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Abstract. In this paper, we consider the problem of link adaptation
(rate allocation) of Orthogonal Multiple Access Multiple Relay Chan-
nel (OMAMRC) using the Multi-Armed Bandit (MAB) online learn-
ing framework. The cooperative system is composed of a transmission
phase where sources transmit in a round robin manner, and a retrans-
mission phase where a scheduled node sends redundancies. We assume
that we have no knowledge of the Channel State Information (CSI) nor
of the Channel Distributed Information (CDI). Accordingly, rate alloca-
tion must be learned online following a sequential learning algorithm. We
adapt to one variant of the MAB framework algorithms, the Upper Con-
fidence Bound (UCB) family, and specifically the UCB1 algorithm. The
UCB1 algorithm achieves a logarithmic regret uniformly over time, with-
out any preliminary knowledge about the reward distributions. Due to the
exponential growth of the number of arms, following the multiple sources
included in the rate allocation, the UCB1 algorithm features a complexity
problem. Thus, we propose a sequential UCB1 (SUCB1) algorithm which
solves the complexity issue, and outperforms the UCB1 algorithm.

Keywords: Link Adaptation · Multi-Armed Bandit · Upper confidence
bound · Multi-source multi-relay wireless network · Spectral efficiency

1 Introduction

One of the main objectives for 5G and 5G-beyond cellular networks is to allow
heterogeneous services to coexist within the same network architecture. Some
of these services need a very high peak data rates and a fast adaptation of
the channel state, as in enhanced Mobile Broadband (eMBB). In order to meet
those needs, we aim at improving the spectral efficiency. Cooperative commu-
nication [1] represents one of the key physical layer technologies which aims to
optimize the spectral efficiency. The concept is to use the shared resources and
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information of the users to improve the transmission and reception processes.
The cooperation process can be performed by sources themselves (user cooper-
ation), or by using some dedicated relay nodes. The difference between a relay
node and a source node which implements user cooperation is the fact that the
latter has its own message whereas the relay node does not.

Cooperative models have been analyzed extensively in the prior literature.
These models depend on the number of source nodes, relay nodes, and destina-
tion nodes included. For example, we call the system Multiple Relay Channel
(MRC) when we have multiple relays helping a single source to communicate with
a single destination [2]. Other two examples are the Relay Broadcast Channel
(RBC) [2] and the Multiple Access Relay Channel (MARC) [3]. In RBC, the
system is composed of a single source, a single relay, and multiple destination
nodes, whereas in the MARC, we have a single relay node helping multiple users
to communicate with a single destination.

Here, we consider the Multiple Access Multiple Relay Channel (MAMRC),
where we have multiple relay nodes, helping multiple users to communicate with
a single destination. In addition, we consider user cooperation, where users that
have no message to send, act as relays. Specifically, we consider a slow-fading half-
duplex Orthogonal Multiple Access Multiple Relay Channel (OMAMRC), where
orthogonality is achieved using Time Division Multiplexing (TDM) (check Fig. 1).

Fig. 1. Cooperative Orthogonal Multiple Access Multiple Relay Channel (OMAMRC)
with feedback broadcast control channel to indicate the destination decoding set.

There are several relaying protocols widely used in cooperative communica-
tion. One category of these protocols is the linear relaying protocols, and its
famous example the Amplify-and-Forward (AF) protocol [4]. Another category
is the non-linear (regenerative) relaying protocols. Some examples of regener-
ative protocols are the Compress-and-Forward [5] and the Quantize-Map-and-
Forward [6]. In our work, we use the Selective Decode-and-Forward (SDF) relay-
ing protocol, where relays can forward only a signal representative of successfully
decoded source messages. The error detection is based on Cyclic Redundancy
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Check (CRC) bits that are appended to each source message. The used proto-
col is an updated version of the well known Decode-and-Forward (DF) protocol
[7]. In DF, cooperative nodes are obliged to wait to successfully decode all the
source messages before starting to cooperate, whereas in SDF, they can start
cooperating before.

