
Igor Farkaš
Paolo Masulli
Sebastian Otte
Stefan Wermter (Eds.)

LN
CS

 1
28

92

30th International Conference on Artificial Neural Networks
Bratislava, Slovakia, September 14–17, 2021
Proceedings, Part II

Artificial Neural Networks
and Machine Learning –
ICANN 2021

Lecture Notes in Computer Science 12892

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Igor Farkaš • Paolo Masulli •

Sebastian Otte • Stefan Wermter (Eds.)

Artificial Neural Networks
and Machine Learning –

ICANN 2021
30th International Conference on Artificial Neural Networks
Bratislava, Slovakia, September 14–17, 2021
Proceedings, Part II

123

Editors
Igor Farkaš
Comenius University in Bratislava
Bratislava, Slovakia

Paolo Masulli
iMotions A/S
Copenhagen, Denmark

Sebastian Otte
University of Tübingen
Tübingen, Baden-Württemberg, Germany

Stefan Wermter
Universität Hamburg
Hamburg, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-86339-5 ISBN 978-3-030-86340-1 (eBook)
https://doi.org/10.1007/978-3-030-86340-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3503-2080
https://orcid.org/0000-0002-1389-3894
https://orcid.org/0000-0002-0305-0463
https://orcid.org/0000-0003-1343-4775
https://doi.org/10.1007/978-3-030-86340-1

Preface

Research on artificial neural networks has progressed over decades, in recent years
being fueled especially by deep learning that has proven, albeit data-greedy, efficient in
solving various, mostly supervised, tasks. Applications of artificial neural networks,
especially related to artificial intelligence, affect our lives, providing new horizons.
Examples range from autonomous car driving, virtual assistants, and decision support
systems to healthcare data analytics, financial forecasting, and smart devices in our
homes, just to name a few. These developments, however, also provide challenges,
which were not imaginable previously, e.g., verification of raw data, explaining the
contents of neural networks, and adversarial machine learning.

The International Conference on Artificial Neural Networks (ICANN) is the annual
flagship conference of the European Neural Network Society (ENNS). Last year, due to
the COVID-19 pandemic, we decided not to hold the conference but to prepare the
ICANN proceedings in written form. This year, due to the still unresolved pandemic,
the Organizing Committee, together with the Executive Committee of ENNS decided
to organize ICANN 2021 online, since we felt the urge to allow research presentations
and live discussions, following the now available alternatives of online conference
organization. So for the first time, ENNS and the Organizing Committee prepared
ICANN as an online event with all its challenges and sometimes unforeseeable events!

Following a long-standing successful collaboration, the proceedings of ICANN are
published as volumes within the Lecture Notes in Computer Science Springer series.
The response to this year’s call for papers resulted, unexpectedly, in a record number of
557 article submissions (a 46% rise compared to previous year), of which almost all
were full papers. The paper selection and review process that followed was decided
during the online meeting of the Bratislava organizing team and the ENNS Executive
Committee. The 40 Program Committee (PC) members agreed to check the submis-
sions for the formal requirements and 64 papers were excluded from the subsequent
reviews. The majority of the PC members have doctoral degrees (80%) and 75%
of them are also professors. We also took advantage of filled-in online questionnaires
providing the reviewers’ areas of expertise. The reviewers were assigned one to four
papers, and the papers with undecided scores also received reports from PC members
which helped in making a final decision.

In total, 265 articles were accepted for the proceedings and the authors were
requested to submit final versions. The acceptance rate was hence about 47% when
calculated from all initial submissions. A list of PC members and reviewers who agreed
to publish their names is included in the proceedings. With these procedures we tried to
keep the quality of the proceedings high while still having a critical mass of contri-
butions reflecting the progress of the field. Overall we hope that these proceedings will
contribute to the dissemination of new results by the neural network community during
these challenging times and we hope that we can have a physical ICANN in 2022.

Finally, we very much thank the Program Committee and the reviewers for their
invaluable work.

September 2021 Igor Farkaš
Paolo Masulli
Sebastian Otte

Stefan Wermter

vi Preface

Organization

Organizing Committee

Cabessa Jérémie Université Paris 2 Panthéon-Assas, France
Kerzel Matthias University of Hamburg, Germany
Lintas Alessandra University of Lausanne, Switzerland
Malinovská Kristína Comenius University in Bratislava, Slovakia
Masulli Paolo iMotions A/S, Copenhagen, Denmark
Otte Sebastian University of Tübingen, Germany
Wedeman Roseli Universidade do Estado do Rio de Janeiro, Brazil

Program Committee Chairs

Igor Farkaš Comenius University in Bratislava, Slovakia
Paolo Masulli iMotions A/S, Denmark
Sebastian Otte University of Tübingen, Germany
Stefan Wermter University of Hamburg, Germany

Program Committee

Andrejková Gabriela Pavol Jozef Šafárik University in Košice, Slovakia
Atencia Miguel Universidad de Malaga, Spain
Bodapati Jyostna Devi Indian Institute of Technology, Madras, India
Bougie Nicolas Sokendai/National Institute of Informatics, Japan
Boža Vladimír Comenius University in Bratislava, Slovakia
Cabessa Jérémie Université Paris 2 Panthéon-Assas, France
Di Nuovo Alessandro Sheffield Hallam University, UK
Duch Włodzisław Nicolaus Copernicus University, Poland
Eppe Manfred Universität Hamburg, Germany
Fang Yuchun Shanghai University, China
Garcke Jochen Universität Bonn, Germany
Gregor Michal University of Žilina, Slovakia
Guckert Michael Technische Hochschule Mittelhessen, Germany
Guillén Alberto University of Granada, Spain
Heinrich Stefan University of Tokyo, Japan
Hinaut Xavier Inria, France
Humaidan Dania University of Tübingen, Germany
Jolivet Renaud University of Geneva, Switzerland
Koprinkova-Hristova Petia Bulgarian Academy of Sciences, Bulgaria
Lintas Alessandra University of Lausanne, Switzerland
Lü Shuai Jilin University, China
Micheli Alessio Università di Pisa, Italy

Oravec Miloš Slovak University of Technology in Bratislava,
Slovakia

Otte Sebastian University of Tübingen, Germany
Peltonen Jaakko Tampere University, Finland
Piuri Vincenzo University of Milan, Italy
Pons Rivero Antonio Javier Universitat Politècnica de Catalunya, Barcelona, Spain
Schmidt Jochen TH Rosenheim, Germany
Schockaert Cedric Paul Wurth S.A., Luxembourg
Schwenker Friedhelm University of Ulm, Germany
Takáč Martin Comenius University in Bratislava, Slovakia
Tartaglione Enzo Università degli Studi di Torino, Italy
Tetko Igor Helmholtz Zentrum München, Germany
Triesch Jochen Frankfurt Institute for Advanced Studies, Germany
Vavrečka Michal Czech Technical University in Prague, Czech Republic
Verma Sagar CentraleSupélec, Université Paris-Saclay, France
Vigário Ricardo Nova School of Science and Technology, Portugal
Wedemann Roseli Universidade do Estado do Rio de Janeiro, Brazil
Wennekers Thomas Plymouth University, UK

Reviewers

Abawi Fares University of Hamburg, Germany
Aganian Dustin Technical University Ilmenau, Germany
Ahrens Kyra University of Hamburg, Germany
Alexandre Frederic Inria Bordeaux, France
Alexandre Luís University of Beira Interior, Portugal
Ali Hazrat Umeå University, Sweden
Alkhamaiseh Koloud Western Michigan University, USA
Amaba Takafumi Fukuoka University, Japan
Ambita Ara Abigail University of the Philippines Diliman, Philippines
Ameur Hanen University of Sfax, Tunisia
Amigo Galán Glauco A. Baylor University, USA
An Shuqi Chongqing University, China
Aouiti Chaouki Université de Carthage, Tunisia
Arany Adam Katholieke Universiteit Leuven, Belgium
Arnold Joshua University of Queensland, Australia
Artelt André Bielefeld University, Germany
Auge Daniel Technical University of Munich, Germany
Bac Le Hoai University of Science, Vietnam
Bacaicoa-Barber Daniel University Carlos III of Madrid, Spain
Bai Xinyi National University of Defense Technology, China
Banka Asif Islamic University of Science & Technology, India
Basalla Marcus University of Liechtenstein, Liechtenstein
Basterrech Sebastian Technical University of Ostrava, Czech Republic
Bauckhage Christian Fraunhofer IAIS, Germany
Bayer Markus Technical University of Darmstadt, Germany

viii Organization

Bečková Iveta Comenius University in Bratislava, Slovakia
Benalcázar Marco Escuela Politécnica Nacional, Ecuador
Bennis Achraf Institut de Recherche en Informatique de Toulouse,

France
Berlemont Samuel Orange Labs, Grenoble, France
Bermeitinger Bernhard Universität St. Gallen, Switzerland
Bhoi Suman National University of Singapore, Singapore
Biesner David Fraunhofer IAIS, Germany
Bilbrey Jenna Pacific Northwest National Lab, USA
Blasingame Zander Clarkson University, USA
Bochkarev Vladimir Kazan Federal University, Russia
Bohte Sander Universiteit van Amsterdam, The Netherlands
Bouchachia Abdelhamid Bournemouth University, UK
Bourguin Grégory Université du Littoral Côte d’Opale, France
Breckon Toby Durham University, UK
Buhl Fred University of Florida, USA
Butz Martin V. University of Tübingen, Germany
Caillon Paul Université de Lorraine, Nancy, France
Camacho Hugo C. E. Universidad Autónoma de Tamaulipas, Mexico
Camurri Antonio Università di Genova, Italy
Cao Hexin OneConnect Financial Technology, China
Cao Tianyang Peking University, China
Cao Zhijie Shanghai Jiao Tong University, China
Carneiro Hugo Universität Hamburg, Germany
Chadha Gavneet Singh South Westphalia University of Applied Sciences,

Germany
Chakraborty Saikat C. V. Raman Global University, India
Chang Hao-Yuan University of California, Los Angeles, USA
Chang Haodong University of Technology Sydney, Australia
Chen Cheng Tsinghua University, China
Chen Haopeng Shanghai Jiao Tong University, China
Chen Junliang Shenzhen University, China
Chen Tianyu Northwest Normal University, China
Chen Wenjie Communication University of China, China
Cheng Zhanglin Chinese Academy of Sciences, China
Chenu Alexandre Sorbonne Université, France
Choi Heeyoul Handong Global University, South Korea
Christa Sharon RV Institute of Technology and Management, India
Cîtea Ingrid Bitdefender Central, Romania
Colliri Tiago Universidade de São Paulo, Brazil
Cong Cong Chinese Academy of Sciences, China
Coroiu Adriana Mihaela Babes-Bolyai University, Romania
Cortez Paulo University of Minho, Portugal
Cuayáhuitl Heriberto University of Lincoln, UK
Cui Xiaohui Wuhan University, China
Cutsuridis Vassilis University of Lincoln, UK

Organization ix

Cvejoski Kostadin Fraunhofer IAIS, Germany
D’Souza Meenakshi International Institute of Information Technology,

Bangalore, India
Dai Feifei Chinese Academy of Sciences, China
Dai Peilun Boston University, USA
Dai Ruiqi INSA Lyon, France
Dang Kai Nankai University, China
Dang Xuan Tsinghua University, China
Dash Tirtharaj Birla Institute of Technology and Science, Pilani, India
Davalas Charalampos Harokopio University of Athens, Greece
De Brouwer Edward Katholieke Universiteit Leuven, Belgium
Deng Minghua Peking University, China
Devamane Shridhar KLE Institute of Technology, Hubballi, India
Di Caterina Gaetano University of Strathclyde, UK
Di Sarli Daniele Università di Pisa, Italy
Ding Juncheng University of North Texas, USA
Ding Zhaoyun National University of Defense Technology, China
Dold Dominik Siemens, Munich, Germany
Dong Zihao Jinan University, China
Du Songlin Southeast University, China
Edwards Joshua University of North Carolina Wilmington, USA
Eguchi Shu Fukuoka University, Japan
Eisenbach Markus Ilmenau University of Technology, Germany
Erlhagen Wolfram University of Minho, Portugal
Fang Tiyu University of Jinan, China
Feldager Cilie Technical University of Denmark, Denmark
Ferianc Martin University College London, UK
Ferreira Flora University of Minho, Portugal
Fevens Thomas Concordia University, Canada
Friedjungová Magda Czech Technical University in Prague, Czech Republic
Fu Xianghua Shenzhen University, China
Fuhl Wolfgang Universität Tübingen, Germany
Gamage Vihanga Technological University Dublin, Ireland
Ganguly Udayan Indian Institute of Technology, Bombay, India
Gao Ruijun Tianjin University, China
Gao Yapeng University of Tübingen, Germany
Gao Yue Beijing University of Posts and Telecommunications,

China
Gao Zikai National University of Defense Technology, China
Gault Richard Queen’s University Belfast, UK
Ge Liang Chongqing University, China
Geissler Dominik Relayr GmbH, Munich, Germany
Gepperth Alexander ENSTA ParisTech, France
Gerum Christoph University of Tübingen, Germany
Giancaterino Claudio G. Catholic University of Milan, Italy
Giese Martin University Clinic Tübingen, Germany

x Organization

Gikunda Patrick Dedan Kimathi University of Technology, Kenya
Goel Anmol Guru Gobind Singh Indraprastha University, India
Göpfert Christina Bielefeld University, Germany
Göpfert Jan Philip Bielefeld University, Germany
Goyal Nidhi Indraprastha Institute of Information Technology, India
Grangetto Marco Università di Torino, Italy
Grüning Philipp University of Lübeck, Germany
Gu Xiaoyan Chinese Academy of Sciences, Beijing, China
Guo Hongcun China Three Gorges University, China
Guo Ling Northwest University, China
Guo Qing Nanyang Technological University, Singapore
Guo Song Xi’an University of Architecture and Technology,

China
Gupta Sohan Global Institute of Technology, Jaipur, India
Hakenes Simon Ruhr-Universität Bochum, Germany
Han Fuchang Central South University, China
Han Yi University of Melbourne, Australia
Hansen Lars Kai Technical University of Denmark, Denmark
Haque Ayaan Saratoga High School, USA
Hassen Alan Kai Leiden University, The Netherlands
Hauberg Søren Technical University of Denmark, Denmark
He Tieke Nanjing University, China
He Wei Nanyang Technological University, Singapore
He Ziwen Chinese Academy of Sciences, China
Heese Raoul Fraunhofer ITWM, Germany
Herman Pawel KTH Royal Institute of Technology, Sweden
Holas Juraj Comenius University in Bratislava, Slovakia
Horio Yoshihiko Tohoku University, Japan
Hou Hongxu Inner Mongolia University, China
Hu Ming-Fei China University of Petroleum, China
Hu Ting Hasso Plattner Institute, Germany
Hu Wenxin East China Normal University, China
Hu Yanqing Sichuan University, China
Huang Chenglong National University of Defense Technology, China
Huang Chengqiang Huawei Technology, Ltd., China
Huang Jun Chinese Academy of Sciences, Shanghai, China
Huang Ruoran Chinese Academy of Sciences, China
Huang Wuliang Chinese Academy of Sciences, Beijing, China
Huang Zhongzhan Tsinghua University, China
Iannella Nicolangelo University of Oslo, Norway
Ienco Dino INRAE, France
Illium Steffen Ludwig-Maximilians-Universität München, Germany
Iyer Naresh GE Research, USA
Jalalvand Azarakhsh Ghent University, Belgium
Japa Sai Sharath Southern Illinois University, USA
Javaid Muhammad Usama Eura Nova, Belgium

Organization xi

Jia Qiaomei Northwest University, China
Jia Xiaoning Inner Mongolia University, China
Jin Peiquan University of Science and Technology of China, China
Jirak Doreen Istituto Italiano di Tecnologia, Italy
Jodelet Quentin Tokyo Institute of Technology, Japan
Kai Tang Toshiba, China
Karam Ralph Université Franche-Comté, France
Karlbauer Matthias University of Tübingen, Germany
Kaufhold Marc-André Technical University of Darmstadt, Germany
Kerzel Matthias University of Hamburg, Germany
Keurulainen Antti Bitville Oy, Finland
Kitamura Takuya National Institute of Technology, Japan
Kocur Viktor Comenius University in Bratislava, Slovakia
Koike Atsushi National Institute of Technology, Japan
Kotropoulos Constantine Aristotle University of Thessaloniki, Greece
Kovalenko Alexander Czech Technical University, Czech Republic
Krzyzak Adam Concordia University, Canada
Kurikawa Tomoki Kansai Medical University, Japan
Kurpiewski Evan University of North Carolina Wilmington, USA
Kurt Mehmet Necip Columbia University, USA
Kushwaha Sumit Kamla Nehru Institute of Technology, India
Lai Zhiping Fudan University, China
Lang Jana Hertie Institute for Clinical Brain Research, Germany
Le Hieu Boston University, USA
Le Ngoc Hanoi University of Science and Technology, Vietnam
Le Thanh University of Science, Hochiminh City, Vietnam
Lee Jinho Yonsei University, South Korea
Lefebvre Grégoire Orange Labs, France
Lehmann Daniel University of Greifswald, Germany
Lei Fang University of Lincoln, UK
Léonardon Mathieu IMT Atlantique, France
Lewandowski Arnaud Université du Littoral Côte d’Opale, Calais, France
Li Caiyuan Shanghai Jiao Tong University, China
Li Chuang Xi’an Jiaotong University, China
Li Ming-Fan Ping An Life Insurance of China, Ltd., China
Li Qing The Hong Kong Polytechnic University, China
Li Tao Peking University, China
Li Xinyi Southwest University, China
Li Xiumei Hangzhou Normal University, China
Li Yanqi University of Jinan, China
Li Yuan Defence Innovation Institute, China
Li Zhixin Guangxi Normal University, China
Lian Yahong Dalian University of Technology, China
Liang Nie Southwest University of Science and Technology,

China
Liang Qi Chinese Academy of Sciences, Beijing, China

xii Organization

Liang Senwei Purdue University, USA
Liang Yuxin Northwest University, China
Lim Nengli Singapore University of Technology and Design,

Singapore
Liu Gongshen Shanghai Jiao Tong University, China
Liu Haolin Chinese Academy of Sciences, China
Liu Jian-Wei China University of Petroleum, China
Liu Juan Wuhan University, China
Liu Junxiu Guangxi Normal University, China
Liu Qi Chongqing University, China
Liu Shuang Huazhong University of Science and Technology,

China
Liu Shuting University of Shanghai for Science and Technology,

China
Liu Weifeng China University of Petroleum, China
Liu Yan University of Shanghai for Science and Technology,

China
Liu Yang Fudan University, China
Liu Yi-Ling Imperial College London, UK
Liu Zhu University of Electronic Science and Technology

of China, China
Long Zi Shenzhen Technology University, China
Lopes Vasco Universidade da Beira Interior, Portugal
Lu Siwei Guangdong University of Technology, China
Lu Weizeng Shenzhen University, China
Lukyanova Olga Russian Academy of Sciences, Russia
Luo Lei Kansas State University, USA
Luo Xiao Peking University, China
Luo Yihao Huazhong University of Science and Technology,

China
Ma Chao Wuhan University, China
Ma Zeyu Harbin Institute of Technology, China
Malialis Kleanthis University of Cyprus, Cyprus
Manoonpong Poramate Vidyasirimedhi Institute of Science and Technology,

Thailand
Martinez Rego David Data Spartan Ltd., UK
Matsumura Tadayuki Hitachi, Ltd., Tokyo, Japan
Mekki Asma Université de Sfax, Tunisia
Merkel Cory Rochester Institute of Technology, USA
Mirus Florian Intel Labs, Germany
Mizuno Hideyuki Suwa University of Science, Japan
Moh Teng-Sheng San Jose State University, USA
Mohammed Elmahdi K. Kasdi Merbah university, Algeria
Monshi Maram University of Sydney, Australia
Moreno Felipe Universidad Católica San Pablo, Peru
Morra Lia Politecnico di Torino, Italy

Organization xiii

Morzy Mikołaj Poznań University of Technology, Poland
Mouček Roman University of West Bohemia, Czech Republic
Moukafih Youness International University of Rabat, Morocco
Mouysset Sandrine University of Toulouse, France
Müller Robert Ludwig-Maximilians-Universität München, Germany
Mutschler Maximus University of Tübingen, Germany
Najari Naji Orange Labs, France
Nanda Abhilasha Vellore Institute of Technology, India
Nguyen Thi Nguyet Que Technological University Dublin, Ireland
Nikitin Oleg Russian Academy of Sciences, Russia
Njah Hasna University of Sfax, Tunisia
Nyabuga Douglas Donghua University, China
Obafemi-Ajayi Tayo Missouri State University, USA
Ojha Varun University of Reading, UK
Oldenhof Martijn Katholieke Universiteit Leuven, Belgium
Oneto Luca Università di Genova, Italy
Oota Subba Reddy Inria, Bordeaux, France
Oprea Mihaela Petroleum-Gas University of Ploiesti, Romania
Osorio John Barcelona Supercomputing Center, Spain
Ouni Achref Institut Pascal UCA, France
Pan Yongping Sun Yat-sen University, China
Park Hyeyoung Kyungpook National University, South Korea
Pateux Stéphane Orange Labs, France
Pecháč Matej Comenius University in Bratislava, Slovakia
Pecyna Leszek University of Liverpool, UK
Peng Xuyang China University of Petroleum, China
Pham Viet Toshiba, Japan
Pietroń Marcin AGH University of Science and Technology, Poland
Pócoš Štefan Comenius University in Bratislava, Slovakia
Posocco Nicolas Eura Nova, Belgium
Prasojo Radityo Eko Universitas Indonesia, Indonesia
Preuss Mike Universiteit Leiden, The Netherlands
Qiao Peng National University of Defense Technology, China
Qiu Shoumeng Shanghai Institute of Microsystem and Information

Technology, China
Quan Hongyan East China Normal University, China
Rafiee Laya Concordia University, Canada
Rangarajan Anand University of Florida, USA
Ravichandran Naresh Balaji KTH Royal Institute of Technology, Sweden
Renzulli Riccardo University of Turin, Italy
Richter Mats Universität Osnabrück, Germany
Robine Jan Heinrich Heine University Düsseldorf, Germany
Rocha Gil University of Porto, Portugal
Rodriguez-Sanchez Antonio Universität Innsbruck, Austria
Rosipal Roman Slovak Academy of Sciences, Slovakia

xiv Organization

Rusiecki Andrzej Wroclaw University of Science and Technology,
Poland

Salomon Michel Université Bourgogne Franche-Comté, France
Sarishvili Alex Fraunhofer ITWM, Germany
Sasi Swapna Birla Institute of Technology and Science, India
Sataer Yikemaiti Southeast University, China
Schaaf Nina Fraunhofer IPA, Germany
Schak Monika University of Applied Sciences, Fulda, Germany
Schilling Malte Bielefeld University, Germany
Schmid Kyrill Ludwig-Maximilians-Universität München, Germany
Schneider Johannes University of Liechtenstein, Liechtenstein
Schwab Malgorzata University of Colorado at Denver, USA
Sedlmeier Andreas Ludwig-Maximilians-Universität München, Germany
Sendera Marcin Jagiellonian University, Poland
Shahriyar Rifat Bangladesh University of Engineering and Technology,

Bangladesh
Shang Cheng Fudan University, China
Shao Jie University of Electronic Science and Technology

of China, China
Shao Yang Hitachi Ltd., Japan
Shehu Amarda George Mason University, USA
Shen Linlin Shenzhen University, China
Shenfield Alex Sheffield Hallam University, UK
Shi Ying Chongqing University, China
Shrestha Roman Intelligent Voice Ltd., UK
Sifa Rafet Fraunhofer IAIS, Germany
Sinha Aman CNRS and University of Lorraine, France
Soltani Zarrin Pouya Institute for High Performance Microelectronics,

Germany
Song Xiaozhuang Southern University of Science and Technology, China
Song Yuheng Shanghai Jiao Tong University, China
Song Ziyue Shanghai Jiao Tong University, China
Sowinski-Mydlarz Viktor London Metropolitan University, UK
Steiner Peter Technische Universität Dresden, Germany
Stettler Michael University of Tübingen, Germany
Stoean Ruxandra University of Craiova, Romania
Su Di Beijing Institute of Technology, China
Suarez Oscar J. Instituto Politécnico Nacional, México
Sublime Jérémie Institut supérieur d’électronique de Paris, France
Sudharsan Bharath National University of Ireland, Galway, Ireland
Sugawara Toshiharu Waseda University, Japan
Sui Yongduo University of Science and Technology of China, China
Sui Zhentao Soochow University, China
Swiderska-Chadaj Zaneta Warsaw University of Technology, Poland
Szandała Tomasz Wroclaw University of Science and Technology,

Poland

Organization xv

Šejnová Gabriela Czech Technical University in Prague, Czech Republic
Tang Chenwei Sichuan University, China
Tang Jialiang Southwest University of Science and Technology,

China
Taubert Nick University Clinic Tübingen, Germany
Tek Faik Boray Isik University, Turkey
Tessier Hugo Stellantis, France
Tian Zhihong Guangzhou University, China
Tianze Zhou Beijing Institute of Technology, China
Tihon Simon Eura Nova, Belgium
Tingwen Liu Chinese Academy of Sciences, China
Tong Hao Southern University of Science and Technology, China
Torres-Moreno

Juan-Manuel
Université d’Avignon, France

Towobola Oluyemisi Folake Obafemi Awolowo University, Nigeria
Trinh Anh Duong Technological University Dublin, Ireland
Tuna Matúš Comenius University in Bratislava, Slovakia
Uelwer Tobias Heinrich Heine University Düsseldorf, Germany
Van Rullen Rufin CNRS, Toulouse, France
Varlamis Iraklis Harokopio University of Athens, Greece
Vašata Daniel Czech Technical University in Prague, Czech Republic
Vásconez Juan Escuela Politécnica Nacional, Ecuador
Vatai Emil RIKEN, Japan
Viéville Thierry Inria, Antibes, France
Wagner Stefan Heinrich Heine University Düsseldorf, Germany
Wan Kejia Defence Innovation Institute, China
Wang Huiling Tampere University, Finland
Wang Jiaan Soochow University, China
Wang Jinling Ulster University, UK
Wang Junli Tongji University, China
Wang Qian Durham University, UK
Wang Xing Ningxia University, China
Wang Yongguang Beihang University, China
Wang Ziming Shanghai Jiao Tong University, China
Wanigasekara Chathura University of Auckland, New Zealand
Watson Patrick Minerva KGI, USA
Wei Baole Chinese Academy of Sciences, China
Wei Feng York University, Canada
Wenninger Marc Rosenheim Technical University of Applied Sciences,

Germany
Wieczorek Tadeusz Silesian University of Technology, Poland
Wiles Janet University of Queensland, Australia
Windheuser Christoph ThoughtWorks Inc., Germany
Wolter Moritz Rheinische Friedrich-Wilhelms-Universität Bonn,

Germany

xvi Organization

Wu Ancheng Pingan Insurance, China
Wu Dayan Chinese Academy of Sciences, China
Wu Jingzheng Chinese Academy of Sciences, China
Wu Nier Inner Mongolia University, China
Wu Song Southwest University, China
Xie Yuanlun University of Electronic Science and Technology

of China, China
Xu Dongsheng National University of Defense Technology, China
Xu Jianhua Nanjing Normal University, China
Xu Peng Technical University of Munich, Germany
Yaguchi Takaharu Kobe University, Japan
Yamamoto Hideaki Tohoku University, Japan
Yang Gang Renmin University of China, China
Yang Haizhao Purdue University, USA
Yang Jing Guangxi Normal University, China
Yang Jing Hefei University of Technology, China
Yang Liu Tianjin University, China
Yang Sidi Concordia University, Canada
Yang Sun Soochow University, China
Yang Wanli Harbin Institute of Technology, China
Yang XiaoChen Tianjin University of Technology, China
Yang Xuan Shenzhen University, China
Yang Zhao Leiden University, The Netherlands
Yang Zhengfeng East China Normal University, China
Yang Zhiguang Chinese Academy of Sciences, China
Yao Zhenjie Chinese Academy of Sciences, China
Ye Kai Wuhan University, China
Yin Bojian Centrum Wiskunde & Informatica, The Netherlands
Yu James Southern University of Science and Technology, China
Yu Wenxin Southwest University of Science and Technology,

China
Yu Yipeng Tencent, China
Yu Yue BNU-HKBU United International College, China
Yuan Limengzi Tianjin University, China
Yuchen Ge Hefei University of Technology, China
Yuhang Guo Peking University, China
Yury Tsoy Solidware, South Korea
Zeng Jia Jilin University, China
Zeng Jiayuan University of Shanghai for Science and Technology,

China
Zhang Dongyang University of Electronic Science and Technology

of China, China
Zhang Jiacheng Beijing University of Posts and Telecommunications,

China
Zhang Jie Nanjing University, China
Zhang Kai Chinese Academy of Sciences, China

Organization xvii

Zhang Kaifeng Independent Researcher, China
Zhang Kun Chinese Academy of Sciences, China
Zhang Luning China University of Petroleum, China
Zhang Panpan Chinese Academy of Sciences, China
Zhang Peng Chinese Academy of Sciences, China
Zhang Wenbin Carnegie Mellon University, USA
Zhang Xiang National University of Defense Technology, China
Zhang Xuewen Southwest University of Science and Technology,

China
Zhang Yicheng University of Lincoln, UK
Zhang Yingjie Hunan University, China
Zhang Yunchen University of Electronic Science and Technology

of China, China
Zhang Zhiqiang Southwest University of Science and Technology,

China
Zhao Liang University of São Paulo, Brazil
Zhao Liang Dalian University of Technology, China
Zhao Qingchao Harbin Engineering University, China
Zhao Ying University of Shanghai for Science and Technology,

China
Zhao Yuekai National University of Defense Technology, China
Zheng Yuchen Kyushu University, Japan
Zhong Junpei Plymouth University, UK
Zhou Shiyang Defense Innovation Institute, China
Zhou Xiaomao Harbin Engineering University, China
Zhou Yucan Chinese Academy of Sciences, China
Zhu Haijiang Beijing University of Chemical Technology, China
Zhu Mengting National University of Defense Technology, China
Zhu Shaolin Zhengzhou University of Light Industry, China
Zhu Shuying The University of Hong Kong, China
Zugarini Andrea University of Florence, Italy

xviii Organization

Contents – Part II

Computer Vision and Object Detection

Selective Multi-scale Learning for Object Detection. 3
Junliang Chen, Weizeng Lu, and Linlin Shen

DRENet: Giving Full Scope to Detection and Regression-Based Estimation
for Video Crowd Counting. 15

Changsheng Liu, Yuan Huang, Yadong Mu, and Xiaoming Yu

Sisfrutos Papaya: A Dataset for Detection and Classification of Diseases
in Papaya . 28

Jairo Lucas de Moraes, Jorcy de Oliveira Neto, Jacson R. Correia-Silva,
Thiago M. Paixão, Claudine Badue, Thiago Oliveira-Santos,
and Alberto F. De Souza

Faster-LTN: A Neuro-Symbolic, End-to-End Object
Detection Architecture . 40

Francesco Manigrasso, Filomeno Davide Miro, Lia Morra,
and Fabrizio Lamberti

GC-MRNet: Gated Cascade Multi-stage Regression Network
for Crowd Counting . 53

Ying Shi, Jun Sang, Jinghan Tan, Zhongyuan Wu, Bin Cai,
and Nong Sang

Latent Feature-Aware and Local Structure-Preserving Network for 3D
Completion from a Single Depth View . 67

Caixia Liu, Dehui Kong, Shaofan Wang, Jinghua Li, and Baocai Yin

Facial Expression Recognition by Expression-Specific
Representation Swapping . 80

Jie Lei, Zhao Liu, Zeyu Zou, Tong Li, Juan Xu, Zunlei Feng,
and Ronghua Liang

Iterative Error Removal for Time-of-Flight Depth Imaging 92
Zhuolin Zheng, Yinzhang Ding, Xiaotian Tang, Yu Cai, Dongxiao Li,
Ming Zhang, Hongyang Xie, and Xuanfu Li

Blurred Image Recognition: A Joint Motion Deblurring
and Classification Loss-Aware Approach . 106

Wenjie Zhang and Zhi Wang

Learning How to Zoom In: Weakly Supervised ROI-Based-DAM
for Fine-Grained Visual Classification . 118

Wenjie Chen, Shuang Ran, Tian Wang, and Lihong Cao

Convolutional Neural Networks and Kernel Methods

(Input) Size Matters for CNN Classifiers . 133
Mats L. Richter, Wolf Byttner, Ulf Krumnack, Anna Wiedenroth,
Ludwig Schallner, and Justin Shenk

Accelerating Depthwise Separable Convolutions with Vector Processor 145
Yuekai Zhao, Jianzhuang Lu, and Xiaowen Chen

KCNet: Kernel-Based Canonicalization Network for Entities
in Recruitment Domain . 157

Nidhi Goyal, Niharika Sachdeva, Anmol Goel, Jushaan Singh Kalra,
and Ponnurangam Kumaraguru

Deep Unitary Convolutional Neural Networks . 170
Hao-Yuan Chang and Kang L. Wang

Deep Learning and Optimization I

DPWTE: A Deep Learning Approach to Survival Analysis Using
a Parsimonious Mixture of Weibull Distributions . 185

Achraf Bennis, Sandrine Mouysset, and Mathieu Serrurier

First-Order and Second-Order Variants of the Gradient Descent
in a Unified Framework . 197

Thomas Pierrot, Nicolas Perrin-Gilbert, and Olivier Sigaud

Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search 209
Nengli Lim and Yueqin Li

Growing Neural Networks Achieve Flatter Minima 222
Paul Caillon and Christophe Cerisara

Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks . 235

Alexander Kovalenko, Pavel Kordík, and Magda Friedjungová

Curved SDE-Net Leads to Better Generalization for Uncertainty Estimates
of DNNs . 248

YongGuang Wang, HuoBin Tan, and ShuZhen Yao

xx Contents – Part II

EIS - Efficient and Trainable Activation Functions for Better Accuracy
and Performance . 260

Koushik Biswas, Sandeep Kumar, Shilpak Banerjee,
and Ashish Kumar Pandey

Deep Learning and Optimization II

Why Mixup Improves the Model Performance . 275
Masanari Kimura

Mixup Gamblers: Learning to Abstain with Auto-Calibrated Reward
for Mixed Samples . 287

Takumi Yamaguchi and Masahiro Murakawa

Non-iterative Phase Retrieval with Cascaded Neural Networks 295
Tobias Uelwer, Tobias Hoffmann, and Stefan Harmeling

Incorporating Discrete Wavelet Transformation Decomposition
Convolution into Deep Network to Achieve Light Training 307

Guihua Tao, Wentao Rong, Wanlin Weng, Tingting Dan, Bin Zhang,
and Hongmin Cai

MMF: A Loss Extension for Feature Learning in Open Set Recognition 319
Jingyun Jia and Philip K. Chan

On the Selection of Loss Functions Under Known Weak Label Models 332
Daniel Bacaicoa-Barber, Miquel Perello-Nieto, Raúl Santos-Rodríguez,
and Jesús Cid-Sueiro

Distributed and Continual Learning

Bilevel Online Deep Learning in Non-stationary Environment 347
Ya-nan Han, Jian-wei Liu, Bing-biao Xiao, Xin-Tan Wang,
and Xiong-lin Luo

A Blockchain Based Decentralized Gradient Aggregation Design
for Federated Learning. 359

Jian Zhao, Xin Wu, Yan Zhang, Yu Wu, and Zhi Wang

Continual Learning for Fake News Detection from Social Media 372
Yi Han, Shanika Karunasekera, and Christopher Leckie

Balanced Softmax Cross-Entropy for Incremental Learning 385
Quentin Jodelet, Xin Liu, and Tsuyoshi Murata

Generalised Controller Design Using Continual Learning 397
Diana Benavides-Prado, Chathura Wanigasekara, and Akshya Swain

Contents – Part II xxi

DRILL: Dynamic Representations for Imbalanced Lifelong Learning. 409
Kyra Ahrens, Fares Abawi, and Stefan Wermter

Principal Gradient Direction and Confidence Reservoir Sampling
for Continual Learning. 421

Zhiyi Chen and Tong Lin

Explainable Methods

Spontaneous Symmetry Breaking in Data Visualization 435
Cilie W. Feldager, Søren Hauberg, and Lars Kai Hansen

Deep NLP Explainer: Using Prediction Slope to Explain NLP Models. 447
Reza Marzban and Christopher Crick

Empirically Explaining SGD from a Line Search Perspective 459
Maximus Mutschler and Andreas Zell

Towards Ontologically Explainable Classifiers . 472
Grégory Bourguin, Arnaud Lewandowski, Mourad Bouneffa,
and Adeel Ahmad

Few-shot Learning

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning . . . 487
Yuqing Hu, Vincent Gripon, and Stéphane Pateux

One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition . . . 500
Gianfranco Mauro, Mateusz Chmurski, Muhammad Arsalan,
Mariusz Zubert, and Vadim Issakov

Few-Shot Learning with Random Erasing and Task-Relevant
Feature Transforming. 512

Xin Wang, Shouhong Wan, and Peiquan Jin

Fostering Compositionality in Latent, Generative Encodings to Solve
the Omniglot Challenge . 525

Sarah Fabi, Sebastian Otte, and Martin V. Butz

Better Few-Shot Text Classification with Pre-trained Language Model. 537
Zheng Chen and Yunchen Zhang

Generative Adversarial Networks

Leveraging GANs via Non-local Features. 551
Xuyang Peng, Weifeng Liu, Baodi Liu, Kai Zhang, Xiaoping Lu,
and Yicong Zhou

xxii Contents – Part II

On Mode Collapse in Generative Adversarial Networks 563
Kaifeng Zhang

Image Inpainting Using Wasserstein Generative Adversarial
Imputation Network. 575

Daniel Vašata, Tomáš Halama, and Magda Friedjungová

COViT-GAN: Vision Transformer for COVID-19 Detection in CT Scan
Images with Self-Attention GAN for Data Augmentation 587

Ara Abigail E. Ambita, Eujene Nikka V. Boquio,
and Prospero C. Naval Jr.

PhonicsGAN: Synthesizing Graphical Videos from Phonics Songs 599
Nuha Aldausari, Arcot Sowmya, Nadine Marcus,
and Gelareh Mohammadi

A Progressive Image Inpainting Algorithm with a Mask
Auto-update Branch. 611

Liang Nie, Wenxin Yu, Xuewen Zhang, Siyuan Li, Ning Jiang,
and Zhiqiang Zhang

Hybrid Generative Models for Two-Dimensional Datasets 623
Hoda Shajari, Jaemoon Lee, Sanjay Ranka, and Anand Rangarajan

Towards Compressing Efficient Generative Adversarial Networks
for Image Translation via Pruning and Distilling . 637

Luqi Gong, Chao Li, Hailong Hong, Hui Zhu, Tangwen Qian,
and Yongjun Xu

Author Index . 649

Contents – Part II xxiii

Computer Vision and Object Detection

Selective Multi-scale Learning for Object
Detection

Junliang Chen1,2,3 , Weizeng Lu1,2,3 , and Linlin Shen1,2,3(B)

1 Computer Vision Institute, School of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China

2 Shenzhen Institute of Artificial Intelligence of Robotics of Society, Shenzhen, China
3 Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen

University, Shenzhen 518060, China
{chenjunliang2016,luweizeng2018}@email.szu.edu.cn, llshen@szu.edu.cn

Abstract. Pyramidal networks are standard methods for multi-scale
object detection. Current researches on feature pyramid networks usually
adopt layer connections to collect features from certain levels of the feature
hierarchy, and do not consider the significant differences among them. We
propose a better architecture of feature pyramid networks, named selec-
tive multi-scale learning (SMSL), to address this issue. SMSL is efficient
and general, which can be integrated in both single-stage and two-stage
detectors to boost detection performance, with nearly no extra inference
cost. RetinaNet combined with SMSL obtains 1.8% improvement in AP
(from 39.1% to 40.9%) on COCO dataset. When integrated with SMSL,
two-stage detectors can get around 1.0% improvement in AP.

Keywords: Multi-scale · Object detection

1 Introduction

Object detection is a fundamental task in computer vision, whose target is to
classify and locate all objects in an image. Image recognition aims to predict
the probability of all classes for an image, and adopt the top probabilities and
their corresponding classes as final result. Unlike image recognition where there
is usually only one object in an image, in object detection, there usually exists
various objects in the same image, with a wide range of scales. Therefore, it is
difficult to represent different kinds of objects at the same feature representation
level. To achieve this goal, a solution is to use multi-level feature representations.
The features at higher levels are semantically strong with lower resolutions.
While the low-level features are spatially finer with higher resolutions. Hence,
the high-level features are more suitable for large-object detection while the low-
level features are more beneficial for detecting smaller objects. The pyramidal
architecture with multi-scale feature representations is widely used by many
powerful object detectors [16,22,23].

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 3–14, 2021.
https://doi.org/10.1007/978-3-030-86340-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_1&domain=pdf
http://orcid.org/0000-0001-7516-9546
http://orcid.org/0000-0001-5215-6259
http://orcid.org/0000-0003-1420-0815
https://doi.org/10.1007/978-3-030-86340-1_1

4 J. Chen et al.

One of the widely used pyramidal architecture is Feature Pyramid Networks
(FPN) [15]. FPN takes inputs from a backbone model, which is usually con-
structed for image recognition. The backbone model generates feature repre-
sentations in different hierarchies with decreasing resolutions. FPN sequentially
takes two adjacent layers from different levels in backbone as inputs, and com-
bines them with a top-down pathway and lateral connections. The high-level
features, with stronger semantic but lower resolution, are upsampled to fit the
spatial size of the low-level features with higher resolution. Then a binary oper-
ation, usually element-wise summation, is conducted to aggregate the features.
The low-level finer features are semantically enhanced after combination with
high-level features from top-down pathway.

Although FPN is simple and effective for many detectors, there are some
aspects to be improved. Path Aggregation Network (PANet) [18] adds an addi-
tional bottom-up pathway on the base of FPN. This additional branch can
strengthen the semantically enhanced features after FPN, with finer spatial fea-
tures at lower levels. Balanced Feature Pyramid (BFP) [21] gathers cross-level
features from FPN or other pyramidal architectures to the same level. Then
a refinement module is carried out after element-wise average of the gathered
features. The averaged features, a fusion of features cross all levels, can be con-
sidered as global information. The fused features are then scattered to all levels
and summed up with the original input features. This process merges the orig-
inal features with features from all other levels, enabling detectors to perceive
information from all levels. Recent researches [9,11] explore better connections
of cross-scale features to produce a pyramidal architecture for feature represen-
tations.

However, the above works ignore the variances among features from different
scales and give them the same weights for combination, or only merge features
from partial scales. Inspired by these, we propose an architecture, named selec-
tive multi-scale learning (SMSL), to dynamically learn a better feature represen-
tation for each level from multi-scale features. SMSL can efficiently improve the
detection performance of both single-stage and two-stage detectors with only a
small increase of inference cost.

In this study, we make the following contributions:

– We propose the selective multi-scale learning (SMSL) to generate specific
features for each level by selectively merge features from multi scales.

– Combined with SMSL, RetinaNet achieves performance of 44.3% AP on
COCO dataset.

– The proposed framework can also be applied to two-stage object detectors to
improve the detection performance.

Selective Multi-scale Learning for Object Detection 5

2 Related Work

Recognizing multi-scale objects is a fundamental but challenging task in com-
puter vision. Pyramidal feature representations is a general technique [1] in this
area. A simple method is to use convolutional networks (ConvNets) to extract
features from image pyramids. However, this method brings huge computation
burden, as the ConvNets forward repeatedly for the same image. To solve the
problem, an effective solution is to directly take advantage of the features gen-
erated by the ConvNets, instead of using image pyramids. Recent researches
[3,7,16,20] propose many cross-scale connections to connect multi-level features
from the ConvNets. Though keep the original resolution, the connected features
are semantically enhanced.

Partial Connections. Partial connections are one of the standard pyramidal
architectures. FPN [15] connects two adjacent layers in the top-down pathway
by upsampling the high-level features to fit the size of the features at lower
level and element-wisely sum up them. This architecture enhances the low-level
features with stronger semantic information from higher levels. Although FPN
is simple and effective to improve feature representations, the features still lack
information from lower levels. To address this problem, Liu et al. [18] propose
Path Aggregation Network (PANet) to add an accessional bottom-up pathway on
the basis of FPN. In PANet, low-level features are downsampled and summed up
with features at higher level. Therefore, the semantically enhanced features after
FPN can obtain finer spatial information. NAS-FPN [6] uses Neural Architecture
Search (NAS) algorithm to discover a better pyramidal architecture covering all
cross-scale connections.

Full Connections. Another way to integrate multi-level features is to gather
features and fuse them to generate features for different levels and scatter the
fused features to the corresponding level. Kong et al. [11] first gather multi-
level features and combine them, then use global attention for further refine-
ment. After that, the local reconfiguration module is employed to further cap-
ture local information. The produced features are resized and element-wisely
summed up with the original input which is linearly projected by a 1 × 1 con-
volution. Balanced Feature Pyramid (BFP) [21] gathers features to a level and
applies element-wise averaging. Then a non-local module is utilized to refine the
integrated features, which are then scattered to all levels. The refined features
are element-wisely summed up with the original input features at each level.

The above methods obtain features from partial scales, and usually merge
them through linear operation (such as element-wise summation) which gives
features from different scales the same weights. However, for a specific level, the
features from different scales have different importance. Therefore, the detector
should learn to selectively merge the multi-scale features.

6 J. Chen et al.

Fig. 1. (a) The overview of the proposed selective multi-scale learning. (b) The channel
rescaling module. “C©” and “ S©” denote channel concatenation and channel spliting,
respectively.

3 Selective Multi-scale Learning

3.1 Network Architecture

Overview. Figure 1(a) shows the architecture of selective multi-scale learning.
We use the

{
C3, C4, C5

}
layers from ResNet [8] backbone. Then we generate C6

and C7 layers by separately applying a 3 × 3 convolution with stride 2 on C5

and C6 layers. Therefore, the original inputs are
{
C3, C4, C5, C6, C7

}
, which are

gathered to a level and then passed to channel rescaling (CR) module shown in
Fig. 1(b) and selective feature combination (SFC) module (Fig. 2(a)) to generate
level-specific features. At each level, the generated features are then element-
wisely summed up with the corresponding input as the final output.

Channel Rescaling. The features at level l after resizing are denoted as Dl ∈
R

C×H×W with a resolution H×W , and the indexes of the input levels with lowest
and highest resolution are denoted as lmin and lmax. Let L be the number of
levels, then L = lmax − lmin + 1. In our experiments, the gather level is set to
(lmin + lmax)/2.

The context of the multi-level features at each channel is different, so the
importance of features at each channel is as well different. Therefore, we aim to
emphasize the important features and suppress the less useful features, which
can be regarded to select the information via a gate. To achieve this goal, we
propose channel rescaling module to rescale the features at different channels of
the multi-level features. After gathering the multi-level features, we first concat
them as:

D̃ =
[
Dlmin , . . . ,Dl, . . . ,Dlmax

]
(1)

Selective Multi-scale Learning for Object Detection 7

Fig. 2. (a) The selective feature combination module. “SCB” denotes the selective
combination module. (b) An selective combination module for the l-th level. “ S©”
denotes channel spliting.

where D̃ ∈ R
LC×H×W . Then channel rescaling (CR) is accomplished by the

following steps.
For a specific channel of D̃, we get the global information by using global

average pooling (GAP). We denote the result after GAP as x. The result of the
c′-th channel can be calculated as:

xc′ =
1

HW

H∑

i=1

W∑

j=1

D̃c′,i,j (2)

We then generate the weights for each channel by two fully connected (FC)
layers followed by the sigmoid function:

s = σ(W2δ(W1x)) (3)

where W1 ∈ R
LC
r ×LC , W2 ∈ R

LC× LC
r , δ is the ReLU function and σ denotes

the sigmoid function. r is the reduction ratio, and is set to 8 in our experiments.
We denote the output after channel rescaling module as J. For the c′-th

channel, the output Jc′ is generated by rescaling D̃c′ with sc′ :

Jc′ = sc′ ⊗ D̃c′ (4)

where ⊗ denotes the channel-wise multiplication.
Then we split J into L groups:

J =
[
Qlmin , . . . ,Ql, . . . ,Qlmax

]
(5)

Ql = J1+(l−1)C:lC,:,: (6)

where l ∈ {lmin, . . . , lmax}.

8 J. Chen et al.

Selective Feature Combination.
Local Feature. A simple approach is to scatter the L rescaled features
Q =

{
Qlmin , . . . ,Qlmax

}
to all levels. However, as mentioned before, features

at different levels have various semantic contexts and are thus suitable to detect
objects with different sizes. In addition, the features scattered to l-th level shall
put more emphasis on the neighboring levels, i.e.

{
Ql−1,Ql,Ql+1

}
, as they have

more similar semantic contexts.
Motivated by these observations, we design a selective combination (SFC)

module (Fig. 2(b)) to combine the set of Q features to generate local fea-
ture Fl, which is to be scattered to the l-th level. The C channel feature
Fl = {Fl

1, . . . ,F
l
c, . . . ,F

l
C} is a weighted combination of Q. The weights are

different for each target level and learned by the following steps.
Our goal is to adaptively select features from different levels. An effective idea

is to use gate to control the information flow from multiple levels. To achieve
this goal, we should aggregate the features from multiple levels. A simple way
is to use concatenation to merge the features, but this requires more parame-
ters. Therefore, we use element-wise summation to merge features from multiple
levels:

Q̃ =
lmax∑

i=lmin

Qi (7)

then we create the global context g ∈ R
C by simply using average pooling, the

c-th element of the global context can be formulated as:

gc =
1

H × W

H∑

i=1

W∑

j=1

Q̃c,i,j (8)

Next, we compact the global context into feature zl ∈ R
C
r to guide the

adaptive selection. r is the reduction ratio, and is set as 8 in our experiments.
To achieve this, we apply a fully connected (FC) layer to generate the result:

zl = δ(L(FCl
1(g))) = δ(L(Wlg)) (9)

where Wl ∈ R
C
r ×C , L denotes the Layer Normalization [2] and δ is the ReLU

function [19].
To adaptively select features from different levels, a soft attention across

channels is employed. The soft attention is a channel-wise weight generated
under the guidance of the compacted global context zl. We first generate the
original weight Ul ∈ R

LC using an FC layer:

Ul = FCl
2(z

l) = Vlzl (10)

where Vl ∈ R
C×LC . Then we reshape the weight Ul ∈ R

LC into Ml ∈ R
L×C .

Let Al ∈ R
L×C be the soft attention weight for

{
Qlmin , . . . ,Qlmax

}
.

For a specific level i and channel c, the soft attention weight Al
i,c can be

computed as:

Al
i,c =

eM
l
i,c

∑lmax

j=lmin
eM

l
j,c

(11)

Selective Multi-scale Learning for Object Detection 9

After adaptive selection, all the features from different levels own their spe-
cific weights in the channel-wise aspect. The final output Fl ∈ R

C are the
weighted summation of multi-level features via the soft attention weights. For
the c-th channel, the output Fl

c can be calculated as:

Kl
i,c = Al

i,c ⊗ Qi
c, i ∈ {lmin, . . . , lmax} (12)

Fl
c =

lmax∑

i=lmin

Kl
i,c (13)

where ⊗ denotes the channel-wise multiplication.

Global Feature. As global context has been widely used in rescaling and weight
features of different levels, we argue that a global feature represents the overall
information of all levels shall also be learned and injected into the L local features
Fl, before they are scattered to the target levels. The same combination process
described above can be used to learn the weights of Q, which can be used to
calculate the global feature Fg. We use the non-local [24] module with embed
Gaussian attention to further refine Fg to G. As justified by the ablation study
in experimental section, the inclusion of G can further increase the performance
of the feature pyramid network.

The L local features to be scattered to the l-th target level, F̃l, can now be
calculated as the element-wise summation of Fl and global feature G:

F̃l = Fl ⊕ G (14)

where ⊕ denotes the element-wise summation.
After feature fusion, the fused features are then scattered to the same size

as the input of the corresponding level via resizing. For the l-th level, the final
features F̂l can be computed as:

F̂l = Resize(F̃l) ⊕ Cl (15)

where Resize denotes the resizing function, ⊕ denotes the element-wise summa-
tion.

4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct our experiments on the COCO dataset [17]. For training, we use
the data in train-2017 split, which contains 115k images. For ablation study,
we use the data in the val-2017 split consisting of 5k images as validation. We
report our main results on the test-dev (20k images without public annotations
available) split. All the results are reported in the standard COCO-style Average
Precision (AP) metrics.

10 J. Chen et al.

Table 1. Ablation studies on component effectiveness on COCO val-2017, with ResNet-
50 [8] backbone. “LF”, “GF”, and “CR” denote local features, global feature, and
channel rescaling respectively.

LF GF CR AP AP50 AP75 APS APM APL

� 35.5 55.5 37.7 20.8 39.7 46.2

� � 35.8 56.5 37.9 21.1 40.2 46.4

� � 35.8 56.0 38.0 20.5 40.0 47.1

� � � 36.1 56.6 38.4 21.2 40.3 47.3

Table 2. Application in other pyramidal architectures based on RetinaNet detector
(1st group) and two-stage detectors (2nd group) on COCO val-2017. “*” denotes our
re-implementation. “Params” denotes the number of total parameters (M) and “Time”
denotes the inference time (ms) on single Tesla P100.

SMSL AP AP50 AP75 Params (M) Time (ms)

Arch

FPN 35.5 55.3 37.9 37.74 96.8

FPN � 36.4[+0.9] 56.9 38.9 38.72 99.0

PANet* 35.9 55.8 38.4 39.51 100.6

PANet* � 37.0[+1.1] 57.6 39.4 40.49 101.6

Detector

Mask 35.2 56.4 37.9 44.18 92.6

Mask � 36.0[+0.8] 57.6 38.6 45.15 97.2

Cascade 38.1 55.9 41.1 69.17 84.0

Cascade � 39.1[+1.0] 57.5 42.2 70.15 88.0

4.2 Implementation Details

For fair comparisons, all the experiments are conducted on the MMDetection
[4] platform. If not specified, for all other hyper-parameters, we follow the same
settings in MMDetection [4] for fair comparison.

Training Details. The training settings are as follows if not specified. We use
ResNet-50 [8] as our backbone networks, and RetinaNet [16] as our detector.
The backbone network is initialized with the pretrained model on ImageNet [5].
We use the stochastic gradient descent (SGD) optimizer to train our networks
for 12 epochs with batch size 16. The initial learning rate is 0.01 and divided by
10 after 8 and 11 epochs. The input images are resized to have a resolution of
∼ 1333 × 800.

Selective Multi-scale Learning for Object Detection 11

Table 3. Comparisons with mainstream methods on COCO test-dev. “†” denotes
results under multi-scale testing.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN [15] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN [7] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

LH R-CNN [14] ResNet-101 41.5 – – 25.2 45.3 53.1

Cascade R-CNN [3] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

TridentNet [13] ResNet-101-DCN 48.4 69.7 53.5 31.8 51.3 60.3

Single-stage methods

ExtremeNet [28] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1

FoveaBox [10] ResNet-101 40.6 60.1 43.5 23.3 45.2 54.5

FoveaBox [10] ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6

CornerNet [12] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

CornerNet [12]† Hourglass-104 42.2 57.8 45.2 20.7 44.8 56.6

FreeAnchor [27] ResNet-101 43.1 62.2 46.4 24.5 46.1 54.8

FreeAnchor [27] ResNeXt-101 44.9 64.3 48.5 26.8 48.3 55.9

FSAF [29] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3

FSAF [29] ResNeXt-101 42.9 63.8 46.3 26.6 46.2 52.7

FCOS [23] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6

FCOS [23] ResNeXt-101 44.7 64.1 48.4 27.6 47.5 55.6

ATSS [26] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6

Dense RepPoints [25] ResNeXt-101-DCN 48.9 69.2 53.4 30.5 51.9 61.2

RetinaNet [16] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet (ours) ResNet-101 40.9 62.3 44.1 25.1 44.7 49.9

RetinaNet (ours)† ResNet-101 42.7 63.8 46.3 27.8 45.1 52.5

RetinaNet [16] ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2

RetinaNet (ours) ResNeXt-101 42.6 64.4 45.7 26.7 46.3 51.8

RetinaNet (ours)† ResNeXt-101 44.3 65.5 48.2 29.4 46.9 54.5

Inference Details. The inference settings are as follows if not specified. For
inference, we first select the top 1000 confidence predictions from each prediction
layer. Then, we use a confidence threshold of 0.05 to filter out the predictions
with low confidence for each class. Then, we apply non-maximum suppression
(NMS) to the filtered predictions for each class separately with a threshold of
0.5. Finally, we adopt the predictions with top 100 confidences for each image
as the final results.

12 J. Chen et al.

4.3 Ablation Study

As our selective multi-scale learning approach mainly consists of two steps, i.e.
CR and SFC, we firstly justify the importance of the proposed module using
ablation study. As the local features (LF) are necessary to scatter to the feature
pyramid, we only perform an ablation study on the global feature (GF) included
in the combination module. The two modules, i.e. CR and GF are removed to
see their effects on the performance of the baseline, which are shown in Table 1.

The second row in the table suggests that the CR module improve the overall
AP of baseline from 35.5% to 35.8%. Compared to the baseline, the adoption of
GF improves AP and AP50 by 0.3% and 1.1%, respectively. When both modules
are used, the AP is further improved to 36.1%. In summary, both CR and GF
can enhance the features and effectively boost the detection performance, which
justify the usefulness of our approach.

4.4 Application in Pyramid Architectures

In this section, we evaluate the effectiveness of our method on different pyramidal
architectures by combining them with our method. As shown in the 1st group
of Table 2, when combined with SMSL, FPN [15] and PANet [21] get 0.9% and
1.1% improvement in AP respectively, with only a small increase of parameters
and little extra inference time (+2.2 ms and +1.0 ms, respectively).

4.5 Application in Two-Stage Detectors

In this section, we conduct experiments to evaluate the effectiveness of our
method on two-stage detectors, including Mask R-CNN [7] and Cascade R-CNN
[3]. The resolution of the input image is set to 640 × 640. The batch size is
adjusted according to the memory limitation with a linearly scaled learning
rate. As shown in the 2nd group of Table 2, when combined with SMSL, Mask
R-CNN and Cascade R-CNN get 0.8% and 1.0% improvement in AP, with nearly
no extra inference time (+4.6 ms and +4.0 ms, respectively). The results justify
the effectiveness of our method on two-stage detectors.

4.6 Comparisons with Mainstream Methods

After ablation study and comparison with pyramidal networks, we now compare
our approach with mainstream methods in Table 3. Both single-stage and two-
stage detectors are included for comparison. We report the performance of our
SFPN using both ResNet-101 and ResNeXt-101 backbones. We adopt 2× longer
training with scale-jitter. For ResNeXt-101 backbone, due to memory limitation,
we train the detector using batch size 12 with a linearly scaled learning rate.

As shown in Table 3, combined with our method, RetinaNet with ResNet-
101 backbone get 1.8% improvement in AP. With ResNeXt-101 backbone and
single-scale setting, RetinaNet with our method achieves 42.6% AP, which is
close to two-stage detectors, such as Cascade R-CNN (42.8% AP). If multi-scale
test is adopted, the best performance of RetinaNet can be further boosted to
44.3% AP, which surpasses many mainstream object detectors.

Selective Multi-scale Learning for Object Detection 13

5 Conclusions

In this paper, we propose selective multi-scale learning, which considers the dif-
ferent importance of the cross-scale features and selectively combine multi-scale
features. SMSL can effectively improve the detection performance of single-stage
detector, with almost no extra inference cost. The experimental results shows
that SMSL can also be applied to two-stage detectors to boost the detection
performance.

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China under Grant 91959108.

References

1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid
methods in image processing. RCA Engineer 29(6), 33–41 (1984)

2. Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detec-
tion. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp.
6154–6162 (2018)

4. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155 (2019)

5. Deng, J., Dong, W., Socher, R., Li, L., Kai, L., Li, F.-F.: ImageNet: a large-scale
hierarchical image database. In: The IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255 (2009)

6. Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid archi-
tecture for object detection. In: The IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7036–7045 (2019)

7. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: The IEEE Inter-
national Conference on Computer Vision, pp. 2961–2969 (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
The IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

9. Kim, S.-W., Kook, H.-K., Sun, J.-Y., Kang, M.-C., Ko, S.-J.: Parallel feature pyra-
mid network for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 239–256. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01228-1 15

10. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: FoveaBox: beyond anchor-based
object detector. IEEE Trans. Image Process. 29, 7389–7398 (2020)

11. Kong, T., Sun, F., Huang, W., Liu, H.: Deep feature pyramid reconfiguration for
object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11209, pp. 172–188. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01228-1 11

12. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari,
V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018.
LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01264-9 45

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1906.07155
https://doi.org/10.1007/978-3-030-01228-1_15
https://doi.org/10.1007/978-3-030-01228-1_11
https://doi.org/10.1007/978-3-030-01228-1_11
https://doi.org/10.1007/978-3-030-01264-9_45
https://doi.org/10.1007/978-3-030-01264-9_45

14 J. Chen et al.

13. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object
detection. In: The IEEE International Conference on Computer Vision, pp. 6054–
6063 (2019)

14. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: in
defense of two-stage object detector. arXiv preprint arXiv:1711.07264 (2017)

15. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: The IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2117–2125 (2017)

16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. In: The IEEE International Conference on Computer Vision, pp. 318–
327 (2017)

17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

18. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance
segmentation. In: The IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 8759–8768 (2018)

19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: International Conference on Machine Learning (2010)

20. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8 29

21. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards
balanced learning for object detection. In: The IEEE Conference on Computer
Vision and Pattern Recognition, pp. 821–830 (2019)

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

23. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object
detection. In: The IEEE International Conference on Computer Vision, pp. 9627–
9636 (2019)

24. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: The
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803
(2018)

25. Yang, Z., et al.: Dense RepPoints: representing visual objects with dense point sets.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12366, pp. 227–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58589-1 14

26. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-
based and anchor-free detection via adaptive training sample selection. In: CVPR,
pp. 840–849 (2020)

27. Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: FreeAnchor: learning to match anchors
for visual object detection. In: NeurIPS (2019)

28. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping
extreme and center points. In: The IEEE Conference on Computer Vision and
Pattern Recognition, pp. 850–859 (2019)

29. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-
shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 840–849 (2019)

http://arxiv.org/abs/1711.07264
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-030-58589-1_14
https://doi.org/10.1007/978-3-030-58589-1_14

DRENet: Giving Full Scope to Detection
and Regression-Based Estimation for Video

Crowd Counting

Changsheng Liu1,2 , Yuan Huang3 , Yadong Mu1(B) , and Xiaoming Yu3

1 Wangxuan Institute of Computer Technology, Peking University, Beijing 100080, China
myd@pku.edu.cn

2 Peking University Founder Group Co. Ltd, Beijing 100871, China
3 Beijing Founder Electronics Co. Ltd, Beijing 100085, China

Abstract. Currently existing deep learning-based video crowd counting methods
mainly involve leveraging the temporal correlation to improve the model. Despite
their comparable results, most of these counting methods disregard the fact that
crowd density varies enormously in the spatial and temporal domains of videos.
This thus hinders the improvement in performance of video crowd counting. To
overcome that issue, a new detection and regression estimation network, named
DRENet, is proposed, which starts with estimating the crowd density by generat-
ing a video object detection-, and a mixed 3D-2D convolution-based (regression-
based) densitymaps separately, inwhich the detection- and regression-basedmeth-
ods function well in sparse and congested scenes, respectively. Moreover, a multi-
column attention-based fusion block is proposed to perceive the crowd density in
a frame, and to adaptively allocate the relative weights for the video detection- and
regression-based estimations. Furthermore, the optimal crowd counts are obtained
with guidance from the attention block. The experimental results demonstrate that
our method achieves state-of-the-art performance on three public video crowd
counting datasets.

