DPC++
codes, this effect is manifested in an even more explicit form, since when the kernel is
first launched, it is compiled from an intermediate representation for a specific hardware,
which can take some time. In our benchmark, the first iteration takes 50% longer time
than the subsequent ones, which is the cumulative effect of the reasons described above.
Considering that we perform a lot of iterations, this effect does not have a significant
impact on the results.

We collected the results onCPUs employing available 48 cores (2CPUswith 24 cores
each). The comparison involves implementations parallelized on OpenMP, or DPC++,
or DPC++ with the NUMA-friendly memory usage policy described before. For each of
these implementations, we tried using SoA and AoS memory layout patterns. As stated
earlier, two simulation scenarios were considered. We refer them to as ‘Precalculated
Fields’ and ‘Analytical Fields’. For OpenMP versions, it was found that employing 96
threads is empirically the best, that is, the use of hyperthreading technology improves
performance. For DPC++ implementations, the number of threads is selected by the
TBB runtime. All experiments were executed both in single and in double precision
(Table 2).

The results lead to the following conclusions:

1. Using the NUMA-friendly memory usage policy leads to a significant performance
gain due to the elimination of the overhead of remote access to thememory of another
CPU installed on the same node. Note that in the OpenMP code, similar tricks did not
lead us to performance improvement, since in this case remote access occurs only at
the first time steps of the method, then the data is localized within the corresponding
NUMAdomains. The conclusions are confirmedbyprofilingusing IntelVTune.Note
also that although such a significant effect of NUMA on performance is specific to
the considered memory bound benchmark, it can be important for optimizing other
DPC++ applications as well.

2. The performance of the optimized DPC++ implementation is only slightly inferior
to the OpenMP implementation. The difference is usually only ~10% on average
due to some overhead and a different approach to parallelization. We think this is an
excellent result for DPC++ taking into account the portability of the code.
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Table 2. Performance results (NSPS, nanoseconds per particle per step) on CPU for 6
implementations and 2 simulation scenarios.

Pattern Parallelization Precalculated
fields

Analytical
fields

Float Double Float Double

AoS OpenMP 0.53 0.98 0.58 0.84

DPC++ 0.78 1.54 1.02 1.48

DPC++
NUMA

0.54 0.99 0.54 0.89

SoA OpenMP 0.50 1.06 0.43 0.76

DPC++ 0.85 1.49 0.77 1.31

DPC++
NUMA

0.58 1.20 0.60 0.90

3. The choice of the AoS or SoA patterns has almost no effect on the performance in the
current benchmark. This is due to the fact that the main factor limiting performance
is not loading data into vector registers, but working with RAM.

4. When going from single to double precision, the running time changes as expected,
because it requires twice the memory bandwidth and doubles the amount of com-
putation. In the problem with precomputed fields, the difference is almost twofold;
in the case of analytical fields, it is slightly less due to the specifics of the calcula-
tions. Note also that in the case of DPC++, code vectorization occurs with full use
of AVX-512 instructions, as it was earlier in OpenMP.

5. Since the problem is memory bound, working with memory dramatically affects
performance. The two considered simulation scenarios are fundamentally different
inworkingwithmemory, since in the ‘Precalculated Fields’ problem,we additionally
store an array of field values comparable in size to the ensemble of particles. On the
contrary, in the ‘Analytical Fields’ problem, we do a lot more resource-intensive
calculations of mathematical functions. The main motivation for considering these
two scenarios was to find out how these differences affect the overall simulation
time. The results showed that calculations using analytical formulas and loading
pre-calculated data from memory turned out to be, on the whole, comparable in
terms of time consumption. At the same time, in the case of calculations in double
precision, the scenario with the analytical computations of field values runs a little
faster. It is noteworthy that this result does not depend on the choice of parallel
programming technologies (OpenMP or DPC++).

To evaluate the efficiency of parallelization, we calculate the speedup when using
1–48 cores relative to runs on a single core. Considering that hyperthreading is enabled,
we start 2 threads on each core, binding threads to cores. As an example, single precision
calculations in the problem with precalculated fields are considered. The results (Fig. 1)
show that in the implementation on OpenMP, a close to linear speedup is observed
until the code fully utilizes memory bandwidth of the first socket. When we start using
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of the second socket, the run time begins to scale linearly again. For DPC++ NUMA
implementations, super-linear acceleration is observed at the beginning. This is because
theDPC++ single core version is quite slow. Further experiments demonstrate reasonable
scaling, approaching to 63% of strong scaling efficiency when using 48 cores. As shown
earlier, the overall run times for OpenMP and DPC++ NUMA versions are close to each
other.

Fig. 1. Speedup of parallel computations of the OpenMP and DPC++ NUMA implementations
employing the AoS and SoA data layouts in the ‘Precalculated Fields’ problem. Computations
are performed in single precision on 1–48 cores. Single core run time is used as a reference.

Experiments on GPUs
DPC++ is the universal development tool for portable programs. However, achieving
performance portability is even much more complex problem due to fundamental dif-
ferences in computing architectures. Apparently, when porting DPC++ codes to specific
architectures, some fine-tuning or even new implementations of the computational ker-
nels can be required. One of the goals of the present work was to study how the DPC++
code, built on the basis of the C++ code optimized for Intel CPUs, will work on the new
Intel GPUs without any specific optimizations. The results obtained should not be taken
as a fair comparison of CPUs vs. GPUs, they only demonstrate how much performance
we can get without additional work. We carried out such experiments on Intel devCloud,
using currently available devices, the parameters of which are shown earlier in Table 1.
Since for the Iris XeMax, double precision operations occur only in an emulation mode,
we present the results in single precision only. The results are shown in Table 3.

If for the CPUs different particles memory layouts were comparable in performance
due to various factors described earlier, then on Intel GPUs the run time may differ by
more than half (Table 3). This is due to a different organization of thememory subsystem
in the GPUs. We should also note the lack of additional optimizations for the GPUs.
Probably, the performance of the AoS version of the code can be improved, however,
in any case, the importance of choosing a layout on GPUs must be taken into account
when such porting. A direct comparison of the run time on the CPUs and GPUs is also
of great interest. As stated earlier, this comparison is not fully objective due to the lack
of GPU optimizations. However, it provides an answer to the question of whether we
can expect the GPU run time to be appropriate after such porting. In the problems we are
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considering, we can give a positive answer to this question. Indeed, as compared to the
considered Xeon CPUs, the performance of P630 and Iris XeMax is lower by a factor of
about 8 and 1.5, respectively. At the same time, the code on P630 works slower only by a
factor of 3.5–4.5, and the code on Iris XeMax is slower by a factor of 1.7–2.6, compared
to 2 high-end CPUs. This comparison does not give a complete picture, since GPUs
have a different memory organization, the problem is not compute- but memory-bound,
and utilization of GPUs is often much harder compared to CPUs. Nevertheless, we can
conclude that even without additional optimizations, we got reasonable performance on
GPUs, which, probably, can be further improved.

Table 3. Performance results (NSPS, nanoseconds per particle per step) on GPUs for DPC++
implementations in 2 simulation scenarios. Computations are performed in single precision.

Pattern Precalculated fields Analytical fields

CPU P630 Iris Xe Max CPU P630 Iris Xe Max

AoS 0.54 4.76 2.10 0.54 4.45 2.10

SoA 0.58 2.43 1.42 0.60 1.93 1.00

6 Conclusion

The paper presents a new DPC++ implementation of the Boris Pusher algorithm for the
movement of particles in a given electromagnetic field. The implementation is obtained
by porting the CPU-optimized C++ implementation in the Hi-Chi code by replacing
the way of organizing parallel computations. It turned out that this porting can be done
quickly enough. After running the program on the high-performance server with 2 high-
end CPUs, we found that the performance of the resulting DPC++ implementation
significantly depends on the run settings customization in terms of optimal use of the
NUMA architecture, while the SoA and AoS patterns of the data layout have almost
no effect on performance. As a result, it was found that, regardless of the simulation
scenario, the DPC++ implementation is only slightly inferior to the C++ code, while it
became possible to run it on Intel GPUs.

Our experiments on Intel GPUs showed that even though we did not optimize the
code for the GPU, the performance results compared to the optimized code on the CPUs
exceed our expectations. So, it turned out that 2 Xeon CPUs are ahead of desktop GPUs
only in accordance with the difference in peak performance capabilities. We expect
that the performance of the GPU implementation can be improved. This is one of the
directions for further research. The code is publicly available [6].
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Abstract. Nowadays, ARM processors are widely used in various HPC
applications. With ARM popularity rapidly increasing, there is still a sig-
nificant lack of detailed performance evaluation of such systems on vari-
ous workloads. Unlike other existing approaches to the performance eval-
uation, this paper covers the methodology of creating a full and compre-
hensive benchmarking set, which allows us to present a detailed perfor-
mance comparison of Kunpeng 920–6426 and Intel Xeon 6140 processors.
The developed benchmarks are based on relatively simple fragments of
code, frequently used in many scientific and real-world applications. For
each benchmark we provide a detailed scalability and performance analy-
sis, based on the top-down and roofline performance models, which allow
to identify bottlenecks and implementation efficiency for each bench-
mark. The evaluation results demonstrate that Kunpeng 920 outperform
Intel Xeon 6140 processors on various cache-bound and memory-bound
applications, such as stencil kernels, operations with dense matrices and
vectors. At the same time, Kunpeng 920 demonstrate lower performance
on compute-bound problems which can be vectorised or problems, involv-
ing indirect memory accesses, such as graph algorithms.

Keywords: Performance evaluation · Arm · Kunpeng ·
Benchmarking · Stencil · Graph algorithms

1 Introduction

The Kunpeng 920 (formerly known as Hi1620) is HiSilicon’s fourth generation
server processor announced in 2018, launched in 2019. It makes this processor
the newest in Hisilicon product line, as Kunpeng 930 is not launched yet at the
moment of writing this paper (the first half of 2021). Due to the novelty of this
product line (first Kunpeng processor was launched in 2016) and Kunpeng 920
CPU model in particular, its potential is still poorly researched. In this paper,
we use the following approach aimed to evaluate the performance of Kunpeng
920 processors. First, we run several benchmarking tools on Kunpeng 920 and
Intel Xeon 6140 processors aimed to estimate various hardware characteristics.
With the help of LMbench benchmark [1], Empirical Roofline Toolkit (ERT)
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[2] and Intel Vtune Profiler we discovered that Kunpeng 920 CPU has higher
memory subsystem bandwidth and smaller DRAM and cache latencies than
Intel Xeon has, which potentially makes Kunpeng 920 more relevant platform
to run various memory-bound applications. After that we have designed a new
micro-benchmark package, which is based on relatively simple fragments of code,
frequently used in many scientific and real-world applications. As an example,
stencil kernels are widely used in finite difference methods, like in [3] and [4].
For each benchmark we provide a detailed scalability and performance analysis.
In case of Intel CPU plaforms we used top-down model, built with Intel Vtune,
while for ARM CPUs it was necessary to collect data from CPU core and uncore
events to obtain figures for top-down model. All these tools allowed us to estimate
the efficiency and existing bottlenecks for each benchmark. The wide range of
benchmarks in the developed package helped us to get a full view on Kunpeng
920 performance behaviour compared to well-known systems like Intel Xeon.

2 Target Architectures

The Chinese company Huawei started developing ARMv8-based Kunpeng pro-
cessors in 2016, which have been publicly available on market in 2019. Kunpeng
processors have several modifications developed for both high performance com-
puting and desktop computers, for example the number of cores ranges from 24
to 64 with clock speeds ranging from 2.4 to 3 GHz.

In this work, we evaluated the performance of TaiShan 200 two-socket system
equipped with two Kunpeng 920–6426 processors. The performance has been
compared to dual-socket system based on Intel Xeon Gold 6140 processors of the
Skylake microarchitecture. The comparative hardware characteristics of these
processors are provided in Table 1.

In order to obtain additional characteristics of the evaluated systems (such
as cache bandwidth and latency values represented in Table 1), we used several
benchmarking tools. Latency of different levels of memory subsystem has been
measured with LMbench benchmark, using lat mem rd option. Stride parameter
was equal to 1024 in order to avoid accessing data in the same cache line. Cache
bandwidth values for Intel-based processors have been measured using Empirical
Roofline Tool.

3 Related Work

A large number of benchmarks have been developed to compare various per-
formance aspects of modern processors and GPUs. For example, STREAM [5]
benchmark estimates the achievable DRAM bandwidth using operations over
dense vectors (add, multiply on scalar etc.), HPL [6] benchmark estimates
the achievable peak performance when solving a system of linear equations,
HPCG [7] and Graph500 [7] benchmarks – the performance of memory sub-
system during processing of indirect memory accesses in sparse matrix vector
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Table 1. Main hardware characteristics of Kunpeng 920 and Intel Xeon Gold 6140
processors

Hardware characteristic Kunpeng 920 Intel Xeon Gold 6140

Frequency 2.6GHz 2.3GHz (average),

3.7GHz (with boost)

Sockets 2 2

SIMD instructions, width ARM Neon, 128-bit AVX-512, 512-bit

NUMA nodes 2 2

Cores per socket 64 18

Threads per core 1 1(2 with hyperthreading)

Theoretical peak performance (SP) 1.331 TFlop/s 2.649 TFlop/s

Theoretical peak performance (DP) 665 TFlop/s 1.324 TFlop/s

Theoretical scalar performance 332 GFlops 81 GFlops

Max OpenMP threads 128 36

L1d cache size 64 KB 32 KB

L1i cache size 64 KB 32 KB

L2 cache size 512 KB 1 MB

L3 cache size 65 MB 25 MB

L1 bandwidth/latency per socket 5248 GB/s, 1.539 ns 2802 GB/s, 1.083 ns

L2 bandwidth/latency per socket 4163 GB/s, 3.077 ns 1810 GB/s, 3.789 ns

L3 bandwidth/latency per socket 1397 GB/s, 14.418 ns 573 GB/s, 21.42 ns

DRAM bandwidth 187 GB/s 117 GB/s

Memory type DDR4-2933 DDR4-2666

Number of channels 8 6

multiplication (SPMV) and breadth-first search (BFS) graph algorithm. How-
ever, an essential problem is that many existing benchmarks are not sufficiently
adapted and optimized for newly developed architectures, such as Kunpeng 920.
In addition, many existing benchmarks (for example HPL) are extremely com-
plex and use third-party libraries (in the case of HPL – BLAS, Atlas, MKL).
At the same time, the more complex the benchmark, the more difficult it is to
understand hardware bottlenecks and peculiarities of the target CPU. For these
reason in this paper we used a combination of existing benchmarks (such as HPL)
and simple code fragments of real-world scientific algorithms and applications.

At the moment of this writing only a single work [8] is devoted to the compar-
ative performance evaluation of Kunpeng processors. Authors compare Kunpeng
916 processors with Intel Xeon E5-2680v3 and Intel Xeon E5-2680v4 proces-
sors (of Haswell microarchitecture) using a combination of benchmarks (HPL,
STREAM, etc.) and scientific applications (SpMV, SNAP, etc.). In addition,
authors use various hardware performance counters to explain the behaviour of
different applications on both systems. Similar reports are frequently prepared
for other recently released architectures. Reviewing these reports is interesting
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in order to see which applications and microbenchmarks are used for the per-
formance evaluation. For example, in [9] the performance of NEC SX-Aurora
TSUBASA vector architecture is evaluated on a wide range of scientific appli-
cations: Landmine, Earthquake, Turbulent Flow, Antenna, etc. In [10] the per-
formance of Intel Broadwell EP and Cascade Lake SP processors is compared
using DGEMM and sparse matrix-vector multiplication benchmarks. In [11] the
performance of Marvell’s ThunderX2 processors (ARM-based, similar to Kun-
peng) is evaluated on HPCG and COSA benchmarks, as well as for GROMACS,
OpenSBLI and Nektar++ scientific applications.

4 Developed Benchmarking System

During this research we have developed a benchmarking system, which consists
of a benchmarking framework and a set of computational kernels. The compu-
tational kernels are based on different relatively simple fragments of real-world
programs and computational algorithms, such as matrix-matrix multiplication,
stencil kernels, and many others. Both framework and its computational kernels
are implemented in C++, while OpenMP programming model is used in order
to exploit parallelism inside computational kernels.

The benchmarking framework contains of a unified set of rules for compiling
and executing computational kernels, and, in addition, allows to easily integrate
various profiling and performance analysis tools. The developed system has the
following advantages:

– the developed framework allows to easily vary input data size, datatypes on
other input parameters for all computational kernels, such as matrix sizes,
input graph scale and type, stencil radius, etc.;

– each benchmark is automatically executed multiple times with accurate aver-
aging of the obtained results; even though in most situations all benchmarks
runs have approximately the same execution time, this allows to eliminate
random operating system overheads;

– between different runs automatic cache annihilation is implemented;
– possibility to choose from various code compilers. We tested GNU g++/gcc,

clang, icpc, Kunpeng g++ and nvcc compiler from NVIDIA HPC Toolkit.
Though, the best performance on Intel was obtained with icpc, and with
Kunpeng g++ on Kunpeng;

– for each computational kernel the estimated sustained bandwidth (in GB/s)
and sustained performance (in GFlop/s) is collected, which allows to roughly
estimate the performance of memory-bound and compute-bound benchmarks
respectively;

– linux perf [12] performance analysis tool is integrated into the benchmarking
system, which allows to obtain hardware performance counters and thus cal-
culate different dynamic characteristics of the evaluated benchmarks, such as
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L1/L2/L3 hit rate, the number of instructions per cycle, the number of flops
executed, etc.;

– using the collected hardware performance counters the roofline [13] and top-
down performance analysis models are automatically generated.

Top-down performance analysis demonstrates which activities take up most
of the execution time of the evaluated benchmark. For example a program can
be classified as L1-, L2-, L3- or DRAM-bound, which indicates that most of the
time the program spends loading information from a specific cache or DRAM,
and thus can potentially benefit from faster and lower latency bandwidth caches
of target architecture.

The roofline model (shown in Fig. 1) allows to estimate execution efficiency
of each benchmark. Using the roofline model each benchmark can be classified
either as compute-bound or memory-bound based on its arithmetic intensity
ratio. Then the efficiency of compute-bound benchmarks is calculated as the
percentage of theoretical peak performance (scalar or vector depending on prop-
erties of the program), while of memory-bound – as the percentage of the one of
memory roofs, which are based on cache and DRAM bandwidths. Further in the
paper we will say “benchmark demonstrates higher performance on platform A
compared to platform B” meaning one of these values depending on the type of
the evaluated benchmark.

5 Implemented Benchmarks

The following subsections are devoted to a detailed performance comparison
of various developed microbenchmarks, executed on the previously described
Arm Kunpeng and Intel Xeon platforms. At the first place we implemented
multi-threaded version for each benchmark, which is executed on either 64 (on
Kunpeng 920) or 18 (on Intel Xeon 6140) OpenMP threads (so they occupy
all available cores). This allows to provide a more fair comparison, since per-
core performance of Kunpeng 920 will be in many situations significantly lower
compared to Intel Xeon 6140 (due to Kunpeng having 3.5 times higher num-
ber of cores). However, since for many people per-core performance is also very
important, in the final subsection we will evaluate scaling of different bench-
marks, which belong to either compute-bound, L1, L3 cache bound or DRAM
bound classes. In addition, we vectorized each benchmark using either AVX-512
on Intel Xeon or ARM NEON on Kunpeng 920, either by providing necessary
compiler flags (which in all cases was enough for Intel), or using corresponding
C++ ARM NEON API (Table 2).
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Fig. 1. Latency values (in ns) obtained using LMbench benchmark on the evaluated
platform (left), the roofline model generated for multiple benchmarks on the Kunpeng
920 processors and the approach to calculating benchmark efficiency (right)

5.1 Triada Variations

Triada benchmark is designed to evaluate the performance of different mem-
ory access patterns to DRAM memory when operating with dense vectors. In
contrast to the triada implementation in STREAM benchmark, we developed
10 different memory access patterns, frequently used in real-world programs.
These memory access patterns (in C++ notation) are listed in Fig. 2 along the
X axis. Benchmarks (1) – (4) are designed to evaluate the efficiency of triada
operations for a different number of input vectors (from 2 to 4). Benchmarks
(5) – (7) are designed to evaluate the efficiency of triada operation, when some
arrays are indirectly accessed using indexes which have linear (equal to i) val-
ues, since on some architectures (for example NEC SX-Aurora TSUBASA) such
indirect memory accesses leads to a significant performance degradation due to
using gather/scatter instructions instead of load/store. In benchmarks (8) – (10)
indexes are set randomly to generate as many cache line misses as possible.

The obtained results of benchmarking are demonstrated in Fig. 2, 3, 4, which
allow to make the following observations. First, benchmarks (1)–(7) demonstrate
1.5–1.79 times higher performance (in terms of sustained memory bandwidth)
on Kunpeng 920 compared to Intel Xeon, which is caused by 1.47 times higher
memory bandwidth of Kunpeng 920 processors. In addition, Kunpeng 920 pro-
cessors also demonstrate slightly higher efficiency (61–74% against 52–63%) cal-
culated based on the roofline model. Second, according to the top-down anal-
ysis benchmarks (1)–(7) are 87% and 90% memory-bound on both platform;
however, benchmarks executed on Intel Xeon are in average 11% L1-bound,
11% store-bound and 54% DRAM-bound, while on Kunpeng – 93% DRAM-
bound, 2% L1 bound and 0.02% store bound. This indicates that benchmarks
(1)–(7) running on Intel spend significantly more time on working with L1 cache
and doing DRAM stores, while on Kunpeng benchmarks interact with DRAM
almost all the time, resulting in Kunpeng demonstrating higher efficiency. Third,
benchmarks (5)–(7) have only 10–15% lower efficiency compared to benchmarks



Evaluating the Performance of Kunpeng 920 Processors 307

Fig. 2. The sustained bandwidth achieved on different triada variations

Fig. 3. The sustained bandwidth achieved on one-dimensional stencil kernels
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Fig. 4. Cache lines utilization in matrix transpose problem

(1)–(4) on both platforms, having approximately the same top-down analysis
metrics. Finally, benchmarks (8)–(10), demonstrate the comparable sustained
memory bandwidth on both platforms (Intel Xeon being 1–3% faster) and twice
higher efficiency on Intel Xeon. This means that such indirect memory accesses
reduce the efficiency of triada on Kunpeng 920 much more drastically (4.9 times
against 3.1).

Table 2. Runtime contribution of the typical computational kernel into the whole
program package

Test name Front-

end

Bound

Bad

Spec.

Retiring Back-

end

Bound

Memory

Bound

L1

Bound

L2

Bound

L3

Bound

or

DRAM

Core

Bound

LL hit

rate

triada 0.06 0.01 3.65 96.28 93.10 1.19 0.16 89.13 6.89 3.33

stencil 1D 0.40 0.71 36.80 62.08 30.48 24.79 2.34 2.83 69.51 2.85

stencil 2D 0.04 0.01 18.78 81.16 49.90 13.19 36.30 0.15 50.09 42.74

stencil 3D 0.24 0.23 39.90 59.60 44.90 18.43 2.37 23.78 55.09 27.18

n body 0.16 0.01 28.22 71.59 26.43 21.68 4.22 0.53 73.56 95.38

random access (0) 0.04 0.01 2.32 97.62 93.20 0.25 0.03 92.41 6.79 69.55

random access (1) 0.11 0.01 1.36 98.53 93.86 0.20 0.19 93.46 6.13 5.10

rand generator 0.03 0.01 44.95 55.01 7.36 7.22 0.00 0.13 92.63 86.72

matrix transp (0) 0.19 0.01 1.58 98.21 90.06 1.32 0.57 86.92 9.93 71.70

matrix transp (2) 0.41 0.05 5.65 93.86 34.35 1.85 0.05 31.11 65.64 8.64

page rank (0) 8.83 0.98 23.58 66.59 82.37 8.93 0.68 72.75 17.62 95.98

page rank (1) 7.02 0.30 19.66 73.00 82.82 38.34 0.48 43.98 17.17 92.72
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5.2 Matrix Transpose

This group of benchmarks is designed to evaluate the efficiency of various types
of matrix traversals: by row or by column. Since all benchmarks are implemented
in C++, all matrices are stored as one-dimensional arrays in row-major order.
Accessing matrix elements by column is often refereed as “strided”, since mem-
ory is accessed with stride equal to the size of matrix row. In this paper we
implemented 3 variations of matrix transpose operation. First two variations
are “naive”, and are based on two nested loops. The first variation (1) accesses
input matrix by columns and output matrix by rows, while (2) – in the mirrored
opposite way (Fig. 4). The third variation is blocked transpose, which is based
on four nested loops and block size 32. Blocked transpose variation performance
was compared to the performance of similar kernel, written with the use of Eigen
template library. Developed kernel launched on ARM Kunpeng is 1.3 faster than
ARM version of library kernel, so all following performance details were obtained
with our benchmarking system.

Fig. 5. The sustained memory bandwidth two-dimensional stencil (top left), three-
dimensional stencil (bottom left) and matrix transpose (right) benchmarks

The obtained results of benchmarking are demonstrated in Fig. 5(right),
which allow to make the following observations. First, from the two naive imple-
mentations the one writing to the same cache line and reading from different
cache lines is preferred for both evaluated architectures for large matrices, with
the performance difference between these 2 variations being identical for both
evaluated architectures (1.5 – 2 times). Second, for both architectures a blocked
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implementation is approximately equivalent to a naive implementation on the
small matrices (less then 10242), since 64 KB or 32 KB L1 cache can completely
contain 8 columns of the processed matrices (the size of cache line is equal to 64
bytes, element size is 8 bytes, and information about next 7 lines is prefetched
into the cache). When the size of matrix is larger than 1024 and 8 columns can
not be fitted into L1 cache, the performance of blocked implementations for both
architectures is significantly higher (2–3 times). Third, Kunpeng 920 processors
demonstrate up to 1.18 times higher performance on naive 1 version for medium-
sized matrices, and up to 2 times higher performance on blocked version with a
large spike at 2048 sized matrix. At the same time with the increase of matrix
size to 32768 Kunpeng 920 processors start demonstrating lower performance
compared to Intel Xeons. The spike of blocked implementation at 2048 sized
matrix on Kunpeng 920 can be explained by high L2 utilization: on 2048 sized
matrix it is 82% core bound, 8% L2 bound and 8% L3 or DRAM bound, while
on large matrices it is 5% core bound and 93% L3 or DRAM bound. Finally, the
theoretical maximum performance of matrix transposition should be equal to the
memory copy bandwidth, because the matrix data must be read once and writ-
ten once to a different location. Both architectures demonstrate significantly
lower sustained bandwidth values even on blocked implementations, however,
on large matrices Kunpeng 920 having lower efficiency (20% against 30%). This
indicates on Intel Xeons being better suited for problems, which have memory
access pattern with very large stride (and thus having poor cache usage).

5.3 One Dimensional Stencil

In order to evaluate how cache memory hierarchy influences the performance of
applications, we decided to implement several stencil kernels (one-dimensional,
two-dimensional, and three-dimensional). One-dimensional (1D) stencil kernel
is based on processing two linear arrays (input and output) in the following
way: each element with index i of the output array is calculated as a function
(the sum in our implementation) of 2 ∗ R + 1 elements of the input array with
indices from i − R to i + R. R is the main benchmark input parameter called
“the neighborhood radius”, and is varied between 1 and 12, while the size of
the input and output arrays is set to 800M. Despite the fact that neighborhood
radius values larger than 3 are rarely used in real-world applications, varying
this parameter in a wider range allows to better evaluate caching effects of target
architectures. One-dimensional stencil benchmark is characterized by high data
reuse: almost all values of the input array loaded at i-th iteration (except the first
element with index i − R) will be used at the next iteration, which potentially
results into relatively efficient cache usage. Stencil-based benchmark YASL(Yet
Another Stencil Kernel) shows perfect performance results on platforms with
Intel processors, when is compiled with well compatible Intel compiler. Despite
the fact that performance of stencil kernels in developed benchmarking system
is slightly less, it is fairer to compare more general stencil kernels, so further
results are based on stencil kernel from developed system.
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The sustained memory bandwidth values for 1D stencil benchmark are listed
in Fig. 3, from which the following observations can be made. First, on both archi-
tectures 1D stencil demonstrates high utilization of compute and cache resources.
According to the top-down analysis, on Kunpeng 920 and Intel Xeon the retiring
ratio (percent of time the processor spends on executing useful instructions) is
very high: 18% and 30% on radius equal to 3, while increasing up to 49% and
43% on radius equal to 10. At the same time, the percentage of stalls related
to requesting data from memory hierarchy is relatively small: 21% on Kunpeng
320 and 10% – 64% on Intel Xeon. Among these stalls the largest part is related
to L1 requests, which increases with the radius size (8% against 18% for R=3
and R=10 on Kunpeng 920), which correlates to better data reuse and thus L1
utilization on large radius values. Second, 1D stencil on Kunpeng 920 demon-
strates 1.6 times higher performance for small radius values (< 7) and up to 1.95
times higher performance for large radius values (> 8). This is mainly caused
by 1.8 times higher bandwidth of L1 cache on Kunpeng 920 architecture. Third,
the highest sustained bandwidth achieved by Kunpeng 920 is 588 GB/s and 238
GB/s by Intel Xeon, which is only a fraction of available L1 cache bandwidth, but
2–3 times higher compared to DRAM bandwidth. Thus accurate performance
tuning of 1D stencil (vectorization and manual loop unrolling) may potentially
result into higher performance on both architectures.

5.4 Two- and Three- Dimensional Stencil

In order to evaluate the performance of stencil-based real-world applications,
we have implemented multiple variations of two-dimensional (2D) and three-
dimensional (3D) stencil kernels. These benchmarks are a generalisation of pre-
viously introduced one-dimensional stencil, and have two types of neighborhood
form: “rectangle-shaped” and “cross-shaped” with radius equal to either 1 or 3
(as used in most real-world scientific applications). This way 2D stencils have
4 elements for cross-shape neighbourhood and 8 elements for rectangle-shape
neighbourhood when radius is equal to 1. When radius is equal to 3 it’s 12 ele-
ments for cross-shaped and 48 for rectangle shaped – a significantly larger values
compared to 1D stencil. For 3D stencil, processing each elements requires load-
ing information about up to 342 points, which still should theoretically fit into
L1 cache of both target architectures.

The key difference between 2D/3D and 1D stencils is the fact that the lattice
is stored as a two-dimensional or three-dimensional array. This results into ele-
ments requested by y-offset or z-offset inside neighbourhood being loaded from
different columns of matrix (in 2D case) – a situation similar to matrix trans-
pose. However, unlike matrix transpose these elements are used right on the next
iteration of innermost loop (instead of next matrix size iteration), which results
into significantly better locality and cache utilization. This is the main reason
why for 2D/3D stencils we also vary the size of lattice together with radius.
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The sustained memory bandwidth values for different neighborhood shapes,
lattice sizes and radius of 3 (as the largest frequently used in stencil applications)
are provided in Fig. 5, from which the following observations can be made. First,
as discussed in the previous paragraph the sustained bandwidth of 2D and 3D
stencils on both platforms does not change with the increase of lattice size,
unlike matrix transpose (which significantly decreases for large matrices). The
only exception is the performance decrease on 32K lattice for Kunpeng 920,
which is explained by much lower L2 cache usage: according to the top-down
analysis, for 16K sized lattice the benchmark is 22% L2 bound and 21% DRAM
and L3 bound (L3 cache hit rate is low at 20%). For 32K sized lattice the
benchmark is primary 70% DRAM and L3 bound. Second, 2D and 3D stencils
with cross-shaped and rectangle-shaped neighbourhood of size 3 are 1.7–2 times
faster on Kunpeng 920, with this difference being similar to the case of 1D
stencil and proportional to L1 bandwidth difference. Finally, both architectures
process cross-shaped borders more efficiently: the retiring ratio for rectangle-
shaped neighbourhood is 18–25% range, while for cross-shaped – in 44–65%.
This indicates that loading information via diagonal neighbourhood offsets is
harmful on both architectures.

5.5 LCopt

This benchmark is based on the simulations software for liquid crystals [4]. The
computational problem in this software belongs to the class of stochastic opti-
mization of a functional defined on finite space cubic lattice. Namely, the solver
is based on Markov chain Monte Carlo with Metropolis algorithm, paralleled by
sparse checkerboard decomposition. Checkerboard decomposition uses a specific
memory access patter (shown in Fig. 6 bottom left), which is interesting and
important to evaluate on the investigated architectures. On different algorithm
iterations pivot elements are selected based on random tick values, which can
be either 0 or 1 among each dimension. The implemented benchmark (as well as
the original program package) uses cubic lattice. Each pivot element is updated
based on its of 26 neighbouring elements (in 3D case).

The sustained bandwidth values obtained on lcopt benchmark are provided in
Fig. 6 (top left). Similar to other stencil benchmarks, lcopt demonstrates up to
1.7 times higher performance on Kunpeng 920. However lcopt benchmark is
characterised by lower data reuse since gaps between pivot elements allow to
reuse only 9 adjacent elements located between different pivot values in the 3D
case. This observation is confirmed by the top-down analysis, which classifies
lcopt benchmark as primary DRAM bound (31% on Intel Xeon) and (63% on
Kunpeng 920), while L2 cache is the most heavily used on both platforms. This
also results into lcopt benchmark demonstrating significantly lower achieved sus-
tained memory bandwidth values compared to other stencil kernels.
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Fig. 6. The sustained bandwidth of lcopt benchmark (top left), the lattice configura-
tions in checkerboard decomposition (bottom left), the sustained memory bandwidth
values of random memory access loads (top right) and stores (bottom right) bench-
marks

5.6 HPL (solving a SLE)

So far we have studied the performance only of memory-bound benchmarks. In
order to compare the performance of compute-bound applications, we decided
to use HPL benchmark, which is based on solving a system of linear equations.
On Kunpeng 920 we compiled HPL using gcc v8.3 and openBLAS v0.3.10. On
Intel Xeon Gold 6140 we also used gcc 8.3 compiler and Intel MKL. The max-
imum performance values obtained among different sizes of SLE are provided
in Table 3: 605 GFlop/s for Kunpeng 920 (90% efficiency) and 843 GFlop/s for
Intel Xeon 6140 (63% efficiency). Even though Kunpeng 920 higher efficiency
(calculated based on theoretical peak performance) Intel Xeon 6140 still demon-
strates 1.4 times higher performance, which is mainly caused by significantly
wider SIMD instructions available (512 against 128 bit). This results into many
other vectorizable compute-bound problems also being significantly slower on
Kunpeng 920. This class of problems is relatively broad, since it also includes
dense matrix-matrix and other linear algebra algorithms, which are frequently
used in real-world applications, such as deep learning.

5.7 Random Number Generation

This benchmark is based on filling of a fixed-sized array with random numbers in
parallel. Parallel random number generation is implemented via calls of rand r
function. This benchmark also belongs to the compute bound type, since for each
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element of the output array rand r function is called, which executes around two
dozen arithmetic operations. This is confirmed by top-down analysis, showing
random generation benchmark being 44% retiring and only 7% memory-bound
on both architectures. However, the important difference is that the main parallel
loop (in which rand r function is called) can not be vectorized by gcc compiler
on both evaluated platforms, due to the inner complexity of rand r function.

Runtime differences for an output array which contains 800M double-
precision elements are shown in Fig. 3: Kunpeng 920 demonstrates 3.4 times
higher performance compared to Intel Xeon 6140, which is explained by 3–4 times
higher theoretical scalar performance of Kunpeng 920 processors. This example
demonstrates that non-vectorizable compute-bound applications in most situa-
tions will be significantly faster on Kunpeng 920 platform. In addition, generat-
ing random-numbers on its own is a very important problem, frequently required
in different numerical algorithms and applications: Monte-Carlo, random walk
graph algorithm, etc.

Table 3. The performance of compute-bound benchmarks: random numbers generation
and HPL

Benchmark Kunpeng 920 Intel Xeon Gold 6140

rand generator(double), L = 800M 0.072492 ms (3.45x) 0.250812 ms (1x)

HPL (max perf, double) 605 GFlop/s (1x) 843 GFlop/s (1.39x)

N-body, (max perf, float) 130 GFlop/s (2x) 64 GFlop/s (1x)

5.8 N-Body

Finally, we implemented N-body benchmark, which is well-known compute-
bound problem, since its complexity is equal to O(N2), while most of the memory
accesses are directed to L1 or L2 caches. During experiments we did not manage
to force gcc 8.3 compiler to use ARM NEON instructions, thus we decided to
completely disable vectorization on both systems using -fno-tree-vectorize flag.
As shown in Table 3 Kunpeng 920 demonstrates 2 times higher performance com-
pared to Intel Xeon 6140. This difference is lower compared to theoretical scalar
performance ratio due to Intel Xeon still using SSE instructions for floating-
point calculations (which was not the case with random generation, since all the
calculations there were on integer).

5.9 Random Memory Access

An important characteristic of any modern processor is its ability to efficiently
process random memory accesses, which are essential for many algorithms: oper-
ations with sparse matrices (SPMV), graph algorithms, etc. Random memory
accesses typically imply the situation when some data arrays are accessed by
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indexes with random or pseudo-random nature. In programs with random mem-
ory access patterns modern CPUs still load data using cache lines; however, most
of the cache line data (with the exception of the requested element) is not used
on the further stages of algorithm, which results into memory bus being used
very inefficiently. In addition, indirect memory accesses can be requested either
for reading or writing, which may have very different performance (in terms of
the sustained bandwidth). As shown by matrix transpose benchmark, writing to
different cache lines can be up to two times less efficient compared to reading
from different cache lines.

In order to evaluate the effects of random memory accesses we have prepared
two benchmark variations. Both variations operate with arrays of two different
lengths: “large” (6 GB) and “small” (from 2 KB to 2 GB). The first variation
implies doing the following random loads in a loop iterating over large array:
large[i] = small[indexes[i]], while the second – the following random stores:
small[indexes[i]] = large[i]. This way index and sequentially accessed arrays
have “large” size, while indirectly accessed arrays – “small” size. The sustained
memory bandwidth values for both implemented benchmarks are show in Fig. 6,
where L1, L2 and L3 cache sizes of the evaluated processors are additionally
listed. First, when data fits into L1, both benchmarks are 1.3–2.6 times faster
on Kunpeng 920. Second, “random loads” benchmark demonstrates twice higher
sustained bandwidth on Kunpeng 920 processors when indirectly accessed data
fully fits into L2 cache, which is caused by Kunpeng 920 L2 cache having twice
higher latency.

Third, Intel Xeon Gold 6140 demonstrate up to 1.5 times higher sustained
bandwidth on 4–32 MB arrays, which fit into L3 cache of both processors, but
do not fit into LLC partition owned by a single CPU core. This indicates that
cores of Kunpeng 920 processors have problems when collectively working with
data, shared via L3 cache; top-down model shows that for indirectly accessed
array of 1 MB size “random loads” benchmark is 50% L3 and DRAM Bound,
while on 16 MB array – 93%, which means that L3 cache can not provide data
to cores fast enough when array size is growing, but still fits into L3 cache.

Finally, when indirect memory accesses are directed to DRAM, both eval-
uated processors demonstrate roughly equal sustained bandwidth (25 GB/s
against 22 GB/s), with Kunpeng 920 having lower efficiency (13% against 17%)
calculated based on theoretical DRAM bandwidth. This situation looks very
similar to strided memory access wit hlarge stride, evaluated in transpose bench-
mark.

Thus, in general both platforms have comparable sustained bandwidth values
when arrays are located in DRAM (can not be cached), while very different
bandwidth values when data fits into some level of cache hierarchy (generally
Kunpeng 920 being faster due to caches with higher bandwidth).