In this paper, we investigate the problem of Link Adaptation (LA) (rate
allocation), where the destination is considered as the centralized node which
allocates the rates for the multiple sources. In the prior art, several heuristic
algorithms were presented. In [8], a Slow-Link Adaptation (SLA) algorithm was
proposed. The algorithms proposed were heuristic, and based on the information
available at the destination. When Channel State Information (CSI) is available,
Fast Link Adaptation (FLA) algorithm is used, where allocation is performed
once there is a change in the CSI. On the contrary, if CSI is not available (in
high mobility scenarios), the SLA algorithm is used, where allocation is based
on the Channel Distribution Information (CDI) (for example: the average Signal
to Noise Ratio (SNR)) of the links.

In this work, we aim to solve the LA problem using a different perspective.
First, we aim to use an algorithm which is not heuristic, and where the regret is
bounded and tractable. Next, we want to solve the problem when no information
is given at the destination. In other words, we aim to perform rate allocation
using a learning algorithm, where the probability of transmission success at a
certain rate is unknown (since the channel state is unknown) and rather needed
to be learned. We adapt to the well known framework called Multi-Armed Bandit
(MAB), where it addresses the exploration-exploitation dilemma.

The main contributions of the paper can be summarized as the following:

– To our knowledge, this work is the first which tackles LA for MAMRC with
online learning perspective, using the MAB framework.

– We state the MAB problem based on the utility metric (spectral efficiency
per frame), following the definitions of the common and individual outage
events.

– We implement the UCB1 algorithm in the presented framework, and then, an
approximated UCB1 algorithm was presented aiming to reduce the initializa-
tion step of the algorithm.

– We finally propose a sequential UCB1 algorithm which solves the problem of
exponential dimension of the number of arms.

The rest of the paper is organized as follows: In the next section, the related
work of the MAB literature is presented. In Sect. 3, the system model is pre-
sented. In Sect. 4, outage events are given, followed by the MAB problem for-
mulation. In Sect. 5, the LA algorithms are described. Finally, numerical results
and main conclusions are presented in Sects. 6 and 7 respectively.
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2 Related Work

First, we state the main issue which MAB framework tackles, i.e., the
exploration-exploitation dilemma. In scenarios where multiple choices are pos-
sible (multiple arms), each with an unknown average reward, MAB algorithms
give sequential steps to decide whether we need to learn more (exploration), or to
stay with the option that gave best rewards in the past (exploitation). There are
different types of MAB problems, each based on the assumptions of the problem.
In the survey [9], three different fundamental types of MAB problems were men-
tioned, stochastic, adversarial, and Markovian. In this paper, we are interested
in the stochastic MAB problem, as it aligns with the case of rate allocation
problem (the reward is stochastic). From a historical point of view, Lai and
Robbins [10] introduced the first analysis of stochastic bandits with asymptotic
analysis of regret. There, the principle of optimism in the face of uncertainty (to
be optimistic while thinking about the not well explored choices) was used and
the Upper Confidence Bound (UCB) algorithm was proposed. This concept is
widely used in most of the MAB literature.

In UCB-like algorithms, we favor the exploration of actions with a strong
potential to have an optimal value [11], and UCB measures this potential by an
upper confidence bound of the reward value. Based on this type of literature,
a lot of algorithms have been further proposed [12] (Sect. 2.2) and [13]. In [13],
the authors proved that the proposed KL-UCB algorithm attains the optimal
rate in finite-time. In addition, they proved that this algorithm is optimal for
Bernoulli distributions (problems with reward of Bernoulli distribution).

Another type of algorithms widely used is based on Thompson Sampling (TS)
(also known as posterior sampling and probability matching) [14]. Contrary to
UCB-type algorithms, the TS algorithms are based on the assumption of poste-
rior distribution for the unknown metric we are trying to learn. The algorithm
chooses the arm which maximize the expected reward based on the current
distribution. Then, after each iteration, the posterior distribution is updated.
Although this type of algorithms was ignored in the academic literature until
recently, several nowadays problems are using these strategies [15]. For interested
readers, [16] gives a detailed discussion on when, why, and how to apply TS.

