
DPWTE: A Deep Learning Approach
to Survival Analysis Using a Parsimonious

Mixture of Weibull Distributions

Achraf Bennis(B), Sandrine Mouysset(B), and Mathieu Serrurier(B)
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Abstract. Survival analysis is widely used in medicine, engineering,
finance, and many other areas. The fundamental problem considered in
this branch of statistics is to capture the relationship between the covari-
ates and the event time distribution. In this paper, we propose a novel
network-based approach to survival analysis, called DPWTE, that uses
a neural network to learn the distribution of the event times. DPWTE
makes an assumption that (individual) event time distribution follows
a finite mixture of Weibull distribution whose parameters are functions
of the covariates. In addition, given a fixed upper bound of the mixture
size, the model finds the optimal combination of Weibull distributions
to model the underlying distribution. For this purpose, we introduce the
Sparse Weibull Mixture layer, in the network, that selects through its
weights, the Weibull distributions composing the mixture, whose mixing
parameters are significant. To stimulate this selection, we apply a sparse
regularization on this layer by adding a penalty term to the loss function
that takes into account both observed and censored events, i.e. events
that are not observed before the end of the period study. We conduct
experiments on real-world datasets showing that the proposed model
provides a performance improvement over the state-of-the-art models.

Keywords: Survival analysis · Deep learning · Weibull distribution

1 Introduction

Survival analysis, also known as time-to-event analysis, concerns the predic-
tion of when a future event will occur. Applications of survival analysis can be
found in many areas such as prediction of cardiovascular death and failure times
of power grids. Survival analysis has primarily focused on interpretability at
the expense of predictive accuracy. This is eventually the reason why machine-
learning-based classifiers are commonly used in real-world applications while it
would be more useful to apply survival methods. Certainly, some classifiers may
have the best accuracy. However, these binary models can only provide pre-
dictions for a predetermined point in time. One loses the interpretability and
flexibility which are guaranteed by the modeling of the event densities as a func-
tion of time. Moreover, in survival data, it is common that a part of a population
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in which the event is not observed within the relevant time period, and could
potentially occur after this recorded time or removed from the study, producing
so-called censored data. In this case, the individuals of this sub-population pro-
vided us with censored times rather than event times. While this type of data
is not taken into consideration by standard classifiers, survival analysis bridges
this gap. In this work, we propose a novel approach to survival analysis: the
event time distribution is assumed to follow a finite mixture of Weibull distri-
butions, whose parameters depend on an individual’s covariates. No particular
assumption about the nature of the relationship between the parameters and
the features is made. The main idea behind the proposed model called DPWTE,
that stands for Deep Parsimonious Weibull Time-to-Event, is to estimate the
optimal combination of Weibull distributions that models the underlying distri-
bution using a neural network. This paper makes the following contributions:

– The event times are assumed to be drawn from a random variable following
a finite mixture of Weibull distributions.

– DPWTE extends the idea behind DeepWeiSurv [3]. In fact, the latter consid-
ers the size of the combination p, as a parameter of the model whose different
values are to be tested. While DPWTE, starting with an upper bound of the
mixture size, learns the optimal combination of Weibull distributions (among
the initial mixture) that can model the underlying distribution. For this pur-
pose, we introduce a layer which we call the Sparse Weibull Mixture (SWM)
layer on which we apply a sparse regularization. By doing this, we enforce
the selection of the Weibull distributions that have a significant contribution
to the time-to-event modeling.

– The censored observations are considered in the conception of the model.

This paper is organized as follows: In Sect. 2, we summarize the previous related
works. In Sect. 3, we review some basic definitions in survival analysis and
Weibull distributions. In Sect. 4, we describe the proposed model with a special
focus on the role of the SWM layer. Section 5 is dedicated to the experiments
conducted on real-world datasets.