Keywords: Video object detection · Mixed 3D-2D convolutions · Multi-column
attention-based fusion

1 Introduction

Crowd counting, aiming to estimate the crowd density or count the number of people in
an image or a video, plays an important role in computer vision; it facilitates a variety of
fundamental applications such as public safety management [1] and video surveillance
[2], and scene understanding [3].

To achieve this, a variety of methods have been proposed and can generally be
divided into detection- and regression-based approaches. Early crowd counting studies
were based on detection frameworks [4–6]. Object detectors were applied to localize the
position of each individual, and the number of detections was treated as the crowd count.
Benefiting from the recent progress in object detection via deep convolutional neural

© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 15–27, 2021.
https://doi.org/10.1007/978-3-030-86340-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_2&domain=pdf
http://orcid.org/0000-0002-4890-504X
http://orcid.org/0000-0003-3266-8008
http://orcid.org/0000-0001-7815-3750
http://orcid.org/0000-0001-5799-8519
https://doi.org/10.1007/978-3-030-86340-1_2

16 C. Liu et al.

networks (CNNs), detection-based crowd counting for ideal images with sparse crowd
densities could surpass human performance [7, 8]. Unlike the crowd counting methods
based on detection, the regression-based methods estimate the crowd count by directly
learning the mapping between features of the image and crowd count [9–15]. When
compared with detection-based methods, regression-based methods usually function
well for crowded patches; this is because, by benefiting from the rich context in local
patches, regression-based methods can capture the general density information [16–18].
Although great achievements have been made in this field, most existing approaches still
employ image-based methods for crowd counting while failing to exploit the temporal
information in a video sequence. This hinders the improvement in performance of video
crowd counting. In contrast, some recent studies have attempted to leverage the temporal
correlation in a video sequence to improve the performance of crowd counting [9, 10,
17, 19, 20].

Table 1. Statistical information of crowd count differences in the spatial and temporal domains
of three video crowd counting datasets used in the study.

Max/Min number of the crowd

Dataset Spatial domain Temporal
domain

UCSD [21] 17/0 46/11

Mall [22] 15/0 53/13

FDST [10] 43/0 57/9

Despite their promising results, such methods utilizing temporal information have
two drawbacks. First, the model sizes of the enhanced 3D CNNs [20] and the 3D CNNs
[19] are usually much larger than those of the 2DCNNs to capture the temporal informa-
tion in videos. However, the development of a very deep 3D CNN from scratch results
in very high computational costs and memory demands [23]. Second, previous study [8]
on image-based methods for crowd counting indicates that, although density-map-based
regression techniques have the advantage of being able to model highly occluded scenes,
they are prone to high false-positive rates and may lead to overestimated results for low-
density scenes; Detection-based approaches exhibit fewer false positives for low-density
scenes, but they do not perform well in occluded scenarios. Herein, we obtained sta-
tistical information of the crowd count differences in the spatial and temporal domains
of three video crowd counting datasets. These differences are shown in Table 1. In the
temporal domain of videos, themax/min number of the crowd is the number of the crowd
in a frame with maximum crowd density compared to that in a frame with minimum
crowd density. Further, in the spatial domain, a frame is cropped into 4 × 3 patches;
the max/min number of the crowd shows the number of the crowd in a patch with max-
imum crowd density, compared to that in a patch with minimum crowd density. From
Table 1, it is apparent that crowd densities in the real world vary enormously in the
temporal and spatial domains. However, existing studies on crowd counting in videos

DRENet: Giving Full Scope to Detection and Regression 17

are exclusively based on regression-based methods to simultaneously handle low- and
high-density scenes, which thus hinders the improvement in performance.

In this study, a novel detection and regression estimation network named DRENet
is therefore proposed to address these issues. It not only efficiently extracts temporal
information from videos but also adaptively combines the advantages of the detection-
and regression-based estimations for crowd counting. Specifically, to address the first
issue regarding regression estimates, we build on the method [24] and replace the fifth
convolution group in the 2D ResNets with 3D convolutions, to make use of 3D CNNs
with limited convolution layers whilst improving the depth of the CNNs. Moreover, to
solve the second issue, unlike most existing approaches to crowd counting in videos [9,
10, 17, 19, 20], our method takes both detection- and regression-based methods into
consideration. Given this fusion of models, our method behaves like regression-based
methods in low-density scenes but like detection-based methods in congested scenes.
This, theoretically, should work better than any other model using just one approach. In
summary, this study makes the following contributions:

1. We found that real-world crowd counting situations in videos vary enormously in
both the spatial and temporal domains.

2. A novel framework named DRENet is proposed herein; it integrates video object
detection-based and regression-based methods into the framework to capture the
variation of crowd density in a scene. It further estimates the optimal counts based
on a multi-column, attention-based fusion block. Experimental results demonstrate
that our method achieves state-of-the-art performance on three public video datasets
with varying crowd densities.

3. The temporal information is extracted from the regression block via the mixed 3D-
2D convolutions. To the best of our knowledge, this is the first time an attempt is
being made to utilize mixed 3D-2D convolution for crowd counting in videos.

2 Related Works

Crowd Counting by Detection. Early work on crowd counting mainly involved detec-
tion frameworks [4–6]; a sliding-window detector incorporating local and global fea-
tures was applied to detect pedestrians in the scene [25] and count the number of people
in the crowd, based on the summation of the results over all the detectors. Although
detection-based methods achieve a satisfying count result in a scene with low density,
the performance of those methods degrades in crowded scenes owing to perspective
distortion and occlusion [8, 16].

Crowd Counting by Regression. Considering the failure of detection-based methods
in extremely congested scenes, some studies were proposed to directly estimate the total
number of the crowd by means of the extracted local [26] and global [21] image fea-
tures. Recently, inspired by the great success of deep CNNs in feature extraction, the
deep learning-based methods have become the mainstream methods for crowd count-
ing. Alternatively, an appropriate counting method that combines the detection-based
methods and regression-based methods was proposed [16]; it is based on the density

18 C. Liu et al.

conditions in an image and results in more accurate estimations. However, DecideNet
[16] fails to explore the temporal information in a video sequence for both the detection
model and the regression model.

Mixed 3D-2D Convolutions for Spatiotemporal Modeling. Mixed convolutions
(MC), integrating 2D and 3D convolutions into a framework, are a new form of spa-
tiotemporal convolutions [24]. MCs were first exploited by Tran et al. [24] in action
recognition and achieve good performance, in which MC ResNets yield significant gain
over 2DResNets of comparable capacity, and theymatch the performance of 3DResNets
with three times as many parameters. However, mixed 3D-2D convolutions have not yet
been applied in video crowd counting, which inspires the study in the field.

VideoObjectDetection. Current leadingobject detectors for images are built upondeep
CNNs [27, 28]. Owing to the complex nature of video variation, e.g., occlusion, motion
blur, and out-of-focus issues, it is not a trivial matter to transfer the success of image
object detectors [8, 29, 30] into the video domain. When compared with image object
detectors, video object detectors [31–33] achieve promising performance for per-frame
detection by applying the temporal information in the video sequence. This inspires us
to exploit object detectors in videos for crowd counting in our framework.

3 Crowd Counting by DRENet

3.1 Problem Formulation

The crowd counting task is regarded as a regression problem between the extracted
crowd features and the crowd density map in our solution. Let us suppose the center
pixel location of the head of a person, pi, is provided for each frame, It , in the videos.
The ground-truth crowd density map,D

g
t , is produced by a Gaussian kernel following

the method [12].The ground-truth crowd count, C
g
t , is generated by integrating the D

g
t

term as shown in Eq. 1.

C
g
t =

∫
D
g
t . (1)

For the task of crowd counting in videos, a non-linear regression function is trained
by minimizing the Euclidean loss between the ground-truth and the estimated crowd
density generated by DRENet.

3.2 Network Architecture

The overall architecture of DRENet is shown in Fig. 1. As shown in Fig. 1, DRENet
simultaneously estimates crowd counts with both video object detection and regression
models. Finally, a multi-column attention-based fusion block is exploited to decide
which estimation result should be adopted for a specific pixel in a frame of the video,
and the final density map is output. Our framework includes three CNN blocks: the
regression block (RegNet), the video detection block (VDNet), and the multi-column
attention-based fusion block (AFNet).

DRENet: Giving Full Scope to Detection and Regression 19

Fig. 1. The architecture of our proposed DRENet. N frames in a video are sent to the VDNet and
RegNet blocks for generating two kinds of crowd density map estimations. The optimal crowd

density map D
final
t is generated by the AFNet block.

TheRegNet Block. Themixed 3D-2D convolutions are utilized in the RegNet block for
video crowd counting, which is shown as the RegNet block branch in Fig. 1. Specifically,
we utilize an existing pre-trained model, ResNet-34, with five convolution groups [27]
as our base model for our architecture. First, we replace the classification part of ResNet-
34, with two 2D convolution layers as the decoder to output the regression-based crowd
densitymap,D

Reg
t , for a given frame, It , in a video. The value of each pixel represents the

estimated count at that point. In addition, a rectified linear unit (ReLU) is applied after
the decoder to ensure that the output density map contains positive values. Second, all
2D convolutions in the fifth group are replaced by 3D convolutions, and the remaining
groups maintain their 2D convolutions. Third, the kernel size of the convolutions in
groups 1 and 5 changes from 2 to 1, which results in the output sizes of our framework
being 1/8 of the original input sizes.

Fig. 2. The proposed VDNet block is built upon the SELSAmodel [31]. A Gaussian convolution
is plugged following the bounding box outputs to generate the N detection-based crowd density
maps with the input of N frames in a video.

The VDNet Block. Based on the motivations that sparse scenes are the expected set-
tings for object detectors and object detection in videos is capable of improving the

20 C. Liu et al.

performance of per-frame detection by exploiting information in the temporal dimen-
sion [31–33], the VDNet block, shown in Fig. 2, is proposed and built. It could be viewed
as an extension of the SELSA network [31] for head detection in videos, which is based
on the ResNet-101 backbone [27]. More specifically, a Gaussian convolutional layer is
designed and plugged after the bounding box outputs of the SELSA network, in which
a constant Gaussian function, NVD(p|μ = P, σ 2), is applied to convolve over the center
points of the detected bounding boxes, PVD

t , on the original image patch. The detection
density map, DVD

t , generated by the layer is given as Eq. 2.

DVD
t (p| �VD, It) =

∑
P∈PVD

t

NVD(p|μ = P, σ 2). (2)

Multi-ColumnAttention-BasedFusionBlock. To obtain an accurate estimation result
based onD

Reg
t andDVD

t , single-column fully connected convolutional networks are pro-
posed that merge the estimated crowd counting results from different branches, with
promising results [16, 19]. Inspired by the multi-column deep neural networks promis-
ing performance on different tasks [34], multi-column fully connected convolutional
networks are used to adaptively merge both the estimation results from the regression-
based method and the detection-based method—this obviously differs from existing
methods [16, 19]. Given this fusion of models, our multi-column, attention-based fusion
block AFNet can be interpreted as the integration of multi-column fusion branches. This
is theoretically better than any fusion block applied on only a single branch and shown
in Fig. 3.

Fig. 3. The AFNet block: stacking two kinds of crowd density maps DVD
t and D

Reg
t , and the

original frame It as an input, it generates a probabilistic attention map Kt . The final crowd density

map D
final
t is jointly determined by DVD

t , D
Reg
t , and Kt .

For a given frame It , the AFNet block firstly upsamples DVD
t and D

Reg
t to the same

size of It . Then It , DVD
t , and D

Reg
t are stacked together as inputs for the two AFNet

fusion branches. Note that each branch in the AFNet consists of four fully connected
convolutional layers, followed by a pixel-wise sigmoid layer to output a probabilistic
attention map Kt(p| �AF , It). The specific value in probabilistic attention map at the
pixel p, reflects the importance of the detection-based density mapDVD

t , compared to the

regression-based counterpart D
Reg
t . A higher Kt , at pixel p, means a higher attention we

DRENet: Giving Full Scope to Detection and Regression 21

should rely on the detection-based estimation, rather than the regression-based estimation
for p. The final density map estimation,D

final
t (p| It), is therefore defined as the weighted

sum between two density mapsDVD
t andD

Reg
t , which is guided by the attention map Kt :

D
final
t (p| It) = Kt(p| �AF , It) � DVD

t (p| �VD, It)+
(J − Kt(p| �AF , It)) � D

Reg
t (p| �Reg, It),

(3)

where J is an all-ones-matrix with the same size of Kt , and � is the Hadamard product
for two matrices.

4 Experimental Results

Our method was evaluated on three major video crowd counting datasets collected from
real-world surveillance cameras. These are the UCSD dataset [21], the Mall dataset
[22], and the FDST dataset [10]. For all datasets, our strategy for the implementation
of DRENet consisted of two stages. First, RegNet and VDNet were trained on the
different datasets respectively. Second, the AFNet was trained based on the two kinds of
crowd density maps generated by the trained RegNet and VDNet on different datasets.
In training the VDNet, the backbone of the network was initialized with ImageNet
pre-trained weights. A total of 250,000 iterations of stochastic gradient descent (SGD)
training were performed using two GPUs. The initial learning rate was 1.0 × 10−4 and
was divided by 10 at the 125,000th, and 180,000th iteration. The RegNet and AFNet
training processes were similar. In training both networks, the Adam optimizer was used.
The initial decay rates were β1 = 0.9 and β2 = 0.999, and a tolerance of 1e−8 was used.
Further, a fixed learning rate of 1e−5 was utilized. The pixel-wise mean square error
(MSE) between the estimated density map D

Reg
t and the ground-truth density map D

gt
t

was used as the loss function for the AFNet. For the loss of the VDNet, inspired by the
method [16], the bounding boxes were applied as the supervision and the classification
and localization error in the original SELSA [31] was used as the loss for the VDNet.
For the loss function of the AFNet, two kinds of errors were considered: one of them
was the MSE between D

final
t , and D

gt
t ; the second error measured the quality of the

output probabilistic map Kt in AFNet. Following the setting proposed in method [16],
the Euclidean distances between the probabilistic attention map, and the video object
detection score map was used as the second error component. Following the convention
of existing study [17], the mean absolute error (MAE) and the MSE were used as the
evaluation metrics.

4.1 The Mall Dataset

TheMall dataset [22] is composed of 2,000 frames, each with a resolution of 640× 480.
For a fair comparison with previous studies, the first 800 frames were used for training,
and the remaining part was used for testing. We sent sixteen frames to the network
at a time. Table 2 compares the DRENet with previous studies [9, 10, 15–17, 20, 35,
36], which demonstrates that DRENet outperforms the image-based methods by at least

22 C. Liu et al.

7.9% in terms of MAE (compared with DecideNet [16]). In addition, DRENet also
outperforms the video-based methods by at least 4.8% in terms of MAE (compared with
STDNet [17]). We found that the crowd in the Mall dataset is sparse. In this case, the
estimated results of crowd density based on regression are usually overestimated. The
VDNet, however, estimates crowd density accurately, which results in it outperforming
state-of-the-art methods.

Table 2. Comparisons of different methods on the Mall dataset [22].

Method MAE MSE

Image-based MoC-CNN [35] 2.75 13.4

HSRNet [15] 1.80 2.28

DRSAN [36] 1.72 2.10

DecideNet [16] 1.52 1.90

Video-based Bi-ConvLSTM
[9]

2.10 7.60

LSTN [10] 2.00 2.50

E3D [20] 1.64 2.13

STDNet [17] 1.47 1.88

DRENet (ours) 1.40 1.81

4.2 The UCSD Dataset

The UCSD dataset [21] is also a publicly available video-based dataset, which consists
of 2,000 Gy-level frames with the frame rate per second of 10 fps. Following the settings
mentioned in the study, we used the 601–1,400th frames as training data, and the remain-
ing 1200 frames were selected as the test set. Moreover, sixteen frames were sent to the
network simultaneously. Table 3 compares the proposed DRENet with state-of-the-art
image- and video-based methods. The results demonstrate that the DRENet outperforms
all of the previous image-based methods [11, 13, 14, 18] in terms of MAE and MSE
by at least 20% and 9.4% (compared to PaDNet) respectively. In addition, our proposed
DRENet also outperforms video-based methods; such as, LSTN [10], ConvLSTM [9],
E3D [20], and STDNet [17].

5 The FDST Dataset

To better evaluate our DRENet in video crowd counting, a large-scale video crowd
counting dataset—the FDST dataset [10]—is used to evaluate our method in the study.
The FDST dataset contains 15,000 frames, with 394,081 annotated heads. Following the
settings in the study [10]; 9,000 frames were used for training, and the remaining 6,000

DRENet: Giving Full Scope to Detection and Regression 23

Table 3. Comparisons of different methods on the UCSD dataset [21].

Method MAE MSE

Image-based CSRNet [13] 1.16 1.47

ADCrowdNet
[18]

0.98 1.25

PACNN [14] 0.89 1.18

PaDNet [11] 0.85 1.06

Video-based Bi-ConvLSTM
[9]

1.13 1.43

LSTN [10] 1.07 1.39

E3D [20] 0.93 1.17

STDNet [17] 0.76 1.01

DRENet (ours) 0.68 0.96

frames were used for testing. Sixteen frames are sent to the network simultaneously.
Table 4 shows the comparison results between the DRENet and existing methods [9, 10,
12]. Similar to the comparison results on the UCSD dataset, the DRENet outperforms
the image-based method by 46.4% in terms of MAE (compared with MCNN [12]). The
DRENet also outperforms the five video-based methods by at least 14% in terms of
MAE (compared with MLSTN [37]). It is worth noting that the improvement on the
FDST dataset is significant because the frame rate per second of the FDST dataset is 30
fps. Further, it is much more suitable for both the VDNet and the RegNet in extracting
effective temporal features, since there are high correlations between consecutive frames.
These comparison results also demonstrate the effectiveness of the powerful temporal
information in video crowd counting.

Table 4. Comparisons of different methods on the FDST dataset [10].

Method MAE MSE

ConvLSTM [9] 4.48 5.82

MCNN [12] 3.77 4.88

LSTN [10] 3.35 4.45

COMBI [38] 2.92 3.76

ALL-EST [38] 2.84 3.57

MLSTN [37] 2.35 3.02

DRENet (ours) 2.02 2.67

24 C. Liu et al.

5.1 Effects of Different Components in the DRENet

To get more insights into each component of the proposed DRENet, ablation studies are
conducted on the UCSD dataset and the qualitative results are listed in Table 5, which
shows several interesting observations.

Firstly, we evaluated the performance of the method based on the 2D ResNet-34
[27]. Compared to the 2D ResNet-34 [27], the RegNet used in our study obtains lower
estimation errors for both the MAE and the MSE. This can be regarded as a verification
that themixed 3D-2D convolutions can boost the performance on the task of video crowd
counting. This, of course, results from the use of the temporal information in videos.

Secondly, the estimation results from only using either the RegNet (“RegNet only”)
or the VDNet (“VDNet only”) have higher errors compared to using the DRENet. This
demonstrates the effectiveness of making use of both detection- and regression-based
methods in video crowd counting.

Thirdly, performing late fusion by averaging two classes of crowd density maps
(“RegNet+VDNet+Late Fusion”) achieves only amediocre performance on two kinds
of crowd density estimations. However, with the AFNet, we obtain a significant decrease
in both MAE andMSEmetrics, as compared with those performing the late fusion. This
demonstrates the effectiveness of our proposed multi-column attention-based fusion
block in DRENet.

Table 5. Qualitative results of different DRENet components on the UCSD dataset [21].

Method MAE MSE

ResNet-34 [27] 0.96 1.25

RegNet only 0.85 1.09

VDNet only 0.79 1.03

RegNet + VDNet + Late Fusion 0.82 1.06

RegNet + VDNet + AFNet 0.68 0.96

6 Conclusion

In this paper, a novel video crowd counting architecture named DRENet has been pro-
posed. It was motivated by the fact that crowd density varies enormously in the spatial
and temporal domains in videos. Further, the detection- and regression-based counting
methods achieve complementary performance under situations with time-varying, and
space-varying crowddensities in videos.To thebest of our knowledge,DRENet is thefirst
framework to estimate crowd counts in videos, under the guidance of an attention-based
block. This attention mechanism adaptively applies attention weights for video object
detection-, and regression-based count estimations. Furthermore, both mixed 3D-2D
convolutions and video object detection are the first to be used in video crowd counting.
Our architecture is evaluated on three challenging video crowd counting benchmarks,

DRENet: Giving Full Scope to Detection and Regression 25

collected from real-world scenes with high variation in complex background and crowd
densities. Experimental results confirm that our architecture achieves state-of-the-art
performance on the three public datasets.

References

1. Xu,M.L., Li,C.X., Lv, P., Lin,N.,Hou,R., Zhou,B.:An efficientmethodof crowdaggregation
computation in public areas. IEEE Trans. Circuits Syst. Video Technol. 28(10), 2814–2825
(2018)

2. Zhang, Z., Wang, M., Geng, X.: Crowd counting in public video surveillance by label
distribution learning. Neurocomputing 166, 151–163 (2015)

3. Cong, Z., Hongsheng, L., Wang, X., Xiaokang, Y.: Cross-scene crowd counting via deep
convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, pp. 833–841. IEEE (2015)

4. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005),
San Diego, pp. 878–885. IEEE (2005)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005),
San Diego, vol. 1, pp. 886–893. IEEE (2005)

6. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appear-
ance. In: Proceedings Ninth IEEE International Conference on Computer Vision, Nice,
pp. 734–741. IEEE (2003)

7. Gao, C., Li, P., Zhang, Y., Liu, J., Wang, L.: People counting based on head detection combin-
ing Adaboost and CNN in crowded surveillance environment. Neurocomputing 208, 108–116
(2016)

8. Vora, A., Chilaka, V.: FCHD: a fast and accurate head detector. arXiv preprint arXiv:1809.
08766 (2019)

9. Xiong, F., Shi, X., Yeung, D.: Spatiotemporal modeling for crowd counting in videos. In:
2017 IEEE International Conference on Computer Vision (ICCV), Venice, pp. 5161–5169.
IEEE (2017)

10. Fang, Y., Zhan, B., Cai, W., Gao, S., Hu, B.: Locality-constrained spatial transformer network
for video crowd counting. In: 2019 IEEE International Conference on Multimedia and Expo
(ICME), Shanghai, pp. 814–819. IEEE (2019)

11. Tian, Y., Lei, Y., Zhang, J., Wang, J.Z.: PaDNet: pan-density crowd counting. IEEE Trans.
Image Process. 29, 2714–2727 (2020)

12. Zhang,Y., Zhou,D., Chen, S., Gao, S.,Ma,Y.: Single-image crowd counting viamulti-column
convolutional neural network. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Los Alamitos, vol. 1, pp. 589–597. IEEE Computer Society (2016)

13. Li, Y., Zhang, X., Chen, D.: CSRNet: dilated convolutional neural networks for understanding
the highly congested scenes. In: 2018 IEEE/CVFConference on Computer Vision and Pattern
Recognition, Salt Lake City, pp. 1091–1100. IEEE (2018)

14. Shi, M., Yang, Z., Xu, C., Chen, Q.: Revisiting perspective information for efficient crowd
counting. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, pp. 7271–7280. IEEE (2019)

15. Zou, Z., Liu, Y., Xu, S., Wei, W., Wen, S., Zhou, P.: Crowd counting via hierarchical scale
recalibration network. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, pp. 2864–2871. IEEE (2020)

http://arxiv.org/abs/1809.08766

26 C. Liu et al.

16. Liu, J., Gao, C., Meng, D., Hauptmann, A.G.: DecideNet: counting varying density crowds
through attention guided detection and density estimation. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, pp. 5197–5206. IEEE (2018)

17. Ma, Y.J., Shuai, H.H., Cheng, W.H.: Spatiotemporal dilated convolution with uncertain
matching for video-based crowd estimation. IEEE Trans. Multimedia, 1–1 (2021)

18. Liu, N., Long, Y., Zou, C., Niu, Q., Pan, L., Wu, H.: ADCrowdNet: an attention-injective
deformable convolutional network for crowd understanding. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, pp. 3220–3229. IEEE
(2019)

19. Miao, Y., Han, J., Gao, Y., Zhang, B.: ST-CNN: spatial-temporal convolutional neural network
for crowd counting in videos. Pattern Recognit. Lett. 125, 113–118 (2019)

20. Zou, Z., Shao, H., Qu, X., Wei, W., Zhou, P.: Enhanced 3D convolutional networks for crowd
counting. arXiv preprint arXiv:1908.04121 (2019)

21. Chan, A.B., Zhang-Sheng John, L., Vasconcelos, N.: Privacy preserving crowd monitoring:
counting people without people models or tracking. In: 2008 IEEE Conference on Computer
Vision and Pattern Recognition, Anchorage, pp. 1–7. IEEE (2008)

22. Chen, K., Chen, C.L., Gong, S., Xiang, T.: Feature mining for localised crowd counting. In:
24th British Machine Vision Conference, Bristol, pp. 1–11 (2013)

23. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual
networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, vol.
1, pp. 5534–5542. IEEE (2017)

24. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. arXiv preprint arXiv:1711.11248v3
(2018)

25. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state
of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

26. Chan, A.B., Vasconcelos, N.: Counting people with low-level features and bayesian
regression. IEEE Trans. Image Process. 21(4), 2160–2177 (2012)

27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp. 770–
778. IEEE (2016)

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with
region proposal networks. In: Proceedings of the 28th International Conference on Neural
Information Processing Systems, Montreal, Canada, vol. 1, pp. 91–99. MIT Press (2015)

30. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
pp. 6154–6162. IEEE (2018)

31. Wu, H., Chen, Y.,Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object
detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
pp. 9216–9224. IEEE (2019)

32. Wu, C., Feichtenhofer, C., Fan, H., He, K., Krähenbühl, P., Girshick, R.: Long-term feature
banks for detailed video understanding. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Long Beach, pp. 284–293. IEEE (2019)

33. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation networks for video
object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, pp. 7022–7031. IEEE (2019)

34. Ciregan, D.,Meier, U., Schmidhuber, J.:Multi-column deep neural networks for image classi-
fication. In: 2012 IEEEConference onComputer Vision and Pattern Recognition, Providence,
pp. 3642–3649. IEEE (2012)

http://arxiv.org/abs/1908.04121
http://arxiv.org/abs/1711.11248v3
http://arxiv.org/abs/1409.1556

DRENet: Giving Full Scope to Detection and Regression 27

35. Kumagai, S., Hotta, K., Kurita, T.: Mixture of counting CNNs: adaptive integration of CNNs
specialized to specific appearance for crowd counting. arXiv preprint arXiv:1703.09393
(2017)

36. Liu, L., Wang, H., Li, G., Ouyang, W., Lin, L.: Crowd counting using deep recurrent spatial-
aware network. In: Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI), Palo Alto, pp. 849–855. AAAI Press/IJCAI (2018)

37. Fang, Y., Gao, S., Li, J., Luo, W., He, L., Hu, B.: Multi-level feature fusion based locality-
constrained spatial transformer network for video crowd counting. Neurocomputing 392,
98–107 (2020)

38. Liu, W., Salzmann, M., Fua, P.: Estimating people flows to better count them in crowded
scenes. arXiv preprint arXiv:1911.10782 (2019)

http://arxiv.org/abs/1703.09393
http://arxiv.org/abs/1911.10782

Sisfrutos Papaya: A Dataset for Detection
and Classification of Diseases in Papaya

Jairo Lucas de Moraes(B) , Jorcy de Oliveira Neto(B), Jacson R. Correia-Silva(B),
Thiago M. Paixão(B), Claudine Badue(B), Thiago Oliveira-Santos(B),

and Alberto F. De Souza(B)

Universidade Federal do Estado do Espírito Santo, Vitória, ES, Brazil
artsoft.lucas@terra.com.br, {jorcyd,jacson,thiagopx,claudine,

todsantos,alberto}@lcad.inf.ufes.br

Abstract. In recent years, approaches based on machine learning, more specif-
ically Deep Neural Networks (DNN), have gained prominence as a solution to
computer vision problems in the most diverse areas. However, this type of app-
roach requires a large number of samples of the problem to be treated, which often
makes this type of approach difficult. In computer vision applications aimed at fruit
growing, this problem is even more noticeable, as the performance of computer
vision approaches in this segment is still well below the performance achieved in
other areas. One of the main reasons listed by the literature for the little evolution
in this area is the lack of large data sets duly and manually annotated, which are
mandatory for applications that use cutting-edge computer vision techniques such
as DNNs. The present work aims to leverage research in this domain, creating
a new dataset of images, of an unparalleled size in the literature, with the main
diseases and damages of papaya fruit (Carica Papaya). The proposed data set in
this work consists of 15,179 RGB images duly and manually annotated with the
position of the fruit and the disease/damage found within it.

In order to validate our dataset, we used it to train a DNN-based classifier in
the task of detecting diseases and defects in a papaya image. We recreated the old
challenge “Man vs. Machine” comparing our classifier with a human expert in
a real environment. Our model reached an f1-score of 80.01%, while the overall
performance obtained by the human expert was 67.3%. The project is available at
https://github.com/jairolucas/Sisfrutos-Papaya.

Keywords: Papaya · Fruit diseases · Dataset · Detection and classification ·
Deep learning · Computer vision

1 Introduction

Fruit production in general, and more specifically in Brazil, has achieved great promi-
nence mainly because it is an important source of crop diversification and increased
income for small farmers, as well as the fact that it is a highly labor-aggregating activity.
Considering this scenario, the agriculture of papaya (Carica Papaya) is one of the most
outstanding examples of worldwide fruit production, as it is produced in more than 40

© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 28–39, 2021.
https://doi.org/10.1007/978-3-030-86340-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_3&domain=pdf
http://orcid.org/0000-0002-5111-0811
https://github.com/jairolucas/Sisfrutos-Papaya
https://doi.org/10.1007/978-3-030-86340-1_3

Sisfrutos Papaya: A Dataset for Detection 29

countries, with a special part played by Brazil, which is the 2nd largest world producer
[27], with an annual production of more than 1.5 million tons, second only to India. In
addition, due to the high quality of the fruit produced in Brazil, it ranks as the second
largest exporter in the world, just behind Mexico [27, 28]. At the national level, the
Brazilian states of Espirito Santo and Bahia account for more than 70% of the fruits
produced and for more than 95% of the exported fruits, this culture being extremely
important for the economy of the region and the country [27].

This work is focused on leveraging artificial vision research using Deep Learning
techniques with a focus on Papaya’s quality control.

In the past fewyears, ConvolutionalNeuralNetworks (CNNs) have been employed to
solve several tasks in computer vision, such as classification, detection and segmentation.
ButCNNs need a large amount of data to achieve a good performance,which canmake its
application unfeasible in some tasks. In agriculture, there are fewCNN-based approaches
to detection, classification and computer vision based quality control measures (disease
recognition, ripening and damage to fruit) [1, 2]. One of the main reasons listed by
[1] is the lack of large annotated datasets needed to train these networks. In a survey
published byLi [3] in 2018, 45 paperswere reported, but only two of themusedCNNs for
non-destructive approaches on quality control automation in blueberry and strawberry
crops.

Despite this, the future scenario is very promising. Naranjo [4] published in 2020
a comprehensive review on the use of CNN networks applied to the tasks of detection,
classification and quality control of fruits in general (i.e. without being specific to a
certain crop). In this study the authors shows that, in the last two years, the amount of
research using this type of approach in this field has increased considerably.

This increase has occurred mainly in the tasks of detection and classification of fruits
[14–17], and coincides with the creation of large data sets such as Fruits-360 [5], which
at the time of its publication (2018) had 38,409 images regarding 60 different fruits duly
and manually annotated. This allowed for generating a good training dataset for a CNN
network.

An early detection and correct classification of diseases or defects in a fruit are
essential for the adoption of correctmeasures to control andmitigate losses [7]. However,
this task is inherentlymanual and requires technical expertise that is not always available.
Moreover, manual classification s highly dependent on the evaluator’s experience and
psychological status, which can lead to incorrect interpretations about the type of disease
or defects found in the fruit.

An autonomous system to detect and classify diseases in a fruit is a challenging
problem for computer vision research. Some topics to be covered in this field are: (i) is
there an expected fruit in the image? (ii) what are the coordinates of the fruit? (iii) is
there any disease of mechanical damage in the fruit? (iv) what are the coordinates of the
disease or mechanical damage?

As exposed in the literature, one of the main obstacles to detect and classify diseases
in fruits using CNNs is the hard work of gathering and annotating a large dataset with
these images. Up to the scope of our research (as of 2021), we did not find in the
literature a large set of public data that offered these samples, in any culture, making
the researcher himself have to acquire and annotate the images to assemble his own data

30 J. L. de Moraes et al.

set, an extremely expensive task. Regarding this, the published research for the task of
detecting and classifying diseases ends up using small data sets and without any defined
standard. This lack of standardization in the evaluated datasets makes it difficult to
compare the results of the techniques proposed in each work, as well as the validation of
these techniques in real environments, where thousands of images, in different scenarios,
need to be evaluated.

We have created a data set with more than 15,000 duly and manually annotated
images of the main diseases that affect this fruit culture (i.e. the Carica Papaya). Our
data set should help to leverage research in this field and could stand as a standardized
benchmark for evaluating future works. As a second contribution, we use a classifier
model based on deep learning to train and evaluate our data set, achieving excellent
results.

This paper is organized as follows. In Sect. 2 we will discuss the most recent relevant
works for the domain covered. In Sect. 3 we describe in detail the data set created. In
Sect. 4 we describe the methodology used by our classifier, detailing the subsets of data,
the network parameters and the approach used. In Sect. 5 the results obtained are detailed
and in Sect. 6 the main conclusions of the work are presented, as well as suggestions for
future works for the same domain.

2 Related Works

In this section, we describe thework related to the detection and classification of diseases
and damage to fruits in different crops.

In one of the latest works published in the area, Kukreja [6] proposed a CNN to detect
the main diseases (Blackspot, Melanose Canker, Scab and Anthracnose) and noticeable
damage in citrus fruits. Initially, the author used a data set with 150 RGB images of
size 256 × 256, composed by 128 images of defective fruits and 22 images of healthy
fruits. The experiments obtained an accuracy of 67%. Next, the author used several
data augmentation techniques for generating a total of 1,200 images, such as rotation,
resizing, resizing and changing the luminosity. The images were also enhanced by pre-
processing. Therefore, an accuracy of 89.1% was achieved. In addition, they concluded
that a large number of samples is essential in Convolutional Neural Networks and that
data augmentation techniques can be used to significantly improve networks when only
few samples are available for the training step. Yunong [7] proposed a method for
detecting Anthracnose disease in apples. The authors used 500 images of healthy apples
and 140 images of apples affected by anthracnose. The data augmentation was used to
increase the number of images in the dataset. In addition, they also used an Adversarial
Cycle-Consistent (CycleGAN) [8] to generate similar synthetic images. After increasing
the dataset size, the authors used a densely connected neural network (DenseNet) [9] to
optimize the Yolo-V3model [10]. They achieved an accuracy of 86.9% using the dataset
without synthetic images and 91.7% of accuracy using the synthetic images.

Tarek et al. [11, 12] published two studies related to the use of computer vision to
detect diseases in Papaya. In the first [11], they proposed a specialist system to detect
and classify diseases in images captured by a mobile device. The method consists of
converting the input image to a standard size of 300 × 300 using bicubic interpolation,

Sisfrutos Papaya: A Dataset for Detection 31

followed by applying a histogram equalization to improve its contrast, and converting
the image from RGB to l * a * B color space. After these steps, they used K-means to
segment the images and SVM to detect and classify the disease. They used 129 images of
Papaya for training and testing sets, 84 and 45 images respectively. The author obtained
an accuracy of 90.15%.

In the second work, Tarek et al. [12] compared nine distinct classifiers for detection
and classification of Papaya diseases: K-Nearest Neighbors (KNN), Logistic Regression,
Repeated Incremental Pruning to Produce Error Reduction (RIPPER), Naive Bayes,
Random Forests, Support Vector Machine (SVM), Back Propagation Neural Network
(BPN) and Counter Propagation Network (CPN). The classifiers were trained and tested
on the same data used in [11]. The authors reported that the best accuracy was 95.2%
obtained by the SVM. However, the same classifier obtained only 90.15% in the first
work [11], but they did not provide more details about this improvement.

Abirami [13] proposed a method to detect and classify diseases in fruits, caused by
fungi and bacteria. They first used a threshold to segment the affected part of the fruit,
then a Local Binary Standard (LBP) to extract features, and finally a feedforward neural
network for classification. The dataset has 100 images, but they did not provide details
on the division of the training and testing sets and the kind of fruits used. They achieved
92% accuracy in bacterial diseases and 86% in viral diseases. They also did not specified
what types of diseases have been detected.

As it can be seen from, the studies mentioned above all use distinct data sets, with
small amounts of samples, and some studies do not clearly categorize the data set used.
This lack of standardization makes it impossible to compare the techniques listed in
each work, as well as their replication in a real environment. In this work, we propose
to overcome these limitations with the creation of the Sisfrutos Papaya data set.

3 The Sisfrutos Papaya DataSet

The dataset introduced in this work leverages the research on computer vision techniques
for detection and classification of Papaya’s (Carica Papaya) diseases, mainly those
techniques based on deep learning. The creation of this dataset was motivated by the
lack of collections with (i) many annotated samples and (ii) covering a large range
of diseases, which has caused the researchers to produce their own (unstandardized)
collections. The lack of comprehensive and standardized benchmarks makes difficult to
compare the different approaches in the literature, therefore it is not trivial to establish
the state-of-the-art in automatic detection and/or classification of fruits diseases. This
issue is not exclusive for the Papaya culture, being also observed for several other fruit
cultures [12].

3.1 Image Acquisition

The images used in the work were acquired over 5 months in a real production envi-
ronment and in different fruit packaging facilities in the Brazilian states of Espírito
Santo and Bahia. Those agreed to participate in this work anonymously due to industrial
information security reasons. All images were evaluated by trained professionals, with

32 J. L. de Moraes et al.

extensive experience in evaluating fruit diseases, and who worked in the fruit quality
control sector in the partner companies at the time of this evaluation. The acquisition
followed the following protocol:

• In real time, the first evaluator randomly selects the fruit during its passage through
the production conveyor (after washing and before packaging).

• Using amobile device and specific software for the annotations, the expert photographs
the fruit and selects the region of interest (ROI), marking the region of the fruit, and
when applicable, the region of the disease or defect. The image and the respective
annotations are stored in a database.

• In the second evaluation, usually carried out on a different date than the first, a second
expert, with more experience, randomly visualizes, without access to the first eval-
uation, the images of the fruits that have already undergone the first evaluation and
carries out their own evaluation.

• The second expert and his evaluation has definitive weight in case of disagreement
with the first expert (i.e. considered the Ground Truth).

• Whenever there is a discrepancy between the human evaluations, an error is computed
for the first human evaluator, thus being considered an “human expert evaluation
error”.

Figure 1 shows the evaluation being carried out by the first expert and the software
used by the 2nd expert to do his evaluation. The Fig. 2 shows examples of the diseases
and defects included in the Dataset.

Fig. 1. (a) - Evaluation being carried out by the 1st. expert. (b) - Software used by the 2nd. Expert
to take notes.

Our final dataset included 6 types of diseases, in addition tomechanical damage to the
fruit. The diseases were selected because they are part of those that cause the greatest
financial losses [28], and that have a significant degree of occurrence. The dataset is
not balanced, thus having different amounts of samples of each fruit disease. Diseases
such as Anthracnose and Phytophthora have few samples due to their low occurrence
compared to the others. The diseases/damage included in the dataset were:

Sisfrutos Papaya: A Dataset for Detection 33

Fig. 2. Examples of diseases and damages included in the dataset

– Anthracnose;
– Chocolate Spot;
– Sticky Disease;
– Physiological Spot;
– Black Spot;
– Phytophthora Blight;
– Mechanical Damage;

3.2 Specification of Images and Annotations

The DataSet consists of 15,179 images in the RGB standard, with a resolution of 503
× 672 (width × height), a complex background, and significant variation in brightness,
pose (rotation and translation) and capture distance.

The images are annotated with the coordinates (x, y) of the central point of the
fruit with its respective width and height, and the coordinate of the central point of the
disease (xd, yd) with its width and height. These values are given in relation to the image
size, thus allowing the image to be resized without losing the regions of interest. These
annotations follow the pattern of theYoloV4 network [20]. Table 1 shows the distribution
of each class and its respective representation in the Dataset.

Table 1. Sisfrutos Papaya dataset

Class Sample quantity (%)

Healthy Fruits 4.352 28,67%

Anthracnose 156 1,03%

Phytophthora Blight 170 1,12%

(continued)

34 J. L. de Moraes et al.

Table 1. (continued)

Class Sample quantity (%)

Mechanical Damage 1.513 9,97%

Chocolate Spot 2.040 13,44%

Sticky Disease 1.308 8,62%

Physiological Spot 2.728 17,97%

Black Spot 2.912 19,18%

Total 15.179 100,00%

4 Methodology

The dataset introduced in this work enables the evaluation of DNNs in papaya fruit
diseases/damages detection and classification. The conducted experiments aim to com-
pare the performance of a DNN against a human expert. This section details the DNN
architecture, the performance metrics, the datasets, and the carried experiment.

4.1 Detection Model

In this work, we adopted YOLOv4 [20] as the detection model for detection of dis-
eases/damage on papaya fruit. The choice of YOLOv4 was motivated by the fact it has
achieved the state-of-the-art in several object detection dataset (e.g., [21 and 22]). The
most recent version of YOLO has incorporated techniques, such as PAN (Path Aggre-
gation Network), CBAM (Convolutional Block Attention Module), and CBN (Cross-
iteration Batch Normalization) that enable efficient training on large datasets using a
single GPU without loss of accuracy. A more detailed description of these techniques
can be found in [23–25].

4.2 Sub Dataset

The original dataset was segmented into 3 different subsets, the first one being used to
train the model (training set) comprising approximately 80% of the images, the second
for model adjustments (validation set) with approximately 10% of the total images and
the last one for the actual model tests (test set), with approximately 10% of the remaining
images. Table 2 shows the distribution of classes in the respective data sets.

Using the validation set, a tunning procedure was applied over several hyperparam-
eters in order to obtain the best set of weights for the model. The best performance was
achieved in the 15,000th iteration, using a batch= 64, subdivisions= 32, learning_rate
= 0.0002, decay = 0.0005, 416 × 416 network size, policy = sgdr (sgdr_cycle = 1000
and sgdr_mult= 2), saturation= 0, exposure= 0, hue= 0. The other parameters follow
the pattern suggested in [20]. Figure 3 shows the evolution of the F1-Score metric (over
the iterations during model training. For more details on the metrics used, see [17, 26].

After training and validation, the model was evaluated using the Test set. The results
are presented in Sect. 5.

Sisfrutos Papaya: A Dataset for Detection 35

Table 2. Distribution of classes in the respective data sets.

Class Sample quantity in the
Training set

Sample quantity in the
Validation set

Sample quantity in the
Test set

Healthy Fruits 3,452 449 451

Anthracnose 131 13 12

Phytophthora Blight 144 13 13

Mechanical Damage 1,150 182 181

Chocolate Spot 1,636 202 202

Sticky Disease 1,078 115 115

Physiological Spot 2,148 290 290

Black Spot 2,332 290 290

Total 12,071 1,554 1,554

Fig. 3. Graph with the metric F1-score calculated for every 1,000 iterations

4.3 Hardware Specification

The experiment was conducted on a machine equipped with an Intel Xeon CPU E5606
(2,13 GHz), 24 GB RAM, and a NVIDIA TITAN XP gpu (12 GB). The model was
trained over 16,000 iterations, taking approximately 78 h.

5 Results and Discussion

As the main objective of this work is to create a large dataset of disease samples in
Papaya and use it as a baseline for detection and classification for future work, we need
to evaluate its performance correctly and effectively. For that purpose, we performed the
classical “Man vs. Machine” accuracy challenge.

36 J. L. de Moraes et al.

In this experiment, we compared the precision of the presentedmodel against the one
achieved by human experts. For this, we consider the entire test portion of the dataset
(1,554 images) and its respective human expert evaluations. Table 3 shows the confusion
matrix generated by the evaluation of human experts.

Table 3. Confusion matrix of human experts (HF - Healthy Fruits; AN - Anthracnose; MD -
Mechanical Damage; SP - Chocolate Spot; SD - Sticky Disease; FS - Physiological Spot; BS -
Black Spot; PT - Phytophthora Blight).

As can be seen, fruit disease detection and classification is a quite challenging task,
even for human experts specifically trained for this function. The performance of these
experts proved to be somewhat weak in this task, when compared against the automated
system, reaching an overall average of f1-score of just 67.3% in the evaluated examples,
even being below 50% for two of the evaluated diseases. This data reflects the actual
reality of the quality control department of most fruit processing facilities, where the
expert’s assessment is subject to human intrinsic, such as stress, tiredness, mood changes
and other psychological conditions. In addition, some defects, such as sticky disease and
mechanical damage (especially when in the early fruit stages), requires a more in-depth
visual inspection to be detected, which the human expert is not always willing to do. It
is also worth mentioning that the annotations of the human experts were acquired in an
actual quality control environment of the partner facilities, being performed by properly
trained professionals who were in charge of quality control inspections at the time of
this evaluation.

Our model surpassed the general human expert performance by obtaining an f1-
score of 80.1%. The model was also shown to be superior in technically all the evaluated
classes. Figure 4 shows a graph that depicts the performance by class of the human
experts in relation to our classifier. Figure 5 shows examples of correct and incorrect
assessments generated by our model.

Sisfrutos Papaya: A Dataset for Detection 37

Fig. 4. Graph with the performance of our model vs. human expert, in each class

Fig. 5. Ground truth and the respective model prediction.

6 Conclusion and Future Works

The approaches based on CNN and DNN for solving problems in the area of computer
vision have advanced successfully in the most diverse areas, however, this type of app-
roach requires a large set of data with samples of the desired domain duly noted. The
area of detection and classification of diseases in fruits, of the most diverse cultures, does

38 J. L. de Moraes et al.

not have a public data set with such characteristics. As a result, all published works use
databases with few samples that are generally gathered by the researchers themselves,
which makes it difficult to be able to compare or even validate the performance of each
algorithm.

In this work, we successfully attacked this problem and created a dataset with more
than 15,000 images with the main diseases and damages of the Papaya culture. This data
set should leverage research in this area, in addition to being a benchmark for evaluating
the results of future work.

The tests with our model showed that it obtained a superior performance to a human
expert, achieving an f1-score of 80.1% and proving that the dataset created can be used
by models that use deep learning to create real-world solutions for automation of the
quality control process.

For future works, samples of new diseases will be included in this data set, thus
making it even more comprehensive. Still, in the domain of Papaya quality control,
it is desirable to have a large dataset that offers samples with distinct and labeled fruit
ripening degrees. Current studies on the classification of Papaya ripeness [18, 19], report
a good accuracy, but use extremely small sample datasets (300 samples) and classify the
fruit based on 3 discrete maturation stages (green, partially ripe and ripe), which isn’t
suited for real-world applications.

References

1. Barth, R., Ijsselmuidem, J., Hemming, J., Henten, E.J.: Data synthesis methods for semantic
segmentation in agriculture: a capsicum annuum dataset. Comput. Electron. Agric. 144, 284–
296 (2018)

2. Gongal, A., Amatya, S., Karkee, M., Zhang, Q., Lewis, K.: Sensors and systems for fruit
detection and localization: a review. Comput. Electron. Agric. 116, 8–16 (2015)

3. Li, S., et al.: Optical non-destructive techniques for small berry fruits: a review. Artif. Intell.
Agric. 2, 85–98 (2019)

4. Naranjo-Torres, J.,Mora,M.,García, R., Barrientos, R.J., Fredes, C., Valenzuela, A.: A review
of convolutional neural network applied to fruit image processing.MDPI ACS Style. 10, 3443
(2020)

5. Mure, H.S., Oltean, M.: Fruit recognition from images using deep learning. Acta Univ.
Sapientiae, Informatica 10(1), 26–42 (2018)

6. Kukreja, V., Dhiman, P.: A deep neural network based disease detection scheme for Citrus
fruits. In: International Conference on Smart Electronics and Communication (ICOSEC),
Trichy, India, pp. 97–101 (2020)

7. Yunong, T., Guodong, Y., Zhe, W., Zize, L.: Detection of apple lesions in orchards based on
deep learning methods of CycleGAN and YOLOV3-dense. J. Sens. 2019, 13 (2019)

8. Goodfellow, L., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In:
International Conference on Neural Information Processing Systems, Montréal, Canada,
pp. 2672–2680 (2014)

9. Huang, G., Liu, Z., Van, M.L.,Weinberger, K.Q.: Densely connected convolutional networks.
In: IEEE-Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA,
pp. 2261–2269 (2017)

10. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. https://arxiv.org/abs/1804.
02767 (2018)

https://arxiv.org/abs/1804.02767

Sisfrutos Papaya: A Dataset for Detection 39

11. Habib, M.T., Majumder, A., Jakaria, A.Z.M, Akter, M., Uddin, M.S., Ahmed, F.: Machine
vision based papaya disease recognition. J. King SaudUniv. Comput. Inf. Sci. 32(3), 300–309
(2020). ISSN 1319-1578

12. Habib, M.T., Majumder, A., Nandi, R.N., Ahmed, F., Uddin, M.S.: A comparative study
of classifiers in the context of papaya disease recognition. In: Uddin, M.S., Bansal, J.C.
(eds.) Proceedings of International Joint Conference on Computational Intelligence. AIS,
pp. 417–429. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7564-4_36

13. Abirami, S., Thilagavathi, M.: Classification of fruit diseases using feed forward back propa-
gation neural network. In: International Conference onCommunication and Signal Processing
(ICCSP), 0765–0768 (2019)

14. Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C.: Deep learning–method overview and
review of use for fruit detection and yield estimation. Comput. Electron. Agric. 162, 219–234
(2019)

15. Park, Y., Yang, H.S.: Convolutional neural network based on an extreme learning machine
for image classification. Neurocomputing 339, 66–76 (2019)

16. Mohit, D., Narinder, S.P., Sanjay, K.S., Sonali, A.: Fruit classification using deep feature
maps in the presence of deceptive similar classes. Comput. Vis. Pattern Recogn. arXiv:2007.
05942 (2020)

17. Margherita, G., Enrico, B., Giorgio, V.: Metrics for multi-class classification: an overview.
arXiv:2008.05756 (2020)

18. Santi,K.B.,Amiya,K.R., Prabira,K.S.: Status classification of papaya fruits based onmachine
learning and transfer learning approach. Inf. Proc. Agric. (2020)

19. Simbolon, Z. K., Syakry, S. A., Syahroni, M.: Separation of the mature level of papaya callina
fruit automatically based on color (RGB) uses digital image processing. In: International
Conference on Science and Innovated Engineering (I-COSINE), p. 536 (2020)

20. Alexey, B., Chien-Yao, W., Hong-Yuan, M.: YOLOv4: optimal speed and accuracy of object
detection. https://arxiv.org/abs/2004.10934 (2020)

21. Lin,T.-Y., et al.:MicrosoftCOCO: commonobjects in context. In: Fleet,D., Pajdla, T., Schiele,
B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10602-1_48

22. Everingham, M., Van, L.G., Williams, C.K., Winn, J.,Zisserman, A.: The PASCAL visual
object classes challenge 2012 (VOC2012) results (2012). http://www.pascalnetwork.org/cha
llenges/VOC/voc2012/workshop/index.html

23. Shu, L., Lu, Q., Haifang, Q., Jianping S. and Jiaya, J.: Path aggregation network for instance
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8759–8768 (2018)

24. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In:
Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211,
pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

25. Zhuliang, Y., Yue, C., Shuxin, Z., Gao, H.: Cross-iteration batch normalization. arXiv:2002.
05712 (2020)

26. Padilla, R., Netto, S.L., Silva, E.A.B.: A survey on performance metrics for object-detection
algorithms. In: 2020 International Conference on Systems, Signals and Image Processing
(IWSSIP), Niterói, Brazil, pp. 237–242 (2020)

27. Comex Stat - Portal de Comércio Exterior do Ministério do Desenvolvimento, Indústria e
Comércio. http://comexstat.mdic.gov.br/pt/home. Accessed 10 Jan 2021

28. Dantas, J., Junghans, D., Lima, J.: O produtor pergunta, a Embrapa responde” – 2ª. Edição,
Embrapa, Brasília (2013)

29. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

https://doi.org/10.1007/978-981-13-7564-4_36
http://arxiv.org/abs/2007.05942
http://arxiv.org/abs/2008.05756
https://arxiv.org/abs/2004.10934
https://doi.org/10.1007/978-3-319-10602-1_48
http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html
https://doi.org/10.1007/978-3-030-01234-2_1
http://arxiv.org/abs/2002.05712
http://comexstat.mdic.gov.br/pt/home

Faster-LTN: A Neuro-Symbolic,
End-to-End Object Detection

Architecture

Francesco Manigrasso , Filomeno Davide Miro, Lia Morra(B) ,
and Fabrizio Lamberti

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
{francesco.manigrasso,lia.morra,fabrizio.lamberti}@polito.it,

filomenodavide.miro@studenti.polito.it

Abstract. The detection of semantic relationships between objects rep-
resented in an image is one of the fundamental challenges in image inter-
pretation. Neural-Symbolic techniques, such as Logic Tensor Networks
(LTNs), allow the combination of semantic knowledge representation
and reasoning with the ability to efficiently learn from examples typi-
cal of neural networks. We here propose Faster-LTN, an object detec-
tor composed of a convolutional backbone and an LTN. To the best of
our knowledge, this is the first attempt to combine both frameworks
in an end-to-end training setting. This architecture is trained by opti-
mizing a grounded theory which combines labelled examples with prior
knowledge, in the form of logical axioms. Experimental comparisons show
competitive performance with respect to the traditional Faster R-CNN
architecture.

Keywords: Object detection · NeuroSymbolic AI · Convolutional
neural network · Logic tensor networks

1 Introduction

A long-standing problem in Semantic Image Interpretation (SII) and related
tasks is how to combine learning from data with existing background knowl-
edge in the form of relational knowledge or logical axioms [1]. Neural-Symbolic
(NeSy) integration, which aims at integrating symbolic knowledge representation
and learning with machine learning techniques [2], can provide an elegant and
principled solution to augment state-of-the-art deep neural networks with these
novel capabilities, increasing their performance, robustness and explainability.

The present work leverages the Logic Tensor Network (LTN) paradigm that
was proposed by Serafini, Donadello and d’Avila Garcez [3,4]. In very simple
terms, LTNs operate by interpreting (or grounding) a First-Order Logic (FOL)
as functions on real vectors, which parameters can be trained via stochastic
gradient descents to maximize the satisfiability of a given theory. LTNs have been
successfully applied to the tasks of part-of relationship detection [3] and visual
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 40–52, 2021.
https://doi.org/10.1007/978-3-030-86340-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_4&domain=pdf
http://orcid.org/0000-0002-4151-8880
http://orcid.org/0000-0003-2122-7178
http://orcid.org/0000-0001-7703-1372
https://doi.org/10.1007/978-3-030-86340-1_4

Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture 41

relationship detection [5]. Previous works have shown how LTNs can compensate
the lack of supervision (e.g., in few-shot learning scenarios) by relying on logical
axioms derived from pre-existing knowledge bases.

To close the semantic gap between the symbolic (concept) and subsymbolic
(pixel) levels, LTNs for SII rely on convolutional neural networks (CNNs) to
extract semantic features which form the basis for grounding object instances
in a real vector. Previous works [3,5] relied on pre-trained CNNs, which how-
ever suffer from all the limitations traditionally associated with deep learning,
namely, the need for a large-scale annotated dataset for training, and lack of
interpretability. To fully reap the benefits of NeSy techniques in SII, end-to-end
architectures in which the LTN is jointly trained with the feature extraction
CNN are needed.

In this work, we propose Faster-LTN, an object detector which unifies the
Faster R-CNN object detector with a LTN-based classification head. Differently
from previous works [3,5], both modules are jointly trained in an end-to-end
fashion. The logical constraints imposed by the LTN can thus shape the training
of the convolutional layers, that are no longer purely data-driven. To achieve
this objective, we propose several modifications to the original LTN formulation
to increase the architecture scalability and deal with data imbalance. Experi-
mental results on the PASCAL VOC and PASCAL PART datasets show that
Faster-LTN converges to competitive performance with respect to purely neu-
ral architectures, thus proving the feasibility of this approach. The Faster-LTN
was implemented in Keras and is available at https://gitlab.com/grains2/Faster-
LTN.

The rest of the paper is organized as follows. In Sect. 2, related work is
presented. In Sect. 3, different variations of the Faster-LTN architecture are pre-
sented, after a brief introduction to the theory behind LTNs. Section 4 presents
the experimental setting and results. Finally, conclusions are drawn.

2 Related Work

A natural image is comprised of scenes, objects and parts, all interconnected by a
complex network of spatial and semantic relationships. Thus, developing seman-
tic image interpretation (SII) components requires to recognize a hierarchy of
components, and entails both robust visual perception and the ability to encode
and (reason about) visual relationships. Several techniques have been proposed
to augment Convolutional Neural Networks (CNNs) with relationship represen-
tation and reasoning capabilities, including Relational Network [6], Graph Neural
Networks [7] and Neural-Symbolic (NeSy) techniques [3,5,8]. For a more general
introduction to NeSy techniques, the reader is referred to recent surveys [9,10].

Many recent approaches extract features from CNNs to a subsequent sym-
bolic or neuro-symbolic module [3,5,11,12]. Yuke Zhu et al. [11] use a Markov
Logic Network (MLN) to process text information with associated visual fea-
tures; a knowledge base is used to represent relations between objects using
visual, physical, and categorical attributes. Kenneth Marino et al. [13] incor-
porate a Graph Search Neural Network (GSNN) into a classification network.

https://gitlab.com/grains2/Faster-LTN
https://gitlab.com/grains2/Faster-LTN

42 F. Manigrasso et al.

Donatello et al. [3] and Cewu Lu et al. [12] have demonstrated the use of visual
features to train LTNs for visual relationship detection, in form of subject-verb-
object triplets or part of relationships. These works demonstrate how NeSy tech-
niques enable the definition of logical axioms that serve as high-level inductive
biases, driving the network to find the optimal solution that is compatible with
said inductive biases. However, since in the above-mentioned cases the feature
extraction and the classification networks are trained separately, the CNN can-
not leverage these additional inductive biases during training.

There are, however, some practical hurdles associated with the training of
NeSy architectures. Scalability, when dealing with large amounts of data, is
a known issue associated with symbolic AI [14]. For this reason, many NeSy
architectures rely on a conventional object detector to provide an initial list
of candidate objects [3], thus disregarding the effect of the background and
simplifying (i.e., reducing) the scale of the problem. In this work, we compare
several strategies that are effectively capable of training a LTN-based object
detector from scratch, taking into account the effect of the background and the
resulting data imbalance.

Another aspect related to scalability is the choice of aggregation function and
fuzzy logic operators. Emilie van Krieken et al. [14] and Samy Badreddine [4]
found substantial differences between differential fuzzy logic operators in terms of
computational efficiency, scalability, gradients, and ability to handle exceptions,
which are important characteristics in a learning setting. Their analysis lays
the groundwork for the present FasterLTN architecture, which incorporates and
extends the log-product aggregator analyzed in [14].

3 The Faster-LTN Architecture

This section describes the Faster-LTN architecture and training procedure in
detail. An overview of the overall architecture is presented in Fig. 1. We first
summarize the Faster R-CNN overall architecture (Sect. 3.1). Then, we intro-
duce the main concepts behind LTNs (Sect. 3.2) and their application to object
detection (Sect. 3.3), referring the reader to [3,4] for additional details. Finally,
the joint training procedure of Faster-LTN is explained in Sect. 3.4, highlighting
the main changes introduced to make end-to-end training feasible.

3.1 Faster R-CNN

Faster R-CNN is a two-stage object detector composed of a Region Proposal
Network (RPN) and a classification network with a shared backbone [15]. For
each anchor, the RPN generates a binary classification label (Background vs.
foreground), while a regression layer computes the bounding box coordinates.
Regions of Interest (ROIs) selected by the RPN are fed to an ROI Pooling
layer, which extracts and resizes each proposal bounding box’s features from the
shared backbone. Feature maps of equal size are passed to the classifier. The
classifier comprises two convolutional heads, a classification layer (with softmax

Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture 43

Regression

Training Loss
L1 C1

L2

L3

Ln

C2

C3

Cn

... ...

P1

P2

P3

Pn

...

Inference

CONV
Layers

Extract
Features

Feature
Maps

C
O

N
V Classification

Regression

Region
Proposal
Projection

RPN

Classification

Fig. 1. Faster-LTN architecture. The first part of the architecture, up to the RPN, is
the same as in the Faster R-CNN network [15]. The feature maps associated to the
RPN proposals are extracted by the backbone, concatenated and passed to the LTN,
which includes a collection of predicates Pi, each corresponding to a specific class. At
training time, a batch of labelled examples in the training dataset are used to define
a partial theory Texpl. Each positive or negative example corresponds to a positive or
negative literal (L) for the corresponding predicates. The truth value of the aggregated
clauses (C) is maximized to find the optimal grounding G∗. At inference time, the truth
value of the predicates Pi is computed.

activation) that computes the final object classification and a regression layer
(with linear activation) that computes the bounding box.

Training of the RPN and classifier heads is performed jointly in an alter-
nating fashion. At each forward pass (corresponding to one image), the RPN
is trained and updated; then, the RPN output is kept fixed, and the detector
head is updated. A fixed number of positive (object) and negative (Background)
examples are selected at each step to train the classifier head.

The loss is as a combination of regression and classification loss:

L({pi}, {bi}) =
1
nc

∑

i

Lcls(pi, p
′
i) + λ

1
nr

∑

i

pi ∗ Lreg(bi, b
′
i) (1)

In the Faster-LTN, we keep the RPN module intact and substitute the clas-
sifier head with an LTN.

3.2 Logic Tensor Network

Grounding. In the LTN framework, it is possible to encode a FOL language L

by defining its interpretation domain as a subset of Rn. In the LTN formalism,
this process is called grounding.