Besides UCB-type and TS-type algorithms, there are also different
approaches tackling the MAB problem. In [17], rather than using the concept of
optimism in the face of uncertainty, a new general algorithm is proposed aiming
at matching the minimal exploration rates of sub-optimal arms as character-
ized in the derivation of the regret lower bound. In this algorithm, rather than
only performing exploration and exploitation, a third process is taken into con-
sideration as well: estimation. For simpler algorithms, ε-greedy is a well-known
algorithm, where a fixed value ε ∈ [0, 1], decides the percentage of time you
spend on exploration and exploitation. Since, with a fixed value of ε, we will
reach a linear (not logarithmic) regret, decreasing ε-greedy algorithms are used,
taking ε as a decreasing variable with time (usually it is in the form of a fraction
between a constant and time). We find in literature several papers comparing the
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previously mentioned algorithms, as in [18], where the power allocation problem
was solved using several algorithms, as the UCB, TS and ε-greedy.

In our framework, there is a fixed set of Modulation and Coding Scheme
(MCS) representing the available set of rates. These rates represent the possi-
ble choices of the MAB problem. Since we are considering MAMRC framework,
at each frame transmission, the destination will allocate a rate for each given
source. In other words, rather than selecting a single arm of the MAB, we need
to select multiple arms, each corresponding to each of the multiple source nodes.
Such kind of MAB problems is given under the name of Combinatorial MAB
(CMAB), where a subset of arms is selected at each step, forming a Super Arm.
In the literature, CMAB was investigated in several applications. In [19], the
problem of beam selection in a vehicular network was solved using CMAB algo-
rithms, based on TS. In [20], CMAB was also presented but this time using
UCB-type algorithms. There, two applications were selected, online advertising
and social influence maximization for viral marketing. In [21], Combinatorial
Sleeping MAB model with Fairness constraints (CSMAB-F) was presented. The
concept of sleeping arm is when some arms are not always available. In the next
section, we present the system model, describing how a frame is transmitted.
Then, based on this model, we present the CMAB rate allocation problem.

3 System Model

The system model is a slow-fading half-duplex OMAMRC. There are M source
nodes, a single destination node, and L dedicated relay nodes. The source nodes
belong to the set S = {1, . . . , M}, the relay nodes belong to the set R = {M +
1, . . . , M +L}, and we define the set of all source and relay nodes as N = S∪R =
{1, . . . , M + L}. In other words, a source si will be the node i in set N , and a
relay ri will be the node i+M in set N . In order to explain a frame transmission
in a cooperative system, the two steps of transmission should be explained, i.e.,
the transmission phase and the retransmission phase.

Fig. 2. Transmission of a frame: initialization, first and second phases.

As seen in Fig. 2, the frame transmission is composed of two steps, M time
slots for transmission (each source of the M sources sends in one time slot), and
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several time slots for retransmission (up to Tmax time slots). At the beginning
of each time slot of the retransmission phase, the scheduler (at the destination)
selects a relay node to send redundancies based on its correctly decoded source
messages. We call the set of correctly decoded source messages the decoding
set. The selection strategy used is based on maximizing the number of correctly
decoded messages at the destination. This is done by choosing the node with the
highest mutual information with the destination. Note that only the nodes which
were able to decode at least one source from the set of non-successfully decoded
sources at the destination are possible choices for selection (nodes which do not
satisfy this condition cannot help no matter what the mutual information is).
In [22], it is shown that this low-complexity strategy can reach the upper bound
selection strategy (based on exhaustive search approach). For that reason, we
retain to this selection strategy in the paper, although other strategies might
also be used. Nevertheless, the LA problem and the proposed algorithms will
not change.