5.10 Bellman-Ford and Page Rank Graph Algorithms

In order to evaluate the performance of Kunpeng 920 architecture on graph
algorithms, we have integrated VGL (Vector Graph Library) graph-processing
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framework into the developed benchmarking system. VGL framework provides
high-performance implementations of several graph algorithms for modern mul-
ticore and vector processors [14] and NVIDIA GPUs [15]. VGL includes several
optimisations (load balancing, graph-preprocessing, vectorization of graph algo-
rithms) with the aim to maximise the sustained memory bandwidth on target
architectures.

The performance evaluation has been conducted using Page Rank and
Bellman-Ford graph algorithms, launched on synthetic RMAT [16], which simul-
taneously resemble properties of various real-world graphs (such as web-graphs
and social networks) and can be easily scaled to verify the effects of caching. The
smallest graph we used for testing (of scale 12) has 4 thousand input vertices,
which easily can be placed into LLC of both platforms, while the larges (of scale
23) has 8 M vertices, thus significantly exceeding LLC size.

Fig. 7. The performance (in MTEPS) of Bellman-Ford (left) and page rank (right
algorithm)

The obtained performance in terms of Traversed Edges Per Second (TEPS)
is shown in Fig. 7: Intel Xeon 6140 processors demonstrate up to 1.6 times higher
performance on both algorithms, which is caused by previously discussed lower
efficiency of processing indirect memory accesses to arrays, which size exceeds
L2 and L3 caches.

5.11 OpenMP-Based Benchmarks

All parallel versions of designed benchmarks are implemented via OpenMP. Nat-
urally, the impact of various OpenMP constructs can vary in different systems,
so we used EPCC OpenMP micro-benchmark suite [17] to estimate the impact
of some frequently used OpenMP clauses on each target platform.
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Table 4. Evaluation time of benchmarks with some OpenMP constructs on target
architectures

OpenMP clause Kunpeng 920 Intel Xeon Gold 6140

Parallel for 75.4 µs 5.21 µs

Barrier 16.8 µs 3.10 µs

Critical 18.4 µs 0.401 µs

Atomic 0.24 µs 0.145 µs

Trim step graph benchmark 1.67 ms 0.54 ms

As shown in Table 4 Kunpeng 920 requires significantly more time for each
of OpenMP construct, which is possibly caused by a higher number of cores
installed in Kunpeng 920. In order to further evaluate these effects in real-world
programs, we have implemented a graph benchmark, which is based on calcu-
lating number of in-degree and out-degree edges for each graph vertex based
on edges list representation (trim step). This operation is frequently used in
various graph algorithms, such as connected components on strongly connected
components in order to detect trivial components of small size. In order to per-
form computations in parallel, using atomic operations is required for increment-
ing in degree[src id] and out degree[dst id] values. According to the provided in
Table 4 results this benchmark is 3.1 times slower on Kunpeng 920. Thus, the
performance difference between Kunpeng 920 and Intel Xeon further increases
from 1.6 times (on no-atomic algorithms) up to 3.1 times (on algorithm with
atomic operations).

5.12 Scaling of Multi-threaded Benchmarks

Due to the fact that all previously discussed benchmarks are multi-threaded
and have been executed on either 64 or 18 cores (all available in single socket
of each evaluated processor), it is also important to compare single-core (or per-
core) performance. To achieve this goal we selected three benchmarks: N-body
problem, which is mainly compute-bound, 1D stencil with large radius, which
is L1-bound, page rank on medium-scale graph, is primary which is L3 bound
and triada, which is primary DRAM bound, and evaluated their scaling on 1–
64 threads on Kunpeng 920 and 1–18 threads on Intel 6140 (Fig. 8). Selecting
benchmarks, which stress different hardware resources, either private (compute,
L1 cache), or shared (L3, DRAM) is important, since their scaling varies a lot.

Figure 8 demonstrates that N-body and 1D stencil benchmarks have almost
linear scaling on Kunpeng (61 and 59 times acceleration on 64 threads compared
to their sequential versions). This can be easily explained by the fact, that these
benchmarks stress private resources of each core. At the same time, page rank
and triada benchmarks, which stress shared L3 cache and DRAM, do not scale
linearly (12 and 27 times acceleration when using 64 cores). This allows to con-
clude that per-core performance of Kunpeng is 12 times lower for DRAM-bound
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Fig. 8. Multi-threaded scaling of triada, 1D stencil, N-body and page rank benchmarks.

applications, 27 times lower for L3 bound applications and 64 times lower for L1
and compute-bound applications compared to multi-threaded versions running
on 64 cores. At the same time for Intel Xeon per-core performance for these
benchmarks is 7–10 times lower compared to multi-threaded versions running
on 18 cores, which results into Kunpeng 920 having 1–2.5 times lower per-core
performance compared to Intel Xeon.

6 Analysis of Hardware Features

In this section we are going to provide an analysis of Kunpeng 920 hardware fea-
tures, which result into this architecture achieving higher or lower performance
on different reviewed benchmarks.

Higher theoretical memory bandwidth (187 GB/s against 127 GB/s) allows
Kunpeng 920 processors to achieve up to 1.8 times higher performance on various
DRAM-bound applications, which has been demonstrated on benchmarks based
on operations with dense liner vectors (triada) and lcopt benchmark, which uses
checkerboard memory access pattern.

Four times higher theoretical scalar performance caused by a significantly
larger number of cores allows Kunpeng 920 to outperform Intel Xeon 6140 on
compute-bound non-vectorizable applications, as shown on random number gen-
eration benchmark or n-body problem (Kunpeng 920 being 3.4 and 2 times
faster).

Due to Kunpeng 920 having caches with up to 2 times higher bandwidth and
in most situations with lower latency, this processor achieves up to 1.8 times
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higher performance on 1D, 2D or 3D stencils with different radius and shape of
neighbourhood.

At the same time 4 times longer vector length results into Kunpeng 920
demonstrating lower performance on vectorizable compute-bound applications,
as has been shown on HPL benchmark.

We also observed a relatively poor performance of Kunpeng 920 on appli-
cations, which are typically L3 cache-bound. When some frequently accessed
data arrays can be fully stored in L3 cache (for example distances or page ranks
in the case of graph algorithms), according to hardware events and top-down
analysis Kunpeng demonstrates low LLC hit rate and thus high DRAM utiliza-
tion. This results Kunpeng demonstrating up to 1.6 times lower performance on
various developed benchmarks, such as random access for several segment sizes
and graph algorithms working with medium-sized graphs. Unfortunately due to
top-down analysis on Kunpeng 920 classifying L3 and DRAM-bound applica-
tions into the same category, currently we struggle to provide a more detailed
explanation on this problem.

In addition, we observed a significant performance degradation of Kunpeng
920 when working with indirect memory accesses to a large array exceeds L3
cache. In this case despite having lower DRAM latency and higher DRAM band-
width Kunpeng 920 achieve comparable or lower performance with Intel Xeon
6140 on various benchmarks: random memory access, transpose of large matrices
and graph algorithms.

We also observed a significant performance degradation of Kunpeng 920 pro-
cessors when working with large datasets (16 GB and higher) on 2D, 3D stencil
and matrix transpose problems, when memory access stride is larger than 128
KB. According to the top-down analysis, it is caused by much lower L1, L2 and
L3 cache utilization of Kunpeng compared to Intel Xeons.

Finally, we have observed Kunpeng 920 spending more time on various
OpenMP parallel constructs, such as atomics, criticals, barriers, and others,
which is most probably caused by higher number of cores, and thus larger syn-
chronization/atomic overheads, and confirmed its significant impact on real-
world applications using a fragment from strongly connected component graph
algorithm (trim step).

7 Conclusions

In this paper we have proposed a benchmarking system, which is aimed to com-
pare the performance of Kunpeng 920 and Intel Xeon 6140 processors. According
to the conducted research Kunpeng 920 processors demonstrate higher perfor-
mance on various memory-bound applications, including 1D, 2D and 3D sten-
cil kernels, lcopt benchmark, operations with dense vectors, matrix transpose.
In addition, Kunpeng 920 also allow to achieve higher performance on scalar
compute-bound problems, such as random number generation or N-body prob-
lem.

At the same time, Kunpeng 920 demonstrate lower performance on vector-
izable compute-bound applications, such as HPL, or algorithms which involve
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indirect memory accesses to large arrays or strided memory accesses with a
large stride, as has been shown for multiple graph algorithms and random access
benchmark.
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Abstract. In thiswork,we study resources co-allocation approaches for a depend-
able execution of parallel jobs in high performance computing systems with het-
erogeneous hosts. Complex computing systems often operate under conditions of
the resources availability uncertainty caused by job-flow execution features, local
operations, and other static and dynamic utilization events. At the same time,
there is a high demand for reliable computational services ensuring an adequate
quality of service level. Thus, it is necessary to maintain a trade-off between the
available scheduling services (for example, guaranteed resources reservations)
and the overall resources usage efficiency. The proposed solution can optimize
resources allocation and reservation procedure for parallel jobs’ execution con-
sidering static and dynamic features of the resources’ utilization by using the
resources availability as a target criterion.

Keywords: Computing · Grid · Resource · Scheduling · Uncertainty · Dynamic ·
Availability · Probability · Job · Allocation · Optimization

1 Introduction and Related Works

Today, Grid and cloud computing systems are used universally. Due to their commercial
reach and low entry threshold, they attract users with different technical skills, who
solve a wide range of computational tasks (time- and volume-wise) and require different
quality of service.

It usually takes certain economic costs to build and manage the necessary computing
infrastructure, including the purchase and installation of equipment, the provision of
power supply, and user support. Thus, when a budget for job performance is limited,
it becomes important to allocate suitable resources efficiently in accordance with both
technical specification and a constraint on the total cost [1–3].

The system’s resources may include computational nodes, storage devices, data
communication links, software, etc. Each resource has a set of characteristics, their
values determine its suitability for performing a specific job. Generally, computational
nodes have the widest set of characteristics. For example, a virtual machine is the main
computing resource in the commonly used CloudSim simulator [2, 3], its characteristics
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include overall performance, number of CPU cores, size of RAM and disk memory,
bandwidth limit of the data link.

It is worth mentioning the dynamic utilization issue of available resources and com-
putational nodes at time.High performance and distributed computing systems (HPDCS)
are the dynamic systems, in which the following processes take place: execution of par-
allel jobs from multiple users, utilization with local jobs, maintenance works, a physical
shutdown of nodes (both scheduled and unscheduled). To procure the reliability and
dependability of such systems, an advance allocation mechanism is used [4–7]. This
mechanism allows one to pre-allocate resources for a specific job and, thereby, prevents
possible contention between jobs. Thus, a utilization schedule for each resource can
be obtained: a list of utilization intervals (allocated time, scheduled maintenance, and
outages) and downtime periods. Downtime periods can be used to perform other jobs
and to allocate the resources for the execution of user jobs.

The problem of scheduling and co-allocating resources for executing parallel jobs
in a distributed computing system with non-dedicated resources is stated as follows.

1. The setR of the computing system resources, as a rule, is heterogeneous and includes
resources ri of several types with different sets of characteristics Ci. The values of
these characteristics for the resources of the same type may also differ. Among the
most important characteristics of a resource, one can single out its performance,
which affects the execution time of a job, as well as the cost required to allocate
the resource. Besides, at any specific time, some subsets of the resources may be
unavailable for a user job. Therefore, available resources, as a rule, are represented
in classical models as a set of slots - intervals of availability of each resource [5–7].

2. On the other hand, a job typically requires the parallel allocation ofmultiple resources
with types and characteristics defined by the userwho is running the job. The resource
request for the job execution includes the number of concurrently required resources
n, the minimum suitable values of the characteristics Ci, the volume of task V (the
number of calculations/instructions) or the ordered resource allocation time T , as
well as the total execution budget C [1, 2, 7].

However, as a rule, the structure and specifics of submitted jobs in HPDCS imply
some uncertainty, primarily in the execution time and load of the allocated resources.
So, users can only roughly estimate the execution time of their jobs, while special expert
systems for predicting the execution time of user programs or the level of resource load
(based on the use of machine learning, statistics, and big data) present the results in the
form of probabilities of outcomes [4, 8, 9].

Existing systems of distributed computing provide the job flow execution according
to the First Fit [2] principle or are based on deterministic models of resource scheduling
[5–7, 10–12]. In the first case, pre-allocation mechanisms are not realized, user jobs in
the queue wait for higher priority jobs to be executed and may hang with no guaranteed
start time. In the second case, the efficiency and accuracy of scheduling are reduced by
inaccurate estimates of the job execution time by users or experts. Late job completion
time requires rescheduling of all the subsequent jobs or shutting down the job with pos-
sible loss of results. Early release of resources also requires rescheduling to minimize
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the resource downtime. For example, according to an existing approach [9], a sched-
uler may double the user’s runtime estimates to improve the efficiency of the job flow.
Thus, reliable and controlled scheduling of user jobs, which considers the uncertainty of
resource load [4, 8], can be used both to increase the overall efficiency of the resources
usage and to guarantee the priority-based execution of jobs with pre-allocated resources.

In this paper, we propose proactive algorithms for resources allocation and reser-
vation in heterogeneous market-based computing environments considering static and
dynamic resources availability uncertainties. The uncertainties are formalized with the
availability probability functions as a natural way of statistical andmachine learning pre-
dictions presentation. The novelty of the proposed solution is in general knapsack-based
resources selection procedure performing resources availabilitymaximization according
to the parallel job requirements.

The paper is organized as follows. Section 2 presents a formalmodel of the resources’
utilization and a general procedure for the dynamic resources’ allocation optimiza-
tion. Additional details are provided for the subset selection and time scan algorithms.
Section 3 provides details about the simulation experiment setup, simulation results and
analysis. Section 4 summarizes the paper and describes further research topics.

2 Resource Selection Algorithm

2.1 Resources Utilization Model

We consider a set R of heterogeneous computing nodes with different performance pi
and price ci characteristics.

The probabilities (predictions) of the resource’s availability and utilization for the
whole scheduling interval L are provided as input data. Dynamic job execution uncer-
tainties are modeled as a sequence of allocation, occupation (actual execution) and
release events with the occupation probability Po ≤ 1. Global (static) resources uti-
lization uncertainties, such as maintenance works or network failures, are modeled as
a continuous occupation events with Po � 1 during the whole considered scheduling
interval.

Fig. 1. Example of a resource utilization probability schedule.

Figure 1 shows an example of a single resource occupation probability Po schedule.
With two jobs already assigned to the resource, there are two resources allocation events
(with expected times of allocation at 445 and 1230 time units), two resources occupation
events (starting at 513 and 1319 time units) and two resources release events (expected
release times are 986 and 1676 time units respectively). Gray translucent bar at the
bottom of the diagram represents a sum of global utilization events with a total resource
occupation probability Po = 0.05.
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A detailed analysis of the main utilization characteristics of real HPDCS systems
was made to design and simulate an adequate resources utilization model. As the basis
for modeling the availability and utilization probability of computational nodes, the log
files of the ForHLR II supercomputer from the Karlsruhe Institute of Technology in
Germany were taken for the analysis [13, 14]. The available files contain information
on the execution of jobs from June 2016 to January 2018.

Fig. 2. Job size distributions of real (black) and simulated (blue) job-flows. (Color figure online)

After carrying out many experiments, the normal distribution on a logarithmic scale
(lognormal) was chosen as the most suitable for modeling the jobs’ length and size
characteristics. The main parameters of the distribution (mathematical expectation and
variance)were selected experimentally to achieve an acceptable accuracy.As a result, the
generated distribution by form largely replicates the original one (Fig. 2). More formal
comparison gives 0.14 value by the Kolmogorov - Smirnov test.

Thus, the resources allocation events are modeled by random variables with a nor-
mal distribution. Resources release events are modeled with lognormal distribution and
expose heavy tails [14]. Expected allocation and release times are derived from the job’s
replication and execution time estimations.

2.2 Resources Allocation Under Uncertainties

To execute a parallel job a set of simultaneously idle nodes (a window) should be
allocated ensuring user requirements from the resource request. The resource request
usually specifies number n of nodes required simultaneously, their minimum applicable
performance p, job’s total computational volume V and a maximum available resources
allocation budget C.
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These parameters constitute a formal generalization for resource requests common
among distributed computing systems and simulators [2, 7, 12, 13].

Common allocation and release times for all the window resources ensure the pos-
sibility of inter-node communications during the whole job execution. In this way, the
occupation and availability probabilities should be estimated for each resource during
the scheduling interval L. For the job scheduling, values Pri

a (t; t + T ) may be derived,
representing a probability that resource ri will be available for the whole job execution
interval T starting at time t.

When a set of n resources is required for a job execution for a period T , the total
window availability Pw

a during the expected job execution interval can be estimated as
a product of availability probabilities of each independent window nodes:

Pw
a (t) =

n∏

i

Pri
a (t; t + T ).

If any of the window nodes will be occupied during the expected job execution
interval T , the whole parallel job will be postponed or even aborted. Therefore, a com-
mon resources allocation problem is a maximization of a total resources’ availability
probability.

Basedon themodel aboveweconsider the following job resources allocationproblem
in heterogeneous computing environment with non-dedicated resources and utilization
uncertainties: during a scheduling interval L allocate a set of n nodes with performance
pi ≥ p for a time T , with common allocation and release times and a restriction C on
the total allocation cost. As a target optimization criterion, we assume maximization of
a whole window availability probability Pw

a .
The solution for this problem may be divided into two sub-problems.

1. Static sub-problem. Given the time tk and values Pri
a (tk; tk + T ) of the resources’

availability for the following period T , allocate a subset of n resources according to
the job requirements with the maximum probability Pw

a (tk).
2. Dynamic generalization. Perform time scan and execute the first sub-problem for

each time moment tk ∈ [0;L]. The solution is then obtained as a maximum from all
the intermediate solutions: Pw

a = max
tk

Pw
a (tk).

Thus, further in this paper we study different approaches for these two sub-problems
implementation.

As an example, Fig. 3 shows maximum values of function Z = Pw
a (t) obtained for a

parallel job on the interval [0; 1200]with the maximum availability probability reaching
0.93 at tmax = 834.

2.3 Near-Optimal Resources Allocation

Let us discuss in more details the procedure which allocates an optimal (according to
the probability criterion Pw

a ) subset of n resources at some static time moment tk .
We consider the following total resources availability criterion Pw

a = ∏n
i P

ri
a , where

Pri
a = Pi is an availability probability of a single resource ri on the interval [tk; tk + T ].
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Fig. 3. An example of maxPwa (t) function for a parallel job resources allocation.

In this waywe can state the following problem of an n - sizewindow subset allocation
out of m available nodes in the system:

Pw
a =

∏m

j=1
xjPj, (1)

with the following restrictions:
∑m

j=1
xjcj ≤ C,

∑m

j=1
xj = n,

xj ∈ {0, 1}, j = 1..m,

where cj is total cost required to allocate resource rj for a time T , xj - is a decision
variable determining whether to allocate resource rj (xj = 1) or not (xj = 0) for the
current window.

In [15] based on a classical 0–1 Knapsack problem solution we proposed the
following dynamic programming recurrent scheme to solve problem (1):

fj(c, v) = max
{
fj−1(c, v), fj−1

(
c − cj, v − 1

) ∗ Pj
}
, (2)

j = 1, ..,m, c = 1, ..,C, v = 1, .., n,

where fj(c, v) defines themaximumavailability probability value for a v-sizewindow
allocated from the first j considered resources for a budget c. After the forward induction
procedure (2) is finished the maximum availability value Pw

a max = fm(C, n). xj values
are then obtained by a backward induction procedure. Further in this paper we will refer
to this algorithm simply as Knapsack.

An estimated computational complexity of the presented recurrent scheme is
O(m ∗ n ∗ C), which is n times harder compared to the original Knapsack problem
(O(m ∗ C)).
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2.4 Greedy Resources Allocation Algorithm

Another approach for the static subset allocation sub-problem is to use more computa-
tionally efficient greedy algorithms. We outline four main greedy algorithms to solve
the problem (1).

1. MaxP selects first n nodes providing maximum availability probability Pj values.
This algorithm does not consider total usage cost limit and may provide infeasible
solutions. Nevertheless,MaxP can be used to determine the best possible availability
options and estimate a budget required to obtain them.

2. An opposite approach MinC selects first n nodes providing minimum usage cost cj
or an empty list in case it exceeds a total cost limit C. In this way, MinC does not
perform any availability optimization, but always provides feasible solutions when
it is possible. Besides, MinC outlines a lower bound on a budget required to obtain
a feasible solution.

3. Third option is to use a weight function to regularize nodes in an appropriate manner.
MaxP/C uses wj = Pj/cj as a weight function and selects first n nodes providing
maximum wj values. Such an approach does not guarantee feasible solutions but
performs some availability optimization by implementing a compromise solution
between MaxP and MaxC.

4. Finally, we consider a joint approach GreedyJnt for a more efficient greedy-based
resources allocation. The algorithm consists of three stages.

a. ObtainMaxP solution and return it if the constraint on a total usage cost is met.
b. Else, obtainMaxP/C solution and return it if the constraint on a total usage cost

is met.
c. Else, obtainMinC solution and return it if the constraint on a total usage cost is

met.

This combined algorithm is designed to perform the best possible greedy optimiza-
tion considering restrictions on total resources allocation size and cost.

Estimated computational complexity for the greedy resources’ allocation step is
O(m ∗ logm).

2.5 Time Scan Optimization

Dynamic generalization of the static resources’ allocation problem requires a full-time
scan performed over all the considered scheduling interval L. In general, this leads to
a significant increase in the computational cost of the dynamic scheduling algorithm
(especially, when a full knapsack-based optimization should be performed for all time
moments tk ∈ [0;L]).

To optimize the performance of the proposed resources allocation procedure during
the time scan we consider a computational method which performs search for the max-
imum from a set of starting time points. Assuming, that the functions Pri

a (t) for each
resource are continuous in time (see Fig. 1), then their product Pw

a (t) will be continu-
ous as well. This means that certain computational algorithms are applicable for Pw

a (t)
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function study and the extrema search. Figure 2 shows an example of Pw
a (t) function cal-

culated by the resources allocation algorithm after scanning all time points if [0; 1200]
interval.

A general procedure formaxPw
a (t) search optimization during the scheduling interval

L can be presented as follows.

1. A set of starting time points is allocated on the interval L. Their particular locations
can be given as 1) uniform, 2) randomized, 3) a combination of options 1 and 2.

2. At each starting time point tsi the value of P
w
a (t

s
i ) is calculated by the static resources’

allocation algorithm (Knapsack or GreedyJnt) based on actual resources state at tsi .
3. The gradient value is determined for each starting point by calculating and comparing

neighbor values Pw
a (t

s
i + 1) and Pw

a (t
s
i − 1) with Pw

a (t
s
i ).

4. From each starting point tsi an incremental movement is performed in the direction
of increasing the gradient by the sequential calculation of Pw

a (t
s
i ±δ∗k)= Pw

a (t
s
i , k),

where k is a step number. The movement is stopped if the maximum is reached
(whenPw

a

(
tsi , k

)
< Pw

a (t
s
i , k − 1)) and, thus, can be found on the interval [tsi ± δ ∗

(k − 1); tsi ± δ ∗ k]. Besides, the search movement stops if any other starting points
tsi+1 or tsi−1 are reached. In this case, the search will be continued independently,
starting from the corresponding points.

It should be noted that the above optimization procedure does not guarantee an
exact solution: scenarios of finding local maxima or missing abrupt function changes
are possible. Improving the accuracy is possible by increasing the set of starting points
and by decreasing the search step length δ. On the other hand, the performance of this
procedure is significantly increased compared to the full-time scan: the calculation of
function Pw

a (t) is performed on a limited set of time points, guaranteed to be smaller
than the whole interval L.

3 Simulation Study

3.1 Simulation Environment

We performed a series of simulations to study optimization properties of the proposed
dynamic resources allocation approaches. An experiment was prepared as follows using
a custom distributed environment simulator [11, 12, 15]. For our purpose, it imple-
ments a heterogeneous resource domain model: nodes have different usage costs and
performance levels. A space-shared resources allocation policy simulates a local queu-
ing system (like in CloudSim [2]) and, thus, each node can process only one task at any
given simulation time. Additionally, each node supports a list of active global and local
job utilization events.

Global static uncertainty events represent resources failure or shutdown susceptibil-
ity and keep a constant occupation probability during the whole scheduling interval L.
Static utilization is generated for each resource based on a random variable Po of occu-
pancy probability with a normal. System-wide global-load parameter defines a standard
deviation for Po and is used to set an average global utilization for the whole computing
environment. Thus, for example, when global load = 0.05, about 68% of the resources
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on average have global occupancy probability P
rj
o < 0.05. More detailed study of a

static resources’ allocation problem under global utilization uncertainties was provided
in [15].

Fig. 4. An example of static and dynamic load generated for system resources.

Dynamic job-based utilization uncertainty is generated based on a preliminary job-
flow scheduling simulation. For each resource a list of single-node jobs is generated with
random jobs’ submit times, lengths, start time and finish time uncertainty estimations.
The jobs are ordered by their submit time and are scheduled in advance starting either
at the submit time, or after the previous job is finished. During this scheduling, a chain
of the resource allocation, occupation and release events is generated for each job.
Corresponding expected times and standard deviations are defined by the job length
and uncertainty parameters. More details regarding the simulated job-flow properties
provided in Sect. 2.1. A total length of jobs generated for each resource is determined
by a system wide job-load parameter. For example, when job-load = 0.1, a total length
of locally generated jobs constitutes nearly 10% of the considered scheduling interval
L.

Figure 1 shows a single resource utilization schedule with global and dynamic uti-
lization events generated based on the procedures described above. Figure 4 shows an
example of global and dynamic utilization uncertainties generated for a subset of the
system resources in simulator [15].

3.2 Dynamic Resources Allocation

To solve the dynamic resources allocation problem for a parallel job, it is necessary
to consider the available resources’ schedule and utilization events which change over
time Thus, the scheduling problem requires allocation of a set of suitable resources not
at some static moment tk , but during a given time interval.

Since the computational complexity and working time of the algorithms under con-
sideration increase in proportion to the size of the considered scheduling interval, the
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following parameters of the scheduling problem were chosen to minimize the simula-
tion time. It is required to maximize the probability of simultaneous availability of 6
concurrently available nodes to perform a job with a volume of 200 computational units
on a time interval [0; 800] in a computing environment that includes 64 heterogeneous
computational nodes. Initial load of computational nodes with global events global load
= 0.05. The dynamic load of the computing system changed during the simulationwithin
the limits of job-load ∈ [0; 1].

The obtained results indicating the availability of the resources selected by theKnap-
sack (Sect. 2.3) and GreedyJnt (Sect. 2.4) algorithms depending on the dynamic load
job-load values, are presented in Fig. 5. To obtain these results, more than 10,000 inde-
pendent scenarios of scheduling and resources allocation were performed by each of the
considered algorithms.

It should be noted that with job-load = 0 the advantage of the Knapsack algorithm
is about 9%, and the probability of simultaneous availability of the selected resources is
0.96 for Knapsack and 0.87 for GreedyJnt.

Fig. 5. Simulation results: Pwa resources availability obtained by Knapsack and GreedyJnt
algorithms depending on the resources utilization level.

With an increase in the dynamic load of the system (job-load > 0), the highest
achievable probability Pw

a of simultaneous resource availability, as expected, sensibly
monotonically decreases. The local maximum at job-load = 0.9 is explained by the fact
that under conditions of extra high dynamic load, the number of experiments in which
it was possible to find six concurrently available resources, turned out to be statistically
insignificant (about 10 results). At the same time, when the value of job-load = 1 (full
initial utilization of the system) was reached, a suitable set of resources (Pw

a = 0) was
not found in any of the experiments at any time instant tk ∈ [0; 800].

Also, Knapsack provided a higher availability probability Pw
a of the required set of

resources at all the considered values of the dynamic load (job-load < 1) in comparison
toGreedyJnt. However, the relative advantage decreases from about 9% to almost 0% as
the job-load increases. This decrease in relative efficiency is explained by a decrease in
the dimensionality and variability of problem (1) with an increase of the resources load.
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For example, when job-load = 0 all 64 resources are available at every instant with a
probability of at least 0.95 (due to global-load = 0.05). Then as the job-load increases,
many resources fall out of consideration due to a high probability of being utilized by
other jobs (see Fig. 4). Thus, for large job-load values, the static algorithms often solved
the degenerated problem of selecting a set of 6 concurrently available resources from 6
resources in the system that remained unloaded.

3.3 Time Scan Optimization

The time and accuracy characteristics of the proposed time scan optimization proce-
dure (Sect. 2.5) were studied based on a resource’s allocation problem in computing
environment with dynamically changing utilization level. Figure 4 presents an exam-
ple of a utilization schedule generated for a few computational nodes in the simulation
environment [15].

To obtain reliable results, we performedmore 1000 independent simulation scenarios
of resources allocation for a single parallel job. The computing environment consisted of
64 heterogeneous computing nodes of varying cost and performance characteristics with
dynamically changing occupation function Po(t): job-load = 0.5, global-load = 0.05.
The job scheduling problem required allocation of six nodes for 200 units of time on the
interval L ∈ [0; 800]. The target optimization criterion Pw

a is a simultaneous availability
of the selected resources. As an additional criterion, a total algorithm working times was
measured.

The time scan optimization procedure described in Sect. 2.5 was implemented with
a different number of the starting points: {1, 5, 10, 20, 50, 100}.

Table 1 shows the relative results in terms ofworking time (performance acceleration)
and accuracy in comparison with the full scan approach.

As expected, with an increase in the number of starting points the accuracy of the
approximate procedure tends to 1 (i.e., to the optimal solution obtained with a full scan
search). Already with 50 starting points (on an interval of 801 points) the accuracy of
the optimized solution reaches 99%, while the calculation time is accelerated by almost
7 times.

On the other hand, full scan procedure with GreedyJnt algorithm achieves 95%
accuracy with a 143× speedup! Thus, it is advisable to apply Knapsack with this time
scan optimization technique if it is necessary to achieve a high accuracy in the presence
of the light computation time restrictions. In this case, it is possible to speed up the work
time by about an order of magnitude. With tighter time constraints, additional speedup
can be achieved by using a greedy counterpart. In addition, the time scan optimization
is applicable toGreedyJnt algorithm as well: for example, runningGreedyJnt algorithm
from 50 starting points allows you to speed up the computation time by 1000 times,
while the solution accuracy will decrease only to 94%.
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Table 1. Algorithms’ efficiency comparison in terms of accuracy and performance optimization

Algorithm Accuracy Acceleration

Full scan (Knapsack) 1 1

1 starting point (Knapsack) 0,8 65

5 starting points (Knapsack) 0,93 17

10 starting points (Knapsack) 0,96 10,5

20 starting points (Knapsack) 0,97 8,3

50 starting points (Knapsack) 0,99 6,8

100 starting points (Knapsack) 0,99 3,7

Full scan (GreedyJnt) 0,953 143

4 Conclusion and Future Work

In this work, we presented procedure for a reliable resources’ allocation in high perfor-
mance computing systems with heterogeneous hosts considering utilization uncertainty.
The uncertainties are formalized with probability functions as a natural way of statis-
tical and machine learning predictions representation. The proposed solution uses an
availability criterion to optimize resources allocation under static and dynamic utiliza-
tion features. Knapsack-based and greedy algorithms were implemented and compared
in a dynamic procedure performing optimized time scan over a specified scheduling
interval. Both approaches were able to successfully optimize availability of the selected
resources.

We considered several types of static and dynamic job-based resources utilization
events with different load levels.

The simulation study addressed two main criteria: optimization efficiency and algo-
rithms working time. Knapsack-based solution advantage over the greedy approach by
the resources availability criterion at average reaches 5% but requires nearly 100 times
more time for the calculations. Considering a relatively high computation complexity
of the Knapsack-based solution, several optimization options were proposed to provide
99% accuracy 10 times faster or almost 94% accuracy 1000 times faster.

In our further work, wewill refine the resource utilizationmodel to simulate different
types of global and local utilization events closer to real systems.
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Abstract. Supercomputer users when submitting jobs often overestimate wall-
time. These inaccuracies lead to the jobs completion before schedule and hence the
decreased efficiency of job scheduling.Machine learning, using various character-
istics of user jobs, can provide job walltime forecasts before the job starts. The use
of forecasts by the supercomputer job management system makes it possible to
increase the efficiency of scheduling and executing jobs. In this paper, we study the
efficiency of using the forecasted execution time of jobs in a geographically dis-
tributed network of supercomputer centers with de-centralized management. The
execution time of a job on the computing resources of different supercomputer
centers may vary. The threshold value of forecast accuracy is evaluated when
scheduling jobs in a supercomputer network becomes efficient. Estimations of
scheduling efficiency are made, taking into account the forecasts of job walltime.

Keywords: Supercomputer centers · Job scheduling ·Machine learning ·
Performance forecast · Distributed network of supercomputers

1 Introduction

A stable trend in the scientific supercomputer centers (SCC) development is the inte-
gration of supercomputing resources into a single geographically distributed network
(GDN) [1]. The GDN is primarily aimed at increasing the efficiency of using the SCC
computing resources. The typical computing unit (CU) connected into a GDN is a sepa-
rate high-performance cluster (supercomputer). Typically, the GDN includes CUs with
different performance, integrated with communication channels of different bandwidth.
A supercomputer job is an elementary workload object both on a separate CU and in
the GDN as a whole. The user creates a job as an object containing a computational
program, initial data, and the following resource requirements: number of processors
(cores), amount of RAM and disk space, time required for job execution (walltime
request), etc.

Each CU runs a local jobmanagement system [2], like SLURM, PBS, LSF. The basic
functions of the local job management system are maintaining job queue, scheduling,
submitting, and controlling the job execution process on a single CU. Local management
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systems on different CUs form the lower (local) level of computing jobs management.
Management at the top (global) level, which is the level of distributed resources, is per-
formed by the global job management system. To increase the reliability and scalability
of GDN, we examine a decentralized global job management system, where manage-
ment is done by a team of peer dispatchers operating locally on each CU in GDN. The
interaction of dispatchers is asynchronous in a single global job queue organized using a
distributedDBMS [3]. The consistency of dispatchers decisions is achieved using reverse
auction planning, where dispatchers on different CUs compete with each other for the
right to process a job from the global queue. While competing for a job, dispatchers
propose rates that reflect the readiness of the CU to process the job with a given quality
of service, e.g., the walltime. The job is assigned to the CU, the dispatcher of which has
offered the best rate. Note that the auction type may be different depending on the goal
of planning [4].

The walltime request is one of the most important resource requirements for the
job. It determines the time for which the Local Resource Management System (LRMS)
will allocate the resources. Like other resource requirements, the walltime request is
estimated by the job owner. If the actual walltime does not exceed the requested one,
then allocated computing resources are freed immediately after job completion. If the
walltime exceeds the requested time, then after the requested time has elapsed, the job is
aborted by the LRMS. Note that some SCCs set a default value for the walltime request,
this often motivates users not to change this value [5].

To avoid early termination of the job, users often deliberately exceed the time esti-
mates when requesting the walltime. On the one hand, this ensures that the job owner
will receive the results of the execution, even if the execution of the job is slowed down
by any technical obstacles, for example, waiting for the completion of a write to the
shared file system. On the other hand, excessive additional time can lead to delaying
jobs in the queue, since due to some features of scheduling algorithms, jobs that require
less time usually spend less time in the queue [6]. For instance, setting the walltime
request to the maximum disables the backfilling of short jobs [7].

According to the statistics from the MVS-10P OP supercomputer [8], in the Joint
Supercomputer Center (JSCC RAS), in 2020 the walltime request exceeded the actual
walltime for 95%, of jobs. The median value of excess was 2.3 times, and the average
excess was in 22.6 times (see Table 1). The actual walltime for 60% of jobs exceeds the
requested value 2 times and more.

Table 1. Job flow statistics for MVS-10P OP in 2020.

Statistic name Value

Number of jobs 43946

Proportion of jobs for which the walltime request exceeds the actual
walltime

0.95 (41743 jobs)

Median excess (average excess) 2.3 (22.6)

Proportion of jobs completed abnormally (out of requested time) 0.003 (131 jobs)
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The error in the accuracy of the walltime request does not depend on any specific
CU, it is typical for most shared facility systems, as described in papers [9–12].

It is obvious, that the walltime request inaccuracy negatively affects the local
resources scheduling efficiency: due to the early completion of jobs, the processing
order planned by LRMS is changed. As for the global resources scheduling, the sched-
uler not always is able to change the order of jobs processing, or reschedule it. This
happens because scheduling at the global level is associated with the transfer of initial
job data between CUs. Note that, firstly, in some cases, the transfer time of the initial
data can be comparable or even exceed the time of its execution, and secondly, the initial
data must be copied before the job execution. So, the copying process must be proac-
tive. In other words, we must predict the dynamically changing workload of computing
resources. All this shows the error in the walltime request is critical for the distributed
resources.

Analysis of recent papers has shown that it is possible to use machine learning algo-
rithms to build forecasting systems, which, based on the job metadata, can adjust the
job walltime request before submission. The article [9] shows the efficiency of using the
methods for adjusting the walltime request based on modeling the real flow of compu-
tational jobs arriving at the COARE (Computing and Archiving Research Environment)
SCC. The article [10] presents the results of a study implemented in the widely used
Portable Batch System Professional (PBS Pro) [11] mechanism for predicting the job
execution time; scenarios are given when the adjustment of the walltime request can be
used. The article [5] examines the accuracy of the forecast based on the amount of initial
data of the job and the amount of required computing resources. In [5], a wider list of job
parameters is analyzed, which makes it possible to refine the forecast of execution time.
The paper [12] is devoted to the study of the characteristics of the jobs flow coming to
the SCC, as well as to modeling and comparison of methods for adjusting the walltime
requests. The works [13, 14] investigate the efficiency of forecasts using the Alea 4
simulator.

The study of methods and means for the development of an information and com-
puting environment for scientific experiments based on the federative principle of man-
agement was held within the Russian-Chinese MC2E (Meta Cloud Computing Envi-
ronment) project [15]. Two new approaches to the program execution time prediction
problem were proposed [16]. The first one uses CU grouping based on the Pearson cor-
relation coefficient. The second one is based on vector representations of CU and MPI
programs, so-called embeddings. The paper [16] describes applying of embeddings tech-
nique to the execution time prediction of an MPI program on a set of CUs. The papers
[17, 18] are devoted to machine learning methods and algorithms for supercomputer
walltime prediction. Forecasting is using submitted jobs classification based on super-
computer job management statistics. The supercomputer RIKEN Integrated Cluster of
Clusters (RICC) statistics [17] and the JSCC RAS supercomputers statistics [18] were
initial data. There weremade probability estimates of correct predictions for well-known
machine learning algorithms.

The review showed that there are good results on the efficiency of using predicted
walltime for the local scheduling, while there is a lack of relevant results for the globally
distributed resources. In this paper,we donot consider specificmachine learningmethods
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for walltime prediction. We assume that machine learning methods can predict walltime
on different CUs with a given accuracy. The walltime may vary on different CUs since
the CUs can be inhomogeneous. We study how using the actual walltime, instead of the
walltime request will increase the efficiency of job scheduling on distributed resources.

In this paper, we estimate the threshold value of the prediction accuracy when the
optimal assignment of jobs on the GDN is achieved. We also evaluate the performance
of the auction-based scheduling algorithm with forecasting.

2 Experiments

2.1 GDN Testbed

GDN is a sophisticated system with numerous connections between its elements. As
you can see in [19] the real system is influenced by many random features. Considering
these features with the use of known mathematical methods is limited by a number of
classical distribution functions. Consequently, the analytical model of a complex system
becomes oversimplified, this inevitably leads to a decrease in the reliability of the results.
We used simulation modeling for research. Currently, simulation is associated [20] with
the complexity of reproducing the results by other researchers and using their models.
The main obstacles are model unavailability, lack of input or output data (when average
metrics are published, but not all of the outputs are available), the impossibility of access
to the experimental environment. To carry out a series of experiments, we created an
own GDN testbed consisting of several CUs and a single global job queue.