2 Related Work

Kaplan-Meier estimator is the most widely used in survival analysis which has
the advantage of being able to learn very flexible survival curves, but it doesn’t
incorporate individual covariates. However, the semi-parametric Cox Propor-
tional Hazards [4] (CPH) model incorporates the covariates but assumes that
the risk effect is linear with respect to the covariates, which may be too simplistic
since, in the real-world data, the covariate effects are often non-monotonic. The
ability of neural networks to learn nonlinear functions has encouraged many
researchers to model the relationship between the covariates and the survival
data. An extension of CPH with neural networks was first proposed by Faraggi
and Simon [6] who replaced the linear risk of the Cox regression model, with
one hidden layer multi-layer perceptron but without performance improvement.
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Katzman et al. [10] revisited the Cox model in the framework of deep learning,
which removes the proportionality constraint and showed that it outperforms
CPH in terms of concordance index [8]. Most of the previous works benchmark
their methods against the random survival forests (RSF) [9] which computes a
random forest using the log-rank test as the splitting criterion, and is considered
as a flexible continuous-time method that is not constrained by the proportion-
ality assumption. Other previous works proposed network-based methods based
on Cox regression such as SurvivalNet [14] and Zhu et al. [15,16] who proposed
a convolutional network model that replaces multi-layer perceptron architecture
of DeepSurv [10] and applied this methodology to pathological images. An alter-
native approach to survival analysis is to discretize the duration and compute
the survival function on this predetermined time grid. Lee et al. [12] proposed a
network used in competing risks setting, called DeepHit, that estimates the prob-
ability distribution and combines the log-likelihood with a ranking loss. Fotso
[7] proposed N-MTLR which, using a multi-task regression, calculates the sur-
vival probabilities on the points of the time grid. Unlike discrete-time models,
DeepWeiSurv [3] models a continuous survival function that allows estimating
the survival probability at any survival time horizon.

3 Background

In this section, we briefly review some basics in survival analysis and Weibull
distributions.

3.1 Survival Analysis

Let X = {xi, yi = (ti, δi)}N
i=1 a survival data, of covariates xi ∈ R

d and event
pairs (ti, δi), where (ti)1≤i≤N is the times recorded represented by the random
variable T , and (δi)1≤i≤N ∈ {0, 1}d is the event indicator. Typically, δi = 1 if
the event associated to the ith individual is observed, otherwise, δi = 0 which
indicates censoring. The survival function is defined by the following equation:

ST (th) = P (T > th) = 1 − FT (th) (1)

Survival models characterize ST , defined as the complementary of the cumu-
lative density function FT , and thus the fraction of the population that survives
up to a time horizon th given a covariate x. Therefore the aim of these models
is to estimate the probability of the occurrence of the event after or at th.

3.2 Mixture Weibull Distributions Estimation

We suppose that T follows a finite mixture of two-parameter Weibull distri-
butions conditionally to the baseline data features. In this context, it is easy
to calculate FT at any time t. As this latter totally depends on the mixture
parameters, we only need to estimate each couple of parameters of Weibull dis-
tributions that compose this mixture as well as its weighting coefficients. Let
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T follows Wp a mixture of p Weibull distributions denoted by W (βi, ηi) with
αi, βi and ηi are respectively the weighting coefficient, shape and scale of the ith

Weibull distribution of density fW (βi,ηi) and survival function SW (βi,ηi). Then
the density and survival function of Wp can be written as follows:

fWp
=

∑

k

αkfW (βk,ηk) SWp
=

∑

k

αkSW (βk,ηk) (2)

The log-likelihood of Wp, considering the censored data, is defined as follows:

LL(β, η, α|y) =

LLδ=1︷ ︸︸ ︷
n∑

i=1

δilog fWp
(ti) +

LLδ=0︷ ︸︸ ︷
n∑

i=1

(1 − δi)log SWp
(ti) (3)

Thus, we estimate Wp parameters (α, β, η) by solving the Maximum Likeli-
hood Estimation problem defined by the following equation:

(β̂, η̂, α̂) = arg min
β,η,α
β≥1

{−LL(β, η, α|y)} (4)

As we notice in Eq. (4), we set a constraint linked to the shape parameter. In
fact, by definition, β and η are strictly positive. However, to assure the convexity
of the LL, we need to consider that β is at least equal to 1. Let μi be the mean
lifetime of the ith individual. Given that the mean of a mixture μ is a weighted
combination of the means of the distributions that compose this mixture and
knowing the single Weibull’s mean [2], we have:

μi =
∑

k

αkηikΓ (1 +
1

βik
) (5)

where βik and ηik are the ith components of βk and ηk respectively. μi can be
used as an estimate of the survival time of the individual i.