Given the vector space R
n, a grounding G for L has the following properties:

1. G(c) ∈ R
n, for every c ∈ C;

2. G(P) ∈ R
n∗k → [0, 1], for every p ∈ P

The grounding of a set of closed terms t1, .., tm of L in an atomic formula
is defined as:

G (P (t1, ...tm)) = G (P) (G (t1) , ...,G (tm)) (2)

44 F. Manigrasso et al.

Formulas can be connected with fuzzy logic operators such as conjunctions
(∧), disjunctions (∨), and implications (=⇒), including logical quantifiers
(∀ and ∃). Several real-valued, differentiable implementations are available in
the fuzzy logic domain [14]. Our implementation, as in [3], is based on the
�Lukasiewicz [16] formulation:

G (¬φ) = 1 − G (φ) (3)
G (φ ∨ ψ) = min(1,G (φ) + G (ψ)) (4)

Predicate symbols are interpreted as functions that map real vectors to the
interval [0, 1], which can be interpreted as the predicate’s degree of truth. A
typical example is the is-a predicate, which quantifies the existence of a given
object. For instance, if b = G(x) is the grounding of a dog bounding box, than
G(Dog)(v)
 1. A logical constraint expressed in FOL allows to define its prop-
erties, i.e., ∀x (Dog(x) → hasMuzzle (x)).

In LTNs, predicates are typically defined as the generalization of the neural
tensor network:

G (P) (v) = σ
(
uT
P tanh

(
vTW

[1:k]
P v + VPv + bp

))
(5)

where σ is the sigmoid function, W [1 : k] ∈ R
k×mn×mn, Vp ∈ R

k×mn, up ∈ R
k

and bp ∈ R are learnable tensors of parameters. With this formulation, the truth
value of a clause can be determined by a neural network which first computes
the grounding of the literals (i.e., atomic objects) contained in the clause, and
then combines them using fuzzy logical operators, as defined by Eqs. 3–4.

Grounded Theory. A Grounded Theory (GT) T is defined by a pair 〈K, Ĝ〉,
where the knowledge base K is a set of closed formulas, and Ĝ is a partial ground-
ing. K is constructed from labelled examples, as well as logical axioms, as defined
in Section 3.3. In practice, a partial grounding is optimized since, qualitatively,
our set K represents a limited and finite set of examples. A grounding G satisfies
a GT 〈K, Ĝ〉 if G completes Ĝ and G (φ) = 1 ∀ φ ∈ K.

Best Satisfability Problem. Given a grounding Ĝθ, where θ is the set of
parameters of all predicates, the learning problem in LTNs is framed as a best
satisfability problem which consists in determining the values of Θ∗ that maxi-
mize the truth values of the conjunction of all clauses φ ∈ K:

Θ∗ = argmaxΘĜθ

⎛

⎝
∧

φ∈K

φ

⎞

⎠ − λ||Θ||22 (6)

where λ||Θ||22 is a regularization term. In practical problems, it is unlikely that a
grounded theory can be satisfiable in the classical sense. Hence, we opt instead to

Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture 45

find the grounding which achieves the best possible satisfaction, while accounting
for the inevitable exception to the rule. Such exceptions can easily arise in the
visual domain not only to account to allow the occasional deviation from the
norm, but also to account for properties that are not visible. For instance, a cat
has (usually) a tail, but a few cats may be tail-less; more frequently, the tail will
be occluded or cut from the image.

3.3 LTN for Object Detection

A Grounded Theory for Object Detection. Let us consider a set of bound-
ing boxes b ∈ B with known class c ∈ C. An object with bounding box bn is
grounded by the vector:

vbn =< zbn , bn > (7)

where zbn = f(I, bn) is an embedding feature vector, calculated by a convolu-
tional neural network f , given an image I and the bounding box coordinates bn

predicted by the RPN layer. This is slightly different from previous works [3],
where the grounding of a bounding box was defined by the probability vector
predicted by a pre-trained Faster R-CNN, and allows to effectively connect the
convolutional layers and the LTN.

We set the embedding f(I, bn) to the output of the last fully connected layer
of the classifier head, without softmax activation. Other choices are possible,
e.g., by sum pooling the output of an earlier convolutional layer.

The is-a predicate for class c ∈ C is grounded by a tensor network, defined
as in Eq. 5, which implements a one-vs-all classifier. It must be noticed that,
differently from [3], the is-a predicate takes as input only the embedding features
zbn , excluding the bounding box coordinates. This allows to retain one of the
basic properties of object detectors, i.e., invariance to translation.

The part-of predicate is defined over pairs of bounding boxes [3]. A pair of
two generic bounding boxes bm and bl is grounded by the vector:

vbm,l
=< zbm , bm, zbl , bl, irm,l > (8)

where irm,l is the containment ratio defined as:

irm,l =
Area (bm ∩ bl)

Area (bm)
(9)

The grounding G (part − of) (vbm,l
) is a neural tensor network as in Eq. 5.

Defining a Theory from Labelled Examples. Let us now consider how a
GT is constructed to solve the best satisfiability problem defined in Eq. 6 for
object detection. As in [3], two grounded theories Texpl and Tprior are defined.
The former, Texpl, aggregates all the clauses derived from the labelled training
set, essentially replicating the classical learning-by-example setting. The theory

46 F. Manigrasso et al.

Tprior, on the contrary, introduces logical and mereological constraints that rep-
resent prior knowledge or, in a more general sense, desirable properties of the
final solution.

In this work, two types of constraints are defined. First, we enforce mutual
exclusion through the clause:

∀x(P1(x) =⇒ (¬P2(x) ∧ ... ∧ ¬Pn(x))) (10)

Equation 10 is translated into K(K − 1))/2 clauses, corresponding to all
unordered class pairs over K classes, e.g., Cat(x) =⇒ ¬Person(x).

Secondly, we impose mereological constraints on the grounding of part-of and
is-a predicates derived from an existing ontology (e.g., Wordnet) which includes
meronimy (i.e., part-whole) relationships. Axioms are included to specify that
a part cannot include another part, that a whole object cannot include another
whole object, and that each whole is generally associated with a set of given
parts. An example of such axioms is as follows:

∀x, y (Cat(x) ∧ partOf(y, x) → Tail (y) ∨ Head (y) ... ∨ Eye (y)) (11)

to indicate that if an object y is classified as part of x and x is a cat, than
y can be only an object that we know is a part of the whole cat. Mereological
constraints were enforced exploiting the KB developed in [3], to which the reader
is referred for further information.

3.4 Faster-LTN

The overall architecture, illustrated in Fig. 1, is an end-to-end system connecting
a convolutional object detector with an LTN. Specifically, the classifier head is
modified, by removing the softmax activation, and feeding the output to the
LTN. At training time, a GT is constructed as defined in Sect. 3.4. The LTN is
implemented by defining three additional layers: Predicate, Literal and Clause
layers. For each class c, the corresponding literal computes the truth value of
all positive (i.e., belonging to class c) and negative (i.e., not belonging to class
c) examples. The Clause layer aggregates all literals for a given class, using
the selected aggregation function. Additionally, it is possible to define clauses
(e.g., for part-of predicates) that take as input multiple literals. For the sake of
simplicity, in Fig. 1 only Texpl is shown. The final loss of the LTN is given by
summing LLTN with the regression loss, as for the RPN layer.

Training. In order to deal with memory constraints, a partial Texpl needs to
be rebuilt with every batch of examples. In the original implementation [3], the
LTN was trained on the predictions of a pre-trained object detector, allowing for
a relatively large batch size. In our setting, the LTN is trained on all proposals
extracted by the RPN, and a separate batch is constructed for each image, taking
into account background as well as foreground examples. It is worth noticing
that one-vs-all classification amplifies the data imbalance between positive and
negative examples for each class, even when the training batch consists of an
equal number of objects and background proposals.

Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture 47

Aggregation Function. The chosen aggregator function is the log-product,
which was shown in [14] to scale well with the number of inputs, and which
formulation is equivalent to the cross-entropy loss. However, in our case, this
choice does not weight adequately the contribution of positive examples, given
the high level of class imbalance. Hence, inspired by [17], we introduce the focal
log-product aggregation defined as:

LLTN = −
K∑

j=0

N∑

i=0

αc(1 − xi,j)γ log (xi,j) (12)

where αc is a class-dependent weight factor, γ enhances the contribution of
literals with low truth value (i.e., misclassified examples), xi is the literal of the
i-th ROI in the j-th class, K is the number of classes and N is the batch size.

To set the value of αc, we simply observe that for each training batch and each
class c, the number of negative examples is given by the number of background
examples (which is fixed during training), plus the positive examples that belong
to other classes. Hence, we set αc = 1−β

1−βposc and αc = 1−β
1−βnegc , for positive and

negative examples respectively. Let p(c) be the fraction of bounding boxes in the
training set belonging to class c. Then, for a given batch the percentage of posi-
tive and negative examples becomes posc = N

2 p (c) and negc = N
2 + N

2 (1 − p (c)),
respectively.

4 Experiments

4.1 Dataset

Experiments were performed on the PASCAL VOC 2010 [18] and PASCAL
PART [19] benchmarks. For the latter, we selected 20 classes for whole objects
and 39 classes for parts. All experiments are conducted on the trainval parti-
tion with 80:20 split. For PASCAL PART (10K images), we further experiment
reducing the training set by 50% by random selection: the number of images is
thus roughly 8K for PASCAL PART and 4K for PASCAL PART REDUCED.

4.2 Experimental Setup

Faster R-CNN. The architecture of the Faster R-CNN follows quite closely
the original implementation [15]. The backbone architecture was ResNet50 pre-
trained on ImageNet; the anchor scales were set to 1282, 2562, and 5122, with
aspect ratios of 1:1, 1:2, and 2:1. The number of RPN proposals is set to 300. For
training the classifier head, 128 bounding boxes were randomly selected, with a
ratio of 32:96 positive and negative examples, for the PASCAL VOC dataset; for
PASCAL PART, 32 bounding boxes with 16:16 ratio. The network was trained
for 100 epochs with the Adam optimizer; the learning rate was set to 10−5 for the
first 60 epochs, and then reduced to 10−6. Regularization techniques included
data augmentation (horizontal flip) and weight decay (with rate 5 × 10−4).

48 F. Manigrasso et al.

Table 1. Results of the Faster R-CNN (FR-CNN), Faster R-CNN with focal loss (FR-
CNN FL), and Faster-LTN (F-LTN) on PASCAL VOC.

Class FR-CNN FR-CNN FL F-LTN F-LTN α F-LTN bg F-LTN bg+α

aeroplane 66.5 56.9 87.1 85.1 87.8 85.2

bicycle 69.9 64.1 75.6 77.3 77.8 77.4

bird 70.8 68.4 84.9 87.8 87.2 87.1

boat 41.3 35.8 59.7 70.3 62.2 67.1

bottle 51.0 44.1 48.2 45.8 43.7 47.0

bus 75.8 71.3 79.1 79.0 79.8 78.6

car 59.0 53.1 60.0 58.7 62.9 60.1

cat 92.4 90.0 93.5 92.4 94.1 94.8

chair 32.1 32.7 53.4 42.8 53.4 42.9

cow 64.6 60.7 67.1 66.3 60.1 72.6

diningtable 57.2 51.1 74.2 77.0 71.3 77.1

dog 85.3 83.3 93.6 92.3 92.5 92.0

horse 61.1 62.3 82.2 80.4 85.4 85.0

motorbike 62.0 65.3 86.7 81.0 85.6 85.0

person 70.7 68.7 72.6 49.5 74.1 53.3

pottedplant 29.0 25.4 53.1 49.2 48.8 51.8

sheep 62.2 62.1 71.2 71.4 74.7 69.1

sofa 59.9 51.9 79.2 82.0 86.4 80.1

train 73.3 73.2 75.4 77.2 79.6 81.6

tvmonitor 68.7 63.3 78.5 76.6 77.1 76.6

mAP 62.6 59.2 73.8 72.1 73.3 73.25

Faster-LTN. The architecture of Faster-LTN was the same as Faster R-CNN,
except for the classifier head in which the LTN was embedded.

Each predicate is defined by Eq. 5, with k = 6 kernels. �Lukasiewicz’s t–
norm was chosen to encode the literals’ disjunction, and the focal log-product,
with γ = 2, was selected as the aggregation function. Tprior included mutual
exclusion constraints for PASCAL VOC, and mutual exclusion and mereological
constraints for PASCAL PART experiments. In the latter case, the LTN was
expanded to include part-of predicates, but for the sake of comparison with
Faster R-CNN, only the object detection performance was evaluated.

On the PASCAL VOC dataset, different experiments were performed with
variations of the focal log-product aggregation function: with and without class
weights α, and with and without adding an additional predicate bg to represent
the background class. The experiments are denoted as Faster-LTN, Faster-LTN
α, Faster-LTN bg, and Faster-LTN bg+α. Experiments on PASCAL-PART were
performed with the Faster-LTN bg configuration. All networks were trained for

Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture 49

Table 2. Comparison of Faster R-CNN and Faster-LTN (including mereological con-
straints) on the PASCAL PART dataset.

Dataset Metric FR-CNN F-LTN Tprior

PASCAL PART mAP 35.1 41.2

PASCAL PART REDUCED mAP 28.5 32.8

150 epochs using the Adam optimizer, with weight decay (decay rate 5 × 10−4),
random horizontal flip and L2 regularization (λ is set to 5× 10−4). The learning
rate was set to 10−5 for the first 60 epochs, and then reduced to 10−6.

All experiments were performed on the HPC@Polito cluster, equipped with
V100 NVIDIA GPU. The performance metric was the mean Average Precision
(MAP) implemented as in the PASCAL VOC challenge 2010 [20].

4.3 Results

Experiments on Pascal VOC, summarized in Table 1, show that Faster LTN
achieved competitive and even superior results compared to the original Faster
R-CNN architecture, with the mAP increasing from 62.6 to 73.8. In this ver-
sion of the LTN, the only axiomatic constraint was the one imposing mutual
exclusivity (see Eq. 11). We observed comparable performance when including
the background as an additional class (mAP from 73.8 to 73.4); on the other
hand, weighting positive and negative samples according to their frequency did
not improve results (mAP from 73.8 to 72.1).

Qualitatively, we observed that Faster LTN was able to detect more objects
than Faster R-CNN. Given that log-product aggregation is mathematically
equivalent to the cross-entropy loss, and the backbone is the same, this difference
can be attributed to the different classification setting (K one-vs-all classifiers
instead of a single multi-class classifier) or the use of the focal loss [17]. How-
ever, when changing the loss of the Faster R-CNN classifier head to the focal
loss, performance dropped from 62.6 to 59.2. Hence, we attribute Faster-LTN
performance to the greater flexibility offered by a more complex classifier head,
with higher number of parameters. In fairness, Faster LTN took a few more
epochs to reach convergence.

In the PASCAL PART experiments, shown in Table 2, additional mereolog-
ical axioms were included in Tprior. This allowed to increase performance from
35.1 to 41.2; when reducing the training set size by half, the performance gap
was maintained (28.5 to 32.8). The comparable quality of the learned features
is further supported by the t-SNE embeddings of the extracted features, which
are shown in Fig. 2.

50 F. Manigrasso et al.

Fig. 2. Comparison of the t-SNE embeddings of the features extracted for the whole
objects classes in the test. Features extracted from Faster R-CNN (left) and Faster-LTN
with axiomatic constraints (right).

5 Conclusion and Future Works

The availability of large scale, high quality, labelled datasets is one of the major
hurdles in the application of deep learning. A tighter integration between percep-
tion and reasoning, which is enabled by emerging Neural-Symbolic techniques,
allows to complement learning by examples with the integration of axiomatic
background knowledge. In this paper, we introduced the Faster-LTN architec-
ture, an end-to-end object detector composed by a convolutional backbone and
RPN (based on the Faster R-CNN architecture) and a LTN module. The detec-
tor is trained end-to-end by maximizing the satisfiability of a grounded theory
combining clauses derived from labelled examples with axiomatic constraints.

Our goal was to establish the feasibility of this approach, and indeed the
results, albeit preliminary, prove that Faster-LTN is competitive or can even
outperform the baseline Faster R-CNN. However, the scalability of this app-
roach to larger training sets and other object detector (e.g., single-stage detec-
tors) should be further investigated. Through the Faster-LTN model, available at
https://gitlab.com/grains2/Faster-LTN, we aim to provide a baseline architec-
ture on which new experiments and applications can be built. Future work will
investigate how high-level symbolic constraints can shape the learning process,
increasing robustness in the presence of noise and dataset bias.

Acknolewdgement. The authors wish to thank Ivan Donadello for the helpful dis-
cussions. Computational resources were in part provided by HPC@POLITO, a project
of Academic Computing at Politecnico di Torino (http://www.hpc.polito.it).

References

1. Aditya, S., Yang, Y., Baral, C.: Integrating knowledge and reasoning in image
understanding. In: Proceedings of the 28th International Joint Conference on Arti-
ficial Intelligence, IJCAI 2019, pp. 6252–6259 (2019)

https://gitlab.com/grains2/Faster-LTN
http://www.hpc.polito.it

Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture 51

2. Raedt, L.D., Dumančić, S., Manhaeve, R., Marra, G.: From statistical relational to
neuro-symbolic artificial intelligence. In: Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4943–4950 (2020)

3. Donadello, I., Serafini, L., Garcez, A.D.: Logic tensor networks for semantic image
interpretation. In: Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence, pp. 1596–1602. AAAI Press (2017)

4. Badreddine, S., Garcez, A.d., Serafini, L., Spranger, M.: Logic tensor networks.
ArXiv abs/2012.13635 (2020)

5. Donadello, I., Serafini, L.: Compensating supervision incompleteness with prior
knowledge in semantic image interpretation. In: 2019 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 1–8 (2019)

6. Shanahan, M., Nikiforou, K., Creswell, A., Kaplanis, C., Barrett, D., Garnelo, M.:
An explicitly relational neural network architecture. In: Proceedings of the 37th
International Conference on Machine Learning, vol. 119, pp. 8593–8603. PMLR
(2020)

7. Lamb, L.C., Garcez, A.D., Gori, M., Prates, M.O., Avelar, P.H., Vardi, M.Y.:
Graph neural networks meet neural-symbolic computing: a survey and perspective.
In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pp. 4877–4884 (2020)

8. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic
VQA: disentangling reasoning from vision and language understanding. In: Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 1039–1050. Curran Associates Inc. (2018)

9. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and inter-
pretation. ArXiv abs/1711.03902 (2017)

10. Garcez, A., Gori, M., Lamb, L., Serafini, L., Spranger, M., Tran, S.: Neural-
symbolic computing: an effective methodology for principled integration of machine
learning and reasoning. FLAP 6, 611–632 (2019)

11. Zhu, Y., Fathi, A., Fei-Fei, L.: Reasoning about object affordances in a knowledge
base representation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8690, pp. 408–424. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10605-2 27

12. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46448-0 51

13. Marino, K., Salakhutdinov, R., Gupta, A.: The more you know: using knowledge
graphs for image classification. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 20–28 (2017)

14. van Krieken, E., Acar, E., Harmelen, F.V.: Analyzing differentiable fuzzy logic
operators. ArXiv abs/2002.06100 (2020)

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2017)

16. Dutta, S., Basu, S., Chakraborty, M.K.: Many-valued logics, fuzzy logics and
graded consequence: a comparative appraisal. In: Logic and its Applications, pp.
197–209 (2013)

17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 2999–3007 (2017)

https://doi.org/10.1007/978-3-319-10605-2_27
https://doi.org/10.1007/978-3-319-10605-2_27
https://doi.org/10.1007/978-3-319-46448-0_51
https://doi.org/10.1007/978-3-319-46448-0_51

52 F. Manigrasso et al.

18. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results (2010)

19. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you
can: Detecting and representing objects using holistic models and body parts. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1971–1978 (2014)

20. Cartucho, J., Ventura, R., Veloso, M.: Robust object recognition through symbiotic
deep learning in mobile robots. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2336–2341 (2018)

GC-MRNet: Gated Cascade Multi-stage
Regression Network for Crowd Counting

Ying Shi1,2, Jun Sang1,2(B), Jinghan Tan1,2, Zhongyuan Wu1,2, Bin Cai1,2,
and Nong Sang3

1 Key Laboratory of Dependable Service Computing in Cyber Physical Society
of Ministry of Education, Chongqing University, Chongqing 400044, China

jsang@cqu.edu.cn
2 School of Big Data and Software Engineering,
Chongqing University, Chongqing 401331, China

3 School of Artificial Intelligence and Automation, Huazhong University of Science
and Technology, Wuhan 430074, China

Abstract. Crowd counting is a challenging task due to occlusions, con-
tinuous scale variation of target and perspective distortion. The exist-
ing density-based approaches usually utilize deep convolutional neural
network (CNN) to regress a density map from deep level features and
obtained the counts. However, the best results may be obtained from
the features of lower level instead of deep level. It is mainly due to the
overfitting that degrades the adaptability towards the continuous scale
variation of target. To address the issue of overfitting, a novel approach,
called gated cascade multi-stage regression network (GC-MRNet), was
proposed. It aims to maintain the adaptability towards scale variation
of target and generate higher accuracy estimated density maps. Firstly,
the dense scale network (DSNet) was used as the backbone and multi-
stage regression was employed to achieve different density map regres-
sors in different levels. Then, the features derived from the density map
were cascaded to assist generating a higher quality density map in next
stage. Finally, the gated blocks were designed to achieve the controllable
information interaction between cascade and backbone. Extensive exper-
iments were conducted on the ShanghaiTech, UCF-QNRF and UCF-
CC-50 datasets. The results demonstrated significant improvements of
GC-MRNet, almost over the state-of-the-art on ShanghaiTech Part A.

Keywords: Crowd counting · Kernel density estimation · Feature
extraction · Cascade stages · Gated block

1 Introduction

The performance of crowd counting is limited by occlusions, continuous scale
variation of target, background interference (e.g., trees, leaves), non-uniform
crowd distortion and other factors. Current approaches tend to design a variety
of deep convolutional neural networks (CNNs) to estimate one more accurate
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 53–66, 2021.
https://doi.org/10.1007/978-3-030-86340-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_5

54 Y. Shi et al.

Fig. 1. The distribution of the best results on ShangahiTech Part A test set (182
images) after employing multi-stage regression for SPN and DSNet. For MR-3+SPN,
the best results were obtained in Stage1 for 63 images (34.62%), 49 images (27.22%) in
stage2 and 70 images (38.46%) in the final regression stage (Stage3). For MR-3+DSNet,
The best results were obtained in Stage1 for 68 images (37.36%), 47 images (25.82%)
in Stage2 and 67 images (36.81%) in Stage3.

density map corresponding to the crowd scene image. It not only can acquire
the final counts by integrating the estimated density map, but also can obtain
the information of crowd distortion. In addition, both leverage auxiliary tasks
and a variety of multi-scale strategies have been proved to be reliable and can
obtain promising results.

According to some previous papers [1], it is obvious that, in crowd counting,
there exists the phenomenon of overfitting, which leads to the degradation of
adaptability towards scale variation of heads. In high-density scenes, the result
will be overestimated, while it will be underestimated in low-density scenes. Due
to overfitting, to verify the best results could be obtained from the features of
lower levels, we employed multi-stage regression (MR, i.e., multi-stage regression
of density maps from deep features of different levels) to scale pyramid network,
called SPN [2]. And the dense scale network, called DSNet [3], was adopted as
backbone. MR-X represents the number of employed regression stage is X. For
example, MR-3+SPN and MR-3+DSNet represent employing 3 regression stages
to SPN and DSNet. As shown in Fig. 1, we can observe the best results (best
result means the obtained estimation count is mostly close to the ground truth
count) will show in different regression stages for scenes in ShanghaiTech Part
A [4] test set which the overfitting lead to.

We mainly focus on maintaining the adaptability towards scale variation
of target and generate more accurate estimated density maps with an approx-
imately ensemble approach. In this way, the proportion of the best results
obtained in the final regression stage may be increased and improve the per-
formance of crowd counting.

In this paper, to address the degradation of adaptability towards scale vari-
ation of target existing in current approaches, a novel gated cascade multi-stage
regression network called GC-MRNet for crowd counting was proposed. Our GC-
MRNet was based on DSNet for its suitable structure for employing multi-stage
regression and well-performance for crowd counting. In addition to multi-stage

GC-MRNet 55

regression, the cascade block, referred to some ideas of cascade approaches [5],
was adopted. The features derived from the estimated density map obtained
in one regressor were cascaded to assist retaining the scale variation informa-
tion from the former for next regression stage. Also, inspired by the long short-
term memory [6], the gate blocks were employed in several stages to achieve
the controllable information interaction of cascade features and the features of
backbone.

Unlike previous papers, we verified the existence of overfitting and proposed
a novel architecture to solve this issue in crowd counting. In summary, the con-
tributions of this paper can be summarized as follows:

– We pointed out the existing degradation of the adaptability to the continuous
scale variation of target degrades in the process of layer by layer feature
extraction for some scenes when employ multi-stage regression to current
deep CNN model (e.g., SPN and DSNet).

– We proposed a novel gated cascade multi-stage regression network inspired
by RNNs to maintain the adaptability towards scale variation of target for
more accurate crowd counting.

– The proposed approach achieved well-performance on ShanghaiTech (Part A
and Part B), UCF-QNRF and UCF CC 50 datasets and almost achieved the
state-of-the art on ShanghaiTech Part A.

2 Related Work

2.1 Detection-Based Approaches

Detection-based approaches tend to predict the number of people by detecting
each person in the images and count the number. Early approaches leveraged
sliding windows and hand-crafted features, such as haar wavelets [7] and HOG
[8] to distinguish people in the images. Limited to the crude detection approach
at that time, detection-based approaches obtained the poor performance in con-
gested crowd scene. In (Liu et al. 2019) [9], a new deep detection network with
only point supervision required in both dense and sparse scenes was proposed
and reached the exciting performance.

2.2 Counts Regression-Based Approaches

Counts regression-based approaches tend to learn a mapping between features
extracted from local imaged patches and its counts. In the early stage, typical
examples include [10,11]. For more early regression-based related works, the
survey [12] may be referred to. In (Wang et al. 2015; Fu et al. 2015) [13,14],
CNN models were employed to regress the crowd count.

2.3 Density Map-Based Approaches

Density map-based approaches mainly tend to regress a density map and inte-
grate it to obtain the final counts. In (Zhang et al. 2016) [4] a multi-column

56 Y. Shi et al.

convolutional neural network with different kernel size was proposed to adapt
to object scale variance. In (Sam, Surya, and Babu 2017) [15] a switching-
based multi-CNN for crowd counting, which selectively inputted the crowd image
into the corresponding CNN by classification was proposed. After 2017, many
works focused on dealing with scale variance or background interference and
obtained promising results. In (Jiang et al. 2018; Liu et al. 2019; Zhao et al.
2019) [9,16,17], auxiliary tasks (e.g., segmentation, classify, depth estimation
and counts regression) were adopted to assist distinguishing the background
area and foreground to decrease the background interference. In (Li, Zhang, and
Chen 2018) [18] and (Chen et al. 2019) [2] dilated kernels were proposed to
deliver larger reception fields to adapt to scale variance. In (Varior et al. 2019)
[19], multi-scale density map estimation from different layers of the architecture
was proposed to guide each density map to specialize on a particular scale. In
(Dai et al. 2019) [3], a dense dilated convolution block was leveraged to pre-
serve information from continuously varied scales and residual connections was
leveragded to further enlarge the model’s generalization capability.

3 Our Approach

3.1 Architecture of GC-MRNet

As discussed above, we aim to maintain the adaptability towards scale variation
of target by an approximately ensemble approach. Therefore, we introduced a
new deep net architecture based on DSNet. Figure 2 shows the architecture of
our GC-MRNet. In Fig. 2, the blue blocks with the addition symbol represent our
backbone network (DSNet) and the yellow block is the gated cascade module,
which was designed to reduce the degradation of the adaptability towards scale
variation of target in deep level features.

Fig. 2. The architecture of our GC-MRNet for crowd counting. DDCB represents the
dense dilated convolutional block. R represents the regression block. CR represents the
cascade block. G (G1 and G2 are two gates in one stage) represents the gated block.
(Color figure online)

GC-MRNet 57

3.2 Backbone Network

The backbone network follows the setups in DSNet, which contains the first
ten convolutional layers of pretrained VGG16 and three dense dilated convolu-
tion blocks (DDCB). The addition symbol represents dense residual connections
described in (Dai et al. 2019) [3]. Details about the DDCB are shown in Fig. 3.
DDCB contains three dilated convolutional layers with increasing dilation rate
of 1, 2, 3 and the interior uses concatenation to capture large scale variation. The
more details about backbone network (DSNet) may refer to (Dai et al. 2019) [3].

Fig. 3. The structure of dense dilated convolution blocks (DDCB).

3.3 Gated Cascade Module

Details about the Gated Cascade Module are shown in Fig. 4. The gated cascade
module consists of regression block, cascade block and gated block. Regression
block (R) is designed to estimated density maps in different regression stages
and R contains (Conv-128-3; ReLU; Conv-64-3; ReLU; Conv-1-1; ReLU). Cas-
cade block (CR) is designed to retain appropriate scale information for the next
regression stage from the estimated density map in the former stage. CR con-
tains (Conv-512-3; ReLU). Intuitively, during the cascade phase, the information
obtained from the backbone network and the estimated density map should be
fused selectively. And inspired by recurrent neural network (RNN), gated block
(G) is designed to suppress and retain some appropriate scale information selec-
tively in our GC-MRNet. G contains (Conv-512-3; ReLU; Conv-512-3; ReLU
Conv-512-3; Tanh).

Given an image of size H ×W, the feature of image before regression block
in each stage of backbone network is denoted as fr. The feature obtained from
the gated cascade module is denoted as Yr, which may be described as:

Yr = fr � g2r +c rr � g1r (1)
c rr = C Rr (dr) (2)
g1r = G1r (fr) (3)
g2r = G2r (c rr) (4)

In particular, dr indicates the estimated density map obtained after regres-
sion block (R) in stage r, which is defined as:

dr = Rr (fr) (5)

58 Y. Shi et al.

As shown in Fig. 2, three regression blocks with two gated cascade modules
are employed in GC-MRNet. As a matter of fact, according to our ablation study
on number of regression stages, the best performance for crowd counting may be
obtained by only employing 2 regression blocks with one gated cascade module
and our comparisons experiments with state-of-the art with follow such setup.

Fig. 4. The structure of Gated Cascade Module.

3.4 Loss Function

This paper adopted Euclidean loss and Multi-scale density level consistency loss
following those in (Dai et al. 2019) [3]. The difference is that we employ these
two training losses to each regression stage. The Euclidean loss is defined as
follows:

Le =
1
N

N∑

i=1

|| Di (Xi; θ) − D
GT
i ||22 (6)

Where N represents the number of images, Di represents the estimated den-
sity map and DGT

i represents the ground truth density map.
The Multi-scale density level consistency loss is defined as follow:

Lc =
1
N

1
M

N∑

i=1

M∑

j=1

1
k2

j

‖Pave (Di, kj) − Pave

(
D

GT
i , kj

)∥∥
1

(7)

Where M represents the number of scale levels for consistency checking. Pave
represents average pooling operation and k is the specified output size of average
pooling. Following DSNet, M was set to be 3, and the output sizes of different
scale levels were set to be 1 × 1, 2 × 2 and 4 × 4 respectively. There is one
difference from DSNet: for the M-scale level of consistency losses, the average
operation was performed instead of the sum operation.

GC-MRNet 59

For that, we should regress one density map in each stage. Our final loss
function may be defined as follows:

L =
S∑

i=1

Lei + λ Lci (8)

Where λ is the weight to balance these two loss functions and S represents
the number of regression stages.

4 Implementation Details

4.1 Ground Truth Density Map

Following the approach of generating density map in (Zhang et al. 2016) [4],
the geometry-adaptive gaussian kernels were adopted to tackle the highly dense
crowd scenes, including UCF-QNRF [20] and UCF CC 50 [21]. The ground
truth density map could be obtained by blurring each head annotation using a
normalized Gaussian kernel. The geometry-adaptive kernel is defined as follows:

F (x) =
N∑

i=1

δ (x − xi) × Gσi
(x) , with σi = βdi (9)

Where x represents the position of each pixel and N is the number of head
annotations in the image. For each target xi in the ground truth, using di to indi-
cate the average distance of its k nearest neighbors. And then convolve δ (x − xi)
with Gaussian kernel with standard deviation parameter σ. The configuration
in (Zhang et al. 2016) [4] where β = 0.3 and k = 3 were followed in this paper.
For ShanghaiTech Part A and Part B, the fixed Gaussian kernels where σ = 4.0
and σ = 15.0 respectively, will be more suitable.

4.2 Training Details

Similar to DSNet, the first ten convolutional layers were fine-tuned from a well-
trained VGG-16 [22]. All new layers were initialized from a Gaussian distribution
with zero mean and 0.01 standard deviation. Adam optimizer was applied with
fixed learning rate at 5e−6 and weight decay of 5e−4. Furthermore, the network
was trained with batch size of 1. And We set different value of λ for different
datasets to balance the Euclidean loss and multi-scale density level consistency
loss during training. For ShanghaiTech Part A, UCF-QNRF and UCF CC 50, λ
was set to be 1000. For ShangahaiTech Part B, λ was set to be 10000.

Online data augmentation approach was adopted during the training process.
We cropped images patch of 1/4 size of the original images at four quarters of
the images without overlapping, and other five patches were randomly cropped
from the images. After that, the cropped image patches were horizontally flipped
randomly with the probability of 0.5. The color images were randomly change to

60 Y. Shi et al.

the grayscale ones with the probability of 0.1. And the contrast was randomly
changed by using parameter c (c ∈ {1.2, 1.5, 1.8}) with the probability of 0.1,
which could be described as follows:

zi = max (c × zi +20, 255) (10)

Where z represents the images and zi represents the pixel value in the cor-
responding position of image.

To mitigate overfitting, we generated some negative samples with positive
ground truth by using parameters b (b ∈ {0.2, 1.5}) with the probability of 0.3
randomly, and it could be described as follows:

zi = b

√
zi

max (z)
(11)

4.3 Evaluation Metrics

The mean absolute error (MAE) and the root mean square error (RMSE) are
usually adopted to evaluate the counting performance. Moreover, the MAE
reflects the accuracy of model, while the RMSE reflects the robustness of model.
These two metrics could be defined as follows:

Table 1. The MAE result of different regression stage and manually selected ideal.

Approach Stage1 Stage2 Stage3 Ideal

MR-3+SPN 64.2 61.8 60.4 52.5

C-MR-3+SPN 63.9 60.7 60.0 52.8

MR-3+DSNet 60.9 60.7 60.2 55.1

C-MR-3+DSNet 60.6 60.4 59.6 56.1

MAE =
1
N

N∑

i=1

∣∣Ci −C
GT
i

∣∣ (12)

RMSE =

√√√√ 1
N

N∑

i=1

∣∣Ci −CGT
i

∣∣2 (13)

Where N is the number of images in test datasets, Ci represents the estimated
counts, while CGT

i represents the ground truth counts.

GC-MRNet 61

5 Experiments

5.1 Datasets

ShanghaiTech. [4] This dataset contains 1198 images with 330,165 annotated
heads. It includes two parts: Part A contains 482 images (300 for training, 182
for testing), and Part B contains 716 images(400 for training, 316 for testing).

UCF-QNRF. [20] It consists of 1535 images which has a wider variety of scenes
containing the most diverse set of viewpoints, lighting variations and densities
that counts varies from 49 to 12865. Moreover, the image resolution is also
very large leading to the drastic variation of the size of heads. We limited the
maximum size 1024p of each image by resize operation before augmentation
during training and validation phrase. While the final best result was obtained
by testing under the limitation of maximum size 1200p.

UCF CC 50. [21] The UCF CC 50 dataset has only 50 images captured from
various perspectives. It contains 1280 persons per image ranging from 94 to
4543 on average. For a fairer comparison, 5 times 5-fold cross-validation were
conducted to evaluate our proposed approach and the sequence of the test images
was shuffled randomly in each time.

5.2 Ablation Study on ShanghaiTech Part A

Cascade Block. Cascade block is based on multi-stage regression (MR), there-
fore we employed our cascade block to MR-3+SPN and MR-3+DSNet to
evaluate its effectiveness. As shown in Table 1, for both C-MR-3+SPN (Cas-
cade Multi-stage Regression-3+SPN) and C-MR-3+DSNet (Cascade Multi-stage
Regression-3+DSNet), better results were obtained comparing with MR-3+SPN
and MR-3+DSNet, respectively, which proved the positive effectiveness of our

Fig. 5. The distribution of the best results on ShangahiTech Part A test set after
employing multi-stage regression and cascade multi-stage regression for SPN (Fig. 5(a))
and DSNet (Fig. 5(b)).

62 Y. Shi et al.

Table 2. The result of MAE and root mean square error (RMSE) for the different
number of regression stages.

Approach MAE RMSE

C-MR-2+SPN 59.7 99.5

C-MR-3+SPN 60.0 104.2

C-MR-2+DSNet 58.9 98.0

C-MR-3+DSNet 59.6 101.4

cascade block. For manually selecting the ideal result, comparing the experimen-
tal results with cascade block (SPN-52.8, DSNet-56.1) and those without cascade
block (SPN-52.5, DSNet-55.1), it was found that it got worse with cascade block.
We adopted a trade-off approach to maintain the adaptability towards the con-
tinuous scale variation of target in different stages at the expense of the overall
adaptability, instead of learning distinguishing features to select a best output
automatically from different stages. To some extension, the results showed in
Table 2 demonstrated that the degradation of the adaptability towards the con-
tinuous scale variation of target has been eased with cascade block.

As shown in Fig. 5(a), comparing with MR-3+SPN in stage2, the number of
test images with best result in stage2 were down, while it increased in stage3.
This trend also exists in Fig. 5(b) which proved the better result can be mostly
probably obtained in the last regression stage.

Number of Stages (Number of Regression Stages). Since SPN and DSNet
are suitable for us to employ multi-stage regression (2 stages or 3 stages), we
conducted 2 regression stages and 3 regression stages to explore the best setup.
The comparison in Table 2 shows that the best setup was 2 for regression stages
(corresponding to the last two regression stages, stage2 and stage3, shown in
Fig. 2). It can be inferred that the more regression stages, the harder it is to
train.

Table 3. The results of MAE and RMSE with gated blocks.

Approach MAE RMSE

C-MR-2+SPN 59.7 99.5

GC-MR-2+SPN 59.0 102.5

C-MR-2+DSNet 58.9 98.0

GC-MR-2+DSNet (Our GC-MRNet) 57.8 96.8

Gated Block. The gated blocks were designed to further achieve the control-
lable information interaction of cascade features and the features of backbone.
In this ablation study, gated blocks were added to C-MR-2+SPN and C-MR-
2+DSNet. As shown in Table 3, the MAE of GC-MR-2+SPN (C-MR-2+SPN

GC-MRNet 63

with gated block) reduced by 0.7, though RMSE increased by 3.0. The MAE
of GC-MR-2+DSNet (C-MR-2+DSNet with gated block) reduced by 1.1 and
RMSE reduced by 1.2. With gated block, better performance was obtained for
crowd counting.

From these three ablation studies, it can be concluded that it works best when
the number of cascade multi-stage regression is 2 with gated blocks. Therefore,
we employed the same setups in the following experiments and we call it GC-
MRNet directly.

Table 4. The results of MAE and RMSE with gated blocks.

Approach PartA PartB UCF-QNRF UCF CC 50

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN [4] 110.2 173.2 26.4 41.3 277.0 426.0 377.6 509.1

SwitchCNN [15] 90.4 135.0 21.6 33.4 228.0 445.0 318.1 439.2

CSRNet [18] 68.2 115.0 10.6 16.0 – – 226.1 397.5

PACNN [23] 62.4 102.0 7.6 11.8 – – 241.7 320.7

SPN [2] 61.7 99.5 9.4 14.4 – – 259.2 335.9

DSNet [3] 61.7 102.6 6.7 10.5 91.4 160.4 183.3 240.6

BL [24] 62.4 101.8 7.7 12.7 88.7 154.8 229.3 308.2

S-DCNet [25] 58.3 95.0 6.7 10.7 104.4 176.1 204.2 301.3

Our GC-MRNet 57.8 96.8 7.0 11.3 90.7 153.3 210.2 294.6

Table 5. The MAE of different stage and the MAE of ideal result by selecting the best
output from different regression stage manually on different datasets.

Dataset Satge1 Stage2 Stage3 Ideal

PartA – 60.6 57.8 53.2

PartB – 7.3 7.0 6.1

UCF-QNRF – 91.1 90.7 85.1

5.3 Comparisons with State-of-the-Art

We evaluated our approach on the above mentioned three crowd count-
ing datasets and compared the results with our baseline DSNet and other
approaches. The whole experimental results were shown in Table 4. For Shang-
haiTech Part A, our model achieved the lowest MAE (57.8), which was reduced
by 0.5 compared with the state-of-the art approach S-DCNet [25]. Compared
with our baseline, the MAE and RMSE were reduced by 3.9 and 5.8 respec-
tively. For ShanghaiTech Part B, DSNet achieved the state-of-the art (MAE is

64 Y. Shi et al.

Fig. 6. The distribution of the best results on different datasets for testing in different
regression stages.

6.7 and RMSE is 10.5), while our model only achieved 7.0 of MAE and 11.3
of RMSE. There may be one reason which led to the results. Actually, for our
experiments, the recurrence of DSNet could only reaching 7.8 of MAE and 13.2 of
RMSE, while our results exceeded those of recurrence of DSNet. For UCF-QNRF
dataset, we achieved the lowest RMSE (153.3) compared with the state-of-the art
approach BL [24] and the RMSE was reduced by 1.5. Compared with our base-
line, the MAE and RMSE were reduced by 0.7 and 7.1 respectively. For a fairer
comparison, we conducted 5-fold cross-validation experiments and computed the
average result on UCF CC 50 dataset, which exceeded most approaches except
our baseline and S-DCNet. Also, the result analysis of ideal selecting manually
had great potential of deep CNN-based multi-stage regression approach which
was sufficiently verified by Table 5. Finally, we showed several examples in Fig. 6.
It is evident that our approach is well-performance on crowd counting both in
sparse and congested crowd scenes. And for some scenes, such as the rows one,
the result of the former regression stage (stage2) is better than that of stage3.

6 Conclusion

In this paper, we pointed out that existing degradation of the adaptability to
the continuous scale variation of target degrades in the process of layer by layer
feature extraction of deep level features. Also, we proposed a gated cascade
multi-stage regression network (GC-MRNet) for crowd counting to mitigate the
occurrence of the degradation, resulting in well-performance counting results on
three bench-mark datasets.

Acknowledgements. This work was supported by National Natural Science Foun-
dation of China (No. 61971073).

GC-MRNet 65

References

1. Jiang, X., et al.: Attention scaling for crowd counting. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4706–
4715 (2020)

2. Chen, X., Bin, Y., Sang, N., Gao, C.: Scale Pyramid network for crowd counting.
In: WACV, pp. 1941–1950. IEEE (2019)

3. Dai, F., Liu, H., Ma, Y., Cao, J., Zhao, Q., Zhang, Y.: Dense scale network for
crowd counting. arXiv preprint arXiv:1906.09707 (2019)

4. Zhang, Y., Zhou, D., Chen, S., Gao, S., Yi, M.: Single-image crowd counting via
multi-column convolutional neural network. In: CVPR, pp. 589–597 (2016)

5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detec-
tion. In: CVPR, pp. 6154–6162 (2018)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

7. Viola, P., Jones, M.J.: Robust real-time face detection. In: Proceedings 8th IEEE
International Conference on Computer Vision, p. 747. IEEE (2001)

8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

9. Liu, N., Long, Y., Zou, C., Niu, Q., Pan, L., Wu, H.: ADCrowdNet: an attention-
injective deformable convolutional network for crowd understanding. In: CVPR,
pp. 3225–3234 (2019)

10. Chan, A.B., Vasconcelos, N.: Bayesian Poisson regression for crowd counting. In:
ICCV, pp. 545–551. IEEE (2009)

11. Chen, K., Loy, C.C., Gong, S., Xiang, T.: Feature mining for localised crowd count-
ing. In: BMVC, vol. 1, p. 3 (2012)

12. Sindagi, V.A., Patel, V.M.: A survey of recent advances in CNN-based single image
crowd counting and density estimation. Pattern Recogn. Lett. 107, 3–16 (2018)

13. Wang, C., Zhang, H., Yang, L., Liu, S., Cao, X.: Deep people counting in extremely
dense crowds. In: Proceedings of the 23rd ACM International Conference on Mul-
timedia, pp. 1299–1302 (2015)

14. Fu, M., Xu, P., Li, X., Liu, Q., Ye, M., Zhu, C.: Fast crowd density estimation
with convolutional neural networks. Eng. Appl. Artif. Intell. 43, 81–88 (2015)

15. Sam, D.B., Surya, S., Babu, R.V.: Switching convolutional neural network for
crowd counting. In: CVPR, pp. 4031–4039. IEEE (2017)

16. Zhao, M., Zhang, J., Zhang, C., Zhang, W.: Leveraging heterogeneous auxiliary
tasks to assist crowd counting. In: CVPR, pp. 12736–12745 (2019)

17. Jiang, S., Lu, X., Lei, Y., Liu, L.: Mask-aware networks for crowd counting. IEEE
Trans. Circ. Syst. Video Technol. 30, 3119–3129 (2019)

18. Li, Y., Zhang, X., Chen, D.: CSRNet: dilated convolutional neural networks for
understanding the highly congested scenes. In: CVPR, pp. 1091–1100 (2018)

19. Varior, R.R., Shuai, B., Tighe, J., Modolo, D.: Multi-scale attention network for
crowd counting. arXiv preprint arXiv:1901.06026 (2019)

20. Idrees, H., Tayyab, M., Athrey, K., Zhang, D., Al-Maadeed, S., Rajpoot, N., Shah,
M.: Composition loss for counting, density map estimation and localization in dense
crowds. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11206, pp. 544–559. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01216-8 33

21. Idrees, H., Saleemi, I., Seibert, C., Shah, M.: Multi-source multi-scale counting in
extremely dense crowd images. In: CVPR, pp. 2547–2554 (2013)

http://arxiv.org/abs/1906.09707
http://arxiv.org/abs/1901.06026
https://doi.org/10.1007/978-3-030-01216-8_33
https://doi.org/10.1007/978-3-030-01216-8_33

66 Y. Shi et al.

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

23. Shi, M., Yang, Z., Xu, C., Chen, Q.: Revisiting perspective information for efficient
crowd counting. In: CVPR, pp. 7279–7288 (2019)

24. Shi, M., Yang, Z., Xu, C., Chen, Q.: Bayesian loss for crowd count estimation with
point supervision. In: ICCV, pp. 6142–6151 (2019)

25. Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., Shen, C.: From open set to closed set:
counting objects by spatial divide-and-conquer. In: ICCV, pp. 8362–8371 (2019)

http://arxiv.org/abs/1409.1556

Latent Feature-Aware and Local
Structure-Preserving Network for 3D
Completion from a Single Depth View

Caixia Liu , Dehui Kong , Shaofan Wang(B) , Jinghua Li ,
and Baocai Yin

Beijing Key Laboratory of Multimedia and Intelligent Software Technology,
Beijing Institute of Artificial Intelligence, Faculty of Information Technology,

Beijing University of Technology, Beijing 100124, China
lcxxib@emails.bjut.edu.cn, {kdh,wangshaofan}@bjut.edu.cn

Abstract. Recovering the geometry of an object from a single depth
image is an interesting yet challenging problem. While the recently pro-
posed learning based approaches have demonstrated promising perfor-
mance, they tend to produce unfaithful and incomplete 3D shape. In this
paper, we propose Latent Feature-Aware and Local Structure-Preserving
Network (LALP-Net) for completing the full 3D shape from a single
depth view of an object, which consists of a generator and a discrimina-
tor. In the generator, we introduce Latent Feature-Aware (LFA) to learn
a latent representation from the encoded input for a decoder generating
the accurate and complete 3D shape. LFA can be taken as a plug-and-
play component to upgrade existing networks. In the discriminator, we
combine a Local Structure Preservation (LSP) module regarding visi-
ble regions and a Global Structure Prediction (GSP) module regarding
entire regions for faithful reconstruction. Experimental results on both
synthetic and real-world datasets show that our LALP-Net outperforms
the state-of-the-art methods by a large margin.

Keywords: 3D completion · Depth view · Latent shape
representation · Local structure

1 Introduction

3D completion aims to recover the geometry of an object and has become one
of the current research topics recently. With the increasing availability of con-
sumer depth cameras and geometry acquisition devices, robust reconstruction
of complete 3D shapes from noisy, partial geometric data remains a challeng-
ing problem. Owing to the recent success of learning techniques, a number of

Supported by the National Natural Science Foundation of China (No. 61772049,
61632006, 61876012, U19B2039, 61906011), Beijing Natural Science Foundation
(4202003).

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 67–79, 2021.
https://doi.org/10.1007/978-3-030-86340-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_6&domain=pdf
http://orcid.org/0000-0002-1802-8197
http://orcid.org/0000-0001-7722-7172
http://orcid.org/0000-0002-3045-624X
http://orcid.org/0000-0002-5583-8260
http://orcid.org/0000-0002-8125-4648
https://doi.org/10.1007/978-3-030-86340-1_6

68 C. Liu et al.

approaches have been proposed to leverage deep networks to capture prior knowl-
edge in a data-driven way and infer occluded/missing regions of objects through
the learned knowledge. These approaches use different shape representations,
such as point clouds, meshes, implicit surface and voxels. It is noticed that
point clouds [7,22] lack the connectivity structure of underlying meshes. Existing
mesh representations [5,14] can only handle simple topologies. Implicit surfaces
[1,2,8,9,19] focus on 2D feature maps to represent objects. The above approaches
cannot maximize the capacity of deep networks learning object. However, voxel
representations [12,13,16,20,21] as a regular structure are a straightforward gen-
eralization of pixels to the 3D case and can be easily fitted into deep networks.
Thus voxels are popular for 3D completion.

For voxel-based 3D completion approaches, they usually adopt Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN) and AutoEncoder
(AE), which tends to predict many possible 3D shapes for an object. Wang
et al. [15] introduced Generative Adversarial Network (GAN) into RNN to
inpaint 3D models with semantic plausibility. Smith et al. [12] combined GAN
and Variational AE to learn the complex joint data distribution over objects of
many categories. Wu et al. [16] integrated trained GAN into CNN to penalize
unrealistic shapes and to reduce the ambiguity of objects. Yang et al. [20,21]
combined conditional GAN [4] and AE to generate the complete 3D occupancy
grid by filling in the occluded regions. However, these methods still have the
following two major issues which affect 3D completion application.

Firstly, they mainly use conventional encoder-fc-decoder frameworks, which
encode the input as low-resolution 3D feature maps and then utilize fully con-
nected (FC) layers to embed the maps as a latent shape representation for a
decoder. However, the full connection tends to ignore the spatial structure of
objects, which restricts the improvement of reconstruction performance. In this
paper, we design a encoder-LFA-decoder framework and introduce Latent Fea-
ture Aware (LFA) to replace fully connected layers. LFA is to learn a latent shape
representation from the encoded input for a decoder generating the accurate 3D
shape. The latent representation has better ability of describing the potential
characteristics of objects by exploring the dependency across local regions and
thus provides more available cues for modeling occluded regions than traditional
representations. Besides, LFA can be taken as a plug-and-play component to
upgrade existing networks with only a few parameters.

Secondly, they have the same weights on both visible and occluded regions
for predicted full shapes of objects, which compromises the reconstruction accu-
racy. As observed in the qualitative results of [18], generating high-quality vis-
ible regions is helpful to recover occluded regions via learned knowledge which
is some relationships (e.g., symmetry, support) between visible and occluded
regions through deep networks during the reconstruction. In this paper, we
design a discriminator consisting of Local Structure Preservation (LSP) and
Global Structure Prediction (GSP). LSP is to specially refine visible regions
after GSP improving entire regions for faithful reconstruction. GSP and LSP
are performed adversarial learning in a two-stream manner, which ensures the

LALP-Net for 3D Completion from a Single Depth View 69

high-quality recovery of visible parts and thus improves the reconstruction accu-
racy of occluded parts. The discriminator has better ability of modeling the real
shape distribution of objects than traditional methods.

In summary, we propose Latent Feature-Aware and Local Structure-
Preserving Network (LALP-Net) for 3D completion from a single depth view.
LALP-Net consists of a generator and a discriminator. Different from traditional
GAN based 3D completion approaches, LALP-Net enhances the learning ability
of spatial features of objects by introducing LFA in the generator and faith-
ful reconstruction ability of entire regions by combining LSP and GSP in the
discriminator. Experimental results on both synthetic and real-world datasets
show that our proposed LALP-Net improves average IoU by 8.6% (5.2%, resp.),
3.0% (3.4%, resp.) and 7.2% (4.7%, resp.) for per-category, multi-category and
cross-category on ModelNet (KinectData, resp.).

2 Related Work

2.1 Single-View 3D Completion

In earlier works, Wu et al. [17] used deep neural networks to estimate a 3D
shape from a single depth view. Sharma et al. [11] designed a full convolu-
tional autoencoder to learn 3D volumetric representation from noisy data. Varley
et al. [13] proposed a convolutional neural network to infer a 3D shape from
a single depth view. However, these approaches are only able to generate
low-resolution shapes and unlikely to capture fine geometric details. Some
works [2,15] inferred high-resolution shapes, however, they relied on a shape
database, or strong voxel-level annotations. Recent works [16,20,21] used AE to
predict a coarse 3D shape from a single depth view, and then adopted adversarial
networks to deal with the ambiguity and unnaturalness of predicted shapes. How-
ever, these approaches have limited ability for reconstructing occluded regions
and produce noise.

2.2 3D Shape Representation

Zamorski et al. [22] and Lin et al. [7] designed deep networks for 3D point
clouds. However, these point cloud-based approaches require additional non-
trivial post-processing steps. Existing mesh-based approaches are only able to
generate meshes with simple topologies [3,14], which requires a reference tem-
plate and cannot guarantee closed surfaces. Dai et al. [2] used a voxel-based
Signed Distance Functions (SDF) representation for shape inpainting. Park
et al. [9] introduced DeepSDF for shape completion, however, their networks
are not feed-forward, which limits the efficiency and capability of the approach.
Mescheder et al. [8] iteratively predicted the probability of each active cell in a
volumetric grid being occupied or not. However, most of works [13,16,18,20,21]
resort to voxel representations, which are a regular structure and can be easily
fitted into deep model architectures. Voxel-based approaches enable various deep
networks to exert their capacity of learning objects in 3D shape space.

70 C. Liu et al.

Fig. 1. The architecture of LALP-Net. In the generator, we first use a encoder to
obtain 3D feature maps from the 643 voxel grid representation of a single depth view
of an object, and then introduce Latent Feature-Aware (LFA) to learn a latent shape
representation, and finally use a decoder to generate a 643 complete 3D occupancy grid
of the object from the representation (see Sect. 3.2). In the discriminator, we first use
Global Structure Prediction (GSP) to perform adversarial learning of entire regions
of the object, and then introduce Local Structure Preservation (LSP) with the same
network structure as GSP, to refine visible regions (see Sect. 3.2).

3 Proposed Method

3.1 Overview

As shown in Fig. 1, LALP-Net consists of two main networks: a generator and a
discriminator. In particular, the generator encodes the voxel grid representation
of a single depth view as 3D feature maps, then uses LFA to learn a refined
shape representation of objects in the latent space, and finally decodes the rep-
resentation to reconstruct the complete 3D occupancy grid. The discriminator
integrates GSP and LSP to perform adversarial learning in a two-stream man-
ner, aims to distinguish whether predicted occupancy voxels (especially visible
voxels) of objects are plausible or not.

Notations: Scalars, vectors, matrices, and tensors are denoted by non-bold
letters, bold lowercase letters, bold uppercase letters, and calligraphic uppercase
letters respectively. Denote [A]ij to be the (i, j)th element of a matrix A, [A]ijk
to be the (i, j, k)th element of a tensor A. Denote (I, J,K) to be the size of a
voxel grid (I = J = K = 64), and X ,Y ∈ {0, 1}I×J×K , Y ′ ∈ (0, 1)I×J×K , to be
the 2.5D voxel grid of input single depth view, the groundtruth 3D voxel grid,
the predicted 3D voxel grid, and E to be the expectation operator.

3.2 Network Architecture

Generator. The generator includes an encoder, a LFA module and a decoder.
The generator adopts symmetrical skip connections [10] which ensure the pre-
serving and propagation of local structure of a single depth view.

LALP-Net for 3D Completion from a Single Depth View 71

Encoder. It is to extract a set of feature maps for LFA learning a shape rep-
resentation. We design four 3D convolutional layers, each layer of which has a
bank of 43 filters of 13 strides, followed by a leaky ReLU function and a max
pooling layer which has 23 filters of 23 strides. The number of output channels
of these layers starts with 64, doubles at each subsequent layer and ends up with
512. The encoder outputs 3D feature maps of 43 resolutions.

LFA. It is to learn a latent shape representation of objects for the decoder. We
design a space-aware module to learn the latent shape representation LR from
encoded 3D feature maps M ∈ R

512×4×4×4. LR is defined as:

LR = ψ(M) = CR [ϕ(M), ϕ′(N)] (1)

For the function ψ, it consists of two parts: 3D space learning ϕ and 2D space
learning ϕ′ for robust features of objects. N ∈ R

2048×4×4 is regarded as a 2D
slice set of M. CR is a synthesized operator consisting of the concatenation and
reshape operations.

We use self-attention to achieve two space learning by two steps. (1) learn
attention weights A and A′ which are used to measure the relevance of each part
of input data to the reconstruction task in 3D space and 2D space respectively;
(2) learn latent shape features ϕ, ϕ′ which are obtained by scaling each part
with the attention weights in 3D space and 2D space respectively.

ϕ(M) = H(M)A (2)

[A]jk =

[
exp

(
F(M)�G(M)

)]
jk

∑64
j=1 [exp (F(M)�G(M))]jk

, k = 1, . . . , 64 (3)

ϕ′(N) = H′(N)A′ (4)

[A′]j′k′ =

[
exp

(
F′(N)�G′(N)

)]
j′k′

∑16
j′=1 [exp (F′(N)�G′(N))]j′k′

, k′ = 1, . . . , 16 (5)

where F(M) ∈ R
64×64,G(M) ∈ R

64×64 and H(M) ∈ R
512×64 are obtained by

M mapped into three 3D feature spaces. F′(N) ∈ R
256×16,G′(N) ∈ R

256×16

and H′(N) ∈ R
2048×16 by N mapped into three 2D feature spaces. F(·), G(·),

H(·), F′(·), G′(·), and H′(·) denote three synthesized operators consisting of
convolution, flatten, and concatenation, where the first three are 13 convolution,
and the last three are 12 convolution. exp(·) is the elementwise exponential
operator. LFA outputs a refined shape representation LR ∈ R

1024×4×4×4.

Decoder. It is responsible for transforming the refined shape representation LR
into 3D volumes. We design four deconvolutional layers, each layer of which
concatenates the feature layers of the encoder accordingly, followed by ReLU
activations except for the last layer with sigmoid function. The number of output
channels of these layers start with 256 and decreases by half for the subsequent
layer and ends up with 1. The decoder outputs a 643 voxel grid.

72 C. Liu et al.

Discriminator. The discriminator uses LSP to preserve visible local structure
of objects after using GSP to refine global structure of objects, in order to make
the generator predict realistic 3D shapes.

GSP. It is to distinguish whether predicted full 3D shapes are reasonable or not.
We design GSP as an encoder, which consists of four 3D convolutional layers
whose channels start with 64, double at each subsequent layer and end up with
512. Each convolutional layer has a bank of 43 filters of 23 strides, followed by a
ReLU function except for the last layer with a sigmoid function. GSP outputs a
feature vector of R32768.

LSP. It is to distinguish whether predicted visible parts are reasonable or not.
Motivated by Li et al. [6] which represent an incomplete data case as a pair of a
partially-observed data vector and a corresponding mask for image completion,
We represent predicted visible shapes by the element-wise product of predicted
3D voxel grids and corresponding input 2.5D ones. GSP is also concreted as an
encoder whose setting is the same as that of GSP and outputs a feature vector
of R32768.

3.3 Loss Functions

Generator Loss. The loss function of the generator is given by a convex com-
bination of the reconstruction loss of AE (which is set as Lae) and the generator
loss of GAN (which is set as Lg). Minimizing Lae tends to learn a complete 3D
shape, whilst minimizing Lg tends to estimate more plausible 3D shape condi-
tioned on a single depth view. Thus the 3D generator loss Lgen is defined as:

Lgen = (1 − γ)Lae + γLg (6)
Lae = −βY log (Y ′) − (1 − β)(1 − Y) log(1 − Y ′) (7)
Lg = −E[Dgsp(Y ′) − E[Dlsp(Y ′ � X)], (8)

where Dgsp, Dlsp denote the GSP network and the LSP network respectively in
the discriminator.

Discriminator Loss. GSP optimizes the network by narrowing distance
between the real 3D shape and the predicted 3D shape. LSP optimizes the
network using distance between the real visible shape and the predicted visible
shape. The 3D discriminator loss Ldis is defined as:

Ldis = Lgsp
dis + Llsp

dis , (9)

Lgsp
dis = E[Dgsp(Y ′)] − E[Dgsp(Y)] + λE[(||∇

̂YDgsp(Ŷ)||2 − 1)2], (10)

Llsp
dis = E[Dlsp(Y ′ � X)] − E[Dlsp(Y � X)] + λE[(||∇x̂Dlsp(X̂)||2 − 1)2], (11)

where Ŷ = εY + (1 − ε) Y ′, X̂ = εX + (1 − ε) (Y ′ � X), ε ∼ Uniform[0, 1], λ
controls the tradeoff between optimizing the gradient penalty and the original

LALP-Net for 3D Completion from a Single Depth View 73

objective. Y ′, Y denote the predicted full shape and the real full shape respec-
tively. (Y ′ � X), (Y � X) denote the predicted visible shape and the real visible
shape respectively.

In the experiments, for each iteration, these loss functions are optimized in
the order of Lgsp

dis , Llsp
dis , Lgen by Adam algorithm. The learning rates are set to

0.0001, 0.0001, 0.0005 respectively. Besides, the weight γ is set to 0.95 and the
weight β is set to 0.85. The gradient penalty λ is set to 10.

Input 3D-CNN [13] 3D-RecAE [21] 3D-RecGAN [21] LALP-Net Groundtruth

Fig. 2. The reconstruction results on ModelNet [21]. The first two rows, the middle
two rows and others are respectively single-category, multi-category and cross-category
results.

4 Experimental Results and Analysis

To evaluate the effectiveness of our method, experiments on both synthetic and
real-world dataset were performed. The synthetic datasets include ModelNet [21]
and ShapeNet [20], which consist of 3 categories and 4 categories respectively.
Each category is trained with around 20K pairs, and tested with 2K (4K, resp.)
pairs in ModelNet (ShapeNet, resp.). The real-world dataset [20] (also known
as KinectData) is mainly collected from real-world environments (offices, homes,
outdoor, etc.) by a Microsoft Kinect sensor. KinectData consists of 4 categories
and each category is tested with 250 pairs. The target object instances of each
depth view are manually segmented from the background, and groundtruth
shapes are not 100% accurate. Before training and testing, a pair denoting each
single depth view and the corresponding 3D shape are simultaneously trans-
formed to voxel grids by using virtual camera parameters. Each voxel grid is
represented as a binary tensor (Fig. 3).

74 C. Liu et al.

Input ShapeHD [16] 3D-RecAE++ [20] 3D-RecGAN++ [20] LALP-Net Groundtruth

Fig. 3. The reconstruction results on ShapeNet [20]. The first two rows, the middle
two rows and others are respectively single-category, multi-category and cross-category
results.