Each CU runs a dispatcher, LRMS, and a job execution module. In addition, there
were implemented a job launcher, which placed the test set of jobs into the global queue,
and a forecastingmodule, which replaced the walltime request with the actual one for the
given proportion of the jobs from the test set. To prevent the early abortion of jobs due
to a prediction error, we use the soft walltimes approach discussed in [10]. A distributed
document-oriented Elasticsearch DBMS [21] was used to organize a global queue.

Each dispatcher uses an auction-based jobs scheduling algorithm. During the exper-
iment, the first price sealed bid auction was used. At this auction, the participating
dispatchers are not aware of the bids made by other participants and cannot adjust their
previously proposed bid. Participants’ bids for a separate job are accepted within a para-
metrically specified time interval – the duration of the auction. Changing the duration
of the auction it is possible to adjust the number of participants who succeeded to take
part in the auction.

The operation of the LRMS was simulated by the RabbitMQ message queue broker
[22]. We chose this message broker due to the ease of its installation and configuration,
as well as the ability of one broker to simulate the operation of several LRMS instances at
once. The FCFS (First Come, First Serve) algorithm was used as a scheduling algorithm
implemented in the LRMS model.

The job launchers, prediction and processing modules (PM) were also implemented
in the Python programming language using the multiprocessing library (Fig. 1). Rab-
bitMQ and Elasticsearch services functioned in docker containers and are united in a
swarm. This made it possible to start the testbed quickly.
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Fig. 1. A model of the GDN for researching the efficiency of walltime prediction.

2.2 The Approach for Preparing Test Set

The test set of jobs was a stream coming in over 6 days. The test set was based on the job
logs of the MVS-10P supercomputer in 2020. The set was formed the following way.
Using the job logs we identified the month with the maximum intensity of the incoming
jobs. From the selected month array there were excluded jobs received by the CU on
the days of the CU maintenance, as well as jobs with walltime equal to zero (incorrect
jobs). The following information was used for all remaining job submissions: time of
submission into local CU queue, walltime request, actual walltime.

As the test set was obtained from the job logs on a single CU, to simulate jobs flow
on several CUs the intensity of incoming jobs was increased by merging several weeks
of the month into one. In other words, one day of the week of the test set contains jobs of
several days of the same name in different weeks, while the information about the time
of the job submission did not change. Let’s consider an example. We take information
on the execution of jobs in November 2020 (11-2020) from the job logs for the CU. We
consider the first week of the month from 01-11-2020 to 07-11-2020. On the first-day
jobs from dates 01, 08, 15 will enter, on the second-day jobs from dates 02, 09, 16 will
enter, while the time of submission, that is, hours, minutes, and seconds, does not change
in any way.
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To adapt the test set, it was required to determine the walltime for each job for
each CU. As mentioned above the processing time of a job on different CUs may vary,
therefore, the actual walltime and walltime request for different CUs were randomly
determined within a given range. These values were added to the passport of each job,
in each series of the experiment. Thus, for each job in the experiment, we define the
optimal execution time as the minimum of all walltimes for all CUs.

In the experiment the model time was used, which is 60 times faster than the real
time. This is correct since the LRMS time quantum of a job on the CU is 1 min.

2.3 Assumptions and Methodology of the Simulation

Since the study examines the efficiency of job scheduling for distributed resources, the
authors make the following assumptions during the experiment for the local resource
scheduling. First, the FCFS service algorithm was used as a scheduling algorithm for
the LRMS, while in real systems more complex scheduling algorithms are used, for
example, the Backfill algorithm. The assumption is based on the fact that the scheduling
system of the distributed resource level should not interfere with the scheduling of jobs
at the local level, as was already said above. The second assumption made by the authors
relates to the job resource requirements. The resource requirements of each job contain
only information about the walltime request. It is assumed that all jobs require the same
number of computational resources for their execution. It is possible to neglect the
requested number of computing resources because, during the experiment, CUs of equal
performance are simulated, that is, the maximum possible number of jobs processed by
them is the same.

In the series of experiments, we varied the duration of the auction and the time
prediction accuracy. The forecast accuracy was used in the dispatcher’s rates. The dis-
patcher’s rate for the job will be the walltime request. That is, CU dispatchers compete
with each other and the winner is the one which is ready to spend the least amount of
time on the job. Since the execution time on different CUs is different, the dispatcher’s
rates are different. But each time each dispatcher seeks a job from the global queue with
minimal walltime, as it is more reasonable to process jobs that require more processing
time on other CUs in GDN.

The followingmetrics are evaluated: the average value of the jobs proportion assigned
using the auction, the average value of the optimally scheduled jobs proportion, the
average value of the jobs assignment efficiency. We will say that a job is optimally
scheduled if its execution time in the experiment is equal to the optimal execution time.
For every job, there exists a CU where actual walltime is optimal. There can be different
fastest CUs for different jobs. This results from the fact that different CUs have different
architecture and other characteristics influencing the performance of a certain job. This
is not a degenerate case when there is a single CU that can execute all jobs in optimal
time.We will say that a job was assigned with an auction if more than one CU dispatcher
made a bid.



344 B. Shabanov et al.

2.4 Simulation Results

Note that we did not observe repeatability of the results with a prediction accuracy of
less than 0.2. In addition, the advantage of forecasting with such accuracy was extremely
small, and the results are not of scientific interest. Experimental results are presented in
Fig. 2.

Let us start with two extreme cases. In the first extreme case the proportion of jobs
assigned as the auction result is 1, that is, all jobs of the test set were assigned with
the auction. Note that with a prediction accuracy of 1, the entire test set is assigned
optimally; at the same time note that, when forecast accuracy is 0.5, the proportion of
jobs assigned optimally is more than 0.6 for the entire test set. In the second extreme case
the share of jobs assigned as the auction result is 0. This case corresponds to the FCFS
algorithm. It can be seen that the efficiency of scheduling the jobs, even with a forecast
accuracy of 1, does not exceed 0.55. The reason for the low efficiency of job scheduling
is the lack of consistency between dispatchers when making a job assignment decision
since dispatchers do not take into account the interests of each other.
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Fig. 2. Dependence of the proportion of optimally distributed jobs in the GDN on the forecast
accuracy

Further, we consider an intermediate case which is reflecting reality. Let us consider
the case when the share of jobs assigned with the auction is 0.5. One can see in Fig. 2 that
with a prediction accuracy of more than 0.8, the proportion of optimally scheduled jobs
is 0.75. This allows us to conclude that the threshold value for the prediction accuracy
is 0.8. It can be seen from the graph (Fig. 2) that a breaking point is observed for this
value, that is, after this value, the optimality of the distribution increases slower.

The experiments showed that the discovered dependence retains for a larger number
of dispatchers. In particular, the experiment was carried out with 10 dispatchers.
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Now we can look at how the distribution efficiency is achieved. Let us introduce 3
main classes of jobs: the first class (Ib) includes optimally scheduled jobs. The second
class (Ib,p) consists of optimally assigned jobs when the forecasting was used in the
scheduling. The third class (Ib,p,a) includes jobs of the second class (Ib,p) for which the
auction was held. As one can see, all three classes are dependent, and the jobs set of a
larger class includes jobs of smaller classes. Other classes of jobs can be distinguished,
but they are not considered, since they are rather random.

One can see on the graph above that almost all jobs with predicted walltime were
scheduled with the auction in an optimally. Results presented above (see Fig. 2) show
that the percentage of jobs of class Ib,p, is almost equal both to the accuracy of prediction,
and the percentage of jobs of class Ib,p,a. At the same time, the percentage of jobs of
class Ib is higher than all the others, since it includes randomly assigned jobs. Graph
limits are the following: with the proportion of jobs assigned with the auction number
1, for each value of the prediction accuracy all three columns are approximately equal.
When the proportion of jobs assigned with the auction equal to 0, there are no jobs of
the third class (see Fig. 3).
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3 Conclusion

A testbed has been developed to study the efficiency of job assignment to computational
units with varying forecast accuracy and varying duration of the auction. It was experi-
mentally determined that the threshold value for the prediction accuracy is 0.8. With this
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value, the proportion of optimally scheduled jobs is 75%. The efficiency of scheduling
grows slower with larger values of the prediction accuracy.

Experiments showed that the use of the predicted job execution timemakes it possible
to increase the efficiency of job scheduling up to a factor of 1.6. It is impossible to use only
the walltime request, it is necessary to take into account other important characteristics
of GDN: communicational and computational heterogeneity.
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Abstract. This paper addresses the performance evaluation of a het-
erogeneous distributed computing environment (Desktop Grid) for large-
scale medicinal chemistry experiments in silico. Dynamic change of the
set of computational nodes, their heterogeneity and unreliability impose
difficulties on task scheduling and algorithm scaling. We analyze the
performance, provide efficiency metrics, statistics and analysis of the
volunteer computing project SiDock@home.
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1 Introduction

Desktop Grids are an essential tool for performing computationally-demanding
scientific research. They combine non-dedicated geographically distributed com-
puters (typically, desktop ones) connected to the central server by the Internet or
a local access network and performing computations for the Desktop Grid in their
idle time. The resources may be provided either by the volunteer community or
by individuals and organizations related to the work. Many of the world’s lead-
ing research institutions run large-scale computational projects based on Desk-
top Grids (e.g., Washington University: Rosetta@home [19], Folding@home [22];
CERN: LHC@home [14]; University of Oxford: Climateprediction.net [5]).
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To organise and manage Desktop Grids, a number of software platforms are
used. The most popular one is BOINC (Berkeley Open Infrastructure for Desktop
Computing) [2]. Among the 157 active largest projects on volunteer computing,
89 are based on BOINC [10]; that is, BOINC can be considered a de-facto stan-
dard for the operation of volunteer computing projects. The BOINC platform is
an actively developing Open Source software and provides rich functionality.

BOINC has a server-client architecture. The server generates a large num-
ber of tasks that are mutually independent parts of a computationally-intensive
problem. When a client computer is idle, it requests work from the server,
receives tasks, and independently processes them. Upon finishing, it reports
results back to the server. The results are then stored in the database for further
usage.

Unlike computational clusters and supercomputers, Desktop Grids are devoid
of characteristics such as the high-speed interconnection between computational
nodes, homogeneity, reliability, and availability of nodes during defined periods
of time. These disadvantages restrict the class of computational problems that
one can solve on Desktop Grids to the type of bag-of-tasks problems.

Nonetheless, Desktop Grids serve as an affordable, quickly deployable tool.
An essential feature of the Desktop Grid technology is the ability to attract a
large number of inexpensive computing resources for a temporary or long-term
mission, providing a quick response to emerging scientific problems.

A recent example of employing Desktop Grids at the early stages of solving
urgent scientific problems is the fight against novel coronavirus at the beginning
of 2020. The structure of the SARS-CoV-2 spike protein (key role in pathogen-
esis) was accurately predicted by the Rosetta@home project [15] several weeks
before its description with cryo-electron microscopy [24]. It allowed to speed up
the research by many academic groups: design of novel vaccines and antivirals.

The Folding@home project is also developing an antiviral agent against
SARS-CoV-2. In early 2020, more than 700,000 new participants joined the
project, and its performance exceeded one exaflops, making Folding@home the
first world’s exascale system, more powerful than the top 100 supercomputers
combined [26].

Conventional supercomputers have also been employed to fight against
SARS-CoV-2 from the very early stages COVID-19 pandemic onset (see, e.g., [3]
for a detailed overview). Nation-wide and cross-nation research initiatives pro-
vide scientists with supercomputer resources.

However, not every computational problem is designed to take all advantages
of a supercomputing environment. The problems of bag-of-tasks type do not
utilize the high-speed interconnection of supercomputer nodes. The resources are
shared among many computational applications; setting a supercomputer implies
high costs. For these reasons, research groups (especially of a small/medium size)
typically do not have immediate, on-demand access to supercomputing resources.
Desktop Grids serve as a tool that can complement and, when needed, substitute
conventional high-performance computing systems.

In this paper, we discuss the performance characteristics of a BOINC-based
Desktop Grid on an example of a real project performing large-scale molecular
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docking. In Sect. 2, we overview the related works on performance measurement
in BOINC-based Desktop Grids. In Sect. 3, we describe the BOINC-based project
SiDock@home. In Sect. 4, we analyze and discuss performance metrics. Finally,
Sect. 5 concludes the paper.

2 Related Works

When planning the workflow, time and budget of a research, one needs to evalu-
ate the performance of available computational resources. The owners of BOINC
client computers independently determine their contribution to the computing
process: the amount of resources provided and the time of their availability. Thus,
they create uncertainty in the project’s operation, particularly in the estimation
of the project’s performance. A number of works are devoted to performance
measurement in BOINC-based Desktop Grids.

An up-to-date description of the BOINC platform and its credit system serv-
ing for measuring the computational performance is provided in [2]. The credit
system allows to unify and rank the contributions within a BOINC project,
across projects or the overall BOINC performance and potential.

The throughput may be expressed in the number of active tasks as in the
LHC@Home project [4]. Such a simple characteristic is illustrative, in particular,
when the workflow of BOINC-based computer simulations is being compared to
the actual physical experiments, on the one side, and to the similar workflow on
supercomputers, on the other side.

Another option is to measure the performance in flops (the number of floating
point operations per second). This approach inherits the ambiguity of benchmark
choice and is complicated by heterogeneity of the Desktop Grid. However, it is
universal and common in scientific community.

Flops metric is widely used to unify participant computers by a reference
CPU/GPU [26] or to match Desktop Grid performance with conventional HPC
systems [25]. In many workflows, BOINC credits are being awarded according
to a flops estimate of the work done by a task.

The author of [21] addresses more complex performance estimation in terms
of throughput, scalability, latency and reliability, and exemplifies on two large
Desktop Grid projects. Among the considered metrics, reliability is concluded to
be crucial as it influences the performance consistency of a system. To increase
reliability, the author suggests to designate a number of reliable nodes as a
backup subsystem.

Emulation and simulation systems, such as ComBoS [1], SimGrid [18] and
EmBOINC [12], hold a specific place among frameworks for performance mea-
suring in BOINC-based Desktop Grids. They allow one to evaluate and compare
scheduling algorithms under various scenarios, using generated and/or real data
without interference into the operation of real computational projects; predict
possible bottlenecks and limits of a BOINC project.
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3 The Project SiDock@home

Since the beginning of the COVID-19 pandemics in late 2019-early 2020, many
citizen science projects attracted the public’s attention at analyzing viral life-
cycle and working on potential therapeutic targets. Due to the world-wide char-
acter of the COVID-19 pandemic, such projects gathered large amounts of trac-
tion and computational resources. It helped many research teams boost their
research, developing drugs and vaccines, sharing the results with the scientific
community and broadening fundamental scientific disciplines.

In March 2020, a citizen science project “Citizen science and the fight against
the coronavirus” (COVID.SI) [13] was initiated in the field of drug design
and medicinal chemistry. The project is aimed at drug discovery, first of all,
against coronavirus infection, using high-throughput virtual screening (HTVS)
[17] on a small molecules library developed by the team. In the next months,
SiDock@home [20], a BOINC-based extension of COVID.SI, was created and
grew into a sizable, independent and competent research project for general
drug design.

The project’s server part was deployed in an Ubuntu 18.04 LTS-based
machine under system configuration of 2 Xeon 6140 cores, 8 Gb RAM, 32 Gb
SSD and 512 Gb HDD. The molecular docking application CmDock [7] was
adapted for execution in the BOINC environment using a wrapper program for
Windows, Linux and MacOS 64-bit operating systems.

The project was announced to the public on October 23, 2020 and attracted
the interest of the BOINC volunteer community. Consequently, in the testing
phase of two months, 240 participants joined the project and provided the com-
putational resources of more than 500 computers. Such a capacity allowed us
to perform virtual screening (VS) on a part of the library, to elaborate on the
optimal parameters of task distribution and results processing, and to evaluate
the developed CmDock software in a heterogeneous distributed environment.

HTVS on the complete library was completed for five targets in eight months.
In the next section, we discuss the performance metrics obtained based on gath-
ered statistics of project operation.

4 Performance Analysis of a Desktop Grid

The most popular performance metrics for Desktop Grids are [16] throughput
(the number of tasks completed per a time unit), makespan (the time interval to
complete a set of tasks), turnaround time of a task (the time from its creation to
obtaining its result), reliability (the probability of the server to receive a correct
result, a valid result, or any result once a task instance has been sent out) and
availability (the ratio of results returned to the server to the total number of
tasks sent out to the node). Other metrics have been addressed as well (total
load of the computational servers, overhead due to replication or failures etc.)

To calculate the desired metric, a number of task and computer characteris-
tics can be used. In this work, we will consider the following ones calculated by
the BOINC middleware and stored in a database:
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1. Computer:
– create time: timestamp of the moment the host registered to the

project;
– rpc time: timestamp of the last RPC of the host to the server;
– total credit: the total BOINC credit earned by the host;
– on frac: the fraction of total time the host runs the BOINC client;
– active frac: of the time the host runs the BOINC client, the fraction

it is enabled to use CPU;
– p ncpus: the number of available CPU cores;
– p fpops: estimate peak performance of a single CPU core, flop/s.

2. Task:
– sent time: timestamp of the moment the task was sent by the server;
– received time: timestamp of the moment the result was received by the

server. We use these two values to discretise the workflow by hours;
– elapsed time: actual time of the task execution on the host computer;
– flops estimate: estimated peak flop/s of the host computer.

Note that the value p ncpus can be edited by the host’s owner to alter the
number of received tasks. To estimate the performance bounds, we adjusted the
apparent outliers. Specifically, we did not consider hosts with p ncpus ≥ 1000
and manually corrected several values of typical configuration computers.

As the Whetstone benchmark [9] is generally considered representative for
CPU-intensive applications performing numeric operations (which is the case for
many scientific applications), it is used in BOINC [2] to estimate the peak per-
formance (theoretical achievable performance) of a CPU in flops. The calculated
value p fpops=flops estimate is used to obtain the amount of BOINC credits
for a task which, consequently, expresses the theoretical number of flops that
could have been done during the task execution on this computer.

Computer data allow to estimate the scale of the available computational
resources and design the workflow. We consider a BOINC-based Desktop Grid
of a computational project operating without any knowledge of other work per-
formed by the nodes and other projects present at them.

As a theoretical upper bound of a BOINC-based Desktop Grid performance,
we use its aggregated theoretical peak performance accounting availability peri-
ods of the computers and the user-imposed restrictions on resources usage by
BOINC. Let us call it the theoretical available performance. This value can be
considered when planning workflow at a short distance.

Let H be the set of project’s hosts. For each h ∈ H, let us denote h.field
the corresponding value of the field at database entry h. I(x) is the indicator
of an event x. Using the database, one can calculate the theoretical available
performance at a specified interval of time [t, t + 1] as follows:

Pavail(t) =
∑

h∈H

I(h.create time ≤ t) · I(h.rpc time ≥ t + 1)

· I(h.total credit > 0) · h.p ncpus · h.p fpops · h.on frac · h.active frac. (1)
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Task data allows estimating the actual performance achieved by a BOINC
project. Note that we consider one-core tasks, which is the case of a number of
other BOINC projects including SiDock@home.

Some of the tasks end up with errors of different types or may not be needed
because, at the moment of their return to the server, the quorum has been
already met. Otherwise, the tasks are awarded with BOINC credit [8] which, in
the most common case, is calculated as follows.

Each host h ∈ H is assigned a value ah, a peak performance of its CPU flops,
estimated with an internal BOINC benchmark. When a task τ has been executed
on host h, BOINC registers the elapsed time Thτ . The amount of credit the host
would get for the task is Chτ = Thτ · ah · CS. If the result passes a validity
check on the server and the quorum has been met, the host is awarded Chτ (or
an appropriately adjusted value if quorum exceeds 1). Note that in Eq. (1), the
term I(h.total credit > 0) serves to filter out computers that haven’t done any
work for the project.

Here, CS = 200
86 400 × 109 (a Cobblestone) is a constant unifying the effec-

tive work of heterogeneous computers with a reference one that would do one
gigaflops based on the Whetstone benchmark and receive 200 credits a day.

In Fig. 1, we provide the performance dynamics of the project’s Desktop
Grid in comparison with the performance bound. We observe that the actual
performance varies in between 10–50% of the theoretical available performance
of active computers. This is partly explained by the background character of the
Desktop Grid computations that, by definition, use only idle time of a computer.
The value is also influenced by the presence of other BOINC projects at a host
computer. The positivity of the performance value corresponds to the normal
operation of the Desktop Grid, while periods of zero value indicate pauses in the
server work or a temporary absence of tasks.

Fig. 1. Performance dynamics of the project’s Desktop Grid.
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4.1 Alternative Performance Metrics of a Desktop Grid

The project’s performance can also be estimated in terms of active threads: the
amount of work in CPU days per day of a Desktop Grid operation. The actual
performance strongly depends on the specifics of the solved computationally-
intensive problem. For this reason, it is complicated to compare Desktop Grids
and traditional high-performance computing systems. However, the number of
active threads allows one to find an approximation of a Desktop Grid’s scale.

During the first 8 months of SiDock@home operation, the average number of
active threads during non-zero workload periods had the order of 4 000, compa-
rable with supercomputers in the last 10% of Top-50 supercomputers of Russia
and CIS [23]. The practice has shown that for short periods of high load, such
as BOINC competitions, T (t) value exceeds 18 000, which is comparable with a
significantly more powerful supercomputer available on demand.

To compare the scale of the Desktop Grid with traditional high-performance
systems, one may also adapt an existing benchmark such as LINPACK [11]. Let
us illustrate a variant of such adaptation on an example of a sample desktop com-
puter participating in SiDock@home, available 24/7, AMD Ryzen 9 3900X 12-
Core Processor, earning 22 500 BOINC credits a day and producing 500 gigaflops
according to the LINPACK benchmark. Calculated using this reference com-
puter, the average performance of SiDock@home is, again, comparable with the
10% tail of Top-50 supercomputers of Russia and CIS.

5 Conclusion

Performance measurement is of relevance when selecting a high-performance
computing system, designing the experiments and planning research. In general,
it is complicated to compare Desktop Grids with supercomputers and clusters
directly. The actual performance of any system strongly depends on the specifics
of the solved computationally-intensive problem; moreover, Desktop Grids’ pecu-
liar features impose additional difficulties.

In this work, we propose several performance metrics for Desktop Grids. We
formalize them for a BOINC-based volunteer computing project, illustrate them
on the project SiDock@home and discuss their practical application scope.

The results show that the actual efficient load of a Desktop Grid of a volunteer
computing project is several-fold lower than its potential performance. It is partly
explained by the background character of the Desktop Grid computations, but
leaves open the problem of optimizing the workload.

The performance bounds based on BOINC benchmarks represent the relative
scale of the BOINC project among the others regarding community involvement
and theoretical peak performance. Such metrics may be helpful when planning
the further development of a project. For instance, one may decide between
joining an existing umbrella project or running a separate one, extending the
server hardware base, targeting new client platforms or processor types.
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Analysis of the Desktop Grid-based project SiDock@home has shown the
applicability of the proposed metrics and their combinations for quantitative
and qualitative conclusions about the project’s performance.

In the future, we aim to work on Desktop Grids’ performance in three main
directions. Firstly, we will develop and implement a prognosis system for a Desk-
top Grid for estimation of the time to complete the project or a computational
experiment. A possible application of such a prognosis is the long-term planning
of research. Secondly, we will develop new methods for optimising a Desktop Grid
utility, targeting the fastest discovery of practically valuable results. Thirdly, we
will implement the developed methods in the long-running volunteer computing
projects SiDock@home and RakeSearch to increase their utility.
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Abstract. Considering asynchronous message-passing systems in which
any number of processes may crash, this article addresses the construc-
tion of ledger objects where (i) the append operations issued from dis-
tinct processes commute, while (ii) the append operations issued from
the same process do not. In a very interesting way, it appears that the
implementation of such ledgers does not need consensus, which makes
them both attractive and efficient. Their underlying formalization rests
on Mazurkiewicz’s traces.
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1 Introduction

1.1 Context of the Study

Once upon a Time the Blockchain... Since its introduction, more than ten years
ago in the context of cryptocurrencies [14,17], blockchains have receiving more
and more attention. A blockchain is nothing more than a technology to imple-
ment ledger objects [5,8,16], i.e., an object providing its users with a list of
items (also called blocks, elements, cells, etc. according to the application con-
text) that can be accessed by two operations only, namely an operation append()
which allows to add a new element at the head of the list and an operation query()
which allows to obtain the current value of the full list. The important point of
a ledger lies in the fact that the elements previously added cannot be modified
(immutability property).

Basically, and according to the upper layer application, the implementation
a ledger object involves two main domains of informatics: synchronization and
fault-tolerance (which includes cryptography). The main issue consists then in
allowing the processes to agree on the very same order in which items are added
to the ledger, i.e., in one way or another, the processes have to solve a consensus
problem.
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Do all the Ledgers Need Consensus? It has recently been shown that not all the
ledgers need consensus. This actually depends on the application. In an amazing
way, it has been show that the synchronization part of cryptocurrencies does
not need consensus [2–4,6,7]. So, the important point of such weak ledgers is
immutability. This is the topic addressed in this article in the context of asyn-
chronous message-passing systems where any number of process may commit
unexpected crash failures.

1.2 Computing Model

Process Model. The system comprises a set of n sequential asynchronous pro-
cesses, denoted p1, ..., pn. Sequential means that a process invokes one operation
at a time, and asynchronous means that each process proceeds at its own speed,
which can vary arbitrarily and always remains unknown to the other processes.
Any number of processes may crash. A crash is a premature definitive halt.
Hence, a process behaves correctly (i.e., executes its algorithm) until it possibly
crashes.

From a terminology point of view, when considering an execution, a process
that does not crash is correct. Otherwise it is faulty.

Communication. The processes communicate through an underlying message-
passing point-to-point network in which there exists a bidirectional channel
between any pair of processes. For simplicity, in writing the algorithms, we
assume that a process can send messages to itself. Each channel is reliable and
asynchronous. Reliable means that a channel neither lose, duplicates, nor cor-
rupts messages. Asynchronous means that the transit delay of each message is
finite but arbitrary.

1.3 When the Operations append() of Different Processes Commute

Considering the previous computing model, the problem addressed in this article
is the following.

– Impose the same view of each local order. Given any process pi, ensure that
all the processes see all the invocations of append() by pi in the order in which
pi issued them),

– Allow global disorder. This means that the processes may see the appends
issued by distinct processes in different order. Let op() denote an append
invocation. This means that, if pi issues op()1 and pj issues op2(), a process
pk can see first op1() and then op2() while another process sees first op2()
and then op1().

One can see that these constraints are the ones required by money transfer:
to prevent double spending from occurring, two transfers issued by a process
must be seen in their sending order, while transfers from distinct processes may
be seen in different order by different processes. Other applications such as work
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stealing [12] and the distributed simulation of Petri nets belong to the same
family of problems. In the context of failure-free systems such an approach based
on commutative operations been investigated for about 10 years [10,18].

From an implementation point of view, it is easy to see that, this requires
to implement FIFO channels between each pair of processes, which is a simple
peer-to-peer problem not requiring consensus. Before presenting a distributed
algorithm satisfying the two previous properties, the next section presents a
formal definition of the problem based on Mazurkiewicz’s traces, which turns
to be the theoretical basis on which relies the specification of this family of
problems.

2 Underlying Formalization

2.1 A Quick Look at Mazurkiewicz’s Traces

A trace monoid (or free partially commutative monoid, also known as
Mazurkiewicz’s Traces [13,15]) is a generalization of the notion of words (finite
sequence over an alphabet Σ, which allow us to capture the independence and
the conflicts on operations (represented as letters of Σ).

More formally, a trace monoid over an alphabet Σ is defined by a symmetric
independence relation I ⊆ Σ×Σ between the letters (operations) of Σ. (a, b) ∈ I
means that the operations a and b commute, i.e. the effect of ab and ba are
equivalent.

Two (finite) words u, v ∈ Σ∗ are said to be equivalent under I, noted u
I∼ v, if

and only if one can transform u into v (and reciprocally) by exchanging adjacent
operations that are independent within u.

Relation I∼ is an equivalence relation over Σ∗, and a (finite) trace is simply an
equivalence class of I∼, which is a congruence with respect to the concatenation
operator (note ⊕, but generally omitted), i.e. if x

I∼ y and u
I∼ v then xu

I∼ yv.
As a result, the concatenation over words translates to the set of traces. More
precisely, [u]I [v]I = [uv]I , where u, v ∈ Σ∗ are words over Σ, [u]I is the trace
represented by u (equivalence class of u under the relation I∼). The resulting
structure

(
Σ∗/ I∼ )

is called free partially commutative monoid, denoted M(Σ, I).
A subset of M(Σ, I) is called a trace language.

2.2 Problem Formalization

We consider a ledger with the two types of operations defined below.

– Type A denotes append operations that allow processes to add elements to
the ledger. Each append operation returns the symbol ⊥ (which informs the
invoking process it can continue its execution). Let Ai be the bounded set of
the append operations invoked only by pi. Each set Ai is thus attached to
a process pi in the sense that only this process can invoke the operations it
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contains. The operations in any given Ai do not commute with each other,
with respect to the content of the ledger at a given instant, while any operation
in Ai and any operation in Aj , with j �= i, commute. In the following, opi

denotes an operation of Ai.
– Type Q denotes query operations that do not modify the ledger and return

a value that depends on the current content of the ledger as seen by the
invoking process. A query operation can be invoked by any process. In the
following, query denotes an operation of Q independently of the process that
invokes it.

Process-Commutative Ledger (PC-Ledger) Specification. Mazurkiewicz’s traces
allow us to capture the correct behaviors of a ledger. More precisely, a PC-ledger
specification is a triple ((Ai)i, L,Q) such that:

– Each set Ai is the set of append operations that pi can invoke. We define Σ =⋃
i Ai because the content of the ledger only depends on append operations.

Then we leverage the fact that two operations opi ∈ Ai and opj ∈ Aj commute
if and only if i �= j to define an independence relation I over Σ, namely

I = (Σ × Σ) \ ⋃
1≤i≤n(Ai × Ai).

– L is a trace language defined on the monoid M(Σ, I) that satisfies a forward
acceptability property defined as follows. let t be a trace in M(Σ, I). In the
following mset(t) denotes the multiset of the operations appearing in the
trace t. Forward acceptability states that for any two traces u, v ∈ L, and any
operation opi ∈ Ai, we have

u ⊕ opi ∈ L ∧ (∃ opk ∈ ⋃
j �=i Aj : mset(v) = mset(u) ∪ {opk}) ⇒ v ⊕ opi ∈ L.

Forward acceptability means that an append operation opi issued by a pro-
cess pi remains possible (v ⊕ opi ∈ L) even if a process pk �= pi previously
performed an append operation opk (wherever opk appears in the trace v).

– The set Q is the set of query operations, each query being a function from
the trace language L to a set of application-dependent values. A query ∈
Q, returns a view of the global content of the ledger as specified by the
trace it operates on. Two arbitrary queries issued by two (possibly different)
processes will in general return different results, but if the two processes have
experienced sequences of operations that correspond to the same trace in L,
their queries will return the same value.

The independence relation I expresses the fact that the content of a PC-
ledger does not depend on the interleaving of the operations of different pro-
cesses. Language L, on the other hand, specifies which contents (traces) are valid
and through which operations In particular different applications may define L as
a more or less constrained subset of M(Σ, I), as long as the forward-acceptability
property holds.
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Illustration. Let us consider money transfer. As previously suggested, this prob-
lem can be captured by a PC-ledger specification where the transfer operations
by a process pi define Ai, the invocation of a balance operation is a query, and
L is defined as the set of traces of the transfer operations that produce positive
balances only. As we can see, the money transfers issued by a process pi are seen
in the same order by all the processes, while money transfers issued by different
processes may be seen in different orders. We observe that the corresponding
language L satisfies forward acceptability because a transfer operation issued by
a process pi cannot invalidate an outgoing transfer from a different process pj .

2.3 From a Specification to Executions

Now that we have defined what is a PC-ledger, we can explain how to make it
“live” by defining what is an execution of it on top of an asynchronous crash-
prone message-passing system. We do this with the help of the following defini-
tions.

Histories. (While different, the following definitions are close to the ones used
in [1])

– The local history of a process pi is the sequence Ei of the append and query
operations it has executed. If pi executed op1 before op2 we write op1 →i op2
(→i is called process order).

– A history H is a set of local histories, one per process, H = (E1, · · · , En).
– Given a history H and a process pi, let Ĥi = (Ê1, · · · , Ên) such that

• Êi = Ei.
• Êj = Ej \ Qj for j �= i where Qj denotes the set of queries issued by pj .

Sequential Execution. A sequential execution SE is a sequence of triplets SE =
(ex)x where ex = (op, val, i), meaning that process pi invoked op ∈ Ai ∪ Q, with
val being the returned value for op ∈ Q and val = ⊥ for op ∈ Ai.

Let proj(SE , Σ) denote the sequence of append operations in SE, and
[proj(SE , Σ)]I the equivalence class of proj(SE , Σ) under the independence rela-
tion I∼ (defined in Sect. 2.2).

A sequential execution SE is legal if:

– The sequence of append operations is such that [proj(SE , Σ)]I ∈ L.
– The value returned by a query depends only on the sequence of appends that

precede it in SE .

Serializations

– A serialization S of a history H, is a legal sequential execution which contains
all operations in H and respects all process orders (→i)1≤i≤n.

– Given a history H and a process pi, a local serialization Si is a serialization
of Ĥi.
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Distributed PC-Ledger Object: Definition. Given a PC-ledger specification
((Ai)i, L,Q), a distributed PC-ledger object is a distributed object whose histo-
ries H = (E1, · · · , En) verify the following properties:

– Any operation invoked by a correct process terminates.
– For any process pi, there is a local serialization Si of Ĥi.

3 An Algorithm Implementing a PC-Ledger

3.1 Reliable Broadcast

The algorithm that implements a PC-ledger assumes an underlying reliable
broadcast communication abstraction. This abstraction provides the processes
with two operations denoted r broadcast() and r deliver(). When a process invokes
r broadcast(m) (resp., r deliver(m)), we say it r-broadcasts (resp., r-delivers) the
message m. Reliable broadcast is defined by the following properties.

– RB-Validity. If a process pi r-delivers a message m from a process pj , then
the process pj r-broadcast m.

– RB-Integrity. Assuming all the messages are different, no process r-delivers
twice the same message.

– RB-Termination-1. If a correct process r-broadcasts a message m, it r-delivers
it.

– RB-Termination-2. If a correct process r-delivers a message m, all correct
processes r-deliver m.

Validity and Integrity are safety properties. Validity relates the outputs to
the inputs. Integrity states there is no duplication. The termination properties
state that all correct processes r-deliver the same set M of messages, and this set
includes all the messages they r-broadcast. Moreover a faulty process r-delivers
a subset of M .

Using the technique “first forward and only then deliver”, reliable broadcast
is easy to implement on top of a point-to-point fully connected network. When
a process invokes r broadcast(m), it sends m to all the processes, and then r-
delivers it to itself. When a process receives a message for the first time, it
first forwards it to the other processes and only then r-delivers it locally. When
a process receives a copy of a message it has already received, it discards it.
Algorithms implementing reliable broadcast with additional qualities of service
are described in [9,16].

3.2 Local Data Structures

It is assumed that all the processes know the alphabet Σ (operations) and the
language L defining the PC-ledger. The symbol ⊕ is used to explicitly denote
the concatenation of an element at the end of a sequence. The symbol ε denotes
the empty sequence. Since L is a trace language, we usually omit the equivalence
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class notation [·]I for readability’s sake when the context is clear, for instance
writing s ∈ L to mean [s]I ∈ L if s ∈ Σ∗ is a sequence.

The messages apply r-broadcast by the processes contain four fields: the
index of the sender process, its sequence number, the identifier of the specific
append operation issued by the sender (opname), and the parameters of this
append operation (param).

Each process manages the following local variables.

– sni is an sequence number (initialized to 0) used by pi to identify the messages
it r-broadcasts.

– del i[1..n] is an array of sequence numbers (each initialized to 0. The entry
del i[j] contains the greatest sequence number of the messages pi has r-
delivered from pj .

– seq i is the sequence of operations which locally represents the PC-ledger
object, as seen by pi. Its initial value is the empty sequence ε.

init: sni ← 0; seqi ← ∅; deli[1..n] ← [0, · · · , 0].

operation query() is % query() is any operation of type Q
(01) res ← query(seqi); return(res).

operation append(opname, param) is % 〈opname, param〉 is any operation ∈ Ai

(02) sni ← sni + 1;
(03) r broadcast apply(opname, param, sni, i);
(04) wait (deli[i] = sni);
(05) return().

when apply(opname, param, sn, j) is r delivered do
(06) wait(sn = deli[j] + 1) ∧ (seqi ⊕ 〈opname, param〉 ∈ L);
(07) seqi ← seqi ⊕ 〈opname, param〉;
(08) deli[j] ← deli[j] + 1.

Algorithm 1: An algorithm implementing a PC-ledger (code for pi)

Algorithm 1 is pretty simple. When a process pi invokes an operation query(),
it locally applies it to its local representation of the PC-ledger seqi and returns
the corresponding result (line 01). By construction, a process pi only appends
operations 〈opname, param〉 (lines 02–05) that (i) belong to the set Ai (the oper-
ations it is allowed to use), and (ii) are acceptable in pi’s current ledger rep-
resentation seq i, namely the concatenation of 〈opname, param〉 to seq i remains
in the trace language, [seqi ⊕ 〈opname, param〉]I ∈ L. When process pi invokes
append(opname, param), with the pair 〈opname, param〉 ∈ Ai, it first increases
sni and r-broadcasts the message apply(opname, param, sni, i) to all the pro-
cesses (including itself, lines 02–03).

When pi r-delivers a message apply(opname, param, sn, j), it waits (line 06)
until it has processed the previous append from pj , and this new append satisfies
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the forward acceptability property. When this occurs, pi adds this append to seq i

(line 07) and accordingly updates del i[j] (line 08).

4 Proof of the Algorithm

Notation. Considering an invocation opj of append() by a process pj , before(opj)
denotes all append() invocations by pj that precede opj .

Lemma 1. Any invocation of an operation by a process that does not crash
terminates.

Proof. Let us first observe that any invocation of an operation query() by a
correct process trivially terminates.

As far a the operation append() is concerned, let us assume (by contradiction)
that some invocation opj of an append invocation issued by a correct process pj

never returns. Since pj is correct, by RB-Termination-1 pj eventually r-delivers
the message mopj corresponding to opj . Let sn be the sequence number associ-
ated with opj . Let us observe that all the append invocations issued by pj with a
sequence number smaller than sn have terminated (otherwise pj could not have
issued an operation with sequence number sn) and have therefore been pro-
cessed at lines 07 and 08. It follows that the predicate sn = del j [j] + 1 (line 06)
is satisfied when mopj is r-delivered.

Let us note seq0j the value of seqj when opj is invoked by pj , and seq1j its
value when mopj is r-delivered by pj . By assumption, we have seq0j ⊕ opj ∈ L,
since no nodes is Byzantine (for the sake of conciseness, we equate here opj with
its associated 〈opname, param〉 pair). Because all these invocations have already
been processed by pj when opj is invoked, we have before(opj) ⊆ mset(seq0j ).
Because pj does not perform any additional append() invocation after opj (since
by assumption opj never returns), we also have mset(seq1j ) = mset(seq0j ) ∪ A′

for some A′ ⊆ Σ that fulfills A′ ∩ Aj = ∅. By recursively applying the forward
acceptability property (defined in Sect. 2.2), this implies that seq1j ⊕ opj ∈ L,
and therefore that the second predicate at line 06 is also satisfied when mopj is
r-delivered, leading to the execution of line 08, and the termination of append()
at line 04.