4 Deep Parsimonious Weibull Time-to-Event Model

In this section, we first describe the architecture of DPWTE (Sect. 4.1). Then,
we explain the role of the Sparse Weibull Mixture layer (Sect. 4.2). After that, we
describe the post-training steps (Sect. 4.3). Finally, we present the loss function
used to train DPWTE (Sect. 4.4).

4.1 Description

As for DeepWeiSurv [3], we consider the relationship between the features and
Wp parameters. Estimation of the mixture parameters is therefore equivalent to
model this dependence. In fact, DPWTE learns the following function:

fp : Rd → R
p×3

xi �→ (α, β, η)
(6)
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The aim is therefore to train the network in order to learn the above function
and thus the estimate of the triplet (α, β, η) that minimizes the log-likelihood
of the distribution. DPWTE consists of a common sub-network which takes the
observations X as an input and outputs a latent vector Z, this latter serves in
turn as an input to both the classifier and regression sub-networks whose tasks
are learning α and (β, η) respectively. Figure 1 represents the global architecture
of DPWTE. For the regression sub-network, we use ELU1 (by setting its constant
to 1) as the activation function for both output layers. As the codomain of ELU
in this case is [−1,+∞[ , to respect the optimization problem constraints as seen
in Eq. (4), the network will learn β + 2 and η + 1 + ε, ε > 0. As for the classifier
sub-network, we use the softmax activation function and interleave the SWM
layer, which is described in Sect. 4.2, between the softmax and the output layer
of this network. At the architecture level, the only difference between DPWTE
and DeepWeiSurv is the so-called SWM layer through which the proposed model
implicitly selects the significant contribution distribution.

Fig. 1. The global architecture of DPWTE: clf and reg denotes the classifier and regres-
sion sub-networks respectively.

1 We choose ELU because it becomes smooth slowly, whereas ReLU sharply smoothes.
That means that with ELU we have enough gradient to learn the parameters.
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4.2 Sparse Weibull Mixture Layer

It should be recalled that we seek to learn the optimal mixture of Weibull dis-
tributions that models D, which leads us to estimate the optimal size p that
we denote by p̃. We initially set p to an upper bound pmax. For this purpose,
we introduce the SWM layer just before the output layer of the classifier sub-
network. This layer performs an element-wise multiplication of its weights by the
softmax layer output. As we see in Fig. 2, we put αk = ωk �qk. In order to get an
idea of the importance of each Weibull distribution, through its associated prob-
ability, we need to have the following constraints: (ωk, αk) ∈ [0, 1]2, k = 1, .., p
and

∑p
k=1 αk = 1. However, we cannot guarantee the constraint on ωk even

if we initialize them manually and thus the constraint on αk either. To ensure
implicitly these constraints, we apply the following transformations: ∀k ∈ [|1, p],

(T1) ωk ← |ωk|∑p
j=1 |ωj |qk ∈ [0, 1],∀k ∈ [|1, p] (T2) αk ← αk∑p

k=1 αk

Fig. 2. Softmax and SWM layers of the classifier sub-network.