The messages of all sources are mutually independent. A message us ∈ F
Ks
2

of a source s has a length of Ks information bits, where F2 represents the binary
Galois field. In addition, the length Ks depends on the selected Modulation
and Coding Schemes for that source. We assume that we have a finite set of
possible rates of size nMCS. These possible rates represent the arms of the MAB
problem. In the initialization phase, the phase which comes before transmission
and retransmission (check Fig. 2), the destination allocates M rates for the M
sources. In other words, the destination chooses a set of M arms of the nMCS

arms, forming a super arm. As a results, our MAB problem is now a CMAB
problem, with nM

MCS arms.
In the prior art, the selection of the rates was based on the information

available at the destination, i.e., CSI or CDI. Here, no information is available,
and rather needed to be learned. Finally, for a given transmitting node a ∈ S∪R,
and a receiving node b ∈ S ∪ R ∪ {d}, at a given channel use k, the received
signal ya,b,k can be written as:

ya,b,k = ha,bxa,k + na,b,k, (1)

where xa,k ∈ C is the coded modulated symbol whose power is normalized to
unity, ha,b are the channel fading gains, which are independent and follow a zero-
mean circularly symmetric complex Gaussian distribution with variance γa,b, and
na,b,k represents the independent and identically distributed AWGN samples,
which follow a zero-mean circularly-symmetric complex Gaussian distribution
with unit variance. During the first phase, a given channel use k belong to
{1, . . . , U}, while during the second phase, k belongs to {1, . . . , Q}, where U and
Q represent the number of channel uses in each phase respectively.

4 Problem Formulation

4.1 Objective Function

Here, we define the utility function as the spectral efficiency per frame defined
as the ratio between the total number of successfully received bits and the total
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number of channel uses in a given frame. The utility function depends on the
vector of selected rates {Ri}, i ∈ {1, . . . , M} (rates we are allocating) chosen
from a fixed set of possible rates. It also depends on the number of channel
uses used at each transmission and retransmission phase. We define also the
outage events Oi,t which occur when source i is not decoded correctly after the
transmission phase (t = 0) and at each retransmission l up to t (l = 1, ..., t).
We define, accordingly, the outage event indication Oi,t which takes value 1 if
the event Oi,t happens, and 0 otherwise. Or, in mathematical term, for any
elementary event w, Oi,t(w) = [w ∈ Oi,t] where [P] denotes the Inverson bracket
which takes the value 1 if P is true, and 0 otherwise. The spectral efficiency per
frame can be written as

ηframe ({Ri}, α) =
nb bits successfully received

nb channel uses

=
∑M

i=1 Ki(1 − Oi,Tmax
)

MU + QTused

=
∑M

i=1 Ri(1 − Oi,Tmax
)

M + αTused
(2)

where

– Ri = Ki/U represents the rate of a source i,
– α = Q/U denotes the ratio of the channel uses of retransmission phase Q and

the channel uses of the transmission phase U ,
– Oi,Tmax

is the outage indication as defined above, i.e., Oi,Tmax
= 1 means

that source i is not decoded correctly during a frame (since the maximum
number of retransmissions is Tmax),

– Tused ∈ {1, . . . , Tmax} is the number of retransmissions activated for a frame.

The value of Tuesd depends on the number of retransmission rounds needed
for the destination to decode all the source nodes, or to state an outage event
(after Tmax retransmissions). The outage indication Oi,Tmax

is obtained from an
information theory perspective. This means that we don’t use practical decod-
ing schemes (e.g., LDPC or Turbo codes), but we follow the ideal information
theory assumptions. In other words, we use the knowledge of the links’ states,
assume as infinite codeword length with mutual information achieving (spatially
distributed) channel coding codebooks, and a Maximum Likelihood (ML) decod-
ing. Also, we assume that two successive frames are received with correlation
time separation (to ensure no correlation). Finally, we formulate the analytical
expression of the outage events. The detailed expressions of the common and
individual outage, based on the results of [23], are presented in the Appendix A.