�Lemma 1

Notations

– Let opsn
j denote the append operation issued by pj with sequence number

sn. Hence the message apply(opname, param, sn, j) is associated with this
operation.

– A process pi locally processes the operation opsn
j when, after it r-delivered

the message apply(opname, param, sn, j), it executes the lines 07–08).
– If a message apply(opname, param, sn, j) be is r-delivered by a correct pro-

cess, we say it is successful. It follows from the RB-Termination properties
that all the operations append() invoked by the correct processes give rise to
successful apply messages.
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Lemma 2. If a process pi processes opk
j , any correct process processes it.

Proof. Let us assume that opk
j is the sth operation processed by pi. We prove

the lemma by induction on s. Let us note seqopi and delopi the values of seqi and
deli at line 06 when the wait statement becomes true for opk

j at pi, and opk
j is

selected by pi to be added to its ledger.
For s = 1, seqopi is the empty sequence ε, and delopi [j] = 0 (since pi has not

processed any operation yet from any process). As the wait statement has just
become true, we therefore have k = delopi [j]+1 = 1, and seqopi ⊕opk

j = ε⊕opk
j =

opk
j ∈ L (since pi is not Byzantine).
Let us consider a correct process p�. Due to the RB-Termination-2 property,

p� eventually r-delivers the message mk
j =apply(opname, param, k, j) from pj

associated with opk
j . Let us write seqop� and delop� the values of seq� and del� at

line 06 just after mk
j has been r-delivered.

By the RB-Integrity property, this is the first (and only) time p� r-delivers mk
j ,

which implies del�[j] has not yet taken the value k = 1, and by monotony that
delop� [j] = 0. delop� [j] = 0 implies that p� has not processed any operation from pj

yet, and therefore that mset(seqop� ) ⊆ ⋃
k′ �=j Ak. This last inclusion and the fact

that opk
j ∈ L (see above) implies by recursively using the forward acceptability

property (Sect. 2.2) that seq� ⊕ opk
j ∈ L, and with k = 1 = delop� [j] + 1 that the

wait statement is immediately verified by p�, and that opk
j is processed by p�,

concluding the proof for s = 1.
Let us now assume that the property is true up to a value s − 1 > 0. When

the wait statement becomes true for opk
j at pi, we have delopi [j] = k − 1, imply-

ing pi has already processed all the earlier operations before(opk
j ) = {opk′

j }k′<k

issued by pj , but has not yet processed any additional operation from pj . As
a consequence mset(seqopi ) ∩ Aj = before(opk

j ). Furthermore, as earlier, we also
have seqopi ⊕ opk

j ∈ L.
Let us consider a correct process p�. As earlier, p� eventually r-delivers the

message mk
j . Let us assume the condition of the wait statement at line 06

never becomes true for opk
j , and opk

j is never processed by p�. By induction
hypothesis, since pi has already processed all the operations in mset(seqopi ), and
|mset(seqopi )| = s−1, we know that p� also eventually processes all the operations
in mset(seqopi ), and at some point we have mset(seqopi ) ⊆ mset(seq�), and there-
fore before(opk

j ) ⊆ mset(seq�), and del�[j] ≥ k − 1. Furthermore, since p� never
processes opk

j , we also have del�[j] < k, and hence del�[j] = k − 1, which implies
mset(seqop� )∩Aj = before(opk

j ). As a result, there exists some set A′ ⊆ ⋃
k′ �=j Ak,

such that mset(seq�) = mset(seqopi )∪A′. Using seqopi ⊕opk
j ∈ L, we can recursively

apply the forward acceptability property, leading to seq� ⊕opk
j ∈ L, meaning the

wait statement eventually becomes true for opk
j at p�, which contradicts the fact

it is never processes by p�, and concludes the proof.
�Lemma 2



368 D. Frey et al.

Theorem 1. Algorithm 1 implements a PC-ledger.

Proof. The fact that the operations issued by the correct processes terminate
follows from Lemma 1. So, the rest of the proof concerns the safety properties
of a PC-ledger, namely: for any process pi, there is a serialization Si of Ĥi (i.e.
a legal sequential execution that is equivalent to Ĥi from pi’s viewpoint).

Considering a process pi, let us first recall the definition of Ĥi, namely Ĥi =
(Ê1, · · · , Ên) such that Êi is the local history of pi, and, for each j �= i, Êj is
the local history of pj including only its append operations.

From Lemma 2 and the fact that the messages apply() are processed in their
sending order (from a local point-to-point point of view) and in agreement with
the forward acceptability property (from a global point of view), it follows that
the append operations issued by any process pj are added to seqi in the order
they have been invoked by pj . Moreover, the queries issued by pi are on the value
of seqi at the query time. It follows that the corresponding sequence of append
issued by the processes and the query operations issued by pi is a serialization
Si of Ĥi = (Ê1, ..., Ên). In particular, as the value returned by each query issued
by pi depends on all the append operations that precede it in Si, Si is a legal
sequential execution equivalent to Ĥi from pi’s viewpoint. �Theorem 1

5 Conclusion

Considering asynchronous message-passing systems in which any number of pro-
cesses may commit crash failures, this article has introduced the notion of a
ledger where append operations from distinct processes are commutative while
operations from a same processes are not (hence the name PC-ledger where PC
stands for Process-Commutative).

After the formal definition of such objects, the article has shown how these
objects can be implemented in asynchronous crash-prone distributed systems.
On an application point of view, as already noticed, it is interesting to notice
that, while money transfers from a given user are not commutative (in order to
prevent double spending from occurring), money transfers from different users
are commutative, and consequently money-transfer ledgers belong to the family
of PC-ledgers.

Interestingly enough, this article has also shown the study of the class of
applications where, while the operations of each process are not commutative,
the operations issued by distinct processes are, can be based on sane foundations,
namely sequences known as Mazurkiewicz’s traces.

This paper has shown that the trace languages-based approach allows us to
cope with the net effect produced by adversaries such as asynchrony and process
crashes. So, and last but not least, a far from being trivial problem concerns the
adversarial context defined by asynchrony and Byzantine process failures [11].
Can the proposed trace languages-based approach be used to address such a
stronger non-deterministic context?
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A Exercise: From a PC-Ledger to a Distributed PC-State
Machine

Some applications do not require to keep the full history saved in a ledger object.
In this case, it is easy to replace the sequence seqi by a local variable statei which
represents the current state of the ledger as know by pi. The resulting PC-state
machine Algorithm 2 is trivially obtained from Algorithm 1. The function δ() is
the transition function of the corresponding state machine, which is assumed to
return ⊥ in case a transition is not allowed.

init: sni ← 0; statei ← initial value of the state machine; deli[1..n] ← [0, · · · , 0].

operation query() is % % query() is any operation of type Q
(01) res ← query(statei); return(res).

operation append(opname, param) is % % 〈opname, param〉 is any operation Ai

(02) sni ← sni + 1;
(03) r broadcast apply(opname, param, sni, i);
(04) wait (deli[i] = sni);
(05) return().

when apply(opname, param, sn, j) is r delivered do
(06) wait(sn = deli[j] + 1) ∧ (δ(seqi, 〈opname, param〉) 	= ⊥);
(07) statei ← δ(seqi, 〈opname, param〉);
(08) deli[j] ← deli[j] + 1.

Algorithm 2: From a PC-ledger to a PC-state machine (code for pi)
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Abstract. Architectural imperatives due to the slowing of Moore’s Law,
the broad acceptance of relaxed semantics and the O(n!) worst case ver-
ification complexity of generating sequential histories motivate a new
approach to concurrent correctness. Quantifiability is proposed as a novel
correctness condition that models a system in vector space to launch a
new mathematical analysis of concurrency. Analysis is facilitated with
linear algebra, better supported and of much more efficient time com-
plexity than traditional combinatorial methods. In this paper, we design
and implement a quantifiable stack (QStack) and queue (QQueue) and
present results showing that quantifiable data structures are highly scal-
able through use of relaxed semantics, an explicit implementation trade-
off permitted by quantifiability. We present a technique for proving that
a data structure is quantifiable and apply this technique to show that
the QStack is quantifiably correct.

Keywords: Concurrent correctness · Multicore performance · Relaxed
semantics

1 Introduction

There are a number of correctness conditions for concurrent systems [1,2,12,13,
17,22]. The difference between the correctness conditions resides in the allowable
method call orderings in a history based on the thread interleavings. Serializabil-
ity [22] places no constraints on the method call order. Sequential consistency [17]
requires that each method call takes effect in program order, i.e., all methods
called by the same thread respect call order. Linearizability [13] requires that
each method call takes effect at some instant, referred to as a linearization point,
between its invocation and response; i.e. each method call takes effect in real-
time order. Method calls that deviate from real-time order are considered to
have relaxed semantics.

These correctness conditions require a concurrent history to be equivalent to
a sequential history. While this way of defining correctness enables concurrent
programs to be reasoned about as if they were sequential programs [9,15], it
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imposes several inevitable limitations on a concurrent system. Such limitations
include 1) requiring the specification of a concurrent system to be described as
if it were a sequential system, 2) restricting the method calls to respect data
structure semantics and to be ordered in a way that satisfies the correctness
condition, leading to performance bottlenecks, and 3) burdening correctness ver-
ification with a worst-case time complexity of O(n!) to compute the sequential
histories for each of the possible interleavings of n concurrent method calls.

Quantifiability [8] is proposed as a new correctness condition that does not
require reference to a sequential history. Quantifiability eliminates the need for
demonstrating equivalence to sequential histories by evaluating correctness of a
concurrent history based solely on the outcome of the method calls. Additionally,
quantifiability requires conservation of method calls; that is, method calls do not
fail unless explicitly cancelled. The elimination of constraints such as method call
ordering and data structure semantics as permitted by quantifiability enables
concurrent histories to be represented in vector space. The vector space model
elegantly allows the verification of concurrent correctness based on the outcomes
of method calls using linear algebra and holds the potential for many practical
uses, including extension to traditional correctness conditions [23].

In this paper, we present the design and implementation of a quantifiable
stack (QStack) and quantifiable queue (QQueue). The performance evaluation
of the QStack and QQueue demonstrates that these data structures obtain sig-
nificantly higher scalability when compared to the state-of-the-art linearizable
counterparts. The QStack and QQueue achieve high scalability by leveraging the
relaxed semantics permitted by quantifiability to avoid contention. Additionally,
the QStack and QQueue obtain high throughput by implementing the method
call conservation principle of quantifiability. We present a technique for proving
that a data structure is quantifiably correct. We apply this technique to prove
that the QStack is quantifiably correct.

Contributions to the field are:

1. We present a technique for proving that a data structure is quantifiably cor-
rect.

2. We implement a quantifiably correct concurrent stack (QStack) and queue
(QQueue).

3. We present a performance evaluation which demonstrates that the QStack
and QQueue achieve significantly higher scalability when compared to state-
of-the-art linearizable counterparts.

2 Proving that a Data Structure is Quantifiably Correct

To prove that a concurrent data structure is quantifiability correct, it must be
shown that each method call preserves atomicity (the method takes effect entirely
or not at all), isolation (the method’s effects are indivisible), and conservation
(every method call either completes successfully, remains pending, or is explicitly
cancelled). The techniques for proving atomicity in literature include Lipton’s
theory of reduction [18] for reasoning about sequences of statements that are
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indivisible, occurrence graphs that represent a single computation as a set of
interdependent events [5], Wing’s methodology [27] for demonstrating that a
concurrent object’s behavior exhibits its specification, and simulation mappings
between the implementation and specification automata [7].

Since Lipton’s approach [18] is focused on lock-based critical sections, occur-
rence graphs [5] do not model data structure semantics, and Wing’s app-
roach [27], simulation mappings [7], and formal proofs of linearizability [14]
require reference to sequential histories, they are not sufficient for proofs of
quantifiability. However, informal proofs of linearizability reason about correct-
ness by identifying a single instruction for each method in which the method call
takes effect, referred to as a linearization point. Proving that a data structure is
quantifiably correct can be performed in a similar fashion by defining a visibility
point for each method. A visibility point is a single instruction for a method in
which the entire effects of the method call become visible. Unlike a linearization
point, a visibility point does not need to occur at some instant between a method
call’s invocation and response.

Establishing a visibility point for a method demonstrates that its effects
preserve atomicity and isolation, but it still remains to be shown that the method
call’s effects are conserved. A method call’s effects are proven to be conserved by
showing that it returns successfully or its pending request is stored in the data
structure and will be fulfilled by a future method call. Additionally, statements
must be provided for each method that prove that its invocation is guaranteed
to fulfill a corresponding pending request if the elements of the data structure
comprise only requests.

Let 〈X.m(a∗) P 〉 denote a method call invocation of method m on object X
with input arguments a∗ by process P . An object’s element, denoted x, con-
tains the boolean field request to indicate if the element is a request to perform
an operation on an element that does not yet exist in the object. Element x
contains the event field to indicate the requested operation. Let 〈X : t(r∗) P 〉
denote a method call response from object X with response values r∗ by pro-
cess P , where t is Ok if the response is successful, Pending if the response is
pending, or an Exception if the response is unsuccessful. An inverse method m′

of method m is a method such that applying m′ immediately after m undoes
the effects of m. Let minv be an inverse method of method m (e.g. push is an
inverse for pop in a stack). A method call m is conserved if 〈X : t(r∗) P 〉,
t = Ok ∨ (〈X : t(r∗) P 〉, t = Pending ∧ (∃x ∈ X, x.request = true ∧
x.event = 〈X.m(a∗) P 〉)). The proof for conservation of method calls requires
demonstrating that 1) 〈X : t(r∗) P 〉, t = Ok (a method completes its opera-
tion) on the successful code path, 2) 〈X : t(r∗) P 〉, t = Pending ∧ (∃x ∈ X,
x.request = true ∧ x.event = 〈X.m(a∗) P 〉) (a method’s pending request is
stored in the data structure) on the unsuccessful code path, and 3) ∀x ∈ X
such that x.request = true ∧ 〈X.minv(a∗) P 〉 ∧ (∃x ∈ X, x.request = true
∧ x.event = 〈X.m(a∗) P 〉) =⇒ 〈X.minv(a∗) P 〉 〈X : t(r∗) P 〉,t = Ok ∧
〈X.m(a∗) P 〉 〈X : t(r∗) P 〉, t = Ok (method m’s pending request is fulfilled by
inverse method minv).
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3 Design of a Quantifiable Stack

The quantifiable stack (QStack) is designed to conserve method calls while avoid-
ing contention wherever possible. Consider the state of a stack receiving two
concurrent push operations. Assume a stack contains only Node 1. Two threads
concurrently push Node 2(a) and Node 2(b). The state of the stack after both
operations have completed is shown in Fig. 1. The order is one of two possibil-
ities: 5, 7, 9, or 5, 9, 7. Based on this quantifiable implementation, either 7 or 9
are valid candidates for a pop operation.

push(5)

1

push(7)

2(a)

push(9)

2(b)

Fig. 1. Concurrent push representation

The QStack is structured as a doubly-linked tree of nodes. Two concurrent
push method calls are both allowed to append their nodes to the data structure,
forming a fork in the tree (Fig. 1). Push and pop are allowed to insert or remove
nodes at any “leaf” node. To facilitate this design we add a descriptor pointer
to each node in the stack. At the start of each operation, a thread creates a
descriptor object with all the details necessary for an arbitrary thread to carry
out the intended operation.

Algorithm 1. Stack: Definitions

1: Struct Node {
2: T value;
3: Op op;
4: Node * nexts[];
5: Node * prev;
6: };

7: Struct Desc {
8: T value;
9: Op op;

10: bool active = true;
11: };

Algorithm 1 contains type definitions for the QStack. Node contains the
fields value, op, nexts and prev. The value field represents the abstract type
being stored in the data structure. The op field identifies the node as either
a pushed value or an unsatisfied pop operation. The nexts field is an array
holding references to the children of the node, while prev contains a reference to
its parent. Descriptor contains the value and op fields, as well as active. The
active field designates whether the associated operation for the descriptor object
is currently pending, or if the thread performing that operation has completed
it. The stack data structure has a global array tail, which contains all leaf nodes
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in the tree. The stack data structure also has a global variable forkRequest that
is used to indicate that another branch should be added to a node in the stack
and is initialized to null. The tree is initialized with a sentinel node in which the
active flag is set to false.

Algorithm 2. Stack: Insert
1: function Insert(Node * cur, Node * elem, int index)
2: Desc* d ← new Desc(v, op)
3: Node * curDesc ← cur.desc
4: if curDesc.active = true then
5: return false

6: if cur.desc.CAS(currDesc, d) then
7: if tail[index] �= cur then
8: d.active ← false
9: return false

10: if cur.nexts.isEmpty() & tail.count(cur) = 1 then
11: elem.prev ← cur
12: cur.nexts.add(elem)
13: tail[index] ← elem
14: Node * helperNode ← forkRequest
15: if helperNode �= null & forkRequest.CAS(helperNode, null) then
16: if helperNode.op = cur.op then
17: helperNode.prev ← cur
18: cur.nexts.add(helperNode)
19: initialize a new tail pointer and set it equal to helperNode

20: d.active ← false
21: return true
22: else
23: Remove dead branch
24: d.active ← false
25: return false

To conserve unsatisfied pops, we generalize the behaviour of push and pop
operations with insert and remove. If a pop is made on an empty stack, we create
a stack of waiting pop operations by calling insert and designating the inserted
node as an unfulfilled pop operation. Similarly, if we call push on a stack that
contains unsatisfied pops, we instead use remove to eliminate an unsatisfied pop
operation, which then finally returns the value provided by the incoming push.

Algorithm 2 details the pseudocode for the insert operation. A node cur is
passed in, which is expected to be a leaf node. In addition, elem is passed in,
which is the node to be inserted. We check the descriptor of cur to see if another
thread is already performing an operation at this node on line 4. If there is no
pending operation, then we attempt to update the descriptor to point to our
own descriptor on line 6. If this is successful, we check on line 10 if cur is a leaf
node by ensuring cur.nexts is empty and that tail contains only 1 reference to
cur. If it is not, that means that cur was previously a fork in the tree, but all
nodes from one of the branches has been popped. In this case, we remove the
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index of the tail array corresponding to the empty branch, effectively removing
the fork at cur from the tree. If cur is determined to be a leaf node on line
10, we are free to make modifications to cur without interference from other
threads. In this case, elem is linked with cur and the tail pointer is updated.
In our implementation, we choose to return false if a thread finds an active
descriptor on line 4. This causes the thread to attempt to push at a different
branch with less contention, which maximizes the number of threads working
concurrently and minimizes contention. Alternatively, the thread could help the
operation occurring at the node, but this would require the writes on lines 11,
12, and 13 to be done use CAS, and would likely increase contention.

The remove method is given by Algorithm 3. The remove method is similar
to the insert method except that after the CAS on line 7, we check if cur is a
leaf node before removing it from the tree.

Algorithm 3. Stack: Remove
1: function Remove(Node * cur, int index)
2: Desc* d ← new Desc(op)
3: Node * curDesc ← cur.desc
4: Node * prev ← cur.prev
5: if curDesc.active = true then
6: return false

7: if cur.desc.CAS(currDesc, d) & tail.count(cur) = 1 then
8: if tail[index] �= cur then
9: d.active ← false

10: return false

11: if cur.nexts.isEmpty() then
12: v ← cur.value
13: prev.nexts.remove(cur)
14: tail[index] ← prev
15: d.active ← false
16: return true
17: else
18: Remove dead branch
19: d.active ← false
20: return false

Push and pop methods wrap these algorithms, as both operations need to
be capable of inserting or removing a node depending on the state of the stack.
Care should be taken that push only removes a node when the stack contains
unsatisfied pop operations, while pop should only insert a node when the stack
is empty, or already contains unsatisfied pop operations.

Algorithm 4 details the push method for the QStack. On line 2 we allocate
a new node, and set the value and op field. Since a node may represent either
a pushed value, or a waiting pop, we need to use op to designate the operation
of the node. At line 7, we choose an index at which to try and add our node.
The tail array contains all leaf nodes. The getRandomIndex() method avoids
contention with other threads by choosing a random index.
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If a thread is failing to make progress (line 17), we update the forkRequest
variable to contain the node for the delayed operation. When a successful insert
operation finds a non-null value in the forkRequest variable on line 15, it inserts
that node as a sibling to its own node. This creates a fork at the node cur,
increasing the chance of success for future insert operations.

If the node’s operation is determined to be a pop on line 11, then the push
operation will fulfill the unsatisfied pop operation. Otherwise, the push oper-
ation will proceed to insert its node into the stack. The pop method is given
by Algorithm 5. Similar to push, a random index is selected on line 7 and the
corresponding node is retrieved on line 8. If the node’s operation is determined
to be a push on line 11 then the node is removed from the top of the stack.
Otherwise, the stack is empty and the unsatisfied pop operation is inserted in
the stack.

Algorithm 4. Stack: Push
1: function Push(T v)
2: Node* elem ← new Node(v, PUSH)
3: bool ret ← false
4: int loops ← 0
5: while true do
6: loops + +
7: int index ← getRandomIndex()
8: Node * cur ← tail[index]
9: if cur = null then

10: Continue
11: if cur.op = POP then
12: ret ← remove(cur, v)
13: else
14: ret ← insert(cur, elem, v)

15: if ret then
16: break
17: if loops > FAIL THRESHOLD & !forkRequest then
18: forkRequest.CAS(null, cur)
19: Break

Theorem 1. The QStack is quantifiable.

Proof. To prove that the QStack is quantifiable it must be shown that each of
the methods preserve atomicity, isolation, and conservation. A visibility point
is established for each of the methods that demonstrates that each method pre-
serves atomicity and isolation.

Insert: The insert method creates a new descriptor on line 2, where the active
field is initialized to true. When the CAS succeeds on line 6, any other thread
that reads the descriptor on line 4 when calling insert (or line 5 of Algorithm 3
when calling remove) will observe that the active field is true and will continue
from the beginning of the while loop on line 5 of Algorithm 4 when calling push
(or line 5 of Algorithm 5 when calling pop). When the if statement on line 10
succeeds, the current thread sets the descriptor’s active field to false on line 20.
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Algorithm 5. Stack: Pop
1: function Pop(T &v)
2: Node* elem ← new Node(v, POP)
3: bool ret ← false
4: int loops ← 0
5: while true do
6: loops + +
7: int index ← getRandomIndex()
8: Node * cur ← tail[index]
9: if cur = null then

10: Continue
11: if cur.op = PUSH then
12: ret ← remove(cur,&v)
13: else
14: ret ← insert(cur, elem,&v)

15: if ret then
16: v = cur.value
17: break
18: if loops > FAIL THRESHOLD & !forkRequest then
19: forkRequest.CAS(null, cur)
20: Break

Since threads that were spinning due to the if statement on line 4 (or line 5
of Algorithm 3 when calling remove) are now able to observe the effects of the
operation associated with the previous active descriptor, the visibility point for
the insert method is line 20. Once an insert method call m becomes visible, a
partial order is established such that the corresponding push or pop calling m is
ordered before other concurrent push or pop method calls.

Remove: The remove method creates a new descriptor on line 2, where the
active field is initialized to true. When the CAS succeeds on line 7, any other
thread that reads the descriptor on line 5 when calling remove (or line 4 of
Algorithm 2 when calling insert) will observe that the active field is true and
will continue from the beginning of the while loop on line 5 of Algorithm 4 when
calling push (or line 5 of Algorithm 5 when calling pop). When the if statement
on line 11 succeeds, the current thread sets the descriptor’s active field to false
on line 15. Since threads that were spinning due to the if statement on line 5 (or
line 4 of Algorithm 2 when calling insert) are now able to observe the effects of
the operation associated with the previous active descriptor, the visibility point
for the remove method is line 15. Once a remove method call m becomes visible,
a partial order is established such that the corresponding push or pop calling m
is ordered before other concurrent push or pop method calls.

Push: The push method accesses the node at a random tail index on line 8.
If the operation of the node is a pop, then remove is called on line 12, so the
visibility point is line 15 of Algorithm 3. Otherwise, insert is called on line 14,
so the visibility point is line 20 of Algorithm 2.
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Pop: The pop method accesses the node at a random tail index on line 8. If
the operation of the node is a push, then remove is called on line 12, so the
visibility point is line 15 of Algorithm 3. Otherwise, insert is called on line 14,
so the visibility point is line 20 of Algorithm 2.

It now must be shown that the method calls are conserved. Since insert and
remove are utility functions, only push and pop must be conserved.

Push: The push method checks if the operation of the node at the tail is a pop
on line 11. If the check succeeds, then the push fulfills the unsatisfied pop by
removing it from the stack at line 12. Otherwise, it proceeds with its own opera-
tion by calling insert at line 14. Since a pop request is guaranteed to be fulfilled
if one exists due to the check on line 9, and forkRequest is updated on line 18
to the current node if the loop iterations exceeds the FAIL THRESHOLD,
push satisfies method call conservation.

Pop: The pop method checks if the operation of the node at the tail is a push on
line 11. If the check succeeds, then the pop proceeds with its own operation by
removing it from the stack at line 12. Otherwise, it places its unfulfilled request
by calling insert at line 14. Since a pop will only place a request if no nodes
associated with a push operation exist in the stack due to the check on line 9,
and forkRequest is updated on line 19 to the current node if the loop iterations
exceeds the FAIL THRESHOLD, pop satisfies method call conservation.

4 Design of a Quantifiable Queue

The quantifiable queue (QQueue) is organized as an array of linked lists, each
with a head and tail pointer. When a thread intends to perform an enqueue or
dequeue operation, it first chooses an index of the array at random at which to
base its operation. If performing an enqueue, the thread updates the tail’s next
pointer to the new node using CAS and then attempts to update the tail pointer
to the new node using another CAS. In the case of a dequeue, the thread reads the
value of the head and then updates the head to point to the head pointer’s next
field using CAS. Before any operation, a thread determines if the tail pointer is
lagging behind by checking that tail.next! = null and advances the tail pointer
if this statement returns false. The array size is tunable based on the number of
threads available. This modular approach used in the QQueue can be used to
convert many types of lock-free containers into fast concurrent data structures.

Algorithm 6 contains the definitions for the QQueue. Node is similar to that
of the QStack. The op field identifies the node as either a enqueued value or an
unsatisfied dequeue operation. The queue data structure itself contains an array
of head and tail references.

Algorithm 7 details the enqueue method for the QQueue. Similar to the
QStack, we select a random index on line 5, and retrieve the corresponding node
on line 6. The current enqueue operation will either fulfill an unsatisfied dequeue
operation or insert a node as normal. The remove and insert operations can be
any underlying, lock-free queue algorithm. In our experiments, we adapt the
methods from the enqueue and dequeue methods of the MSQueue [20].
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Algorithm 6. Queue: Definitions
1: Struct Node {
2: T value;
3: Op op;
4: Node * next;
5: };
6:
7: Struct Queue {
8: Node * head[];
9: Node * tail[];

10: };

Algorithm 7. Queue: Enqueue
1: function Enqueue(T v)
2: Node* elem ← new Node(v, ENQUEUE)
3: bool ret ← false
4: while true do
5: int index ← getRandomIndex()
6: Node * cur ← tail[index]
7: if cur.op = DEQUEUE then
8: ret ← remove(cur, v)
9: else

10: ret ← insert(cur, elem, v)

11: if ret then
12: break

Algorithm 8. Queue: Dequeue
1: function Dequeue(T &v)
2: Node* elem ← new Node(v, DEQUEUE)
3: bool ret ← false
4: while true do
5: int index ← getRandomIndex()
6: Node * cur ← tail[index]
7: if cur.op = ENQUEUE then
8: ret ← remove(cur,&v)
9: else

10: ret ← insert(cur, elem,&v)

11: if ret then
12: break

The dequeue method is given by Algorithm 8. It is identical to enqueue except
for a key difference at line 7. In the case of a dequeue, we only remove a node
if cur represents an enqueued value. If cur represents an unsatisfied dequeue
operation, we insert our dequeue operation behind it to be satisfied later.
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5 Quantifiability Applied to Other Types of Data
Structures

Quantifiability is applicable to other abstract data types that deliver additional
functionality beyond the standard producer/consumer methods provided by
queues and stacks. Consider a reader method such as a read operation for a
hashmap or a contains operation for a set. If the item to be read does not exist
in the data structure, a pending item is created and placed in the data structure
at the same location where the item to be read would be placed if it existed. If
a pending item already exists for the item to be read, the reader method refer-
ences this pending item. Once a producer method produces the item for which
the pending item was created, the pending item is updated to a regular (non-
pending) item. Since the reader methods hold a reference to this item, they may
check the address when desired to determine if the item of interest is available
to be read. A similar strategy can be utilized for writer methods.

6 Performance

A quantifiable stack (QStack) and a quantifiable queue (QQueue) are imple-
mented to showcase the performance characteristics of quantifiable data struc-
tures. The QStack and QQueue were tested against the fastest available pub-
lished work, along with classic examples. Stack results are shown in Fig. 2, and
queue results in Fig. 3. The x-axis plots the number of threads available for each
run. The y-axis plots method calls per microsecond. Plot line color and type
show the different implementations.

Fig. 2. QStack, EBS and Treiber stack.
Fig. 3. QQueue, FAA queue, LCRQ
and MS queue.

Experiments were run on an AMD® EPYC® server of 2 GHz clock speed
and 128 GB memory, with 32 cores delivering a maximum of 64 simultaneous
multi-threads. The operating system is Ubuntu 18.04 LTS and code is compiled
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with gcc 7.3.0 using -O3 optimizations. The QStack was compared with the lock-
free Elimination Backoff Stack (EBS) [3] and lock-free Treiber Stack [26]. The
operations mix made little difference, but the Treiber Stack and EBS showed
slightly higher performance at push-pop mixes of 25–75 because they quickly
discard unsatisfied pop calls, returning null. As threads are added, Treiber drops
off quickly due to contention. At five threads QStack overtakes Treiber and
at 12 threads becomes faster than EBS. The salient result is that the QStack
continues to scale, achieving over five times EBS performance with 64 threads.
The other implementations consume resources to maintain order at microsecond
scale instead of serving requests as quickly as possible with best efforts ordering.
The testing methodology follows those used in the original EBS presentation,
going from one to 64 threads with five million operations per thread. Memory is
pre-allocated in the stack experiments, and for each run the program is restarted
by a script to prevent the previous memory state from influencing the next run.
The Boost library [4] is used to create a uniform random distribution of method
calls based on the different mixes. Stack push-pop mixes of 25-75, 50-50 and 75-25
were tested for each implementation across all threads. Queue enqueue-dequeue
mixes were temporal variations on a 50-50 mix. For both stack and queue, there
were a minimum of 10 trials per thread per mix. The data was smoothed using
the LOESS method as implemented in the ggplot2 library. Shaded areas indicate
the 95% confidence limits for the lines.

The QQueue was compared with the lock-free LCRQ [21], the wait-free FAA
queue [29] and the lock-free MS queue [19]. The LCRQ and FAA are the fastest
queues in a recent benchmark framework with ACM verified code artifacts [28].
The MS queue is a classic like the Treiber stack. The framework uses only 50-50
mixes, one random (50-50) and one pairwise (50PW). The QQueue performs
similarly to LCRQ until overtaking it at 14 threads, then overtaking the wait-
free FAA queue at 18 threads. The FAA queue is exceptional as it performs as
well or better than the alternative lock-free implementations. The TS-Queue [10]
and the Multiqueue [24] are queues of interest published more recently than the
FAA queue, but were not selected because verified code artifacts have not been
published. Queue experiments follow the methodology of the Yang and Mellor-
Crummey framework [28] and use the queue implementations provided in the
source code. Memory allocation is dynamic within the framework. Benchmarks
provided are two variations on 50-50 mixes, one random and the other pairwise.
The different temporal distributions within the 50-50 mix have more influence
on the results than different mixes (25-75, 50-50, 75-25) used in the stack exper-
iments. In both the pairwise and random mixes, the QQueue continues to scale
to the limit of hardware support, more than double the performance of FAA
and LCRQ at 64 threads. The quantifiable containers continue to scale until
all threads are employed, with slightly reduced slope in the simultaneous multi-
threading region from 32 to 64 threads. Other implementations, including those
that are linearizable with relaxed semantics, could maintain microscale order
only at the cost of scalability. Furthermore, linearizability may cause unfairness
where method calls are not conserved.
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7 Related Work

Several data structure designs are presented in literature that reflect the princi-
ples of quantifiability. The concern of defining the behavior of partial methods
when reaching an undefined object state is addressed by dual data structures [25].
Dual data structures are linearizable concurrent objects that hold reservations
in addition to data to handle conditional semantics. The difference between dual
data structures and quantifiable data structures is the allowable order that the
requests may be fulfilled. The relaxed semantics of quantifiability provides an
opportunity for performance gains over dual data structures.

Other data structure designs observe that contention can be reduced by
allowing operations to be matched and eliminated if the combined effect does
not change the abstract state of the data structure. The elimination backoff
stack (EBS) [11] uses an elimination array where push and pop method calls are
matched to each other within a short time delay if the main stack is suffering
from contention. When operating on the central stack, the pop method is at risk
of failing if the stack is empty. We note that if the elimination array timer were
set to infinity, the elimination backoff stack would implement quantifiability’s
conservation principle, because all method calls would wait until they succeed.

The TS Queue [10] also relies on matching up method calls, enabling meth-
ods that would otherwise fail when reaching an undefined state of the queue
to instead be fulfilled at a later time. In the TS Queue, rather than a global
delay, there is a tunable parameter called padding added to different method
calls. By setting an infinite time padding on all method calls, the TS Queue
follows quantifiability’s conservation principle. The EBS and TS-Queue share in
common that they improve performance by using a window of time in which
pending method calls are conserved until they can succeed.

Contention due to frequently accessed elements in a data structure can be
further reduced by relaxing object semantics. The k-FIFO queue [16] maintains k
segments each consisting of k slots implemented as either an array for a bounded
queue or a list for an unbounded queue. This design enables up to k enqueue
and dequeue operations to be performed in parallel and allows elements to be
dequeued out-of-order up to a distance k. Quantifiability takes these relaxed
semantics a step further by allowing method calls to occur out-of-order up to
any arbitrary distance, leading to performance gains.

Interval-linearizability [6] has been defined for objects with no sequential
specifications. The authors introduce the notion of an interval-sequential object
which is specified by an automaton that is able to express any concurrency
pattern of overlapping invocation of operations that may occur in an execution.
While interval-linearizability is specifically intended for objects whose behavior
must be defined in terms of input/output relations, quantifiability is intended
for facilitating high-performance concurrent objects.
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8 Conclusion

This paper presented the design and implementation of a quantifiable stack and
queue. A technique for proving that a data structure is quantifiably correct is
presented and applied to prove that the stack implementation is quantifiably
correct. The relaxed semantics permitted by quantifiability allow for significant
performance gains through contention avoidance in the implementation of con-
current systems. The performance evaluation showcases how the quantifiable
stack and queue achieve substantially higher scalability than the state-of-the-art
linearizable counterparts.
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Abstract. Designing an efficient concurrent data structure is a chal-
lenge that is not easy to meet. Intuitively, efficiency of an implementation
is defined, in the first place, by its ability to process applied operations
in parallel, without using unnecessary synchronization. As we show in
this paper, even for a data structure as simple as a linked list used to
implement the set type, the most efficient algorithms known so far are
not concurrency-optimal : they may reject correct concurrent schedules.
We propose a new algorithm for the list-based set based on a value-
aware try-lock that we show to achieve optimal concurrency: it only
rejects concurrent schedules that violate correctness of the implemented
set type. We show that reaching this kind of optimality may be benefi-
cial in practice. Our concurrency-optimal list-based set outperforms two
state-of-the-art algorithms: the Lazy Linked List and the Harris-Michael
List.

1 Introduction

Multicore applications require highly concurrent data structures. Yet, the very
notion of concurrency is vaguely defined, to say the least. What do we mean by a
“highly concurrent” data structure? Generally speaking, one could compare the
concurrency of algorithms by running a game where the adversary decides on the
schedules of shared memory accesses from different processes. At the end of the
game, the more schedules the algorithm would accept without hampering high-
level correctness, the more concurrent it would be. The algorithm that accepts
all correct schedules would then be considered concurrency-optimal [1].

To illustrate the difficulty of optimizing concurrency, let us consider one of
the most “concurrency-friendly” data structures [2]: the sorted linked list used
to implement the integer set type. Since any modification on a linked list affects
only a small number of contiguous list nodes, most of update operations on the
list could, in principle, run concurrently without conflicts. For example, one of
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the most efficient concurrent list-based set to date, the Lazy Linked List [3],
achieves high concurrency by holding locks on only two consecutive nodes when
updating, thus accepting concurrent modifications of non-contiguous nodes. The
Lazy Linked List is known to outperform the Java variant [4] of the CAS-based
Harris-Michael algorithm [5,6] under low contention because all its traversals,
be they for read-only look-ups or for locating the nodes to be updated, are wait-
free, i.e., they ignore locks and logical deletion marks. As we show below, the
Lazy Linked List implementation is however not concurrency-optimal, raising
two questions: Is there a more concurrent list-based set algorithm? And if so,
does higher concurrency induce an overhead that precludes higher performance?

The concurrency limitation of the Lazy Linked List is caused by the locking
strategy of its update operations: both insert(v) and remove(v) traverse the struc-
ture until they find a node whose value is larger or equal to v, at which point they
acquire locks on two consecutive nodes. Only then is the existence of the value
v checked: if v is found (resp., not found), then the insertion (resp., removal)
releases the locks and returns without modifying the structure. By modifying
metadata during lock acquisition without necessarily modifying the structure
itself, the Lazy Linked List over conservatively rejects certain correct schedules.
To illustrate that the concurrency limitation of the Lazy Linked List may lead to
poor scalability, consider Fig. 1 that depicts the performance of a 25-node Lazy
Linked List (red curve) under a workload of 20% updates (insert/removals) and
80% contains on a 72-core machine. The list is comparatively small, hence all
updates (even the failed insertions and removals) are likely to contend. We can
see that when we increase the number of threads beyond 40, the performance
drops significantly.

This observation suggests a desirable property that concurrent operations
should conflict on metadata only when they conflict on data. To achieve this, we
need to exploit the semantics of the high-level data type.1

Our main contribution is the Value-Based List (VBL), the most concurrent
(in fact, optimally concurrent, as we formally prove) and probably the most effi-
cient list-based set algorithm to date. It exploits the logical deletion technique
of Harris-Michael that divides the removal of a node into a logical step (marking
the node for deletion) and a physical step (unlinking the node from the list), and
the wait-free traversal of the Lazy Linked List. In addition, our approach relies
on a novel value-aware synchronization technique: first the lock, implemented
using compare-and-swap, is taken, then the procedure checks whether the value
in the next node has changed, if the validation is successful then the operation
continues, otherwise, the operation restarts. Compared to the Lazy Linked List,
this approach allows for the improvement of performance and even provides
scalability in the highly contended cases (Fig. 1). We show that the resulting
algorithm rejects a concurrent schedule only if otherwise the high-level correct-

1 Note that this property refines the original notion of disjoint access parallelism
(DAP) [7], trivially ensured by most linked-list implementations simply because all
their operations “access” the head node and, thus, are allowed to conflict on the
metadata.
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ness of the implemented set type (linearizability [8]) is violated. Our algorithm
is thus concurrency-optimal [1]: no correct list-based set algorithm can accept
more schedules.2

0 20 40 60
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20

25

Fig. 1. The throughput of Lazy Linked List
(red square curve) and VBL (blue circle curve).
We consider the load with only 20% updates.
Lazy Linked List behaves worse, as its oper-
ations potentially contend on meta-data even
when they do not modify the data structure.
(Color figure online)

The evaluation of VBL shows
that achieving optimal concur-
rency in list-based set implementa-
tions does not necessarily result in
a costly overhead, complementing
the recent analysis of concurrency-
optimality for tree-based dictionar-
ies [9]. Extensive experiments on
two x86-64 architectures machines,
72-way Intel machine and 64-
way AMD machine, confirmed that
VBL outperforms the state-of-the-
art algorithms [3,4]. In partic-
ular, VBL outperforms the Lazy
Linked List performance by 1.6×
for 72 threads on the 20%-update
workload of Fig. 1, which can be
explained by the fact that our
algorithm validates list data before
locking, and not after. In addi-
tion, as our algorithm differs from
Harris-Michael by avoiding meta-
data accesses during traversals, it outperforms it by up to 1.6× on read-only
workloads. We report the performance of the Java variant of Harris-Michael list-
based set with wait-free contains as presented in Shavit and Herlihy’s book [4]
and the Java optimised implementation with RTTI [3], and, in the technical
report [10], on the performance of our own C++ translations of the Lazy algo-
rithm (without memory management).