4.3 Post-Training Steps: Selection of Weibull Distributions to
Combine for Time-to-Event Modeling

So far, we have not yet estimated the value of p̃. The training phase is the
same as for DeepWeiSurv regardless of the loss function (described in Sect. 4.4).
However, after the network is trained, we select the triplets (αk, βk, ηk) such as αk

is greater or equal to certain threshold denoted by ωth that we fix beforehand. As
the distribution of α changes after this selection while the probability constraint
must be maintained, we apply T2 to the new α. Thus, if A = {(αk, βk, ηk)|αk ≥
αth} is the set of selected triplets for modeling, then:

1. p̃ = Card(A)
2. α = (αk, αk ≥ αth) −→

T2
α′

3. β = (βk, αk ≥ αth) −→
offset(+2)

β′

4. η = (ηk, αk ≥ αth) −→
offset(+1+ε)

η′

5. the event times distribution can be modeled by
∑

(αk,βk,ηk)∈A

α′
kW (β′

k, η′
k)

This post-processing is described by the Fig. 3.
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Fig. 3. Post-training steps to compose the optimal mixture of Weibull distributions.

4.4 Loss Function

As discussed above, DPWTE learns the optimal combination of Weibull distri-
butions. To do so, we use the following loss function:

loss = −LL(β, η, α|(ti, δi)i) + λ||ω|| 1
2
, (7)

where λ is the regularization parameter and ||ω|| 1
2

=
∑p

k=1

√|wk|. The first
element of the loss is the negative log-likelihood which is used as a loss function
for DeepWeiSurv [3]. To stimulate the triplet selection process discussed in the
previous section, we apply a sparse regularization on ω = (ωk)1≥k≥p by adding a
penalty term (second operand) to the loss function, hence the name of SWM layer
and the word ‘Parsimonious’ in the name of the model. The purpose behind the
sparse regularization is to encourage sparsity in the vector ω or at least some ωk

to become almost zero, and then apply the threshold ωth. Xu et al. [13] proposed
L0.5 as the new regularizer which is more sparse than the L1 regularizer while it is
still easier to be solved than the L0 regularizer (because it is non-differentiable).
The sparsity property of L0.5 was demonstrated by Fan et al. [5].

5 Experiments on Real-World Datasets

In this section, we evaluate our proposed model on real data sets and compare its
predictive performance with state-of-the-art methods. Table 1 gives an overview
of descriptive statistics of these datasets. All the models are evaluated in the
same experimental protocol.
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Table 1. Descriptive statistics of real-world datasets

Datasets No. uncensored No. censored No. features Censoring time Event time

Min Max Mean Min Max Mean

SEER BC 9152(42.8%) 12221 (57.2%) 34 1 227 181.5 1 226 63.7

SEER HD 12014 (49.6%) 12221 (50.4%) 1 224 76.7

SUPPORT 5844 (68.1%) 2735 (31.9%) 36 344 2029 1060.2 3 1944 206.0

METABRIC 888 (44.8%) 1093 (55.2%) 21 1 308 116.0 1 299 77.8

5.1 Description of the Real-World Datasets

In this experiment, we use three real-worlds datasets:

– SEER2: a program that provides cancer incidence data from population-based
cancer registries covering approximately 34.6% of the U.S. population. We
focused on the patients recorded between 1998 and 2002 with Breast Cancer
(BC) or Heart Disease (HD) or who have survived to the end of this period.
We generated from this database two single-event datasets (BC and HD)
keeping survivors in both of them.

– SUPPORT [11]: this dataset is good for learning how to fit nonlinear predictor
effects. We studied 9105 patients, of which almost 32% are survivors, with
their 36 attributes including age, sex, urine output creatinine, etc.

– METABRIC 3: contains gene expressions and clinical features including age,
tumor size, PR Status, etc.

5.2 Experimental Setting

For evaluation, we applied 5-fold cross validation: the data is randomly splitted
into training and validation set (80-20 split). For each iteration, the models are
fitted by the corresponding training set (4 folds) and evaluated on the validation
set (1 fold) by calculating Ctd. Once all iterations are executed, we obtain for
each method and for each dataset, a vector (of size 5) containing Ctd scores for
each iteration. This experimental protocol is applied on the following models:

– Cox Proportional Hazards CPH [4] with a penalty term in the order of 10−1.
– Random Survival Forest RSF [9] with 100 trees.
– DeepSurv [10] with 2 layers of 32 nodes.
– DeepHit [12] with a dropout probability of 0.6 between all the hidden layers.
– DeepWeiSurv [3] with p = 10.
– The proposed model DPWTE with pmax = 10 and λ = 10−4.