4.2 MAB Problem

After defining the utility metric, as well as the outage events, we can now for-
mulate the considered rate adaptation problem as a MAB problem. We consider
a finite set of possible arms of size nMCS. At each step, a super arm of size M is
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selected for the M source nodes included. This leads us to an equivalent CMAB
of arms size nM

MCS. The reward of each arm is a stochastic random variable, with
an unknown distribution and unknown average. We define the random variable
Xi(t) as the reward given when we select the super arm i at the tth transmission
frame. The reward was defined before as the spectral efficiency per frame, and
the randomness is within the variables Tused which varies between zero and Tmax,
and the outage event indications of each source node. We define the expected
value of the reward of the super arm i as θi = E[Xi(t)].

For a given online sequential algorithm π, where at each frame j, a decision
Ij of a super arm i is selected (Ij = i), we define the regret as the difference
between the rewards of the optimal algorithm (Oracle algorithm selecting the
optimal arm each round) and the given algorithm. The regret of algorithm π
up to transmission frame t can be written as:

Regπ(t) = θ∗t −
nM
MCS∑

i=1

θiE[nπ
i (t)], (3)

where θ∗ represents the expected value of the optimal reward (i.e., the reward
of the optimal super arm i∗), and E[nπ

i (t)] represents the expected value of the
number of times arm i was selected after t rounds when using algorithm π.
We aim to propose a rate allocation algorithm which performs exploration and
exploitation in a way that minimizes this regret.

5 Algorithm

We retain here to a well-known algorithm in the literature, specifically, a UCB-
like algorithm. Several types of UCB algorithms are seen in the prior art, each
depending on the problem considered, the reward type, and the way we choose
the upper bound. In this paper, we use the UCB1 algorithm [24], where it is
known that it achieves a logarithmic regret uniformly over t and without any
preliminary knowledge about the reward distributions. The only condition is to
assume that the rewards are bounded in [0, 1], and this normalization can be
assumed easily with no loss of generality. The sketch of the algorithm is presented
in Algorithm 1.

Algorithm 1. UCB1
Initialization: For t = 0, . . . , nM

MCS −1, for the (t+1)th transmission, select the super
arm t+1 (play each super arm once).

UCB: For t ≥ nM
MCS, for the (t + 1)th transmission, select the super arm i which

maximizes Xi +
√

2 ln t
ni

.



70 A. A. Khansa et al.

After the initialization step, where each arm is explored once, we start choos-
ing the next arms based on the information collected. We see next that the choice
is based on two terms summed together, Xi representing the average reward
obtained from super arm i up to transmission t, and the upper confidence term
represented by

√
2 ln t
ni

, where ni represents the number of times super arm i was

selected up to transmission t. The first term, i.e., Xi, gives the exploitation term,
where the history rewards of the arms are taken into consideration. On the other
hand, the second term, i.e.,

√
2 ln t
ni

, gives the exploration term. The ratio can be
understood as, when a given arm i is not selected for enough time, compared to
other arms, the fraction increases, and then the index of this arm composed of
the sum of the two terms increases. In this way, we tend to compromise between
the history of the rewards of each arm and the number of times this arm was
selected. One final comment, about the logarithmic in the expression: In UCB1,
we try to decrease the exploration coefficient as time increases, trying to set
a limit to the exploration phase when enough information is collected through
previously selected arms. The mathematical aspect of this result is based on
the Hoeffding’s Inequality, a theorem applicable to any bounded distribution. In
theorem 1, the expected regret of the UCB1 algorithm when played t times is
presented.

Theorem 1. For all nM
MCS > 1, if policy UCB1 is run on nM

MCS machines hav-
ing arbitrary reward distributions P1, . . . , PnM

MCS
with support in [0, 1], then its

expected regret after any number t of plays is at most:

8
∑

i:θi<θ∗

(
ln t

Δi

)

+
(

1 +
π2

3

)
⎛

⎝
nM
MCS∑

j=1

Δj

⎞

⎠ ,

where θ1, . . . , θnM
MCS

are the expected values of P1, . . . , PnM
MCS

, and Δi is defined
as:

Δi = θ∗ − θi.

Proof. The proof of the above upper bound is omitted and can be found in [24].

In practice, the proposed algorithm suffers mainly from the exponential growth of
arms. Specifically, the initialization phase (pure exploration phase) will take too
much time before reaching the exploitation-exploration phase. Thus, we propose
an Approximated UCB1 (AUCB1) algorithm, which reduces the complexity of
the initialization phase.