Roadmap. The rest of this paper is structured as follows. We present our
methodology on modelling concurrency and prove the suboptimal concurrency
of the Lazy and Harris-Michael linked lists in Sect. 2. In Sect. 3, we present our
VBL list implementation. Section 4 presents the methodology for performance
evaluation of concurrent list implementations and Sect. 5 presents a discus-
sion of concurrency w.r.t list-based sets. The full proofs of linearizability and
deadlock-freedom are deferred to the technical report [10]. Synchrobench bench-
mark suite [11] contains the code for all the lists considered in this paper.

2 Here we adapt to list-based sets the notion of concurrency-optimality, introduced
in [1] for generic search data structures.
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2 Concurrency Analysis of List-Based Sets

2.1 Preliminaries

We consider a standard asynchronous shared-memory system, in which n >
1 processes (or threads of computation) p1, . . . , pn communicate by applying
operations on shared objects.

Sequential List-Based Set. An object of the set type stores a set of integer
values, initially empty, and exports operations insert(v), remove(v), contains(v)
where v ∈ Z. The update operations, insert(v) and remove(v), return a boolean
response, true if and only if v is absent (for insert(v)) or present (for remove(v)) in
the list. After insert(v) is complete, v is present in the list, and after remove(v) is
complete, v is absent from the list. The contains(v) returns a boolean true if and
only if v is present in the list. The concurrent set implementations considered in
this paper are based on a specific sequential one. The implementation, denoted
LL, stores set elements in a sorted linked list, where each list node has a next
field pointing to the successor node. Initially, the next field of the head node
points to tail ; head (resp. tail) is initialized with values −∞ (resp., +∞) that
is smaller (resp., greater) than any other value in the list. We follow natural
sequential implementations of operations insert, remove, and contains presented
in detail in [10].

Executions. An event of a process pi (we also say a step of pi) is an invocation
or response of an operation performed by pi on a high-level object (in this paper,
a set) implementation, or a primitive applied by pi to a base object b along with
its response. A configuration specifies the value of each base object and the state
of each process. The initial configuration is the configuration in which all base
objects have their initial values and all processes are in their initial states. An
execution fragment is a (finite or infinite) sequence of events. An execution of
an implementation I is an execution fragment where, starting from the initial
configuration, each event is issued according to I and each response of a primitive
matches the state of b resulting from all preceding events.

A high-level history H̃ of an execution α is the subsequence of α consisting
of all invocations and responses of (high-level) operations.

Let α|pi (resp. H|pi) denote the subsequence of an execution α (resp. a histiry
H) restricted to the events of process pi. Executions α and α′ (resp. histories H
and H ′) are equivalent if for every process pi, α|pi = α′|pi (resp. H|pi = H ′|pi).
An operation π precedes another operation π′ in an execution α (resp. history
H), denoted π →α π′ (resp., π →H π′) if the response of π occurs before the
invocation of π′ in α (resp. H). Two operations are concurrent if neither precedes
the other.

An execution (resp. history) is sequential if it has no concurrent operations.
An operation is complete in α if the invocation event is followed by a match-
ing response; otherwise, it is incomplete in α. Execution α is complete if every
operation is complete in α.
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High-Level Histories and Linearizability. A complete high-level history H̃
is linearizable with respect to an object type τ if there exists a sequential high-
level history S equivalent to H̃ such that (1) →H̃⊆→S and (2) S is consistent
with the sequential specification of type τ . Now a high-level history H̃ is lin-
earizable if it can be completed (by adding matching responses to a subset of
incomplete operations in H̃ and removing the rest) to a linearizable high-level
history [8].

2.2 Concurrency as Admissible Schedules of Sequential Code

Schedules. Informally, a schedule of a list-based set algorithm specifies the
order in which concurrent high-level operations access the list nodes. Consider
the sequential implementation, LL, of operations insert, remove and contains.
Suppose that we treat this implementation as a concurrent one, i.e., simply
run it in a concurrent environment, without introducing any synchronization
mechanisms, and let § denote the set of the resulting executions, we call them
schedules. Of course, some schedules in § will not be linearizable. For example,
concurrent inserts operating on the same list nodes may result in “lost updates”:
an inserted element disappears from the list due to a concurrent insert opera-
tion. But, intuitively, as no synchronization primitives are used, this (incorrect)
implementation is as concurrent as it can get.

We measure the concurrency properties of a linearizable list-based set via
its ability to accept all correct schedules in §. Intuitively, a schedule is correct
if it respects the sequential implementation LL locally, i.e., no operation in it
can distinguish the schedule from a sequential one. Furthermore, the schedule
must be linearizable, even when we consider its extension in which all update
operations are completed and followed with a contains(v) for any v ∈ Z. Let us
denote this extension of schedule σ by σ̄(v).

Given a schedule σ and an operation π, let σ|π denote the subsequence of σ
consisting of all steps of π.

Definition 1 (Correct schedules). We say that a schedule σ of a concurrent
list-based set implementation is locally serializable (with respect to the sequential
implementation of list-based set LL) if for each of its operations π, there exists
a sequential schedule S of LL such that σ|π = S|π. We say that a schedule is
correct if (1) σ is locally serializable (with respect to LL), (2) for all v ∈ Z, σ̄(v)
is linearizable (with respect to the set type).

Note that the last condition is necessary for filtering out schedules with “lost
updates”. Consider, for example a schedule in which insert(1) and insert(2) are
applied to the initial empty set. Imagine that they first both read head, then both
read tail, then both perform writes on the head.next and complete. The result-
ing schedule is, technically, linearizable and locally serializable but, obviously,
not acceptable. However, in the schedule, one of the operations, say insert(1),
overwrites the effect of the other one. Thus, if we extend the schedule with a
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complete execution of contains(2), the only possible response it may give is false
which obviously does not produce a linearizable high-level history.

Note also that, as linearizability is a safety property [12], if σ̄(v) is lineariz-
able, σ is linearizable too. (In the following we omit mentioning set and LL when
we talk about local serializability and linearizability).

Concurrency-Optimality. A concurrent list-based set generally follows LL:
every high-level operation, insert, remove, or contains, reads the list nodes, one
after the other, until the desired fragment of the list is located. The update
operation (insert or remove) then writes, to the next field of one of the nodes,
the address of a new node (if it is insert) or the address of the node that follows
the removed node in the list (if it is remove). Note that the (sequential) write
can be implemented using a CAS primitive [5].

Let α denote an execution of a concurrent implementation of a list-based
set. We define the schedule σ exported by α as the subsequence of α consist-
ing of reads, writes and node creation events (corresponding to the sequential
implementation LL) of operations insert, remove and contains that “take effect”.
Intuitively, taking effect means that they affect the outcome of some operation.
The exact way an execution α is mapped to the corresponding schedule σ is
implementation specific.

An implementation I accepts a schedule σ if there exists an execution of I
that exports σ.

Definition 2 (Concurrency-optimality). An implementation is concurre-
ncy-optimal if it accepts every correct schedule.

2.3 Concurrency Analysis of the Lazy and Harris-Michael Linked
Lists

In this section, we show that even state-of-the-art implementations of the list-
based set, namely, the Lazy Linked List and the Harris-Michael Linked list are
suboptimal w.r.t exploiting concurrency. We show that each of these two algo-
rithms rejects some correct schedules of the list-based set.

Lazy Linked List. In this deadlock-free algorithm [3], the list is traversed in
the wait-free manner and the locks are taken by update operations only when
the desired interval of the list is located. A remove operation first marks a node
for logical deletion and then physically unlinks it from the list. To take care of
conflicting updates, the locked nodes are validated, which involves checking if
they are not logically deleted. If validation fails, the traversal is repeated. The
schedule of an execution of this algorithm is naturally derived by considering
only the last traversal of an operation.

Figure 2 illustrates how the post-locking validation strategy employed by the
Lazy Linked List makes it concurrency sub-optimal. As explained in the intro-
duction, the insert operation of the Lazy Linked List acquires the lock on the
nodes it writes to, prior to the check of the node’s state.
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R(h) R(X1) new(X2)

R(h) R(X1)

insert(2)

insert(1) false

E′ E

insert(2) is incomplete

insert(1) must acquire
the lock on X1 prior to
returning false in E

insert(2) holds the lock
on X1 after E′

Fig. 2. A schedule rejected by the Lazy Linked List; initial list state is {X1} that stores
value 1; R(X1) refers to reads of both val and next fields; new(X2) creates a new node
storing value 2

R(X2) R(X3)W (X1)

R(X2) R(X3)W (X1) R(X4)

R(h) R(X2) W (X2)

R(h) R(X2) W (h)

remove(2) false

insert(1) true

insert(3) false

insert(4) false

Fig. 3. A schedule rejected by the Harris-Michael Linked List; the initial state of the
list is {X2, X3, X4}; each Xi stores value i; note that not all schedules are depicted for
succinctness.

One can immediately see that the Lazy Linked List is not concurrency opti-
mal. Indeed, consider the schedule depicted in Fig. 2. Two operations, insert(1)
and insert(2) are concurrently applied to the list containing a single node X1

storing value 1. Both operations first read h, the head of the list, then operation
insert(2) reads node X1 and creates a new node, X2, storing 2. Immediately after
that, operation insert(1) reads X1 and returns false.

The schedule is correct: it is linearizable and locally serializable. However,
it cannot be accepted by the Lazy Linked List, as insert(1) needs a lock on X1

previously acquired by insert(2). Thus, the implementation is concurrency sub-
optimal: an operation may engage in synchronization mechanisms even if it is
not going to update the list.

Harris-Michael Linked List. Like the Lazy Linked List, the lock-free Harris-
Michael algorithm (cf. [4, Chap. 9]) separates logical deletion of a node from
its physical removal (both steps use CAS primitives). If a CAS associated with
logical deletion fails, the operation is restarted. Unlike the Lazy Linked List,
however, if the physical removal fails (e.g., a concurrent update performed a
successful CAS on the preceding node) the operation completes, and unlink-
ing the logically deleted node from the list is then left for a future operation.
Every update operation, as it traverses the list, attempts to physically remove
such nodes. If the attempt fails, the operation is restarted. The delegation of
physical removals to future operations is crucial for lock-freedom: an operation
may only be restarted if there is a concurrent operation that took effect, i.e.,
global progress is made. But, as we show below, this delegation precludes some
legitimate schedules.

Strictly speaking, this algorithm is not locally serializable with respect to
the sequential implementation LL. Indeed, if a remove operation completes after
logical deletion, we may not be able to map its steps to a write to a next field
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of the preceding node without “over-writing” a concurrent update. Therefore,
for the sake of concurrency analysis, we consider a variant of LLin which remove
operations only remove nodes logically and physical removals are put to the
traversal procedure of future update operations. Now to define the schedule
incurred by an execution of the algorithm, we consider the read and write steps
that are part of the last traversal of an operation, node creation steps by insert
operations, and successful logical deletions by remove operations. However, the
Harris-Michael Linked List is not concurrency-optimal even with respect to this
adjusted sequential specification.

Consider the schedule depicted in Fig. 3. Two operations, insert(1) and
remove(2) are concurrently applied to the list containing three nodes, X2, X3 and
X4, storing values 2, 3 and 4, respectively. Note that operation remove(2) marks
node X2 for deletion but does not remove it physically by unlinking it from h.
(Here we omit steps that are not important for the illustration.) Note that so
far the schedule is accepted by the Harris-Michael algorithm: an earlier update
of h by operation insert(1) causes the corresponding CAS primitive performed
on h by remove(2) to fail.

After the operation completes, we schedule two concurrent operations,
insert(4) and insert(3). Suppose that the two operations concurrently read head,
X1 and X2. As they both witness X2 to be marked for logical deletion, they both
will try to physically remove it by modifying the next field of X1. We let insert(3)
to do it first and complete by reading X3 and returning false. In the schedule
depicted in Fig. 3, insert(4) also writes to X1, and then successfully reads X3

and X4, and returns false. However, in the execution of the Harris-Michael algo-
rithm, the attempt of insert(4) to physically remove X2 will fail, causing it to
restart traversing the list from the head. Thus, this schedule cannot be accepted.

3 The VBL List

In this section, we address the challenges of extracting maximum concurrency
from list-based sets and present our VBL list. As we have shown in the previous
section, an update in the Lazy Linked List acquires locks on nodes it is about to
modify prior to checking the node’s state. Thus, it may reject a correct sched-
ule in which the operation does not modify the list. The schedule rejected by
the Harris-Michael Linked List (Fig. 3) is a bit more intricate: it exploits the
fact that Harris-Michael List involves helping which in turn induces additional
synchronization steps leading to rejection of correct schedules.

Deriving a concurrency-optimal list requires introducing value-based node
validation along with the logical-deletion technique. This observation inspired
our value-aware try-lock.

3.1 Value-Aware Try-Lock

The class Node now contains the fields: (i) val for the value of the node; (ii) next
providing a reference to the next node in the list; (iii) a boolean deleted to
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indicate a node to be marked for deletion and (iv) a lock to indicate a mutex
associated with the node.

The value-aware try-lock supports the following operations:

(1) lockNextAt(Node node) first acquires the lock on the invoked node, checks if
the node is marked for deletion or if the next field does not point to the node
passed as an argument, then releases the lock and returns false; otherwise,
the operation returns true.

(2) lockNextAtValue(V val) acquires the lock on the invoked node, checks if the
node is marked for deletion or if the value of the next node is not val, then
releases the lock and returns false; otherwise returns true.

3.2 VBL List

We now describe our VBL implementation. The list is initialized with 2 nodes:
head (storing the minimum sentinel value) and tail (storing the maximum value),
head.next stores the pointer to tail, both deleted flags are set to false. The pseudo-
code is presented in Fig. 1.

Contains. The contains(v) algorithm starts from the head node and follows next
pointers until it finds a node with the value that is equal to or bigger than v.
Then, the algorithm simply compares the value in the found node with v.

Inserting a Node. The algorithm of insert(v) starts with the traversal (Line 24)
to find a pair of nodes 〈prev, curr〉 such that prev.val is less than v and curr.val
is equal to or bigger than v. The traversal is simple: it starts from head and
traverses the list in a wait-free manner until it finds the desired nodes. If curr.val
is equal to v (Line 25) then there is no need to insert. Otherwise, the new node
with value v should be between prev and curr. We create a node with value v
(Lines 26–27). Then, the algorithm locks prev and checks that it still can insert
the node correctly (Line 28): prev.next still equals to curr and prev is not marked
as deleted. If both of these conditions are satisfied, the new node can be linked.
Otherwise, it cannot: the correctness of the algorithm (namely, linearizability)
would be violated; so the operation restarts from the traversal (Line 24). Note
that to improve the performance, the algorithm starts the traversal not from
head but from prev.

Removing a Node. The algorithm of remove(v) follows the lines of insert(v):
first it finds the desired pair of nodes 〈prev, curr〉. If curr.val is not equal to
v then there is nothing to remove (Line 36). Otherwise, the algorithm has to
remove the node with value v. At first, it takes the lock on prev and checks
two conditions (Line 39): prev.next.val equals to v and prev is not marked as
deleted. The first condition ensures concurrency-optimality by taking care of
the scenario described above: one could have removed and inserted v while the
thread was asleep. The second condition is necessary to guarantee correctness,
i.e., the node next is not linked to deleted node, which might result in a “lost
update” scenario. If any of the conditions is violated, the algorithm restarts from
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Algorithm 1. VBL list

1: Shared variables:
2: head.val ← −∞
3: tail.val ← +∞
4: head.next ← tail
5: head.deleted ← false
6: tail.deleted ← false
7: head.lock ← new Lock()
8: tail.lock ← new Lock()

9: contains(v):
10: curr ← head
11: while curr.val < v do
12: curr ← curr.next
13: return curr.val = v

14: waitfreeTraversal(v, prev):
15: if prev.deleted then
16: prev ← head

17: curr ← prev.next
18: while curr.val < v do
19: prev ← curr
20: curr ← curr.next
21: return 〈prev, curr〉

22: insert(v):
23: prev ← head
24: 〈prev, curr〉 ← waitfreeTraversal(v,

prev)
25: if curr.val = v then return false
26: newNode.val ← v
27: newNode.next ← curr
28: if not prev.lockNextAt(curr) then
29: goto Line 24

30: prev.next ← newNode
31: prev.lock.unlock()
32: return true

33: remove(v):
34: prev ← head
35: 〈prev, curr〉 ← waitfreeTraversal(v,

prev)
36: if curr.val �= v then
37: return false
38: next ← curr.next
39: if not prev.lockNextAtValue(v) then

goto Line 35

40: curr = prev.next
41: if not curr.lockNextAt(next) then
42: prev.unlock()
43: goto Line 35

44: curr.deleted ← true
45: prev.next ← curr.next
46: curr.lock.unlock()
47: prev.lock.unlock()
48: return true

Line 35. Then, the algorithm takes the lock on curr = prev.next and checks a
condition curr.next equals to next in Line 41 (note that the second condition is
satisfied by the lock on prev as curr is not marked as deleted). This condition
ensures correctness: otherwise, the link next to prev will be incorrect. If it is not
satisfied, the algorithm restarts from Line 35. Afterwards, the algorithm sets
curr.deleted to true (Line 44) and unlinks curr (Line 45).

Correctness. We show that the VBL list accepts only correct schedules of the
list-based set. We then show that the VBL list accepts every correct schedule of
the list-based set, thus establishing its concurrency-optimality.

Theorem 1. Every schedule of the VBL list is linearizable w.r.t the set.
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The full proof is deferred to the companion technical report. Observe that
the only nontrivial case to analyse for proving deadlock-freedom is the execution
of the update operations. Suppose that an update operation π fails to return a
matching response after taking infinitely many steps. However, this means that
there exists a concurrent insert or remove that successfully acquires its locks and
completes its operation, thus implying progress for at least one correct process.

Theorem 2. The VBL implementation accepts only correct list-based set sched-
ules locally serializable (wrt LL).

Concurrency-Optimality. We prove that the VBL accepts every correct inter-
leaving of the sequential code. The goal is to show that any finite schedule
rejected by our algorithm is not correct. Recall that a correct schedule σ is
locally serializable and, when extended with all its update operations completed
and contains(v), for any v ∈ Z, we obtain a linearizable schedule.

Note that given a correct schedule, we can define the contents of the list
from the order of the schedule’s write operations. For each node that has ever
been created in this schedule, we derive the resulting state of its next field from
the last write in the schedule. Since in a correct schedule each new node is first
created and then linked to the list, we can reconstruct the state of the list by
iteratively traversing it, starting from the head.

Theorem 3 (Optimality). VBL implementation accepts all correct schedules.

4 Experimental Evaluation

Experimental Setup. In this section, we compare the performance of our
solution to two state-of-the-art list-based set algorithms written in different lan-
guages (Java and C++) and on two multicore machines from different manufac-
turers: A 4-socket Intel Xeon Gold 6150 2.7 GHz server (Intel) with 18 cores per
socket (yielding 72 cores in total), 512 Gb of RAM, running Debian 9.9. This
machine has OpenJDK 11.0.3; A 4-socket AMD Opteron 6276 2.3 GHz server
(AMD) with 16 cores per socket (yielding 64 cores in total), running Ubuntu
14.04. This machine has OpenJDK 1.8.0 222 (We delegate the AMD results to
the tech report).

Concurrent List Implementations. We compared our VBL algorithm (VBL)
to the lock-based Lazy Linked List (Lazy) [3] and Harris-Michael’s non-blocking
list (Harris-Michael) [5,6] with its wait-free and RTTI optimization suggested
by Heller et al. [3] using the Synchrobench benchmark suite [11]. To compare
these algorithms on the same ground we primarily used Java as it is agnos-
tic of the underlying set up. The evaluation of the C++ implementations of
these algorithms is deferred to the companion technical report [10]. The code
of the implementations is part of Synchrobench at https://github.com/gramoli/
synchrobench.

https://github.com/gramoli/synchrobench
https://github.com/gramoli/synchrobench
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Experimental Methodology. We considered the following parameters:

– Workloads. Each workload distribution is characterized by the percent x%
of update operations. This means that the list will be requested to make
(100 − x)% of contains calls, x/2% of insert calls and x/2% of remove calls.
We considered three different workload distribution: 0%, 20%, and 100%.
Percentages 0% and 100% were chosen as the extreme workloads, while 20%
update ratio corresponds to the standard load on databases. Each operation
contains, insert, and remove chooses its argument uniformly at random from
the fixed key range.

– List size. On the workloads described above, the size of the list depends on
the range from which the operations take the arguments. Under the described
workload the size of the list is approximately equal to the half of the key
range. We consider four different key ranges: 50, 200, 2 · 103, and 2 · 104. To
ensure consistent results we pre-populated the list: each element is present
with probability 1

2 .
– Degree of contention. This depends on the number of cores in a machine.

We take enough points to reason about the behavior of the curves.

Results. We run experiments for each workload 5 times for 5 s with a warm-up
of 5 s. Figure 4 contains the results on Intel machine. Our new list algorithm
outperforms both Harris-Michael’s and the Lazy Linked List algorithms, and
remains scalable except for the situation with very high contention, i.e., high
update ratio with small range. We find this behavior normal at least in our case,
since the processes contend to get the cache-lines in exclusive mode and this
traffic becomes the dominant factor of performance in the execution.

Comparison Against Harris-Michael. Harris-Michael’s algorithm in gen-
eral scales well and performs well under high contention. Even though the
three algorithms feature the wait-free contains, our original implementation of
the Harris-Michael’s contains was slower than the other two. The reason is
the extra indirection needed when reading the next pointer in the combined
pointer-plus-boolean structure. To avoid reading an extra field when fetching the
Java AtomicMarkableReference we implemented the run-time type identification
(RTTI) variant with two subclasses that inherit from a parent node class and
that represent the marked and unmarked states of the node as previously sug-
gested [3]. This optimization requires, on the one hand, that a remove casts
the subclass instance to the parent class to create a corresponding node in the
marked state. It allows, on the other hand, the traversal to simply check the mark
of each node by simply invoking instanceof on it to check the subclass the node
instantiates. As we see, Harris-Michael’s algorithm has very efficient updates
because it only uses CAS, however it spends much longer on list traversals.

Comparison Against the Lazy Linked List. The Lazy Linked List has
almost the same performance as our algorithm under low contention because
both algorithms share the same wait-free list traversal with zero overhead (as
the sequential code does) and for the updates, when there is no interference
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Fig. 4. Evaluation on Intel

from concurrent operations, the difference between the two algorithms becomes
negligible. The difference comes back however as the contention grows. The Lazy
Linked List performance drops significantly due to its intense lock competition
(as briefly explained in Sect. 1). By contrast, there are several features in our
implementation that reduce significantly the amount of contention on the locks.
We observed a tremendous increase in execution time for the Lazy Linked List
because of the contention on locks.
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5 Related Work and Concluding Remarks

List-Based Sets. Heller et al. [3] proposed the Lazy Linked List and mentioned
the option of validating prior to locking, and using a single lock within an insert.
One of the reasons why our implementation is faster than the Lazy Linked List is
the use of a novel value-aware try-lock mechanism that allows validating before
acquiring the lock.

Harris [5] proposed a non-blocking linked list algorithm that splits the
removal of a node into two atomic steps: a logical deletion that marks the
node and a physical removal that unlinks the node from the list. Michael [6]
proposed advanced memory reclamation algorithms for the algorithm of Harris.
In our implementation, we rely on Java’s garbage collector for memory recla-
mation [13]. We believe that our implementation could outperform Michael’s
variant for the same reason it outperforms Harris’ one because it does not com-
bine the logical deletion mark with the next pointer of a node but separates
metadata (logical deletion and versions) from the structural data (check [4] for
variants of these list-based sets). Fomitchev and Ruppert [14] proposed a lock-
free linked list where nodes have a backlink field that allows to backtrack in the
list in case a conflict is detected instead of restarting from the beginning of the
list. Its contains operation also helps remove marked nodes from the list. Gibson
and Gramoli [15] proposed the selfish linked list, as a more efficient variant of
this approach with the same amortized complexity, relying on wait-free contains
operations. These algorithms are, however, not concurrency-optimal: schedule
constructions similar to those outlined for the Harris-Michael and Lazy linked
lists apply here.

Concurrency Metrics. Sets of accepted schedules are commonly used as a
metric of concurrency provided by a shared-memory implementation. For static
database transactions, Kung and Papadimitriou [16] use the metric to capture
the parallelism of a locking scheme. While acknowledging that the metric is the-
oretical, they insist that it may have “practical significance as well, if the sched-
ulers in question have relatively small scheduling times as compared with wait-
ing and execution times”. Herlihy [17] employed the metric from [16] to compare
various optimistic and pessimistic synchronization techniques using commuta-
tivity [18] of operations constituting high-level transactions. A synchronization
technique is implicitly considered in [17] as highly concurrent, namely “optimal”,
if no other technique accepts more schedules. In contrast to [16,17], we focus here
on a dynamic model where the scheduler cannot use the prior knowledge of all
the shared addresses to be accessed.

Optimal concurrency, originally introduced in [1], can also be seen as a variant
of metrics like permissiveness [19] and input acceptance [20] defined for trans-
actional memory. The concurrency framework considered in this paper though
is independent of the synchronization technique and, thus, more general. Our
notion of local seriazability, also introduced in [1], is also reminiscent to the
notion of local linearizability [21].
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Concurrent interleavings of sequential code has been used as a base-line for
evaluating performance of search data structures [22]. Defining optimal concur-
rency as the ability of accepting all correct interleavings has been originally
proposed and used to compare concurrency properties of optimistic and pes-
simistic techniques in [1].

The Case for Concurrency-Optimal Data Structures. Intuitively, the abil-
ity of an implementation to successfully process interleaving steps of concurrent
threads is an appealing property that should be met by performance gains.

In this paper, we support this intuition by presenting a concurrency-optimal
list-based set that outperforms (less concurrent) state-of-the-art algorithms.
Does the claim also hold for other data structures? We believe that general-
izations of linked lists, such as skip-lists or tree-based dictionaries, may allow
for optimizations similar to the ones proposed in this paper. The recently pro-
posed concurrency-optimal tree-based dictionary [9] justifies this belief. This
work presents the opportunity to construct a rigorous methodology for deriving
concurrency-optimal data structures that also perform well.

Also, there is an interesting intermingling between progress conditions, con-
currency properties, and performance. For example, the Harris-Michael algo-
rithm is superior with respect to both the Lazy Linked List and VBL in terms of
progress (lock-freedom is a strictly stronger progress condition than deadlock-
freedom). However, as we observe, this superiority does not necessarily imply
better performance. Improving concurrency seems to provide more performance
benefits than boosting liveness. Relating concurrency and progress in concurrent
data structures remains an interesting research direction.
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Abstract. This paper is a contribution to studying the parallel opera-
tion of moving agents on a grid where some targets have to be reached
and attended, as a strong generalization and improvement of a previous
results. In particular the well-known problems of cops and robber and
sparce sensor networks are considered as applicative examples of this
new computing scheme. We assume that the set of targets may change
in time with new targets arising while previous ones are being taken care
of. An evolving scheme is considered where all targets needing attention
are finally served, or their number may never end but is constantly kept
under a fixed limit. Mathematical expressions for the number of agents
and their processing time are given as a function of various parameters
of the problems, and their relation is studied under the concepts of work
and speed-up inherited from parallel processing.

Keywords: Grid · Agent · Sensor · Cop · Robber · Travel time ·
Computation time · Work · Speed-up

1 Rules of the Game

Mobile agents operating on a two-dimensional grid have been extensively studied
as a mathematical processing model in a variety of settings and applications. In
the present work we focus on the two problems of harm detection in the so-called
cops and robber chase, and of sparse sensor networks management via mules. In
both cases mobile agents (cops or mules) travel on a grid for reaching specific
target nodes (robbers or sensors) where an operation is needed as contrasting a
danger or attending a sensor. The agents follow a parallel processing paradigm
where several agents operate concurrently.

There exists an extremely rich literature on these subjects where the opera-
tions are conducted on a grid, see for example the classical review [1] on the cops
and robber problem, the implications of using more cops than necessary [2], and
the concurrent operations of several cops and robbers [6]; and the recent survey
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on sensor network applications [9]. But, surprisingly, some specific character-
istics of this type of precessing, and of the problems arising, have never been
considered. In particular we study:

1. The division of the processing time in two phases with different character-
istics, namely the travel time of an agent to reach its destination, and the
succeeding processing time.

2. The influence on the overall process of the relative numbers of agents and
targets. Inheriting some concept from parallel processing [5], we define the
work wk of a process carried out by k agents in time tk as wk = k · tk, and the
speed-up between the actions of j over i < j agents as wi/wj . If wi/wj > 1
the speed-up is said to be super-linear, a case that may occur only in special
circumstances, e.g. see [7].

3. The evolution of the system if the set of targets needing attention changes
continuously in time, with new targets arising while previous targets are being
taken care of. This phenomenon will be treated in a continuously evolving
scheme where the number of targets needing attention may never end but is
constantly kept under a fixed limit.

4. (less important) For a better balancing of the agent movements we work on
a grid bounded by a diamond of side n, wth n odd; all the well-known results
and algorithms reported in the literature with a rectangular boundary are
valid with obvious minor transformations.

2 Several Cops Capture Several Robbers

The standard cops and robber problem is typically aimed at finding the mini-
mal number of cops needed to reach a moving robber on a graph, contextually
studying the movements involved, see [1]. Cops and robber move alternatively,
one edge a time, until a cop reaches the robber’s vertex. The problem has been
thoroughly studied on rectangular grids.

Here we assume that k cops and l robbers are present, with arbitrary k and
l. All move on a diamond grid, and all robbers must be reached by a cop. To the
best of our knowledge this situation has been studied only in [4] with k ≥ l ≥ 1,
for deciding if the capture of all robbers is possible on a digraph. Our approach,
aim, and graph traveled, are completely different. In particular we refer to the
capture of more than one robber, judging the possible advantage of increasing
the number of cops.

We may assume that the cops start in the central node of the diamond as the
most favourable position to reach any robber that may appear and move around
according to the problem rules to avoid being reached. The optimal strategy for
all actors is the one already known for the problem on the rectangular grid, with
alternative moves of a pair of cops against one robber until this is pushed to the
diamond boundary in a siege condition (e.g., see [6]), to be inevitably reached
at the next step. This situation is depicted in Fig. 1. It can be easily shown that
the standard algorithm allows the capture in (n + 1)/2 moves on the diamond,
which is also a lower bound on the capture time.
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Fig. 1. A diamond with n = 9. Two cops (black dots) are initially placed in the center
of the diamond and push the robber (white dot) to the farthest siege shown, on the
diamond boundary. The robber manages to escape as far as possible, still it cannot
avoid being pushed in a siege node at a distance (n+ 1)/2 from the center, in at most
(n + 1)/2 moves. The star indicates the position of a next robber, as far as possible
from the cops.

Now take arbitrary values k and l, with k even as cops chase robbers in pairs.
To start consider k = 2 and l = 2, with the two robbers captured one after the
other. To delay the chase as long as possible, the first robber will move to the
siege shown in Fig. 1, and the second will be captured in the starred vertex. The
total chase time tk,l = t2,2 is given by (n + 1)/2 moves to catch the first robber,
plus n−1 moves for reaching the second robber from the previous siege position,
with a total of t2,2 = (3n − 1)/2 and work w2,2 = 3n − 1.

If four cops chase the same two robbers, k = 4 and l = 2, two pairs of
cops push the robbers into two sieges in parallel, in total time t4,2 = (n + 1)/2
and work w4,2 = 2n + 2. We then observe a remarkable super-linear speed-up
of (3n − 1)/(2n + 2) that tends to 3/2 for increasing grid dimension n. This
advantage with using more cops depends on the necessity or the smaller team
to regain a better position in the grid before attacking the second robber.

We are in front of a new situation in parallel processing, where the running
time of an algorithm includes a part for getting to the data before a real process-
ing stage takes place, that in the cops and robber problem consists in invading
the robber’s cell. This latter time is assumed to be null. If we add a captur-
ing time τ once the robber is reached, we must rewrite t2,2 = (3n − 1)/2 + 2τ ,
w2,2 = 3n − 1 + 4τ , and t4,2 = (n + 1)/2 + τ , w4,2 = 2n + 2 + 4τ , with a lower
speed-up than before, that in fact tends to 1 if the value of τ prevails over n.

With similar computation we find t2,3 = (5n−3)/2+3τ and t4,3 = n+1+2τ ;
t2,4 = (7n − 5)/2 + 4τ and t4,4 = (3n − 1)/2 + 2τ ; t2,5 = (9n − 7)/2 + 5τ and
t4,5 = 2n+3τ , and so on. We can prove that, for l ≥ 2, the general law for k = 2
versus k = 4 is the following:

t2,l = ((2l − 1)n − 2l + 3)/2 + lτ, (1.1)
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t4,l = ((l − 1)n − l + 3)/2 + �l/2�τ, for l even (1.2)

t4,l = ((l − 1)n − l + 5)/2 + �l/2�τ, for l odd (1.3)

where a penalty occurs in t4,l for l odd (see (1.2) and (1.3)) due to the chase
of four cops on a single robber in one of the rounds (a companion phenomenon
may cause slow-down in parallel computation, see [5]).

We note that the speed up w2,l/w4,l tends to (n(2l−1)+2lτ)/(n(2l−2)+2lτ),
so it is always super-linear although its value decreases for increasing l and τ .

General results similar to the ones of relations (1.1), (1.2), and (1.3) can be
proved for arbitrary values of k, l. We do not insist on this as our goal was to
enlighten this kind of effect before passing to a more intriguing situation.

3 Chasing a Continuous Stream of Invaders

The cops and robber problem can be seen an a paradigm of ridding of harm-
ful moving invaders a region often represented as a two-dimensional grid. The
invaders try to resist as long as possible and the longest chase inevitably ends
on the region boundary.

Despite the very rich literature on this subject, nobody seems to have
extended these studies to the practical case where new invaders (i.e., robbers)
appear while the patrolling agents (the cops) are chasing the original ones. Now
k is a constant and l is a function of time. A new paradigm for this case must be
set up, with many possible variations two of which are considered below. While
the standard chasing rules will be maintained, a new relation among the values
of k and l is going to be a key parameter of any chasing algorithm.

3.1 Herd Immunity from Invaders

The first computing scheme assumes that the cops must reach a time in which
all the robbers appeared thus far have been captured, so that a “herd immunity”
is attained for the grid. Let us assume that the appearance law for the robbers
takes one of the two forms:

l = l0 + λt, (2.1)

l = l0 + λnt, (2.2)

where t is the total time to get the immunity, l0 (the initial number of robbers)
and λ are constant, and the incoming number of new robbers is proportional
only to the time t, relation (2.1); or to the time t and to the grid side n, relation
(2.2), assuming that the intruders come into the region through its boundary.
Clearly other cases could be considered.

Referring to the standard algorithm with pairs of cops chasing one robber,
the time t can be evaluated noting that the k cops initially chase k/2 robbers
in (n + 1)/2 steps; then k/2 pairs of cops chase the remaining l − k/2 robbers
in (l − k/2)/(k/2) consecutive stages requiring (n − 1) steps each. That is: t =
(n+1)/2+(n−1)(l−k/2)/(k/2). Substituting the value (2.1) for l, and grouping
the terms containing t, we easily find :
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t = ( 2l0(n − 1) − k(n − 3)/2 ) / ( k − 2λ(n − 1) ), for λt new robbers. (3.1)

This is an interesting expression. First note that the denominator must be
greater than zero, that is, once n and λ are fixed a minimum number of cops
k > 2λ(n−1) is established for getting the herd immunity, with the time sharply
increasing for k approaching 2λ(n − 1). Second, the nominator is positive for
l0 > k(n − 3)/4(n − 1) to avoid that the herd immunity is trivially reached in
the chasing phase to the l0 robbers.

Finally relation (3.1) has the structure (A − kB)/(k − C) with A > kB and
k > C. If αk cops are used instead of k, with α > 1, the works for k and αk are
respectively wk = (kA − k2B)/(k − C) and wαk = (αkA − α2k2B)/(αk − C).
With easy computation we find a speed-up wk/wαk > 1, consistent with the
relation A > kB.

If we substitute the value (2.2) for l in the expression for t we have:

t = ( 2l0(n − 1) − k(n − 1) ) / ( k − 2λn(n − 1) ), forλnt new robbers (3.2)

yielding results quite similar to the ones found for expression (3.1). In particular
the condition k > 2λ(n − 1) holds and a super linear speed-up occurs as before.
However we must impose the much stronger condition k > 2λn(n − 1) on the
denominator, implying that the number of cops must be proportional to the area
(number of vertices) of the grid instead of to the length of its boundary.

If a capturing time τ is added in each parallel capture, expressions (3.1) and
(3.2) are respectively rewritten as:

t = ( 2l0(n − 1 + τ) − k(n − 3)/2 ) / ( k − 2λ(n − 1 + τ) ) (4.1)

t = ( 2l0(n − 1 + τ) − k(n − 1) ) / ( k − 2λn(n − 1 + τ) ), (4.2)

with similar considerations on time of convergence and speed-up.

3.2 Controlling the Size of an Everlasting Invasion

A new relevant situation is tolerating an everlasting intruder invasion if the
number of invaders is constantly kept under control. As an example, still consider
the previous invader arrival laws (2.1) and (2.2) and assume that the number of
active invaders be kept at its initial value l0. The problem can be more easily
solved than one may expect.

Let l = l0 + λt, and recall that (n + 1)/2 steps are needed for capturing
one or more intruders in parallel. Dividing the time in slots of (n + 1)/2 steps,
λ(n + 1)/2 invaders will be captured by k cops, that is λ(n + 1)/2 = k/2 since
k cops can capture k/2 intruders in one slot of time. We let:

k = λ(n + 1) (5.1)

to remain with exactly l0 active invaders at the end of the time slot; and the
process will go on forever in the succeeding time slots. Similarly, under the arrival
law l = l0 + λnt we have:

k = λn(n + 1) (5.2)
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that requires a much higher number of cops for maintaining the number l0 of
active intruders.

In both cases a number of cops smaller than the ones in (5.1), (5.2) will cause
the number of active intruders to constantly increase, and a greater number of
cops will bring the number of active intruders to an end as studied in the previous
sub-section.

If a capturing time τ is added in each parallel capture the time slot becomes
(n + 1)/2 + τ and relations (5.1), (5.2) respectively become k = λ(n + 1) + 2τ
and k = λn(n + 1) + 2τ .

Note that the issue of speed-up as a function of the number k of cops has no
relevance here since k is fixed.