Input 3D-CNN [13] 3D-RecGAN [21] 3D-RecGAN++ [20] LALP-Net Groundtruth

Fig. 4. The reconstruction results on KinectData [20]. The first row, the middle row
and others are respectively single-category, multi-category, cross-category results.

4.1 Comparisons with Existing Methods

We compare LALP-Net with several state-of-the-art approaches. Particularly,
3D-CNN [13] completed the 3D shape from a single depth view with a convolu-
tion neural network. 3D-RecGAN [21] recovered the 3D structure from a single
depth view by combining AE and GAN. ShapeHD [16] completed the 3D shape
from a single depth and a normal map by integrating deep generative models
with adversarially learned shape priors. 3D-RecGAN++ [20] reconstructed the
high-resolution 3D shape from a single depth view by adding two deconvolutional
layers in the generator of 3D-RecGAN. 3D-RecAE (3D-RecAE++) analyzed the
performance of 3D-RecGAN (3D-RecGAN++) without GAN.

LALP-Net for 3D Completion from a Single Depth View 75

Experiment Results on Synthetic Datasets. We conducted three types of
experiments: per-category, multi-category and cross-category on ModelNet [21]
and ShapeNet [20]. The per-category experiments measure the reconstruction
quality over each single category of objects, where the training set and testing
set are defined as each category. The multi-category experiments and the cross-
category experiments measure the domain adaptation capability among different
categories of objects, where the latter is more challenging. The results are shown
in Table 1 and Fig. 2.

Table 1. The reconstruction results on ModelNet [21] and ShapeNet [20]. In group1,
group2 and group3, the network is respectively trained on chair, stool and toilet, tested
on other two categories. ‘FC’ denotes fully connected layers. The greater (↑) the IoU
is, the better the reconstructed result is.

Method Per-category results Multi-category results Cross-category results Parameters’ num

IoU↑ (10−2) IoU↑ (10−2) IoU↑ (10−2) of FC or LFA

chair stool toilet chair/

toilet

chair/stool/

toilet

group1 group2 group3 layers

3D-CNN [13] 56.4 27.3 50.3 49.3 45.3 29.4 35.5 38.1 1.42 × 108

3D-RecGAN [21] 66.1 50.1 56.9 55.4 51.3 41.3 51.7 48.3 3.28 × 108

Pix2Vox [18] 68.0 43.8 50.1 66.4 48.8 50.3 49.5 40.7 3.36 × 107

Our LALP-Net 70.3 60.7 68.0 69.1 52.1 55.7 52.8 54.5 5.57 × 106

airplane chair car airplane/

car

airplane/

chair/car

group1 group2 group3

ShapeHD [16] 61.9 59.5 78.8 65.9 63.2 55.8 55.2 37.3 1.03 × 105

3D-RecGAN++ [20] 70.6 64.6 89.6 75.3 73.9 58.2 60.5 53.8 1.31 × 108

Our LALP-Net 83.1 79.2 90.8 79.0 78.0 63.3 69.7 61.7 5.57 × 106

Table 2. The reconstruction results on KinectData [20]. In group1, group2, group3 and
group4, the network is respectively trained on bench, chair, coach and table, tested on
other three categories. The greater (↑) the IoU is, the better the reconstructed result is.

Per-category results Multi-category results Cross-category results

Method IoU (10−2) IoU (10−2) IoU (10−2)

bench chair coach table bench chair coach table group1 group2 group3 group4

3D-CNN [13] 26.9 27.0 35.0 15.4 23.3 17.6 36.0 21.2 23.5 25.2 22.4 19.4

3D-RecGAN [21] 38.1 36.8 66.0 35.6 32.3 34.1 56.8 29.1 44.0 28.5 27.8 37.9

3D-RecGAN++ [20] 43.3 36.5 66.9 30.7 39.6 36.3 59.8 28.5 38.7 53.6 36.0 39.1

Pix2Vox [18] 36.3 29.3 62.2 36.6 24.0 25.1 30.2 27.0 35.6 47.2 24.8 43.2

Our LALP-Net 44.1 41.0 73.3 39.8 41.1 37.4 65.0 34.2 51.2 54.1 36.1 44.7

Experiments show that our proposed LALP-Net outperforms other methods.
In particular, 3D-CNN only infers a part of occluded regions and generates
unrealistic shapes. 3D-RecGAN improves the reconstruction accuracy, however,
fail to guarantee the reconstruction quality of visible regions, even produce noise.

76 C. Liu et al.

3D-RecGAN++ can predict shapes with geometrical details, however, fail to
infer strong occlusion in the depth view. ShapeHD can predict shapes with large
variance and fine details, however, sometimes get confused by deformable object
parts, miss uncommon object parts and have difficulty in recovering very thin
structure. Conversely, LALP-Net is able to reconstruct complete and plausible
shapes that look good perceptually. From Fig. 2, LALP-Net can not only predict
more occluded parts, ensure reconstruction quality of visible parts, but reduce
noise when reconstructing parts not present in the input depth view. This is
because LALP-Net can learn a refined shape representation in the latent space
by LFA, which helps infer occluded voxels from input voxels. Besides, LALP-Net
constrains visible regions by LSP, which helps ensure the fidelity of visible parts
and reduce noise.

Experiment Results on Real-World Dataset. All networks were trained
on ShapeNet [20] and tested on KinectData [20]. We also conducted three types
of experiments. The results are shown in Table 2 and Fig. 4.

Due to the limitation of sensors (e.g., reflective surfaces, outdoor light), input
depth views and corresponding groundtruth shapes are noisy and incomplete.
In addition, their transformed voxels are empty rather than solid, and are only
occupied on the surface, which leads to low accuracy. However, when the bench-
marking algorithms are not robust to noise and unable to generate compelling
results, LALP-Net is still able to reconstruct reasonable shapes.

4.2 Ablation Study

We conducted multi-category experiments on ShapeNet [20] to analyse the
importance of each component from LALP-Net. The results are shown in Table 3
and Fig. 6.

Table 3. The ablation results. ‘ED’ denotes
encoder and decoder in the generator
of LALP-Net. ‘DIS’ denotes discriminator.
‘LFA3D, LFA2D’ denote 3D space learning and
2D space learning in a LFA module respec-
tively. ‘LFAi(i = 2, 3)’ denote new LFA mod-
ules (see Fig. 5). The greater (↑) the IoU is,
the better the reconstructed result is.

Lae Lg Lgsp
dis Llsp

dis LFA3D LFA2D IoU↑(10−2)

ED � 52.0

ED-GSP � � � 60.7

ED-GSP-LSP � � � � 67.5

ED-DIS-LFA3D � � � � � 71.3

ED-DIS-LFA2D � � � � � 75.5

Our LALP-Net � � � � � � 78.0

Our LALP-Net+ � � � � +LFA3 81.7

Our LALP-Net++ � � � � +LFA3+LFA2 83.7

(a) The generator
DecoderEncoder

Input 2.5D
voxel grid

3D Conv1

3D Conv2

3D Conv3

3D Conv4 3D Deconv1

3D Deconv2

3D Deconv3

3D Deconv4

Predicted 3D
voxel grid 364 364

LFA3
C

LFA2
C

LFA
C

Fig. 5. The generator with multiple
LFA modules. C is the concatenation
operation.

LALP-Net for 3D Completion from a Single Depth View 77

Input ED ED-GSP ED-GSP-LSP LALP-Net Groundtruth

Input ED-DIS-LFA3D ED-DIS-LFA2D LALP-Net Groundtruth

Fig. 6. Ablation study of our approach.

LFA. Our full model presents a more detailed and realistic shape than its vari-
ants. Starting by Lae, the networks produce a basic shape, however, the details
such as fuselages of planes are not faithfully predicted. With the help of adver-
sarial training, the results become less blurry. When we construct our full model
by adding LFA, the predictions contain more details and look very similar to
groundtruth 3D shapes. This benefits from LFA being able to learn an abun-
dant shape representation which helps predict complete and accurate objects.
In addition, it is concluded that the combined features from 2D and 3D spaces
are more representative than those learned from a single space for recovering 3D
shapes.

As is shown in Table 1, Our LFA layer produces fewer parameters than FC
layers of other approaches, and this is because LFA shares weights in 2D and
3D convolutions. For a lightweight model, we only use a LFA module in LALP-
Net. However, we also provide LALP-Net with multiple LFA modules, that is,
connecting features LFA2, LFA3 learned from the outputs of the 2th and 3th
convolutional layers to corresponding deconvolution layers of the generator (see
Fig. 5). From Table 3, it shows that LFA can be taken as a plug-and-play com-
ponent to upgrade existing networks.
LSP. LALP-Net can predict higher fidelity regions of shapes with Llsp

dis in Fig. 6.
This means that LSP is useful for uncertain 3D shapes. LSP adds weights to
the loss of visible regions in the whole adversarial losses, which helps make the
model retain visible information and avoid the influence of noise when predicting
occluded regions.

5 Conclusion

In this paper, we present a novel framework LALP-Net, that recoveries both
global and local 3D structure of the object from a single depth view. By
using a Latent Feature-Aware based generator, LALP-Net effectively captures
the dependence among local regions of objects, which provides useful cues for
recovering a complete 3D shape with fine details and reduces the number of
parameters. In addition, by using Local Structure-Preserving based discrimina-
tor, LALP-Net enhances the reliability of visible regions and reduces noise when

78 C. Liu et al.

predicting occluded regions. Experiments demonstrates that LALP-Net outper-
forms the state-of-art approaches on both synthetic data and real-world data for
per-category, multi-category and cross-category. In the future, we also plan to
apply LFA on other general networks.

References

1. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
CVPR, pp. 5939–5948 (2019)

2. Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs
and shape synthesis. In: CVPR, pp. 6545–6554 (2017)

3. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché
approach to learning 3D surface generation. In: CVPR, pp. 216–224 (2018)

4. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein GANs. In: NIPS, pp. 5767–5777 (2017)

5. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh
reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 386–402. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01267-0 23

6. Li, S.C.X., Jiang, B., Marlin, B.M.: MisGAN: learning from incomplete data with
generative adversarial networks. In: ICLR, pp. 1–20 (2019)

7. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense
3D object reconstruction. In: AAAI, pp. 7114–7121 (2018)

8. Mescheder, L.M., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: learning 3D reconstruction in function space. In: CVPR, pp. 4460–4470
(2019)

9. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learn-
ing continuous signed distance functions for shape representation. In: CVPR, pp.
165–174 (2019)

10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

11. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning with-
out object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp.
236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8 20

12. Smith, E., Meger, D.: Improved adversarial systems for 3D object generation and
reconstruction. In: CoRL, pp. 87–96 (2017)

13. Varley, J., DeChant, C., Richardson, A., Ruales, J., Allen, P.K.: Shape completion
enabled robotic grasping. In: IROS, pp. 2442–2447 (2017)

14. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.: Pixel2mesh: generating
3D mesh models from single RGB images. ECCV. 11, 55–71 (2018)

15. Wang, W., Huang, Q., You, S., Yang, C., Neumann, U.: Shape inpainting using
3D generative adversarial network and recurrent convolutional networks. In: ICCV,
pp. 2298–2306 (2017)

16. Wu, J., Zhang, C., Zhang, X., Zhang, Z., Freeman, W.T., Tenenbaum, J.B.: Learn-
ing shape priors for single-view 3D completion and reconstruction. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp.
673–691. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6 40

https://doi.org/10.1007/978-3-030-01267-0_23
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-49409-8_20
https://doi.org/10.1007/978-3-030-01252-6_40

LALP-Net for 3D Completion from a Single Depth View 79

17. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets:
a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

18. Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: context-aware 3D recon-
struction from single and multi-view images. In: ICCV, pp. 2690–2698 (2019)

19. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit sur-
face network for high-quality single-view 3D reconstruction. In: NIPS, pp. 490–500
(2019)

20. Yang, B., Rosa, S., Markham, A., Trigoni, N., Wen, H.: 3D object dense recon-
struction from a single depth view. TPAMI 41(12), 2820–2834 (2019)

21. Yang, B., Wen, H., Wang, S., Clark, R., Markham, A., Trigoni, N.: 3D object recon-
struction from a single depth view with adversarial learning. In: ICCV Workshop,
pp. 679–688 (2017)

22. Zamorski, M., et al.: Adversarial autoencoders for compact representations of 3D
point clouds. TVIU 193, 1–8 (2020)

Facial Expression Recognition by
Expression-Specific Representation

Swapping

Jie Lei1(B), Zhao Liu2, Zeyu Zou2, Tong Li2, Juan Xu2, Zunlei Feng3,
and Ronghua Liang1

1 Zhejiang University of Technology, Hangzhou 310023, People’s Republic of China
{jasonlei,rhliang}@zjut.edu.cn

2 Ping An Life Insurance Of China, Ltd.,
Shanghai 200120, People’s Republic of China

{liuzhao556,zouzeyu313,litong300,xujuan635}@pingan.com.cn
3 Zhejiang University, Hangzhou 310027, People’s Republic of China

zunleifeng@zju.edu.cn

Abstract. In the field of facial expression recognition (FER), vari-
ous FER systems have been explored to encode expression information
from facial representations. Although significant progress has been made
towards improving the expression classification, challenges due to the
large variations of individuals and the lack of consistent annotated sam-
ples still remain. In this paper, we propose to disentangle facial represen-
tations into expression-specific representations and expression-unrelated
representations with a representation swapping procedure, called SwER.
First, we adopt a variational auto-encoder (VAE) structure to obtain
latent vectors (i.e., facial representations) from face images. Next, the
representation swapping procedure is introduced for paired face images to
disentangle the expression-specific representations from facial representa-
tions. Finally, the expression-specific representations and the expression-
unrelated representations are jointly learned for facial expression recog-
nition and face comparison tasks, respectively. In this way, better facial
representations are obtained by discarding unrelated factors, and the
expression-specific representations are more independent. The proposed
method has been evaluated on five databases, CK+, Oulu-CASIA, MMI,
RAF-DB, and AffectNet. The experimental results demonstrate the
superior performance of the proposed method.

Keywords: Facial expression recognition · Representation swapping

1 Introduction

Facial expression is an essential factor in conveying human emotional states and
intentions. As a consequence, numerous studies have been conducted on facial

J. Lei and Z. Liu–contributed equally.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 80–91, 2021.
https://doi.org/10.1007/978-3-030-86340-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_7

Facial Expression Recognition 81

expression recognition for potential use in sociable robots, medical treatment,
driver fatigue surveillance, and many other human-computer interaction systems.

Fig. 1. Facial representation can be disentangled into expression-specific representa-
tions (the former part) and expression-unrelated representations (the latter part). The
first and the second faces are similar in the identity, while the second and the third
faces are similar in the expression.

There has been significant progress towards improving the facial expression
classification, from handcrafted feature classification, shallow learning, to deep
learning [7]. However, the existing well-constructed FER systems still face two
challenges: the large variations of individuals and the lack of consistent annotated
samples. There are many expression unrelated variations in face images, such as
illumination, head pose, age, gender, and background, i.e., facial expressions
may appear different for people with different personalities. These disturbances
are nonlinearly confounded with facial expressions and address large intra-class
variability, making it hard to learn effective expression-specific representations.
Meanwhile, as the subjectivity of human annotators and the ambiguous nature of
the expression labels, the annotation inconsistency is widespread and consistent
annotated samples are limited.

Researches have shown that people are capable of recognizing facial expres-
sions by comparing a subject’s expression with a reference expression [16]. In
other words, a facial expression can be disentangled in the image representation
space. Inspired by this fact, we introduce a swapping procedure in paired face
image representations for expression-specific representation learning. We employ
a VAE structure to learn latent vectors as facial representations from face images.
The facial representations are divided into two parts (Fig. 1), with the former
part for facial expression recognition and the latter part for face comparison.
During the joint training process, face image pairs are selected as inputs. In this
way, we can make full use of limited but consistent annotated samples extracted
from face image sequences. For facial expression recognition, we swap the former

82 J. Lei et al.

part of the paired image representations to reconstruct the corresponding face
images with expected expressions, thus making the former part more specified
for expression. For face comparison, the network is further trained based on
the differences of the latter part in the representations to predict whether the
two input face images share the same identity. As the expression is irrelevant
to the identity, the latter part restrains the expression-specific representation,
improving the performance of disentangling for the former part in return.

In contrast to the previous methods [16], which focused on introducing well-
designed auxiliary blocks or layers to enhance the expression-related represen-
tation capability directly, our proposed SwER framework learns the relatively
easier facial representations on facial expression datasets and then disentangles
more independent expression-specific representations, with jointly learning of
facial expression recognition and face comparison tasks.

The major contributions of this paper are two-fold. Firstly, we introduce a
representation swapping procedure for disentangling expression-specific repre-
sentations from face image representations. Secondly, we propose jointly learn-
ing of facial expression recognition and face comparison tasks from paired face
images, thus taking full advantage of limited consistent annotated samples and
improving the disentanglement performance.

2 Related Work

To reduce the impacts of widespread expression-unrelated variations in learning
expression-specific representations, several studies have proposed well-designed
auxiliary modules to enhance the foundation architecture of deep models. Yao et
al. [17] proposed HoloNet with three critical considerations in the network design.
Li et al. [9] proposed an end-to-end trainable Patch-Gated Convolution Neu-
ral Network (PG-CNN) that can automatically percept the possible regions of
interest on the face. Another area for expression-specific representation learning
focuses on facial expression data. Wang et al. [15] proposed Self-Cure Network
(SCN) to suppress the uncertainties efficiently and prevent deep networks from
over-fitting uncertain face images. In [18], the authors proposed an end-to-end
trainable LTNet to discover the latent truths with the auxiliary annotations from
different datasets. There are other existing works that suggest facial expression
recognition could benefit from using a reference image. Yang et al. [16] recognized
facial expression by learning the residual expressive component in the genera-
tive model. Kim et al. [5] employed a contrastive representation in the networks
to extract the feature level difference between a query face image and a neu-
tral face image. Zhao et al. [20] presented a novel peak-piloted deep network
(PPDN) that used the peak expression (easy sample) to supervise the non-peak
expression (hard sample) of the same type and from the same subject.

The above works focus on directly learning expression-specific representation
or expression-specific difference to a reference face image, which is relatively hard
for training with a lack of diverse samples for widespread expression unrelated
variations. Unlike these works, we propose to learn facial representation at first,

Facial Expression Recognition 83

which is relatively easy on limited consistent annotated samples. The expression-
specific representation is further disentangled from the facial representation. The
recent utility of representation disentangling shows success in learning disassem-
bled object representation from images [4]. Lin et al. [10] proposed SPACE to fac-
torize object representations of foreground objects and decompose background
segments of complex morphology. Comparing with the object, the expression
is implicitly and dispersive in the image. We adopt an auxiliary expression-
unrelated task of face comparison to suppress the expression-specific represen-
tation on the latter part of the facial representation. In return, the former part
can concentrate on learning the expression-specific representation.

3 Proposed Method

Fig. 2. Framework of the proposed SwER method, which is composed with two recon-
struction modules, an expression classification module, and an auxiliary face compari-
son block.

The framework of our proposed method - SwER is illustrated in Fig. 2, where
the network takes a pair of face images as inputs. As shown in Fig. 2, SwER
contains three learning processes: the first is learning facial representations from
face images; the second is learning expression-specific representations (the former
part) disentangled from facial representations; the third is learning to suppress
the expression-specific representations on the latter part of facial representations.
In this section, we illustrate details of these learning processes.

84 J. Lei et al.

3.1 Paired Face Images

We take pairs of face images 〈Ia, Ib〉 as inputs. Specifically, we consider two
types of pairs. One is a pair of face images with the same identity and dif-
ferent expressions, the other is a pair of face images with different identities
and the same expression. Here, we use D(Ia, Ib) = 1 and E(Ia, Ib) = 1 to
denote 〈Ia, Ib〉 sharing the same identity or expression, respectively. In Sect. 3.3,
we will demonstrate that the supervision information for reconstructed images
after expression-specific representation swapping can naturally derived from the
inputs, i.e., 〈Ia, Ib〉.

In the experiments, we sample face images from image sequences. A face
image sequence typically begins with a neutral expression and reaches a peak
near the middle before returning to the neutral expression. The expression anno-
tations are relatively consistent as frames in the same sequence can be taken as
reference images for each other. However, the number of sequences is relatively
smaller in comparison to static images. By adopting pairs of images, we can
significantly enlarge the number of training samples.

3.2 Facial Representation Learning

A variational auto-encoder structure [14] is exploited to generate a good facial
representation from a face image. Without loss of generality, this structure con-
tains an encoder fE and a decoder fD. The input face images 〈Ia, Ib〉 are mapped
from image space to the latent representation space by fE , denoted as 〈Ra, Rb〉.
The latent image representations 〈Ra, Rb〉 are then mapped back by decoder fD
to reconstruct the image pair. The objective is to simultaneously optimize fE
and fD for minimizing the reconstruction error:

Lrec =
∥
∥
∥Ia − Îa

∥
∥
∥

2

2
+

∥
∥
∥Ib − Îb

∥
∥
∥

2

2
, (1)

where Îa and Îb are reconstructed face images. All the input image pairs 〈Ia, Ib〉
are pre-processed by face detection and face alignment, so the latent represen-
tations 〈Ra, Rb〉 can be referred as facial representations.

3.3 Expression-Specific Representation Swapping

The facial representations 〈Ra, Rb〉 are divided into two parts:
[

RE
a , RU

a

]

and
[

RE
b , RU

b

]

, respectively. The former parts RE
a and RE

b are referred as expression-
specific representations. The latter parts RU

a and RU
b are expression-unrelated

facial representations.
We introduce a swapping procedure to disentangle

〈

RE
a , RE

b

〉

from 〈Ra, Rb〉.
After swapping RE

a and RE
b , the hybrid latent representations R

′
a =

[

RE
b , RU

a

]

and R
′
b =

[

RE
a , RU

b

]

are decoded by fD and reconstructed as hybrid images Ĩa

and Ĩb, respectively.

Facial Expression Recognition 85

For pairs 〈Ia, Ib〉 where D(Ia, Ib) = 1 and E(Ia, Ib) = 0, the desired recon-
struction images for R

′
a and R

′
b should swap the expression for each other. As

we encourage the representation of different expressions to be discriminated, we
use 〈Ib, Ia〉 for supervision:

Lrec s =
∥
∥
∥Ib − Ĩa

∥
∥
∥

2

2
+

∥
∥
∥Ia − Ĩb

∥
∥
∥

2

2
. (2)

For pairs 〈Ia, Ib〉 where D(Ia, Ib) = 0 and E(Ia, Ib) = 1, the desired recon-
struction images for R

′
a and R

′
b should be similar to the inputs. In other words,

the expression-specific representation is personality unrelated. We encourage the
representation of the same expression to be similar for different people. 〈Ia, Ib〉
are used for supervision as:

Lrec s =
∥
∥
∥Ia − Ĩa

∥
∥
∥

2

2
+

∥
∥
∥Ib − Ĩb

∥
∥
∥

2

2
. (3)

Expression-specific representation swapping aims to model the expression
factor that affects the appearance of face images. If the expression-specific rep-
resentation is well disentangled, the change of expression only causes the change
of the face on the expression factor, while the other factors are uninfluenced.

〈

RE
a , RE

b

〉

are used for expression classification, the loss function is

Lcls = −
{a,b}
∑

r

log(
exp(p(kr)(RE

r))
∑K

i exp(p(i)(RE
r))

), (4)

where p(i)(·) is the i-th expression predicted probability of the classifier, K is
the total number of facial expression expression classes, and ka and kb are the
target expressions for Ia and Ib, respectively.

3.4 Auxiliary Face Comparison Block

In further, we introduce an auxiliary face comparison block for an expression
unrelated task - face comparison, where a change of expression shall not affect
the identity. On one hand, better facial representations are obtained by paying
more attention to describing the face. On the other hand, as we use

〈

RU
a , RU

b

〉

for the comparison, the expression-specific representations are suppressed on
the latter representations. In return, more expression-specific representations
are contained in

〈

RE
a , RE

b

〉

.
Contrastive loss [2] is used for the auxiliary block as:

Lcon = D(Ia, Ib)d2 + (1 − D(Ia, Ib))max(m − d, 0)2, (5)

where d =
∥
∥RU

a − RU
b

∥
∥
2

is the distance between two face images in the repre-
sentation space, and m is a threshold for the distance.

86 J. Lei et al.

3.5 Complete Algorithm

In summary, the total loss L is a combination of the above modules. The inputs
are 〈Ia, Ib〉, the annotated expression labels 〈ka, kb〉, and D(Ia, Ib). 〈ka, kb〉 and
D(Ia, Ib) are used in facial expression classification and face comparison, respec-
tively. The facial representation learning and expression-specific representation
swapping take 〈Ia, Ib〉 as supervision information. The total loss is given as fol-
lows:

L = λ1Lrec + λ2Lrec s + λ3Lcls + λ4Lcon, (6)

where λ1, λ2, λ3, and λ4 are balanced parameters which are used to control the
influence of different learning processes.

4 Experiments

4.1 Datasets and Setting

The proposed SwER approach is evaluated on five public facial expression
datasets, inculuding CK+ [11], MMI [13], Oulu-CASIA [19], RAF-DB [8], and
AffectNet [12].

CK+ contains 593 video sequences collected from 123 subjects. Among them,
327 video sequences with 118 subjects are labeled as one of seven expressions,
i.e., anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA), surprise
(SU), and contempt (CO). Each sequence starts with a peak expression. We chose
the first frame as the neutral face (NE) and the last three frames as the expressive
face, resulting in 1307 images with 1047 for training and 260 for testing. MMI has
236 sequences with expressions recorded from 30 subjects, where each sequence
starts with a neutral face, shifts to a peak expression, and return to a neutral
face in the end. In our experiments, for each sequence, the first two images are
selected as neutral faces while the middle one-fifth part are chosen as expressive
faces. In total, we have 1103 images for training and 399 images for testing. Oulu-
CASIA has 480 sequences captured from 80 objects. We use the cropped face
images provided by the author, resulting in 29932 images with 21070 images
for training and 8862 images for testing. The annotated labels for MMI and
Oulu-CASIA are six basic expressions (except for contempt) and neutral.

RAF-DB is divided into training and test sets with a size of 12,271 and
3,068, respectively. AffectNet contains more than 400k annotated images. We
select 19,239 images for training and 2,518 images for testing, all of which are
labeled with six basic expressions and neutral .

For CK+, MMI, Oulu-CASIA, we separate the training set and the testing
set by subjects, i.e., the subjects in the two subsets are mutually exclusive. To
generate image pairs, we randomly select pairs from the training set on the con-
dition that each sample will be included for at least once. In total, we obtain
24,994, 67,779 and 147,490 pairs for the three datasets, respectively. Since the
identities of subjects are not accessible on RAF-DB and AffectNet, we use CK+
for pre-training and conduct fine-tuning on the expression classification module

Facial Expression Recognition 87

with their training sets. The face images are pre-processed by face detection and
face alignment [3]. The basic variational auto-encoder structure [14] is adopted,
with the dimensions for the face representation and expression-specific represen-
tation are set as 512 and 64, respectively. We use the Adam optimizer with a
learning rate of 0.0001. The parameters λ{1−4} are empirically chosen from the
scales of {0.01, 0.1, 0.5, 1, 1.5, 2, 10} and finally set as λ1 = 1, λ2 = 2, λ3 = 0.5,
and λ4 = 0.1 for the loss function.

Fig. 3. The generated normalized average seven expression-specific representations of
two subjects on CK+. The expression-specific components are similar for the same
expression and distinguishable among other expressions for different subjects.

4.2 Results

In Fig. 3, we demonstrate an example of the generated expression-specific rep-
resentations of two subjects on CK+. The average representations for neutral,
anger, disgust, fear, happiness, sadness, and surprise are displayed, where each
histogram is calculated and normalized from all samples with the same expres-
sion for the subject. As we can see, the expression-specific components are similar
for the same expression and distinguishable among other expressions for different
subjects.

88 J. Lei et al.

Table 1. The average accuracies of expression recognition on CK+, MMI, and Oulu-
CASIA, where SwER−

rec s and SwER−
con are variants of the proposed SwER for ablation

studies.

Dataset CK+ MMI Oulu-CASIA

FRAME [6] 0.9077 0.5689 0.5971

LTNet [18] 0.9385 0.6065 0.5837

FMPN [1] 0.9731 0.4390 0.5330

SCN [15] 0.9769 0.6717 0.7512

SwER−
rec s 0.9173 0.5514 0.5349

SwER−
con 0.9474 0.6424 0.7257

SwER 0.9846 0.6729 0.7708

Table 2. The average accuracies of expression recognition on RAF-DB and AffectNet.

Dataset RAF-DB AffectNet

DLP [8] 0.6874 0.4865

LTNet [18] 0.7864 0.5306

FMPN [1] 0.6610 0.4527

SCN [15] 0.8589 0.5786

SwER 0.8750 0.6250

Fig. 4. Confusion Matrixes on CK+, MMI, Oulu-CASIA, RAF-DB, and AffectNet,
where the horizontal axis and vertical axis are predicted label and groundtruth label,
respectively.

Facial Expression Recognition 89

Fig. 5. Face image reconstruction on CK+, MMI, and Oulu-CASIA The first and the
second columns are original input face images, the third and the fourth columns are
reconstructed images, and the fifth and the sixth columns are reconstructed images
after expression-specific representation swapping.

Figure 5 illustrates face image reconstruction on CK+, MMI, and Oulu-
CASIA, where the first and the second columns are original input face images,
the third and the fourth columns are reconstructed images, and the fifth and
the sixth columns are reconstructed images after expression-specific representa-
tion swapping. As shown in Fig. 5, the reconstructed face images are similar to
the inputs, indicating the facial representation could well describe the face. For
the first example of each dataset where two face images share the same identity
and have different expressions, the expressions of the reconstructed face images
after swapping are similar to the expression in the other input face image. For
example, the expressions for the input face images are disgust and happiness in
the first row. After expression-specific representation swapping, the disgust face
is happier and the happiness face is getting disgustting. For the second exam-
ple of each dataset where two face images share the same expression and have
different identity, the reconstructed face images after swapping are similar to
the inputs. From these examples, we can conclude that the expression-specific
representation is disentangled.

The average accuracies on expression recognition are shown in Table 1 and
Table 2. The results are reported as the average of 10 runs. Our SwER method
achieves the highest accuracy compared to those of state-of-the-art methods,
including FRAME [6], LTNet [18], FMPN [1], and SCN [15]. The confusion

90 J. Lei et al.

matrixes are also provided in Fig. 4, where the proposed SwER performs very well
in recognizing neutral, disgust, and happiness, while sadness shows the relatively
low recognition rate, which is mostly confused with neutral.

4.3 Ablation Study

In SwER, the total loss function is composed of four items. To verify the neces-
sities of the modules of reconstruction with swapping and auxiliary face com-
parison, we conduct ablation studies by removing Lrec s and Lcon, respectively,
denoted as SwER−

rec s and SwER−
con.

The average accuracies on CK+, MMI, and Oulu-CASIA for SwER−
rec s and

SwER−
con are included in Table 1. It is noticeable SwER achieves the best clas-

sification performance than other variants, which demonstrates that the loss of
reconstruction with swapping and face comparison can improve the disentangle-
ment performance of expression-specific representations.

5 Conclusion

In this paper, we propose SwER for facial expression recognition by disentan-
gling expression-specific representations from facial representations. SwER is
composed with two reconstruction modules, an expression classification module,
and an auxiliary face comparison block. The experimental results demonstrate
the superior performance of the proposed method over other state-of-the-art
methods. Our future work will incorporate the expression-specific representa-
tions with temporal information for addressing the issues of AU detection.

Acknowledgements. This work was supported in part by the National Key Research
and Development Program of China (No. 2020YFB1707700) and the National Natural
Science Foundation of China (No. 62036009).

References

1. Chen, Y., Wang, J., Chen, S., Shi, Z., Cai, J.: Facial motion prior networks for
facial expression recognition. In: VCIP (2019)

2. Chopra, S., Hadsell, R., Lecun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: CVPR (2005)

3. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: RetinaFace: single-stage
dense face localisation in the wild. In: arXiv preprint arXiv:1905.00641 (2019)

4. Feng, Z., et al.: One-sample guided object representation disassembling. In:
NeurIPS (2020)

5. Kim, Y., Yoo, B., Kwak, Y., Choi, C., Kim, J.: Deep generative-contrastive net-
works for facial expression recognition. In: CVPR (2017)

6. Kuo, C.M., Lai, S.H., Sarkis, M.: A compact deep learning model for robust facial
expression recognition. In: CVPRW (2018)

7. Li, S., Deng, W.: Deep facial expression recognition: a survey. IEEE Trans. Affect.
Comput. (99) (2018)

http://arxiv.org/abs/1905.00641

Facial Expression Recognition 91

8. Li, S., Deng, W., Du, J.P.: Reliable crowdsourcing and deep locality-preserving
learning for expression recognition in the wild. In: CVPR (2017)

9. Li, Y., Zeng, J., Shan, S., Chen, X.: Patch-gated CNN for occlusion-aware facial
expression recognition. In: ICPR (2018)

10. Lin, Z., et al.: SPACE: unsupervised object-oriented scene representation via spa-
tial attention and decomposition. In: ICLR (2020)

11. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Matthews, I.: The extended Cohn-
Kanade Dataset (CK+): a complete dataset for action unit and emotion-specified
expression. In: CVPRW (2010)

12. Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial
expression, valence, and arousal computing in the wild. In: IEEE Transactions
on Affective Computing (2017)

13. Pantic, M.V.: Induced disgust, happiness and surprise: an addition to the mmi
facial expression database. In: Proceedings 3rd Intern. Workshop on EMOTION
(satellite of LREC): Corpora for Research on Emotion and Affect (2010)

14. Sohn, K., Yan, X., Lee, H., Arbor, A.: Learning structured output representation
using deep conditional generative models. In: NeurIPS (2015)

15. Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-
scale facial expression recognition. In: CVPR (2020)

16. Yang, H., Ciftci, U., Yin, L.: Facial expression recognition by de-expression residue
learning. In: CVPR (2018)

17. Yao, A., Cai, D., Hu, P., Wang, S., Chen, Y.: HoloNet: towards robust emotion
recognition in the wild. In: ICMI (2016)

18. Zeng, J., Shan, S., Chen, X.: Facial expression recognition with inconsistently anno-
tated datasets. In: ECCV (2018)

19. Zhao, G., Huang, X., Taini, M., Li, S.Z., Pietikälnen, M.: Facial expression recog-
nition from near-infrared videos. In: Image and Vision Computing (2011)

20. Zhao, X., Liang, X., Liu, L., Li, T., Yan, S.: Peak-piloted deep network for facial
expression recognition. In: ECCV (2016)

Iterative Error Removal
for Time-of-Flight Depth Imaging

Zhuolin Zheng1,2,3, Yinzhang Ding1,2,3, Xiaotian Tang1,2,3, Yu Cai1,2,3,
Dongxiao Li1,2,3(B), Ming Zhang1,2,3, Hongyang Xie4, and Xuanfu Li4

1 College of Information Science and Electronic Engineering, Zhejiang University,
Hangzhou, China

{zhengzhuolin,dingyzh,3160101464,yucaimr,lidx,zhangm}@zju.edu.cn
2 Zhejiang Provincial Key Laboratory of Information Processing Communication

and Networking, Hangzhou, China
3 State Key Laboratory of CAD and CG, Hangzhou, China

4 Huawei Technologies Co. Ltd., Shenzhen, China
xiehongyang@hisilicon.com, lixuanfu@huawei.com

Abstract. Depth information plays an increasingly important role in
computer vision tasks. As one of the most promising depth sensing tech-
niques, Amplitude Modulated Continuous Wave (AMCW)-based indirect
Time-of-Flight (ToF) has been widely used in recent years. Unfortu-
nately, the depth acquired by ToF sensors is often corrupted by imaging
noise, multi-path interference (MPI), and low intensity. Different meth-
ods have been proposed for tackling these issues. Nevertheless, they failed
to exploit the characteristics of the ToF depth map to propose a targeted
solution, and are unable to achieve various error removal. We present a
new iterative method for removing various errors simultaneously through
cascaded Convolutional Neural Networks (CNNs). A Synthetic Dataset is
created using computer graphics, and a Real-World Dataset is developed
via RGBD-based 3D reconstruction, both contain the raw measurement
acquired by a certain ToF camera and corresponding dense ground truth
depth. Experimental results demonstrate the superior performance of the
proposed iterative method in removing various ToF depth errors, com-
pared to state-of-the-art methods, on both the newly developed datasets
and existing public datasets.

Keywords: Time-of-flight · Convolutional neural networks ·
Three-dimensional vision · Depth sensor

1 Introduction

Depth acquisition is not only the key to most 3D vision tasks but also playing
an increasingly important role in traditional RGB-based computer vision tasks
such as gesture recognition and semantic segmentation in the past few years.
Previous representative depth acquisition approaches including structured light
and stereo vision have some critical limitations [20], either cannot be used for
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 92–105, 2021.
https://doi.org/10.1007/978-3-030-86340-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_8

Iterative Error Removal for Time-of-Flight Depth Imaging 93

mid-to-long-distance ranging, or require sufficient texture in the scene. Recently,
Time-of-Flight (ToF) [11] based depth camera has attracted more and more
attention due to its inexpensiveness, lightweight, fair accuracy, and robustness.

The Time-of-Flight technique obtains depth by measuring the time it takes
for a wave or pulse to travel from the emitter to object and back to the receiver.
For the particular Amplitude Modulated Continuous Waves (AMCW) imple-
mentation of the ToF camera, the depth is acquired indirectly by measuring
the cross-correlation between emitted and received wave and calculating the
phase delay to represent depth. Modern AMCW-ToF camera usually uses mul-
tiple modulation frequencies to enlarge the sensing range of the camera while
remaining accuracy.

Various errors may occur during this imaging procedure. There are two main
types of errors. The first is the common error in digital imaging system, such
as Gaussian imaging noise, temperature drift. The second type of error occurs
when the real scenario does not follow the assumption of the working principle
of the ToF camera, that the light received at each pixel position consists only
of the light firstly reflected from that position. When in a complex scene or
there are surfaces with low reflectance or mirror reflection, this principle is often
violated. Some pixels may receive light reflected multiple times from elsewhere,
thus cause the so-called Multipath Interference (MPI). Some pixels may suffer
low intensity that the power of light received there is too low to get sufficient
Signal-Noise Ratio (SNR) to calculate precise depth, due to low retroreflectivity
on the surface. When in a multi-frequency ToF camera, these errors can then be
transmitted and amplified by phase-unwrapping and induce a significant error
on the final depth map due to incorrect estimation of rounds.

Earlier ToF depth refinement work [7,10] mostly adopts various sparse sim-
plified assumptions about the response characteristics of the scene (e.g. Lamber-
tian [6], Two-bounce light [17] and Two-path-caused MPI [8]), based on which
to model the local light path, and then solve it through probability models [8]
or optimization methods [5] to find the optimal solution.

In recent years, many learning-based methods have begun to emerge. Despite
few other learning-based methods [12], most of them adopt CNN to their meth-
ods. Marco et al. [16] designed a network of encoder-decoder structure and used
a two-stage training scheme to correct for MPI. Su et al. [22] proposed to directly
use the correlation map obtained by the ToF camera as input, and then designed
an end-to-end CNN based on U-Net [19] to replace the traditional pipeline, Gen-
erative Adversarial Networks (GAN) is also included in consideration of deep
image generation. Guo et al. [9] noticed that multiple sampling of ToF cameras
could cause artifacts in dynamic scenes, and proposed an encoder-decoder CNN
to deal with the artifacts and eliminating MPI meanwhile. Qiu et al. [18] pro-
posed a network that used RGBD as input, utilizing cross-modal dense optical
flow for image alignment, and used the aligned depth map to pass a kernel pre-
diction network (KPN) to get a refined depth map. Agresti et al. [1,2] designed
a coarse-fine CNN to capture multi-scale information and later developed this
approach by performing unsupervised learning on unlabeled data with GAN.

94 Z. Zheng et al.

There are also some work focused on ToF imaging problems under special situa-
tions via CNN, such as translucent objects [21] and short exposure [3]. Although
CNN based methods have achieved good results, these methods did not exploit
characteristics of the ToF depth map.

Instead of a usual end-to-end approach, we designed a multi-stage iterative
CNN to tackle this problem for three main reasons. First, the end-to-end CNN
cannot realize the discontinuous mapping from multi-frequency raw measure-
ment to depth map in the underlying principles. Second, unlike RGB generation,
which has a higher tolerance for pixel-level error due to human visual perception,
the results completely output by CNN are not perfectly competent for predic-
tion of ToF depth map in a pixel-level millimeter accuracy. And it will be very
likely to degrade when odd input is encountered. Third, for different kinds of
error, different ideas and principles are needed to remove, it is difficult to predict
the nonlinear coupling of different types of error in a single output. Our itera-
tive method can avoid the above issues by continuous residual prediction of the
current depth map and retaining the information for the next refinement.

In order to achieve a robust and effective solution for multiple types of ToF
depth map error removal. We present a newly designed CNN specifically for
this problem. We devise a CNN module and use it to implement this network
architecture. Moreover, we also develop two new large ToF datasets, one is a
Synthetic dataset made by computer graphics techniques, and the other is a
Real-World dataset generated by 3D reconstruction. Both of them consist of
plentiful types of data, and all the critical error mentioned above is considered
in the proposed datasets.

Our main contributions are summarized as follows:

• We proposed a targeted, iterative-based CNN method that can significantly
remove various types of error by utilizing principles of ToF imaging and avoid-
ing the shortcomings of existing methods.

• We created two large ToF datasets via computer graphics and 3D recon-
struction, especially the firstly proposed large real-world dataset. Both cover
various error types and provide plenty of types of data access, especially the
ToF raw measurement and dense ground truth depth.

• Through qualitative and quantitative experiments, we showed that our pro-
posed method is able to remove most of the error on the ToF depth map
and surpass the previous method on our datasets and other public avaliable
datasets.

Code and datasets are available from the authors upon reasonable request or
with permission of Huawei Technologies Co., Ltd.

2 Method

2.1 Formulating for ToF Depth Imaging

The working principle of the ToF camera based on AMCW is briefly introduced
as follows. When the camera is imaging, the transmitter on camera will emit

Iterative Error Removal for Time-of-Flight Depth Imaging 95

an amplitude modulated near-infrared (NIR) wave. The receiver at each pixel
position will receive the echo and calculates the cross-correlation between the
received signal and the reference signal from the transmitter. This inner pro-
duction process will automatically complete the demodulation and filter out the
signal on other frequency bands such as ambient light. Since we only focus on
the part that actually carries information in the modulated wave, we use the
phasor to express it concisely as Eq. 1.

Ci = CC (S,Sref,i) =
< S,Sref,i >

‖Sref,i‖ =

∫ T

0
S(t) · Sref,i(t)dt

√∫ T

0
Sref,i(t)2dt

= I · cos Δϕi (1)

where Ci represents for the i-th imaging result of ToF raw measurement. CC
denotes for the cross-correlation operation. I represents the intensity of this
imaging. S is the phasor of the received signal, Sref,i is the reference signal used
for every imaging, i = 0. . . n−1, n denote times of imaging. This imaging will
be performed multiple times by shifting the phase of the reference signal (or
received signal) to eliminate ambiguity of cosine. Take four times as an example,
Sref,0 is the reference signal from the transmitter when received returned signal,
the other reference signals will be expressed in this way. j is the imaginary unit.

Sref,i = Sref,i−1 · e− jπ
2 (2)

Four imaging will be performed according to Eq. 1. By basic mathematical trans-
formations we can calculate the radius depth and intensity map, which is the
typical output of the ToF camera. * represents for depth or intensity directly
output by camera.

Depth∗ = arctan2 (C1 − C3, C0 − C2) · c/(4πf) (3)

Intensity∗ =
√

(C1 − C3)
2 + (C0 − C2)

2
/2 (4)

For a multi-frequency ToF camera, the camera needs to first calculate the
phase measured at each frequency separately, and then use the half-wavelength at
each modulation frequency as the base to establish a linear congruence equation
to solve the real depth via a phase unwrapping algorithm [15] based on Chinese
Remainder Theorem.

2.2 Input and Output Defining

We first define the input and output of the problem.
For input, most of the previous methods used the direct output of the

ToF camera, i.e., the depth map and the intensity map as input. Later other
work [9,22] pointed out that using ToF raw correlation information can lead to
a more accurate depth prediction, since it avoids losing the luminosity and geo-
metric information contained in it. However, this approach has a major flaw in
the bottom layer: If the ToF camera uses multiple modulation frequencies, the

96 Z. Zheng et al.

solving of linear congruence equations will be involved. The remainder operation
in it make the mapping from correlation maps to the depth map discontinuous
and undifferentiable. However, neural networks are not able to fit a discontin-
uous mapping in principle. Therefore, an end-to-end fashion CNN can only fit
some appearance, it is still not able to solve the problem essentially.

For output, previous work [16,22] often adopts the outputs completely gen-
erated by CNN as the results, since most visual applications is done by this
approach. But there is an important difference between depth map generation
and RGB generation, that depth maps are very sensitive to values. A certain
number of abnormal pixels may not affect visual perception, but it will surely
affect the accuracy of the depth map. Therefore, CNNs based on human vision
can generate visually impressive images, but the result is unreliable and unstable
in terms of pixel-wise accuracy. On the one hand, it is not capable to achieve
high accuracy, on the other hand, it is not robust enough, once odd input is
encountered, the output tends to fail.

Fig. 1. (a) Overview of our iterative CNN for ToF error removal. Each module takes
a depth map and a feature map as input, outputs an residual prediction to refine the
depth map, and gives deeper features for the next iteration. The initial feature map is
obtained from the ToF raw correlation map, intensity map and depth map. (b) The
iterative module structure built for our CNN.

To solve these problems, we keep the depth map and intensity map output by
the ToF camera and feed them to CNN together with the raw correlation maps.
This approach directly provides the solution of the congruence equation, frees
the CNN from the complicated remainder problem and enables the network to
focus on the information contained in the raw measurement that contributes to
the error removal. Also, we turn the task of the network into predicting the errors
in the ToF depth map, making the input depth as anchor. This approach makes
the network robust and prevents possible performance degradation of CNN.

2.3 Proposed Iterative CNN

This problem has the following characteristics. First, the input depth map and
the output depth map are signals in the same domain, which means that if
a naive method is defined to eliminate the error in the depth map as much as

Iterative Error Removal for Time-of-Flight Depth Imaging 97

possible, then a better result could be expected by using the output as the input.
This inspired us to design an iterative method. Second, the entropy contained
in this problem is large, since this is a dense prediction at a relatively high
spatial resolution [12]. Besides, with a full range 4 m to 10 m and accuracy
in millimeter [11], the SNR required for each pixel in this task reaches 60 dB,
which is much higher than that in the image generation task e.g. image super-
resolution with state-of-the-art PSNR around 35 dB [23]. Therefore, residual
prediction is necessary and enough spatial information should be retained during
the whole processing. Third, there are various errors in the ToF depth map, e.g.
the imaging noise, MPI and low intensity, the way and level they affect the depth
map vary [15,20]. It’s difficult for CNN to make a single residual prediction to
the highly coupled nonlinear superposition of all different kinds of errors. So
based on these features, we proposed our method.

First, we designed a CNN module as shown in Fig. 1(b) The input of this
module is feature maps of 48 channels and a depth map of one channel. Depth
map passes through a convolution layer and fuse with feature maps in channel
dimension, then a down convolution is used to scale down these feature maps,
and doubled channel to 128. The feature will pass through two cascaded Res-
blocks. Then the resulted feature maps will proceed to two different sets of up
convolution and standard convolution, respectively, to obtain feature maps and
a residual prediction. Feature maps and residual depth map are of the same size
as the input feature maps and depth map, and will be added to them to form
the outputs of module.

Proposed CNN is built using this module, as shown in Fig. 1(a). First, the
correlation maps at different frequencies as well as depth map and intensity map
are pre-fused via atrous and standard convolution to obtain a rough feature map.
This feature map will be input in this module together with the ToF depth map.
The module architecture will be iterated several times with different parameters
while the outputs of previous module serve as the inputs of the next module.
The depth map output by each module will be constrained by loss function.
And naturally, the depth map from the last module will be the final depth map
output.

From overview, the flow of feature maps followed a multi-level residual net-
work fashion; from a detailed perspective of each module, the flow of feature
maps and depth maps has followed the spirit of U-Net [19]: Multi-scale infor-
mation extraction and reusing. The module continuously up and down sampling
to extract multi-scale contexts and creating a shortcut from shallow to deep to
retain spatial information of the original depth map space.

For loss function, we adopt L1-loss as data term loss for its simplicity.

Ll1 =
∑

i

||Depthgt − DepthCNNi||1 (5)

Here, i represents for the depth map output from the i-th module.

98 Z. Zheng et al.

And we utilize second order total variation as regularization term to impose
an artificial prior constraint, since depth are mostly first-order smooth within
occlusion boundary.

Lr = ||f(DepthCNN � LoG)||1 (6)

f(x) =
{

x, if x < threshold
0, else

(7)

This term only act on the final output depth. LoG represents for the Laplace of
Gaussian filter. f(x) and threshold are there to prevent the impact on object
edges. The weight ratio of L1-loss to second order total variation loss is 1∗10−4.

We built this iterative network based on the module. The input of each
module of the network is a depth map and a feature map containing depth
information, the task of each module is to make a residual prediction, add it to
input depth of the module to obtain a finer depth map, and meanwhile output a
feature map with deeper information for the next module to exploit. Depth map
and feature maps are both iteratively improved with the cascading of modules.
Our network architecture is also efficient, containing only 2.08 million parameters
with two Resblocks in each module and five modules cascading to form the CNN.

Fig. 2. (a) 3D scene reconstruction result. UpperLeft: Bookstore, UpperRight: Lab-
oratory, LowerLeft: Living-room, LowerRight: PhotoBooth (b) (c) Partial datatype
of our Real-World Dataset and Synthetic Dataset respectively. UpperLeft: Four ToF
raw correlation maps; UpperRight: ToF Intensity map; LowerLeft: ToF Depth map;
LowerRight: Ground Truth Depth map.

3 Datasets

Data is crucial for CNN, however, most of the previous work uses only the
synthetic dataset with limited error simulation, and lacks real-world dataset
for training. We successfully generated a large Synthetic dataset and a large
Real-World dataset by computer graphics and 3D reconstruction techniques,
respectively. Both contain dense ground truth depth and ToF raw correlation
measurements (Fig. 2).

Iterative Error Removal for Time-of-Flight Depth Imaging 99

3.1 Synthetic Dataset

Our Synthetic dataset contains six main indoor scenes: living room, bedroom,
bathroom, dining room, kitchen, and staircase. There are 1379 sets of data con-
tained in total, we split them into a training set of size 1260 and a test set of size
119. We simulated the imaging system of the LUCID Helios camera. Except for
the RGB images that LUCID cannot capture, all our simulations use the same
internal parameters and resolution as the camera, i.e. 480 * 640. Each set of data
includes the raw correlation measurements on 100 MHz and 75 MHz, with each
frequency containing two imaging results of phase shift π/2, the ToF depth map,
the intensity map, the ground truth depth, and RGB image of resolution 1440
* 1920. In terms of error simulation, raw measurements in the dataset include
imaging noise, MPI, low reflectivity, and specular reflections which are typical
errors that may occur in the actual application of ToF cameras, the depth map
and intensity map generated by correlation maps will also be introduced to these
errors.

The scenes of the dataset are mainly taken from the 3D models shared by
the Blender community. The simulation of the correlation map and the ground
truth depth is attributed to the work of Jarabo et al. [14] on transient render-
ing. By rendering the light received by the camera in every time interval, then
amplitude modulating the rendering result and integrating them to obtain the
correlation maps. Support for ray tracing allows us to simulate MPI. Simulation
for low reflectivity, and specular reflection are done by adjusting the material
and reflectivity of different objects. Imaging noise is treated as additive Gaussian
noise. The surface normal map and RGB map are generated thanks to Blender
and its Cycles Renderer.

3.2 Real-World Dataset

Our Real-World dataset contains 1060 sets of data in total and is split into
a train/test sets of size 964 and 96, which is significantly larger than the Real-
World dataset [2,22] used only for testing. We reconstruct several different indoor
scenes, namely bathroom, bedroom, bookstore, cafe, dining room, library, lab-
oratory, kitchen, living room, and read room, to ensure the diversity of the
dataset and take common errors of ToF cameras into consideration. Each set
of data includes the same data in the same resolution as the Synthetic dataset
except for the surface normal map.

Modern portable RGB-Depth sensors are used in this 3D reconstruction. We
attached an Azure Kinect camera with a Lucid Helios camera, to form a data
acquisition system. The transformation of two camera poses can be estimated
by SfM (Struct from Motion) algorithm [13]. Azure Kinect provides RGB-Depth
streams for reconstruction while Lucid Helios camera is set to capture ToF raw
measurement stream in both 75 MHz and 100 MHz. To the best of our knowledge,
BundleFusion [4], with reconstruction error in millimeter level, is the start-of-
the-art work to reconstruct a scene from RGB-D stream input. We reconstructed

100 Z. Zheng et al.

scenes from dense frames, estimated the camera poses of every frame via Bundle-
Fusion and projected the reconstructed scene onto the camera pose to get a dense
depth map.

4 Experiments

We will show that our method achieves the comprehensive correction of various
errors in the ToF depth map, and surpasses the state-of-the-art work in quan-
titative evaluations, in both our datasets and other publicly available datasets.
We use five modules to build the CNN used in this work, because this is the
minimum number to achieve convergence of performance on iteration.

4.1 Error Removal

We first trained our CNN on the Synthetic dataset and tested it on its test set in
different scenes. And for the Real-World dataset, we adopted the model trained
on the Synthetic dataset and performed a fine-tuning. The model trained for
150 epochs on our Synthetic dataset and fine tuning for 30 epochs on our Real-
World dataset. We compared our result to the ToF depth map directly output
by camera without additional processing, which serves as the baseline.

Table 1. The performance of the depth map output by each module on test sets of
Synthetic and RealWorld Dataset, expressed in absolute error and relative error (in
the form of cm/%).

Module1 Module2 Module3 Module4 Module5

Synthetic 2.59/1.10 1.74/0.78 1.58/0.72 1.49/0.68 1.46/0.67

RealWorld 2.51/1.56 2.10/1.30 1.94/1.22 1.84/1.15 1.79/1.12

Figure 3(a) qualitatively demonstrates the effectiveness of our method. There
are many typical errors in the original ToF depth map. The first is the common
imaging noise that exists in both cases. Secondly, there is a bathtub with high
mirror reflectivity and concave shape in case 1, which forms a very typical local
MPI; the corner in case 2 has the same but slighter effect. Thirdly, the mirror
in case 1 has a very high specular reflectance and a very low retroreflectivity,
resulting in most of the echo received in this direction is the signal which from
other surfaces, this phenomenon also occurs in other surfaces that have a large
angle with imaging plane. The last is low intensity, the black velvet curtain in
case 2 with a very low reflectivity absorbed most of the light, lead to missing
information in this part of the ToF depth map. All the errors mentioned above are
strongly removed by our network architecture, and we could obtain a corrected
depth map very close to the ground truth.

Iterative Error Removal for Time-of-Flight Depth Imaging 101

Fig. 3. (a) The results of ToF depth map error elimination in different stages, including
RGB image (For visualize only, not the input of our method), ToF depth map, Result of
our method, Ground Truth depth map, Absolute Error of the ToF depth map, Absolute
Error of the depth map from module 1–5. (b) Results of our method on RealWorld
dataset.

The six error maps below each case show the process of error removal from
the ToF depth map by our proposed CNN. It can be seen from these error maps,
that most of the imaging noise has been removed after the ToF depth map passes
through the first module, and the relatively simple local MPI occurs in the bath-
tub and corner is reduced, too; while errors from other sources are still there.
When the depth map passes through the second and third modules, various MPI
begin to be eliminated. Also, with cascading of the modules, the feature map
of each module captures higher and higher levels of information, so the under-
standing of the scene steadily increases. As a result, low intensity caused noise
is gradually recovered, wrong depths are being corrected and missing depths are
being filled. The last module refine the depth map from the antecedent module
and is tend to convergence. Table 1 shows a quantitative evaluation that with
iteration of modules, the performance gradually improves, and reach convergence
on last two modules. This is the reason that we use five modules in total.

We selected several ToF depth maps with representative error patterns in
different challenging scenes, which are a bookstore, kitchen, and dining room,
respectively. From Fig. 3(b), it can be seen that our CNN still shows fine perfor-
mance under the real-world dataset. In case 1, the depth on the lower reflectivity
part of the bookshelf gap is completed. The general local MPI in case 2 makes
the depth of the ToF camera notably larger around the corners, and our CNN
outputs a result precisely removed the error. In case 3, the depth of the marble
tabletop, which is affected by serious MPI due to the high specular reflectivity
of the surface, is also corrected.

102 Z. Zheng et al.

4.2 Compared to State-of-the-Art Methods

Table 2. Quantitative testing results of our method and other state-of-the-art methods
on our dataset. Results with the best performance are marked in bold.

Synthetic dataset RealWorld dataset

MAE (cm) Rela. MAE (%) MAE (cm) Rela. MAE (%)

ToF 9.73 3.47 4.17 2.51

Su et al. [22] 4.23 1.78 3.32 2.21

Agresti et al. [2] 1.87 0.81 2.27 1.38

Ours 1.46 0.67 1.79 1.12

Fig. 4. Comparison between our method and other state-of-the-art methods. Each case
shows the depth map and error map obtained by different methods, and provides the
RGB image of the scene for reference.

On Our Datasets. We conducted a comprehensive evaluation to prove that
our method is better than the state-of-the-art method. Specifically, we compare
our work with Su et al. [22] and Agresti et al. [2], because they are represen-
tative and state-of-the-art work that focused on ToF depth error removal. The
former takes only the raw correlation measurements at two modulation frequen-
cies as input to predict a depth map in an end-to-end fashion. The latter input
the depth map and intensity map at three modulation frequencies and make
one residual prediction. We retrained them on our Synthetic and Real-World
datasets to work with our data type using the same training procedure. Mod-
els are trained on Synthetic Dataset, and are fine tuned on RealWorld Dataset.
These training procedures are all convergent to ensure reaching their optimal
performance. Table 2 shows that our work surpassed other methods by a large
margin, achieving the best performance on both datasets. Figure 4 shows a more

Iterative Error Removal for Time-of-Flight Depth Imaging 103

intuitive and detailed comparison, with case 1 and case 2 on Synthetic dataset,
case 3 and case 4 on our Real-World dataset. Our approach gracefully removed
most of the error mentioned above, including local MPI in case 1, imaging noise
and mirror reflection in case 2 and case 4, and typical low intensity in case 3,
and gave a clean smooth depth map and error map close to zero.

These two methods, one overly relies on the fitting ability of CNN in terms
of input and output, leading to artifacts and performance degradation in some
area [22]; the other only performs a single error prediction via a rather small-scale
network, thus is unable to detect and correct all kinds of error, especially the
part that needs the understanding of scenes [2]. This also proves the advanced
nature of iterative error correction from the negative side since it avoids these
issues.

Table 3. Quantitative testing results of our method and other state-of-the-art methods
on datasets where they were proposed. Results with the best performance are marked
in bold. (*) is the result on its MPI removal network. Median and Interquartile Range
(IQR) are calculated on error (not absolute error).

Dataset Datatype Proposed approach on this
dataset

Ours

Marco et al. [16] Depth map First quartile: 4 cm
Second quartile: 9 cm
Third quartile: 17 cm

First quartile: 2.24 cm
Second quartile: 4.89 cm
Third quartile: 8.68 cm

Su et al. [22] Correlation maps in 40 MHz
and 70 MHz

MAE: 2.9 cm
SSIM: 0.9631

MAE: 2.28 cm
SSIM: 0.9906

Agresti et al. [2] Depth, Amplitude and
Intensity map in 20 MHz,
50 MHz and 60 MHz

(Synthetic) MAE: 7.49 cm
(RealWorld) MAE: 3.19 cm

(Synthetic) MAE: 5.80 cm
(RealWorld) MAE: 2.95 cm

Guo et al. (FLAT) [9] Correlation maps in 10 MHz,
50 MHz, 75 MHz

Median: −0.01 cm*
IQR: 2.63 cm
Percentile 90th: 4.16 cm

Median: −0.07 cm
IQR: 1.75 cm
Percentile 90th: 2.60 cm

On Other Datasets. We also compared our approach on the datasets on which
previous methods are proposed. We collected, to our best knowledge, all pub-
licly available datasets in the recent years proposed for ToF error correction.
We then trained the proposed CNN on these datasets, with the number of mod-
ules and Resblocks slightly adjusted. By adjusting the early fusion of our CNN,
we enable their data to fit in our network, and compare our method with the
native methods on these datasets with the same quantitative evaluation. The
results are shown in Table 3, which clearly shows the excellence of our method
since our approach outperforms the previous methods proposed on its dataset in
most of the indicators. Through testing on different datasets, feeding different
inputs, and comparing with different evaluation criteria, we demonstrated the
superiority and robustness of our method.

104 Z. Zheng et al.

5 Conclusion and Future Work

In this paper, we proposed a new method for ToF depth error removal. We have
shown that an iteratively error removing CNN can produce a better depth map
for ToF imaging, because it conforms to the nature of the ToF depth map and can
avoid the inherent defects of CNN, theoretically and experimentally. We achieved
this by analyzing ToF error removal principles, designing a CNN framework for
this problem, introducing two new large datasets, and experimenting on different
datasets. In future work, we plan to perform super-resolution to the depth map
of the ToF camera so that it can be aligned with an RGB image.