The goal of the initialization phase is to explore each super arm once, and
to set its index, we call index the sum Xi +

√
2 ln t
ni

. We propose here setting
an approximated initial index in order to decrease the complexity of the initial-
ization phase. One way in doing so is by removing the exponential relationship
between the sources forming the super arm. In other words, rather than taking
super arms initially, we take each arm by itself (each possible rate), and we test
this arm with all the possible sources. In this case, when a source is sending with
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a given rate, other sources send nothing. We repeat this process for a given arm
with all the given sources. Finally, we average for this arm the number of trans-
mitted bits (Rate × success or failure), and we save the highest Tused needed
with all the sources. We repeat this process for all arms (rates). Finally, for each
super arm composed of M subset of arms, we calculate the reward (index) as the
average of transmitted bits divided by the number of channel uses while using
the highest Tused of the considered subset of arms (rates). Following these steps,
we approximate the reward (recall Eq. 2). The complexity of the initialization
phase is reduced from O(nM

MCS) to O(nMCS × M). For brevity, we omit here the
step-by-step AUCB1 algorithm, as it will only be an initialization step in the
proposed Sequential UCB1 (SUCB1) algorithm presented next.

In SUCB1, the idea is to generalize the AUCB1 algorithm for all iterations
rather than only the initialization step. After setting the indices of each arm
using AUCB1, SUCB1 chooses each super arms successively, arm by arm. In
other words, instead of choosing the super arm directly, we choose for each
source of the M sources the arm with the highest index. After each selection,
we update the indices’ counter. Finally, we update the indices based on the
cumulative reward, each based on decoding the signal of the related source. In
SUCB1, we have nMCS arms, rather than nM

MCS arms, and this reduction will
decrease the regret as we will see in the numerical results section. The sketch of
the algorithm is presented in Algorithm 2.

Algorithm 2. SUCB1
Initialization: For t = 0, . . . , nMCS × (M −1), for the (t+1)th transmission, initialize

the arms indices following the steps of AUCB1
SUCB: For t ≥ nMCS × M , for the (t + 1)th transmission, select the super arm i

successively, arm by arm, for each of the M sources as:

– select the arm which maximizes Xi +
√

2 ln t
ni

.

– update ni

– repeat for all sources within M to reach the super arm i

6 Numerical Results

In this section, we validate the learning algorithms with three source nodes and
three relay nodes, while using 4 possible retransmissions in the second phase
(Tmax = 4) and α = 1/2. We assume independent Gaussian distributed channel
inputs (with zero mean and unit variance), with Ia,b = log2(1 + |ha,b|2). Note
that some other formulas could be also used for calculating Ia,b but they would
not have any impact on the basic concepts of this work. There are many factors
to investigate: links configuration, SNR levels, and different MCS families.

Due to brevity, and after carefully checking different possible scenarios, we
present the results of symmetric link configuration (SNR of all channel links
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is symmetric). Three different levels of SNR will be considered, specifically,
SNR = {−4, 6, 21} dB. The importance of choosing the different SNR links,
is that the optimal rate allocation (the Oracle allocation) is different at each
SNR level. Following the discrete MCS family whose rates belong to the set
{0.5;1;1.5;2;2.5;3;3.5} [b.c.u], the Oracle rate allocation of sources {s1, s2, s3}
will be {1, 1, 1}, {3, 3, 2.5}, and {3.5, 3.5, 3.5} respectively to the SNR set inves-
tigated.