4 Data Collection in a Sparse Sensor Network

A variety of applications have been recently developed for environmental mon-
itoring, or for regional activity control in a broad sense, where the “region”
may be described as a grid with a large network of inexpensive wireless sensors
deployed in the nodes, e.g. see [10–12] and the survey [9]. The sensors have the
role of collecting data on the surrounding environment to be communicated to
a central access point, however they have enough power for transmitting just
a prompt signal when they have data to deliver, while the data are to be col-
lected with other means. Typically some specialised agents also called mules, e.g.
robots, are sent back and forth from the access point to do the collecting job.
This is the setting considered here.

Our sensor network scheme has many characteristics in common with the cops
and robber setting, where agents stand for cops and sensors stand for robbers. We
deploy the network on a diamond grid of side n where the sensors are uniformly
scattered, while the access point and the agent warehouse are placed in the
central node, see Fig. 2. Only the agents now move along the grid edges while
the sensors are steady.

Excluding the center, the number of grid nodes is N = 2n2−2n, and the sum
of all the node distances from the center is 2n(2n2 − 3n + 1)/3; so the average
distance of a sensor from the access point is less than 2n/3 and tends to this
value for n → ∞. Then β = 4n/3 will be taken as an upper bound for the travel
time of an agent, that is the expected back and forth time for visiting a sensor
and return to the access point.

As before let k be the number of agents. Let αN be the expected number of
active sensors, meaning the ones requiring attention at a given moment, and let
t̄ be the expected time before a new batch of active sensor arise. Each subset of
αN/k sensors will be assigned do a different agent.

In addition, in the present case we cannot ignore the processing time τ of an
agent collecting data from a sensor: we consider the two cases:

τ = γ constant, (6.1)

τ = γt, with γ constant and time t, (6.2)



408 F. Luccio and L. Pagli

Fig. 2. A diamond grid with n = 9 with four sensors (white dot). The access point with
agents warehouse is in the center (black square) and the sensors are at a distance 1, 2,
3, and 4 from it. The average distance of a node from the center is 2n/3 for n → ∞.

where in case (6.2) t is the elapsed time between the request of attention of a
sensor and the moment in which an agent arrives, imagining the the sensor have
been collecting data in between. The problem is now determining the number k of
agents needed in the average to gather data continuously from the active sensors,
with the number of the latter kept under control. More specifically, maintaining
this number at αN . In this continuous stream of operations we assume that a
sensor request of attention arrives when an agent has just initiated its return to
the access point, so a time β = 4n/3 is required to the agent to reach a new
sensor.

The following mathematical development must be taken with a bit of caution
because time will be measured as a number of agent steps while some of the
numerical figures to be used, as α, β and γ, may not be integers. The results
that will be found must then be merely considered as indicative of the influence
of the different parameters, while getting precise values would imply the use of
floor and ceiling rounding thereby complicating the computation without any
real advantage for our present purpose.

Consider an agent visiting the αN/k active sensors assigned to it under con-
dition (6.1). The travel time to reach the first sensor is β = 4n/3, followed by a
processing time γ to collect the data. Then the agent travels back to the access
point to deposit the data, and then travels again to the next active agent.The
process goes on with the data of the i-th sensor processed after i(β + γ) steps,
so that the whole batch of active sensors is visited in time t = αN(β + γ)/k.
Imposing t ≤ t̄ and noting that N < 2n2, we have:

k ≥ 2αn2(4n + 3γ)/3t̄. (7.1)

with the integer ceiling of the above expression giving a number of agents that
can do the job.

At a first glance relation (7.1) seems to be absurd, as the number k of agents
appears to be of order n3, that is, there should be more agents than grid nodes
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for n → ∞. Obviously the result is justified on practical bases by the low value
of α and the high value of t̄. However an asymptotic study of this figures is not
significant as it will be explained in the next section.

Under condition (6.2) the situation is more intriguing. The agent meets the
first sensor after a travel time β and processes its data in time γβ, then leaving
the sensor after β(1 + γ) = β Γ steps, where for simplicity we denote 1 + γ by
Γ . The second sensor is then reached in β Γ +β = β (Γ +1) steps, and left after
additional γβ (Γ + 1) steps, that is at time β (Γ + 1)(γ + 1) = β (Γ 2 + Γ ). The
process goes on, with the data of the i-th sensor processed after β (Γ i + Γ i−1 +
· · · + Γ ) steps, and the whole batch of l = αN/k active sensors visited in total
time t = β (Γ l + Γ l−1 + . . . Γ ) = β (Γ l − Γ )/(Γ − 1) = β ((γ + 1)l − (γ + 1))/γ.
Then we have t < β (γ + 1)l/γ, and with proper substitutions we pose :

t < 4n (γ + 1)2αn2/k/3γ ≤ t̄.

By taking the logarithm base two on the two sides of the second inequality we
have (2αn2/k) log(γ + 1) + log 4n − log 3γ ≤ log t̄, that is:

k ≥ 2αn2 log(γ + 1)/( log t̄ + log 4n − log 3γ ). (7.2)

Again the integer ceiling of the above expression gives a number of agents that
can do the job, maybe cancelling from the denominator the values log 4n and
log 3γ that are practically negligible compared with log t̄.

The comparison of Relation (7.2) with (7.1) shows an interesting variation
in the value of k due to the presence of n2 instead of n3 in the nominator, and
of log t̄ instead of t̄ in the denominator.

The concept of parallel speed-up must be revisited in the present paradigm
where the value of k computed in both cases (7.1), (7.2) depends on the value
of t̄. If this latter value is imposed a priori, k is uniquely determined. Then an
interesting figure to take as the agents work is the product kt̄, with the purpose
of studying how this value is changed if t̄ is differently fixed.

With relation (7.1) we approximately have kt̄ = Δ with Δ constant, implying
that the speed-up is constantly equal to one for all values of t̄. With relation (7.2)
the situation is much more interesting since we approximately have k log t̄ = Δ.
Using a larger number μk of agents, with μ > 1, we have a very strongly super-
linear speed-up: wk/wμk = 2μ/μ.

5 Some Considerations and Possible Extensions

The present work is a stimulus to investigate the relation between the number of
agents working on a region (a two-dimensional grid in our example) and the work
they are called to perform: a basic concept in parallel computing but scarcely
considered in the large literature of agents moving on a graph. Not much is
known on this subject. We can just mention a study on a specific problem [8],
and a general definition of the cop throttling number [3] defined as the sum of
the agents number plus their moving time for capturing a robber. For the first
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time we also consider that the agents have to move and compute, where these
operations obey different mathematical rules.

The mathematical structure of our resulting figures are different from the
ones generally stated in algorithmic complexity. In particular the time required
to complete the agent operations is not carried out in order of magnitude as
usual, since the value of the multiplicative constants getting into the global
computation of time cannot be ignored. Some of our results, particularly the
ones presented in Sect. 4, must then be considered on different grounds.

Obvious developments of this research should be carried out, as considering
different distributions and arrival laws of the targets; a deeper investigation of
the agent moving laws and data processing rules; and, above all, extending our
study to different families of graphs.
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Abstract. Contemporary software systems of computer-aided engineer-
ing do not contain efficient tools for optimization of designed models
especially if such optimization requires finding out the global solution.
For stating and solving problems of optimal choice arising in the course
of model investigation they, as a rule, are combined with specialized
software aimed inherently at corresponding classes of optimization state-
ments. Among those the problems of global optimization are the most
complicated ones and there exist few solvers for global optimization.
In the paper the results of combining the engineering modeling system
OpenFOAM and global optimization solver Globalizer as an integrated
system of computations are described. This integrated system is ori-
ented at multiprocessor architectures and implements parallel methods
of global optimization. Solving applied optimization problems modeled
by OpenFOAM and optimized by Globalizer confirms the perspective of
the approach.

Keywords: Parallel computations · Engineering modeling · Global
optimization

1 Introduction

Many contemporary technologies of studying and solving scientific and practical
problems are based on application of computer systems of modeling oriented
at wide classes of objects and processes to be modeled and investigated. For
example, very powerful computer-aided engineering (CAE) system ANSYS cov-
ers a wide range of finite element analysis problems, provides diversified envi-
ronments for building and analyzing models from GUI to create a model step
by step manually up to using programming language APDL (Ansys Parametric
Design Language). ANSYS is compatible with some CAD-systems, for instance,
with SolidWorks, Autodesk Inventor and others. However, it is necessary to pur-
chase an expensive license to work with the system, and this significantly limits
its scope. Moreover, ANSYS allows parallelizing the computations but requires
separate licenses for each computational node.
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Another software for modeling and analyzing the problems of mechanics,
hydro- and aerodynamics, etc., is the system OpenFOAM [1,2] that is an open
source software and uses the GNU GPL (General Purpose License) license. One
of the advantages of this system is the openness of the source code, which opens
up the possibility of developing and building specific user models and freedom
of integration with any programs, due to flexibility of use. In particular, there
are rich possibilities for parallelizing the computational procedures using MPI.
The results obtained in the system OpenFOAM are comparable to the results
of ANSYS, but at the same time performing the correct modeling requires addi-
tional efforts as a payment for versatility and full access to the entire internal
structure and settings.

An important direction of obtaining qualitative solutions when analyzing
problems by means of modeling systems is the ability to obtain optimal (in
one or another sense) parameters of the constructed model. Some of CAE-
systems, including ANSYS and OpenFOAM, contain tools for simple optimiza-
tion but for solving complicated time-consuming optimization problems they
require, as a rule, interaction with external solvers of such the problems. As such
the solvers the systems LGO (Lipschitz Global Optimization) [3], LINDO [4],
MATLAB Global Optimization Toolkit [5], GlobSol [6], BARON (Branch-And-
Reduce Optimization Navigator) [7], IOSO (Indirect Optimization on the basis of
Self-Organization) [8], BOA (IBM Bayesian Optimization Accelerator) [9] and
others (see, for instance, the comparative description of optimization solvers
in the papers [10–12]). Most of them implement sequential optimization meth-
ods, but only a few packages contain capabilities for the parallelization of the
optimization process (see [6,8]). Among the optimization solvers the supercom-
puter system Globalizer [13,14] is one of the most powerful systems (see the
link https://github.com/sovrasov/ags nlp solver). It is oriented at complicated
time-consuming global optimization problems and provides deep and efficient
parallelization on heterogeneous high-performance computer architectures.

In any case, whatever any modeling and optimization systems, there exists a
complicated problem of interaction between them, because the structures of the
systems, their data formats and interfaces differ significantly. As a consequence,
it is required to develop special software (wrapper) for their connection which
can provide such the interaction including possible parallelization of computa-
tional process. This paper presents a version of such wrapper which is open for
connecting to them both optimization solvers and applied modeling systems.
For solving an applied problem the wrapper was configured for interaction of
Globalizer and OpenFOAM in a parallel mode.

The rest of the paper is organized as follows. Section 2 is devoted to a brief
description of the integrated system of Globalizer and OpenFOAM. Section 3
contains the results of applying the integrated system to optimization of a real
object - a beam with complex geometry - and estimations of parallelization
effectiveness. The last section concludes the paper.

https://github.com/sovrasov/ags_nlp_solver
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2 OpenFOAM+Globalizer Integration

The system Globalizer is intended for numerical solving constrained multidimen-
sional global optimization problems which can be described by the statement

f(y∗) = min{f(y), y ∈ B, gj(y) ≤ 0, 1 ≤ j ≤ m} (1)

B = {y ∈ RN : aj ≤ yj ≤ bj , 1 ≤ j ≤ N} (2)

The objective function f(y) and constraints gj(y), 1 ≤ j ≤ m are supposed
to satisfy over the box B the Lipschitz condition , i.e., for all y′, y′′ ∈ B

|f(y′) − f(y′′)| ≤ L ‖y′ − y′′‖ , (3)

|gj(y′) − gj(y′′)| ≤ Lj ‖y′ − y′′‖ , 1 ≤ j ≤ m (4)

where ‖•‖ denotes the Euclidean norm in the space RN and the Lipschitz con-
stants L,L1, ..., Lm are positive.

Solving the problem (1) consists in finding after a finite number k of trials
(evaluations of objective function) an approximate solution y∗

k being close to the
exact global minimizer y∗, for example, such that

‖y∗
k − y∗‖ < ε (5)

where ε > 0 is a predefined accuracy of the search.
Optimization problems under such assumptions are, as a rule, multiextremal

and this circumstance requires the use of methods that are capable to find global
solution. Moreover, the multiextremality leads to exponential growth of number
of trials when the dimensionality increasing [15] that makes these problems very
complicated and time-consuming for high dimensionalities. At the same time,
the Lipschitz conditions (3), (4) allow one to obtain estimations (5) after finite
number of trials that is impossible, for example, for continuous functions.

The algorithmic kernel includes information-statistical algorithms of global
optimization [15,16] in combination with schemes of complexity reduction. The
first of such schemes reduces the constrained optimization (1) to an equivalent
problem of optimization in the box (2) on the base of the index method [15]
that unlike the widely applied penalty method does not use any tuning coeffi-
cients. The next step in the fight against complexity consists in reducing dimen-
sionality. Two approaches are used for decreasing dimension of problems to be
solved. The first one is based on Peano mappings that transform the multi-
dimensional box (2) onto one-dimensional interval and the multidimensional
optimization problem to an equivalent univariate one [15,16]. In the system
a family of mappings called multiple Peano curves are used which generates
a family of one-dimensional problems solved in parallel. The second approach
to dimensionality reduction applies the scheme of nested optimization [15,17]
that replaces solving the problem (1) with solving a set of recursively connected
univariate subproblems. In both the schemes the parallel information-statistical
global optimization methods are taken for solving one-dimensional subproblems
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and they provide another one level of parallelism (so called parallelization by
characteristics). Globalizer is open in relation to a module that will describe the
problem (1) and perform computation of objective function f(y) and constraints
gj(y), 1 ≤ j ≤ m. For this goal the system provides a header file describing the
interface with the solver.

For integration of optimization solver and applied system modeling an object,
a program-wrapper was developed which allows one to form the statement of
optimization problem from parameters and characteristics of the object modeled
by applied software and implements calculation of these characteristics at points
chosen by solver during optimization. The wrapper is open for connecting on
sides of both optimization solver and applied modeling system and in the current
study has been configured for Globalizer and OpenFOAM. The general scheme
of the integrated system is presented in Fig. 1.

To accelerate calculations, the wrapper has been designed with the possibility
of using multiple computing nodes and running several computing processes of
OpenFOAM (green boxes) simultaneously.

Fig. 1. Structure of integrated system

3 Optimizing the Beam Profile of Complex Geometry

The integrated system was applied for finding optimal parameters of objects
modeled by OpenFOAM. Here the results for one of those - a beam of complex
geometry - are presented.
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The beam drawing is shown in Fig. 2.

Fig. 2. Beam drawing

Parameters of the model are l - beam length, F - power load, heights h1, h2, h3

and widths w1, w2, w3, w4. As characteristics of the beam, its weight W , maxi-
mum deformation MD and stress MS are considered.

The goal was to optimize the beam weight s.t. restrictions on maximum defor-
mation and stress. In the problem the parameters l and F were fixed and equal to
1000 mm and 10000 Pa correspondingly, whereas the 7-dimensional vector of geo-
metric parameters y = (h1, h2, h3, w1, w2, w3, w4) measured in millimeters was
vector of optimization parameters. The statement of the optimization problem
was as follows.

W (y∗) = min{W (y), y ∈ B} (6)

B = {y ∈ R7 : 0 ≤ hj ≤ 40, 1 ≤ j ≤ 3, 0 ≤ ws ≤ 50, 1 ≤ s ≤ 4} (7)

s.t.
MD(y) ≤ 4, 40e − 5 m,MS(y) ≤ 3, 30e + 9 Pa. (8)

The solution is presented in Tables 1 and 2.

Table 1. Results of optimization

Characteristic Value

Weight 4,27 kg

Maximum deformation 3,82e−5 m

Maximum stress 3,14e+9 Pa

Table 2. Optimal parameters

Parameters Values

h1, h2, h3 (11.57, 12.04, 12.27) mm

w1, w2, w3, w4 (34.12, 10.02, 12.21, 30.21) mm
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For estimation of parallelization efficiency of the integrated system the opti-
mization was performed several times with different numbers of parallel threads.
The achieved speed-ups are reflected in the Fig. 3. These results demonstrate
perspective of parallelization when solving problems of the class in question.

Fig. 3. Acceleration results

4 Conclusion

Integrated environment of the engineering modeling system OpenFOAM and
global optimization solver Globalizer has been considered and its main charac-
teristics and capabilities has been described. The environment enables multi-
level parallelization both in modeling and optimizing parts. Results of solving
an applied 7-dimensional constrained optimization problem where the objective
function and constraints are modeled by OpenFOAM and optimization is per-
formed by parallel algorithms of Globalizer have been presented. The results
confirms the perspective of the approach based on integration modeling and
optimizing software systems and efficiency of parallelization. The continuation
of the research will consist in expanding the spectrum of optimization algorithms
more oriented at different classes of modeled objects and in embedding the new
tools of parallelization.
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Abstract. Development of next generation Internet of Things ecosys-
tems will require bringing in (semi-)autonomic behaviors. While the
research on autonomic systems has a long tradition, the question arises,
are there any “off-the-shelf” tools that can be used directly to implement
autonomic solutions/components for IoT deployments. The objective
of this contribution is to compare real-world-based, autonomy-related
requirements derived from ASSIST-IoT project pilots with existing tools.

Keywords: Internet of Things · Autonomic systems · Self-*
mechanisms

1 Introduction

The idea of autonomic systems can be traced back to early works in the dis-
cipline known as cybernetics [1]. However, the modern understanding of the
concept arose from seminal work performed by IBM, within the scope of the
autonomic computing initiative (ACI) [2]. Here, (and in later work [3]) IBM
proposed four categories of, so called, “Self-*” properties, which were to capture
main aspects for development of autonomic systems: (1) Self-configuration: auto-
matic component configuration; (2) Self-healing : automatic fault discovery and
correction; (3) Self-optimization: automatic resource monitoring and control to
ensure optimal performance in accordance with specified requirements; (4) Self-
protection: diligent detection and protection from random attacks. Later, seven
Self-* properties have been proposed [4,5]. Let us leave aside the number and
scope of Self-* properties and come back to them later.

To realize the Self-* mechanisms, the MAPE-K (Monitor, Analyze, Plan,
Execute, Knowledge) loop was proposed [3]. In the MAPE-K autonomic loop
c© Springer Nature Switzerland AG 2021
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sensors gather data about the managed element, while actuators make modifi-
cations to it. Specifically, a manager tracks the state of an element and makes
adjustments using the data gathered by the sensors. As part of its development
work on the Autonomic Computing Toolkit, IBM created a prototype version of
the MAPE-K loop, called the Autonomic Management Engine.

Independently, recent years are characterized by rapid developments in the
area of the Internet of Things. Here, the main idea is to deploy sensors and
actuators, connected using heterogeneous networking infrastructures (wireless
and wired), to deliver novel services for the users. With the size of IoT ecosystem
deployments reaching thousands of elements, it becomes clear that it is not going
to be possible to “hand manage” them. In this context, recently, the European
Commission requested research in the area of Self-adaptive, Self-aware and semi-
autonomous IoT systems1. One of the projects that was funded as a result of
this call is ASSIST-IoT 2. This project is grounded in four pilots, and each one
of them has specific needs for Self-* mechanisms. This leads to the question: can
these needs be satisfied using existing solutions/tools? The aim of this work is
to answer this question.

In this context we proceed as follows. In Sect. 2 identified Self-* needs of the
ASSIST-IoT pilots are discussed. Next, in Sect. 3 we present known to us tools
that can be used in context of implementation of Self-* mechanisms. We follow,
in Sect. 4, with discussion on how the existing solutions address the identified
needs. Section 5, summarizes our findings.

2 Autonomic Computing for the Real-World IoT

Results of the ASSIST-IoT project will be validated in four pilots: (1) port
automation, (2) smart worker protection, and (3) cohesive vehicle monitoring
and diagnostics. The latter one is divided into sub-pilots dealing with (3a) car
engine monitoring, and (3b) car exterior monitoring. Let us now discuss which
Self-* mechanisms have been identified in each pilot, during the requirements
analysis phase of the project.

2.1 Port Automation Pilot

Owing to the high volume of TEUs (an inexact measure of cargo capacity that
is frequently employed by port authorities) handled and the growing number
of stopovers, the Malta Freeport Terminal (MFTL) is nearly at capacity, with
almost constant congestion in the terminal area and sporadic disruptions having
a significant effect on business operations. As a consequence, four main problems
can occur: (1) longer vessel dwell periods; (2) increased berthing-wait-time; (3)
vessels being moved to other terminals; and (4) increased wait and turn-around
times of land-side vehicles, all of which contribute to increased environmental
1 https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportuniti

es/topic-details/ict-56-2020.
2 https://assist-iot.eu/.

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-56-2020
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-56-2020
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load, transportation inefficiency, and cost of efficient movements. To deal with
the existing threats, using solutions provided by the ASSIST-IoT project, three
business scenarios have been identified: (1) asset monitoring in the terminal yard,
(2) automated container handling equipment cooperation, and (3) rubber-tired
gantry remote control, with augmented reality assistance. All of those scenar-
ios will need Self-* capabilities, that will work seamlessly in heterogeneous IoT
environment.

Scenarios (1), (2) and (3) will need Self-inspection (sometimes called Self-
awareness) to understand where particular assets are located and what is the
current state of those assets. Self-healing and Self-diagnosis will also be impactful
as they will allow to automatically detect issues, autonomously fix some of them
or call for human operator as a last resort. (1) will also require Self-configuration
capabilities so that new devices can easily connect and acquire required config-
uration (i.e. map of the port). (2) will additionally need Self-organization and
Self-adaptation to autonomously carry on container handling via organizing work
efficiently and by adapting to a changing port environment.

2.2 Smart Safety of Workers Pilot

Construction companies and relevant administration agencies, such as the Euro-
pean Agency for Safety and Health at Work, place a high emphasis on compli-
ance with workplace safety and health standards and risk management at small
or large, private or public construction projects. A vast number of people with
varying degrees of knowledge and experience collaborate with each other, con-
trol equipment, and interface with heavy machinery on each building site, which
is occupied by many subcontracted firms. Their experience, best practises, and
risk management culture offer a layer of security for construction workers, but
it does not ensure that all accidents could be avoided. Accidents will happen in
a split second with no indications. Furthermore, unless appropriate monitoring
mechanisms are in place, a potentially life-saving immediate intervention to an
accident couldn’t be feasible.

ASSIST-IoT solution will enable this pilot to collect accurate and appropri-
ate data in order to produce intelligent insights for the protection of all peo-
ple involved at every work site within a vast construction site. Such data and
observations, along with the clear implementation of data security policies, will
advance understanding and increase awareness about workplace safety, as well
as lead to the digital transformation of construction processes that retains the
employee at the leading edge. In this application area, the main goal of ASSIST-
IoT is to prevent and detect common Occupational Safety and Health (OSH)
hazards such as stress, exhaustion, overexposure to heat and ultraviolet rays,
slips, trips, falls from heights, suspension injuries, lack of mobility due to loss
of consciousness, collision with heavy equipment, entrapment and PPE misuse.
The success of implementing this pilot test-bed would result in two key out-
comes: better working conditions for thousands of workers and a clear return on
investment (ROI) for the facility. This pilot has been divided into four business
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scenarios, (1) occupation safety and health monitoring; (2) fall arrest monitoring;
(3) safe navigation; and (4) health and safety inspection support.

(1), (2), (3) and (4) will need Self-inspection to understand where particular
events are taking place or if (and where) someone is accessing dangerous zone.
Self-diagnosis is required so that whole system can autonomously detect any
potential issues. (1) and (3) will also need Self-configuration to automatically
connect upcoming devices and ensure that up-to-date configuration in dynamic
construction site environment is available; (3) will need Self-adaptation so that
in case of dynamically occurring risks, the safest route can be selected.

2.3 Cohesive Vehicle Monitoring and Diagnostics Pilot

Currently, ICT penetration in the automobile industry is just a fraction of
what it should be, and it is mostly dominated by car manufactures. Because
of high costs and bandwidth problems, communication between vehicle fleets
and original equipment manufacturers is also restricted. Due to safety and secu-
rity concerns, most IoT integration in vehicles programs struggle to incorporate
data from various sources (e.g. industry data, environmental data, data from
inside the car, historical vehicle maintenance data) and to obtain access to vehi-
cle data. Although real-time operation of a moving vehicle creates safety risks
and therefore prohibits full unrestricted access to the information and control
firmware, there is no theoretical obstacle to trustworthy third parties having
access to onboard sensor measurements for diagnostics and monitoring. Fur-
thermore, no existing application or implementation incorporates and delivers
automotive details to a customer in an immersive friendly atmosphere based on
their position and relationship with the vehicle, avoiding recalls.

The use of the ASSIST-IoT reference architecture in this pilot will improve
the automotive OEMs’ ability to track the pollution standards of vehicles that
are currently on the road in order to ensure that the fleet maintains certification
limits over its lifespans. Monitoring fleet pollution levels allows for the prompt
execution of corrective measures, if necessary, to return them to acceptable lev-
els. There are two independent sections of this pilot: (1) a Ford initiative and
(2) a TwoTronic initiative. The Ford initiative is divided into two business sce-
narios: (1) fleet in-service conformity verification; and (2) vehicle diagnostics;
while the TwoTronic initiative deals with vehicle exterior condition inspection
and documentation.

Scenarios (1) and (2) will need Self-learning to constantly improve their capa-
bilities and Self-diagnosability to ensure that all components of the system pro-
vide realistic measurements. We also assumed that Self-configuration will be
required to always be up-to-date with current requirements.

3 State-of-the-art in tools for Autonomic Computing

Let us now summarize the state-of-the-art in the area of tools that can be
used to implement Self-* mechanisms. Most important factor taken into account
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was their out-of-the-box Self-* capability. Moreover, tools were selected on hav-
ing publicly available (open source) code repositories that have recent updates
indicting that these tools are currently under active development. Another factor
was the potential to generalize particular tool to solve novel problems.

AMELIA: Analysable Models Inference. In [9] authors report on tracking
IoT system trajectories, i.e. a series of latitude and longitude coordinate points
mapped with respect to time [10], in a complex spatial context. This is combined
with accessible space landmarks, to create graph-based spatial models. These
are, in turn, analysed by the MAPE-K loop’s Analyse feature, to search for goal
and requirement violations, during system runtime. The project is available as
a virtual environment, in which it can be run and the findings replicated as
published. The authors run the simulations3 using actual data sets derived from
Taxis (IoT devices) and used city’s landmarks as the graph’s nodes. The project
is primarily built on Python with MongoDB as it can resolve geo-spatial queries.
Shell scripts are used to interface between the project and the operating system.
If required, the project can be built and run locally with different parameters.

OCCI-Compliant Sensor Management. The Open Cloud Computing Inter-
face (OCCI) specifies an API for managing large and diverse cloud services that
is independent of the service provider. Various tools offer interfaces for identify-
ing, initiating, and implementing modifications to complex cloud environments.
The authors built an OCCI monitoring extension4 in JAVA that offered man-
aging the implementation and setup of monitoring sensors in the cloud [11].
In an OCCI-compliant runtime model, sensors and their monitoring results are
described. This extension transforms the OCCI runtime model into a knowl-
edge base that, when coupled with the other objects in the OCCI ecosystem,
facilitates full control loops for Self-adaptation into cloud systems. The authors
integrated the project with a real-world cloud infrastructure and included two
sample scenario implementations for other researchers using the test environ-
ment to validate the project outcomes. A Hadoop cluster was implemented and
dynamically scaled in both instances.

PiStarGODA-MDP: A Goal-Oriented Framework to Support Assur-
ances Provision. A Self-adaptive system often works in a complex and partly
unknown context, which introduces uncertainty that must be addressed in order
for it to accomplish its objectives. Furthermore, several other types of uncer-
tainties exist, and the causes of these uncertainties are not consistently resolved
by current approaches in the Self Adaptive System (SAS) life cycle. This begets
the question of how can the goals of a system that is subject to continuous
uncertainties be guaranteed? Here, the authors proposed and implemented a
goal-oriented assurance method that allows monitoring sources of uncertainty
3 https://dsg.tuwien.ac.at/team/ctsigkanos/amelia/.
4 https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.mocci.

https://dsg.tuwien.ac.at/team/ctsigkanos/amelia/
https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.mocci
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that arise during the design phase, or during runtime execution of a system [12].
The SAS is designed with the goals in mind, and the Self-adaptation occurs
during the runtime. GORE (Goal-Oriented Specifications Engineering) is used
for separating technological and non-technical criteria into clearly specified goals
and justifications for how to accomplish them. These goal models are converted
into reliability and cost parametric formulae using symbolic model checking,
which are then used as runtime models to express the likelihood of SAS goals
being reached. Based on the principle of feedback control, the controller contin-
uously monitors the managed system’s costs and reliability statuses, as well as
contextual constraints, at runtime to address parameterized uncertainties. The
runtime models are then used to assess (i) system’s reliability and cost, and
(ii) policy measures that should be activated to accomplish the goals, influenc-
ing SAS adaptation decisions. The authors evaluated their project’s5 approach
using the Body Sensor Network (BSN) implemented in OpenDaVINCI6 and were
able to effectively provide guarantees for Self-adaptive systems’ goals. JavaScript
and Java were used in the project’s development. Heroku hosts the pistarGODA
modelling and analysis environment.

TRAPP: Traffic Reconfiguration Through Adaptive Participatory
Planning. Traffic management is a difficult challenge from the standpoint of
Self-adaptation because it is hard to prepare ahead with all potential scenarios
and behaviours. Here, authors present a method for autonomous agents to collab-
orate in the absence of a centralised data collection and arbitrator [13]. TRAPP
integrates the SUMO [14] and EPOS [15] frameworks. EPOS is a decentralised
combinatorial optimization approach for multi-agent networks, while SUMO is
a simulation environment for traffic dynamics. SUMO sends EPOS a list of
potential routes for each vehicle, and EPOS generates the designated plan for
each vehicle, which SUMO picks up and executes. The mechanism described
above occurs on a regular basis. Periodical adaptation cycles are operated by
the managing system, which, in accordance with the MAPE-K loop, monitor
data, evaluate it for traffic issues or anomalies, schedule subsequent activities
to adjust the way participatory preparation occurs, and eventually perform the
adaptation actions by configuring EPOS accordingly. The revised configuration
is used the next time EPOS is invoked. The authors run simulations7 by deploy-
ing 600 cars in the city of Eichstatt, which has 1131 roads. Python and Jupiter
notebook were used to create the project.

mRUBiS: Model-Based Architectural Self-healing and Self-optimiza-
tion. Self-adaptive software is a restricted system that uses a feedback mech-
anism to adjust to changes in the real world. This mechanism is implemented
by the adaptation engine, while the domain logic is realised by adaptable soft-
ware and controlled by the engine. The authors came to the conclusion that
5 https://github.com/lesunb/pistarGODA-MDP.
6 https://github.com/se-research/OpenDaVINCI.
7 https://github.com/iliasger/TRAPP.

https://github.com/lesunb/pistarGODA-MDP
https://github.com/se-research/OpenDaVINCI
https://github.com/iliasger/TRAPP
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there is no off-the-shelf product for designing, testing, and comparing model-
based architectural Self-adaptation and hence they developed mRUBIs [17]. It
simulates adaptable software and allows for “issues” to be injected into runtime
models. This helps developers to test and compare different adaptation engine
variants as well as validate the Self-adaptation and healing properties of the
adaptation engine. The authors developed a generic modelling language called
“CompArch” to interact with the project8, while the project itself has been
implemented in JAVA.

Lotus@Runtime: Tool for Runtime Monitoring and Verification of
Self-adaptive Systems. Lotus@Runtime tracks execution traces provided by
a Self Adaptive System and annotates the probability of occurrence of each sys-
tem operation using a Labelled Transition System model [18]. In addition, the
probabilistic model is used at runtime to check adaptability properties. A warn-
ing function built into the tool notifies the Self-adaptive device if a property is
violated. These notifications are handled by ViolationHandler module that the
user implements during planning phase. The project9 is based over the existing
LoTuS10 project built in JAVA. The authors used Tele Assistance System (TAS)
and Travel Planner Application (TPA) [19] for validating the project11.

Intelligent Ensembles. Autonomous components are deployed in a physical
world in smart cyber-physical systems (CPS) like smart cities, where they are
supposed to collaborate with each other and also with humans. They must be
capable of working together and adapt as a group to deal with unexpected cir-
cumstances. To address this problem, the authors applied Intelligent Ensembles.
They’re dynamic groups of components that are generated at runtime depending
on the components’ current state. Components are not capable of communicat-
ing with one another; rather, the ensemble is responsible for communication.
The Intelligent Ensembles framework uses a declarative language called “EDL”
for describing dynamic collaboration groups [20]. The project12 is built over the
Eclipse Modelling Framework and the Z3 SMT solver.

CrowdNav and RTX. The authors look at the issue of a crowdsourced nav-
igation system (CrowdNav). It’s a city traffic control system that gathers data
from a variety of sources, such as cars and traffic signals, and then optimises traf-
fic guidance. The authors solve this problem by interpreting and adapting the
stream of data from the distributed system using Real-Time Experimentation
(RTX) tool [21]. The project13 is written in Python, configures Kafka and Spark

8 https://github.com/thomas-vogel/mRUBiS.
9 https://github.com/davimonteiro/lotus-runtime.

10 https://github.com/lotus-tool/lotus-tool.
11 https://drops.dagstuhl.de/opus/volltexte/2017/7145/.
12 https://drops.dagstuhl.de/opus/volltexte/2017/7144/.
13 https://drops.dagstuhl.de/opus/volltexte/2017/7143/.

https://github.com/thomas-vogel/mRUBiS
https://github.com/davimonteiro/lotus-runtime
https://github.com/lotus-tool/lotus-tool
https://drops.dagstuhl.de/opus/volltexte/2017/7145/
https://drops.dagstuhl.de/opus/volltexte/2017/7144/
https://drops.dagstuhl.de/opus/volltexte/2017/7143/
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and links them together. Its architecture is straightforward and restricted to the
most relevant input and output parameters, with Big Data analytics guiding
Self-adaptation based on a continuous stream of operational data from Crowd-
Nav. To help in the assessment of different Self-adaptation strategies for dynamic
large-scale distributed systems, the authors built a concrete model problem using
CrowdNav and SUMO in this exemplar [14,16].

DeltaIoT: Self-adaptive Internet of Things. Wireless connectivity absorbs
the majority of energy in a standard IoT unit, so developing reliable IoT systems
is critical. Finding the correct network configurations, on the other hand, is dif-
ficult because IoT implementations are subject to a multitude of uncertainties,
such as traffic load fluctuations and connectivity interruption. Self-adaptation
enables hand-tuning or over-provisioning of network settings to be automated.A
feedback loop is installed on top of the network to track and measure the
motes and the environment, allowing the IoT system to adapt autonomously.
The DeltaIoT project14 consists of an offline simulator and a physical setup of
25 mobile nodes which can be remotely controlled for field testing. The IoT
system is installed on the KU Leuven Computer Science Department’s prop-
erty. DeltaIoT [22] is the very first Self-adaptation research project to have
both a simulator and a physical system for testing. DeltaIoT is used in Self-
adaptation studies. It allows researchers to test and compare emerging Self-
adaptation approaches, techniques, and resources in the IoT. The WebService
Engine is a user interface for inspecting and controlling the Internet of Things
system. A WSDL file is used to describe this interface. Just one person may do
Self-adaptation at a time, hence accessibility to the web service is restricted.

TAS: Tele Assistance System. TAS [23] was created with the help of the
Research Service Platform (ReSeP)15. ReSeP is built upon the Service-Oriented
Architecture (SOA) principles using JAVA. The tool is an example of a service-
based system (SBS). It gives preventive care to chronic patients in their own
homes. TAS makes use of sensors mounted in a wearable interface, and remote
services from healthcare, pharmacy, and emergency response providers. Periodic
samples of a patient’s critical parameters are taken and exchanged with a med-
ical service for study. The service may invoke a pharmacy service based on the
review to distribute new medication to the patient or to change and upgrade
the medication dose. Using ReSeP the authors defined two different adaptation
policies and validated it with TAS. The first policy was to retry twice in case of
service failure whereas the second policy selects an alternate service with similar
cost and invokes it. The experiment found that the first policy kept the costs
low but failed the reliability constraint while the second one passed successfully
albeit with high costs.

14 https://people.cs.kuleuven.be/∼danny.weyns/software/DeltaIoT/.
15 https://github.com/davimonteiro/resep.

https://people.cs.kuleuven.be/~danny.weyns/software/DeltaIoT/
https://github.com/davimonteiro/resep
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DEECo: Dependable Emergent Ensembles of Components. The authors
conclude that developing complex Self-adaptive smart CPS is a difficult chal-
lenge that current software engineering models and methods can only partially
solve. The appropriate architecture of a smart CPS adopts a holistic view that
considers the overall system goals, operating models that include system and
climate uncertainties, and the communication models that are being used. To
answer these issues the authors used DEECo [25]. It’s a model and framework
for creating sophisticated smart CPS. It also provides precise information about
the consequences of adaptation techniques in complex smart CPS. The Java
and C++ are included with the DEECo component model [24]. The C++
architecture is used for real-world deployment on embedded devices, like the
STM32F4 MCU. Java i.e. JDEECo, on the other hand, is used for adaptation
and autonomous components simulation. JDEECo simulates implementations
of hybrid network environments, mixing IP networks and mobile/vehicle ad-hoc
networks (MANETS/VANETS), as seen in current smart-* systems, by using
the OMNeT extensions INET and MIXIM. The project16 was created specifi-
cally for the purpose of developing and simulating dynamic Self-adaptive smart
CPS. Authors used a smart parking scenario to validate its usage.

Znn.com Rainbow [26] is a framework for designing a system with Self-adaptive,
run-time capabilities for monitoring, detecting, deciding, and acting on sys-
tem optimization opportunities. Znn.com is an N-tier-style web-based client-
server system. Rainbow uses the following guidelines to handle Znn.com’s Self-
adaptation at peak periods: (i) Changing the server pool size and (ii) switching
between textual and multimedia response [27]. The project17 has been built using
several different languages such as PHP, Shell, Brainfuck, Awk, HTML and Perl
etc.

Dragonfly. The authors [28] noted that when designing cyber-physical Systems,
we often encounter defiant systems that can evolve and collaborate to achieve
individual goals but struggle to achieve global goals when combined with other
individual systems. They suggest an integration strategy for converting these
defiant systems to also achieve the overall objectives. Dragonfly18 is a drone
simulator that allows users to simulate up to 400 drones at once. Simulations may
be performed in both regular and unusual conditions. The wrappers implement
the drones’ adaptive behavior and enable runtime adaptation. The simulator is
built using JAVA, AspectJ, HTML and Docker.

DARTSim. Cyber-Physical systems make use of Self-adaptive capabilities to
autonomously manage uncertainties at the intersection of the cyber and phys-
ical worlds. Self-adaptation-based approaches face several challenges such as:

16 https://github.com/d3scomp/JDEECo.
17 https://github.com/cmu-able/znn.
18 https://github.com/DragonflyDrone/Dragonfly.
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(i) sensing errors while monitoring environment, (ii) not being able to adapt
in time due to physical constraints etc., (iii) objectives that cannot be coupled
together in a single utility matrix such as providing good service vs avoiding
an accident. To evaluate and compare various Self-adaptation approaches aim-
ing to address these unique challenges of smart CPS, DARTSim was created in
2019 [29]. DARTSim is a simulation of an autonomous team of unmanned aerial
vehicles (UAVs) conducting a reconnaissance mission in a hostile and unfamiliar
area. The squad must follow a predetermined path and pace when attempting
to locate the targets. The lower it goes, the more likely it is to find targets, but
also the more likely it is to be killed by threats. The high-level Self-adaptation
decisions that the machine must make to achieve mission success are the sub-
ject of DARTSim. This sCPS has the “smartness” needed to conduct the task
autonomously thanks to the adaptation manager who makes these decisions.
When a mission detects at least half of the threats, it is considered effective.
The project19 outcome is available as a C++ library or via a TCP interface20.