All the methods are trained via Adam optimizer with a learning rate of 10−4.
DPWTE has the shared sub-network which is 2 fully connected layers (the batch
normalization is applied before the second layer). The regression sub-network

2 https://seer.cancer.gov.
3 https://ega-archive.org/studies/EGAS00000000083.

https://seer.cancer.gov
https://ega-archive.org/studies/EGAS00000000083
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consists of 1 fully connected layer with batch normalization and two ELU layers
as output layers, while the classifier sub-network is composed of 2 fully connected
layers and a softmax layer followed by an SWM layer. Hidden layers are activated
by ReLU. The network is trained via SGD optimizer and learning rate of 10−4.

As evaluation metric, we use concordance index Ctd [1] which calculates,
among all the comparable pairs of observations (i, j) (δi = δj = 1), the number
of concordant ones:

Ctd =

∑
i,j 1ti>tj

.1t̂i>t̂j
.δj∑

i,j 1ti>tj
.δj

, (8)

Ctd estimates the probability of the event {t̂i > t̂j |ti > tj} which compares the
rankings of two independent and comparable pairs (non censored) of survival
times (ti, tj) and the times predicted (t̂i, t̂j).

5.3 Results

The results are summarized in Table 2 where we calculated the confidence inter-
val and the average of the concordance index scores over the 5-fold cross-
validation folds. In METABRIC, DeepHit and our proposed models provided
a significant improvement in terms of concordance scores when compared to
other competing methods, especially DPWTE, using one (p̃ = 1) Weibull distri-
bution, provides a mean concordance index slightly greater than that of Deep-
Hit and DeepWeiSurv, but with wider interval confidence. We can say that for
METABRIC, DeepHit and DPWTE have practically the same ordering per-
formance, when we take into account the trade-off between the mean and the
variance of Ctd. For the SUPPORT dataset, DeepHit outperforms, on average,
the other models in terms of times ordering, but DeepSurv and DPWTE, using
in average p̃ = 3 Weibull distributions, minimized the difference between their
respective concordances and that of DeepHit compared to RSF, CPH. In the
SEER dataset, for Breast Cancer and Heart Disease populations alike, we can
notice that DeepWeiSurv and DPWTE (using in average p̃ = 2 for both datasets)
have shown a large significant outperformance over the competing methods, with
a slight improvement from DeepWeiSurv with p = 2 to DPWTE. We can also
remark that the standard deviation of Ctd for METABRIC is relatively greater
than that of SEER and SUPPORT. We suspect this comes from the small size of
METABRIC regarding the other datasets. Furthermore, another thing to point
out is that for all the datasets, except METABRIC, the respective confidence
intervals of DPWTE and DeepWeiSurv are narrower than those of the compet-
ing methods, which means that our proposed method produced a more stable
estimation. DPWTE has clearly the best overall predictive performance.
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Table 2. Ctd calculated over 5-fold cross validation for each model and dataset (mean
± standard deviation) as well as the mean estimate p̃.