In Figs. 3, 4, and 5, we see the regret analysis of the three different SNR levels.
For clarity of the results, we present the regret in the form of percentage loss
with respect to the optimal efficiency. In other words, we compare the efficiency
of the algorithms as a ratio of the rewards of the algorithms and the Oracle.
In Fig. 3, for SNR = −4 dB, we see that the three algorithms are featuring
a close regret level (up to 25% loss after 1000 samples). Next, in Fig. 4, for
SNR = 6 dB, we see a great improvement with using SUCB1 (reaching 90%
of the optimal reward), as compared to UCB1 and AUCB1 which act closely
as in the case when γ = −4 dB. In Fig. 5, the same result is seen for SNR =
21 dB, where SUCB1 is outperforms other algorithms, while AUCB1 is slightly
better than UCB1. Finally, in Fig. 6, we present the Average Spectral Efficiency
(ASE), for the different SNR levels between −5 and 15 dB after 500 samples
(larger numbers of samples were investigated and gave the same results). We see
that the proposed SUCB1 algorithm approaches the upper bound (the Oracle)
while outperforming UCB1 and AUCB1.

7 Conclusion

In this paper, we investigate the LA of OMAMRC using an online learning
framework, MAB. First, we formulate the system model as a MAB problem.
Then, we adapt to the UCB-type family, specifically the UCB1 algorithm. In
order to solve the problem of complexity of exponential number of arms included
in the MAMRC system, a sequential algorithm SUCB1 is proposed. Within
SUCB1, we use an approximated initialization phase AUCB1, then, we choose
arms sequentially for the considered set of sources. The numerical results show
that the proposed algorithm outperforms the traditional UCB1 algorithm in
terms of regret and average spectral efficiency.

Appendix

A: Outage Events

Based on [23] proposition 1, we see a direct relation between the individual
outage and the common outage. The individual outage is defined as the event
that an individual source is not decoded correctly at the destination after Tmax

rounds. Similarly, common outage is defined for a set of sources, and it is declared
when at least one of the sources within this set is not decoded correctly at the
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Fig. 6. ASE vs γ after 500 samples

destination. In other words, common outage of a set occurs when one or more
of its source nodes are in an individual outage.

Both, the individual outage event Os,t(at,Sat,t−1|Pt−1) of a source s after
round t, and the common outage event Et(at,Sat,t−1|Pt−1) after round t, depend
directly on the rate being scheduled. In addition, they depend on the selected
node at ∈ N and its associated decoding set Sat,t−1. They are conditional on
the knowledge of Pt−1, where Pt−1 denotes the set collecting the nodes âl which
were selected in rounds l ∈ {1, . . . , t − 1} prior to round t together with their
associated decoding sets Sâl,l−1, and the decoding set of the destination Sd,t−1

(Sd,0 is the destination’s decoding set after the first phase).
Analytically, the common outage event of a given subset of sources is declared

if the vector of their rates lies outside of the corresponding MAC capacity region.
For some subset of sources B ⊆ Sd,t−1, where Sd,t−1 = S \ Sd,t−1 is the set of
non-successfully decoded sources at the destination after round t − 1, and for a
candidate node at this event can be expressed as:
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Et,B(at,Sat,t−1)

=
⋃

U⊆B

{∑

i∈U
Ri >

∑

i∈U
Ii,d + α

t−1∑

l=1

Iâl,dCâl
(U) + αIat,dCat

(U)
}

,
(4)

where Ia,b denotes the mutual information between the nodes a and b (the mutual
information is defined based on the channel inputs, check Sect. 6 for Gaussian
inputs example), and where Câl

and Cat
have the following definitions:

Câl
(U) =

[
(Sâl,l−1 ∩ U �= ∅) ∧ (Sâl,l−1 ∩ I = ∅)

]
,

Cat
(U) =

[
(Sat,t−1 ∩ U �= ∅) ∧ (Sat,t−1 ∩ I = ∅)

]
.

(5)

The individual outage event of a source s after round t for a candidate node
at can be defined as:

Os,t(at,Sat,t−1) =
⋂

I⊂Sd,t−1,B=I,s∈B
Et,B(at,Sat,t−1),

=
⋂

I⊂Sd,t−1

⋃

U⊆I:s∈U

{∑

i∈U
Ri >

∑

i∈U
Ii,d + α

t−1∑

l=1

Iâl,dCâl
(U) + αIat,dCat

(U)
}

,

(6)
where I = Sd,t−1 \ I.
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