References

1. Agresti, G., Schaefer, H., Sartor, P., Zanuttigh, P.: Unsupervised domain adapta-
tion for ToF data denoising with adversarial learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5584–5593 (2019)

2. Agresti, G., Zanuttigh, P.: Deep learning for multi-path error removal in ToF sen-
sors. In: Proceedings of the European Conference on Computer Vision (ECCV)
(2018)

3. Chen, Y., Ren, J., Cheng, X., Qian, K., Wang, L., Gu, J.: Very power efficient neu-
ral time-of-flight. In: The IEEE Winter Conference on Applications of Computer
Vision, pp. 2257–2266 (2020)

4. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-
time globally consistent 3D reconstruction using on-the-fly surface reintegration.
ACM Trans. Graph. (ToG) 36(4), 1 (2017)

5. Dorrington, A.A., Godbaz, J.P., Cree, M.J., Payne, A.D., Streeter, L.V.: Separating
true range measurements from multi-path and scattering interference in commer-
cial range cameras. In: Three-Dimensional Imaging, Interaction, and Measurement,
vol. 7864, p. 786404. International Society for Optics and Photonics (2011)

6. Freedman, D., Smolin, Y., Krupka, E., Leichter, I., Schmidt, M.: SRA: fast removal
of general multipath for ToF sensors. In: Fleet, D., Pajdla, T., Schiele, B., Tuyte-
laars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 234–249. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10590-1 16

7. Fuchs, S.: Multipath interference compensation in time-of-flight camera images. In:
2010 20th International Conference on Pattern Recognition, pp. 3583–3586. IEEE
(2010)

8. Godbaz, J.P., Cree, M.J., Dorrington, A.A.: Closed-form inverses for the mixed
pixel/multipath interference problem in AMCW lidar. In: Computational Imaging
X, vol. 8296, p. 829618. International Society for Optics and Photonics (2012)

9. Guo, Q., Frosio, I., Gallo, O., Zickler, T., Kautz, J.: Tackling 3D ToF artifacts
through learning and the flat dataset. In: Proceedings of the European Conference
on Computer Vision (ECCV), pp. 368–383 (2018)

10. Gupta, M., Nayar, S.K., Hullin, M.B., Martin, J.: Phasor imaging: a generalization
of correlation-based time-of-flight imaging. ACM Trans. Graph. (ToG) 34(5), 1–18
(2015)

11. Hansard, M., Lee, S., Choi, O., Horaud, R.P.: Time-of-flight cameras: principles,
methods and applications. Springer Science and Business Media (2012). https://
doi.org/10.1007/978-1-4471-4658-2

https://doi.org/10.1007/978-3-319-10590-1_16
https://doi.org/10.1007/978-1-4471-4658-2
https://doi.org/10.1007/978-1-4471-4658-2

Iterative Error Removal for Time-of-Flight Depth Imaging 105

12. He, Y., Liang, B., Zou, Y., He, J., Yang, J.: Depth errors analysis and correction
for time-of-flight (ToF) cameras. Sensors 17(1), 92 (2017)

13. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using
a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, pp. 559–568 (2011)

14. Jarabo, A., Marco, J., Muñoz, A., Buisan, R., Jarosz, W., Gutierrez, D.: A frame-
work for transient rendering. ACM Trans. Graph. (ToG) 33(6), 1–10 (2014)

15. Jongenelen, A.P., Bailey, D.G., Payne, A.D., Dorrington, A.A., Carnegie, D.A.:
Analysis of errors in ToF range imaging with dual-frequency modulation. IEEE
Trans. Instrum. Meas. 60(5), 1861–1868 (2011)

16. Marco, J., et al.: DeepToF: off-the-shelf real-time correction of multipath interfer-
ence in time-of-flight imaging. ACM Trans. Graph. (ToG) 36(6), 1–12 (2017)

17. Naik, N., Kadambi, A., Rhemann, C., Izadi, S., Raskar, R., Bing Kang, S.: A light
transport model for mitigating multipath interference in time-of-flight sensors. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 73–81 (2015)

18. Qiu, D., Pang, J., Sun, W., Yang, C.: Deep end-to-end alignment and refinement
for time-of-flight RGB-D module. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 9994–10003 (2019)

19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

20. Sarbolandi, H., Lefloch, D., Kolb, A.: Kinect range sensing: structured-light versus
time-of-flight Kinect. Comput. Vis. Image Underst. 139, 1–20 (2015)

21. Song, S., Shim, H.: Depth reconstruction of translucent objects from a single time-
of-flight camera using deep residual networks. In: Jawahar, C.V., Li, H., Mori, G.,
Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 641–657. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20873-8 41

22. Su, S., Heide, F., Wetzstein, G., Heidrich, W.: Deep end-to-end time-of-flight imag-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6383–6392 (2018)

23. Wang, Z., Chen, J., Hoi, Steven C.H.: Deep learning for image super-resolution:
a survey. IEEE Trans. Patt. Anal. Mach. Intell., 1–1 (2020). https://doi.org/10.
1109/TPAMI.2020.2982166

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-20873-8_41
https://doi.org/10.1109/TPAMI.2020.2982166
https://doi.org/10.1109/TPAMI.2020.2982166

Blurred Image Recognition: A Joint
Motion Deblurring and Classification

Loss-Aware Approach

Wenjie Zhang1 and Zhi Wang1,2(B)

1 Tsinghua Shenzhen International Graduate School, Shenzhen, China
zhang-wj18@mails.tsinghua.edu.cn, wangzhi@sz.tsinghua.edu.cn

2 Peng Cheng Laboratory, Shenzhen, China

Abstract. Image motion blur can severely affect the performance of
the image recognition model. Traditional methods to tackle this prob-
lem usually involve image motion deblurring to improve the image quality
before its recognition. However, traditional motion deblurring methods
try to minimize the pixel-level distance between the deblurred image
and the original image, which is not directly designed for improving the
image recognition accuracy of the deblurred image. In this paper, we
propose a joint motion deblurring and classification loss-aware solution.
First, we introduce recognition loss into the motion deblurring model
to improve the semantic quality of the deblurred image. Furthermore,
we design a motion-blurred image recognition framework that involves
both a motion deblurring module and an image recognition module,
which enables the joint learning of the two modules. Finally, we propose
to enhance the motion deblurring network with parameterized short-
cut connections (PSCs) for balancing the importance between low-level
and high-level features in the deblurring process. Experiments on our
synthesized datasets have shown the effectiveness of our methods, with
significant improvement in both SSIM and classification accuracy, as well
as the perceptual quality of the deblurred images.

Keywords: Image motion deblurring · Image classification · Joint
learning · Neural networks · Deep learning

1 Introduction

1.1 Motivation

Convolutional neural networks (CNNs) have achieved state-of-the-art perfor-
mance on many image recognition tasks including image classification, object
detection and segmentation. However, the recognition performance of CNN mod-
els can suffer severely from image degradation, especially motion blur [16].

Traditional methods for solving this problem try to deblur the image before
its recognition. However, state-of-the-art image motion deblurring methods are
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 106–117, 2021.
https://doi.org/10.1007/978-3-030-86340-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_9

Blurred Image Recognition 107

aiming at reducing the pixel error of deblurred image, while deblurred image
with lower pixel error does not always have better recognition result (see Fig. 1).
Therefore, it is necessary to develop a motion deblurring method that is targeted
at increasing the recognition performance of deblurred images.

In this paper, we try to improve the learning-based image motion deblurring
methods towards generating more recognizable deblurred images in two direc-
tions: loss function and model structure. For loss function, we propose to use
recognition loss and joint learning strategy in the training of motion deblurring
models; for model structure, we propose to introduce parameterized shortcut
connections (PSCs) into motion deblurring models that are based on fully con-
volutional network (FCN) structure. Experiments on our synthesized datasets
have shown that our methods can not only improve the classification accuracy
on the deblurred image, but also improve the perceptual quality of the deblurred
image.

Fig. 1. Deblurred image with lower pixel error does not always have better recognition
result. Here A represents the sharp image, while B and C are two deblurred versions.
B has 4 different pixels with A while C has 5 different pixels with A. Nevertheless, A
and C are both recognized as number 1, while B is classified to number 7.

1.2 Contributions

The main contributions of our work can be summarized as follows:

1. Firstly, to improve the performance of motion deblurring model with respect
to the classification accuracy on deblurred images, we propose to introduce
recognition loss into the learning process of the motion deblurring model.
This loss function can effectively lead the motion deblurring model towards
generating deblurred images that are not only semantically closer to sharp
images and more recognizable by the classification model, but also have higher
SSIM, which is proved to be close the human perceptual quality.

2. Furthermore, we propose a joint training framework that enables the joint
learning of image motion deblurring model and classification model. Through
the iterative training of these two models, the classification model can better
recognize the deblurred images produced by the deblurring model and the
deblurring model can generate deblurred images that are more recognizable
by the classification model.

108 W. Zhang and Z. Wang

3. Finally, we propose to introduce parameterized shortcut connection (PSC)
into the deblurring network, so that the model can be able to learn how
to balance the importance between low-level and high-level image features,
which are both important for generating desirable deblurred results with both
fine details and accurate semantic information.

2 Related Works

2.1 Image Classification

Image classification is the fundamental task in computer vision. State-of-the-
art methods have achieved better performance than traditional methods with
CNNs. VGG [18] and GoogleNet [20] have shown that larger network depth can
bring significant increase in classification accuracy. ResNet [6] introduces resid-
ual learning, which facilitates the gradient propagation and makes it possible
to train a very deep network. DenseNet [7] proposes densely connection, which
further facilitates the gradient propagation and increases the utilization of pre-
vious feature maps. Although these methods can achieve considerable accuracy
on sharp images, they can suffer a lot from image degradation like motion blur,
probably due to the difficulty of extracting edges and textures from blurred
images.

There are some works that focus on improving the classification accuracy on
noisy [12] and low-resolution [2]. However, to the extent of our knowledge, few
research interests are focused on the case of motion blur. [11] proposes to use
the early layers of the pretrained image recovering model to initialize the early
layers of the classification model. However, the image features used for recover-
ing and classification might be very different. The former contains many details
and localization information, while the latter focuses on the high-level seman-
tic information. Besides, it requires the recovering model and the classification
model to have the exactly same architecture in the early layers, which restricts
the utilization of state-of-the-art recovering and classification models which has
different architectures specifically designed for each task.

2.2 Single Image Motion Deblurring

Motion blur is commonly modeled as the convolution between a sharp image
and a blur kernel [9,15]: IB(x, y) = IS(x, y) ∗ k(x, y) + n(x, y), where IB, IS ,
k and n represent motion-blurred image, latent sharp image, blur kernel and
additional noise, respectively. Single image motion deblurring methods can be
roughly divided into two categories: optimization-based and learning-based.

Optimization-Based Image Motion Deblurring. Approaches in this liter-
ature estimate k and IS by minimizing the distance between IB and IS ∗k. Many
natural image priors have been proposed as regularization terms for this opti-
mization goal, including total variation minimization [3], dark channel prior [15],
and learned prior [8].

Blurred Image Recognition 109

Learning-Based Image Motion Deblurring. In recent years, state-of-the-
art motion deblurring methods are based on deep learning. DMCNN [14] uses
end-to-end multi-scale CNN to predict latent sharp image directly from blurred
input and trains the model with MSE loss. SRN [21] proposes to use recurrent
structure for deblurring. DeblurGAN [9] uses adversarial loss and perceptual loss
for generating more realistic deblurred images. Nevertheless, most loss functions
used by these methods are not directly aimed at increasing the semantic cor-
rectness and recognition accuracy of the deblurred results. The perceptual loss
can also improve the semantic quality of deblurred images. However, it tries to
minimize the distance between the feature maps of sharp and deblurred images,
while our method tries to minimize the distance between the recognition results
and ground-truth labels, which is a stronger constraint for the deblurring model
that can lead it towards generating more semantically correct deblurred image.

3 Methods

3.1 Task Formulation

Our main goal is to improve the recognition accuracy upon deblurred image by
improving the semantic quality of deblurred image produced by motion deblur-
ring model. In the following sections, we will denote the classification model as
R and the motion deblurring model as D. x, y, z are the motion-blurred obser-
vation, ground-truth sharp image, and ground-truth classification label, respec-
tively. ŷ is the deblurred image, and ẑ is the predicted image label:

ŷ = D(x), ẑ = R(ŷ) = R(D(x)). (1)

3.2 Recognition Loss

We propose to introduce recognition loss into image motion deblurring. It is
defined as the classification loss of the deblurred images produced by D, given R
pretrained on sharp images. The recognition loss can be written as below, where
Lcla is the classification loss of R:

Lrec(x, z) = Lcla(R(D(x)), z), (2)

During experiments, we have found that when only using recognition loss,
the training of motion deblurring model can not converge to a meaningful state.
Inspired by many previous motion deblurring methods [14,21] which have used
the MSE criterion and achieved good convergence with respect to both faster
speed and better local minimum, we combine the recognition loss with the MSE
criterion in order to make the training process more stable:

Lmse(x, y) =
1

WHC
||y − D(x)||22, (3)

where W,H,C represent the width, height, and number of channels of the image,
respectively. And the final loss function for the deblurring model is the weighted

110 W. Zhang and Z. Wang

sum of recognition loss and MSE loss, with a hyperparameter λ used for balanc-
ing the importance between the two loss functions:

L = Lmse + λ · Lrec. (4)

3.3 Joint Training Framework

The recognition loss can be seen as a supervisor for the D that leads it towards
generating more semantically correct and recognizable results. From another
perspective, we can also use it as a classifier for the deblurred images, and
train it on the deblurred images that are produced by D. Specifically, R is
originally pretrained on the labelled sharp images subjected to natural sharp
image distribution (x ∼ psharp), and learns a mapping from psharp to plabel.
However, when we use it for classifying the deblurred image, the input is the
deblurred result D(x), which has a different distribution (D(x) ∼ pD) with
sharp image. To deal with this distribution shift, we propose to further fine-tune
R on the deblurred images produced by D, so it can also learn the mapping
from pD to plabel and classify the deblurred images better. After the fine-tuning,
R now becomes a better supervisor for D which can produce more accurate
recognition loss and can supervise the training of D more effectively. Therefore,
we propose to train D and R iteratively and let the two models learn from each
other in a joint manner.

The joint training framework is illustrated as Fig. 2. D and R are trained
iteratively in order to let the two models mutually. Note that when ND and NR

are both equal to 1, the joint training algorithm is similar to concatenate these
two models into a single unified model. However, the converging speed of the
two models are quite different. In our experiments, the time cost for training
the deblurring model is about 16× longer than the classification model. There-
fore, training these two models as a unified network is not the optimal solution.
Instead, our joint learning algorithm provides a more flexible mechanism for con-
trolling the training paces of the two models by training them iteratively. The
training process can be described as Algorithm 1.

3.4 Parameterized Shortcut Connection

Most state-of-the-art learning-based motion deblurring methods [9,21] have
adopted the fully convolutional network (FCN) [13] structure. Shortcut connec-
tions are used in FCN to facilitate gradient propagation and combine low-level
features and high-level features, which are both important in motion deblurring.
The former can provide detailed and localization information, while the latter
can provide semantic information.

The fusion method of shortcut connection is important for effectively com-
bining low-level and high-level features. In [17], the fusion is implemented by
channel-wise concatenation. In [13,21], the fusion is implemented by element-
wise addition, which is proved to work well in motion deblurring. However, the
importance of low-level features and high-level features might be different in

Blurred Image Recognition 111

Fig. 2. Joint training framework. Here x, y, z are the input blurred image, ground-
truth sharp image and ground-truth classification label, respectively. PSC is short for
parameterized shortcut connection. During the training phase, the two modules are
trained iteratively. Note that all learning-based motion deblurring and image classifi-
cation models can be embedded into this framework.

motion deblurring. Inspired by the highway networks [19], which uses carry gate
and transform gate to control the proportion of input signals and transformed
signals passed to the next layer, we propose to introduce parameterized short-
cut connection (PSC) into the motion deblurring model, which can balance the
importance of low-level and high-level feature maps. Specifically, each channel
of low-level feature map is multiplied with a learnable parameter that controls
the importance of low-level feature on this channel before passed through the
shortcut connection and added with the high-level feature map. The learnable
parameters enable the model to automatically learn to decide the importance of
low-level features and high-level features from data (see Fig. 2).

The original shortcut connection based on element-wise addition used by [21]
can be described as:

ai = Fi(ai−1 + aj), (5)

where Fi is the non-linear transformation in the i-th layer, ai is the output of Fi,
and aj is the output from an early layer before ai−1. Note that this is not the
same with the residual connection. Here ai and aj can have a large distance in the
network, usually representing low-level image features and high-level semantic
features, respectively.

In comparison, our PSC has a group of learnable parameters γ, which is used
to control the importance of low-level feature:

ai = Fi(ai−1 + γaj) (6)

where γ is a weight vector that has an equal length with aj in channel dimension.
Here the multiplication is channel-wise, and γk is the weight of the k-th channel
in aj .

112 W. Zhang and Z. Wang

Algorithm 1. Joint learning algorithm
Input: Motion blurred image x, latent sharp image y, classification label z, number of

epochs N , number of steps for training D (R) in each epoch ND (NR), the learning
rate of D (R) denoted as ηD (ηR), the weight of recognition loss λ.

Output: Image motion deblurring model D, image classification model R.
Initialize R with parameters pretrained on sharp images.
for i = 1 : N do

for j = 1 : ND do
θD ← θD − ηD · ΔL(x,y,z|θR)

ΔθD
end for
for k = 1 : NR do

θR ← θR − ηR · ΔLcla(x,z|θD)
ΔθR

end for
end for

4 Experiments

4.1 Dataset

To evaluate the classification accuracy upon motion-blurred images, we need
motion-blurred images paired with their ground-truth classification labels. How-
ever, to the extent of our knowledge, there is no such dataset available by now.
Therefore, we have to synthesize data for the validation of our methods. There
are some motion deblurring datasets that have paired sharp and blurred images.
However, labelling these images needs extensive human labor with a relatively
high cost. A more cost-effective way for synthesizing our dataset is to generate
motion-blurred versions of the sharp images from existing image classification
datasets. We use two datasets in our experiments: PASCAL VOC 2012 [4] and
Caltech256 [5].

Many methods have been proposed for generating motion-blurred image from
single sharp image. In our work, we adopt the method introduced in [1] since
it can generate realistic motion-blurred images and has been adopted by many
previous works [9,10]. [1] proposed to generate random 2-D camera trajectory
with a Markov process and synthesize the blur kernel from the trajectory with
bilinear interpolation.

4.2 Baselines and Ablation Groups

The recognition loss and joint training strategy can actually be applied to any
learning-based motion deblurring and classification method, and the PSC can
also be used in any motion deblurring method which uses FCN as the network
architecture. To verify the effectiveness of our methods, we choose SRN [21]
as the basic deblurring model. And we use DenseNet-121 [7] as the classifica-
tion model to classify the deblurred images and provide recognition loss for the
deblurring model, which is pretrained on ImageNet and fine-tuned on the sharp
images from Caltech256/PASCAL VOC.

Blurred Image Recognition 113

To the extent of our knowledge, there are currently few researches on
improving the classification accuracy of motion-blurred images. One comparable
method is DeblurGAN [9], which uses perceptual loss produced by pretrained
classification model for improving the semantic quality and recognition accuracy
of the deblurred image. We transplant the perceptual loss to the training of SRN.
Since the training can not converge when SRN is solely trained on perceptual
loss in our experiments, we also combined it with MSE loss. This baseline is
denoted as SRN-P. We use two implementations of SRN-P. One of them is the
implementation described in [9], which uses the output of the third convolutional
layer after the third pooling layer (denoted as V GG3,3) of VGG19, denoted as
SRN-P (VGG). For VGG19, we also use the parameters pretrained on ImageNet
and fine-tune it on the sharp images from Caltech256/PASCAL VOC. Another
implementation is using the output of the first dense block in DenseNet-121
(we choose this layer because the number of convolutional layers with stride >1
before it is 7, same as V GG3,3) for producing perceptual loss, denoted as SRN-
P (Dense). Besides, we also conducted ablation studies to evaluate how much
improvement can each part of our method brings. Blurred and Blurred-D both
use blurred image as the input of the classification model, while other methods
perform motion-deblurring on the input beforehand. The methods are listed as
below.

– Blurred: Input motion-blurred image into DenseNet-121.
– Blurred-D: Input motion-blurred image into DenseNet-121 trained on the

blurred images.
– SRN: The original SRN trained with MSE loss.
– SRN-P (VGG): SRN trained with MSE loss and perceptual loss produced

by V GG3,3.
– SRN-P (Dense): SRN trained with MSE loss and perceptual loss produced

by the first denseblock in DenseNet-121.
– SRN-PSC: SRN equipped with PSC trained with MSE loss.
– SRN-R: SRN trained with MSE loss and recognition loss produced by

DenseNet-121.
– SRN-RJ: SRN-R trained using joint learning strategy.
– SRN-PSC-RJ: SRN-PSC trained with MSE loss and recognition loss using

joint learning strategy.

4.3 Implementation

We use PyTorch 1.3.1 for the implementation. The models are trained on a
NVIDIA GeForce RTX 2080 Ti GPU with CUDA 10.0. We use parameters
pretrained on ImageNet to initialize DenseNet-121, then fine-tuned it on our
synthesized datasets. This transfer learning process can alleviate the over-fitting
caused by small data size and reduce training time. The optimizers for SRN

114 W. Zhang and Z. Wang

and DenseNet-121 are Adam and SGD (with momentum = 0.9 and Nesterov
momentum enabled), respectively. For λ, we try several values in the training
process of SRN-R on the PASCAL VOC 2012 dataset (note that SRN-R is equal
to SRN when λ = 0) and find that the best result is achieved when λ is set to
1e−2 (see Table 2), so we use this value in all experiments. This value is relatively
low because the recognition loss is approximately 1–2 orders of magnitude larger
than the MSE loss. At each epoch, SRN is trained for 2000 steps, then DenseNet-
121 is trained for 160 steps. The initial learning rate is set to 1e−2 for γ1 and γ2
in PSC, and 1e−4 for other parameters in SRN. The learning rate for DenseNet-
121 is set to 1e−4 initially and drops by 0.5 after every 5 epochs. All models
are trained until the loss stops dropping in 3 epochs. For SRN-PSC-RJ, training
converges after 20 epochs.

Table 1. Experimental results: Image classification

Methods PASCAL VOC Caltech256

mAP Accuracy Top-5 accuracy

Blurred 0.544 0.408 0.686

Blurred-D 0.594 0.429 0.713

SRN 0.641 0.601 0.811

SRN-P (VGG) 0.645 0.610 0.815

SRN-P (Dense) 0.648 0.614 0.817

SRN-PSC 0.665 0.621 0.821

SRN-R 0.652 0.620 0.826

SRN-RJ 0.661 0.626 0.830

SRN-PSC-RJ 0.687 0.631 0.837

Table 2. mAP on PASCAL VOC 2012 under different values of λ

λ 0 1e−3 1e−2 1e−1 1.0

mAP 0.641 0.648 0.652 0.639 0.624

Blurred Image Recognition 115

Table 3. Experimental results: Motion deblurring

lMethods PASCAL VOC Caltech256

PSNR SSIM PSNR SSIM

SRN 24.10 0.704 25.89 0.780

SRN-P (VGG) 24.08 0.712 25.57 0.785

SRN-P (Dense) 23.57 0.716 25.47 0.792

SRN-PSC 24.19 0.723 26.03 0.787

SRN-R 24.03 0.726 25.59 0.801

SRN-RJ 23.69 0.729 25.46 0.807

SRN-PSC-RJ 23.73 0.733 25.71 0.815

4.4 Experimental Results

We will show and discuss the experiment results qualitatively and quantitatively.
Some deblurred results produced by our methods are shown in Fig. 3. It can be
seen that our (SRN-PSC-RJ) deblurred results have fewer artifacts (the unnatu-
ral patterns that are often presented in recovered images) and higher perceptual
quality than the original SRN.

From the results on image classification (see Table 1), we can conclude that:

1. Comparing SRN-R and SRN-P, we can see that both perceptual loss and
recognition loss can increase the classification accuracy on deblurred images
by forcing the deblurring model to generate deblurred images with richer
semantic information. Recognition loss brings larger improvement than per-
ceptual loss because rather than reducing the distance between high-level
features of sharp image and deblurred image, the recognition loss exerts a
stronger force on the deblurring model by reducing the distance between the
recognition results on deblurred images with ground-truth labels.

2. Comparing SRN-R and SRN-RJ, we can see that joint training strategy fur-
ther improves the classification accuracy/mAP on deblurred images. This
verifies that D and R can improve mutually through the joint learning pro-
cess.

3. Comparing SRN and SRN-PSC, we can see that the proposed PSC can
improve the classification accuracy upon deblurred image. This is probably
because PSC can improve the overall quality of the deblurred image with
respect to both PSNR and SSIM (see Table 3).

From the results on motion deblurring (see Table 3 and Fig. 3), we can see
that our methods can improve the image quality in terms of SSIM, which is
considered to be closer to the human perceptual quality than PSNR. In the
meanwhile, PSNR drops because increasing PSNR is equivalent to reducing MSE
loss, and adding recognition loss into the loss function will decrease the PSNR.

116 W. Zhang and Z. Wang

Fig. 3. Some deblurred results. It can be seen that our deblurred results have fewer
artifacts and higher perceptual quality than the original SRN.

5 Conclusion

In this paper, we propose recognition loss in image motion deblurring, aiming at
improving the semantic quality and classification accuracy of deblurred images.
Furthermore, we propose to train the deblurring model and the classification
model in a joint training framework to enable mutual learning of the two models.
Experiments on our synthesized datasets have shown that the recognition loss
and joint training strategy can improve not only classification accuracy on the
deblurred images, but also SSIM and the perceptual quality of the deblurred
images. Finally, we introduce parameterized shortcut connection (PSC) into the
motion deblurring model, which can improve the quality of the deblurred images
in terms of both PSNR and SSIM.

Acknowledgements. This work is supported in part by NSFC (Grant No. 61872215),
Shenzhen Science and Technology Program (Grant No. RCYX20200714114523079),
and Shenzhen Nanshan District Ling-Hang Team Project (Grant No. LHTD20170005).

References

1. Boracchi, G., Foi, A.: Modeling the performance of image restoration from motion
blur. IEEE Trans. Image Process. 21(8), 3502–3517 (2012)

2. Cai, D., Chen, K., Qian, Y., Kämäräinen, J.K.: Convolutional low-resolution fine-
grained classification. Pattern Recogn. Lett. 119, 166–171 (2019)

3. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image
Process. Publ. IEEE Signal Process. Soc. 7(3), 370 (1998)

Blurred Image Recognition 117

4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL visual object classes challenge 2012 (VOC2012) results (2012). http://
www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

5. Griffin, G., Holub, A., Perona, P.: The caltech 256 (technical report). Caltech
Computation and Neural Systems (2006)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
IEEE (2016)

7. Huang, G., Liu, Z., Laurens, V., Weinberger, K.Q.: Densely connected convolu-
tional networks. IEEE Computer Society (2016)

8. Kai, Z., Zuo, W., Gu, S., Lei, Z.: Learning deep CNN denoiser prior for image
restoration. In: 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2017)

9. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind
motion deblurring using conditional adversarial networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

10. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-
of-magnitude) faster and better. IEEE (2019)

11. Liu, D., Cheng, B., Wang, Z., Zhang, H., Huang, T.S.: Enhance visual recognition
under adverse conditions via deep networks. IEEE Trans. Image Process. 28(9),
4401–4412 (2017)

12. Liu, D., Wen, B., Liu, X., Wang, Z., Huang, T.S.: When image denoising meets
high-level vision tasks: a deep learning approach (2017)

13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

14. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network
for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3883–3891 (2017)

15. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel
prior. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

16. Pei, Y., Huang, Y., Zou, Q., Zang, H., Zhang, X., Wang, S.: Effects of image
degradations to CNN-based image classification. arXiv preprint arXiv:1810.05552
(2018)

17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Computer Science (2014)

19. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. Computer Science
(2015)

20. Szegedy, C., Wei, L., Jia, Y., Sermanet, P., Rabinovich, A.: Going deeper with
convolutions. IEEE Computer Society (2014)

21. Tao, X., Gao, H., Wang, Y., Shen, X., Wang, J., Jia, J.: Scale-recurrent network
for deep image deblurring. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2018)

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://arxiv.org/abs/1810.05552
https://doi.org/10.1007/978-3-319-24574-4_28

Learning How to Zoom In: Weakly
Supervised ROI-Based-DAM for
Fine-Grained Visual Classification

Wenjie Chen1,2(B), Shuang Ran2, Tian Wang2, and Lihong Cao1,2,3

1 State Key Laboratory of Media Convergence and Communication,
Communication University of China, Beijing, China

jessiechen@cuc.edu.cn
2 Neuroscience and Intelligent Media Institute, Communication University of China,

Beijing, China
{rans,tian wang}@cuc.edu.cn

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Wuxi, China

lihong.cao@cuc.edu.cn

Abstract. Fine-grained visual classification (FGVC) is challenging due
to the difficulty of finding discriminative features and insufficient labeled
training data. How to efficiently localize the subtle but discriminative
features with limited data is not straightforward. In this paper, we
propose a simple yet efficient region of interest based data augmenta-
tion method (ROI-based-DAM) to handle the circumstance. The pro-
posed ROI-based-DAM can first localize the most discriminative regions
without the need of bounding box or part annotations. Based on these
regions, ROI-based-DAM then carries out selective sampling and multi-
scale cropping for constructing a series of high-quality ROI-based images.
Thanks to its simplicity, our method can be easily implemented in the
standard training and inference phases to boost the fined-grained classifi-
cation accuracy. Our experimental results on extensive FGVC benchmark
datasets show that the baseline model such as ResNeXt-50 can achieve
competitive state-of-the-art performance by utilizing the proposed ROI-
based-DAM, which demonstrate its effectiveness.

Keywords: Fine-grained visual classification · Region of interest
based data augmentation · Weakly supervision

1 Introduction

Fine-Grained Visual Classification (FGVC) has a history of more than 20 years
[1], which has always been a frequent subject in the field of computer vision.
FGVC is defined to solve the problem of distinguishing subclasses of the same
kind, such as species of the bird.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 118–130, 2021.
https://doi.org/10.1007/978-3-030-86340-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_10

Learning How to Zoom In 119

Compared with general image classification, FGVC is more challenging
because it has lower inter-class variances and higher inner-class variances. More-
over, insufficient labeled data for training in FGVC makes it harder to distinguish
between different similar objects.

Fig. 1. Comparison between cen-
ter image cropping and the pro-
posed ROI-based image cropping.
Given the same images, the first
row shows the results of center
image cropping; the second row
shows the results of the proposed
ROI-based image cropping (here
K = 2 for explanation; K is the
number of multi-scale ROIs gener-
ated by ROI-based-DAM).

Data augmentation such as center/random
cropping is a common technique for data pre-
processing and has been proven to play a
positive role in improving generalization per-
formance in computer vision tasks. However,
adopting them blindly might make the train-
ing inefficient as these methods are indepen-
dent of the image context. See Fig. 1 for some
failure cases that center cropping drops out
some informative regions of birds.

In this paper, we propose a region of inter-
est based data augmentation method, ROI-
based-DAM, to solve the problem of ineffi-
cient training caused by data augmentation
methods independent of image context. See
Fig. 1 for some examples of the proposed ROI-
based-DAM. Our method is inspired by the
eye movement trajectory when humans try to
distinguish two or more similar objects, we
assume that it is essential to pay attention to
the most discriminative regions as well as the
global structure of objects or the complementary feature regions.

ROI-based-DAM is a weakly-supervised data augmentation method which
only requires the fine-grained classification labels. The basic idea of ROI-based-
DAM is to localize the most discriminative regions or ROI in the first place.
Unlike traditional object localization methods such as Faster R-CNN [15], our
method requires no bounding box annotation to generate ROI. Specifically, our
method is based on Guided-Grad-CAM [16,17], an effective class-discriminative
localization technique, to generate template ROI in each image. Then an ROI-
based selective sampling method is designed to make template ROI more precise
by generating several candidate ROIs in its neighborhood. Furthermore, based
on these ROIs, we design a multi-scale image cropping method for constructing
a series of high-quality ROI-based images from fine-scale to coarse-scale. The
advantages of this method are two-fold. Firstly, it can compensate for the limi-
tations of single-scale ROI cropping. Secondly, if the finest-scale ROI happens to
hold the complete target object of which the scale is relatively small in an image,
then the ROI-based multi-scale cropping can provide a series of images of the
object from coarse-scale to fine-scale, which can be beneficial for convolutional
neural network (CNN) to form a scale-invariant representation of the object.

120 W. Chen et al.

In summary, the advantages of the proposed ROI-based-DAM are as follows:

– It can localize the most discriminative parts (template ROI) in a given image
without any bounding box or part annotations;

– It can construct a series of high-quality ROI-based images of different scales
at a very low cost;

– It can be easily implemented in the standard training and testing phases as an
efficient data preprocessing method to boost the FGVC accuracy; hence can
be regarded as an alternative to frequently-used data augmentation methods
such as random cropping and center cropping.

2 Related Work

2.1 Fine-Grained Visual Classification

The past decade has seen the rapid development of deep learning in FGVC.
Broadly, these methods can be organized into three main paradigms [20], i.e.,
fine-grained recognition (1) with localization-classification subnetworks; (2) with
end-to-end feature encoding and (3) with external information. Since the idea
of proposed ROI-based DAM is similar to the first paradigm to some extent, we
will mainly review the previous works belong to this paradigm.

The basic idea of the first paradigm is to firstly capture discriminative parts
by a localization network and then construct representations of these parts for
the final classification. Spatial transformer [7] proposes a dynamic mechanism
that can actively spatially transform an image for more accurate classification.
Liu et al. [11] propose Fully Convolutional Attention Networks (FCANs) to
glimpse local discriminative regions adaptive to different fine-grained domains
under a reinforcement learning framework. Fu et al. [5] propose a recurrent
attention convolutional neural network (RA-CNN) to search for the most infor-
mative regions from coarse-scale to finer-scale. Zhange et al. [23] propose a multi-
attention convolutional neural network (MA-CNN) to do better part learning,
where part generation and feature learning can reinforce each other. Yang et al.
[22] propose Navigator-Teacher-Scrutinizer Network (NTS-Net) to locate the
most informative regions in a self-supervised way. Zheng et al. [24] propose a
Trilinear Attention Sampling Network (TASN) to learn important fine-grained
features from hundreds of part proposals in an efficient teacher-student manner.
Ding et al. [4] propose a Selective Sparse Sampling Networks (S3Ns) to cap-
ture fine-grained details as well as preserve the context at the same time. Liu
et al. [10] propose a a novel Filtration and Distillation Learning (FDL) model
to enhance the region attention of discriminate parts for FGVC.

Different from some of the methods described above, which adopt specific
neural networks and elaborate loss functions to locate the most informative parts
or regions of objects, the proposed ROI-based DAM method can directly locate
the most informative regions by making the best use of Guided-Grad-CAM.
Specifically, the proposed ROI-based-DAM only needs a pre-trained model to
do localization, which make it simpler than previous methods.

Learning How to Zoom In 121

2.2 Data Augmentation

To compensate for the inefficiency of random data augmentation, a few methods
have been proposed to take data distribution into consideration. Ekin D. Cubuk
et al. [2] propose AutoAugment to automatically search for improved data aug-
mentation policies. Peng et al. [14] propose adversarial data augmentation to
jointly optimize the data augmentation and network training phase. Hu et al. [6]
propose Weakly Supervised Data Augmentation Network (WS-DAN) to explore
the potential of data augmentation. The WS-DAN first generates attention maps
to represent the object’s discriminative parts and augment the image through
attention cropping and attention dropping.

Amongst the methods above, our method is similar to WS-DAN at some
extent. We both locate the most informative parts of object and zoom them
in for learning details. Instead of doing attention dropping for finding other
complementary feature regions, we merely do selective sampling and multi-scale
cropping. In all, compared with WS-DAN, our ROI-based-DAM can be easier
to implement in the standard training and inference phases at a very low cost.

Fig. 2. An overview of the proposed ROI-based-DAM for fine-grained image recogni-
tion. (a) shows the process of finetuning a CNN module on the target dataset only using
the fine-grained classification labels; (b) shows the process of generating a saliency map
of an input image based on Guided-Grad-CAM; (c) shows the process of multi-scale
ROI-based image cropping for constructing a set of high-quality images for training.

122 W. Chen et al.

3 Methodology

In this section, we will introduce the proposed ROI-based-DAM in detail. See
Fig. 2 for an overview of the proposed ROI-based-DAM.

3.1 Saliency Map Generation

Saliency map can demonstrate each pixel’s unique quality [8] and plays an
important role in analyzing image content and locating the region of interest.
Before generating the saliency map, we firstly fine-tune a CNN module on the
target FGVC dataset using only the fine-grained classification labels, gradu-
ally adapting the network to the distribution of target dataset. Then we adopt
Guided-Grad-CAM, a class-discriminative localization technique, to generate the
saliency map of input image. Specifically, each image I ∈ R3×H×W (here H and
W are the height and width of I, respectively) is forward propagated through
the CNN module. The top-1 predicted class is regarded as the desired class.
A feedback signal, of which the gradients are set to zero for all classes except
the desired class, is backpropagated to the input image. We denote acquired
Guided-Grad-CAM mask as Mggcm ∈ R3×H×W . Finally, we convert Mggcm to a
single-channel saliency map MGSM by summing up the elements in Mggcm along
the channel axis and obtain a new single-channel tensor MG and then normalize
each element in MG by (1):

MGSM (i) =
MG(i) − Mmin

Mmax + Mmin
(1)

where Mmin = minMG, Mmax = maxMG and 1 ≤ i ≤ (3 × H × W). See Fig. 2
(b) for an example of a saliency map given an image.

3.2 Template ROI Localization

Based on the saliency map MGSM generated in the Sect. 3.1, we utilize the
following steps to locate the template ROI of a given image. Firstly, we binarize
the saliency map MGSM with the threshold Vb using (2):

MBGSM (i) =

{
1, MGSM (i) ≥ Vb

0, MGSM (i)<Vb

(2)

Then, a standard grid of N × N is used to divide the MBGSM (i) into N × N
subregions.

To make it clear, we define the pixel-of-interest as the pixel with a value of
one in MBGSM and the significant score of each subregion as the proportion of
pixels-of-interest inside it, which indicates the probability of a subregion being
part of the desired class.

Furthermore, we define the subregion of interest SRinterest as the subregion
of which the significant score exceeds a pre-defined threshold thrs.

Learning How to Zoom In 123

Fig. 3. The first column shows the original images. The second to fourth columns
show the saliency maps, the significant score matrixes (the size of which are 64× 64
for explanation), and the template ROIs (denoted by red rectangles) of corresponding
images, respectively. (Color figure online)

Nsr is the number of subregions of interest in a saliency map. For each subre-
gion of interest SRinterest(j), where 1 ≤ j ≤ Nsr, we record the coordinates of its
top-left corner and bottom-right corner, which are (xj,min, yj,min) and (xj,max,
yj,max), respectively. The outermost boundary coordinates of these subregions
of interest can be calculate by (3):

xmin = min
1≤j≤Nsr

{xj,min}
ymin = min

1≤j≤Nsr

{yj,min}
xmax = max

1≤j≤Nsr

{xj,max}
ymax = max

1≤j≤Nsr

{yj,max}

(3)

We then expand this region, of which the coordinates of top-left corner and
bottom-right corner are (xmin, ymin) and (xmax, ymax), respectively, to a larger
region having the same aspect ratio as input image I. This region we obtained
from the above process is denoted as template ROI. See Fig. 3 for examples of
localization of template ROI.

3.3 Selective Sampling

In order to do selective sampling, we firstly calculate the center (xc, yc) of
template ROI: xc = xmin+xmax

2 , yc = ymin+ymax

2 ; and height Hroi and width
Wroi of template ROI: Hroi = ymax − ymin and Wroi = xmax − xmin.

Next, we build up the selective sampling functions for generating candi-
date ROIs in the neighborhood of template ROI. Set x and y are the cen-
tral coordinates of a candidate ROI. We assume that the probability density
function of x follows gaussian distribution with a mean of xc and a standard
deviation of g(Wroi), where g(Wroi) is a linear function of Wroi. x can be
written as: x ∼ N(xc, g(Wroi)2). The similar assumption for y is written as:
y ∼ N(yc, g(Hroi)2). For simplicity, we set g(v) = λ · v, where λ controls the
dispersion of the distribution.

124 W. Chen et al.

To bring more variation, we transform the scale of template ROI by merely
multiplying a random variable r, which is sampled from a uniform distribution
and can be written as r ∼ U(Llow, Lhigh). Hence the height and width of a
candidate ROI become (r · Hroi) and (r · Wroi), respectively.

We adopt the following method to check whether the most salient regions are
inside a candidate ROI. We first sum up all elements inside the template ROI
in a saliency map and get a template score denoted as Stroi. Then the score of a
candidate ROI Scroi is calculated. We only feed the candidate ROI whose Scroi

is no lower than (threc · Stroi) to CNN.
To make it clear, we denote both template ROI and candidate ROI as finest-

scale ROI. In addition, we only adopt selective sampling during training for
alleviating model overfitting.

3.4 Multi-scale ROI-based Cropping

Given an image I, the coordinates of a finest-scale ROI are xmin, ymin, xmax

and ymax. K is the number of ROIs needed to be generated and K ≥ 1. The
coordinates of the jth-scale (1≤ j ≤ K) ROI can be calculated by using (4):

x
(j)
min = xmin − (j − 1) · xmin

K + 1
, y

(j)
min = ymin − (j − 1) · ymin

K + 1

x(j)
max = xmax +

(j − 1) · (W − xmax)
K + 1

, y(j)
max = ymax +

(j − 1) · (H − ymax)
K + 1

(4)
After multi-scale ROI-based cropping, all these ROIs are resized to a same

resolution. See Fig. 2 (c) for an example of the multi-scale ROI-based cropping.

3.5 Testing Strategy Based on ROI-Based-DAM

For an image I in the testset, we firstly localize the template ROI based on
its saliency map generated by Guided-Grad-CAM. Then, we generate ROIs of
K different scales using the method described in Sect. 3.4. All these ROIs are
resized to the same resolution and fed to the CNN module. Finally, we do the
pointwise summation of all these ROIs’ softmax outputs.

4 Experiments

4.1 Dataset

We conduct experiments on three widely-used fine-grained image datasets:
Caltech-UCSD Birds (CUB-200-2011) [19], FGVC-Aircraft [12] and Stanford-
Cars [9]. Bounding box or part annotations are not available in all the
experiments.

Learning How to Zoom In 125

4.2 Implementation Details

We adopt ResNeXt-50 [21] as the backbone. For the baseline, ResNeXt-50 is
firstly pre-trained on the ImageNet dataset [3] and then fine-tuned on different
target datasets. There are four stages in ResNeXt-50 backbone. During training,
we fix the parameters in stage one and fine-tune the rest. The model is trained
using Stochastic Gradient Descent (SGD) with the momentum of 0.9, epoch
number Nepoch of 60, weight decay of 0.0001, label smoothing [18] of 0.1, and a
mini-batch size of 16. The initial learning rate is set to 0.01 and is decayed to
0.001 in the last 40% epochs. The model is implemented using PyTorch [13] on
a TitanXP GPU.

Data Preprocessing. In the training phase, each image is first resized to a
resolution of (600, 600), from which regions of (448, 448) are randomly cropped.
Besides, random horizontal image flipping is used when training. The data pre-
processing of each image for inference is the same, except that a center region
of (448, 448) is cropped.

Table 1. Comparison of our approach to recent results on CUB-200-2011, FGVC-
Aircraft and Stanford Cars

Method CUB Aircraft Cars

FCAN [11] 84.3 – 91.5

RA-CNN [5] 85.3 – 92.5

MA-CNN [23] 86.5 89.9 92.8

NTS-NET [22] 87.5 91.4 93.9

TASN [24] 87.9 – 93.8

S3N [4] 88.5 92.8 94.7

FDL [10] 88.6 93.4 94.3

WS-DAN [6] 89.4 93.0 94.5

FT baseline 86.6 91.5 93.0

ROI-based-DAM (ours) 88.5 92.8 94.5

ROI-Based-DAM. The parameter settings in ROI-based-DAM are as follow:
N = 64, Vb = 0.5, thrs = 0.1, λ = 0.1, Llow = 0.9, Lhigh = 1.3, threc = 0.95.
All ROIs are resized to the same resolution of (448, 448) before feeding to the
CNN. We denote Ktr (Ktr ≥ 1) as the number of multi-scale ROIs generated
from an image in the training phase, and Kte (Kte ≥ 1) as the number of multi-
scale ROIs generated from an image in inference. Since the original dataset is
expanded (Ktr + 1) times after utilizing the ROI-based-DAM, we reduce the
epoch number by multiplying 1

(Ktr+1) for fair comparison. For example, if Ktr

= 3, the epoch number NROI,epoch is Nepoch

Ktr+1 = 60
4 = 15.

126 W. Chen et al.

4.3 Numerical Results

The classification performance is evaluated by the top-1 classification accuracy
(%). Average test accuracy of the ROI-based-DAM under Ktr = 3 and Kte = 3
is recorded in our experiments. As shown in Table 1, our model (ROI-based-
DAM) significantly outperforms the ResNeXt-50 baseline (FT Baseline) on all
three datasets, and can achieve comparable performance with state-of-the-art,
which demonstrates the effectiveness of ROI-based-DAM to FGVC.

4.4 Ablation Study

In this section, we evaluate the contribution of Ktr and Kte in CUB-200-2011
and compare the proposed ROI-based-DAM with standard data augmentation
method such as multi-scale randomly-zoom-in to test its efficiency.

Table 2. Test accuracy under different Ktr; Ori represents the original dataset and Δ
denotes the improvement.

Trainset Max (%) Min (%) Avg± std(%) Δ (%) P-value

Ori 86.7 86.5 86.6± 0.1 0 –

Ori with Ktr = 1 87.4 87.0 87.2± 0.2 +0.6 2.16× 10−4

Ori with Ktr = 2 88.0 87.3 87.7± 0.2 +1.1 3.07× 10−5

Ori with Ktr = 3 87.9 87.4 87.6± 0.2 +1.0 1.28× 10−5

The Contribution of Ktr . In this section, we study the effect of Ktr on test
accuracy. For a fair comparison, only center crop (CC) is used for inference. Each
experiment is run under five random seeds and statistic data of these comparison
results are recorded in Table 2. T-tests are used to determine whether these
improvements of different Ktr are significant to the baseline.

It can be seen from Table 2 that training DNN with larger Ktr such as 2 or 3
can bring about a clear and significant improvement of 1% to the test accuracy
compared with the baseline, indicating that effectiveness of the proposed ROI-
based-DAM in training.

The Contribution of Kte. In this section, we study the effect of Kte on test
accuracy. In the comparison experiments, we keep Ktr fixed and only vary Kte

to see its influence on test accuracy. Each experiment is run under five random
seeds. See Table 3 for the statisitc results.

First of all, we demonstrate that network training’s randomness has little
influence on the network performances since STDs of these test results, caused
by this randomness, are small on the CUB-200-2011. Secondly, it can be seen
that even setting Kte = 1 can bring about a significant improvement to the

Learning How to Zoom In 127

baseline under the same Ktr. Furthermore, it seems that the average test accu-
racy has a clear trend towards increasing if Kte increases, indicating that larger
Kte (the max Kte we adopted in the experiments is 3) might bring about more
improvements. For example, when Ktr is fixed as 1, setting Kte to 3 can bring
about a significant improvement of 1% to the test accuracy compared with the
corresponding baseline. All these results indicate that the more ROIs of different
scales are used, the better the inference could be. The reason that multi-scale
ROIs works for inference could be that these ROIs’ softmax outputs complement
each other and further boost the test accuracy after doing pointwise summation.
In short, we recommend Ktr = 3 and Kte = 3 in experiments.

Comparison with Random Data Augmentation. Since ROI-based-DAM
knows how to zoom in and crop the input image for training, we want to see
whether ROI-based-DAM is more efficient than standard data augmentation
such as multi-scale randomly-zoom-in (RZI). As for RZI, we define KRtr to
be the number of multi-scale cropped regions for an image in the training set.
For fair comparison, we set KRtr = Ktr = 3 in the experiment. In order to
implement RZI, we first rescale the image to a resolution of (448 × r, 448 × r),
here r is randomly sampled from a predefined list [1.0, 1.2, 1.4, 1.6]. Then we
randomly crop a region of (448, 448) from this rescale image. In addition, we
compare the ROI-based-DAM with standard five-crop (four corners and central
crop) to see which one is more efficient in inference. See Table 4 for the statistic
data of these comparison results.

We can see that, in Table 4, when only center crop is used for inference, the
proposed ROI-based-DAM can bring about a significant improvement of 1.0%
to the test accuracy on the baseline, while the RZI can only bring about an
improvement of 0.3%. Moreover, when five-crop is used for inference, our method
can bring about a significant improvement of 1.5% to the baseline, while the
RZI has no advantage compared with the baseline. All the comparison results
indicate that the proposed ROI-based-DAM is more efficient than standard data

Table 3. Test accuracy under different Kte and Ktr. Ori represents the original
dataset. CC represents center image cropping. Δ denotes the improvement

Trainset Testset Max (%) Min (%) Avg± std (%) Δ (%) P-value

Ori with Ktr = 1 CC 87.4 87.0 87.2± 0.2 0 –

Ori with Ktr = 1 CC with Kte = 1 87.9 87.6 87.8± 0.1 +0.6 5.67× 10−4

Ori with Ktr = 1 CC with Kte = 2 88.3 87.7 88.1± 0.2 +0.9 1.75× 10−4

Ori with Ktr = 1 CC with Kte = 3 88.4 87.8 88.2± 0.2 +1.0 5.16× 10−5

Ori with Ktr = 2 CC 88.0 87.3 87.7± 0.2 0 –

Ori with Ktr = 2 CC with Kte = 1 88.6 88.0 88.3± 0.2 +0.6 7.69× 10−3

Ori with Ktr = 2 CC with Kte = 2 88.7 88.0 88.3± 0.2 +0.6 6.30× 10−3

Ori with Ktr = 2 CC with Kte = 3 88.9 88.1 88.4± 0.3 +0.7 5.01× 10−3

Ori with Ktr = 3 CC 87.9 87.4 87.6± 0.2 0 –

Ori with Ktr = 3 CC with Kte = 1 88.6 87.8 88.1± 0.3 +0.5 2.22× 10−2

Ori with Ktr = 3 CC with Kte = 2 88.6 88.1 88.4± 0.2 +0.8 4.56× 10−4

Ori with Ktr = 3 CC with Kte = 3 88.7 88.3 88.5± 0.2 +0.9 1.03× 10−4

128 W. Chen et al.

Table 4. Comparison with RZI in CUB-200-2011 Dataset. Ori represents the original
dataset. CC represents center image cropping. Δ denotes the improvement

Method Trainset Testset Max (%) Min (%) Avg± std (%) Δ (%) P-value

Baseline Ori CC 86.7 86.5 86.6± 0.1 0 –

RZI Ori with KRtr = 3 CC 87.1 86.7 86.9± 0.1 +0.3 7.98× 10−3

ROI-based-DAM Ori with Ktr = 3 CC 87.9 87.4 87.6± 0.2 +1.0 1.28× 10−5

RZI Ori with KRtr = 3 Five-crop 87.1 86.4 86.6± 0.2 +0 0.875

ROI-based-DAM Ori with Ktr = 3 Five-crop 88.3 87.9 88.1± 0.1 +1.5 1.50× 10−7

augmentations during training and in inference, suggesting that the ROI-based
data augmentation can play an important role in FGVC.

4.5 Qualitative Results

To analyze why the ROI-based-DAM works, we draw the multi-scale ROIs gen-
erated by the proposed ROI-based-DAM, see Fig. 4. We use red and blue rect-
angles to denote the regions at K scales generated by ROI-based-DAM, with
red rectangle denoting the finest-scale ROI and blue rectangle denoting other
coarser-scale ROIs. It can be seen that in Fig. 4 the finest-scale ROIs are indeed
informative for fine-grained classification. Moreover, all of these multi-scale ROIs
can complement each other and be helpful for final inference.

Fig. 4. The multi-scale ROIs proposed by the ROI-based-DAM. The first two rows
show K = 3 in CUB-200-2011. The third and fourth rows show K = 3 in Stanford
Cars.

5 Conclusion

In this paper, we propose a simple yet efficient data augmentation method ROI-
based-DAM. The ROI-based-DAM can first locate the most informative regions

Learning How to Zoom In 129

in an image without any bounding box or part annotations and then generate a
set of high-quality multi-scale ROI-based images at a very low cost. Moreover,
it can be easily implemented in the standard training and inference phases to
boost the test accuracy of FGVC. Extensive experiments on FGVC datasets
demonstrate the effectiveness of the proposed ROI-based-DAM.

References

1. Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P., Fiser, J.: Subordinate-level
object classification reexamined. Psychol. Res. 62(2), 131–153 (1999)

2. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning
augmentation policies from data (2019)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

4. Ding, Y., Zhou, Y., Zhu, Y., Ye, Q., Jiao, J.: Selective sparse sampling for fine-
grained image recognition. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 6599–6608 (2019)

5. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convo-
lutional neural network for fine-grained image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446
(2017)

6. Hu, T., Qi, H., Huang, Q., Lu, Y.: See better before looking closer: weakly
supervised data augmentation network for fine-grained visual classification. arXiv
preprint arXiv:1901.09891 (2019)

7. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. arXiv preprint arXiv:1506.02025 (2015)

8. Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis.
45(2), 83–105 (2001)

9. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-
grained categorization. In: 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), Sydney, Australia (2013)

10. Liu, C., Xie, H., Zha, Z.J., Ma, L., Yu, L., Zhang, Y.: Filtration and distillation:
enhancing region attention for fine-grained visual categorization. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11555–11562 (2020)

11. Liu, X., Xia, T., Wang, J., Yang, Y., Zhou, F., Lin, Y.: Fully convolutional attention
networks for fine-grained recognition. arXiv preprint arXiv:1603.06765 (2016)

12. Maji, S., Kannala, J., Rahtu, E., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. Technical report (2013)

13. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. arXiv preprint arXiv:1912.01703 (2019)

14. Peng, X., Tang, Z., Yang, F., Feris, R.S., Metaxas, D.: Jointly optimize data aug-
mentation and network training: adversarial data augmentation in human pose
estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 2226–2234 (2018)

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

http://arxiv.org/abs/1901.09891
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1603.06765
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1506.01497

130 W. Chen et al.

16. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 618–
626 (2017)

17. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

19. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 dataset (2011)

20. Wei, X.S., Wu, J., Cui, Q.: Deep learning for fine-grained image analysis: a survey.
arXiv preprint arXiv:1907.03069 (2019)

21. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492–1500 (2017)

22. Yang, Z., Luo, T., Wang, D., et al.: Learning to navigate for fine-grained classifi-
cation. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 420–435 (2018)

23. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural
network for fine-grained image recognition. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 5209–5217 (2017)

24. Zheng, H., Fu, J., Zha, Z.J., Luo, J.: Looking for the devil in the details: learning
trilinear attention sampling network for fine-grained image recognition. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5012–5021 (2019)

http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1907.03069

Convolutional Neural Networks
and Kernel Methods

(Input) Size Matters for CNN Classifiers

Mats L. Richter1(B), Wolf Byttner2, Ulf Krumnack1, Anna Wiedenroth1,
Ludwig Schallner1, and Justin Shenk3

1 Department of Cognitive Science, Universitüt Osnabrück,
49069 Osnabrück, Germany

matrichter@uni-osnabrueck.de
2 Rapid Health, London, UK
3 VisioLab, Berlin, Germany

Abstract. Fully convolutional neural networks (CNNs) can process
input of arbitrary size by applying a combination of downsampling and
pooling. However, we find that fully convolutional image classifiers are
not agnostic to the input size but rather show significant differences in
performance: presenting the same image at different scales can result in
different outcomes. A closer look reveals that there is no simple relation-
ship between input size and model performance (no ‘bigger is better’),
but that each network has a preferred input size, for which it shows
best results. We investigate this phenomenon by applying different meth-
ods, including spectral analysis of layer activations and probe classifiers,
showing that there are characteristic features depending on the network
architecture. From this we find that the size of discriminatory features
is critically influencing how the inference process is distributed among
the layers. Based on these findings we are able to derive basic design
guidelines for optimizing neural architectures on specific datasets.

Keywords: Convolutional neural networks · Input size · Resolution ·
Scale

1 Introduction

The superior performance of convolutional neural networks in computer vision
can be attributed to the way they extract information from image data. The
information processing follows a bottom-up approach, where smaller, less com-
plex features, extracted by earlier layers, are successively combined to larger
and more complex features in later layers. The receptive field of a convolutional
layer can be seen as an upper bound of the size of features it can extract.1 This
property results in deeper layers being able to detect larger patterns than earlier
layers, since they are able to “see” an increasingly wider area on the input image.
This also means that the size of the input image controls to some degree how

1 In this work we refer to the height and width measured in pixels (absolute size) as
“size”.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 133–144, 2021.
https://doi.org/10.1007/978-3-030-86340-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_11

134 M. L. Richter et al.

the inference process is distributed inside the network’s structure [9]. In classifi-
cation tasks the images fed into the network is by convention resized to a fixed
sized square (often 224 × 224 pixels), which means that there is also an upper
limit to the usefulness of increasingly larger receptive field sizes. The relevance
of this is demonstrated by Tan and Le [12], who show that a network needs to
be scaled together with the input resolution to achieve good efficiency.

In this work, we further investigate this relationship between input size and
model architecture by answering the following questions:

– Has the size of the input image an effect on the predictive performance of CNN
classifiers? Answer: yes, altering the resolution and adding details improves
performance independent of each other (Sect. 3.1).

– Does the size of the input image influence how the information is processed
in the network? Answer: yes, we can show that processing significantly dif-
fers depending on input size (Sect. 3.2) and the size of the depicted objects
(Sect. 3.3).

– Can we know in advance which layers will contribute to the quality of the pre-
diction based on the input size? Answer: For strictly sequential architectures
the receptive field size allows identifying unproductive layers (Sect. 3.4).

– Do residual connections influence the observed behavior? Yes, residual con-
nections can help to involve more layers in the inference process (Sect. 3.5).

– Are there implications for neural architecture design? Answer: Yes; we pro-
pose methods to optimize architectures before and after training (Sect. 4).

2 Background

2.1 Fully Convolutional Networks

This work focuses on fully convolutional neural network classifiers; the current
de facto standard for CNN classifier architectures [3,5,12]. The key difference
is the use of a global average pooling layer (GAP), that replaces the flattening
operation in older architectures like AlexNet [7]. After a global pooling layer,
every dense layer is functionally a 1 × 1 convolution. Since convolutions are
agnostic towards the height and width of the input, the model can now process
images of arbitrary size. Being able to change the size of the input image without
altering the architecture of the CNN is important for avoiding potential artifacts
induced by architectural changes. For this reason, we also modify non-fully con-
volutional architectures such as the VGG-family of networks by [11] to be fully
convolutional. This is done by making the final pooling layer global [8].

2.2 Probe Classifiers, Saturation and Tail Patterns

For the analysis of trained models, we use probe classifiers. Probe classifiers
are a tool for analyzing how the solution quality progresses while the data is
propagated through neural networks [1]. In order to do this, logistic regression
“probes” are trained on the same task as the model, using the output of individual

(Input) Size Matters for CNN Classifiers 135

Fig. 1. VGG16 exhibits a tail pattern starting from Conv8. In the tail, saturation is
low, and probe accuracy is stagnating at the same level as the model output.

layers from the trained model as input. Since the softmax layer and the probes
effectively solve the same task, the probes can be used to judge the quality of
the intermediate solutions. Typically, probe performance increases layer by layer
approaching the model’s performance (Fig. 1 demonstrates).

We previously proposed saturation as another one-dimensional metric quan-
titatively describing a neural network layer [9]. Saturation is the percentage of
eigendirections on the layer’s output required to explain 99% of the variance.
Intuitively saturation measures a percentage of how much the output space of
a layer is “filled” or “saturated” with the data. A sequence of low-saturated
layers (<50% of the average saturation of all other layers) is referred to a “tail
pattern” and indicates that these layers are not contributing qualitatively to the
prediction (see Fig. 1). Probe performance typically stagnates, or even falls, in
tail layers [9].

2.3 Receptive Field Size

The receptive field is the area on an image that influences the output of a con-
volution operation. For this work, the size of the receptive field (described as a
scalar2) is important, since it reflects a spatial upper bound of visual patterns
detectable by the respective layer.

For sequential convolutional neural networks (no multiple pathways during
the forward pass) the receptive field size can be computed analytically. We refer
to the receptive field r of the lth layer of sequential network structure as rl (with
r0 = 1, which is the “receptive field” of the input). For all layers l > 0 in the
convolutional part of a sequential network, the receptive field can be computed
with

rl = rl−1 + ((kl − 2)
l−1∏

i=0

si) (1)

where rl−1 is the receptive field of the previous layer, kl refers to the kernel
size of the layer l (with potential dilation already accounted for) and si to the
stride size of the layer i. The receptive field increases with every convolutional

2 Technically a 2-tuple, however since square kernels are the norm we can make this
simplification.

136 M. L. Richter et al.

layer with a stride or kernel size greater 1. Strides also multiplicatively effect the
growth rate of consecutive layers rl+n, since the feature map is downsampled.

For the purpose of this work, we ignore skip connection for this computation,
since we are only interested in the receptive field size as a spatial upper bound.
This allows us to compute the receptive field sizes in ResNet-models.

2.4 Methodology

Choice of Models. The experiments are primarily conducted on VGG and
ResNet-style architectures [3,11]. VGG-style architectures serve as a baseline,
since they are simple sequential CNN architectures.

For more complex architectures we choose the ResNet family - primarily
ResNet18. There are two reasons for this. First, ResNet networks utilize many
ideas of modern neural architectures, like the building block design and resid-
ual connections, while being rather simple in their structure [5,12]. Second, the
ResNet family3 (ResNet18 in particular) is easy to visualize, while many more
complex derivative architectures feature a more non-sequential structure and
large numbers of consecutive layers, making experimental results harder to inter-
pret.

Training Setup. The training data was augmented by random cropping, hor-
izontal flipping and channel-wise normalization of the data points, using the
means and standard deviations of every color channel in ImageNet. Except where
noted, the network’s input resolution was the native resolution of the dataset.
Images that were resized were re-sampled by bilinear interpolation after the data
preprocessing and augmentation. All experiments used a batch size of 64.

Throughout our experiments, we used Stochastic Gradient Descent to train
the network. The initial learning rate was 0.1. This decreased to 0.01 after one
third of the epochs and 0.001 after two thirds. Models (except ResNet50) were
trained for 30 epochs. ResNet50 was trained for 60 epochs, due to its slower
rate of convergence. Hyperparameters were not fine-tuned, since state-of-the-art
performance was not the goal of this study. We found that different learning
rates, optimizers, batch sizes, data augmentations and number of epochs trained
did not noticeably affect any model that successfully converged.

Datasets. For the experiment in Sect. 3.1 we used the iNaturalist and ImageNet
benchmarks [4,10]. In other sections we used CIFAR10 [6], which allowed for a
more in-depth analysis due to its limited size [6]. Experiments were reproduced
on MNIST and TinyImageNet. Our code is publically available4.

3 For the sake of consistency and comparability, when we talk about to ResNet models
we specifically refer to the ImageNet versions of these architectures, unless specified.

4 https://github.com/delve-team/phd-lab.

https://github.com/delve-team/phd-lab

(Input) Size Matters for CNN Classifiers 137

3 Experiments

We first demonstrate that input size affects the predictive performance of models
even though no information is added when upsampling an image. We investigate
this behavior further by analyzing networks trained on CIFAR10. Based on these
results, we investigate the role of locality of discriminatory features in the image.
Finally, we discuss the role of the receptive field in these observations and analyze
the influence of residual connections.

3.1 Image Size Affects Model Performance Even with No
Additional Detail

Tan and Le [12] explained that classifiers perform better on larger images because
they feature additional detail. From this statement we derived our working
hypothesis - additional detail is the only reason larger images are classified more
accurately. By increasing the image size - with or without adding detail - we
were able to investigate this working hypothesis.

We trained models on ImageNet and iNaturalist in three different settings
that we refer to as A, B and C. Models of set A were trained on images with
a size of 224 × 224 pixels, providing the performance baseline. Set B models
were trained on the images in set A downsampled to 32 × 32 pixels. Based on
our hypothesis, we expected a drop in performance relative to set A. Set C was
trained on the images used in set B up-sampled to 224 × 224 pixels, increasing
the image size but not adding any detail. According to the working hypothesis,
model performance should not be higher than in set B.