4 Needs vs Available Tools – Critical Analysis

Existing tools/platforms vary in application and abstraction level. Their range of
capabilities varies from solving specific problem using specific type of IoT Device
(TRAPP) to a high-level generic ones that need non-trivial amount of additional
work to solve concrete tasks (e.g. OCCI-compliant, fully causal-connected run-
time models supporting sensor management). In this context, let us consider
existing tools and evaluate their potential to deliver Self-* mechanisms identi-
fied within the ASSIST-IoT pilots. In total, to satisfy all pilot requirements the
following Self-capabilities were identified: (1) Self-inspection (or Self-awareness),
(2) Self-diagnosis, (3) Self-healing, (4) Self-configuration, (5) Self-organization,
(6) Self-adaptation, and (7) Self-learning.

When considering available solutions, we verified whether their public source
code repositories were available and then focused on the fact whether the Self-
* capabilities were available out of the box or with minimal additional work
required. Following is a list of considered solutions with Self-* capabilities that
they support:

AMELIA (1) Self-inspection, (6) Self-adaptation, (7) Self-learning
OCCI (1) Self-inspection, (2) Self-diagnosis, (3) Self-healing, (6) Self-adaptation,

(7) Self-learning
PiStarGODA-MDP (1) Self-inspection, (6) Self-adaptation, (7) Self-learning
TRAPP (6) Self-adaptation, (7) Self-learning.
mRUBiS (1) Self-inspection, (2) Self-diagnosis, (3) Self-healing, (5) Self-orga-

nization, (6) Self-adaptation, (7) Self-learning
Lotus@Runtime: (1) Self-inspection, (2) Self-diagnosis, (3) Self-healing, (6)

Self-adaptation

19 https://github.com/cps-sei/dartsim.
20 https://hub.docker.com/r/gabrielmoreno/dartsim/.
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Intelligent Ensembles (6) Self-adaptation
CrowdNav and RTX (6) Self-adaptation, (7) Self-learning
DeltaIoT (1) Self-inspection, (2) Self-diagnosis, (5) Self-organization, (6) Self-

adaptation
TAS: (1) Self-inspection, (5) Self-organization, (6) Self-adaptation
DEECo (1) Self-inspection, (5) Self-organization, (6) Self-adaptation
Znn.com (1) Self-inspection, (6) Self-adaptation
Dragonfly (1) Self-inspection, (6) Self-adaptation
DARTSim (1) Self-inspection, (6) Self-adaptation

In summary, it is easy to observe that there is no available solution capable
of running heterogeneous Self-* IoT deployments that satisfies needs of all pilots
considered by ASSIST-IoT. Particularly, Self-configuration seems to be a missing
component. If no tool is able to provide common abstraction for detecting and
automatically connecting and configuring various devices that are present in an
IoT ecosystem it will be hard to imagine a widespread adoption of IoT-based
solutions. As a general note, most projects followed a very high-level approach to
Self-*, leaving implementation of components below MAPE-K loop (or analogous
solution) to the user. This is understandable, as most of them were not designed
with IoT deployments in mind, yet widespread adoption needs to be preceded
by developing a well-rounded solution that answers the common Self-* problems
on a more concrete level. There is a set of Self-* enabled tools that focus on
selected problems (for example TRAPP is specific to a car traffic management)
but they are very hard to generalize to conveniently handle as diverse scenarios
as worker safety, coordination between port machinery and detect defects in car
exhaustion system. Those expectations might sound very ambitious, yet this is a
general trend in Software Engineering, where Cloud-based solutions abstracted
away many of the hard problems to the point of few clicks in web-based UI. We
predict that the same is required in IoT based environments.

5 Concluding Remarks

The aim of this work is to consider how existing autonomic computing solu-
tions match actual needs of Internet of Things deployments. Proceeding in this
directions we have, first, outlined requirements related to autonomic computing,
in 4 real-world pilots, grounding the work to be completed in the ASSIST-IoT
project. Second, we have summarized state-of-the-art of existing ready-to-use
tools that are claimed to support implementation of autonomic systems. Finally,
we have matched the two, and critically analysed the results.

Overall, we conclude that there is no solution available that can address all
challenges that have been identified in ASSIST-IoT, in the context of apply-
ing Self-* in considered business scenarios and use cases. The existing solutions
would need to be adapted and combined to cover the set of required features.
Additionally, some of them would need to be verified for their adaptability and
performance in heterogeneous IoT ecosystems that are very ambitious target
environment, for the technological solutions. We foresee that ASSIST-IoT will
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not only give opportunity to verify a set of approaches proposed so far, in a
real-life deployments, but will also advance state-of-the-art in Self-* systems in
terms of providing Self-* capabilities for IoT-centric environments.
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24. Keznikl, J., Bureš, T., Plášil, F., Kit, M.: Towards dependable emergent ensem-
bles of components: the DEECo component model. In: Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software Archi-
tecture, pp. 249–252 (2012). https://doi.org/10.1109/WICSA-ECSA.212.39

25. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo: an ensemble-based component system. In: Proceedings of CBSE 2013,
pp. 81–90. Vancouver, Canada (2013)

26. Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation. Ph.D. Dissertation, TR CMUISR-08-113, Carnegie Mellon University
School of Computer Science, May 2008

27. Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the Rain-
bow self-adaptive system. In: 2009 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, Vancouver, BC, Canada, 2009, pp. 132–141
(2009). https://doi.org/10.1109/SEAMS.2009.5069082

28. Maia, P.H., Vieira, L., Chagas, M., Yu, Y., Zisman, A., Nuseibeh, B.: Dragonfly:
a tool for simulating self-adaptive drone behaviours. In: IEEE/ACM 14th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), pp. 107–113. Montreal, QC, Canada (2019). https://doi.org/10.
1109/SEAMS.2019.00022

29. Moreno, G., Kinneer, C., Pandey, A., Garlan, D.: DARTSim: an exemplar for
evaluation and comparison of self-adaptation approaches for smart cyber-physical
systems. In: 2019 IEEE/ACM 14th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS) (2019)

https://doi.org/10.1109/WICSA-ECSA.212.39
https://doi.org/10.1109/SEAMS.2009.5069082
https://doi.org/10.1109/SEAMS.2019.00022
https://doi.org/10.1109/SEAMS.2019.00022


Information-Analytical System to Support
the Solution of Compute-Intensive Problems
of Mathematical Physics on Supercomputers

Yury Zagorulko1(B) , Galina Zagorulko1 , Alexey Snytnikov2,4 ,
Boris Glinskiy3 , and Vladimir Shestakov1

1 A.P. Ershov Institute of Informatics Systems of Siberian Branch of the Russian Academy of
Sciences, Novosibirsk, Russia

zagor@iis.nsk.su
2 Institute of Automation and Electrometry of Siberian Branch of the Russian

Academy of Sciences, Novosibirsk, Russia
3 Institute of Computational Mathematics and Mathematical Geophysics of Siberian

Branch of the Russian Academy of Sciences, Novosibirsk, Russia
4 Novosibirsk State Technical University, Novosibirsk, Russia

Abstract. The paper presents an approach to the development of an information-
analytical system to support the solution of compute-intensive problems of math-
ematical physics on supercomputers. The basis of this system is a knowledge base
built on the basis of the problem domain ontology. This system provides effec-
tive information and analytical support to users thanks to detailed systematized
descriptions of (a) the methods and algorithms designed for solving problems on
a supercomputer, (b) software components implementing parallel algorithms and
fragments of a parallel code, and (c) parallel architectures anddevices used in them.
Moreover, the system contains information about publications and information
resources on this subject. These capabilities saves considerably the time required
for mastering the methods for solving compute-intensive problems of mathemati-
cal physics on supercomputers since all the necessary information is structured and
collected in one place, namely, in the knowledge base of the information-analytical
system.

Keywords: Supercomputers ·Mathematical physics · Intelligent support ·
Ontology · Information-analytical system

1 Introduction

Nowadays, there are many high-performance supercomputers which allow solving the
problems of great computational complexity. In particular, supercomputers are widely
used in the mathematical modeling of various physical phenomena and processes. How-
ever, researchers rarely use modern supercomputers to solve their problems. The reason
for this is that the researchers are not familiar with the supercomputer architecture and
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specifics of implementing the algorithms designed for solving their problems on super-
computers. Hence, it becomes urgent to create the means of intelligent support (IS) for
solving the compute-intensive problems of mathematical physics on supercomputers
[1].

We believe that the basis of this intelligent support should be the knowledge about the
problem domain (PD) under consideration, including information about themethods and
algorithms for solving the problems of mathematical physics and their implementations,
and the experience of solving these problems on supercomputers, presented in techniques
(manuals and textbooks), expert rules, and software components.

The first step to organizing the IS is providing information and analytical support
to the user, that is providing the user with convenient access to the information about
all the available methods and algorithms for solving problems on a supercomputer,
about the capabilities and limitations of each of them, and about their implementation
characteristics. An information and analytical Internet resource built on the ontology of
the problem domain could become a means of such support.

This paper is devoted to the development of a system providing the user with infor-
mation and analytical support for solving compute-intensive problems of mathematical
physics on supercomputers.

Section 2 presents a conceptual scheme of intelligent support for solving compute-
intensive problems on supercomputers. Section 3 describes the knowledge base of
the system proposed. Section 4 contains information about the implementation of
information-analytical Internet resource. Section 5 provides an overview of current
information resources that support solving tasks on supercomputers. The Conclu-
sion summarizes the intermediate results of the design and implementation of the
information-analytical system and outlines plans for the future.

2 Conceptual Scheme of Intelligent Support for Solving
Compute-Intensive Problems

The main idea of intelligent support for solving compute-intensive problems of mathe-
matical physics on supercomputers is to use the knowledge about this problem domain
presented in the form of ontologies [2] and the experience of solving these problems
presented as techniques (manuals and textbooks), expert rules and implemented software
components (fragments of parallel code).

Figure 1 shows a conceptual scheme of intelligent support for solving compute-
intensive problems designer for the client-server architecture.

The lower part of Fig. 1 shows the information-analytical system implemented on
the client side, and the upper part depicts the supercomputer system acting as a server
and used for solving the problem. (Note that in this scheme ordinary personal computers
can be used as a client.)

The information-analytical system (IAS) includes the following components (see
Fig. 1): a library of software components (SC library), a simulation module (SM), a
knowledge base (KB), an information-analytical Internet resource (IAIR) and an expert
system (ES).
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A knowledge base is the central component of the IAS since it is used by an
information-analytical Internet resource and an expert system. The KB includes the
ontology of the problem domain “Solving compute-intensive problems of mathematical
physics on supercomputers”, containing, in particular, the descriptions of computational
methods, parallel algorithms, parallel architectures and technologies, and ontologies of
several subject domain built on the basis of the first ontology and supplementing it with
entities from specific subject domains, as well as a set of expert rules (inference rules)
expanding the possibilities of logical inference on ontologies.

Fig. 1. Conceptual scheme of intelligent support for solving compute-intensive problems on
supercomputers.

The ontology-based IAIR is designed to provide the user with information support
in solving compute-intensive problems. It provides comprehensive information about
the available methods and algorithms, capabilities and limitations of each of them, char-
acteristics of their implementations. This resource is equipped with an advanced user
web interface providing content-based access to this kind of information (i.e. convenient
ontology-driven navigation through the IAIR content and search using the terms of the
problem and subject domains).
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The IAIR users have access to the information necessary to solve their problems: a
set of available methods and algorithms, descriptions of the features of their numerical
implementations, descriptions of the tools available for creating a parallel code, and
descriptions of available supercomputer architectures and programming features for
these architectures. Thanks to these capabilities, the IAIR user can considerably save on
the time required for in-depth acquaintance with the problem domain: all the necessary
information is well structured and collected in one place.

The expert system is designed to assist the user in building a parallel code to solve
his/her problem on a supercomputer. In addition to the knowledge base, the expert
system includes a user interface (UI), an inference engine (solver), and an interactive
code generation module.

The ES user interface is primarily intended to specify the problem the user wishes
to solve. Using the UI interactive capabilities, the user first selects from the drop-down
lists formed on the basis of the ontology an area of interest (currently, it is Astrophysics,
Geophysics or Plasma Physics) and a class of problems (for example, modeling a gas
discharge in a plasma). Then, the system invites him to specify the problem in more
detail, introducing parameters such as the dimension of the problem, the accuracy of
the solution, static/dynamic nature, geometry of the computational domain, boundary
conditions, and others. The user can either select the values of these parameters from
the drop-down lists, also formed on the basis of the ontology, or set them through the
data entry forms (in the case of numerical values).

The inference engine using the ontology, inference rules and specification of the
problem builds an optimal scheme for solving it.

The interactive code generator supports the creation of a parallel code that solves
the problem. This module substitutes the corresponding code fragments from the library
of software components (SC) into the scheme for solving the problem. If there is no
suitable component in the SC library, the user can substitute it himself, taking it from a
standard library or writing a new one.

The SC library includes code fragments implementing the necessary algorithms
executed on a supercomputer. The software components are provided with unified
specifications, and can thus be integrated into the common code.

The simulation module [3] evaluates the scalability of the resulting code. This mod-
ule allows the user, basing on the studying of the code behavior with different num-
bers of cores in model time, to choose an optimal number of computational cores for
implementing the code.

3 The Knowledge Base

The core of the knowledge base is the problem domain ontology “Solving compute-
intensive problems of mathematical physics on supercomputers,” which is described in
detail in [1, 4]. It includes concepts typical for any scientific domain, such as Problem,
Object of Research, Research Method, and Branch of Science. Specific to the problem
domain under consideration are such entities as Physical Object and Physical Phenom-
ena, Fundamental Laws of Nature, Physical Model, Mathematical Model, Equation Sys-
tem, Numerical Method, Parallel Algorithm, Target Architecture, Parallel Programming
Technology, and Software Product.
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In addition to the aforesaid basic concepts of the problem domain and relations
between them, the ontology described includes classes of a scientific activity ontology
serving to present additional information about the problem domain. For these purposes,
we use the classesBranch of Science, Activity, Publication, Event, Person, Organization,
Information resource, Geographic Location, and relations between them.

The knowledge base can include ontologies of several subject domains. For the IAS
described, we have developed ontologies for such areas of mathematical physics as
Astrophysics, Geophysics, and Plasma physics.

All the ontologies are presented in the OWL language [5]. Descriptions of ontologies
include descriptions of classes and their properties (T-Box), i.e. class attributes (Data
Properties) and binary relations (Object Properties) between class objects, as well as
class instances (individuals) forming the content of the knowledge base (A-Box) from
specific problems, methods, algorithms, software components and elements of parallel
architectures.

When developing ontologies, we used ontology design patterns. They are docu-
mented descriptions of proven solutions to the typical problems of ontological modeling
[6]. They are created to streamline and facilitate the ontology building process and to
help the developers avoid some highly repetitive errors of ontological modeling. The
patterns used relate to the so-called content patterns [7], defining schemes for describ-
ing the key concepts of the subject domains under consideration. Let us consider, as an
example, the use of patterns to develop the ontology of plasma physics. Figure 2 presents
a pattern for describing numerical methods.

Fig. 2. Content pattern for defining the Numerical Method.

From a meaningful point of view, this pattern is a semantic neighborhood of the cen-
tral concept, which in this case is the Numerical method class. For this class, properties
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(attributes and relations) are defined. Attributes are represented as Data Properties for the
properties whose values are of a standard data type (Name, Description, Stability, Abso-
lute Accuracy, Order of Accuracy, Computational Complexity) or as Object Properties
for the properties with values from an enumerated data type (Solution View, Mesh Type,
Computational domain Discretization, Variables View Approach). Relations define the
links between the objects of the class considered and the objects of other classes and are
represented as Object Properties.

As it was said above, the knowledge base also contains expert rules (inference rules)
allowing, basing on the problem specification, selecting the software components for
generating a code and determining the architecture on which it will be executed, and
vice versa. To describe the expert rules, the SWRL (Semantic Web Rule Language) [8]
is used.

To construct ontologies and inference rules, we used the ontology editor Protégé
5.2 [9]. Inference in the OWL ontologies is carried out on the basis of the axioms
and inference rules specified in the ontology by means of one of the reasoners (Pellet,
FaCT++, HermiT).

4 Implementation of Information-Analytical Internet Resource

Based on the ontology described above, an information-analytical Internet resource
was developed to support the solution of compute-intensive problems of mathematical
physics on a supercomputer. Figure 3 shows the page of the web interface of this IAIR.
On the left side of this page, the concepts of ontology organized in a hierarchy in a
general-particular relationship are presented. When you select a class, a list of objects
of the selected class and objects of its descendant classes are displayed in the central
part of the page. When you select an object from the list, you can see the description of
the properties of this object (values of its attributes and relations with other objects) in
a tabular or graphical form.

Figure 3 presents the page with a description of the Numerical Particle-in-Cell
Method. From the description, you can learn that this method can be used to solve prob-
lems in plasma physics, namely, to simulate certain phenomena and processes occurring
in plasma. This method uses theDistribution (of particles in the cells) function and helps
to solve the Vlasov equation and Boltzmann equation. The page also shows the main
properties of the Particle-in-Cell Method, such as Order of Accuracy, Computational
Complexity, Stability, Solution View, Mesh Type and others.

To create the resource, we used the technology for the development of intelligent
scientific Internet resources [10] providing a shell of an intelligent scientific Internet
resource, a set of basic ontologies and technique for constructing an ontology from
the basic ontologies. The technique involves the development of a system of ontology
concepts (T-Box) using the Protégé editor. Populating the ontology by specific objects
and their properties (A-Box) can be performed both in the same Protégé editor and in a
specialized data editor [11], which is part of the shell of the Internet resource.

Using this data editor, you can create, edit and delete the objects of ontology classes
and relations between them. Note that the data editor works under the control of an
ontology, which makes it possible not only to facilitate significantly the correct data
entry, but also to ensure their logical integrity.
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Fig. 3. The IAIR to support the solution of compute-intensive problems of mathematical physics
on supercomputers.

When creating a new object, the class required is selected in the visualized hierarchy
of ontology classes. After that, according to the description of the class presented in the
ontology, the data editor creates a form that includes the fields for entering the values
of the object’s attributes and its relations with other objects already specified in the
ontology (in the A-Box part). The types of these relations and classes of these objects
are defined by the corresponding ontology relations (represented in the T-Box). Based on
this knowledge and the current state of the A-Box, the data editor provides the user with a
list of objects with which the object being created can be connected by this relation. The
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user only has to select the desired object from this list. When specifying the attributes of
an object, the user can either set their values manually, or select from a list of possible
values (if a set of values is defined for this attribute in the ontology).

Note that in fact the data editor supports the use of the content patterns presented in
Sect. 3.

5 Related Works

At the moment, there are several information resources helping the users solve their
problems on supercomputers. Themost important of these are AlgoWiki [12], parallel.ru
[13], HPCwire [14] and the HPRC website [15].

The information resource AlgoWiki [12] is positioned as an open Internet-
encyclopedia on the properties of algorithms and peculiarities of their implementation
on various software and hardware platforms, ranging frommobile to exascale supercom-
puter systems. The stated goal of the AlgoWiki resource is to provide a comprehensive
description of each algorithm, which will help assess its potential in relation to a specific
computing platform. To do this, AlgoWiki provides a description for each algorithm, as
well as a description of its parameters required for both sequential and parallel numer-
ical implementation, indicating the most time-consuming parts. In addition, AlgoWiki
provides references to ready-made packaged solutions.

The parallel.ru web resource [13] is aimed at informing the users about the events
taking place in the supercomputer community (new technologies, software products and
tools for developing parallel code, conferences, new supercomputers, etc.). In addition,
this resource provides information and consulting services in high performance comput-
ing, such as training in parallel programming technologies, designing and configuring
cluster computing systems, providing computing resources for the real computing of
varying complexity and intensity, etc.

HPCwire [14] is positioned by its creators as the #1 news and information resource
covering the fastest computers in the world and the people who run them. This resource
is aimed at professionals in the field of science, technology and business interested in
high performance and data-intensive computing. HPCwire covers many different topics,
from the late-breaking news and emerging technologies in theHPC, to new trends, expert
analysis, and exclusive features.

There are a number of other resources that also provide users with access to high-
performance clusters and train the users to work on them. All this is done, as a rule, on
a paid basis. So, for example, using the site of the group of high performance research
computing (HPRCgroup) from theUniversity ofTexas [15], you can access three clusters
with a total peak performance of 947 TF and high-performance storage of 13.5 PB. The
HPRC group website also provides consultations, technical documentation and training
for the users of these resources.

The resources presented above systematize information related to supercomputers
and high-performance computing without using ontologies, which significantly reduces
their capabilities, both in terms of representing knowledge and data, and ease of access to
them. Representation of such information in the form of an ontology makes it possible to
provide not only effective content-based access to it, but also support the user in choosing
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optimal algorithms and parallel architectures when solving his applied problems due to
the possibilities of logical inference on ontology.

Note that there are a number of projects in which ontologies are also used to increase
the efficiency of using computing resources and to support the users solving their
problems on them.

For example, the authors of paper [16] propose to use ontologies for the formal
description of Grid resources. The authors developed an ontology for the Data Mining
knowledge area, which makes it possible to simplify the development of Grid applica-
tions focused on identifying knowledge from data. The ontology offers an expert in this
area a reference model for various data analysis tasks, methodologies and software that
has been developed to solve this problem, and helps the user in choosing the optimal
solution.

Paper [17] describes an approach using the ontology of the Grid resource metadata
and appropriate inference mechanisms, which provide a more efficient management of
the Grid resources.

It is also worth noting the fragmented programming technology and its supporting
system LuNA [18] designed for the automatic construction of parallel programs. This
system is based on the concept of active knowledge, which is close to ontology, i.e.
automatic or semi-automatic conversion of a set of expert knowledge about the subject
area into a parallel program, possessing different non-functional properties and working
correctly on a supercomputer. The LuNA system provides the language enabling you to
describe the algorithm for solving a problem in the formof a set of information-dependent
tasks, which allows them to be executed in parallel, dynamically redistributed across the
nodes of a multicomputer, providing dynamic load balancing on the nodes.

However, the LuNA system supports the user at the level of software implementation
and, in part, at the level of binding to the supercomputer architecture [2], but not at the
level of constructing a mathematical model.

6 Conclusion

The paper presents an approach to the development of an information-analytical system
designed to support the solution of compute-intensive problems of mathematical physics
on supercomputers.

It is important to note that the system being developed focuses primarily on support-
ing the researchers who cannot solve their professional problems neither on personal
computers as they lack computing power nor on supercomputers as the researchers
lack of proper knowledge and experience. Therefore, this system provides the user with
a detailed systematized descriptions of parallel algorithms and architectures and offers
him content-based access to the structured descriptions of available software components
implementing parallel algorithms and fragments of the parallel code, to the descriptions
of available parallel architectures and devices used in them, as well as to the publications
and information resources relevant to this problem domain.

Note that all this information is structured and systematized on the basis of an
ontology developed by specialists in ontological modeling together with specialists in
high performance computing, which ensures its high quality.



Information-Analytical System to Support the Solution 443

In addition, the information-analytical system includes an expert system that has to
help the user to build a parallel code solving his problem on a supercomputer.

The system is under active development. The purpose of the authors of the system is to
make it practical and useful. As noted above, the knowledge base plays an important role
in the users’ intelligent support; therefore, we pay special attention to its development.
At the moment, the ontology contains about 150 concepts (classes of ontology) and
600 objects including several dozen classes of problems, numerical methods, program
codes, and publications on this topic. The knowledge base also includes a set of dozens
of expert rules, which are constantly updated.
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Abstract. Current biology tasks are impracticable without bioinformatic data
processing. Information technologies and the newest computers provide the abil-
ity to automatically execute algorithms on an extensive data set and store either
strong- or weak-structured data. A well-designed architecture of such data ware-
houses increases the reproducibility of investigations. However, it is challenging
to create a data schema that aids fast search of properties in such warehouses.
This paper describes the method and its implementation for storing and process-
ing microbiological and bioinformatical data. The web platform stores genomes
in FASTA format, genome annotations in table files that indicate gene coordinates
in the genomes, structural and mathematical models to compare different strains
and predict new properties.

Keywords: Database · Process ·Web · Application · Architecture ·Microbial
data · Genome data

1 Introduction

The biotechnology industry companies demand a large amount of data sources to create
new or improve existing technology lines. Thus, the bioresource collections creation and
their improvement are essential tasks for advances in biotechnology.

Several bioresource collections are used to describe phenotypical properties of bio-
logical entries [1–3]. It is necessary to keep in mind that such collections contain both
phenotypic and genomic data. In the paper,we present aweb platform for storing biotech-
nologically significant properties of bacterial strains. These properties include pheno-
typical traits, environment conditions, growth rates, substrate consumption/production
rates, genomic data and others. These properties have different types and this factor
contributes into the complexity of searching procedure. It is important to collect the
information on all the steps of bacterial strain gathering and evaluation. We divide the
storing data into several levels:
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• The first level is bacteria isolation information—place of isolation, environment
conditions, and other characteristics.

• The second level is laboratory experiment data to determine the phenotype and prepa-
ration of strains for genome sequencing, analyzing a transcriptome (identification and
quantification of RNA molecules), analyzing a proteome (identification proteins and
their complexes).

• The third level is bioinformatical data.
• The fourth level is the data that are derivatives of existing data.

The information on levels 1–3may take up to 1 GBytes per one strain. The derivative
data amount on the 4th level may increase dramatically. The expected collection size is
about over 10000 bacteria strains. The data should be stored in a qualitative manner to
provide more reliable analysis and investigation reproducibility [4].

Some principles from life science were proposed for the construction of well-
structured systems like biocollections [5]:

• Findable – (meta)data is uniquely and persistently identifiable. Should have basic
machine-readable descriptive metadata;

• Accessible – data is reachable and accessible by humans and machines using standard
formats and protocols;

• Interoperable – (meta)data is machine-readable and annotated with resolvable
vocabularies/ontologies;

• Reusable – (meta)data is sufficiently well-described to allow (semi)automated
integration with other compatible data sources.

To follow these principles, we should provide requirements to the system and imple-
ment them. Some software products (such as openBIS [6] and SEEK [7]) are imple-
mented following these principles, however, they focus on storing of multi-project data
The openBIS stores metadata in the PostgreSQL database for saving the hierarchy of the
stored data. For storing data, it uses an additional service that works with the controller
service. It cannot index values and properties from data to aid the global search. Meta-
data in SEEK has a tabular type, but some knowledge and data cannot be described in
this format and it is rather inconvenient for bioinformatics pipelines. We have taken into
account the features of these systems and the FAIR principles to develop the web plat-
form and database for a biological research of biotechnologically significant bacterial
strains.

2 Web-Platform

2.1 Architecture

At the moment, the web platform architecture has four modules:

1. The data store is a network resource for storing the weak- and nonstructured files. A
JSON scheme indexes the files.
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2. The metadata server is a database for storing structured bacterial strain properties.
This module is designed to describe the bacterial strain, index the results, and group
results related to the single bacterial strain.

3. The web service core handles requests from the user interface and data processing
scripts by REST API protocol.

4. The user interface provides typical data representation formats.

2.2 The Data Store

The data store is the Network File System (NFS) resource. We developed the storing
structure, which represents bacterial strain data levels (described above). Following the
structure, the folder is created for each bacterial strain, and all results (genomic data,
annotations, models) are formed in a tree structure by subfolders.

5. raw_data – short nucleotide sequences (reads) presented as text in the system (FASTQ
format), which are generated by a laboratory sequencer.

6. assembled_genome – contains an assembled genome, which is presented as a text
(FASTA format). Also, this folder stores quality statistics. We use SPAdes [8] for
assembling.

7. annotations – contains annotations for assembled genome. This data describes
biological properties from a genome. The folder has the following subfolders:

a. Full-genome annotation files, which determine gene, locus, tRNA locations.
They are produced by PROKKA toolbox [9].

b. A list of found metabolic pathways in KEGG [10] and MetaCyc [11] terms.
c. Enzyme Commission numbers, which define a set of enzymes encoded in the

genome.
d. A “BLAST” folder stores comparison results with Silva [12] database to deter-

mine homologous genes by BLAST algorithm. This analysis can determine
taxonomic identity of the genome, and it has an essential value for searching.

e. structural_models – it describes structural (graph) models. There are lists of
predicted proteins in UniProt terms, genes in Entres Gene terms, Gene Ontology
terms, andmetabolic pathways in KEGG terms. These results are generated from
the ANDSystem toolbox [13]. They can be presented as interaction graphs, so
it is possible to inspect the strain metabolic pathways and compare them on
different strains.

8. math_models – it stores mathematical models generated using PROKKA and
ANDSystem result files. With these models, it is possible to perform computational
analysis, in particular, to modify parameters to model gene engineering experiments.

We performed each analytic steps using several toolboxes and databases. To combine
the execution of steps, we use the Bash scripts as analytical pipelines.

For structuring the result files for each section, the data store has annotation JSON
files. This file is readable for a human and a machine as well. The description of a strain
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is built by these JSON files. These files should have the reserved name “result.json” and
have the following structure:

2.3 The Metadata Server

The metadata server is designed for storing metainformation about bacterial strains – a
link between stored data divided into groups and additional information for improving
search. The server was developed as a PostgreSQL database.

• Strain table (strain) – it is a shortened description of a strain (name, a path to the
folder, environment conditions). A primary key is a strain number from the data store.

• Taxon table (taxon) – it is a table, which stores taxonomic identity of each strain.
There are three columns:

– strain_id – strain identification
– taxon_level – level of taxonomic identity (number)
– taxon_name – the name of taxon on “taxon_level”

• genomes – it is a table, which stores a path to genomes
• Annotation – it is a table with an annotation of a genome. It is presented as a GFF
table for each strain

• Genes – list of genes generated from gene network reconstruction
• Proteins – list of proteins generated from gene network reconstruction
• Gene Ontology network (go_net)
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– strain_id - strain identification
– go_id – gene ontology identification
– go_net_xml – gene network of Gene Ontology, XML text

• KEGG metabolic network (keg_net)

– strain_id – strain identification
– go_id – gene ontology identification
– kegg_net_xml – KEGG metabolic network, XML text

• Math_models - mathematical models in SBML format (without gene regulation).

2.4 The Web-Service Core

The web service was developed in Java language with Spring Boot framework. This
module’s task is to link the data store with the metadata server and to provide REST
API interfaces for users. The web service uses Hibernate library to work with Database
Management System (DBMS) and Spring-integration library to connect the data store
by SFTP protocol. Users can interact with web service by developing scripts in Python,
Bash, R, and other programming languages.

2.5 The Graphical User Interface

The web application is developed using the standard web technology stack (HTML,
CSS, JavaScript) and Vue.JS framework to construct the multi-component application.
This application interacts with the web service by RESTAPI protocol exchanging JSON
objects as messages and results.

3 Conclusion

Presented web platform for storing biotechnologically significant properties of bacterial
strains contains the information on more than 600 bacterial strains (total size > 1TB).
The platform provides links to genomes and processing results. The annotation JSON
scheme, the metadata server and relation tables are implemented.

Currently, we are working to improve the database structure and result visualization.
The bioinformatics researchers of Kurchatov Genomics Center are working with the
developed web platform (e.g., searching for new candidates for super production).

Funding. The work was funded by the Kurchatov Genomic Center of the Institute of Cytology
and Genetics of Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia)
according to the agreementwith theMinistry ofEducation andScienceRF,No. 075-15-2019-1662.
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Abstract. The objective is to find a Cellular Automata (CA) rule that
is able to cover a 2d array of cells by a minimum number of so-called
“Domino Tiles”. The aimed patterns are called min patterns. Two proba-
bilistic CA rules were designed using templates, small matching patterns.
For each of the 12 domino tile pixels a template is declared. If no template
is matching then a noise is injected in order to drive the evolution to a
valid (full covering) pattern. The First Rule shows the basic mechanism
of searching coverings. It evolves very fast stable sub–optimal coverings,
starting from a random configuration. The Second Rule is designed in a
way that it can find min patterns with a high expected value. The longer
the evolution time, the more probably a min pattern appears.

Keywords: Covering problem · Tilings · Matching templates ·
Probabilistic cellular automata · Asynchronous updating

1 Introduction

Our goal is to find a covering of the 2D space by a minimum of so-called domino
tiles using Cellular Automata (CA). Our problem is one of the diverse covering
problems [1] and it is related to the NP-complete vertex cover problem introduced
by Hakimi [2] in 1965. A vertex cover of an undirected graph is a subset of its
vertices such that for every edge (u, v) of the graph, either u or v is in the vertex
cover. This means that all vertices are fully connected/reachable through the
network of edges defined by the set of nodes of the vertex cover.

A minimum cover is a vertex cover which has the smallest number of vertices
for a given graph. This covering problem is closely related to the general domi-
nating set problem in graph theory [3]. Hakimi proposed a solution method based
on Boolean functions, later integer linear programming [4], branch-and-bound,
genetic algorithm, local search [5], and learning automata [6] were used, among
others. Other related problems are the Location Set Covering Problem [7] and
the Central Facilities Location Problem [8]. For covering problems there are a
c© Springer Nature Switzerland AG 2021
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lot of applications, in physics, chemistry, engineering, economy, urban planning,
network design, etc. For example, finding a minimum vertex cover in a network
corresponds to locating an optimal set of nodes on which to place controllers
such that they can monitor the data going through every link in the network.

Our problem is to cover the 2d -grid space by domino tiles. It is different
from the classical cover problem because sophisticated constraints have to be
taken into account, namely two adjacent cells (vertices) of the vertex cover have
to be used pairwise (forming a domino, the two kernel pixels of a domino tile),
and dominoes are not allowed to touch each other. The mapping of our problem
to classical algorithms appears not to be straight forward, therefore it was not
further investigated in this paper.

Our approach is to treat this special domino covering problem as a pattern
formation problem using non-overlapping or partially overlapping tiles. Concern-
ing tiling problems we cite [9]: “If we have as many copies as we like of a finite
set of shapes, can we fill a given region with them? Tiling problems are poten-
tially very hard ... For finite regions, this problem becomes NP-complete ... In
fact, tiling problems can be difficult even for small sets of very simple tiles, such
as polyominoes ...”. Our problem is important as it is a general optimization
problem minimizing the cost (number of invested tiles) and it maybe applied to
spin-systems where the spins try to keep a maximal distance of each other but
are not allowed to exceed a certain range.

For the problem of forming a Domino Pattern we yielded already good results
by using a probabilistic CA rule [10,12]. There the number of dominoes was max-
imized by using overlapping tiles. We want to follow the same general approach,
but now the problem is different because the number of tiles has to be min-
imized rather than to be maximized. In [11] a related approach was taken in
order to cover the space by sensor tiles which is useful to solve the wireless-
sensor-network covering problem. In this paper we incorporate new ideas, like
the injection of asymmetric noise (more zeroes than ones). Our work was also
inspired by Parallel Substitution Algorithms [13].

In Sect. 2, the domino covering problem is stated. In Sect. 3, two probabilistic
CA rules are designed and tested. The First Rule shows the basic concept. The
Second Rule finds min patterns, and its performance is evaluated for different
field sizes. Conclusions are given in Sect. 4.

2 Problem Statement

A given 2d cell array (also called field) shall be covered by so-called domino tiles
(Fig. 1(a)). A tile consists of square elements that we call “pixels”. We do not
call them “cells” in order to distinguish them from the cells of the CA field to
be covered.

A domino tile of size 3×4 consists of two edge-to-edge connected black pixels
(the kernel, the true domino) and 10 surrounding white pixels (the hull). For
short we will use the term “domino” for a domino tile and also for a true domino
when misunderstanding is implausible. Two types of dominoes are distinguished,
the horizontal oriented domino (DH) and the vertical oriented (DV ).
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Fig. 1. (a) Horizontal and vertical domino tile, (b) two cells of two domino hulls are
overlapping, marked by 2, (c) the cell marked by 3 is the overlap of three domino hulls,
(d) a case with 4 overlapping hull cells.

A pattern is a field where the cells are colored black or white. A domino
pattern is a pattern that contains domino tiles (at least one). A “valid” domino
pattern consists of domino tiles that completely cover the given field. We may
imagine that the pixels of the tiles paint the cells of the field. So a valid domino
pattern does not contain uncovered/unpainted cells.

The objective is to find a CA rule that can form a valid domino pattern that
covers a 2d field by a minimum number dmin of domino tiles. We call such a
pattern min pattern, in contrast to a max pattern that contains a maximum
number dmax of tiles.

We will design a CA rule for a square array of N = n × n cells with state
values ∈ {0, 1}. It is enclosed by border cells of constant value 0. So the whole
array is of size (n + 2) × (n + 2). In our graphical representations, color white or
green represents value 0, and color black or blue represents value 1.

It is allowed –and often necessary for a valid solution– that hull pixels of
different domino tiles overlap with each other. For a valid pattern we do not
require that border cells are covered, but they may be covered by hull pixels.
The possible levels of overlapping, ranging from v = 2 to v = 4, are displayed in
Fig. 1(b–c–d).

The number of dominoes is denoted as d = dH +dV , where dH is the number
of horizontal dominoes and dV is the number of vertical dominoes. A further
requirement could be that the number of domino types should be equal (or
almost equal) (balanced pattern): dH = dV if dmin is even, and dH = dV ± 1 if
dmin is odd, where dmin(n) is the number of dominoes of a valid min pattern.

To summarize it briefly, we want to solve the Minimal domino covering
problem: Find a valid coverage with a minimum number of domino tiles. The
domino tiles are allowed to overlap and to cover border cells. By contrast, in
our former work on dominoes we addressed the Maximal domino covering
problem: Find a valid coverage with a maximum number of domino tiles.

Some valid 7 × 7 patterns are depicted in Fig. 2. We search for min patterns
such as pattern (a) that covers all the 49 cells in the square by 5 dominoes. We
can observe there some cells with overlap level v = 2. Another option is the search
for max patterns like (g, h) that was already investigated in [10,12]. For 7 × 7,
the minimal number is dmin = 5 and the maximal number is dmax = 10. In this
example, all border cells in the patterns (a) and (d) are not covered, whereas all
of them are covered in (g) and (h). Note that if we shift the dominoes in pattern
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Fig. 2. Samples for valid (full covering) patterns of 7× 7 fields. (a) Min pattern (with
a minimal number of dominoes). (g, h) Max pattern (with a maximal number of domi-
noes). The number of dominoes is 5 for (a), 6 for (b, c), 7 for (d), 8 for (e), 9 for (f), and
10 for (g, h). The patterns (a, b, d, e, f) are balanced (difference between the number
of horizontal and vertical dominoes is at most 1). No balanced max pattern exists (to
be proved). – The numbers (aligned to the right) specify the cover level, also depicted
in the border cells.

(a) and (d) in direction to the borders we can yield patterns with cover level
v = 1 only.

The Number of Dominoes in Min Patterns. A formula giving the maximal
number of dominoes that can be placed in an n×n square was already presented
in [12]. We have no formula yet for the minimal number of dominoes that can
cover the square without gaps. For some n it seems to be easy to find a min
pattern, for instance 3×4 tiles can cover a 12×12 field without overlap. But for
other field sizes it is not straightforward. One idea is to partition the space into
sub-fields, cover them separately, and then join them. For fields up to 12 × 12
the numbers of min/max dominoes are:

n 2 3 4 5 6 7 8 9 10 11 12

dmin 1 1 2 4 4 5 6 9 10 12 12

dmax 1 2 4 6 8 10 13 16 20 24 28

.