Models Datasets

SEER BC SEER HD SUPPORT METABRIC

CPH 0.831±7.5e–3 0.785±3.5e–3 0.805±7e–3 0.661±2.6e–2

DeepSurv 0.841±5.5e–3 0.786±7.5e–3 0.826±1.5e–3 0.662±1.8e–2

RSF 0.838±9.5e–3 0.755±1e–2 0.783±4.5e–3 0.667±3.1e–2

DeepHit 0.875±8e–3 0.846±4.5e–3 0.835±1.3e–2 0.821±1.1e–2

DeepWeiSurv 0.908±1.5e–3 0.863±1.1e–2 0.815±1.5e–2 0.819±1.3e–2

DPWTE 0.912±1.5e–3 0.871±3.5e–3 0.831±9.5e–3 0.829±1.08e–2

p̃ 2 2 3 1

5.4 Censoring Threshold Sensitivity Experiment

The main objective of this experiment is to measure the performance of DPWTE
with respect to the censoring rate, that is, the ratio of censored events against
the observed ones. Because of lack of space, we choose to run the experiment only
on METABRIC (as the smallest dataset and thus more challenging) and SEER
BC (as the dataset with the highest score). The main results are similar for
SEER HD and SUPPORT. In this experiment, we apply the same experimental
protocol as the previous one on different censoring thresholds. These thresholds,
expressed in quantiles of the recorded times vector, are selected such as each
quantile tc adds a significant portion of censored data against the previous one
and thus, change significantly the time distribution. Table 3 gives the distribution
of data of each configuration. For METABRIC and SEER, we choose the follow-
ing thresholds: Q1 = (q0.5, q0.45, q0.35, q0.25) and Q2 = (q0.85, q0.65, q0.5, q0.4, q0.25)
respectively. The Added portion column represents the percentage of data that
became censored out of the initial set of censored data. For each value tc ∈ Qi,
we apply 5-fold cross validation and then calculate the predictions for all time
horizons th ∈ Qi

4. Then, we measure the quality of these predictions using Ctd.
Figure 4 shows the Ctd scores calculated over the cross validation as well as the
estimate p̃ for each scenario in both datasets. Firstly, we should note that the
model performs well for SEER BC (higher average scores and narrower standard
deviation as seen in the previous experiment). Furthermore, we can remark that
in general, the further the censoring rate (for training) and the time horizon th
(for predictions) is pushed back, the lower is the score. This result was expected
because of the fact that the more we have non-censored data the easier it is
to model the survival times distribution of the population. We also suspect the
decreasing of p̃ comes from the fact that the more we increase the censoring
rate the more the network ignores a part of the underlying distribution and

4 tMETABRIC is not a censoring threshold but represents the initial survival time
vector as used in the previous experiment (see statistics in Table 1).
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Table 3. Distribution of METABRIC (left) and SEER BC (right) for each selected
censoring threshold.

tc No. censored No. non-censored Added portion

tMET ABRIC 1093 888 –

q0.5 1285 696 17.6%

q0.45 1411 570 29%

q0.35 1559 422 42.6%

q0.25 1670 311 52.8%

tc No. censored No. non-censored Added portion

q0.85 13270 8103 8.6%

q0.65 15207 6166 24.4%

q0.5 16568 4805 35.5%

q0.4 17503 3870 43.2%

q0.25 18912 2461 54.75%

Fig. 4. Box plots (left) of Ctd as well as the mean values of the estimate p̃ (right)
calculated over the 5-fold cross validation for each censoring threshold tc in both SEER
BC (top) and METABRIC (bottom).

thus model the latter with an insufficient combination of Weibull distributions.
However, DPWTE still performing well even in the highly censored setting.

6 Conclusion

In this paper, we proposed a novel approach for survival analysis. A network-
based model, assuming a Weibull mixture character of the survival time, was
presented to address this problem. We could, by parametrizing the mixture with
neural networks, model rich relationships between the covariates and event times.
DPWTE leverages Weibull advantages, namely the fact that these distributions
are known to be a good representation for survival time distribution and it also
allows to consider any time horizon. This is because DPWTE learns a continu-
ous probability density function and through the Sparse Weibull Mixture layer
selects the optimal combination of Weibull distribution to model the underlying
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event-time distribution. We conducted experiments on real-world datasets where
DPWTE has clearly outperformed the alternative approaches. Furthermore, we
assessed the censoring sensitivity of our model with a real-data experiment which
demonstrates its ability to generally handle highly censored settings and consider
any survival time horizon. Interesting expansions include extending our method-
ology to models that handle competing events, time-dependent covariates. In
addition, it would be interesting to explore other data types and sources that
require some advanced network structures notably convolutions neural networks
or generative adversarial models.
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