Table 1. Relative top1-accuracy: the models are trained twice, first on downscaled
data with 32 × 32 resolution. The second training scales the images up to 224 × 224
again. The accuracy is relative to a baseline model of the same architecture trained on
regular 224 × 224 pixels images.

Dataset VGG16 ResNe18 ResNet50 EfficientNet-B0

Downscaled (32 × 32) ImageNet 15.35% 66.08% 28.21% 19.32%

Upscaled (224 × 224) ImageNet 45.74% 67.39% 71.8% 64.45%

Downscaled (32 × 32) iNaturalist 36.83% 30.4% 33.87% 15.34%

Upscaled (224 × 224) iNaturalist 45.74% 52.68% 54.38% 63.79%

In the results in Table 1 we see that decreasing the resolution had a negative
effect on performance. Upsampling Set B images partially regained the lost per-
formance. This contradicts our working hypothesis - the size of the input image
is an additional factor affecting model accuracy. Models do not perform better
on larger images solely because they have more information to work with.

138 M. L. Richter et al.

3.2 Input Size Affects the Inference Process of the CNN

To understand why upsampling images improves performance, we investigated
how the input resolution affects inference in the trained model. We trained
ResNet18 on three CIFAR10 resolutions; 32×32 pixels, upsampled to ResNet18’s
default input 224 × 224 pixels and intentionally oversized to 1024 × 1024 pixels.

Fig. 2. Changing the input size changes how the inference is distributed among the
layers, affecting performance in the process.

The results in Fig. 2 show that the image size redistributes the network’s
inference process. At 224 × 224 pixels the inference is distributed most evenly.
This is also where the network performs the best, at 92.79% accuracy. At 32 ×
32 pixels performance drops to 84.64%. We also observe that layer saturation
decreases sharply after two-thirds of the network in a clear tail pattern,5 while
probe performance flat-lines at this point.

Shrinking the input size shifts much of the inference process to earlier layers
of the network. Similarly, a drastically increased resolution of 1024×1024 pixels
shifts the inference process closer to the final layer. Oversizing the input image
also reduces the network’s predictive performance to 86.77%.

3.3 The Role of the Size of Discriminatory Features in the Relation
of Model and Input Resolution

From object detection research, we know that learned patterns in CNNs are often
not scale-invariant [2]. This indicates that processing objects of different size is
handled by different parts of the network. Based on our previous observations,
we hypothesized that the uneven distribution of the inference is caused by the
size of features on the images used for classification.

To verify this experimentally, we trained models on a modified version of the
CIFAR10 dataset. In this version, the CIFAR10 images are randomly embedded
in a black canvas of 160×160 pixels. This restricted all potentially discriminatory
features to a 32 × 32 pixel region. If the absolute size of the object influences
which parts of the network process the information, the resulting tail pattern
and evolution of the probe performances should be similar to the same model
trained on CIFAR10 on its native resolution.
5 Sudden drops of probe performance are caused by ResNet skipping layers [1,9].

(Input) Size Matters for CNN Classifiers 139

The results in Fig. 3 show that this is the case. The tail pattern starts at
the Conv8 layer in both scenarios. Upscaling the images to 160 × 160 results in
different saturation and probe patterns (see Fig. 3).

This is convincing evidence that the relevance of the input size when training
classifiers comes from the absolute size of the discriminatory features (measured
in pixels) detected by the model.

Fig. 3. Similar object size results in similar distribution of the inference process, as
indicated by the probe performances (left) and the position of the tail (right).

3.4 The Role of the Receptive Field in Relation to the Object Size

Our experiments thus far hint that features of different sizes are recognized by
different layers in the model. In this section, we will investigate the causes of
this phenomenon from an architectural point of view. From the perspective of
the architecture, the receptive field of a layer can be considered an upper bound
for the size of recognizable features. Since the receptive field expands with every
layer that has stride and/or kernel size >1, increasingly large features can be
recognized. We hypothesize that for simple, sequential architectures like the
VGG-family of networks6 the receptive field is the dominating factor influencing
whether unproductive layers are present, and where they are in the network.

We studied this property of the receptive field by training the VGG-style net-
works on CIFAR10 and adding the receptive field as an additional information
to our analysis. In Fig. 4 we indicate the first layer that processes input from
a layer with a receptive field size greater than the input size with a black bor-
der. We will refer to this layer as the border layer. For both architectures, this
border separates layers contributing to the inference process from layers that do
not contribute to the quality of the inference significantly. This suggests that
a layer in a simple, sequential architecture can only substantially improve the
performance when novel information is integrated into positions on its feature
map.

6 We define a simple architecture as a sequential architecture consisting only of con-
volutional, pooling and fully connected layers.

140 M. L. Richter et al.

(a) VGG11 (b) VGG19

Fig. 4. The border layer (black vertical bar) separates the “solving” part from the
“compressing” part of the model, as indicated by the probes and saturation.

We investigated this observation further by testing architectures that alter
the receptive field size differently than VGG-style networks. We tested the effect
of dilated convolutions by training a modified VGG19 with a dilation rate of 2 in
all convolutional layers. This modification effectively increases the kernel sizes
of all layers, which in turn increases the receptive field size without changing
the number of parameters. We also turned ResNet18 into a sequential model by
removing the residual connections. This ResNet-variant differs from VGG-style
models in multiple ways. It uses mostly convolutions with stride = 2 for down-
sampling and a more aggressive downsampling strategy, by using 2 additional
downsampling layers right after the input, resulting in a much larger receptive
field. From the results in Fig. 5 we can see that the behavior of both models is
consistent with previous observations.

(a) ResNet18 (no res. connections) (b) VGG19 (dilation=3)

Fig. 5. ResNet18 exhibits the same patterns observed in Fig. 4, when the skip-
connections are removed (a). Increasing the receptive field by dilating convolutions
(b) for VGG19 produces results consistent with Fig. 4.

Finally, we investigated how the solution develops inside the feature maps
of different parts of the network. We modified our logistic regression probes [1]
method by applying a single probe to every position of every layer’s feature
map. We then computed the relative performance of the probes by dividing the
probe accuracy with the network’s accuracy (both evaluated on the test set).
By doing so, we can visualize the quality of the partial solutions contained in
every position of the feature map based on their position. We observe in Fig. 6
that in early layers the central positions on the feature map generally perform

(Input) Size Matters for CNN Classifiers 141

best, while outer positions perform increasingly worse, with the corner positions
generally being the worst. We suspect that the receptive field is at least partially
responsible for this, since outer positions on the feature map will receive more
black padding and thus less information with the receptive field expansion as a
center pixel.

(a) Pre-Border (b) Border (c) Post-Border (d) Last Layer

Fig. 6. The heatmaps display the performance of probes relative to the model perfor-
mance. Each probe is trained on a single position of the feature map.

Another interesting observation in Fig. 6 is, that the centermost positions on
the feature map contain partial solutions roughly equivalent to the performance
of the entire model. As the saturation drops and layers become part of the low-
saturated tail, the partial solution quality becomes increasingly homogeneous
across feature map positions. In the last layer, each vector on the feature map
is as linearly separable regarding the classification task as the average pooled
solution. We conclude based on these measurements that this homogenization
of partial solution quality is also responsible for the drop in saturation.

Based on these observations, we conclude that simple, sequential neural net-
works may develop two stages of inference when the image is smaller than the
receptive field size of the model: The first being the solving stage, where the
data is processed incrementally to achieve loss minimization. The second stage,
starting from the border layer, is the compressing stage. This stage compresses
the latent space by homogenization of the partial solutions for every position in
the feature map.

3.5 The Role of Residual Connections

Residual connections are often used in neural network architectures [3,5,12]. Net-
works with residual connections can add “deltas” to the existing representation
of the data rather than transforming it entirely [3]. The residual connection itself
does not expand or change the receptive field. Features based on lower receptive
field sizes might then “skip” layers, to be processed later in the network. As a
consequence, information based on multiple receptive field sizes may be present
after a residual connection. Thus, inference can be distributed across more layers.

We would therefore expect that models utilizing residual connections use
layers after the border layer to improve the prediction. As was previously defined,
the border layer is the first layer to receive an input produced by a layer with a

142 M. L. Richter et al.

receptive field size larger than the image. In sequential architectures, it is also
the layer separating the solving and compressing stage of the model.

In Fig. 7 we observe such a post-border layer improvement. Both networks
improve the probe performances and stay highly saturated long after the border
layer has processed the data. Since we tested ResNet18 without residual connec-
tions in the previous section (see Fig. 5), we can attribute this behavior to the
residual connections.

(a) ResNet18 (b) ResNet34

Fig. 7. Residual connections allow networks to utilize layers past the border layer
(marked with the vertical bar). Drops in probe performance are an artifact of ResNet
skipping layers [1,9]

While residual connections have a positive effect on the predictive perfor-
mance of ResNet18 (84.61% accuracy with and 79.05% accuracy without resid-
ual connections), the performance still remains worse than VGG-style models.
We attribute this to the lower overall receptive field size of VGG19, which is
only 252 pixels. ResNet models downsample more aggressively in the beginning,
resulting in receptive field sizes of 413 (ResNet18) and over 800 pixels (Resnet34)
respectively. This suggests, that matching the receptive field size with the input
size remains important when using residual connections in the architecture.

Therefore, it should be possible to improve the performance of the (Ima-
geNet optimized) ResNet18 and 34 by reducing the size of the receptive field.
This was implicitly done by [3], who proposed a CIFAR10-optimized ResNet
variant. This architecture has no max-pooling layer and the first layer has its
stride size and kernel size halved, reducing the receptive field from 413 to 109
pixels. The effect of these reductions can be seen in Fig. 8: the proportion of low-
saturated layers is drastically reduced for both models and the inference process
is now more evenly distributed. This explains the performance increases relative
to ImageNet-optimized models. By redistributing the inference we increased per-
formance from 84.61% to 91.95% for ResNet18 and from 82.76% to 92.21% for
ResNet34, demonstrating how the receptive field is an important architectural
consideration.

(Input) Size Matters for CNN Classifiers 143

(a) CIFAR10 optimized ResNet18 (b) CIFAR10 optimized ResNet34

Fig. 8. Removing the Stem from ResNet18 and 34 quarters receptive field size, resulting
in better distributed inference and accuracy.

4 Implications on Neural Architecture Design

During Architecture Selection. From the observations made in this work, we
can derive some basic guidelines regarding the design of neural architectures. We
show in Sect. 3.4 that sequential models stop improving the intermediate solution
qualitatively at the border layer - the first layer to receive input from a layer
with a receptive field size greater than the input size. Since the receptive field
size is known beforehand, we can adjust the architecture before training, such
that the receptive field matches the input resolution, avoiding the unproductive
layers at the design stage.

Post-training. We also show in Sect. 3.3 that the size of discriminatory fea-
tures is the underlying reason for the observed behavior. The size of the largest
feature is bounded by the image size. When the entire image is classified, like in
ImageNet, MNIST or CIFAR10, the largest feature is likely almost as large as
the image itself. However, for general image datasets the largest feature might
well be significantly smaller than the image. When training, this would show up
as a saturation tail pattern, indicating that layers in the tail do not contribute
significantly to inference. When such a tail is detected, the architecture can be
adjusted accordingly (see examples in Fig. 8). Alternatively, unproductive tail
pattern layers can be replaced with a global pooling layer followed by the fully
connected end layer(s).

Another advantage of post-training saturation-based optimization is that it
also applies to networks with residual connections, since they too produce tail
patterns when the receptive field is too large (see Fig. 2).

5 Conclusion

For a long time deep learning has been about developing bigger, deeper and
more complex models to improve performance. Our work provides a counter-
point, showing that neural networks can have too big receptive fields, leading to
some layers not contributing to the solution. This leads both to wasted computa-
tions and sub-optimal performance. We further showed that residual connections
counteract too-large receptive fields to a certain degree by allowing more layers

144 M. L. Richter et al.

to contribute to the inference process. This has long been suspected, but there
has been little direct evidence.

Finally, we demonstrated that probe classifiers and layer saturation are use-
ful tools to analyze the relationship between dataset and model architecture.
These tools let practitioners quantitatively evaluate their models with orders-of-
magnitude less data and give insight into the inference process inside the model.
It shines some light into the black box that is a neural network, and lets us study
networks more rigorously.

References

1. Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier
probes. In: ICLR 2017 Workshop (2016)

2. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 6307–6315 (2017).
https://doi.org/10.1109/CVPR.2017.668

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

4. Horn, G.V., et al.: The iNaturalist challenge 2017 dataset. arXiv preprint
arXiv:1704.06642 (2017)

5. Iandola, F.N., Moskewicz, M.W., Karayev, S., Girshick, R.B., Darrell, T., Keutzer,
K.: DenseNet: implementing efficient convnet descriptor pyramids. arXiv preprint
arXiv:1404.1869 (2014)

6. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto (2009)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc. (2012)

8. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

9. Richter, M.L., Shenk, J., Byttner, W., Arpteg, A., Huss, M.: Feature space satura-
tion during training. arXiv preprint arXiv:2006.08679 (2020)

10. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference
on Learning Representations (ICLR) (2015)

12. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 97, pp. 6105–6114. PMLR (09–15 June 2019)

https://doi.org/10.1109/CVPR.2017.668
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1704.06642
http://arxiv.org/abs/1404.1869
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/2006.08679
https://doi.org/10.1007/s11263-015-0816-y

Accelerating Depthwise Separable
Convolutions with Vector Processor

Yuekai Zhao(B) , Jianzhuang Lu, and Xiaowen Chen

College of Computer, National University of Defense Technology, Changsha, China
{zhaoyuekai,xwchen}@nudt.edu.cn

Abstract. Depthwise separable convolution has demonstrated its
advantages in reducing the number of parameters and neural network
calculations. Convolution-oriented hardware accelerators are outstanding
in terms of saving resources and energy. However, lightweight networks
designed for small processors do not perform efficiently on these accel-
erators. Moreover, there are too many models to design an application-
specific circuit for each model. In this work, we propose a method of
mapping depthwise separable convolution on a general-purpose vector
processor. This method achieves high computational performance by
increasing data reuse and parallel execution. First of all, we propose
a multi-vector parallel convolution method to reduce the number of
data reads and increase data utilization in depthwise convolution. Then,
we divide the data of pointwise convolution into coarse-grained blocks
and compute matrix multiplication in parallel on a multi-core processor,
achieving high computational efficiency. Furthermore, we use a double
buffer mechanism to optimize data transfer and shorten execution time.
Overall, using MobileNet to evaluate depthwise separable convolution,
multi-vector parallel convolution method on M-DSP reduces the number
of reads and writes by up to 4 times. We achieve 1518 FPS and 1.783
TFLOPS at a batch size of 1, which is 1.87× faster than ZU9 MPSoc
and 3.89× more calculation-efficient than 2080Ti GPU.

Keywords: Depthwise separable convolution · Multi-vector parallel
convolution · Matrix multiplication

1 Introduction

Convolutional neural networks (CNNs) are widely used in image recognition,
target detection and instance segmentation for their great success. CNNs are
formed by a stack of different layers including convolution, activation, pooling
and fully connected layers. The new models increase the number of convolution
layers to enhance the feature extraction capability, but this also leads to the high
latency of network inference. To reduce the neural network’s hardware thresh-
old and increase the calculation speed, new neural network reduces the use of

Supported by organization the Hunan Provincial Science and Technology Plan Project.
The specific grant number is 2018XK2102.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 145–156, 2021.
https://doi.org/10.1007/978-3-030-86340-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_12&domain=pdf
http://orcid.org/0000-0003-4654-7362
https://doi.org/10.1007/978-3-030-86340-1_12

146 Y. Zhao et al.

layers with low computational efficiency (such as the pooling layer). This design
idea can make full use of the processor’s computing power and increase the
program’s running speed. Besides, new calculation methods, like depthwise sep-
arable convolution (DSC), are proposed to replace standard convolutions, which
reduce computation size and the number of parameters. A standard convolution
is broken down into two steps, a depthwise convolution (DWC) for filtering and
a pointwise convolution (PWC) for combining. These methods are hardware-
oriented and suitable for the temporal and spatial locality of the program. Com-
pared with previous neural networks, the networks using these methods reduce
calculation, training time, and inference time.

In recent years, many hardware accelerators have been proposed to deal with
deep neural networks. Dadiannao [2] is designed for general neural network rea-
soning. In [6], FPGA is used to implement neural networks with high energy
efficiency. The limited hardware resources on FPGA lead to poor computational
performance, and a single acceleration circuit cannot support multiple convo-
lution calculations simultaneously. On the other hand, TensorRT is a software
development kit designed by NVIDIA for high-performance deep learning infer-
ence on Graphics Processing Unit (GPU). However, the calculation speed of a
single computing unit is weaker than that of a single-core processor, making a
single data need a longer running time in the GPU. GPU has too many parallel
computing units for DSC, resulting in a waste of computational performance.
How to effectively process small batch tasks on a parallel structure has become
a problem faced by these processors.

Since the image can be converted into a matrix, the convolution of the image
and the filter can be converted into a matrix multiplication. Several accelera-
tors are specially optimized for matrix multiplication to accelerate convolution.
[9] designs an architecture called SIGMA, which has a good effect on matrix
multiplication. SIGMA includes a novel reduction tree microarchitecture named
forwarding adder network, which offers high utilization of all its processing ele-
ments. Although PWC can be calculated by matrix multiplication, DWC must
convert the image to a matrix, generating much overhead.

Considering that digital signal processor (DSP) performs fast Fourier trans-
form (FFT) efficiently, [7] calculates convolution through time domain and fre-
quency domain transform. However, FFT produces complex numbers in its
implementation, which takes up much space and increases real number calcu-
lations. Experiments show that using FFT for convolution kernels larger than
5×5 has a good effect, but FFT is not suitable for small convolution kernels,
especially for DSC. Texas Instruments DSP (TI DSP) supports users in using
Code Composer Studio (CCS) to develop convolutional neural network applica-
tions quickly. However, due to the lack of library functions and optimization of
image processing applications, TI DSP has poor convolutional network acceler-
ation performance. [10] designed DSP-oriented vectorization method of matrix
multiplication. It is an effective method, which is suitable for general-purpose
DSP processors to process matrix multiplication. However, under normal circum-
stances, the calculation amount of the depthwise separable convolution is much
smaller than that of the standard convolution, resulting in many idle cycles of
the processor.

Accelerating Depthwise Separable Convolutions with Vector Processor 147

In this work, we propose an algorithm for mapping depthwise separable con-
volutions on a high-performance DSP chip called M-DSP. Firstly, we propose
multi-vector parallel convolution (MVPC) for depthwise convolution, which real-
izes the reuse of input data, output data, and kernel data. MVPC is suitable
for small convolution kernels, and we utilize the vector registers in the DSP
cores effectively to reduce data reads and writes. We use multiple multiply and
add operators to achieve parallel computing and use numerous computing ele-
ments to achieve data vectorization. Secondly, we treat pointwise convolution as
matrix multiplication and decompose it into multiple blocks. We execute General
Matrix Multiplication (GEMM) distributedly on multi-core processors to accel-
erate pointwise convolution and minimize its execution time. Finally, we use a
double buffering mechanism to establish a coarse-grained pipeline, reducing the
internal and external data transfer time of DSCs.

2 Related Work

Compared with software, hardware has a significant advantage in accelerating
programs and reducing energy consumption. Many works map algorithms on
application-specific circuits to improve the computational efficiency of CNNs.
[4] design a CNN accelerator called WAX that pushes the boundaries of near-
data execution and short-wire data movement, improving energy consumption
by a minimum of 2.6 times compared with Eyeriss. [5] design the hardware-
oriented ERNets for the adopted block-based inference flow, construct the coarse-
grained FBISA to achieve highly parallel convolution. These accelerators have
high computational efficiency for mapping neural networks. However, due to
the limitation of hardware resources, the computational performance is poor.
And it is cost-effective to increase computing performance by increasing FPGA
hardware resources or manufacturing hardware circuits.

Many works aim to reduce the complexity of convolution. [6] supports effi-
cient indexing and storage of matrices through a combination of software and
hardware. RAMMER [8] improves the computational performance of a deep neu-
ral network from the compiler’s perspective. Standard accelerators treat data
flow graphs as library functions without processing, resulting in greater schedul-
ing overhead and hardware load. RAMMER generates an efficient static spatio-
temporal schedule for a DNN at compile-time to minimize overhead and maxi-
mize hardware utilization. We introduce this idea into the programming of vector
processors to realize coarse-grained parallelism on multi-core DSP. In addition,
we optimize the flow of convolution, standardization, and activation functions,
reducing data reading and writing from the perspective of compilation.

Memory-efficient convolution (MEC) [3] algorithm reduces memory overhead
substantially and accelerates the convolution process. MEC lowers the input
matrix in a simple yet efficient way and then executes multiple small matrix
multiplications in parallel to get convolution completed. The method adjusts
the order of the data to reduce the number of accesses to the memory. We
port this method to a vector processor and increased the parallelism through
vectorization.

148 Y. Zhao et al.

Instruction Dispatch

Scale Processing
Unit (SPU)

Scale
Instruction

Vector
Instruction

V
P
E
0

V
P
E
2

V
P
E
1

SVR
FMAC1
FMAC2
FMAC3

FMAC1
FMAC2
FMAC3

2048 bit

2048 bit

Address Generation Unit

Bank 0-3 Bank 4-7
Bank 8-11 Bank 12-15

DMA

Global Cache
DDR

Vector
Load/Store

BUS

SPU/
VPU

Core0

SPU/
VPU

Core0

SPU/
VPU

Core2

SPU/
VPU

Core2

SPU/
VPU

Core
N-1

SPU/
VPU

Core
N-1

Instruction Dispatch

SPE SM

V
P
E
1
5

2048 bit

2048 bit

Global Cache

DDR

BUS

Global
Cache

DDR
Memory
SystemSPU/

VPU

Core1

SPU/
VPU

Core1

SPU/
VPU

Core
23

SPU/
VPU

Core
23

(a)

(b)

Array Memory (AM)

Vector Processing Unit (VPU)

SPU/
VPU
SPU/
VPU

Vector Data Access Unit

Fig. 1. (a) Interconnect structure of M-DSP. (b) Hardware architecture of a single
M-DSP core.

3 Algorithm Mapping

3.1 Architecture of Vector Processor

We conduct experiments on a 24-core vector accelerator called M-DSP. It is
designed by the national university of defense technology for high-performance
floating-point operations. It has a peak performance of 4.608 tera floating-point
operations per second (TFLOPS), and its highest read-write bandwidth is 307
GB/s.

Figure 1(a) describes the interconnect structure of M-DSP. The cores
exchange data through the global cache (GC), which has a size of the global
cache is 6 MB. Storage units at all levels have direct memory access (DMA)
units, which can carry out data transmission independent of calculations. Trans-
mission methods include point-to-point, segmentation, and broadcast. Finally,
the vector processor communicates with the master device through the bus and
double data rate SDRAM (DDR). M-DSP supports up to 128 GB of memory.

The hardware architecture of a single DSP core is shown in Fig. 1(b). M-
DSP uses a tight coupling mechanism to combine scalar processing units (SPU)

Accelerating Depthwise Separable Convolutions with Vector Processor 149

Fig. 2. Multilevel storage architecture and double buffering mechanism of M-DSP

and vector processing units (VPU) in each core. The scalar processing elements
(SPE) in SPU are used for scalar calculation and process control. VPU has
sixteen vector processing elements (VPE) for vector calculations, in which there
are three floating-point multiply-and-add operators. In M-DSP, a single core’s
internal vector storage space (AM) is 768 KB, and the scalar storage space (SM)
is 64 KB. The bandwidth between AM and VPU is 2048 bits. AM is divided into
sixteen banks and four partitions to increase data access speed. The scalar in
SM can be copied and expanded into a vector by the scalar-to-vector register
(SVR). There are scalar and vector registers and local storage space inside the
core. The on-chip global cache exchanges data with SM and AM through the bus.
Sixteen 64-bit VPEs in a VPU can implement 32-dimensional single-precision
floating-point vector operations or 64-dimensional half-precision floating-point
vector operations.

3.2 Data Distribution and Optimization on Multi-core DSP

In order to reduce the time of program execution, we use all the cores of M-
DSP for calculation, which makes data transmission a performance bottleneck.
Figure 2 shows the multi-level storage structure of the vector processor. Accord-
ing to the double buffering mechanism, SM is divided into two areas, AM and
GC are divided into four partitions. Mark ① refers to the process of transferring
data from DDR to GC. The black dotted line indicated by mark ② describes
the realization of segmented transmission. The orange line indicated by mark
③ describes how to implement broadcasting. Mark ④ introduces the process of
on-chip cache passing calculation results to GC through point-to-point transmis-
sion. All processors use fences to realize synchronization. Algorithm 1 presents
the data distribution scheme when M-DSP runs depthwise convolution, and algo-
rithm 2 describes the steps of calculating pointwise convolution.

150 Y. Zhao et al.

Algorithm 1. Calculation process of depthwise convolution
Input: height, input channel

1: Determine the calculation amount of DWC for each core according to the number
of cores, and transfer the source data to AM buffer0 in the manner of segmented
transmission (Follow arrow ②);

2: Organize the data of different channels at the same position into vectors, and read
32-dimensional data at a time according to the capacity of the vector register;

3: Broadcast the weight data of DWC to AM buffer1 of each core (Follow arrow ③).
Organize the data of different channels at the same position into vectors, and read
32-dimensional data at a time according to the capacity of the vector register;

4: Calculate DWC according to section 3.2;
5: Each core transmits the calculation result to AM buffer2 in a point-to-point manner

(Follow arrow ④).

Algorithm 2. Calculation process of pointwise convolution
Input: height, input channel, output channel

1: Divide the input data of PWC evenly according to the number of cores, and transfer
the source data to SM buffer0 in the manner of segmented transmission;

2: Broadcast the weight data of PWC to AM buffer0 of each core. Assuming that
the number of input channels of 1*1 convolution is m and the number of output
channels is n, the convolution kernel can be regarded as a matrix of size [m, n]. We
divide the matrix into m parts, each of which is an n-dimensional vector;

3: Transmit a scalar data from SM to AM each time according to section 3.3. Copy
and expand it into an n-dimensional vector;

4: Calculate PWC according to section 3.3;
5: Each core transmits the calculation result to AM buffer2 in a point-to-point man-

ner.

Unlike depthwise convolution, there is no overlapping data between data
blocks transmitted by pointwise convolution. Depthwise convolution uses a 3×3
kernel, and data needs to be reused when the filter larger than 1×1. Pointwise
convolution uses a 1×1 filter with a step size of 1, so the input data is divided
evenly. Each core processes pointwise convolution independently and transmits
the GC results according to the core number and data block size.

We design a mapping algorithm to improve the general-purpose vector pro-
cessor’s computational efficiency to run convolution, thereby converting the
hardware’s computing power into the algorithm’s performance. Optimization
mainly includes two aspects, computing optimization, and storage optimization.

In terms of calculation optimization, due to the poor efficiency of executing
jump structures on the Very Long Instruction Word (VLIW) structure, we mini-
mize the occurrence of judging jump statements and loop statements during exe-
cution. According to the timeline, we expand the CNN algorithm’s instructions
and schedule them to achieve maximum parallel execution. We use instruction
delay slots to increase hardware utilization. Finally, we use scalar calculations
for essential data preparation and instruction scheduling.

Accelerating Depthwise Separable Convolutions with Vector Processor 151

Fig. 3. Introduction to multi-vector parallel convolution method.

In terms of storage optimization, we use a multi-level storage structure and
use a double buffer mechanism to reduce data read and write overhead. Since
the DMA component’s operation does not require a processor, data transmission
and calculation can be performed simultaneously. For example, while calculating
DWC, the weight of PWC is transmitted to AM. The measure of hiding the data
transmission time in the calculation time improves the calculation efficiency.

3.3 Depthwise Convolution Mapping on Single-Core DSP

In the previous subsection, we introduced how to distribute depthwise convolu-
tion data on a multi-core vector processor. Next, we will illustrate the charac-
teristics of DWC and introduce its mapping method on a single-core DSP.

As the name suggests, depthwise convolution uses the different kernels to
convolve on different channels. Therefore, we can achieve n-fold parallelism by
using n-dimensional vectors. Inspired by the MEC algorithm, we proposed a
multi-vector parallel convolution (MVPC) method to achieve data reuse and
parallelism. Figure 3 shows the implementation method of MVPC. We assumed
that there are three multiply-and-accumulate units (MAC), and the step size is
1, so we can process three convolutional blocks at the same time. To achieve
data multiplexing, we move the convolution filter in the horizontal direction and
process the data in parallel from the vertical direction. In this way, we get a
data block of size [5, 3, C] and store it in 15 C -dimensional vectors. They can
be combined into three logical data blocks of size [3, 3, C]. In each cycle, the
data block selection frame is shifted right by step 1, and only five C -dimensional
vectors need to be updated. We store data in registers so that the number of
reading data dropped nine to two.

Each logical data block is connected to a vector multiply-add operator accord-
ing to Fig. 3, and each position represents a vector composed of sixteen VPEs.
Vertically, a vector of the filter data is transferred to each MAC. For the same
picture, the convolution kernel data is unchanged. Horizontally, the figure shows

152 Y. Zhao et al.

the five command delay slots in the concept of time because multiply-add oper-
ation takes six cycles. The result needs to be fed back ten times, nine of which
are used to calculate the filter, and one is used for data normalization. Finally,
in the ReLU module, the activation function is realized by comparing it with
the zero vector.

3.4 Pointwise Convolution Mapping on Single-Core DSP

Pointwise convolution uses a convolution kernel of 1 × 1, and the calculation
result is the same as the matrix multiplication. Therefore, we use the general
matrix multiplication (GEMM) function to implement pointwise convolution on
the vector processor.

Equation (1) shows the method of calculating matrix multiplication by col-
umn (Cm×n = Am×k ∗ Bk×n). We divide matrix C into n column vectors and
matrix A into k column vectors. If matrix B is stored as a row vector, we can
use (1) to get a row of matrix C at the same time. In (1), Oi and Ij are m-
dimensional column vectors, and W(i,j) is a scalar.

[
O1 O2 O3 · · · On

]
=I1 × [

W(1,1) W(1,2) W(1,3) · · · W(1,n)

]
+

I2 × [
W(2,1) W(2,2) W(2,3) · · · W(2,n)

]
+

· · · +

Ik × [
W(k,1) W(k,2) W(k,3) · · · W(k,n)

]

(1)

Here are the steps of calculating PWC: First, copy and expand the data in
the first column of A matrix into matrix D of size [m, n]; then multiply each
row of D with the first row of matrix B. After that, take the second column of
matrix A and the second row of the B matrix. Repeat the above process, and
finally, we will get the row vectorized result of the matrix multiplication.

4 Experiments and Evaluation

In this section, we evaluate the performance of depthwise separable convolu-
tions with MobileNet and analyze the influence of convolution kernel size on
computational efficiency.

4.1 Performance Analysis of Depthwise Convolution

First, we give the calculation method of calculation efficiency.

Efficiency =
calculation

time × peak performance
(2)

Accelerating Depthwise Separable Convolutions with Vector Processor 153

Table 1. Computational performance of depthwise separable convolutions.

Height/width

(step)

Input

channel

Output

channel

DWC’s runtime

(10−6)

DWC’s

computational

efficiency

PWC’s

runtime

(10−6)

PWC’s

computa-tional

efficiency

DSC1 112(1) 32 64 17.91 9.72% 14.96 78.02%

DSC2 112(2) 64 128 19.62 17.75% 12.74 89.57%

DSC3 56(1) 128 128 5.82 29.89% 38.38 58.79%

DSC4 56(2) 128 256 5.89 29.55% 13.65 82.64%

DSC5 28(1) 256 256 3.87 22.46% 27.35 82.01%

DSC6 28(2) 256 512 3.82 22.76% 22.39 50.10%

DSC7 14(1) 512 512 2.88 15.09% 44.74 49.99%

DSC8 14(1) 512 512 2.92 14.89% 44.85 49.87%

DSC9 14(1) 512 512 2.97 14.62% 44.71 50.03%

DSC10 14(1) 512 512 2.98 14.60% 44.81 49.91%

DSC11 14(2) 512 512 2.95 14.71% 44.74 50.00%

DSC12 7(1) 512 1024 2.95 3.68% 43.96 25.44%

DSC13 7(1) 1024 1024 1.36 15.98% 87.81 25.43%

Table 1 shows the size and computational efficiency of all depthwise convo-
lutions and pointwise convolutions in MobileNet. The calculation efficiency of
DWC is no more than 30%. We can see that as the height decreases, the com-
putational efficiency shows a decreasing trend.

From a computing point of view, the size of the image becomes smaller, and
the amount of calculation cannot meet the computing power of the M-DSP,
resulting in many idle cycles. From the perspective of data transmission, DWC
starts by transmitting input data and filtering data. Next, calculate the DWC
and transfer the result to the GC. We found that preparing data takes a lot of
time, which keeps the computational efficiency of DWC at a low level. More-
over, as the image size decreases, the situation becomes worse. Generally, the
larger the amount of data, the longer the transmission time. However, in the
hardware environment, if fragmented data is frequently transmitted, the trans-
mission component’s activation will also cause loss. Therefore, we can find that
in Table 1, except for the performance jitter caused by program optimization,
the smaller the calculation amount, the lower the calculation efficiency.

However, from the perspective of time consumption, we can draw an opposite
conclusion. As the amount of calculation decreases, the calculation time of DWC
becomes shorter. Simultaneously, as the parameters decrease, the amount of data
transmission in each layer becomes smaller. These two reasons make DWC less
time-consuming.

154 Y. Zhao et al.

Fig. 4. (a) Compare the computational efficiency of each layer of DSC with the entire
network. (b) Execution time of DSC.

4.2 Performance Analysis of Pointwise Convolution

Table 1 shows the size and computational efficiency of all pointwise convolutions
in MobileNet. We found that the computational efficiency of PWC is higher than
that of DWC in the same layer.

Although the calculation efficiency of PWC is also showing a downward trend,
most of the calculation efficiency of PWC exceeds 50%. That is because matrix
multiplication is a computationally intensive operation. The calculation time
occupies the majority of the runtime. In a single cycle, we fill the entire VPU
with row vectors. Inside instruction delay slots, we use software pipelining and
compilation optimization to increase the use of VPUs. Therefore we achieve high
computational efficiency. However, the filter becomes larger, which increases the
transmission time. As a result, the calculation efficiency of DSC12 and DSC13
is lower than 50%.

4.3 Overall Performance Evaluation

Figure 4(a) shows the overall computational efficiency of the depthwise separable
convolution of each layer in the network. We can see that as the amount of point-
wise convolution calculation increases, its proportion in the entire DSC gradually
increases. Especially for the last two layers, the computational efficiency of point-
wise convolution is approximately equal to the overall computational efficiency.

The horizontal dashed line represents the computational efficiency of the
entire MobileNet. It can be found that the calculation efficiency of eight layers
is close to the overall calculation efficiency. For the whole network, the perfor-
mance reached 1.7 TFLOPS. As the amount of data decreases in the first five
layers, computational efficiency is on the rise. The data volume of the last eight
layers is greater than the buffer capacity in AM, so the weight data of point-
wise convolution needs to be divided into AM multiple times, which leads to an
increase in transmission time. The weight data of the last two layers of PWC is
the most in the entire network, so these two layers’ calculation efficiency is the
lowest.

Accelerating Depthwise Separable Convolutions with Vector Processor 155

Figure 4(b) shows the consumption time of each layer and the proportion of
calculation time to the total time. Though three parts of the data transmission
time cannot be hidden (transferring DWC data, writing back the result of DWC,
and writing back the result of pointwise convolution), the proportion of compu-
tationally intensive PWC becomes larger, which increases the calculation time
of DSC.

Table 2. Comparison of different accelerators

Accelarator (batch size) peak
performance
(TFLOPS)

Speed (FPS) Computational
efficiency

2080TI (1) [1] 13.4 1132 9.88%

2080TI (8) [1] 13.4 2950 25.75%

*M-DSP (1) 4.608 1518 38.53%

StratixV (1) [12] 0.78 232 34.79%

ZU9 MPSoC (1) [11] 1.678 809 29.73%

The proportion depends on the amount of calculation. It can be seen that the
greater the amount of calculation, the greater the proportion of calculation time
to the total time, and the smaller the impact of data transmission on execution
time.

Table 2 compares the computational performance of different accelerators
running MobileNet. We found that using the TensorRT acceleration library, the
GPU achieves high computational performance, but the computational efficiency
is low. Increasing the batch size improves the computational efficiency and per-
formance of GPU significantly. Therefore, we use one as the size to test the effec-
tiveness of the method. In actual use, the size can also be increased according
to the number of VPEs. FPGAs, such as ZU9 and Stratixv, are computation-
ally efficient. Compared with Stratixv, ZU9 has richer hardware resources and
achieves higher computational performance. Our accelerators have high resource
utilization and achieve the highest computing efficiency among all accelerators.
The computational efficiency on M-DSP is 38.5% while processing 1518 frames
per second (FPS).

5 Conclusion

This paper designs a mapping method to map depthwise separable convolu-
tions on a general-purpose vector processor. We propose a multi-vector parallel
convolution (MVPC) method to calculate depthwise convolution. The method
realizes the reuse of input, filter, and output data. We use general matrix mul-
tiplication to solve pointwise convolution and fully connected layers. To mini-
mize execution time, we optimize each layer individually on a multi-core DSP
and reduce data transmission time. To a certain extent, it achieves a trade-off

156 Y. Zhao et al.

between power consumption, performance, and price, which is its advantage over
existing accelerators. Compared to ASIC implementation, vector processors have
higher performance and the flexibility to support multiple networks. Compared
with GPUs, vector processors have higher computational efficiency and lower
power consumption. Overall, using the same batch size, M-DSP runs MobileNet
at a speed of 1518 FPS, which is 1.87 times faster than ZU9 and 1.34 times
faster than 2080Ti. The calculation efficiency is 38.5%, which is 1.29× that of
ZU9 and 3.89× that of 2080Ti.

References

1. Machine learning benchmark. https://www.eembc.org/mlmark/scores. Accessed
23 Mar 2021

2. Chen, Y., et al.: Dadiannao: a machine-learning supercomputer. In: 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622.
IEEE (2014)

3. Cho, M., Brand, D.: Mec: memory-efficient convolution for deep neural network.
In: International Conference on Machine Learning, pp. 815–824. PMLR (2017)

4. Gudaparthi, S., Narayanan, S., Balasubramonian, R., Giacomin, E., Kambalasub-
ramanyam, H., Gaillardon, P.E.: Wire-aware architecture and dataflow for cnn
accelerators. In: Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pp. 1–13 (2019)

5. Huang, C.T., et al.: ecnn: a block-based and highly-parallel cnn accelerator for edge
inference. In: Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 182–195 (2019)

6. Kanellopoulos, K., et al.: Smash: Co-designing software compression and hardware-
accelerated indexing for efficient sparse matrix operations. In: Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 600–
614 (2019)

7. Lee, Y.C., Chi, T.S., Yang, C.H.: A 2.17 mw acoustic dsp processor with cnn-
fft accelerators for intelligent hearing aided devices. In: 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 97–101.
IEEE (2019)

8. Ma, L., Xie, Z., Yang, Z., Xue, J., Miao, Y., Cui, W., Hu, W., Yang, F., Zhang,
L., Zhou, L.: Rammer: Enabling holistic deep learning compiler optimizations with
rtasks. In: 14th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20), pp. 881–897 (2020)

9. Qin, E., et al.: Sigma: a sparse and irregular gemm accelerator with flexible inter-
connects for dnn training. In: 2020 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 58–70. IEEE (2020)

10. Sohl, J., Wang, J., Liu, D.: Large matrix multiplication on a novel heterogeneous
parallel dsp architecture. In: International Workshop on Advanced Parallel Pro-
cessing Technologies, pp. 408–419. Springer (2009)

11. Wu, D., et al.: A high-performance cnn processor based on fpga for mobilenets. In:
2019 29th International Conference on Field Programmable Logic and Applications
(FPL), pp. 136–143. IEEE (2019)

12. Zhao, R., Niu, X., Luk, W.: Automatic optimising cnn with depthwise separable
convolution on fpga: (abstact only). In: Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 285–285 (2018)

https://www.eembc.org/mlmark/scores

KCNet: Kernel-Based Canonicalization
Network for Entities

in Recruitment Domain

Nidhi Goyal1(B), Niharika Sachdeva2, Anmol Goel3, Jushaan Singh Kalra4,
and Ponnurangam Kumaraguru5

1 Indraprastha Institute of Information Technology, New Delhi, India
nidhig@iiitd.ac.in

2 InfoEdge India Limited, Noida, India
niharika.sachdeva@infoedge.com

3 Guru Gobind Singh Indraprastha University, Delhi, India
4 Delhi Technological University, Delhi, India

5 International Institute of Information Technology, Hyderabad, India
pk.guru@iiit.ac.in

Abstract. Online recruitment platforms have abundant user-generated
content in the form of job postings, candidate, and company profiles. This
content when ingested into Knowledge bases causes redundant, ambigu-
ous, and noisy entities. These multiple (non-standardized) representation
of the entities deteriorates the performance of downstream tasks such
as job recommender systems, search systems, and question answering.
Therefore, making it imperative to canonicalize the entities to improve
the performance of such tasks. Recent research discusses either statisti-
cal similarity measures or deep learning methods like word-embedding
or siamese network-based representations for canonicalization. In this
paper, we propose a Kernel-based Canonicalization Network (KCNet)
that outperforms all the known statistical and deep learning methods.
We also show that the use of side information such as industry type, url of
websites, etc. further enhances the performance of the proposed method.
Our experiments on 351,600 entities (companies, institutes, skills, and
designations) from a popular online recruitment platform demonstrate
that the proposed method improves the overall F1-score by 23% com-
pared to the previous baselines, which results in coherent clusters of
unique entities.

Keywords: Entity canonicalization · Recruitment domain · Entity
normalization

1 Introduction

Recruitment platforms such as LinkedIn, Indeed.com ingest an enormous amount
of user-generated content in form of job postings, CVs, and company profiles.

P. Kumaraguru—Major part of this work was done while Ponnurangam Kumaraguru
was a faculty at IIIT-Delhi.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 157–169, 2021.
https://doi.org/10.1007/978-3-030-86340-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_13

158 N. Goyal et al.

This content includes diverse set of recruitment domain entities (company names,
institute names, skills, designations) that become part of Knowledge base. As the
content is user-generated, multiple variations (e.g., ‘economictimes.com’; ‘eco.
times’; ‘the economic times’; ‘economic times’; ‘ET’) of each entity name also
come up into the KBs. Employing these noisy, redundant, and ambiguous vari-
ations directly into downstream applications such as semantic search, question
answering, and recommender systems results in poor system performance. There-
fore, canonicalization of the entities i.e., mapping various references of a unique
entity into a representative cluster, is imperative for recruitment platforms.

Canonicalizing named entities involves various challenges including spelling
mistakes and variations (java developer & java deveoper), overlapping but dif-
ferent entities (Emerald Bikes pvt limited & Emerald Jewellery Retail Limited),
hierarchical variations (Oracle Financial Services Software & Oracle Corpora-
tion), domain-specific concepts (SOAP & REST), short forms (umbc & Univer-
sity of Maryland, Baltimore), and semantically similar variations (Accel Front-
line & Inspirisys).

Previous approaches focus on statistical methods [5] for entity canonical-
ization. However, these methods use handcrafted features that are unable to
scale well for advanced (semantic, domain-specific) variations of entities. Fatma
et al. [4] employ a deep learning method that overcomes challenges of statisti-
cal methods by eliminating the need for explicit feature engineering and using
character-based word-embeddings for unknown and emerging entities. Recent lit-
erature [9] shows that deep learning methods are often very good at minimizing
the training errors but fail to generalize. Literature [9] suggests the introduction
of learnable kernels in deep neural networks often improves generalizability.

Therefore, we study a kernel-based neural network designed for entity canon-
icalization in the recruitment domain. Our proposed method outperforms all the
known statistical and deep learning methods on canonicalization tasks. We fur-
ther enhance the performance of the kernel-based network using side-information
which is underexplored in the literature. This literature suggests the use of exter-
nal side information (morphological, IDF token overlap, PPDB [17]) which is
rudimentary [21] and has limited utility in domain-specific settings. We lever-
age more prosperous meta and semantic side information from external sources
(Wikipedia, Google KG) [10,22] to improve the entity canonicalization.

In this paper, we propose a novel multi-tier framework using a learnable
kernel network [7,9] which implicitly maps the data into high-dimensional fea-
ture space. Our framework captures the non-linear mapping between contextual,
meta, and semantic representations through learning objective to output the
pairwise similarity between recruitment domain entities. Furthermore, we gen-
erate the canonicalized clusters for each entity. We demonstrate and validate the
efficacy of our approach on proprietary as well as open source datasets including
DBpedia and ESCO [1,3] for generalizability of our solution. We summarize the
main contributions of this paper as follows:

– We propose a Kernel-based Canonicalization Network (KCNet), which
induces a non-linear mapping between the contextual vector representations

KCNet: Kernel-Based Canonicalization Network 159

while capturing fine-granular and high-dimensional relationships among vec-
tors. To the best of our knowledge, this is the first approach towards exploring
kernel features for canonicalizing Knowledge Base entities in the recruitment
domain.

– KCNet efficiently models more prosperous semantic and meta side informa-
tion from external knowledge sources to canonicalize domain-specific entities.

– We perform extensive experiments on real-world proprietary and publicly
available datasets in the recruitment domain to show the effectiveness of our
proposed approach as compared to baselines.

The organization of the rest of the paper is as follows: Sect. 2 contains related
works; Sect. 3 elaborates our proposed framework KCNet; Sect. 4 reports the
datasets. Section 5 describes the experimental setup, Sect. 6 has results and dis-
cussion followed by conclusion in Sect. 7.

2 Related Works

This section briefly describes some of the related works on KB Canonicalization,
domain-specific methods, kernel methods, and clustering.

KB Canonicalization. Existing work [5] use manually defined feature spaces
to perform the canonicalization task. This approach encodes limited similarity
between different semantic representations. Hence, it results in degradation of
performance for real-time applications. Vashishth et al. [21] jointly handle noun
and relation phrases using knowledge graph embedding models [16] by optimizing
its objective function along with using information from external sources called
‘side information’. However, these state-of-the-art knowledge graph embedding
methods [2] achieve below par performance for real-world recruitment domain
datasets due to noisy, sparseness [6], and context-sensitive information present
in triples. Additionally, the side information methods used in literature [21] is
rudimentary and lack domain-specific information. Considering these limitations,
we leverage external knowledge sources such as Wikipedia Infobox and Google
search API which provides additional knowledge for noisy entities.

Domain-Specific Methods. Despite the importance of named-entity canoni-
calization in the recruitment domain, only a few recent studies have explored the
problem with respect to unique domain challenges [12,13]. Yan et al. [24] propose
a company name normalization system that employs LinkedIn social graphs and
a binary classification approach. In this work, the authors use complete profile
information as the context. However, this information will be hard to get for new
and emerging entities. Lin et al. [11] uses side information and learns domain
knowledge from the source text based on the type of entities. Popular state-of-
the-art entity linking tools [14] are probabilistic and requires sufficient contextual
information to connect to candidate entity and perform well when standard sur-
face forms are available. For example, recruitment domain-specific documents
may contain ‘Python’ or ‘Python Programming’ while, the former is linked to

160 N. Goyal et al.

a different type of entity with a high confidence score using these tools. Simi-
larly, Fatma et al. [4] utilizes word and character-based representations based
similarity model along with the attention mechanism to cluster similar entities.
However, these works fail to generalize and have limited understanding for more
complex and emerging entities.

Kernel-Based Architectures. Kernel methods have proven effective in explor-
ing larger feature space implicitly in deep learning architectures [23]. Customized
kernel [8] based deep learning architectures enhance the performance of the
model and map data to an optimized high-level feature space where data may
have desirable features toward the application. Recent works utilize deep embed-
ding kernel architectures for identity detection, transfer learning, classification
and other tasks [9]. We use kernel infused neural networks to capture the latent
semantic relationships and non-linearity between different pair of entities in KBs.
These kernel methods are robust for collaboration with neural networks and less
expensive than training deep learning architectures.

Clustering Methods. Research works have used various clustering techniques
for the canonicalization task. Among these methods, Hierarchical Agglomerative
Clustering (HAC) is the most extensively used in the literature [5,21].

Our research is uniquely placed at the intersection of the vast literature on
kernel-based neural network learning, and clustering approaches for the canoni-
calization of domain-specific KBs.

3 Kernel-Based Canonicalization Network (KCNet)

In this section, we introduce the proposed KCNet approach. We elaborate on the
problem definition and each component of our network architecture in detail.

3.1 Problem Definition

Consider E be the set of entities extracted from job postings, CVs, and company
profiles. For each entity xi, we consider its side information si ∈ S ∀xi ∈ E
acquired from heterogeneous sources (elaborated in detail in Sect. 4.2). Given
a pair of entities x1 and x2 and their corresponding side information s1 and
s2 where x1, x2 ∈ E and s1, s2 ∈ S, the main objective is to find a function
f(x1, s1, x2, s2) → sim(x1, x2). A pairwise similarity matrix (Msim) is formed
by applying f over the set of all entity pairs and then a clustering algorithm is
used to form unique canonical clusters of similar entities.

3.2 Network Architecture

We propose a multi-tier novel architecture consisting of three modules: Entity
embedding generation, Side Information embedding generation, and Kernel net-
work. We apply clustering technique after obtaining output on our proposed
architecture. Fig. 1 shows the overall architecture of our proposed approach
(KCNet).

KCNet: Kernel-Based Canonicalization Network 161

Fig. 1. Kernel-based Canonicalization Network for entities in recruitment domain. We
first extract entities and combine it with side information. The combination (concat)
is passed through the Kernel network. The output is a pairwise similarity matrix.

– Entity embedding generation. We obtain an m-dimensional (m = 768)
vector for each entity pair (xi, xj) producing (ei, ej) in the space C ∈ Rm.
We use a pre-trained distilled version (fewer parameters, less space and time
complexity) of S-BERT [19] to generate initial contextual† 1 embeddings for
all entities.

– Side Information embedding generation. We represent (hi, hj) as n-
dimensional vector (n = 768) for the side information acquired for each entity
pair (xi, xj) in the space H ∈ Rn. The formation of side information vector
is described in Sect. 4.2. These representations hi and hj are concatenated
with the corresponding entity representations ei and ej to obtain infused
vector representations wi and wj for the input pair (xi, xj). Here, wi = ei �
hi and wj = ej � hj , Note that, � is the concatenation function of two
vectors producing (wi,wj) in the space W ∈ Rm+n. The (m+n) -dimensional
vector representation is fed into the kernel network to learn the similarity
function, sim(xi,xj).

– Kernel Network. We introduce a kernel network to learn the similarity
function f to model complex relationships between the data representations
of input pairs in an optimized space. The input to this network is denoted as
Z, formed by the combined representation w in the Eq. (1).

Z = (wi ◦ wj) � |wi − wj | (1)

Here, ◦ is a Hadamard (element-wise) product which exploits interactions
between two vectors at each dimension. We also determine the L1 distance

1 † specifies that an entity name such as ‘University of Maryland, Baltimore’ contains
the location specific context i.e. ‘Baltimore’. The representation of the entire entity
is termed as contextual embedding.

162 N. Goyal et al.

for each dimension wi and wj and concatenate the interactions of both the
components as shown in Eq. (2).

Z =
{

w1
i ∗ w1

j , . . . , w
m+n
i ∗ wm+n

j , |w1
i − w1

j |, . . . , |wm+n
i − wm+n

j |
}

(2)

where wk
i represents the kth dimension of wi. The dimensionality of Z is

2 ∗ (m + n). Kernel function takes in account both element-wise product
(design of polynomial kernel) and differences (design of RBF kernel) over each
dimension of original entity. This configuration of inputs allows the network
to learn a non-linear relationship between the input pairs and symmetric
representations at a fine granular level over each input dimension. Therefore,
the learned kernel can map a more robust similarity function over the input
space in comparison to traditional methods such as RBF and polynomial [8].
Similar observations for the customized kernel have been made in [9]. The
newly obtained vector Z captures the latent semantic relationships between
the two input entities. This vector is fed into a multi-layer feed-forward neural
network with sigmoid output, facilitating the learning of a highly non-linear
mapping f to predict similarity over entity pairs. The size of hidden layers
(number of neurons) in the kernel network is chosen using a hyperparameter
k. We define k = α ∗ d where d is the dimensionality of Z and typically,
α =

{
1, 2, 3

}
, say, f(xi, xj) = f(xj , xi) > 0. The kernel network outputs the

probability that input pair (xi, xj) belong to the same cluster. Therefore,

f(xi, xj) = P (yi = yj |xi, xj) (3)

– Clustering using pairwise similarity scores. We compute the pairwise
similarity matrix Msim for all the entity pairs (xi, xj) using probability
obtained from previous step and apply Hierarchical Agglomerative Clustering
(HAC) to form a unique cluster of entities. HAC is popular technique used
in literature [5,21] for canonicalization tasks. Each entity is finally mapped
to a unique cluster. We choose the number of clusters k using the silhouette
index [20]. We repeat the same process for all the datasets (skills, designa-
tions, institutes, companies).

4 Datasets

In this section, we describe our datasets and side information collection process
in detail.

4.1 Dataset Description

Proprietary Datasets. We use real-world datasets from one of the largest
recruitment platforms in India. The dataset i.e., Recruitment Domain Entities
(RDE) consists of 25,602 company clusters (RDE (C)), 23,690 institute clusters
(RDE (I)), 607 skill clusters (RDE (S)), and 3,894 designation clusters (RDE
(D)). The ground truth clusters are manually annotated by domain experts

KCNet: Kernel-Based Canonicalization Network 163

with a kappa agreement of 0.83. Next, we generate the variation pairs- posi-
tive and negative samples. Each name variation of entity ex ∈ E is defined as{
e1x, e2x, e3x, . . . enx

}
, which belong to same annotated cluster. We remove Non-

ASCII characters to form a set of all unique name variations of ex. For each
entity pair, (eix, ejy), training data is prepared using the mapping function g,
such that, g(eix, ejy) = 1,∀(x, y) where i �= j and x = y belongs to same anno-
tated cluster (positive pairs). Similarly, g(eix, ejy) = 0 where x �= y belongs to
different clusters (negative pairs) using a random sampling approach [15].

Open Datasets. We test the effectiveness of our framework (KCNet) using
open-source datasets i.e., DBpedia(C) and ESCO. DBpedia(C) [4] dataset is pre-
pared by querying DBpedia for company names to extract dbo:Company which
contains 2,944 entity clusters and 22,829 variation pairs. ESCO [3] i.e., ESCO(S)
and ESCO(D) are open-source recruitment domain datasets for ESCO-skills and
ESCO-designations. ESCO(S) has 35,554 variation pairs and 2,644 clusters of
ESCO-skills. ESCO(D) has 62,969 variation pairs and 2,903 clusters. Authors [4]
prepared and released these datasets for research community.

4.2 Side Information Collection

We leverage two sources for side information extraction, Wikipedia infoboxes and
Google KG.

Wikipedia Infobox. We query Wikipedia using its advanced search options2

and extracted knowledge from Wikipedia infoboxes for different datasets such as
{‘title wikis’, ‘websites’, ‘types’} for RDE(S); {‘Names’, ‘websites’, ‘title wikis’}
for RDE(D); {‘Names’, ‘websites’, ‘affiliation’} for RDE(I); {‘Names’, ‘web-
sites’, ‘title wikis’, ‘types’} for ESCO(S); {‘Names’, ‘websites’, ‘title wikis’}
for ESCO(D); {‘types’, ‘industries’, ‘websites’, ‘native names’, ‘title wikis’} for
DBpedia(C).

Google KG. For some entities with short forms, noisy variations, etc. we
are unable to fetch knowledge using Wikipedia search; therefore, we leverage
Google KG Search API 3 to extract rich semantic textual descriptions of enti-
ties to supplement the model with semantic knowledge. Other attributes such
as {location, type, established} are extracted that form a part of meta knowl-
edge. Finally, we combine the side information extracted from Google KG and
Wikipedia infoboxes. For example, an entity ‘vb script’ and its combined side
information is defined as ‘descriptions’ : ‘VBScript is an Active Scripting lan-
guage . . . advanced programming constructs’; ‘title wikis’ :‘VBScript’; ‘websites’
docs.microsoft.com/en-us/previous-versions/t0aew7h6}. We create side informa-
tion embeddings si, a concatenated sequence of side information vector represen-
tations {s1i , s

2
i , . . . s

p
i }, where p is the number of attributes obtained from external

2 https://www.mediawiki.org/wiki/MediaWiki.
3 https://serpapi.com/.

https://www.mediawiki.org/wiki/MediaWiki
https://serpapi.com/

164 N. Goyal et al.

sources. We generate the side information embeddings using a pre-trained dis-
tilled version of S-BERT [19] model. We follow the same process across all the
entity types.

5 Experimental Setup

In this section, we describe our baselines, model configurations, and evaluation
metrics.

Baselines. We compare our approach against the following methods:

Galarraga-IDF. Authors [5] uses AMIE algorithm and handcrafted features to
find the similarity between entity ex and entity ey. We utilize the weighted word
overlap approach as a baseline method.

Entity Embeddings (Distilled S-BERT(*)) +cosine. We generate our entity
embeddings (see Sect. 3.2) to obtain the vector representation for the entity
pair (xi, xj). Instead of using the next module, i.e. Kernel Network, we apply
cosine similarity measure to get a pairwise similarity matrix.

Entity and Side Information Embeddings (Distilled S-BERT(**)) +cosine. We
obtain entity embedding of (xi, xj) and side information embedding of (si, sj)
to get (wi, wj) (see Sect. 3.2). The pairwise similarity matrix is generated using
cosine similarity.

Char-BiLSTM+A. Fatma et al. [4] describe the architecture which utilize a
siamese network that takes characters as input and passes it through the pair of
BiLSTM layers enhanced by the attention layer.

Word-BiLSTM+A. This baseline modifies the previous method (Char-
BiLSTM+A) [4] by replacing character-based representations with word-based
representations followed by attention layer.

Char-BiLSTM+A+Word+A. Authors [4] combine Char-BiLSTM+A and Word-
BiLSTM+A architectures combining word and character representations fol-
lowed by attention mechanism.

Model Configurations. We learn pairwise similarity models using the pro-
posed architecture for different datasets (companies, institutes, designations,
skills). The training and testing dataset split is taken as (80, 20). The optimal
value of hyperparameters (size of hidden layer, α) for companies, designations,
and skills is (1536, 2) whereas for institutes, (768, 2). Batch-size is 512 and
the number of fully connected layers are 3. Rectified linear units (ReLU) is used
as activation function and dropout rate is 0.3. Binary cross-entropy loss and
Adam as an optimizer is used to train the kernel network and learn the pairwise
similarity matrix (Msim).

Evaluation Metrics. For pairwise similarity results (Table 1), we use Precision
(P), Recall (R) and F1-score (F) [18]. We evaluate clusters (see Table 2) using
Micro Precision, Macro Precision, Micro Recall, and Macro Recall used in the
literature [21].

KCNet: Kernel-Based Canonicalization Network 165

6 Results and Discussion

Pairwise Similarity. Table 1 summarizes the test results of the pairwise simi-
larity of KCNet along with other baseline approaches. We observe that Galarraga
IDF (a weighted word overlap similarity measure) and the entity embeddings
generated using Distilled S-BERT(*)+cosine results in low pairwise similarity
for non-overlapping variations and different surface forms of entities. For e.g.
(‘mdx’, ‘MultiDimensional eXpressions’) has similarity of 0.73 using Distilled
S-BERT(*)+cosine. KCNet gives the similarity of 0.84 as it learns the structure
and non-linear mapping in latent space, even in the absence of side information.
With side information, KCNet learns the latent semantic relationships between
these two entities and returns a high similarity score of 0.99. Another exam-
ple is overlapping variations (uplholstery fillings, upholstery paddings); Distilled
S-BERT(*)+cosine returns a pairwise similarity score of 0.86 for these same
entities, whereas KCNet learns a better representation and gives a pairwise sim-
ilarity score of 0.99. KCNet generalizes well across all entity types, it gives higher
P and F even for all open datasets where it outperforms with 21% F1-score as
compared to best baseline.

Table 1. Test Results of pairwise similarity using our proposed model in compari-
son with different baselines. Here S, D, I, C refers to Skills, Designations, Institutes,
and Companies datasets respectively. Results of † are taken from [4]. P and F refers
to Precision and F1-scores. Distilled S-BERT (*, **) refers to (entity, entity � side
information) embedding using distilled S-BERT model.

Model Performance

Proprietary Open

S D I C ESCO(S) ESCO(D) DBpedia(C)

P F P F P F P F P F P F P F

Galarraga-IDF† 33.2 12.5 63.0 60.3 64.3 66.5 75.8 71.2 50.8 32.8 61.7 38.9 22.6 23.6

Distilled S-BERT(*)+cosine 47.8 47.5 49.7 48.8 49.7 49.1 49.2 49.1 49.3 44.4 49.3 39.0 49.6 45.3

Distilled S-BERT(**)+cosine 47.5 48.8 49.8 49.9 34.6 41.5 56.2 48.4 49.5 50.0 49.4 49.7 50.0 49.8

CharBiLSTM+A† 81.8 86.9 72.6 77.2 84.5 84.8 99.3 98.9 85.9 86.9 76.3 75.1 72.1 59.7

WordBiLSTM+A† 80.1 86.5 90.5 94.8 80.6 83.3 95.3 95.6 85.6 89.6 83.1 83.7 77.6 70.7

CharBiLSTM+A+Word+A† 82.7 88.5 94.4 96.3 86.7 86.7 99.5 99.2 87.3 90.7 84.2 85.4 78.0 71.3

KCNet (without sideinfo) 96.7 90.6 99.6 90.9 92.4 89.3 99.4 98.8 99.0 95.1 98.8 86.9 99.0 92.5

KCNet (with sideinfo) 99.5 99.4 99.7 99.6 99.5 99.5 99.5 99.3 99.2 98.3 98.8 89.4 99.1 97.0

Clustering results. Test results after applying the clustering approach is
reported in Table 2. Overall, KCNet significantly outperforms the best base-
line [4] by an improved micro F1-score by 23% and macro F1-score by 25%.
A one-way repeated measures ANOVA test was conducted to determine signifi-
cance for all evaluation metrics (p < 0.00003).

Side Information for KCNet. We evaluate the performances of different
versions of KCNet (with and without side info). From Table 1, we observe that

166 N. Goyal et al.

Table 2. Test Results over HAC using pairwise similarity. Here, β: baseline (Char-
BiLSTM+A+Word+A) and γ: proposed model (KCNet) with sideinfo.

Dataset Model Metrics

Micro Macro

P R F P R F

S β 0.71 0.64 0.67 0.94 0.31 0.47

γ 0.99 0.97 0.98 0.96 0.97 0.96

D β 0.95 0.53 0.67 0.83 0.15 0.24

γ 0.86 0.78 0.82 0.85 0.54 0.66

I β 0.84 0.75 0.79 0.96 0.48 0.64

γ 0.83 0.85 0.84 0.74 0.71 0.72

C β 0.98 0.99 0.98 0.97 0.96 0.96

γ 0.98 0.97 0.98 0.98 0.97 0.98

ESCO(S) β 0.84 0.82 0.83 0.65 0.49 0.55

γ 0.93 0.92 0.92 0.89 0.75 0.81

ESCO(D) β 0.49 0.79 0.61 0.21 0.32 0.25

γ 0.91 0.61 0.73 0.81 0.22 0.34

DBpedia(C) β 0.88 0.52 0.65 0.92 0.25 0.39

γ 0.93 0.75 0.83 0.86 0.60 0.70

P and F performance benefits from increased performance in the presence of side
information. Char-BiLSTM+A+Word+A captures limited patterns and unable
to model similar semantic variations (mycology, fungi studies) for which KCNet
gives a pairwise similarity score of 0.98. This shows that KCNet is able to model
these variations well when supplemented with side-information. Even though side
information might be unavailable for a some entities, the proposed framework
results in overall better entity canonicalization.