3 Design of the CA Rules

Cell State. We use the cell state z = (s, h), where s ∈ {0, 1} is the main state
used to represent the pattern and h is the hit value that stores the number of
template hits defined later in more detail.
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Fig. 3. (a) The 12 templates of the horizontal domino tile. The value of the template
center (marked, the so-called reference pixel) is used for cell updating if all other tem-
plate pixel values match with the corresponding cell values of the current configuration.
(b) Template A9 represented as an array with Don’t Care (#). The templates size was
reduced from (5 × 7) to a matching window of size (5 × 5).

Updating. In our previous work with related problems [10–12] we achieved good
results by the use of a probabilistic rule and asynchronous updating. So we will
follow this line. Nevertheless, several experiments with synchronous updating
were carried out. The used probabilistic rules could also form domino patterns,
but the time needed was longer. Furthermore, it was more difficult to drive the
evolution to a min or max pattern.

Several tests showed that the later defined rules were robust against different
updating orders, even the common fixed sequential order. Therefore the problem
could effectively be mapped onto a multi-processor system by choosing updat-
ing sequences that minimize the communication between processors. A detailed
analysis is a topic for further research.

3.1 Templates

The idea is to modify the current CA configuration step by step using templates
such that domino patterns evolve out of an initial random configuration.

Templates are local matching patterns that can be seen as another class of
tiles (we may call them template tiles). The insight is that a valid domino pattern
is a field than can totally be covered by non-overlapping or overlapping template
tiles without gaps.

We could find the template tiles by inspection (sliding window) of a given set
of valid domino patterns. However we can derive them directly from the domino
tiles (Fig. 3(a)) in a systematic way. For each of the 12 tile pixels i (marked in
red, carrying the domino tile pixel value dval(i)), a template Ai is defined. A
template can be seen as a copy of the tile, shifted in space in a way that the
pixel i corresponds to the center of the template.

In the computation we represent a template Ai as an array of size (a′ × b′)
of pixels, where a′ = 2a − 1, b′ = 2b − 1, and (a × b) is the size of the tile (its
bounding box). Our horizontal tile is of size (3 × 4), thus their templates are of
size (5×7) maximal (larger because of shifting). The pixels within a template are
identified by relative coordinates (Δx,Δy), where Δy ∈ {−(a − 1), . . . , a − 1},
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Δx ∈ {−(b−1), . . . , b−1}. The center pixel (Δx,Δy) = (0, 0) is called “reference
pixel”. Each template pixel carries a value val(Ai,Δx,Δy) ∈ {0, 1,#}. The value
of the reference pixel is called “reference value”, refval(Ai) = val(Ai, 0, 0) ∈
{0, 1}. Its value is equal to the red marked value of the corresponding tile pixel,
refval(Ai) = dval(i). The reference value is

refval(Ai) = 1 for i = 1, 2, 13, 14. (value 1 of the domino kernel pixels)
refval(Ai) = 0 for i = 3..12, 15..24. (value 0 of the domino hull pixels).

The symbol # represents “Don’t Care”, meaning that a pixel with such a
value is not used for matching (or does not exist, in another interpretation).
Pixels with a value 0 or 1 are valid pixels, their values are equal to the values
derived from the original tile. Some templates can be embedded into arrays
smaller than (a′ × b′) when they have “#” at their borders. Note that the valid
pixels are asymmetrically distributed in a template because they are the result
from shifting a tile.

Many of these templates are similar under mirroring, which can facilitate an
implementation. For the vertical domino a corresponding set of 12 templates is
defined by 90◦ rotation (A13 − A24).

The templates A7 − A12 show white pixels that are not used because the
template size (for the later described matching process) was restricted to (5×5).
As an example, the reduced template A9 is marked in Fig. 3(b) by the blue
square. The implementation with these incomplete templates worked very well,
but further investigations are necessary to prove to which extent templates can
be incomplete.

We need also to define the term “neighborhood template” that is later used
in the matching procedure. The neighborhood template A∗

i is the template Ai

in which the reference value is set to #, in order to exclude the reference pixel
from the matching process.

3.2 Hit Value

Prior to the actual rule (changing the main state s) the hit value h is determined.
At the current site (x, y) all neighborhood templates are tested and the number
of hits is stored.

The neighborhood templates A∗
i are tested against the corresponding cell

neighbors B∗(x, y) in the current (5×5)–window with its center at (x, y). Thereby
the marked reference position (Δx,Δy) = (0, 0) of a neighborhood template is
aligned with the center of the window.

It is possible that several neighborhood templates match (then tiles are over-
lapping), but there can be no conflicts because then all templates have the same
reference value as derived from the tile. As no conflicts can arise, the sequence
of testing the templates does not matter.

The hit value h(x, y) is given by:

• 0, if no neighborhood template matches within the cell’s neighborhood B∗.
This means that cell (x, y) is not covered by a tile pixel.
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• 1, if exactly one neighborhood template A∗
i matches with refval = 0.

• 2 – 4, if such a number of neighborhood templates A∗
i match with refval = 0.

This means that 2 – 4 domino tiles are overlapping.
• 100, if exactly one neighborhood template Ai ∈ {A1, A2, A13, A14} matches

with refval = 1. The number 100 was arbitrarily chosen in order to differ-
entiate such a hit from the others. The reason is, that the whole gained
information (hit number and refval) has to be available in the subsequent
main rule. So the hit value is a sort of encoding of the number of matches in
combination with the reference value.

Remark. The hit number h(x, y) holds the actual value after matching with all
the neighborhood templates. Because of the random sequential updating scheme,
the h-values in the (x, y)–neighborhood may not be up-to-date and may carry
depreciated values from a former micro time-step evaluation. Nevertheless, the
h-values correspond mainly to the cover levels v, especially when the pattern
becomes more stable. This inaccuracy introduces some additional small noise
which can even speed-up the evolution. And when the pattern becomes stable,
the hit number is equal to the cover level, ∀(x, y) : h(x, y) = v(x, y).

3.3 Processing Scheme

All cells are sequentially computed and updated at every time-step t. A new
generation at time–step t + 1 is then declared after N cell updates (sub-steps)
during the compute interval between t and t + 1. The processing scheme is:

1. The next cell at position (x, y) (according to an arranged random or deter-
ministic order) is selected for computing. Unless otherwise stated, we will use
a random order which is re-computed for each new time-step.

2. The new hit value h′(x, y) (number of template matches) is computed and
immediately updated (h ← h′). It is then used in the following main rule to
compute the new main state s′. For our later defined rules it is not really
necessary to store the hit value, rather it is a temporary information used
to evaluate the main rule. Nevertheless, it is useful to store the hit value for
more extraordinary rules and for debugging. In addition, the hit value is close
to the cover level, especially when the pattern is not very noisy and converges
to a stable pattern.

3. The main rule f = s′(x, y) is evaluated defining the new main state taking
into account the main states of cell (x, y) and its neighbors, the actual hit
value h(x, y) and the center value (refval) of a matching template in the case
of a hit. A more detailed explanation is given later. Then the main state is
immediately updated (s ← s′).

3.4 The First Rule

The main working principle is shown by the First Rule. It yields valid non-
optimal domino patterns with a different number of dominoes ranging between
minimum (very seldom) and maximum (seldom). Then following, the Second,
Minimizing Rule is designed that can produce min patterns with a high expec-
tation.
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The Sub-Rule A of the First Rule. The main basic working principle will
be shown by the basic rule A. We assume that the hit value h(x, y) was already
computed at the site (x, y) just before. The basic rule A is:

s′(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

s(x, y) default (a)
0 if (h > 0) and (h �= 100) (b1)
1 if (h = 100) (b2)
random ∈ {0, 1} with probability π0 if h = 0 (c)

.

The new state is set to 0 if the hit value is h = 1, 2, 3, 4 (b1). This means at
least one neighborhood template matches with reference (center) value 0. The
new state is set to 1 if the hit value is h = 100 (b2). This means a match of
a neighborhood template with reference value 1. In other words, if a complete
template match is found, the cell’s state remains unchanged, and if only the
reference value in the center is wrong, it is adjusted. Noise is injected, if there is
no hit (c), in order to further the evolution.

We can observe four classes of patterns during an evolution.

– class I (valid stable). The dominoes are covering the square totally without
gaps and the reached pattern is stable.

– class II (partially stable). The dominoes are covering the field not totally
with at least one gap. Gap cells are toggling their state values (0 ↔ 1) due
to the injection of noise that never ends. However, such patterns consist of
dominoes which do not change (neither position, nor orientation or number).
As the gaps do not disappear through the noise, we may interpret such a
situation as a live-lock.

– class III (valid transient). Such a pattern is valid but not stable. It appears
and disappears during an evolution.

– class IV (invalid transient). Such a pattern is invalid and not stable. It
appears and disappears during an evolution. It can be totally noisy or partially
noisy showing some domino tiles.

When we test Sub-Rule A on square fields we observe a fast convergence to class
I and class II patterns only. Rule A was tested on a (7 × 7)–square with 1000
runs under the time limit Tlimit = 200 with different probabilities. The number
of evolved dominoes allowing up to 4 gaps was:

dominoes 5 6 7 8 9 10

frequency [1/1000] 1 13 219 510 236 21 π0 = 1 tavrg = 5.47

frequency [1/1000] 0 18 255 512 202 13 π0 = 0.5 tavrg = 6.47

frequency [1/1000] 0 20 234 522 213 11 π0 = 0.25 tavrg = 9.79

The higher the probability π0 the faster the aimed patterns evolve. There-
fore we may choose the highest possible probability π0 = 1.0. The number of
dominoes lies between minimum (very seldom) and maximum (seldom). For all
the three examples the average number of evolved dominoes davrg was close to
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8. An evolved pattern remains stable or partially stable because the rule detects
complete tiles everywhere except for gaps. So there will be noise injected only
at gaps which does not influence the already found dominoes [12] if the gaps are
isolated. As we aim at patterns without gaps, the following additional rule can
solve this problem.

The Sub-Rule B of the First Rule. We define an additional sub-rule B that
will turn class II patterns into class I patterns. Analyzing the class II patterns
of Rule A we observe uncovered toggling gaps with hit value h = 0. The idea
is to disseminate the “gap information” to the cells in the von-Neumann neigh-
borhood. If a cell in the neighborhood detects a hit-zero cell, it will produce
additional noise in order to drive the evolution to a stable pattern without gaps.
Thereby already found dominoes in a class II pattern can be destroyed.

The sub-rule B is:

s′′(x, y) =
{

s′(x, y) default
random ∈ {0, 1} with probability π1 if ∃h(x ± 1, y ± 1) = 0

Test of the First Rule (A Followed by B). The whole rule was tested
on a (7 × 7)–square with 1000 runs under the time limit Tlimit = 200. Several
probabilities were checked, best convergence was obtained for π0 = 1.0 and
π1 = 0.15. All patterns reached stability (class I). However, no min pattern with
5 dominoes evolved. The distribution was:

dominoes 5 6 7 8 9 10

frequency [1/1000] 0 1 24 311 586 78

The average number of dominoes evaluates to davrg = 8.71. The average
needed time was tavrg = 22.1 (min 2 − max 189).

We can conclude that this rule evolves very fast valid domino patterns, but
it is very unlikely that a min pattern appears. Therefore we needed to design
a modified Second Rule, that can evolve min patterns with a high expectated
value.

3.5 The Second Rule: Minimizing the Number of Dominoes

The Second Rule shall evolve min patterns with a high probability. The designed
rule consists of Sub-Rule C followed by Sub-Rule D.

Sub-Rule C. Rule C is a modified version of Rule A. The idea is to inject
more “white” than “black” noise when there is an uncovered cell (h = 0). Why?
Because min patterns contain much more white (0) than black (1) colored cells.
A min pattern with d dominoes contains approximately 10d white and 2d black
cells, the ratio as it is within a single domino tile. This means that a min pattern
contains near to 1/5 black cells.



462 R. Hoffmann et al.

The sub-rule C is:

s′(x, y) =

⎧
⎨

⎩

s(x, y) default
1 with probability π00 if (h = 0) and (s = 0)
0 with probability π01 if (h = 0) and (s = 1)

This rule injects black noise with probability π00 if the uncovered cell is white,
and injects white noise with probability π01 if the uncovered cell is black. The
chosen probabilities (for best results) were π00 = 0.1 and π01 = 0.9. At the
moment we cannot explain properly why the best working ratio 1/9 is higher
than the ratio 1/5 prompted before.

Note that Rule C is a more general form of Rule A. Therefore it can emulate
rule A by setting π00 = π01 = 0.5π0. As Rule A alone is not effective enough to
form min patterns, the additional sub-rule D was defined.

Sub-Rule D. The idea for this rule is to inject noise where there is a high
overlap. Several attempts were made of reacting on that condition with noise,
like using different probabilities for different hit values, or determining the hit
density in a local window. The result was, that a relatively simple condition
(together with rule C) was very effective, although more complex conditions
may slightly improve the performance.

The rule D is:

s′′(x, y) =
{

s′(x, y) default
1 with probability π2 if (h = 2)

Test of the Second Rule (C Followed by D). The whole rule was tested
on a (7 × 7)–square with 1000 runs under the time limit Tlimit = 1000. The
best performing probabilities found were used, π2 = 0.07 and π00 = 0.1 and
π01 = 0.9. The evolved patterns belong to class I (valid stable) and class III
(valid transient). 35 out of 1000 with 5 or 6 dominoes are stable, the remaining
are transient. 136 min patterns were found, 22 of them were stable and 114 were
transient.

The distribution of the found patterns is:

dominoes 5 6 7 8 9 10

frequency [1/1000] 136 695 166 3 0 0
.

The average number of dominoes evaluates to davrg = 6.03. The average time
needed was tavrg = 358.2 (min 2 − max 993). Compared to the First Rule, the
Second Rule is able to evolve min patterns with a high expectation rate (13.6%
for this test). Comparing the time, the Second Rule needs 359.2/23.16 = 15.5
times more to find a target pattern within the range given by the corresponding
average number of dominoes davrg = 6.03.

Figure 4 shows the evolution of a stable min pattern with 5 dominoes. During
the evolution, the first valid pattern with 7 dominoes appears at t = 26, it is a
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Fig. 4. Example of an evolution of a 7×7 min domino pattern. The number of appearing
dominoes is fluctuating. Valid patterns contain no cells with cover level v = 0. The
first valid pattern appears at t = 26 but it is not minimal. The second valid pattern
appears at t = 31, it is minimal and stable. Coloring: gray (border), 0 (s = 0, v = 0),
1 (s = 0, v = 1), blank (s = 0, v > 1), full black square (domino part, s = 1, v = 1),
small black square (s = 1, v = 0).

transient. Then at t = 31 a min pattern appears that is stable. No more noise is
injected because the cover level is v = 1 everywhere.

The percentage of finding an optimal min pattern can be increased by increas-
ing the time limit Tlimit as the following table shows.

dominoes 5 6 7 8 9 10

freq. [1/1000] 136 695 166 3 0 0 Tlimit = 1000, Nrun = 1000

freq. [1/1000] 501 497 1 0 0 0 Tlimit = 5000, Nrun = 1000

freq. [1/100] 80 20 0 0 0 0 Tlimit = 20000, Nrun = 100

3.6 Performance for Other Field Sizes

The Second Rule was also tested on other field sizes under different time limits
(Table 1). For sizes up to (5×5) all runs yielded optimal min patterns. For larger
fields, min patterns were found among others with a high expectation rate. The
average number of dominoes is davrg. Only min pattern were found for n ≤ 5,
then davrg = dmin yields. For n ≥ 6 not only min patterns were found but the
difference davrg − dmin is small. This means that the probability to find a min
pattern is high. The last column gives the distribution of the dominoes with a
certain number. In the case 11 × 11, no min pattern with 12 dominoes (0 × 12)
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Table 1. Simulation results (average number of dominoes, average time) for different
field sizes under certain time limits. The average number of evolved dominoes reaches
the minimum or comes close to it.

was found under this time-limit. For larger filed sizes the effort to find an optimal
min pattern increases more and more. To find an optimum for large n needs a
distributed implementation on a parallel computing system. Further work has
to be done to find the time-complexity in theory and through more experiments.
Another idea is to split the problem into sub-problems and then join the partial
solutions (divide and conquer).

4 Conclusion

We designed two CA rules to find sub-optimal and optimal min domino pat-
terns. The first rule evolves very fast stable valid patterns, with an average
number of dominoes lying between minimum and maximum. The underlying
design principle is methodical and based on a set of templates derived from all
pixels of a domino tile. The second rule injects asymmetric noise, cells are col-
ored more often white than black, and this rule tries to alter cells with a high
overlap. It can find min pattern with a high probability although the time may
exceed the available processing resources. In future work, the CA rules could be
mapped onto parallel processing systems, compared to vertex cover algorithms,
or a divide-and-conquer strategy could be considered.
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Abstract. In this paper, the Generalized Extremal Optimization
(GEO) algorithm is combined with the Sandpile model to localize the
airborne contaminant source based on the contaminant concentration’s
spatial distribution. The GEO algorithm scans the proposed model’s
solution space to find the contamination source by comparing the Sand-
pile model output with the contaminant distribution over the considered
area. The comparison is made by evaluating the assessment function
considering the differences between the distribution of the sand grains
from the Sandpile model and contaminant concentrations reported by
the sensor network monitoring the considered area. The evolution of the
sand grains in the Sandpile model is realized by the cellular automata
cells. The proposed GEO-Sandpile localization model efficiency is ver-
ified using the synthetic contaminant concentration data generated by
the Gaussian dispersion model: conducted test cases presented in this
paper covered the various wind directions, and release source positions.
Obtained results support the statement that the proposed algorithm can,
with acceptable accuracy, localize the contaminant source based only on
the sparse-point concentrations of the released substance.
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1 Introduction

Emissions and storage of toxic materials pose a constant risk of releasing them
into the atmosphere, threatening human health and the environment. The most
dangerous are cases when the dangerous level of the contaminant of unknown
origin is detected. Knowledge about the release source coordinates and esti-
mated release rate allows in a short time to undertake appropriate steps to
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prevent further contamination from spreading into the atmosphere. In recent
years, many scientists have been dealing with locating the source of contami-
nation in open areas. Existing algorithms that can cope with the task can be
divided into two categories. The first ones are based on the backward approach
and are dedicated to the open areas or a continental-scale problem. The sec-
ond are based on the forward approach. In this case, the appropriate dispersion
model parameters are sampled (among them source location) to chose the one
giving the smallest distance measure between the model outputs and sensors
measurement in the considered spatial domain. Such an inverse problem has no
unique analytical solution but might be analyzed with probabilistic frameworks,
as the Bayesian approach, where all searched quantities are modeled as ran-
dom variables. In [6,17,31] authors presented the reconstruction of the airborne
contaminant source utilizing the Bayesian approach in conjunction with Markov
Chain Monte Carlo, Sequential Monte Carlo, and Approximate Bayesian Compu-
tation algorithm. A comprehensive literature review of past works on solutions
of the inverse problem for atmospheric contaminant releases can be found in
(e.g.[14]). The offered algorithms require multiple runs of the appropriate dis-
persion algorithm simulating contaminants’ transport in the atmosphere. Unfor-
tunately, many models are computationally expensive, and a single simulation
can take many minutes, hours, or even days. This is problematic because, in real-
life situations, it is crucial to quickly estimate the most probable location of the
contamination source based solely on the sensor network’s concentration data.
Recently, artificial neural networks have been proposed to simulate contaminant
transport in the urbanized area [29,30].

This study proposes a new tool for predicting the source of contamination
based on the registered substance concentrations. This approach is based on
applying the Sandpile model, mapping a given problem area by sand falling
within a limited space. The idea is to check does the Sandpile model can
be applied to simulate the airborne contaminant transport. The Generalized
Extremal Optimization (GEO) algorithm is used to indicate the point of drop-
ping the sand grains as an algorithm capable of dealing with any combination of
model variables. In the proposed model, the GEO algorithm searches the solution
space to find the contamination source. The Sandpile model was used to evaluate
the assessment function, simulating the spread of contamination in the studied
area. The proposed algorithm’s operation was verified using the synthetic data
of the contaminant concentration over the simulation domain. The synthetic
spatial distribution of contaminant was generated using the Gaussian dispersion
model (e.g.[34]). The Gaussian plume model is the most common air pollution
model. It is based on a simple formula describing the three-dimensional concen-
tration field generated by a point source under stationary meteorological and
emission conditions. Despite many simplifications, the Gaussian plume model is
used up to now by many researchers.

The paper is organized as follows. The following section presents the Sandpile
model and the idea of its application. Section 3 outlines the concept of the GEO
algorithm. In Sect. 4, the cellular automata (CA) for the simulation model is
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introduced. The simulation model is widely described in Sect. 5. Section 6 brings
closer the Gaussian dispersion model used to generate the synthetic data. Results
are described in Sect. 7. The last section concludes the paper and presents the
future prospects.

2 Sandpile Model

The Sandpile model is a prototypical deterministic model for studying self-
organizing criticality. In this model, proposed by Bak, Tang, and Wiesenfeld
in 1987 [4,7,16], the steady-state (critical state) is collapsing at some point in
time. The simplest Sandpile model starts with a single column configuration.
Then, in each step, if a column has at least two more grains than its right-hand
neighbor, it passes one grain. It has been proved [13,18] that this model con-
verges only to one configuration, in which the evolution rule cannot be applied in
any column. This configuration is called a fixed point. All possible arrangements
obtained from the columns’ initial configuration by using the evolution rule are
characterized in the space of a two-dimensional grid [10].

When describing the Sandpile model, a simple mental model with rice can
be used [11]. Let us consider a pile of sand on a small table. Dropping another
grain on the pile may cause avalanches that slide down the slopes of the pile. The
dynamics of the resulting avalanche in such a situation depend on the steepness
of the slope. During the avalanche, the sand will rest somewhere on the table.
If the avalanche continues, some of the grains are falling down the edge of the
table. If one grain is added to the pile, on average, it increased the slope. In the
long perspective of grain-spreading, the slope evolves to a critical state. At that
moment, a single grain dropped into a pile determines a massive avalanche. This
thought experiment suggests that the critical condition is very prone to stimuli
because a small change (internal or external) can have a significant effect [15].

In the first stage, the class of graphs G = (V ∪ {s}, E) on which the model
is based is defined. G must be finite, unoriented, connected, and loopless. It can
have multiple edges and include a distinctive vertex called a terminal vertex.
The set of graphs is marked as G. The notation u ∼ v is used to denote the
neighborhood of G, e.g., u, v ∈ E. The configuration of the Sandpile G model
is the vector η = (ην , ν ∈ V ) ∈ Z

|V |
+ . The number ην represents the number of

sand grains present at the vertex ν in the configuration η. When this number
exceeds a certain threshold, the top is said to become unstable and descends
(see, Fig. 1), giving one grain of sand to each of its neighbors. The probability of
a neighbor obtaining a grain from an unstable vertex is selected from the interval
p ∈ (0, 1). The terminal apex plays a special role, as it can accept an infinite
number of grains and never fall [7]. When the stack’s local slope due to the
difference in height between the top and the adjacent vertex exceeds the local
threshold, the grains redistribute, allowing one grain to fall to another top. It
is done by reducing the height of one pile and increasing the height of adjacent
piles. At the next iteration of sand pouring, the local threshold is reselected.
This procedure is repeated until all the vertices are stable, at which point a new
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Fig. 1. The avalanche operation of the Sandpile model. Dropping seeds create a slope;
after crossing the threshold equal to 3, the slope is falling (avalanche effect) [10].

grain will be introduced on the left side. The configuration η = (ην , ν ∈ V ) is
stable when ην ≤ dG(ν), where dG(ν) is the degree of vertex ν in G [1,7].

In our paper, we used an asynchronous sequential approach because seeds
dropping in one point could induce the avalanche, which generates changes in
several points recursively to the stable state of the SandPile Model in CA. Dur-
ing the avalanche, the sand seeds go down with direction according to avalanche
direction. However, when seeds may go down in a few direction, then the
direction is selected with probability proportional to the slope’s height in such
direction.

The Sandpile model is a model that can be easily modified and adapted to the
problem under study. There are one- or two-dimensional variations with open,
closed, or infinite boundaries. This model is widely used in such fields as physics,
economics, mathematics, theoretical computer sciences, etc. [2,5,19,21,23]. It
has also been used for cellular automata, information systems, calculating earth-
quakes [3], studies of river sediments [24], the spread of forest fires [22], studies
of the Earth’s magnetosphere [8], or in studies of precipitation distribution [1]
and also to diffusion problem (like Lattice-Gas, Lattice-Boltzmann, etc.) [9].

3 GEO Algorithm

Fabiano Luis de Soussa and Fernando Manuel Ramos proposed in 2002 a Gener-
alized Extremal Optimization (GEO) [25] algorithm designed to operate on bit
strings capable of dealing with any combination of continuous-discrete or integer
variables. GEO algorithm can be used in a multi-modal space, discontinuous, and
subject to any constraints. It was proposed as a stochastic method developed
to solve optimization problems in complex design spaces. The GEO algorithm
is a type of evolutionary algorithm which, like a genetic algorithm or simulated
annealing, is a global search metaheuristic but has only one free parameter to
adjust. It is based on the natural evolution model and was developed specifically
for the use in complex optimization problems [12,26,27,33]. GEO is based on
the theory of self-organizing criticality to explain complex systems’ behavior in
fields such as biology, geology, economics, and others. This theory assumes that
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large interactive systems evolve naturally to the critical point. A single change of
one system element generates the so-called avalanches that can reach any num-
ber of elements. The power law describes the probability distribution of the size
of avalanches s in the form: P (s) ∼ s−τ , where τ > 0. It means that the like-
lihood of smaller avalanches is greater than that of larger avalanches. However,
avalanches of the entire system’s size may occur with high probability [26,27].

Self-organizing criticality can explain features of systems such as natural
evolution. It can be proved by a simple model assuming that the selected species
are placed next to each other on a line with periodic boundary conditions. The
ends of these lines are joined in a circle. Each species has a randomly assigned
suitability number with an even distribution range of (0, 1). The species least
adapted (lowest suitability value) is forced into a mutation and then assigned
a new random number. The change in the adaptation of the weakest species
affects the neighbors’ efficiency, as they have also assigned new random numbers,
even if well adapted. After several iterations, the system evolves to the critical
point where all species are beneficial above the established critical threshold.
However, the dynamics of such a system ultimately cause the number of species
to fall below the critical threshold in avalanches. The reason for this is the worst
species mutation in each iteration. As evolution progresses, the species being
poorly adapted are forced to evolve. In this case, starting with a population with
an even, random distribution of adaptation, the system will evolve and eventually
reach a situation where all species will be useful above a certain threshold. An
avalanche occurs when one or more species are below a critical threshold. An
avalanche’s size is the number of species that fall below the threshold between
two iterations where all species are above that threshold [26]. Each species in the
GEO algorithm is represented by a fragment of the sequence representing the
entire ecosystem of the species. In genetic algorithms, variables are encoded in a
chromosome-like chain. Each variable is encoded in binary code, and all variables
form a string of finite lengths. In GEO, there is no population of strings (unlike
the genetic algorithm), and a single bit-string represents the individual. Each
bit in the string has an assigned efficiency number representing the level of
adaptability of that bit according to the gain or loss resulting from the value of
the objective function after bit mutation (inversion) [25,26].

4 Two-Dimensional Cellular Automata for Localization
Model

CAs and their potential to efficiently perform complex computations are
described by S. Wolfram in [32]. In this paper, the two-dimensional CA is con-
sidered. CA is a rectangular grid of X × Y cells, each of which can take on k
possible states. After determining the initial states of all cells (i.e., the initial
configuration of a CA), each cell changes its state according to a rule - transition
function TF , which depends on the states of cells in a neighborhood around it.
In this paper, the finite CA with the stable boundary conditions is used. The CA
cells transition is done asynchronously. As a transition function in this paper,
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the Sandpile model was used, which was set at the CA grid. The evolution of
the sands grains in the Sandpile model was realized by the CA cells.

Assuming, that the contaminant distribution domain is of size [0, 10000] ×
[0, 10000] (in meters) in CA, the data space should be mapped from [0, 10000]×
[0, 10000] into the grid of X × Y cells. In this paper the X × X was assumed for
simplicity with X = 100.

5 The GEO-Sandpile Localization Model

The proposed localization model joins the Sandpile model set on the cellular
automata and GEO algorithm to search for the drop point of the sand grains (the
source), which approximates contaminant concentration data reported by the
sensors distributed over a considered domain. As a result, GEO algorithm local-
izes the source of the airborne contamination. The steps of the applied method-
ology are shown in the pseudocode of the proposed algorithm and described as
follows:

BEGIN

– Load the values of contaminant concentrations in the positions of the sensors.
– Load the parameters of the experiment. (The parameter τ , generation num-

ber).
– Create the initial GEO individual (indB). (The individual symbolizes a poten-

tial solution to the problem; thus, it represents the position of the source haz-
ardous substance release in a two-dimensional space. First, each of the two
components is mapped to a binary string, and then the strings are combined
into one string which is a binary representation of the individual (indB)).

– Rate the fitness of the indB . (The individual is rated using a fitness function
based on the difference in value between the Sandpile model results and the
contaminant concentrations in the positions of the sensors).
WHILE The number of generations of GEO algorithm is realized DO
{

• Create the neighbors:
WHILE Each of the genes do not be reversed DO
{

∗ Create the GEO neighbour individual indNi. (The neighbor individual
i is created by the i − th bit value inversion, for each bit in binary
sequence of indB).

∗ Rate the fitness each of the indNi.
}

• Create ranking ri of bits based on descending value of the fitness function
for every indNi.

• Count the probabilities (pi = r−τ
i ) for inversion (mutation) of bits based

on created rank ri. (τ is the parameter of the GEO).
• Mutate the bits of the individual indB according to the probabilities pi.
• Save the best individual indB .
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}
– The solution of the GEO algorithm represents the best obtained individual

indB .

END
The fitness function of GEO algorithm is computed as the sum of differences

between the results of the Sandpile model and the contaminant concentrations in
sensors locations. The difference between these values at each point is calculated
according to the formula (e.g., [28]):

f(CM
j , CE

j ) =
N∑

j=1

[log(CM
j ) − log(CE

j )]2 (1)

where: CM
j is the value of concentration in the j − th sensor location, CE

j is the
value of concentration estimated by the Sandpile model in the j−th sensor loca-
tion, N is the number of all sensors. If the Sandpile model’s result equals 0, then
it is assumed to be 1e−200 to allow logarithm calculation. The final evaluation
function is the sum of the differences from all considered points (positions of the
sensors). The evaluation function tends to the minimum because the smaller the
value of the obtained difference, the better the mapping of the Sandpile model
with the target sensors’ concentrations.

6 Verification of the GEO-Sandpile Model Effectiveness
in the Localization of the Contaminant Source

6.1 Generation of Testing Data

In this chapter, the GEO-Sandpile model effectiveness in practical application,
i.e., localization of the airborne contaminant source, is presented. The synthetic
data of the contaminant concentration over the simulation domain were gen-
erated using the Gaussian dispersion model (e.g. [34]) to verify the proposed
algorithm’s operation. The Gaussian plume model is the most common air pol-
lution model. It is based on a simple formula describing the three-dimensional
concentration field generated by a point source under stationary meteorologi-
cal and emission conditions. Despite many simplifications, the Gaussian plume
model is used up to now by many researchers. In this model for uniform steady
wind conditions, the concentration C(x̃, ỹ, z) of the emission (in micrograms per
cubic meter) at any point x̃ meters downwind of the source, ỹ meters laterally
from the centerline of the plume, and z meters above ground level can be written
as follows:

C(x̃, ỹ, z) =
Q

2πσyσzU
exp[−1

2
(

ỹ

σy
)2]×{exp[−1

2
(
z − H

σz
)2]+exp[−1

2
(
z + H

σz
)2]},

(2)
where U is the wind speed directed along x axis, Q is the emission rate or the
source strength, and H is the effective height of the release equal to the sum of
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the release height and plume rise (H = H̃ + h). In the Eq. 2 σy and σz are the
standard deviations of concentration distribution in the crosswind and vertical
direction and depends on x̃. These two parameters were defined empirically for
different stability conditions by Pasquill and Gifford (e.g. [34]).

The Gaussian dispersion plume model was used to generate a map of con-
taminant spread in a given area. We restrict the diffusion to the stability class
C in an urban area (Pasquill type stability for the rural area). The sample dis-
tribution of the contaminant within the considered domain presents the right
panel in Fig. 2.

6.2 Test Cases Assumptions

Described in detail in Sect. 5 the GEO-Sandpile model was examined in the sense
of its efficiency in localizing the contamination source using the synthetic sensors
data. These data were generated by the Gaussian plume model for an urbanized
area (Sect. 6.1). The test domain was the square 10 km × 10 km. The contaminant
source was placed in the position (2000m, 5000m) and 5m above the ground,
within the domain. The emission rate was varying from 5000 g

s to 50000 g
s . The

wind speed from the following set {3 m
s , 5 m

s , 7 m
s , 10 m

s } with four wind direc-
tions parallel to both axes were considered. The sensors were placed 2.5m above
the ground in a regular grid 100 × 100, mapped on the whole square domain
10000m × 10000m. The concentrations reported by the sensors grid have been
passed to the GEO algorithm to verify if it can find airborne contaminant sources
within the domain. The GEO algorithm was using the Sandpile model working
on the applied two-dimensional CA with size 100 × 100. The larger size of CA,
the more accurate results we could obtain, assuming a denser data grid. The
number of sand grains dropped in this model were from set {104, 105, 107, 108}.
The number of generations applied in the GEO algorithm was equal to 100.

7 Results of the GEO-Sandpile Localization Model

7.1 Results for Various Wind Speed Test Cases

The research’s initial software was designed in Java within the master thesis
[20]. The first stage of the research was to determine the optimal value of τ ,
the only parameter in the original GEO algorithm. The τ has a crucial role in
GEO algorithm behavior and its effects on the mutation probability. A too high
value of τ may cause the search space exploration in a deterministic way. On
the other hand, too little value can lead to a completely random search of space.
For this reason, determining the appropriate value of this parameter is extremely
important. In the presented study, this value was selected from the interval (0, 3)
with a step equal to 0.1.

The conducted experiments revealed that wind speed assumed in the test
domain affects the optimal value of τ in the GEO algorithm. Table 1 presents
the GEO-Sandpile localization model results for the tests assuming various wind
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Fig. 2. The heat map of distribution of 105 sand grains in Sandplie model selected by
GEO with τ = 1, 2 (left panel) for the contaminant concentration distribution obtained
by the Gaussian model (right panel) with the setup: wind speed 3 m

s directed along x
axis, emission rate 5000 g

s and target source position (20, 50).

speeds. As we can see with wind speed changes, the best value τ for this local-
ization model is also changing. For the high wind speeds, the τ is equal to 1.4,
while for lower speeds, the τ decreases. For selected values of τ we can ana-
lyze found by the GEO-Sandpile model contaminant source positions. GEO is
searching for the most suited distribution of grains in the Sandpile model to
contaminant distribution reported by the sensors network. So, GEO founds the
actual spatial distribution of the contaminant and its center of mass. However,
it cannot consider the gradual blowing off the contamination along the wind
direction correspondingly to its speed. Consequently, the location of the target
contaminant source and contaminant spatial distribution center is different and
depends on wind parameters. To predict the source location, we should analyze
the center of distribution (found with the use of GEO algorithm), presented in
the third column in Table 1, and slope length for dropped sand grains (presented
in the fourth column in Table 1). The target source position can be assessed by
shifting the center of mass of the spatial Sandpile distribution obtained from
GEO by the vector equal to slope length in the direction opposite to the wind
direction. The last column in Table 1 presents the contaminant source position’s
final assessment. As we can see (Table 1), the source positions are the most cor-
rectly predicted for the test case study with wind speed equal to 3 m

s and τ = 1.2.
For this case, the target source position was (20, 50) while the predicted one is
(21, 53). This test case setup was selected as a reference setup in the presented
subsequent analysis. The heat map for this is presented in Fig. 2. The right
panel presents the Gaussian dispersion model’s contaminant distribution being
the input data for the GEO-Sandpile localization model. The left panel presents
the grains’ spatial distribution in the best Sandpile model configuration. The
differences between both figures are obvious, but our aim is not to simulate the
contaminant distribution but to find the source position, which is done quite
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Table 1. GEO-Sandpile localization algorithm results for various wind speed scenarios
with corresponding optimal values of τ . The wind direction was along the x-axis. Sand
grains dropped in this model were equal to 105.

Experiment
parameters

Target source
position

Best GEO
solution for
Sandpile model

Slope length for
best GEO score

Predicted source
position

Wind speed 3 m
s ,

τ = 1.2,
(20, 50) (58, 53) 37 (21, 53)

Wind speed 5 m
s ,

τ = 1.2,
(20, 50) (58, 46) 37 (21, 46)

Wind speed 7 m
s ,

τ = 1.4,
(20, 50) (58, 52) 37 (21, 52)

Wind speed 10 m
s ,

τ = 1.4,
(20, 50) (62, 42) 37 (25, 42)

Table 2. GEO-Sandpile localization algorithm results for various wind directions and
target contaminant source positions. The wind speed was 3 m

s , emission rate 5000 g
s .

The number sand grains in Sandplie model was equal to 105. The GEO parameter
τ = 1.2.

Wind direction Target source
positionl

Best GEO
solution for
Sandpile model

Slope length for
best GEO score

Predicted source
position

Along x-axis (20, 50) (58, 53) 37 (21, 53)

Opposite x-axis (80, 50) (42, 49) 39 (81, 49)

Along y-axis (50, 20) (44, 62) 37 (44, 25)

Opposite y-axis (50, 80) (51, 37) 39 (51, 76)

correctly. Similar results were obtained for the test case with wind speed equal
to 7 m

s and τ = 1.4, where the source position was predicted in (21, 52) posi-
tion, while the target position was (20, 50). Assuming the size of the test domain
(100 × 100), the prediction accuracy is acceptable.

7.2 Results for Various Wind Directions and Target Source
Positions

The next stage of the study was to analyze the sensitivity of the GEO-Sandpile
localization model to the changes in the wind direction and various target source
positions. The wind’s four directions were considered: along the x-axis, opposite
x-axis, along the y-axis, and opposite y-axis. In all cases the wind speed was
equal to 3 m

s , emission rate was 5000 g
s . We have also tested the localization

algorithm against various target contamination source positions. The selection
of the results presents Table 2. Analysis of the Table 2 allows concluding that in
all considered test cases, the proposed GEO-Sandpile localization model predicts
the contaminant source location with reasonably high precision.
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8 Conclusions an Future Works

This paper proposes the Generalized Extremal Optimization algorithm combined
with the Sandpile model for airborne contaminant source localization. The pro-
posed algorithm input data are the contaminant concentrations reported by the
sensors over a considered domain. The output is the assessment of the contami-
nant source position within the domain. The testing contaminant concentration
data were generated with the use of the Gaussian dispersion model.

Conducted tests confirmed that the Sandpile model might be used as a model
simulating the transport of airborne contaminants with some accuracy. More-
over, presented test cases verified the proposed GEO-Sandpile localization model
efficiency assuming various wind directions, speed and contaminant source posi-
tion within the domain. For the tested wind speed scenarios, the optimal value
of τ parameter in the GEO algorithm was estimated, enabling accurate predic-
tion of the airborne contaminant source. Conducted studies revealed that the
proposed GEO-Sandpile localization model works well for different wind con-
ditions (direction and speed) and various target contaminant source locations.
Obtained results allow stating that the proposed algorithm can be successfully
used in different optimization problems like predicting the location of the source
of the airborne toxin.

The current research stage allows estimating only the contaminant source
position. In a real threat situation, assessing the released substance’s quantity
is also essential for the emergency responders. Thus, future work will focus on
algorithm testing to formulate and prove the relationship between contaminant
emission rate and the number of dropped grains in the Sandpile model for a
more accurate prediction of the contamination source.
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