Error Analysis: Although KCNet gives promising results across all datasets,
it wrongly clusters some entities; for example, some skills such as bees wax and
natural wax signify same concept but occur in the different cluster. One possi-
ble reason could be that the representation of words bees and natural are far
apart in the contextual vector representation space, so the model assigns a lower
similarity score and hence, incorrectly classifies it. Similarly, ‘packager’ is incor-
rectly placed in cluster of [‘dozer driver’, ‘dozer/crawler driver’, ‘packager’].
The possible reason could be the complete absence of side information for three
entities confuses KCNet with closer contextual vector representations. Despite
this, KCNet addresses the challenge of handling abbreviations, short forms, and
non-overlapping entities by learning vector representations of these entities in
the kernel space.

KCNet: Kernel-Based Canonicalization Network 167

7 Conclusion

Our research focused upon canonicalizing real-world entities from the recruit-
ment domain such as companies, designations, institutes, and skills by designing
a novel multi-tier framework Kernel-based Canonicalization Network (KCNet).
KCNet induces a non-linear mapping between the contextual vector represen-
tations while capturing fine-granular and high-dimensional relationships among
vectors. KCNet efficiently models more prosperous semantic and meta side infor-
mation from external knowledge towards exploring kernel features for canonical-
izing entities in the recruitment domain. Furthermore, we applied Hierarchical
Agglomerative Clustering (HAC) using the pairwise similarity matrix Msim to
create unique clusters of entities. Experiments revealed that the Kernel-based
neural network approach achieves significantly higher performance on both pro-
prietary and open datasets. We demonstrate that our proposed methods are also
generalizable to domain-specific entities in similar scenarios.

Acknowledgements. We would like to acknowledge the support from SERB,
InfoEdge India Limited, and FICCI. We are grateful to PreCog Research Group and Dr.
Siddartha Asthana for critically reviewing the manuscript and stimulating discussions.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A
Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0 52

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems (2013)

3. European Commission: ESCO handbook. EU publications (2019)
4. Fatma, N., Choudhary, V., Sachdeva, N., Rajput, N.: Canonicalizing knowledge

bases for recruitment domain. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim,
E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp.
500–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2 38

5. Galárraga, L., Heitz, G., Murphy, K., Suchanek, F.M.: Canonicalizing open knowl-
edge bases. In: Proceedings of the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management, pp. 1679–1688 (2014)

6. Gupta, S., Kenkre, S., Talukdar, P.: Care: Open knowledge graph embeddings.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 378–388 (2019)

7. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. The
Annals of Statistics, pp. 1171–1220 (2008)

8. Kuo, B.C., Ho, H.H., Li, C.H., Hung, C.C., Taur, J.S.: A kernel-based feature
selection method for SVM with RBF kernel for hyperspectral image classification.
IEEE J. Selected Top. Appl. Earth Observations Remote Sensing 7(1), 317–326
(2013)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-030-47436-2_38

168 N. Goyal et al.

9. Le, L., Xie, Y.: Deep embedding kernel. Neurocomputing 339, 292–302 (2019)
10. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,

Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web 6(2), 167–
195 (2015)

11. Lin, X., Chen, L.: Canonicalization of open knowledge bases with side informa-
tion from the source text. In: 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pp. 950–961. IEEE (2019)

12. Liu, Q., Javed, F., Dave, V.S., Joshi, A.: Supporting employer name normaliza-
tion at both entity and cluster level. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1883–1892
(2017)

13. Liu, Q., Javed, F., Mcnair, M.: Companydepot: Employer name normalization
in the online recruitment industry. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 521–530
(2016)

14. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: Dbpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, pp. 1–8 (2011)

15. Neculoiu, P., Versteegh, M., Rotaru, M.: Learning text similarity with siamese
recurrent networks. In: Proceedings of the 1st Workshop on Representation Learn-
ing for NLP, pp. 148–157 (2016)

16. Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge
graphs. AAAI. 2, 3–2 (2016)

17. Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: Ppdb
2.0: Better paraphrase ranking, fine-grained entailment relations, word embed-
dings, and style classification. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 2: Short Papers), pp. 425–430
(2015)

18. Raghavan, V., Bollmann, P., Jung, G.S.: A critical investigation of recall and pre-
cision as measures of retrieval system performance. ACM Trans. Inf. Syst. (TOIS)
7(3), 205–229 (1989)

19. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Association for
Computational Linguistics, Hong Kong, China, November 2019

20. Starczewski, A., Krzyżak, A.: Performance evaluation of the silhouette index.
In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 49–58. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19369-4 5

21. Vashishth, S., Jain, P., Talukdar, P.: CESI: canonicalizing open knowledge bases
using embeddings and side information. In: Proceedings of the 2018 World Wide
Web Conference, WWW 2018, International World Wide Web Conferences Steer-
ing Committee, Republic and Canton of Geneva, Switzerland, pp. 1317–1327 (2018)

22. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

https://doi.org/10.1007/978-3-319-19369-4_5

KCNet: Kernel-Based Canonicalization Network 169

23. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised
embedding. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks:
Tricks of the Trade. LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35289-8 34

24. Yan, B., Bajaj, L., Bhasin, A.: Entity resolution using social graphs for business
applications. In: 2011 International Conference on Advances in Social Networks
Analysis and Mining, pp. 220–227. IEEE (2011)

https://doi.org/10.1007/978-3-642-35289-8_34

Deep Unitary Convolutional Neural Networks

Hao-Yuan Chang(B) and Kang L. Wang

University of California, Los Angeles, Los Angeles, CA 90095, USA
{h.chang,klwang}@ucla.edu

Abstract. Deep neural networks can suffer from the exploding and vanishing
activation problem, in which the networks fail to train properly because the neural
signals either amplify or attenuate across the layers and become saturated. While
other normalization methods aim to fix the stated problem, most of them have
inference speed penalties in those applications that require running averages of the
neural activations. Here we extend the unitary framework based on Lie algebra to
neural networks of any dimensionalities, overcoming the major constraints of the
prior arts that limit synaptic weights to be square matrices. Our proposed unitary
convolutional neural networks deliver up to 32% faster inference speeds and up
to 50% reduction in permanent hard disk space while maintaining competitive
prediction accuracy.

Keywords: Neural network · Lie algebra · Image recognition

1 Introduction

1.1 Problem Statement

Recent advancements in semiconductor technology [1] have enabled neural networks to
grow significantly deeper. This abundant computing power enabled computer scientists
to drastically increase the depths of neural networks from the 7-layer LeNet network
[2] to the 152-layer contest-wining ResNet architecture [3]. More layers usually lead to
higher recognition accuracy because neural networks make decisions by drawing deci-
sion boundaries in the high dimensional space [4]. A decision boundary is a demarcation
in the feature space that separates the different output classes. The more layers the net-
work has, the more precise these boundaries can be in the high dimensional feature
space; thus, they can achieve higher recognition rates [5]. However, deep networks often
fail to train properly due to poor convergence.

There are many reasons why a deep network fails to train [6], and the problem that
our proposal fixes is the instability of the forward pass, in which neural activations either
saturate to infinity or diminish to zero. More precisely, depending on the eigenvalues
of the synaptic weight matrices [7], neural signals may grow or attenuate as they travel
across neural layerswhenunbounded activation functions such as the rectified linear units
(Relu) are used [8]. The Relu is the most popular nonlinearity due to its computational
efficiency. Suppose the activation is extremely large or small; in this case, the weight

© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 170–181, 2021.
https://doi.org/10.1007/978-3-030-86340-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_14&domain=pdf
http://orcid.org/0000-0003-2864-7538
http://orcid.org/0000-0002-9363-1279
https://doi.org/10.1007/978-3-030-86340-1_14

Deep Unitary Convolutional Neural Networks 171

update will scale proportionally during training, resulting in either a massive or a tiny
step.

In short, vanishing and exploding activations occur when the neural signals are not
normalized, and the backpropagated gradients either saturate or die out during network
training [9]. Although other schemes such as batch normalization [10], learning rate
tuning [11], and gradient highways [3] can mitigate the issue, none of these methods
eliminate the core problem—the weight matrices have eigenvalues that are larger or
smaller than one. Furthermore, most normalization methods have inference time penal-
ties. In thiswork,we aim todevise away to fundamentallyfix the exploding andvanishing
activation problem without slowing down the inference speed.

1.2 Proposed Solution

Our proposed solution (Fig. 1) is to eliminate the need to normalize the neural signals
after each layer by constraining the weight matrices,W, to be unitary. Unitary matrices
represent rotations in the n-dimensional space1; hence, they preserve the norm (i.e., the
amplitude) of the input vector. With this unique property, unitary networks can maintain
the neural signal strengths without explicit normalization. This technique allows the
designers to eliminate the networks’ normalization blocks and make inference faster.

We aim to engineer a way to constrain the weights to be unitary. To achieve this,
we leverage the previously reported framework for constructing orthogonal matrices
in recurrent neural networks using Lie algebra [12], which we will explain briefly in
Sect. 2.1. Unlike other approximation methods, this framework guarantees strictly uni-
tary matrices; however, it is currently limited to square matrices. Our main contribution
is that we found a way (Sect. 2.2) to extend the unitary framework based on Lie algebra
to weight matrices of any shapes. By doing so, we expand the applicability of this frame-
work from recurrent neural networks with square weight matrices to any neural network
structures, drastically increasing its usefulness in state-of-the-art network architectures.

Fig. 1. Unitary network for mitigating exploding and vanishing activations.

1 Unitary matrices can have complex values. When the matrices only contain real components,
they are called orthogonal matrices, which is a subset of unitary matrices, and our proposal
works in both cases. The eigenvalues of a unitary matrix have modulus 1.

172 H.-Y. Chang and K. L. Wang

1.3 Literature Review

Lie algebra is not the only way to construct unitary matrices. Researchers have explored
manyoptions to construct unitaryweights forRNNs, including eigendecomposition [13],
Cayley transform [14], square decomposition [15],Householder reflection [16], and opti-
mization over Stiefel manifolds [17]. These methods decompose the unitary matrix into
smaller parameter spaces with mathematical processes that guarantee unitarity; how-
ever, the weight matrices in these approaches must be square. For convolutional neural
nets with rectangular weights, there are approximation techniques based on least square
fitting [18], singular value decomposition [19], and soft regularization [20] due to the
additional complexity of rectangular filters. These techniques find the best approximates
to the unitaryweights, but they do not guarantee theweightmatrices to be strictly unitary.
On the contrary, our approach combines the best of the two schools—it is both strictly
unitary and applicable to non-square matrices. Our work is the first report of applying
the unitary weights based on the Lie algebra framework for a deep convolutional neural
network with a comprehensive performance study, aiming to make the unitary network
an attractive alternative to conventional normalizationmethods in inference-time-critical
applications.

2 Unitary Neural Networks with Lie Algebra

2.1 Square Unitary Weight Matrices

In this section, we explain the mathematical framework [12] for representing the unitary
group with orthogonal matrices, collectively known as the Lie group [21]. Linearization
of the Lie group about its identity generates a new set of operators; these new operators
form a Lie algebra. Lie algebra is parameterized by the Lie parameters, whichwe arrange
as a traceless lower triangular matrix, L. We name it Lie parameters because it contains
independent trainable parameters for the neural networks. The representable algebra
through this parameterization is only a subspace of unitary groups, and it is sufficient
for guaranteeing signal stability in deep neural networks.

The Lie parameters (L) are related to the Lie algebra (A) by the following equation:

A = L − LT , (1)

where T corresponds to taking the matrix transpose. An essential feature of matrix
A is that it is a skew-symmetric matrix, i.e., AT = −A, because any compact metric-
preserving group, including the orthogonal group, has anti-symmetric Lie algebra [22].
Furthermore, the following equation proves that the chosen representation for the Lie
parameters will produce an anti-symmetric Lie algebra:

AT + A =
(
L − LT

)T + L − LT = 0. (2)

Additionally, in the last step of our pipeline to construct unitarymatrices,we exponentiate
the Lie algebra, A, to obtain the group representation, which will be a unitary matrix
(U):

U = EXP(A) =
∑∞

N=0

AN

N
!. (3)

Deep Unitary Convolutional Neural Networks 173

We approximate this matrix exponentiation with an 18-term Taylor series in our imple-
mentation. Besides eliminating any term beyond the 18th order in Eq. (3), we efficiently
group the computation to avoid redundant multiplications, a standard approach used in
many matrix computation software to save time [23, 24].

Suppose the neural network has square weight matrices. In that case, we can use
the unitary matrices (U) to replace the original weights, forcing the neural signals to
maintain their norms without explicit normalization. We can train the Lie parameters
using backpropagation and automatic differentiation because all steps in the pipeline
above are algebraic functions [25, 26]. As mentioned previously, researchers have only
applied the unitary pipeline to a small recurrent neural network (RNN),which has a single
square weight matrix repeatedly applied in time [12]. Nevertheless, the requirement for
theweights to be square severely limits the usefulness of the presented framework. Using
the Lie algebra formalism to construct unitary weights is an elegant method to regulate
signals, and we wish to find a way to bring this concept to deep convolutional neural
nets with any non-square weight matrices.

2.2 Unitary Weight Matrices of Any Shapes and Dimensions

In the above section, the weight matrices must be square, forcing the number of neurons
for both the input and output of a particular layer to be identical. This requirement cannot
be satisfied inmost convolutional neural nets. Convolutional layers have weight matrices
commonly referred to as “filters.” These filters will convolute with the input image as
the following [5]:

O(i, j) = (I ∗ F)(i, j) =
∑

m

∑
n
I(i + m, j + n)F(m, n), (4)

where O is the output activation map of this layer, I is the input image, and F is the
convolutional filer. An example of convolution is illustrated in Fig. 2(a).

Moreover,we can succinctly represent the convolution as a single dot product through
the Toeplitz matrix arrangement [27, 28]. Suppose we arrange the input image as a
Toeplitz matrix and flatten out the filters to a 2-dimensional weight matrix. In that case,
the convolution simplifies to a dot product between the Toeplitz matrix of the image
and the flattened filter weights. Effectively, we convert the convolution between high-
dimensional tensors to multiplications between 2-dimensional matrices. These flattened
filters are usually rectangular m × k matrices, where m �= k. If m matches k, the weight
matrix is square, allowing us to apply the unitary pipeline to ensure each row of the
Toeplitz matrix will maintain its norm. On the other hand, when dealing with rectangular
weights, we need to handle them with special care to achieve the desired effect of norm
preservation.

Our innovation is that we discard the excess columns in the unitary matrix when m
�= k (i.e., when the weight matrix has unequal width vs. height); for now, we will assume
m > k because the other cases only require a few slight adjustments. Even though there
is no way around the fact the unitary matrices must be square, we discovered that it is
unnecessary to use the whole unitary matrix: we can just take the first few columns that
we need. We will construct the unitary matrix as a m x m matrix (i.e., in the larger of the
two dimensions). This way, we can reuse the existing pipeline in Sect. 2.1. Our proposed

174 H.-Y. Chang and K. L. Wang

pipeline is as follows. We only keep the first k columns of the Lie parameters, setting
everything else to zero. Likewise, we only take the first k columns of the resulting unitary
matrix (U), discarding the rest (Fig. 2(b)). Because the rectangular matrix now has the
correct dimensions, we multiply the input image (in the Toeplitz form) with the unitary
weight matrix. Below is a summary of our process to construct the unitary rectangular
weights in the mathematical form:

y = W
−
x, (5)

where

W = [
u1 u2 . . . uk

] ∈ Rm×k . (6)

u1 . . . uk are the first k column vectors from the unitary matrixU (Note that when m ≤ k,
we still construct the unitary matrix U in the larger dimension, butW will be transposed
to obtain the desired dimensionality for the matrix multiplication). Lastly, the output
vector is explicitly normalized using the Euclidean metric when m > k; this step is not
required for m ≤ k:

yfinal =
{

y/‖y‖2 for m > k
y for m ≤ k

, (7)

where ‖·‖2 denotes the Euclidean norm (a.k.a., Euclidean metric or the L2 norm), a
distance measure calculated by squaring all the coordinates, summing the results, and
taking the square root.

In theory, it is possible to avoid the explicit normalization Eq. (7) completely by
one of the following two ways: by partitioning the tall rectangular weight matrix into
a vertical stack of smaller matrices that are either square or wide. Or, by exploring
alternative mappings from the various dimensions of W to m and k to ensure m ≤ k.
Nevertheless, we took the direct normalization approach in this work for conceptual
clarity, and it is only required in a small portion of the network. Moreover, even though
it is not ideal to add normalization back to portions of our network, the unitary weights
offer other benefits over conventional normalization. Researchers have found orthogonal
weights lead to more efficient filters with fewer redundancies [20]. Our normalization
process does not add additional training parameters to keep track of the activations’
mean and variance.

Discarding columns of unitary matrices has important geometrical meanings. A
unitary matrix represents a rotation in the n-dimensional space whenm = k; additionally,
its columns form a complete set of orthonormal bases in the rotated coordinate system.
We have utilized the latter to paint a geometric understanding of our procedure—each
of the k columns is an orthonormal basis in the m-dimensional space. For m > k, the
unitary weight (W) is projecting an input row vector x to a lower-dimensional manifold
spanned by the unitary matrix’s first k columns, a subset of orthonormal bases. When we
multiply the Toeplitz matrix with this unitary weight matrix, we perform a dot product
between the row vectors against each orthonormal basis, measuring how much the input
vector aligns with a specific basis. According to the Pythagorean theorem, this projection
will produce a shorter vector than the original one because we dispose of those vector

Deep Unitary Convolutional Neural Networks 175

components associated with the unitarymatrix’s discarded columns. As a result, we need
to normalize the output to recuperate the signals lost in missing dimensions.

On the contrary, for m < k, each row of the weight matrix is an orthonormal basis. In
that case, we are mixing the orthonormal bases according to the ratio prescribed by the
input row vector x, resulting in a higher-dimensional output vector y. This dimensionality
expansion happens when we multiply the weight matrix with a row vector (x) of the
Toeplitz matrix that encodes the input image. Effectively, we are projecting a vector to
the larger dimensions through the wide unitary weight (W), and this operation preserves
the Euclidean norm of the input vector x. To prove this property mathematically, we
simply compare the norm of x against the norm of y. When we use the orthonormal bases
defined by the unitary matrix (U) to describe vector locations, the first p coordinates of
y match x, and the rest of the coordinates are zeros. Hence, ‖y‖2 is the same as ‖x‖2
because the Euclidean norm is defined as the square root of the sum of the squared
coordinates.

Fig. 2. Pipeline to construct unitary weights for a convolutional neural network. (a) convolution
between an example input image and filters. (b) our proposed way of constructing unitary weights
of any dimensions. From the right, Lie parameters contain all the trainable parameters, and we
only need the first k columns. Similarly, we keep the first k columns of the resulting unitary matrix
and reshape them tomatch the desired dimensionality for the convolutional filters. In this example,
k = cout and m = cin × dH × dW . This mapping will depend on the target applications.

3 Experiments

3.1 Network Architecture

We applied the proposed unitary weight matrices to the residual neural network (ResNet)
for image recognition; our architecture is a narrower and shorter variant of the popular

176 H.-Y. Chang and K. L. Wang

ResNet-50 [3]. We picked a smaller model to prevent overfitting to the training data
because ResNet-50 was designed for the more complex ImageNet dataset. Our network
(uResNet-44) has only 43 convolutional layers with a fully connected layer at the end for
projecting the high-dimensional neural signals to ten output classes. We documented the
sizes and number of convolutional filters in Fig. 3 for reproducibility. Also, we studied
the scalability in terms of depth with the 92 and 143-layer networks (uResNet-92 and
uResNet-143). See our source code for details2.

3.2 Dataset

We used the CIFAR-10 image recognition dataset created by the Canadian Institute
for Advanced Research, and it contains 60,000 32 × 32 color images with ten labeled
classes. The recognition task is to predict the correct class of each image in the dataset.
CIFAR-10 is freely available for download [29]. We split the dataset into 50,000 training
and 10,000 test images with the same data argumentation scheme as the original ResNet
paper [3]. We also tested our unitary neural network’s susceptibility to overfitting with
the CIFAR-100 dataset [29].

3.3 Training Details

Wemodified the source code found in this reference [30] for comparison against conven-
tional normalization techniques, sharing the same learning rate (0.1), learning schedule
(divide by 10 at 100, 150, and 200 epochs), batch size (128), and training epochs (250).
The only modification we made for the unitary neural net is that we added the unitary
pipeline using the method described previously in Sect. 2.2 for the convolutional layers.
We also removed all the normalization blocks in the unitary version. We trained the reg-
ular and the unitary networks with the stochastic gradient descent optimizer in PyTorch
with a momentum setting of 0.9 and weight decay of 2e−4. We measured the neural
networks’ speed and memory usage by simulating each neural architecture one at a time
on a single NVIDIA RTX3090 graphics card with 24 GB total video memory.

3.4 Caching of the Unitary Weights

During training, the entire neural pathway is enabled, including the block that contains
the Lie parameters, Lie algebra, and Lie group (Fig. 3). Gradients are backpropagated
from the output to update the Lie parameters. After training is complete, the best unitary
weights are cached; thus, we do not need to recompute the unitary weights during
inference.

2 https://github.com/h-chang/uResNet.

https://github.com/h-chang/uResNet

Deep Unitary Convolutional Neural Networks 177

Fig. 3. The unitary convolutional neural network (CNN) architecture. There are two main differ-
ences between the regular and the unitary CNN. Firstly, in unitary CNNs, we permanently remove
the normalization blocks to speed up computation because the unitary weights already preserve
the signal strengths across layers. Secondly, unitary CNNs have an additional Lie block labeled
“Activated for training” on the right. The Lie block is active only during the training mode to
learn the Lie parameters. At the end of the training mode, a set of unitary weights is constructed
from the Lie parameters and cached. The convolutional filters will use these pre-recorded unitary
weights during inference. The removal of normalization significantly improves inference speed.
We enlarge one of the unit blocks to illustrate its content; each unit block contains three convo-
lutional layers. Unit blocks are cascaded to create a feed-forward convolutional neural network.
The only difference between the unit blocks is the number of convolutional filters, which we label
as α, β, and γ in the figure. α Conv1 × 1 for a layer with α = 16 means that there are 16 convo-
lutional filters with size 3 × 3 in that layer. The rectified linear unit (Relu) is used as nonlinearity
at locations depicted in the figure.

4 Results and Discussion

With our proposed unitary convolutional neural network from Sect. 3, we compare the
performance of our proposal against popular normalization methods and summarize
the main results of our experiment in Fig. 4 below. By removing the network’s unitary
pipeline (the block with Lie parameters, Lie algebra, and Lie group in Fig. 3) during
test time, we achieved a much faster inference speed than other normalization methods,
including the batch norm [10], group norm [31], layer norm [32], and instance norm
[33]. Each of these methods addresses a specific problem; therefore, the designer might
favor one over the other depending on the application. With our unitary convolution,
we offer the community another tool in the toolbox that is lightning fast—32% faster
than the instance norm in inference. We compute the speedup by dividing the inference
time of the unitary norm with the instance norm’s in Fig. 4(e). Our method shares many
characteristics with the instance norm; however, instead of normalizing based on the
neural signals’ statistics, we devise a set of unitary weights to ensure signals maintain

178 H.-Y. Chang and K. L. Wang

their norm per Toeplitz matrix row. Compared to the instance norm’s training time, our
training time for the unitary network is also long due to the need to perform matrix
exponentiation. Still, it is possible to further expedite it by limiting the frequency that
we exponentiate (i.e., sharing the same unitary weights for several iterations). The result
shown in Fig. 4 is measured without weight sharing during training; we will report
further improvements in the future.

Fig. 4. Performance comparison between our proposed unitary convolutional network and other
normalization methods. Other methods include the batch norm [10], group norm [31], layer norm
[32], and instance norm [33]. We also included the case without any normalization for com-
parison. All metrics are average measurements over four simulation runs. We used the residual
network (ResNet) architecture with 43 convolutional layers to measure the accuracy, the time, and
the memory benchmarks when the networks perform image recognition tasks on the CIFAR-10
dataset, which has ten unique classes of objects. The accuracy reports the percentage of time the
network determines the image class correctly with one try. (a, d for training, inference accuracies,
respectively). The training time is the time to train the network with 12.5 million images, while the
inference time reports the time to recognize 2.5 million images (b, e). Because we trained these
networks on graphics processors, memory benchmarks measure the maximum video memory a
network consumed during each operation mode (c, f).

In our experiment, both unitary network and batch normalization do not calculate
running statistics (i.e., means and variances) during inference while group, layer, and
instance norms track running statistics in the test set. Batch normalization is the sec-
ond fastest and can potentially match the speed of the unitary network if the batch
normalization layer is absorbed into the previous convolutional filters. However, batch
normalization will not perform well in applications that require small batch sizes or
normalization per data sample such as making adjustments to the contrast of individual
images [33]. Group, layer, and instance normalizations work on a per-image basis; the
difference between them is the number of channels that they average over. In our exper-
iment, we picked a group size of eight; hence, the group normalization needs to keep

Deep Unitary Convolutional Neural Networks 179

track of eight means and variances per image. Contrary to layer norm that only requires
one mean and one variance per image, instance norm track as many means and variances
as the number of channels, which is up to 256 in our architecture. Our unitary network
maintains the L2 norm of each row in the Toeplitz matrix representation per image,
delivering similar effects as the instance norm but without the inference speed penalty.
The mapping between the filters and the unitary matrix determines which dimension of
the activation map that the unitary network is effectively normalizing. For this reason,
practitioners should assign cout , cin, dH , and dW to m and k in Fig. 2 differently based
on the target applications.

The unitary network also uses less temporary memory (dynamic random-access
memory or DRAM) required to backpropagate neural signals through the normalization
layers during training; more specifically, 8% less than all other normalization meth-
ods. Despite our advantages in inference speed and training memory, unitary networks’
accuracy is slightly lower in general. Unitary weights constrain the signals to be on the
n-sphere (or k-sphere since we have k dimensions) by design and are less expressive
than free weights. Nevertheless, our accuracy is comparable to other normalizations
and even surpasses the inference accuracy of layer norm. An additional advantage for
the unitary network is apparent when we save the model parameters to hard disks: as
we demonstrated in Fig. 2, the matrices encoding the Lie parameters have many zeros,
which lead to better compression of the parameter files. An approximation for model
size saving is roughly a 15% to 50% reduction in disk space when working with unitary
convolutional architectures. We compute the 50% reduction by leveraging the fact that
we only need to record half of the values in a triangular Lie parameter matrix, assuming
that the weight matrix is square.

Our unitary neural networks are less susceptible to overfitting. Using the CIFAR-
100 dataset and the same network structure (uResNet-44), we discovered that unitary
networks have a smaller gap between the training loss (1.44) and the testing loss (1.62).
While Regular neural networks with batch normalization have a larger gap between the
training loss (0.0699) and the testing loss (1.56). Furthermore, our unitary networks can
be deepened to 100+ layerswithout the costly normalization blocks: the 92-layer version
(uResNet-92) achieves 99.6% and 90.4% in training and testing accuracies, respectively,
on CIFAR-10. Similarly, the 143-layer version (uResNet-143) delivers 99.7% and 90.7%
in training and testing accuracies.

5 Conclusion

We report here the first instance of using unitary matrices constructed according to the
Lie algebra for rectangular convolutional filters, which eliminates the exploding and
vanishing activations in deep convolutional neural networks. With clear geometrical
interpretations, our theory is a breakthrough based on rigorous, exact construction of the
unitary weights applicable to all types of neural networks including but not limited to
convolution. The key innovation is that we found a way to ensure signal unitarity with
unitary weight matrices of any shapes and dimensions such that the neural signals will
propagate across the networkwithout amplification or degradation.Moreover, unlike tra-
ditional normalization, our approach has the least impact on inference time, achieving a

180 H.-Y. Chang and K. L. Wang

32%speedup in recognizing color imageswhen compared to instance normalization. The
effective normalization dimension is adjustable in our framework through the mapping
between the convolutional filters and the unitary matrices. Our proposal also reduces
hard disk storage by up to 50% depending on the neural architectures. The presented
framework establishes unitary matrices as a design principle for building fundamentally
stable neural systems.

References

1. Mollick, E.: Establishing Moore’s law. IEEE Ann. Hist. Comput. 28, 62–75 (2006). https://
doi.org/10.1109/MAHC.2006.45

2. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1, 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2015)

4. Montufar, G.F., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions of deep
neural networks. Adv. Neural Inf. Process. Syst. 27 (2014)

5. Goodfellow, I.: Deep Learning. MIT Press (2016)
6. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.

arXiv:1211.5063 [cs]. (2013)
7. Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse Prob. 34,

014004 (2017). https://doi.org/10.1088/1361-6420/aa9a90
8. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In:

Proceedings of the 27th International Conference on International Conference on Machine
Learning, pp. 807–814. Omnipress, Madison (2010)

9. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: Proceedings of the 32nd International Conference on Machine
Learning, pp. 448–456. PMLR (2015)

11. Wei, J.: Forget the Learning rate, decay loss. IJMLC. 9, 267–272 (2019)
12. Lezcano-Casado, M., Martínez-Rubio, D.: Cheap orthogonal constraints in neural networks:

a simple parametrization of the orthogonal and unitary group. In: Proceedings of the 36th
International Conference on Machine Learning, pp. 3794–3803. PMLR (2019)

13. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In:
International Conference on Machine Learning, pp. 1120–1128. PMLR (2016)

14. Helfrich, K., Willmott, D., Ye, Q.: Orthogonal recurrent neural networks with scaled cayley
transform. In: International Conference onMachine Learning, pp. 1969–1978. PMLR (2018)

15. Jing, L., et al.: Tunable efficient unitary neural networks (EUNN) and their application to
RNNs. In: International Conference on Machine Learning, pp. 1733–1741. PMLR (2017)

16. Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation
of recurrent neural networks using householder reflections. In: International Conference on
Machine Learning, pp. 2401–2409. PMLR (2017)

17. Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recur-
rent neural networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R.
(eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 4880–4888. Curran
Associates, Inc. (2016)

https://doi.org/10.1109/MAHC.2006.45
https://doi.org/10.1162/neco.1989.1.4.541
http://arxiv.org/abs/1211.5063
https://doi.org/10.1088/1361-6420/aa9a90

Deep Unitary Convolutional Neural Networks 181

18. Huang, L., Liu, X., Lang, B., Yu, A.W., Wang, Y., Li, B.: Orthogonal weight normalization:
solution to optimization over multiple dependent stiefel manifolds in deep neural networks.
Presented at the 32nd AAAI Conference on Artificial Intelligence (2018)

19. Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent
networks with long term dependencies. In: International Conference on Machine Learning,
pp. 3570–3578. PMLR (2017)

20. Wang, J., Chen, Y., Chakraborty, R., Yu, S.X.: Orthogonal convolutional neural networks.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 11502–11512. IEEE, Seattle (2020)

21. Gilmore, R., Hermann, R.: Lie Groups, Lie Algebras, and Some of Their Applications. John
Wiley & Sons, New York (1974)

22. Gilmore, R.: Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers
and Chemists. Cambridge University Press, New York (2008)

23. Bader, P., Blanes, S., Casas, F.: Computing the matrix exponential with an optimized taylor
polynomial approximation. Mathematics 7, 1174 (2019)

24. Torch Contributors: torch.matrix_exp — PyTorch 1.7.0 documentation. https://pytorch.org/
docs/stable/generated/torch.matrix_exp.html

25. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
26. Paszke, A., et al.: Automatic differentiation in PyTorch. NIPS 2017 Workshop Autodiff

Submission (2017). https://openreview.net/pdf?id=BJJsrmfCZ
27. Chen, Y., Xie, Y., Song, L., Chen, F., Tang, T.: A survey of accelerator architectures for deep

neural networks. Engineering 6, 264–274 (2020)
28. Araujo, A., Negrevergne, B., Chevaleyre, Y., Atif, J.: On Lipschitz regularization of convolu-

tional layers using toeplitzmatrix theory. In: 35thAAAIConference onArtificial Intelligence,
Vancouver, Canada (2021)

29. Krizhevsky,A.:LearningMultipleLayers ofFeatures fromTiny Images.University ofToronto
(2009)

30. Chiley, V., et al.: Online Normalization for training neural networks. In: Advances in Neural
Information Processing Systems, vol. 32, pp. 8433–8443. Curran Associates, Inc. (2019)

31. Wu, Y., He, K.: Group normalization. Int. J. Comput. Vis. 128, 742–755 (2020)
32. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv:1607.06450 [cs, stat]. (2016)
33. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for

fast stylization. arXiv:1607.08022 [cs] (2017)

https://pytorch.org/docs/stable/generated/torch.matrix_exp.html
https://openreview.net/pdf%3Fid%3DBJJsrmfCZ
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.08022

Deep Learning and Optimization I

DPWTE: A Deep Learning Approach
to Survival Analysis Using a Parsimonious

Mixture of Weibull Distributions

Achraf Bennis(B), Sandrine Mouysset(B), and Mathieu Serrurier(B)

I.R.I.T - Université Toulouse III Paul Sabatier, Toulouse, France
{achraf.bennis,sandrine.mouysset,mathieu.serrurier}@irit.fr

Abstract. Survival analysis is widely used in medicine, engineering,
finance, and many other areas. The fundamental problem considered in
this branch of statistics is to capture the relationship between the covari-
ates and the event time distribution. In this paper, we propose a novel
network-based approach to survival analysis, called DPWTE, that uses
a neural network to learn the distribution of the event times. DPWTE
makes an assumption that (individual) event time distribution follows
a finite mixture of Weibull distribution whose parameters are functions
of the covariates. In addition, given a fixed upper bound of the mixture
size, the model finds the optimal combination of Weibull distributions
to model the underlying distribution. For this purpose, we introduce the
Sparse Weibull Mixture layer, in the network, that selects through its
weights, the Weibull distributions composing the mixture, whose mixing
parameters are significant. To stimulate this selection, we apply a sparse
regularization on this layer by adding a penalty term to the loss function
that takes into account both observed and censored events, i.e. events
that are not observed before the end of the period study. We conduct
experiments on real-world datasets showing that the proposed model
provides a performance improvement over the state-of-the-art models.

Keywords: Survival analysis · Deep learning · Weibull distribution

1 Introduction

Survival analysis, also known as time-to-event analysis, concerns the predic-
tion of when a future event will occur. Applications of survival analysis can be
found in many areas such as prediction of cardiovascular death and failure times
of power grids. Survival analysis has primarily focused on interpretability at
the expense of predictive accuracy. This is eventually the reason why machine-
learning-based classifiers are commonly used in real-world applications while it
would be more useful to apply survival methods. Certainly, some classifiers may
have the best accuracy. However, these binary models can only provide pre-
dictions for a predetermined point in time. One loses the interpretability and
flexibility which are guaranteed by the modeling of the event densities as a func-
tion of time. Moreover, in survival data, it is common that a part of a population
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 185–196, 2021.
https://doi.org/10.1007/978-3-030-86340-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_15

186 A. Bennis et al.

in which the event is not observed within the relevant time period, and could
potentially occur after this recorded time or removed from the study, producing
so-called censored data. In this case, the individuals of this sub-population pro-
vided us with censored times rather than event times. While this type of data
is not taken into consideration by standard classifiers, survival analysis bridges
this gap. In this work, we propose a novel approach to survival analysis: the
event time distribution is assumed to follow a finite mixture of Weibull distri-
butions, whose parameters depend on an individual’s covariates. No particular
assumption about the nature of the relationship between the parameters and
the features is made. The main idea behind the proposed model called DPWTE,
that stands for Deep Parsimonious Weibull Time-to-Event, is to estimate the
optimal combination of Weibull distributions that models the underlying distri-
bution using a neural network. This paper makes the following contributions:

– The event times are assumed to be drawn from a random variable following
a finite mixture of Weibull distributions.

– DPWTE extends the idea behind DeepWeiSurv [3]. In fact, the latter consid-
ers the size of the combination p, as a parameter of the model whose different
values are to be tested. While DPWTE, starting with an upper bound of the
mixture size, learns the optimal combination of Weibull distributions (among
the initial mixture) that can model the underlying distribution. For this pur-
pose, we introduce a layer which we call the Sparse Weibull Mixture (SWM)
layer on which we apply a sparse regularization. By doing this, we enforce
the selection of the Weibull distributions that have a significant contribution
to the time-to-event modeling.

– The censored observations are considered in the conception of the model.

This paper is organized as follows: In Sect. 2, we summarize the previous related
works. In Sect. 3, we review some basic definitions in survival analysis and
Weibull distributions. In Sect. 4, we describe the proposed model with a special
focus on the role of the SWM layer. Section 5 is dedicated to the experiments
conducted on real-world datasets.

2 Related Work

Kaplan-Meier estimator is the most widely used in survival analysis which has
the advantage of being able to learn very flexible survival curves, but it doesn’t
incorporate individual covariates. However, the semi-parametric Cox Propor-
tional Hazards [4] (CPH) model incorporates the covariates but assumes that
the risk effect is linear with respect to the covariates, which may be too simplistic
since, in the real-world data, the covariate effects are often non-monotonic. The
ability of neural networks to learn nonlinear functions has encouraged many
researchers to model the relationship between the covariates and the survival
data. An extension of CPH with neural networks was first proposed by Faraggi
and Simon [6] who replaced the linear risk of the Cox regression model, with
one hidden layer multi-layer perceptron but without performance improvement.

DPWTE 187

Katzman et al. [10] revisited the Cox model in the framework of deep learning,
which removes the proportionality constraint and showed that it outperforms
CPH in terms of concordance index [8]. Most of the previous works benchmark
their methods against the random survival forests (RSF) [9] which computes a
random forest using the log-rank test as the splitting criterion, and is considered
as a flexible continuous-time method that is not constrained by the proportion-
ality assumption. Other previous works proposed network-based methods based
on Cox regression such as SurvivalNet [14] and Zhu et al. [15,16] who proposed
a convolutional network model that replaces multi-layer perceptron architecture
of DeepSurv [10] and applied this methodology to pathological images. An alter-
native approach to survival analysis is to discretize the duration and compute
the survival function on this predetermined time grid. Lee et al. [12] proposed a
network used in competing risks setting, called DeepHit, that estimates the prob-
ability distribution and combines the log-likelihood with a ranking loss. Fotso
[7] proposed N-MTLR which, using a multi-task regression, calculates the sur-
vival probabilities on the points of the time grid. Unlike discrete-time models,
DeepWeiSurv [3] models a continuous survival function that allows estimating
the survival probability at any survival time horizon.

3 Background

In this section, we briefly review some basics in survival analysis and Weibull
distributions.

3.1 Survival Analysis

Let X = {xi, yi = (ti, δi)}N
i=1 a survival data, of covariates xi ∈ R

d and event
pairs (ti, δi), where (ti)1≤i≤N is the times recorded represented by the random
variable T , and (δi)1≤i≤N ∈ {0, 1}d is the event indicator. Typically, δi = 1 if
the event associated to the ith individual is observed, otherwise, δi = 0 which
indicates censoring. The survival function is defined by the following equation:

ST (th) = P (T > th) = 1 − FT (th) (1)

Survival models characterize ST , defined as the complementary of the cumu-
lative density function FT , and thus the fraction of the population that survives
up to a time horizon th given a covariate x. Therefore the aim of these models
is to estimate the probability of the occurrence of the event after or at th.

3.2 Mixture Weibull Distributions Estimation

We suppose that T follows a finite mixture of two-parameter Weibull distri-
butions conditionally to the baseline data features. In this context, it is easy
to calculate FT at any time t. As this latter totally depends on the mixture
parameters, we only need to estimate each couple of parameters of Weibull dis-
tributions that compose this mixture as well as its weighting coefficients. Let

188 A. Bennis et al.

T follows Wp a mixture of p Weibull distributions denoted by W (βi, ηi) with
αi, βi and ηi are respectively the weighting coefficient, shape and scale of the ith

Weibull distribution of density fW (βi,ηi) and survival function SW (βi,ηi). Then
the density and survival function of Wp can be written as follows:

fWp
=

∑

k

αkfW (βk,ηk) SWp
=

∑

k

αkSW (βk,ηk) (2)

The log-likelihood of Wp, considering the censored data, is defined as follows:

LL(β, η, α|y) =

LLδ=1︷ ︸︸ ︷
n∑

i=1

δilog fWp
(ti) +

LLδ=0︷ ︸︸ ︷
n∑

i=1

(1 − δi)log SWp
(ti) (3)

Thus, we estimate Wp parameters (α, β, η) by solving the Maximum Likeli-
hood Estimation problem defined by the following equation:

(β̂, η̂, α̂) = arg min
β,η,α
β≥1

{−LL(β, η, α|y)} (4)

As we notice in Eq. (4), we set a constraint linked to the shape parameter. In
fact, by definition, β and η are strictly positive. However, to assure the convexity
of the LL, we need to consider that β is at least equal to 1. Let μi be the mean
lifetime of the ith individual. Given that the mean of a mixture μ is a weighted
combination of the means of the distributions that compose this mixture and
knowing the single Weibull’s mean [2], we have:

μi =
∑

k

αkηikΓ (1 +
1

βik
) (5)

where βik and ηik are the ith components of βk and ηk respectively. μi can be
used as an estimate of the survival time of the individual i.

4 Deep Parsimonious Weibull Time-to-Event Model

In this section, we first describe the architecture of DPWTE (Sect. 4.1). Then,
we explain the role of the Sparse Weibull Mixture layer (Sect. 4.2). After that, we
describe the post-training steps (Sect. 4.3). Finally, we present the loss function
used to train DPWTE (Sect. 4.4).

4.1 Description

As for DeepWeiSurv [3], we consider the relationship between the features and
Wp parameters. Estimation of the mixture parameters is therefore equivalent to
model this dependence. In fact, DPWTE learns the following function:

fp : Rd → R
p×3

xi �→ (α, β, η)
(6)

DPWTE 189

The aim is therefore to train the network in order to learn the above function
and thus the estimate of the triplet (α, β, η) that minimizes the log-likelihood
of the distribution. DPWTE consists of a common sub-network which takes the
observations X as an input and outputs a latent vector Z, this latter serves in
turn as an input to both the classifier and regression sub-networks whose tasks
are learning α and (β, η) respectively. Figure 1 represents the global architecture
of DPWTE. For the regression sub-network, we use ELU1 (by setting its constant
to 1) as the activation function for both output layers. As the codomain of ELU
in this case is [−1,+∞[, to respect the optimization problem constraints as seen
in Eq. (4), the network will learn β + 2 and η + 1 + ε, ε > 0. As for the classifier
sub-network, we use the softmax activation function and interleave the SWM
layer, which is described in Sect. 4.2, between the softmax and the output layer
of this network. At the architecture level, the only difference between DPWTE
and DeepWeiSurv is the so-called SWM layer through which the proposed model
implicitly selects the significant contribution distribution.

Fig. 1. The global architecture of DPWTE: clf and reg denotes the classifier and regres-
sion sub-networks respectively.

1 We choose ELU because it becomes smooth slowly, whereas ReLU sharply smoothes.
That means that with ELU we have enough gradient to learn the parameters.

190 A. Bennis et al.

4.2 Sparse Weibull Mixture Layer

It should be recalled that we seek to learn the optimal mixture of Weibull dis-
tributions that models D, which leads us to estimate the optimal size p that
we denote by p̃. We initially set p to an upper bound pmax. For this purpose,
we introduce the SWM layer just before the output layer of the classifier sub-
network. This layer performs an element-wise multiplication of its weights by the
softmax layer output. As we see in Fig. 2, we put αk = ωk �qk. In order to get an
idea of the importance of each Weibull distribution, through its associated prob-
ability, we need to have the following constraints: (ωk, αk) ∈ [0, 1]2, k = 1, .., p
and

∑p
k=1 αk = 1. However, we cannot guarantee the constraint on ωk even

if we initialize them manually and thus the constraint on αk either. To ensure
implicitly these constraints, we apply the following transformations: ∀k ∈ [|1, p],

(T1) ωk ← |ωk|∑p
j=1 |ωj |qk ∈ [0, 1],∀k ∈ [|1, p] (T2) αk ← αk∑p

k=1 αk

Fig. 2. Softmax and SWM layers of the classifier sub-network.

4.3 Post-Training Steps: Selection of Weibull Distributions to
Combine for Time-to-Event Modeling

So far, we have not yet estimated the value of p̃. The training phase is the
same as for DeepWeiSurv regardless of the loss function (described in Sect. 4.4).
However, after the network is trained, we select the triplets (αk, βk, ηk) such as αk

is greater or equal to certain threshold denoted by ωth that we fix beforehand. As
the distribution of α changes after this selection while the probability constraint
must be maintained, we apply T2 to the new α. Thus, if A = {(αk, βk, ηk)|αk ≥
αth} is the set of selected triplets for modeling, then:

1. p̃ = Card(A)
2. α = (αk, αk ≥ αth) −→

T2
α′

3. β = (βk, αk ≥ αth) −→
offset(+2)

β′

4. η = (ηk, αk ≥ αth) −→
offset(+1+ε)

η′

5. the event times distribution can be modeled by
∑

(αk,βk,ηk)∈A

α′
kW (β′

k, η′
k)

This post-processing is described by the Fig. 3.

DPWTE 191

Fig. 3. Post-training steps to compose the optimal mixture of Weibull distributions.

4.4 Loss Function

As discussed above, DPWTE learns the optimal combination of Weibull distri-
butions. To do so, we use the following loss function:

loss = −LL(β, η, α|(ti, δi)i) + λ||ω|| 1
2
, (7)

where λ is the regularization parameter and ||ω|| 1
2

=
∑p

k=1

√|wk|. The first
element of the loss is the negative log-likelihood which is used as a loss function
for DeepWeiSurv [3]. To stimulate the triplet selection process discussed in the
previous section, we apply a sparse regularization on ω = (ωk)1≥k≥p by adding a
penalty term (second operand) to the loss function, hence the name of SWM layer
and the word ‘Parsimonious’ in the name of the model. The purpose behind the
sparse regularization is to encourage sparsity in the vector ω or at least some ωk

to become almost zero, and then apply the threshold ωth. Xu et al. [13] proposed
L0.5 as the new regularizer which is more sparse than the L1 regularizer while it is
still easier to be solved than the L0 regularizer (because it is non-differentiable).
The sparsity property of L0.5 was demonstrated by Fan et al. [5].

5 Experiments on Real-World Datasets

In this section, we evaluate our proposed model on real data sets and compare its
predictive performance with state-of-the-art methods. Table 1 gives an overview
of descriptive statistics of these datasets. All the models are evaluated in the
same experimental protocol.

192 A. Bennis et al.

Table 1. Descriptive statistics of real-world datasets

Datasets No. uncensored No. censored No. features Censoring time Event time

Min Max Mean Min Max Mean

SEER BC 9152(42.8%) 12221 (57.2%) 34 1 227 181.5 1 226 63.7

SEER HD 12014 (49.6%) 12221 (50.4%) 1 224 76.7

SUPPORT 5844 (68.1%) 2735 (31.9%) 36 344 2029 1060.2 3 1944 206.0

METABRIC 888 (44.8%) 1093 (55.2%) 21 1 308 116.0 1 299 77.8

5.1 Description of the Real-World Datasets

In this experiment, we use three real-worlds datasets:

– SEER2: a program that provides cancer incidence data from population-based
cancer registries covering approximately 34.6% of the U.S. population. We
focused on the patients recorded between 1998 and 2002 with Breast Cancer
(BC) or Heart Disease (HD) or who have survived to the end of this period.
We generated from this database two single-event datasets (BC and HD)
keeping survivors in both of them.

– SUPPORT [11]: this dataset is good for learning how to fit nonlinear predictor
effects. We studied 9105 patients, of which almost 32% are survivors, with
their 36 attributes including age, sex, urine output creatinine, etc.

– METABRIC 3: contains gene expressions and clinical features including age,
tumor size, PR Status, etc.

5.2 Experimental Setting

For evaluation, we applied 5-fold cross validation: the data is randomly splitted
into training and validation set (80-20 split). For each iteration, the models are
fitted by the corresponding training set (4 folds) and evaluated on the validation
set (1 fold) by calculating Ctd. Once all iterations are executed, we obtain for
each method and for each dataset, a vector (of size 5) containing Ctd scores for
each iteration. This experimental protocol is applied on the following models:

– Cox Proportional Hazards CPH [4] with a penalty term in the order of 10−1.
– Random Survival Forest RSF [9] with 100 trees.
– DeepSurv [10] with 2 layers of 32 nodes.
– DeepHit [12] with a dropout probability of 0.6 between all the hidden layers.
– DeepWeiSurv [3] with p = 10.
– The proposed model DPWTE with pmax = 10 and λ = 10−4.

All the methods are trained via Adam optimizer with a learning rate of 10−4.
DPWTE has the shared sub-network which is 2 fully connected layers (the batch
normalization is applied before the second layer). The regression sub-network

2 https://seer.cancer.gov.
3 https://ega-archive.org/studies/EGAS00000000083.

https://seer.cancer.gov
https://ega-archive.org/studies/EGAS00000000083

DPWTE 193

consists of 1 fully connected layer with batch normalization and two ELU layers
as output layers, while the classifier sub-network is composed of 2 fully connected
layers and a softmax layer followed by an SWM layer. Hidden layers are activated
by ReLU. The network is trained via SGD optimizer and learning rate of 10−4.

As evaluation metric, we use concordance index Ctd [1] which calculates,
among all the comparable pairs of observations (i, j) (δi = δj = 1), the number
of concordant ones:

Ctd =

∑
i,j 1ti>tj

.1t̂i>t̂j
.δj∑

i,j 1ti>tj
.δj

, (8)

Ctd estimates the probability of the event {t̂i > t̂j |ti > tj} which compares the
rankings of two independent and comparable pairs (non censored) of survival
times (ti, tj) and the times predicted (t̂i, t̂j).

5.3 Results

The results are summarized in Table 2 where we calculated the confidence inter-
val and the average of the concordance index scores over the 5-fold cross-
validation folds. In METABRIC, DeepHit and our proposed models provided
a significant improvement in terms of concordance scores when compared to
other competing methods, especially DPWTE, using one (p̃ = 1) Weibull distri-
bution, provides a mean concordance index slightly greater than that of Deep-
Hit and DeepWeiSurv, but with wider interval confidence. We can say that for
METABRIC, DeepHit and DPWTE have practically the same ordering per-
formance, when we take into account the trade-off between the mean and the
variance of Ctd. For the SUPPORT dataset, DeepHit outperforms, on average,
the other models in terms of times ordering, but DeepSurv and DPWTE, using
in average p̃ = 3 Weibull distributions, minimized the difference between their
respective concordances and that of DeepHit compared to RSF, CPH. In the
SEER dataset, for Breast Cancer and Heart Disease populations alike, we can
notice that DeepWeiSurv and DPWTE (using in average p̃ = 2 for both datasets)
have shown a large significant outperformance over the competing methods, with
a slight improvement from DeepWeiSurv with p = 2 to DPWTE. We can also
remark that the standard deviation of Ctd for METABRIC is relatively greater
than that of SEER and SUPPORT. We suspect this comes from the small size of
METABRIC regarding the other datasets. Furthermore, another thing to point
out is that for all the datasets, except METABRIC, the respective confidence
intervals of DPWTE and DeepWeiSurv are narrower than those of the compet-
ing methods, which means that our proposed method produced a more stable
estimation. DPWTE has clearly the best overall predictive performance.

194 A. Bennis et al.

Table 2. Ctd calculated over 5-fold cross validation for each model and dataset (mean
± standard deviation) as well as the mean estimate p̃.

Models Datasets

SEER BC SEER HD SUPPORT METABRIC

CPH 0.831±7.5e–3 0.785±3.5e–3 0.805±7e–3 0.661±2.6e–2

DeepSurv 0.841±5.5e–3 0.786±7.5e–3 0.826±1.5e–3 0.662±1.8e–2

RSF 0.838±9.5e–3 0.755±1e–2 0.783±4.5e–3 0.667±3.1e–2

DeepHit 0.875±8e–3 0.846±4.5e–3 0.835±1.3e–2 0.821±1.1e–2

DeepWeiSurv 0.908±1.5e–3 0.863±1.1e–2 0.815±1.5e–2 0.819±1.3e–2

DPWTE 0.912±1.5e–3 0.871±3.5e–3 0.831±9.5e–3 0.829±1.08e–2

p̃ 2 2 3 1

5.4 Censoring Threshold Sensitivity Experiment

The main objective of this experiment is to measure the performance of DPWTE
with respect to the censoring rate, that is, the ratio of censored events against
the observed ones. Because of lack of space, we choose to run the experiment only
on METABRIC (as the smallest dataset and thus more challenging) and SEER
BC (as the dataset with the highest score). The main results are similar for
SEER HD and SUPPORT. In this experiment, we apply the same experimental
protocol as the previous one on different censoring thresholds. These thresholds,
expressed in quantiles of the recorded times vector, are selected such as each
quantile tc adds a significant portion of censored data against the previous one
and thus, change significantly the time distribution. Table 3 gives the distribution
of data of each configuration. For METABRIC and SEER, we choose the follow-
ing thresholds: Q1 = (q0.5, q0.45, q0.35, q0.25) and Q2 = (q0.85, q0.65, q0.5, q0.4, q0.25)
respectively. The Added portion column represents the percentage of data that
became censored out of the initial set of censored data. For each value tc ∈ Qi,
we apply 5-fold cross validation and then calculate the predictions for all time
horizons th ∈ Qi

4. Then, we measure the quality of these predictions using Ctd.
Figure 4 shows the Ctd scores calculated over the cross validation as well as the
estimate p̃ for each scenario in both datasets. Firstly, we should note that the
model performs well for SEER BC (higher average scores and narrower standard
deviation as seen in the previous experiment). Furthermore, we can remark that
in general, the further the censoring rate (for training) and the time horizon th
(for predictions) is pushed back, the lower is the score. This result was expected
because of the fact that the more we have non-censored data the easier it is
to model the survival times distribution of the population. We also suspect the
decreasing of p̃ comes from the fact that the more we increase the censoring
rate the more the network ignores a part of the underlying distribution and

4 tMETABRIC is not a censoring threshold but represents the initial survival time
vector as used in the previous experiment (see statistics in Table 1).

DPWTE 195

Table 3. Distribution of METABRIC (left) and SEER BC (right) for each selected
censoring threshold.

tc No. censored No. non-censored Added portion

tMET ABRIC 1093 888 –

q0.5 1285 696 17.6%

q0.45 1411 570 29%

q0.35 1559 422 42.6%

q0.25 1670 311 52.8%

tc No. censored No. non-censored Added portion

q0.85 13270 8103 8.6%

q0.65 15207 6166 24.4%

q0.5 16568 4805 35.5%

q0.4 17503 3870 43.2%

q0.25 18912 2461 54.75%

Fig. 4. Box plots (left) of Ctd as well as the mean values of the estimate p̃ (right)
calculated over the 5-fold cross validation for each censoring threshold tc in both SEER
BC (top) and METABRIC (bottom).

thus model the latter with an insufficient combination of Weibull distributions.
However, DPWTE still performing well even in the highly censored setting.

6 Conclusion

In this paper, we proposed a novel approach for survival analysis. A network-
based model, assuming a Weibull mixture character of the survival time, was
presented to address this problem. We could, by parametrizing the mixture with
neural networks, model rich relationships between the covariates and event times.
DPWTE leverages Weibull advantages, namely the fact that these distributions
are known to be a good representation for survival time distribution and it also
allows to consider any time horizon. This is because DPWTE learns a continu-
ous probability density function and through the Sparse Weibull Mixture layer
selects the optimal combination of Weibull distribution to model the underlying

196 A. Bennis et al.

event-time distribution. We conducted experiments on real-world datasets where
DPWTE has clearly outperformed the alternative approaches. Furthermore, we
assessed the censoring sensitivity of our model with a real-data experiment which
demonstrates its ability to generally handle highly censored settings and consider
any survival time horizon. Interesting expansions include extending our method-
ology to models that handle competing events, time-dependent covariates. In
addition, it would be interesting to explore other data types and sources that
require some advanced network structures notably convolutions neural networks
or generative adversarial models.

References

1. Antolini, L., Boracchi, P., Biganzoli, E.: A time-dependent discrimination index
for survival data. Statist. Med. 24(24), 3927–3944 (2005)

2. Balakrishnan, N., Johnson, N.L., Kotz, S.: Continuous univariate distributions
(1994)

3. Bennis, A., Mouysset, S., Serrurier, M.: Estimation of conditional mixture Weibull
distribution with right censored data using neural network for time-to-event anal-
ysis. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan,
S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12084, pp. 687–698. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-47426-3 53

4. Cox, D.R.: Regression models and life tables (with discussion). J. R. Statist. Soc.
Ser. B. 34, 187–220 (1972)

5. Fan, J., Peng, H., et al.: Nonconcave penalized likelihood with a diverging number
of parameters. Ann. Statist. 32(3), 928–961 (2004)

6. Faraggi, D., Simon, R.: A neural network model for survival data. Statist. Med.
14(1), 73–82 (1995)

7. Fotso, S.: Deep neural networks for survival analysis based on a multi-task frame-
work. arXiv preprint arXiv:1801.05512 (2018)

8. Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the
yield of medical tests. Jama 247(18), 2543–2546 (1982)

9. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S., et al.: Random survival
forests. Ann. Appl. Statist. 2(3), 841–860 (2008)

10. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deep
survival: a deep cox proportional hazards network. stat 1050, 2 (2016)

11. Knaus, W.A., et al.: The support prognostic model: objective estimates of survival
for seriously ill hospitalized adults. Ann. Intern. Med. 122(3), 191–203 (1995)

12. Lee, C., Zame, W.R., Yoon, J., van der Schaar, M.: Deephit: a deep learning
approach to survival analysis with competing risks. In: Thirty-Second AAAI Con-
ference on Artificial Intelligence (2018)

13. Xu, Z., Zhang, H., Wang, Y., Chang, X., Liang, Y.: L 1/2 regularization. Sci. China
Inf. Sci. 53(6), 1159–1169 (2010)

14. Yousefi, S., et al.: Predicting clinical outcomes from large scale cancer genomic
profiles with deep survival models. Sci. Rep. 7(1), 1–11 (2017)

15. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis
with pathological images. In: 2016 IEEE International Conference on Bioinformat-
ics and Biomedicine (BIBM), pp. 544–547. IEEE (2016)

16. Zhu, X., Yao, J., Zhu, F., Huang, J.: Wsisa: making survival prediction from whole
slide histopathological images. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 7234–7242 (2017)

https://doi.org/10.1007/978-3-030-47426-3_53
http://arxiv.org/abs/1801.05512

First-Order and Second-Order Variants
of the Gradient Descent in a Unified

Framework

Thomas Pierrot1,2, Nicolas Perrin-Gilbert1(B), and Olivier Sigaud1

1 Sorbonne Université, CNRS, Institut des Systèmes Intelligents et
de Robotique, ISIR, 75005 Paris, France

{nicolas.perrin,olivier.sigaud}@sorbonne-universite.fr
2 InstaDeep, Paris, France
t.pierrot@instadeep.com

Abstract. In this paper, we provide an overview of first-order and
second-order variants of the gradient descent method that are commonly
used in machine learning. We propose a general framework in which 6
of these variants can be interpreted as different instances of the same
approach. They are the vanilla gradient descent, the classical and gen-
eralized Gauss-Newton methods, the natural gradient descent method,
the gradient covariance matrix approach, and Newton’s method. Besides
interpreting these methods within a single framework, we explain their
specificities and show under which conditions some of them coincide.

Keywords: Machine learning · Gradient descent

1 Introduction

Machine learning in general, and deep learning (LeCun 2015) in particular often
amount to solving an optimization problem where a loss function has to be
minimized. For complex problems (due to nonlinearity, non-convexity, etc.), the
best recourse seems often to rely on iterative schemes that exploit first-order
or second-order derivatives of the loss function to get successive improvements
and converge towards a local minimum. This explains why variants of gradient
descent are becoming increasingly ubiquitous in machine learning and have been
made widely available in the main deep learning libraries, being the tool of choice
to optimize deep neural networks. Among these methods, vanilla gradient descent
strongly benefits from its computational efficiency as it simply computes partial
derivatives at each step of an iterative process. Though it is widely used, it is
limited for two main reasons: it depends on arbitrary parameterizations and
may diverge or converge slowly if the step size is not properly tuned. To address
these issues, several lines of improvement exist. Here, we focus on two of them.
On the one hand, first-order methods such as the natural gradient introduce

T. Pierrot and N. Perrin-Gilbert—Equal contribution.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 197–208, 2021.
https://doi.org/10.1007/978-3-030-86340-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_16

198 T. Pierrot et al.

particular metrics to restrict gradient steps and make them independent from
parametrization choices (Amari 1998). On the other hand, second-order methods
use the Hessian matrix of the loss or its approximations to take into account its
local curvature.

Both types of approaches enhance the vanilla gradient descent update, multi-
plying it by the inverse of a large matrix (of size d2, where d is the dimensionality
of the parameter space). The contribution of this paper is to study connections
between 6 popular first-order and second-order improvements of the gradient
descent seen as different variants of a unique simple framework. This general
framework uses a first-order approximation of the loss and constrains the step
with a quadratic norm. Therefore, each modification δθ of the vector of param-
eters θ is computed via an optimization problem of the following form:

{
minδθ ∇θL(θ)T δθ

δθT M(θ)δθ ≤ ε2,
(1)

where ∇θL(θ) is the gradient of the loss L(θ), and M(θ) a symmetric positive-
definite (SPD) matrix. The 6 methods differ by the matrix M(θ), which has an
effect not only on the size of the steps, but also on the direction of the steps, as
illustrated in Fig. 1.

Fig. 1. Different metrics affect both the gradient step size and direction. Here, a dif-
ferent δθ is obtained with M = I or M an arbitrary SPD matrix.

The solution of the minimization problem (1) has the following form:

δθ = −αM(θ)−1∇θL(θ).

Section 2 mainly defines notations, and the rest of the paper is organized
as follows. In Sect. 3, we show how the vanilla gradient descent, the classical
Gauss-Newton method and the natural gradient descent method fit into the

First-Order and Second-Order Variants of the Gradient Descent 199

proposed framework, with constraints that are independent from the loss func-
tion. In Sect. 4, we consider approaches that depend on the loss, namely the
gradient covariance matrix approach, Newton’s method, and the generalized
Gauss-Newton method, and show that they also fit into the framework. Table 1
summarizes the values of M(θ) for all 6 approaches.

Table 1. The matrices M(θ) associated to 6 popular variants of the gradient descent,
when interpreted as instances of the optimization problem (1). See Sect. 2 for the
definitions of the notations.

M(θ) Corresponding approach

I Vanilla gradient descent

Es
[
Jx (θ)T Jx (θ)

]
+ λI Classical Gauss-Newton

Es
[∇θ log(pθ (y|x))∇θ log(pθ (y|x))T]

+ λI Natural gradient (empirical Fisher matrix)

Es
[∇θ lθ (s)∇θ lθ (s)

T
]
+ λI Gradient covariance matrix

H(θ) + λI Newton’s method

Es
[
Jx (θ)T Hy (hθ (x))Jx (θ)

]
+ λI Generalized Gauss-Newton

Providing a unifying view of several first-order and second-order variants of
the gradient descent, the framework presented in this paper makes the connec-
tions between different approaches more obvious, and can hopefully give insights
on these connections and help clarifying some of the literature.

2 Problem Statement and Notations

Notation Description

Jx (θ) Jacobian of the function θ �→ hθ (x)

Ea∼pθ (·|x)[f(a)] Expected value of f(a), when a follows the distribution pθ (·|x)

H(θ) Hessian of the loss L, defined by [H(θ)]i,j = ∂2L
∂θ i∂θ j

(θ)

Hy (hθ (x)) Hessian of the function h �→ l(y, h) at h = hθ (x)

We consider a context of regression analysis1 in which, based on samples
s = (x,y), the objective is to estimate the conditional distribution of y given
x. More formally, this distribution is estimated by a parametrized probability
density function (p.d.f.) pθ (y|x), and the goal of the learning is to progressively
optimize the vector θ to improve the accuracy of this estimation. We furthermore
assume that the p.d.f. pθ (·|x) can be represented by a finite-dimensional vector

1 This context helps to simplify notations, and give examples, but the results obtained
are not specific to this setting.

200 T. Pierrot et al.

hθ (x). For instance, in many applications, pθ (·|x) is a multivariate Gaussian
distribution, and in this case the vector hθ (x) would typically contain the mean
and covariance matrix components.

The accuracy of pθ (·|x) is measured via a loss function L estimated over a
dataset of samples s. L depends only on θ and we assume that it is expressed
as the expected value (over the sample distribution) of an atomic loss, a loss per
sample lθ (s):

L(θ) = Es [lθ (s)].

In the remainder of the paper, for simplicity we keep L expressed as an expected
value over the samples, but in practice it is replaced by an empirical mean over
a batch, which makes its gradient expressible from the gradient of the atomic
loss (w.r.t. θ). The dependency of the atomic loss to θ is via pθ (·|x), so we can
also express it as a function of the finite-dimensional representation hθ (x):

lθ (s) = l(y,hθ (x)).

3 Vanilla, Classical Gauss-Newton and Natural Gradient
Descent

3.1 Vanilla Gradient Descent

The core objective of gradient descent algorithms is to determine the direction
and magnitude of δθ, a small modification of θ computed iteratively to decrease
the value of L. The so-called “vanilla” gradient descent is a first-order method
that relies on a first-order Taylor approximation of the loss function L:

L(θ + δθ) � L(θ) + ∇θL(θ)T δθ. (2)

At each iteration, the objective is the minimization of ∇θL(θ)T δθ with the
variable δθ. If the gradient is non-zero, the value of this term is unbounded
below: it suffices for instance to set δθ = −α∇θL(θ) with α arbitrarily large.
As a result, constraints are needed to avoid making excessively large steps. In
vanilla approaches, the Euclidean norm ‖δθ‖ =

√
δθT δθ is used to bound the

increments δθ. The optimization problem solved at every step of the scheme is:{
minδθ ∇θL(θ)T δθ

δθT δθ ≤ ε2,
(3)

where ε is a user-defined upper bound. It is the most trivial instance of the
general framework (1), and the solution of this problem is δθ = −α∇θL(θ), with
α = ε

‖∇θ L(θ)‖ . To set the size of the step, instead of tuning ε, the most common
approach is to use the expression −α∇θL(θ) and directly tune α, which is called
the learning rate. An interesting property with this approach is that, as θ gets
closer to an optimum, the norm of the gradient ‖∇θL(θ)‖ decreases, so the ε
corresponding to the fixed α decreases as well. This means that steps tend to
become smaller and smaller, which is a necessary property to make asymptotic
convergence possible.

First-Order and Second-Order Variants of the Gradient Descent 201

3.2 Classical Gauss-Newton

As mentioned in Sect. 2, the atomic loss function lθ (s) = l(y,hθ (x)) depends
indirectly on the parameters θ via the vector hθ (x), which is a finite-dimensional
representation of the p.d.f. pθ (·|x). So it may be more meaningful to measure
the modifications arising from an update δθ by looking at the change on hθ (x),
not simply on δθ as with the vanilla gradient descent approach. The constraint
δθT δθ ≤ ε2 acts as if all components of δθ had the same importance, which
is not necessarily the case. Some components of θ might have much smaller
effects on hθ (x) than others, and this will not be taken into account with the
vanilla gradient descent method, which typically performs badly with unbal-
anced parametrizations. Measuring and bounding the change on the vector hθ (x)
makes the updates independent from the way hθ is parametrized. To do this,
a natural choice is to bound the expected squared Euclidean distance between
hθ (x) and hθ+δθ (x):

Es

[‖hθ+δθ (x) − hθ (x)‖2] ≤ ε2.

Using again a first-order approximation, we have hθ+δθ (x) − hθ (x) � Jx(θ)δθ,
where Jx(θ) is the Jacobian of the function θ �→ hθ (x). The constraint can be
rewritten:

Es

[‖Jx(θ)δθ‖2] = δθT
Es

[
Jx(θ)T Jx(θ)

]
δθ ≤ ε2,

resulting in the optimization problem:
{

minδθ ∇θL(θ)T δθ

δθT
Es

[
Jx(θ)T Jx(θ)

]
δθ ≤ ε2,

(4)

which fits into the general framework (1) MCGN (θ) = Es

[
Jx(θ)T Jx(θ)

]
is SPD.

Damping. The structure of the matrix MCGN (θ) makes it symmetric and pos-
itive semi-definite, but not necessarily definite-positive. To ensure the definite-
positiveness, a regularization or damping term λI can be added, resulting in the
constraint δθT

(
MCGN (θ) + λI

)
δθ ≤ ε2, which can be rewritten:

δθT MCGN (θ)δθ + λδθT δθ ≤ ε2.

This damping, often called Tikhonov damping (Martens and Sutskever 2012),
regularizes the constraint with a term proportional to the squared Euclidean
norm of δθ, and it must be noted that with it the constraint is not independent
to the parametrization in θ anymore.

Classical Gauss-Newton as a Second Order Approximation. Let us assume that
the atomic loss lθ (s) is defined as follows: lθ (s) = 1

2‖Δθ (s)‖2, where Δθ (s) is
a vector-valued function. Functions of the form Δθ (s) = y − fθ (x) are typical
examples in the context of regression. Denoting by J Δ

s (θ) the Jacobian of θ �→
Δθ (s), it can be shown that the following expression is a second-order Taylor

202 T. Pierrot et al.

expansion of the loss in which the terms involving second derivatives of Δθ with
respect to θ have been dropped (Bottou et al. 2018):

L(θ + δθ) = L(θ) + ∇θL(θ)T δθ +
1
2
δθT

Es

[J Δ
s (θ)T J Δ

s (θ)
]
δθ + O(δθ3).

Assuming that Es

[J Δ
s (θ)T J Δ

s (θ)
]

is positive-definite, the minimum is reached
with

δθ = −Es

[J Δ
s (θ)T J Δ

s (θ)
]−1∇θL(θ).

As in the update obtained with the optimization problem (4), the matrix with
a structure of type Jacobian transpose-times-Jacobian is characteristic of the
classical Gauss-Newton approach. To ensure positive-definiteness, damping can
be added in the exact same way. The derivation that lead to (4) shows that this
kind of update does not only make sense with a squared error-type of loss, so in
some sense it is a generalization of the context in which a classical Gauss-Newton
approach may be useful. If the dependency of the loss to θ is naturally expressed
via a finite-dimensional vector v(θ) (e.g. hθ (x) or Δθ (s) in the above cases),
then measuring the quantity ‖v(θ + δθ) − v(θ)‖ to evaluate the magnitude of
the modifications induced by δθ is likely to be more meaningful than using the
vanilla approach (i.e. simply measuring ‖(θ + δθ) − θ‖ = ‖δθ‖).

Learning Rate. The solution δθ = −αM(θ)−1∇θL(θ) to the general frame-
work (1) is such that α = ε√

∇θ L(θ)T M(θ)−1∇θ L(θ)
. The classical Gauss-Newton

approach corresponds to M(θ) = MCGN (θ) + λI, or M(θ) = MCGN (θ) if we
ignore the damping. With the approach based on the second-order approxima-
tion of the loss expressed as a squared error, the resulting update has the form
δθ = −M(θ)−1∇θL(θ), which is similar to the above expression except that
α = 1. However, this theoretical difference in α (referred to as the learning rate
in Sect. 3.1) is not significant in practice since its value is usually redefined sep-
arately, for various reasons. In particular, when M(θ) is a very large matrix,
M(θ)−1 is often estimated via drastic approximations. In that case, it can be
preferable to only compute the update direction, and then perform a line search
to find a value of α for which it is verified that the corresponding step size is
reasonable. This line search is an important component of the popular reinforce-
ment learning (RL) algorithm TRPO (Schulman et al. 2015).

3.3 Natural Gradient

To further improve the independence to parametrization, it is possible to directly
measure the change from pθ (·|x) to pθ+δθ (·|x) with a metric on probability
density functions. This way, the updates do not even depend on the choice of
finite-dimensional representation via hθ . Amari (1997; 1998) proposed and pop-
ularized the notion of natural gradient, which is based on a matrix called the
Fisher information matrix, defined for the p.d.f pθ (·|x) by:

Ix(θ) = Ea∼pθ (·|x)

[
∇θ log (pθ (a|x))∇θ log (pθ (a|x))T

]
.

First-Order and Second-Order Variants of the Gradient Descent 203

It can be used to measure a “distance” d� between two infinitesimally close
probability distributions pθ (·|x) and pθ+δθ (·|x) as follows:

d�2(pθ (·|x), pθ+δθ (·|x)) = δθT Ix(θ)δθ.

Averaging over the samples, we extrapolate a measure of distance between θ
and θ + δθ:

DL2(θ,θ + δθ) = δθT
Es [Ix(θ)] δθ,

where Es [Ix(θ)] = Es

[
Ea∼pθ (·|x)

[
∇θ log (pθ (a|x))∇θ log (pθ (a|x))T

]]
is

the averaged Fisher information matrix. It is common to approximate
Es

[
Ea∼pθ (·|x)[·]

]
with the empirical mean over the samples, which reduces the

above expression to

DL2(θ,θ + δθ) ≈ δθT
Es

[
∇θ log (pθ (y|x))∇θ log (pθ (y|x))T

]
δθ.

Es

[
∇θ log (pθ (y|x))∇θ log (pθ (y|x))T

]
is usually called the empirical Fisher

matrix (Martens 2014). We denote it by F (θ). Putting an upper bound on
δθT F (θ)δθ results in the following optimization problem:

{
minδθ ∇θL(θ)T δθ

δθT F (θ)δθ ≤ ε2,
(5)

which yields natural gradient steps of the form

δθ = −αF (θ)−1∇θL(θ),

provided that F (θ) is invertible. F (θ) is always positive semi-definite. There-
fore, as in Sect. 3.2 with the classical Gauss-Newton approach, a damping term
can be added to ensure invertibility (but again, by doing so the independence
to the parametrization is lost). The Fisher information matrix is in some sense
uniquely defined by the property of invariance to reparametrization of the metric
it induces (Čencov 1982), and can be obtained from many different derivations.
But a particularly interesting fact is that d�2(pθ (·|x), pθ+δθ (·|x)) corresponds
to the second-order approximation of the Kullback-Leibler (KL) divergence
KL(pθ (·|x), pθ+δθ (·|x)) (Kullback 1997; Akimoto and Ollivier 2013). Hence, the
terms δθT Ix(θ)δθ and δθT F (θ)δθ share some of the properties of the KL diver-
gence. For instance, when the variance of the probability distribution pθ (·|x)
decreases, the same parameter modification δθ tends to result in increasingly
large measures δθT Ix(θ)δθ (see Fig. 2).

Consequently, if the bound ε2 of Eq. (5) is kept constant, possible modifica-
tions of θ become smaller when the variance of the parametrized distribution
decreases. Thus natural gradient iterations slow down when the variance becomes
small, which is a desirable property when keeping some variability matters. Typ-
ically, in RL, this variability can be related to exploration, and should not vanish
early, which is one of the reasons why some RL algorithms benefit from natural
gradient steps (Peters and Schaal 2008; Schulman et al. 2015; Wu et al. 2017).

204 T. Pierrot et al.

Fig. 2. The same parameter change (here, a constant shift of the mean to the right)
yields a larger KL divergence when the variance is small.

Relation Between Natural Gradient and Classical Gauss-Newton. Let us con-
sider a very simple case where pθ (·|x) is a multivariate normal distribution with
fixed covariance matrix Σ = β2I. The only variable parameter on which the
distribution pθ (·|x) depends is its mean μθ , so we can use it as a representation
of the distribution itself and write

hθ (x) = μθ .

It can be shown that the KL divergence between two normal distributions of
equal variance is proportional to the squared Euclidean distance between the
means. More precisely, the KL divergence between pθ (·|x) and pθ+δθ (·|x) is
equal to 1

2β2 ‖hθ+δθ (x) − hθ (x)‖2. For small values of δθ, it is approximately
equal to the measure obtained with the true Fisher information matrix:

1
2β2

‖hθ+δθ (x) − hθ (x)‖2 ≈ δθT Ix(θ)δθ.

Bounding the average over the samples of the right term is the motiva-
tion of the natural gradient descent method. Besides, we have seen in Sect. 3.2
that the classical Gauss-Newton method can be considered as a way to bound
Es [‖hθ+δθ (s) − hθ (x)‖2], which is equal to the average of the left term over
the samples, up to a multiplicative constant. Hence, even though both methods
introduce slightly different approximations, in this context the classical Gauss-
Newton and natural gradient descent methods are very similar. This property
is used in Pascanu and Bengio (2013) to perform a natural gradient descent on
deterministic neural networks, by interpreting their outputs as the mean of a
conditional Gaussian distribution with fixed variance.

4 Gradient Covariance Matrix, Newton’s Method
and Generalized Gauss-Newton

The previous approaches fit into the general framework (1) with matrices M(θ)
that do not depend on the loss function, while the 3 approaches presented in
this section fit into the same framework but with matrices M(θ) that do depend
on the loss.

First-Order and Second-Order Variants of the Gradient Descent 205

4.1 Gradient Covariance Matrix

The simplest way to exploit the loss to measure magnitude of changes is to
consider the expected squared difference between lθ (s) and lθ+δθ (s):

Es

[(
lθ+δθ (s) − lθ (s)

)2]
.

For a single sample s, changing slightly θ does not necessarily modify the atomic
loss lθ (s), but in many cases it can be assumed that this loss becomes different for
at least some of the samples, yielding a positive value for Es

[(
lθ+δθ (s) − lθ (s)

)2]
which quantifies in some sense the amount of change introduced by δθ with
respect to the objective. It can be a meaningful measure as it usually depends
on the most relevant features for the task to achieve. Let us replace lθ+δθ (s) by a
first-order approximation: lθ+δθ (s) � lθ (s)+∇θ lθ (s)T δθ. The above expectation
simplifies to

Es

[(∇θ lθ (s)T δθ
)2] = δθT

Es

[∇θ lθ (s)∇θ lθ (s)T
]
δθ.

Es

[∇θ lθ (s)∇θ lθ (s)T
]

is called the outer product metric (Ollivier 2015) or the
gradient covariance matrix (Bottou and Bousquet 2008). Putting a bound on
the term δθT

Es

[∇θ lθ (s)∇θ lθ (s)T
]
δθ, the iterated optimization becomes:

{
minδθ ∇θL(θ)T δθ

δθT
Es

[∇θ lθ (s)∇θ lθ (s)T
]
δθ ≤ ε2.

(6)

It results in updates of the form:

δθ = −αEs

[∇θ lθ (s)∇θ lθ (s)T
]−1 ∇θL(θ).

Again, a regularization term may be added to ensure the invertibility of the
matrix.

Link with the Natural Gradient. Let us assume that the atomic loss on a
sample s = (x,y) is the negative log-likelihood (a common case): lθ (s) =
− log(pθ (y|x)). It follows that the empirical Fisher matrix, as defined in Sect. 3.3,
is equal to Es

[∇θ lθ (s)∇θ lθ (s)T
]
, which is exactly the definition of the gradient

covariance matrix. Thus, in this case, the two approaches are identical. Several
algorithms use this identity for the natural gradient computation, e.g. George
et al. (2018).

4.2 Newton’s Method

Let us consider now a second-order approximation of the loss:

L(θ + δθ) ≈ L(θ) + ∇θL(θ)T δθ +
1
2
δθT H(θ)δθ,

206 T. Pierrot et al.

where H(θ) is the Hessian matrix: [H(θ)]i,j = ∂2L
∂θi∂θj

(θ). Although there are
obvious counterexamples, one can argue that the first-order approximation, i.e.
L(θ+δθ) ≈ L(θ)+∇θL(θ)T δθ (which is used as minimization objective for gra-
dient descents), is most likely good as long as the second-order term 1

2δθT H(θ)δθ
remains small. Therefore, it makes sense to directly put an upper bound on this
quantity to restrict δθ, as follows:

δθT H(θ)δθ ≤ ε2.

If H(θ) is SPD, this constraint defines a trust region, i.e. a neighborhood of θ in
which the first-order approximation of L(θ + δθ) is supposed to be reasonably
accurate. However, H(θ) is symmetric but not even necessarily positive semi-
definite, unlike the matrices obtained with the previous approaches. Therefore
the damping required to make it definite-positive may be larger than with other
methods. It leads to the following optimization problem solved at every iteration:

{
minδθ ∇θL(θ)T δθ

δθT (H(θ) + λI)δθ ≤ ε2,
(7)

and to updates of the form: δθ = −α(H(θ) + λI)−1∇θL(θ).

Newton’s Method as a Second-Order Approximation. The same update direction
is obtained by directly minimizing the damped second-order approximation:

L(θ) + ∇θL(θ)T δθ +
1
2
δθT (H(θ) + λI)δθ.

When (H(θ) + λI) is SPD, the minimum of this expression is obtained for
δθ = −(H(θ) + λI)−1∇θL(θ).

4.3 Generalized Gauss-Newton

L(θ) is equal to Es [l(y,hθ (x))]: it does not depend directly on θ but on the
outputs of hθ , which are vectors of finite dimension. Posing δh = hθ+δθ (x) −
hθ (x), a second-order Taylor expansion of l(y,hθ+δθ (x)) can be written:

l(y,hθ+δθ (x)) = l(y,hθ (x))+
∂l(y,hθ (x))

∂h

T

δh+
1
2
δhT Hy (hθ (x))δh+O(δh3),

where Hy (hθ (x)) is the Hessian matrix of the atomic loss l(y,hθ (x)) with
respect to variations of hθ (x), and ∂l(y ,hθ (x))

∂h is the gradient of l(y,hθ (x)) w.r.t.
variations of hθ (x). Using the equality δh = Jx(θ)δθ + O(δθ2) (with Jx(θ) the
Jacobian of the function θ �→ hθ (x)):

l(y,hθ+δθ (x)) = l(y,hθ (x)) +
∂l(y,hθ (x))

∂h

T

Jx(θ)δθ +
∂l(y,hθ (x))

∂h

T

O(δθ2)

+
1
2
δθT Jx(θ)T Hy (hθ (x))Jx(θ)δθ + O(δθ3).

First-Order and Second-Order Variants of the Gradient Descent 207

The generalized Gauss-Newton approach is an approximation that consists in

dropping the term ∂l(y ,hθ (x))
∂h

T
O(δθ2). Averaging over the samples yields the

following approximation of L(θ + δθ):

L(θ) + Es

[
∂l(y,hθ (x))

∂h

T

Jx(θ)

]T

δθ +
1
2
δθT

Es

[
Jx(θ)T Hy (hθ (x))Jx(θ)

]
δθ.

Noticing that Es

[
∂l(y ,hθ (x))

∂h

T
Jx(θ)

]
= ∇θL(θ), it can be rewritten:

L(θ + δθ) ≈ L(θ) + ∇θL(θ)T δθ +
1
2
δθT

Es

[
Jx(θ)T Hy (hθ (x))Jx(θ)

]
δθ.

As for Newton’s method, the usual way to derive the generalized Gauss-Newton
method is to directly minimize this expression (see Martens (2014)), but we can
also put a bound on the quantity δθT

Es

[
Jx(θ)T Hy (hθ (x))Jx(θ)

]
δθ to define

a trust region for the validity of the first-order approximation (as in Sect. 4.2),
provided that Es

[
Jx(θ)T Hy (hθ (x))Jx(θ)

]
is SPD. If the loss l(y,hθ (x)) is con-

vex in hθ (x) (which is often true), the matrix is at least positive semi-definite,
so a small damping term suffices to make it positive-definite. If a non-negligible
portion of the matrices Jx(θ) are full rank, the damping term may be added to
Hy (hθ (x)) rather than to the full matrix. See Martens and Sutskever (2012) for
an extensive discussion on different options for the damping and their benefits
and drawbacks. With the damping on the full matrix, the optimization problem
to solve at every iteration becomes:

{
minδθ ∇θL(θ)T δθ

δθT
(
Es

[
Jx(θ)T Hy (hθ (x))Jx(θ)

]
+ λI

)
δθ ≤ ε2,

(8)

with updates δθ = −α
(
Es

[
Jx(θ)T Hy (hθ (x))Jx(θ)

]
+ λI

)−1 ∇θL(θ).

5 Summary and Conclusion

In Sects. 3 and 4 we motivated and derived 6 different ways to compute parameter
updates, that can all be interpreted as solving an optimization problem of this
type: {

minδθ ∇θL(θ)T δθ

δθT M(θ)δθ ≤ ε2,

resulting in updates of the form δθ = −αM(θ)−1∇θL(θ), with M(θ) SPD.
The quadratic term of the inequality corresponds to a specific metric defined

by M(θ) used to measure the magnitude of the modification induced by δθ. To
evaluate this magnitude, the focus can be simply on the norm of δθ, or on the
effect of δθ on the loss, or on the effect of δθ on hθ (x) or on pθ (·|x), resulting
in various approaches, with various definitions of M(θ). In a context of prob-
abilistic regression, we gave 6 examples that correspond to popular variants of

208 T. Pierrot et al.

the gradient descent, summarized in Table 1. All methods except the natural
gradient can be declined to deterministic cases. Unifying several first-order or
second-order variants of the gradient descent method reveals links between these
different approaches, and contexts in which some of them are equivalent. The pro-
posed framework gives a compact overview of common variants of the gradient
descent, and can hopefully help choosing adequately between them depending
on the problem to solve.

Acknowledgements. This research was partially supported by the French National
Research Agency (ANR), Project ANR-18-CE33-0005 HUSKI.

References

Akimoto, Y., Ollivier, Y.: Objective improvement in information-geometric optimiza-
tion. In: Proceedings of the 12th Workshop on Foundations of Genetic Algorithms
XII, pp. 1–10. ACM (2013)

Amari, S.: Neural learning in structured parameter spaces-natural Riemannian gradi-
ent. In: Advances in Neural Information Processing Systems, pp. 127–133 (1997)

Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–
276 (1998)

Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Advances in Neural
Information Processing Systems, pp. 161–168 (2008)

Bottou, L., Curtis, F.E., Nocedal., J.: Optimization methods for large-scale machine
learning. SIAM Rev. 60(2), 223–311 (2018)

Čencov, N.N.: Statistical Decision Rules and Optimal Inference. Translations of Math-
ematical Monographs, vol. 53. American Mathematical Society, Providence (1982).
ISBN 0-8218-4502-0

George, T., Laurent, C., Bouthillier, X., Ballas, N., Vincent, P.: Fast approxi-
mate natural gradient descent in a Kronecker-factored eigenbasis. arXiv preprint
arXiv:1806.03884 (2018)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Kullback, S.: Information Theory and Statistics. Dover Publications Inc., Mineola

(1997). ISBN 0-486-69684-7
Martens, J.: New insights and perspectives on the natural gradient method. arXiv

preprint arXiv:1412.1193 (2014)
Martens, J., Sutskever, I.: Training deep and recurrent networks with hessian-free opti-

mization. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks
of the Trade. LNCS, vol. 7700, pp. 479–535. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35289-8 27

Ollivier, Y.: Riemannian metrics for neural networks I: feedforward networks. Inf. Infer.
4(2), 108–153 (2015)

Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584 (2013)

Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(7), 1180–1190 (2008)
Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy

optimization. CoRR, abs/1502.05477 (2015)
Wu, Y., Mansimov, E., Grosse, R.B., Liao, S., Ba, J.: Scalable trust-region method for

deep reinforcement learning using Kronecker-factored approximation. In: Advances
in Neural Information Processing Systems, pp. 5279–5288 (2017)

http://arxiv.org/abs/1806.03884
http://arxiv.org/abs/1412.1193
https://doi.org/10.1007/978-3-642-35289-8_27
https://doi.org/10.1007/978-3-642-35289-8_27
http://arxiv.org/abs/1301.3584

Bayesian Optimization for
Backpropagation in Monte-Carlo

Tree Search

Nengli Lim(B) and Yueqin Li

Singapore University of Technology and Design, Singapore, Singapore

Abstract. In large domains, Monte-Carlo tree search (MCTS) is
required to estimate the values of the states as efficiently and accu-
rately as possible. However, the standard update rule in backpropaga-
tion assumes a stationary distribution for the returns, and particularly in
min-max trees, convergence to the true value can be slow because of aver-
aging. We present two methods, Softmax MCTS and Monotone MCTS,
which generalize previous attempts to improve upon the backpropagation
strategy. We demonstrate that both methods reduce to finding optimal
monotone functions, which we do so by performing Bayesian optimization
with a Gaussian process (GP) prior. We conduct experiments on com-
puter Go, where the returns are given by a deep value neural network,
and show that our proposed framework outperforms previous methods.

Keywords: Monte-carlo tree search · Bayesian optimization ·
Gaussian processes · Computer Go · Deep neural networks

1 Introduction

Monte-Carlo tree search (MCTS) [3,6], or more specifically its most common
variant UCT (Upper Confidence Trees; see Sect. 2) [10], has seen great successes
recently and has propelled, especially in combination with deep neural networks,
the performance of computer Go past professional levels [15,16]. The robust
nature of MCTS, versus a traditional approach like depth-first search in alpha-
beta pruning, has not only enabled a leap-frog in performance in computer Go,
but has also led to its utilization in other games where it is difficult to evaluate
states, as well as in other domains [3].

However, MCTS is known to suffer from slow convergence in certain situa-
tions [5], in particular when the precise calculation of a narrow tactical sequence
is critical for success. For example in boardgames, [11] defines a level-k search
trap for player p after a move m as a state of the game where the opponent of p
has a guaranteed k-move winning strategy. More relevantly, they show through
a series of experiments that MCTS performs poorly even in shallow traps, in
contrast to regular minimax search; see also [12,13].

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 209–221, 2021.
https://doi.org/10.1007/978-3-030-86340-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_17&domain=pdf
http://orcid.org/0000-0002-8847-6630
http://orcid.org/0000-0002-1463-7040
https://doi.org/10.1007/978-3-030-86340-1_17

210 N. Lim and Y. Li

To better understand this phenomenon, we take a closer look at the update
rule

Qn ← Qn−1 +
Rn−1 − Qn−1

n
(1)

which is performed during the backpropagation phase of MCTS. Here, the cur-
rent estimate of the value of a state is taken to be the simple average of all
previous returns accrued upon visiting that state. Proceeding, we discuss var-
ious methods which seek to improve backpropagation by challenging the basic
assumptions implied by (1):

(i) Value estimation by averaging returns:
Instead of updating a parent node’s value with that of its MAX (MIN)
child as in minimax search, backpropagation in MCTS averages all returns
to obtain a good signal in noisy environments (this is equivalent to setting
the value of the parent node to be the weighted average (by visits) of its
children’s values).

(ii) Stationarity:
The returns are assumed to follow a stationary distribution.

With regard to the first point, one of the first published works on MCTS [6]
posits that taking the value of the best child leads to an overestimation (cf. [2])
of the value of a MAX node, whereas taking the weighted average (by number of
visits) of the children’s values leads to an underestimation. The paper proposes
using an interpolated value, with weights dependent on the current number of
visits of the best child:

Qparent =
(

Nbest

Nbest + M

)
Qbest +

(
1 − Nbest

Nbest + M

)
Qmean. (2)

Here, Nbest and Qbest respectively denote the number of visits and backed-up
value of the best child, and M is a variable which slowly increases after some
fixed threshold to dampen the increasing weight.

Similarly in [9], a backup strategy MaxMCTS (λ) is proposed where an eli-
gibility parameter λ can be adjusted to strike a balance between taking the
weighted average of the children’s values (λ = 1) and taking the value of the
best child (λ = 0). In addition, they show that the optimal value for λ depends
on the context; e.g. in Grid World experiments, it is demonstrated that the
more obstacles that are present in the grid, the more λ has to be lowered in
order to maintain good performance. This corresponds with the findings in [11–
13], in that standard MCTS may perform well in environments, for example
in the opening stages of Go, where global strategy is more important, but its
performance tends to degrade in highly tactical situations; see also [1].

Moving on to the second premise, while stationarity may be a viable assump-
tion in multi-armed bandit problems, and although MCTS can be viewed as a
sequential multi-armed bandit problem, it is evident that the later simulations
explore a larger tree than the earlier simulations. This implies that the sequence

Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search 211

of rewards follows a non-stationary distribution, where the returns from later
simulations are more informative than the earlier ones, and hence it would be
natural to weight them more heavily.

One way of doing this is to simply employ the exponential recency-weighted
average update (ERWA) [18] where (1) is replaced by

Qn ← Qn−1 + α (Rn−1 − Qn−1) , α ∈ (0, 1]; (3)

see also [8] where they employ a similar backup strategy.
A more sophisticated method called feedback adjustment policy is explored

in [21], where here they test four different weight profiles of varying shapes. The
following figure provides an illustration.

Fig. 1. Graph depicting the weight increase of four profiles in feedback adjustment
policy; GAX: linear increase on a uniform partition; GAY : exponential increase on a
uniform partition; GBX: linear increase on a partition with exponentially increasing
widths; GBY : exponential increase on a partition with exponentially increasing widths.

Experiments on 9× 9 Go show that GBY gives the highest winning rate
over original MCTS, but more importantly, they show that in spite of the fact
that the functions all monotonically weight the later simulations more heavily,
differences in their particular shapes lead to varying performance gains [21].

Despite differences in these various methods, we can summarize the overar-
ching principles they have in common as follows:

(i) the best child should be weighted more heavily as the number of simulations
increase;

(ii) later simulations should be weighted more strongly than earlier ones.

Taking this into account, in this paper we propose Monotone MCTS and Softmax
MCTS, two backpropagation strategies which aim to generalize and improve
upon the previous methods. We first represent the weights as a function of the
number of visits of the node in question, and naturally constrain it to be a
monotone function. We then propose to use black-box Bayesian optimization to
find these optimal monotone functions.

212 N. Lim and Y. Li

The rest of the paper is structured as follows. In Sect. 2, we give a brief review
of MCTS and Bayesian optimization using a Gaussian process prior. In Sect. 3,
we go into the details of Monontone MCTS and Softmax MCTS. We show the
effectiveness of our approach in experiments on 9 × 9 and 19 × 19 Go in Sect. 4.
Finally, we conclude in the last section with some direction on future work.

2 Preliminaries

2.1 Monte-Carlo Tree Search

In comparison to depth-first search in alpha-beta pruning, MCTS uses best-first
search to gather information for planning the next action. This is important par-
ticularly in computer Go where the branching factor is large, and the tree is best
explored asymmetrically to strike a balance between searching deep sequences
in tactical situations and searching wide options in factoring in strategic consid-
erations. This also allows it to be an anytime algorithm, in that terminating the
search prematurely can still yield acceptable results.

MCTS consists of the following four steps:

(i) Selection: Starting from the root node, the search process descends down
the tree by successively selecting child nodes according to the tree policy.
The most common example is Upper Confidence Bound 1 (UCB1) [10]

arg max
a

Qa + c

√
ln Nparent

Na + 1
, (4)

and another example is the following variant of PUCB (Predictor + UCB)
[14,15]

arg max
a

Qa + c Pa

√
Nparent

Na + 1
. (5)

Here, Pa, Qa and Na denote the policy weight, mean and visits respectively
of node a, and c is a constant that can be tuned to balance exploration
versus exploitation.

(ii) Expansion: When the simulation phase reaches a leaf node, children of the
leaf node are added to the tree, and one of them is selected by the tree
policy.

(iii) Simulation: One (or multiple) random playout(s) is performed until a ter-
minal node is reached. More recently, simulation can be augmented or even
replaced by a suitable evaluation function such as a deep neural network.

(iv) Backpropagation: The result of the playout is computed and (1) is used to
update each node visited in the selection phase.

Averaging the results in each node is essential in noisy environments and when
it is critical not to back up values in a manner such that outliers affect the
algorithm adversely. However, it can be slow to converge to the optimal value in
min-max trees, particularly in nodes where the siblings of an optimal child node
are all lower in value [7].

Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search 213

2.2 Bayesian Optimization with a Gaussian Process Prior

Given an index set T , {Xt; t ∈ T} is a Gaussian process if for any finite set of
indices {t1, ..., tn} of T , (Xt1 , ...,Xtn) is a multivariate normal random variable.
By specifying a mean function μ : R

d → R and a symmetric, positive semi-
definite kernel function k : Rd × R

d → R, one can uniquely define a Gaussian
process by setting

(Xt1 , ...,Xtn) ∼ N ([μ(x1), . . . , μ(xn)]T ,K)

for any finite subset {t1, ..., tn} of T . Here, the covariance function K refers to

K =

⎡
⎢⎣

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

⎤
⎥⎦ .

In addition, we assume that the model f is perturbed with noise,

y = f(x) + ε,

where ε ∼ N (0, τ2), and is assumed to be independent between samples.
In many machine learning problems, the objective function f to optimize is a

black-box function which does not have an analytic expression, or may have one
that is too costly to compute. Hence, a Gaussian processes are used as surrogate
models to approximate the true function as they yield closed-form solutions.
For example, if we stipulate that f(·) ∼ N (0, k), then given a history of input-
observation pairs

(
x(1), t(1)

)
, . . . ,

(
x(n), t(n)

)
, and a new input point x(n+1), we

can predict y(n+1) by computing the posterior distribution

p
(
y(n+1)

∣∣∣ y(1) = t(1), . . . , y(n) = t(n)
)

,

which is Gaussian with mean μ and variance σ2 given by the formulas

μ = rT (Kn)−1tn, (6)

σ2 = c − rT (Kn)−1r. (7)

Here, we denote

r =
[
k

(
x(1), x(n+1)

)
, . . . , k

(
x(n), x(n+1)

)]T

,

c = k
(
x(n+1), x(n+1)

)
+ τ2,

tn =
[
t(1), . . . , t(n)

]T

,

and Kn is the covariance matrix corresponding to the first n inputs. For more
information on Gaussian processes for machine learning, we refer the reader to
[20].

214 N. Lim and Y. Li

Another reason for Bayesian optimization becomes apparent when finding
the optimal value of f is costly, for example in high-dimensional problems where
performing a grid search to find the optimal value is prohibitive, e.g. hyper-
parameter tuning in deep learning models.

In such cases, an acquisition function is selected to guide sampling to areas
where one will have an increased probability of finding the optimum. Two com-
mon examples are Expected Improvement (EI)

A(x, f∗) = E [max {fx − f∗, 0}]
= σx [γxΦ(γx) + φ(γx)] ,

γx =
μx − f∗

σX
, fx ∼ N (μx, σ2

x),

where f∗ denotes the maximum value of f found so far, and Upper Confidence
Bound (UCB)

A(x) = μx + κσx.

In both examples, μx and σx are obtained from (6), and there is a trade-off
between exploration and exploitation in the selection of the next point.

For greater efficiency, we use Spearmint [17], which allows the optimization
procedure to be run in parallel on multiple cores. Spearmint adopts the Matérn
5
2 kernel

K(x, y) = c

(
1 +

√
5 ‖x − y‖2 +

5
3

‖x − y‖2
)

e−
√

5‖x−y‖2

for the Gaussian process prior, and chooses the next point based on the expected
acquisition function under all possible outcomes of the pending evaluations. It
was shown to be effective for many algorithms including latent Dirichlet alloca-
tion and hyper-parameter tuning in convolutional neural networks [17].

In the context of computer Go, Bayesian optimization with a Gaussian pro-
cess prior has also previously been used in [4]. With regard to MCTS, they
perform optimization over the UCT exploration constant and the mixing ratio
between fast rollouts and neural network evaluations.

3 Methods

To find optimal backpropagation strategies, we first parameterize a family of
smooth monotone functions, then perform Bayesian optimization with a Gaus-
sian process prior as reviewed in the previous section. To fully prescribe this
family of functions, we invoke the following lemma.

Lemma 1. w : [a, b] → R is continuously differentiable and strictly monotonic
if and only if there exists a continuous function p : [a, b] → R such that

w(t) = w(a) +
∫ t

a

ep(s) ds. (8)

Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search 215

The proof of this lemma follows from the mean-value theorem, which gives
w′(t) > 0 for all t ∈ (a, b). Thus we can write

w(t) = w(a) +
∫ t

a

w′(s) ds = w(a) +
∫ t

a

elog w′(s) ds.

Finding the optimal monotone function, even when restricted to continuously
differentiable ones, is a functional Bayesian optimization [19] problem as the opti-
mization is taking place over an infinite dimensional Hilbert space of functions.
However, for practical reasons, we instead restrict the class of functions we are
optimizing over to be

W =
{

w

∣∣∣∣ w(t) = w(0) +
∫ t

0

ep(s) ds, p ∈ P
}

,

where

P =

{
p

∣∣∣∣ p(s) =
m−1∑
i=0

1[iΔ,(i+1)Δ)(s)p̃i(s)

}
,

p̃i(s) := p (iΔ) +
(s

Δ
− i

)
(p ((i + 1)Δ) − p (iΔ)) ,

is the m-dimensional space of functions obtained from linearly interpolating
between m points (p(0), p (Δ) , . . . , p(N)) which are uniformly separated by an
interval Δ (in our context, we take Δ to be N

m−1 , where N denotes the number
of simulations).

Another possibility for the finite-dimensional space P would be the space
spanned by the first few terms of a Hilbert basis, such as the trigonometric poly-
nomials or some other set of orthogonal polynomials. We briefly considered this
approach but ultimately settled on the current choice for ease of implementation,
and will defer an investigation of the other options to future work.

3.1 Monotone MCTS

The first backpropagation strategy we propose is Monotone MCTS. We first
run the optimization procedure, with respect to win-rate, over m parameters
{p(0), p (Δ) , . . . , p(N)}. Each set of parameters yields a continuous function p ∈
P by interpolation and a monotone weight function w using (8) with w(0) set to
1. Upon choosing the optimal set of parameters, the update rule is then modified
to be

Qn ← w(0)
S(n)

r(0) +
w(1)
S(n)

r(1) + · · · +
w(n)
S(n)

r(n), (9)

where we denote S(n) :=
∑n

t=0 w(t).
Despite being a subset of all possible monotone functions, we consider W to

be sufficiently rich as it contains all increasing linear functions (starting at 1)

(c, c, . . . , c) =⇒ w(t) = 1 + ect,

216 N. Lim and Y. Li

all exponential functions

(log(ra), log(ra) + rΔ, log(ra) + 2rΔ, . . .)

=⇒ w(t) = (1 − a) + aert,

as well as their linear combinations and other monotone functions such as those
in [21]. As an example, the following simple Proposition shows how to convert
between ERWA with parameter α and our formulation.

Proposition 1. ERWA with parameter α < 1 is equivalent to Monotone MCTS
where we set p(s) = (log λ)s + log (α log λ), with λ := 1

1−α .

Proof. We can expand (3) to obtain

Qn = (1 − α)n r(0) + α(1 − α)n−1 r(1) + · · · + α r(n).

To obtain the weights w, we now simply compare coefficients with (9) to derive

w(t) = α(1 − α)−t

= α +
∫ t

0

e(log λ)s+log(α log λ) ds.

3.2 Softmax MCTS

For our second backpropagation strategy, we draw inspiration from the softmax
distribution

p(x1, . . . , xd)i =
ewxi∑d

j=1 ewxj

,

which converges as w → ∞ to ek = (0, . . . , 1, . . . 0), with 1 in the kth position,
when xk is the maximum of {xi}. We develop a new robust method, Softmax
MCTS, which strikes a balance between the theoretical minimax value of the
node and the original averaged value in standard MCTS as follows.

Let Qj and Nj respectively denote the mean and number of visits of the
jth child. In Softmax MCTS, we define the backpropagation update after every
simulation for every parent node as

Qparent ←
∑d

j=1 αjQj∑d
j=1 αj

,

where

αj = Nj eQjw(Nparent).

Here, w is a monotonically increasing function of the number of visits of the
parent node, which will be optimized in the same manner as given in the previous

Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search 217

subsection, with the difference that now w(0) is set to 0. In early stages when w
is close to 0, wj is approximately Nj , which means that

Qparent ≈
∑d

j=1 NjQj∑d
j=1 Nj

.

This is equivalent to the weighted-average update rule in standard MCTS. As w
increases with the number of visits, the weights will gradually favour the child
with the maximum mean (minimum if the parent is a MIN node).

We believe that this is more robust than the method given in [6] as at any
given time the interpolation is taken between the soft maximum and the averaged
value, rather than between the averaged value and the hard maximum which is
volatile to outliers in the returns.

4 Experiments

We use 9 × 9 and 19 × 19 Go as a testbed for our experiments, and first establish
a baseline by running previous methods in the literature against standard MCTS
(Table 1).

Table 1. Win-rates (%) for the previous methods (left column) versus standard MCTS.

9 × 9 Go 19 × 19 Go

Coulom (2, 16) 44.9 53.3

Coulom (4, 32) 45.8 51.2

Coulom (8, 64) 48.3 50.2

GAY 50.2 56.1

GBY 51.8 54.5

ERWA, α = 0.00001 51.2 53.9

ERWA, α = 0.0001 50.3 56.9

ERWA, α = 0.001 52.9 55.1

In the table above, Coulom (x, y) refers to the method in [6], where x is
proportional to the parameter M in (2) and y controls when it begins increasing.
GAY and GBY refer to the best performing policies in [21] (see Fig. 1).

For these baselines, we report the range over which they give the best results.
Indeed, further decreasing α in ERWA or increasing the parameters in Coulom’s
method makes them indistinguishable from standard MCTS, whereas we find
that going in the converse direction leads to a rapid deterioration in performance.

We use 5000 moves per simulation for 9 × 9 Go, and 1600 moves per simula-
tion for 19× 19 Go, and the win-rates are computed based on 1000 games.

218 N. Lim and Y. Li

We follow the architecture in [16] for the neural nets. This consists of an
input convolutional layer, followed by several layers of residual blocks with batch
normalization (4 layers for 9× 9, 10 layers for 19× 19), followed by two “heads”,
one which outputs the policy vector and the other the value of the position. Both
heads start with a convolutional layer, and is followed by a fully-connected layer
before the output. The input layer has 10 (18 for 19× 19) channels encoding the
current position and the previous 4 (8 for 19× 19) positions. In each residual
block, we used 64 filters for 19× 19 in the convolutional layers and 32 filters for
9 × 9.

The neural net for 9× 9 was trained tabula rasa using reinforcement learn-
ing [16] over 600,000 training steps, with each step processing a minibatch of
16 inputs. We trained the 19× 19 neural net by supervised learning over the
GoGod database of approximately 15 million datapoints from 80,000 games. In
all tests, we use PUCB (5) with the exploration constant set to 0.5, and weight
the exploration term by the distribution given by the policy vector output of the
neural networks [15,16].

4.1 Monotone MCTS and Softmax MCTS

To find the optimal backpropagation parameters, we set up Spearmint to search
over m = 6 parameters. For every set of parameters, 400 games are run to
determine the win-rate, which is then used to update Spearmint at the end of
the round to obtain the next set of parameters. This procedure is repeated for
a total of 40 rounds, after which we select the best set of parameters (Table 2).

Table 2. Win-rates (%) for Monotone MCTS versus various methods (left column).

1st set of parameters
(–10.0,–10.0,–4.0,–4.0,–
4.0,–10.0)

2nd set of parameters
(–4.0,–4.0,–4.0,–10.0,–
4.0,–4.0)

(9× 9) Standard MCTS 53.1 54.5

(19× 19) Standard MCTS 56.0 54.3

(9× 9) ERWA, α = 0.00001 50.3 52.3

(9× 9) ERWA, α = 0.0001 52.8 50.5

(9× 9) ERWA, α = 0.001 52.8 53.1

(9× 9) GAY 51.5 52.3

(9× 9) GBY 51.0 51.1

The table above records the results of Monotone MCTS versus standard
MCTS, ERWA and the feedback adjustment policies in [21], whereas the table
below records the results of Softmax MCTS versus standard MCTS and the
Coulom method [6]. In both cases, we report the results for the best two sets of
parameters found (Table 3).

Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search 219

Table 3. Win-rates (%) for Softmax MCTS versus various methods (left column).

1st set of parameters
(–4.0,–10.0,–4.0,–4.0,–
10.0,–4.0)

2nd set of parameters
(–4.0,–10.0,–7.9,–10.0,–
10.0,–7.8)

(9× 9) Standard MCTS 56.3 57.8

(19× 19) Standard MCTS 53.2 55.9

(9× 9) Coulom (2,16) 59.3 57.6

(9× 9) Coulom (4, 32) 55.5 59.5

(9× 9) Coulom (8, 64) 55.1 51.9

The figure below depicts the weight profiles of both Monotone MCTS and
Softmax MCTS (Fig. 2).

Fig. 2. Weight profiles of Monotone MCTS (left) and Softmax MCTS (right)

5 Discussion and Future Work

In this paper, we present a unifying framework for backpropagation strategies in
MCTS for min-max trees. Our proposed method allows one to perform optimiza-
tion in two orthogonal directions. The first algorithm Softmax MCTS allows one
to find the optimal schedule that weights the best child more gradually as the
tree grows, and the second method Monotone MCTS generalizes previous work
in adapting the update rule to get the most accurate estimate of a node’s value
in a non-stationary setting.

Doing so requires optimization over the space of monotone functions, a
high-dimensional problem we overcome efficiently by using parallelized Bayesian
optimization over a Gaussian process prior. This is done by first simplifying
the search for an optimal backpropagation operator by considering a finite-
dimensional subspace of the monotone functions (the space W in Sect. 3), thus
reducing a functional Bayesian optimization problem to a regular Bayesian opti-
mization problem.

220 N. Lim and Y. Li

Once the parameters that define the optimal monotone function are found,
they can be incorporated into the backpropagation phase of MCTS with essen-
tially zero overhead. Our experiments show that Softmax MCTS posts stronger
gains than Monotone MCTS, in particular when compared to Coulom’s method.
Most importantly, the experiments show that both strategies are superior to
previous methods in the recent context of MCTS augmented by deep neural
networks, and across a range of parameter settings.

To conclude, we would like to note that it is possible to perform the opti-
mization in conjunction with the exploration constant in the selection phase,
but we have decided in this paper to focus solely on the backpropagation phase
and to elucidate the effects of different monotone weight profiles on the win-rate.
Combining these optimal backup strategies with other phases of MCTS will be
the topic of future work.

References

1. Baier, H., Winnands, M.H.M.: MCTS-minimax hybrids with state evaluations. J.
Artif. Intell. Res. 62, 193–231 (2018)

2. Blumenthal, S., Cohen, A.: Estimation of the larger of two normal means. J. Am.
Statist. Assoc. 63(323), 861–876 (1968)

3. Browne, C.B., et al.: A survey of Monte-Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

4. Chen, Y., et al.: Bayesian optimization in AlphaGo. arXiv preprint https://arxiv.
org/abs/1812.06855 (2018)

5. Coquelin, P.A., Munos, R.: Bandit algorithms for tree search. In: Proceedings of
the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pp. 67–74
(2007)

6. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: International Conference on Computers and Games, pp. 72–83 (2006)

7. Fu, M.: Monte-Carlo tree search and minimax combination, MSc thesis, University
of Maryland at College Park (2017)

8. Hashimoto, J., Kishimoto, A., Yoshizoe, K., Ikeda, K.: Accelerated UCT and its
application to two-player games. In: van den Herik, H.J., Plaat, A. (eds.) ACG
2011. LNCS, vol. 7168, pp. 1–12. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31866-5 1

9. Khandelwal, P., Liebman, E., Niekum, S., Stone, P.: On the analysis of com-
plex backup strategies in Monte-Carlo tree search. In: International Conference
on Machine Learning, pp. 1319–1328 (2016)

10. Kocsis, L., Svepesvári, C.: Bandit based Monte-Carlo planning. In: Proceedings of
the 17th European Conference on Machine Learning, pp. 282–293 (2006)

11. Ramanujan, R., Sabharwal, A., Selman, B.: On adversarial search spaces and
sampling-based planning. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling, vol. 20, no. 1 (2010)

12. Ramanujan, R., Sabharwal, A., Selman, B.: On the behavior of UCT in synthetic
search spaces. In: Proceedings of the International Conference on Automated Plan-
ning and Scheduling, vol. 21, no. 1 (2011)

13. Ramanujan, R., Selman, B.: Trade-offs in sampling-based adversarial planning. In:
Proceedings of the International Conference on Automated Planning and Schedul-
ing, vol. 21, no. 1 (2011)

https://arxiv.org/abs/1812.06855
https://arxiv.org/abs/1812.06855
https://doi.org/10.1007/978-3-642-31866-5_1
https://doi.org/10.1007/978-3-642-31866-5_1

Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search 221

14. Rosin, C.: Multi-armed bandits with episode context. Ann. Math. Artif. Intell.
61(3), 203–230 (2011)

15. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

16. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550, 354–359 (2017)

17. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, pp.
2951–2959 (2012)

18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press
(2018)

19. Vien, N.A., Zimmermann, H., Toussaint, M.: Bayesian functional optimization. In:
Thirty-Second AAAI Conference on Artificial Intelligence (2018)

20. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2.
MIT press, Cambridge (2006)

21. Xie, F., Liu, Z.: Backpropagation modification in Monte-Carlo game tree search. In:
Third International Symposium on Intelligent Information Technology Application,
vol. 2, pp. 125–128 (2009)

Growing Neural Networks Achieve
Flatter Minima

Paul Caillon(B) and Christophe Cerisara(B)

Université de Lorraine, CNRS, LORIA, 54500 Vandoeuvre-les-Nancy, France
{paul.caillon,cerisara}@loria.fr

Abstract. Deep neural networks of sizes commonly encountered in
practice are proven to converge towards a global minimum. The flat-
ness of the surface of the loss function in a neighborhood of such minima
is often linked with better generalization performances. In this paper, we
present a new model of growing neural network in which we incrementally
add neurons throughout the learning phase. We study the characteristics
of the minima found by such a network compared to those obtained with
standard feedforward neural networks. The results of this analysis show
that a neural network grown with our procedure converges towards a
flatter minimum than a standard neural network with the same number
of parameters learned from scratch. Furthermore, our results confirm the
link between flatter minima and better generalization performances as
the grown models tend to outperform the standard ones. We validate this
approach both with small neural networks and with large deep learning
models that are state-of-the-art in Natural Language Processing tasks.

1 Introduction

Over the last few years, deep learning [19] has had empirical successes in multiple
research domains, such as computer vision, speech recognition, and machine
translation [11,27,34]. Along with its practical success, the theoretical properties
of deep learning have been a subject of active investigation, from the expressivity
[1,20] and the generalization properties to the trainability [3,15] of a network.

Some empirical works observe that generalization and flatness of the minima
found during training are related [2,32]. However, [7] questions this assumption,
by showing that for deep neural networks with rectifier units, most Hessian-based
measures of the flatness of the loss minimum are sensible to rescaling, making
it possible to build equivalent models corresponding to arbitrarily sharper min-
ima. To address this issue, a recent work [31] introduced a particular measure
invariant to rescaling to show that flatter minima obtain better generalization
performances than sharper ones. Sharper minima are thus believed to be subop-
timal and should be avoided during learning. A recent work, [16] theoretically
proves a related result, which is that adding one special neuron by output unit
eliminates all suboptimal local minima of any neural network.

In Natural Language Processing, the models used in practice consist in mil-
lions of parameters. For example, BERT [6] is a well-known contextual word
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 222–234, 2021.
https://doi.org/10.1007/978-3-030-86340-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_18

Growing Neural Networks Achieve Flatter Minima 223

embeddings model that is pre-trained with a Denoising Autoencoding objective
and is at the basis of most state-of-the-art results in many Natural Language Pro-
cessing (NLP) tasks. We study in this work, in the context of NLP and pattern
recognition tasks, whether adding neurons incrementally instead of learning them
all from the beginning could achieve a flatter minimum for the neural network.
In the following, we propose to experimentally investigate this hypothesis by
comparing an incrementally growing network with one with a fixed architecture
learned from scratch, with both small and competitive models. The results we
present tend to confirm our hypothesis as flatter minima are indeed achieved by
growing networks, which also often leads to better generalization performances.

2 Related Work

Trainability of a Neural Network. Training neural networks can be seen
as a non convex optimization problem. However because of the absence of poor
local minima, the trainability of a Deep Neural Network is proven to be possible
[15]. Recent results theoretically prove that gradient descent can find a global
minimum for nonlinear deep neural networks of sizes commonly encountered in
practice [16]. In fact a linear increase of the number of trainable parameters as
the size of the dataset increases is sufficient to find a global minimum. Such a
network generalizes well on unseen test samples.

Growing Neural Networks. The properties of growing networks, notably with
regard to training convergence, are more and more investigated. The authors of
[16] for example add a special neuron by output unit in order to eliminate all
suboptimal local minima of any deep neural network. This idea of a network
adapting its architecture to the dataset it is trained on is also found in automated
Neural Architecture Search (NAS, see [8]). Typical works in this field are [4] and
[5], where the authors use a grow-and-prune training paradigm to iteratively add
and remove units in order to achieve more compact networks with state of the
art performances.

The idea of progressive growing of models has also been explored in the
context of Generative Adversarial Networks (GAN) [10] to increasingly add new
details as the training progresses. In [14], the authors start with low-resolution
images, and then progressively increase the resolution by adding layers to the
networks. This allows the model to learn increasingly finer scale detail, instead
of having to learn all scales simultaneously.

This kind of growing approach can be used in continual learning [29], where
the goal is to train models that must be capable of progressively learning knowl-
edge over long time spans. One of the main challenges in continual learning is
catastrophic forgetting, i.e., the fact that new information interferes with pre-
viously learned knowledge [25]. Recent works in this field showed that growing
a small network both wider and deeper allows to learn accurate and relatively
small networks that can prevent catastrophic forgetting, achieving state-of-the-
art performances with methods such as Learn-to-Grow [22], Compact-Pick-Grow
[13] or recently Firefly Neural Architecture Descent [38]. However the question

224 P. Caillon and C. Cerisara

as to why those growing neural networks reach state of the art performance
while being smaller than most of the other competitive models (comparable test
accuracy as the full model with only 4% of the full model’s size in [38]) is still
to be investigated, one idea being that when a network grows, the parameter
space becomes larger and what was previously a local minima can become a
saddle point and hence can be escaped, which yields a monotonic decrease of
the loss [35].

Smooth and Sharp Minima. On top of these considerations, the abilities
to generalize to unseen data is often linked to the flatness of the minima found
during training in empirical works [2,32] sharp minima leading to poorer general-
ization. In a recent work, [37] notably shows that smoothing out and eliminating
sharp minima by perturbing multiple copies of the DNN by noise injection and
then averaging these copies lead to an improvement of the generalization prop-
erties. Another equivalent idea is explored in [33], which proposes to smooth
activations instead of using noise or progressively adding units during training.
A very interesting idea recently developed to enhance the performances of deep
neural networks is to track the sharpness of the loss model and to jointly optimize
the loss and its sharpness [9]. In particular, this procedure, called Sharpness-
Aware Minimization (SAM), seeks parameters that lie in neighborhoods having
uniformly low loss and present empirical results showing model generalization
improvement across a variety of benchmark datasets.

In order to correctly evaluate the flatness of minima, measures invariant to
the rescaling issue pointed out in [7] now exist [30,31] and can be used to evaluate
the difference of flatness in minima between models of the same size. The goal of
our work is to investigate whether growing a feedforward neural network (FNN)
from scratch throughout the learning phase yields better loss surface properties
at minima than learning a standard FNN, both having ultimately the same
number of parameters, using the measure developed in [31].

3 Model Description

3.1 Notations

The following notations are inspired by [17]. We consider the general case of
neural networks of any depth for k-class classification that can be topologi-
cally considered as a directed acyclic graph (DAG) with non-linearity functions
such as ReLU, tanh or sigmoid. This includes any structure of feedforward neu-
ral network with or without fully connected layers and with potentially skip-
connections.

Let N = {1, . . . , n} be the set of neurons in a network. For two neurons
(i, j) ∈ N2, we note :

– wj,i the weight of the connection from j to i. If there is no connection, then
wj,i = 0. Note that the sparse n × n matrix W = [wj,i]1≤j,i≤n is constrained
to define an acyclic graph;

Growing Neural Networks Achieve Flatter Minima 225

– σi the activation function at the output of neuron i;
– π(i) the set of parents of neuron i: π(i) = {j|wj,i �= 0}1≤j≤n

– d(i) the depth of neuron i: it is the longest path to reach i from any input.

Every DAG has at least one topological ordering, which can be used to create
a layered structure with possible skip connections as shown for example in [12]
and [28]. There is thus an equivalence between the representation of a neural
network either with depths or with layers, as the layer l is composed of all the
neurons at depth l. Given an input vector x, we define the pre-activation of a
neuron i at depth l recursively as

zi(x,W) =
∑

j∈π(i)

σj (zj(x,W)) wj,i.

3.2 Model Presentation

Recent works [23] and [16] propose to insert neurons in order to avoid bad min-
ima. We investigate next the impact on the loss surface when inserting neurons
into the model progressively throughout the learning process.

More precisely, our work’s main focus is to explore whether growing
approaches intrinsically leads to flatter minima. We do not seek an increase
in the model performances per se. We rather try to understand why the growing
approaches lead to better results than the standard ones in the recent works. To
the extent of our knowledge, no similar work on the sharpness of the loss surface
of growing networks exist. That is also why our model does not rely on complex
heuristics to decide how and when the model’s size should be increased. We
rather choose a simple approach, based on random picks as it has been shown in
previous works [21,26] that advanced NAS techniques are often only marginally
superior to simple random search.

In our model, the neurons are inserted incrementally at a regular pace (i.e.,
with a constant time interval) during the learning phase, starting with a mini-
mum number of parameters (just the input and output layers) in order to increase
the number of learnable parameters with the number of epochs. Intuitively, our
growing procedure is a naive insertion process: first, an existing neuron is ran-
domly chosen and splitted to create a new child neuron, which inherits most
of its children. The new neuron also gets new parent connections with existing
neurons randomly chosen in the previous layers. More formally, we have initially:

– The set of neurons is N = {1, . . . , nI , nI+1, . . . , n}: the first nI neurons are
the input neurons, while the last n − nI neurons are the output neurons;

– The weight matrix W is symmetrical and is initially strictly equivalent to a
feedforward neural network with no hidden layer, with non-null transitions
that are initialized randomly, e.g., with Glorot or uniform initialization;

– The depth of the input neurons is 0, and the depth of the output neurons
is 1.

226 P. Caillon and C. Cerisara

Then, we randomly choose a neuron from the current network, called the pri-
mary parent, as well as I −1 other neurons on lower depths, which are just called
the parents. The primary parent is randomly sampled among all existing neu-
rons, as previous works [21,26] found that advanced NAS techniques are often
only marginally superior to simple random search. With each neuron insertion,
the total number of parameters of the model is increased by I, as each link cre-
ated between the new neuron and its parents adds a parameter. This process is
iterated until we reach the desired number of parameters. Intuitively, insertion
proceeds by splitting the primary parent, i.e., inserting a new neuron after the
primary parent that inherits its children, as detailed in Algorithm 1.

The connection between the primary parent and the neuron inserted is
stored in π0 which is the set containing all of the pairs (primary par-
ent, neuron inserted). We initialize π0 as the set containing all the con-
nections between input and output neurons, considering that all input
neurons are “primary parents” of all of the output neurons : π0 =
{(1, nI+1), . . . , (1, n), . . . , (nI , nI+1), . . . , (nI , n)}. In this way, we are able to
track the multiple insertions and to grow the hidden layers of the network both
deeper and wider. The insertion process is illustrated in Fig. 1.

Fig. 1. Example of parents/children inheritance before and after insertion; the new
weights are: ∀i ∈ [1, n], w′

i,8 ∼ U(−0.5, 0.5), w′
8,6 = wn,6.

Remark 1. Steps 1 and 8 of the algorithm ensure that all the output units and
only them are at maximum depth as when we insert a neuron n+1 on the max-
imal depth, n+1 is a primary parent to every output unit which means the
maximal depth is updated :

if d(n + 1) = D,∀i ∈ {nI+1, . . . , n}, (n + 1, i) ∈ π0

Remark 2. In Step 4 we sample the primary parents j|d(j) < D. The output
neurons are thus the only neurons to have multiple primary parents as they are
considered as the only neurons that cannot be primary parents themselves

Remark 3. Step 6 of the algorithm ensures that d(n + 1) = d(j) + 1 as ∀i ∈
π(n + 1), d(i) ≤ d(j).

Growing Neural Networks Achieve Flatter Minima 227

Algorithm 1: Insertion Algorithm
Input: Weight matrix W ∈ IRn×n

Output: Weight matrix W ′ ∈ IR(n+1)×(n+1)

1 Save the initial set of primary parents π0

2 Create a new neuron n + 1
3 Create W ′ by copying all weights from W and initializing the new dimension

with null weights.
4 Sample the primary parent: j ∼ U({j|d(j) < D}1≤j≤n) where U is the uniform

distribution, and D = max1≤i≤n d(i) is the depth of the network.
5 Save the new primary parent: π0 ← π0 ∪ {(j, n + 1)}
6 Insert n + 1 by setting w′

j,n+1 ∼ U(−0.5, 0.5)
7 Connect children of j as children of n + 1:
8 for i ∈ {1, . . . , n} so that wj,i �= 0 do

– if d(i) > d(n + 1):
• Set w′

n+1,i = wj,i

• Set w′
j,i = 0

– if d(i) = d(n + 1) and (j, i) ∈ π0:
• Set w′

n+1,i = wj,i

• Set w′
j,i = 0

• π0 ← (
π0 − {(j, i)}) ∪ {(n + 1, i)}

9 Add new parents for n + 1:
10 for I-1 times do

– Sample a node k ∼ U({i|w′
i,n+1 = 0) and d(i) ≤ d(j)}1≤i≤n).

– Add k as a parent of n + 1: w′
k,n+1 ∼ U(−0.5, 0.5)

– Iterate

Remark 4. The concept of primary parents in Step 8 allows us to balance
between the depth and width of the architecture of the network. When there
are still only a small number of units in the network, a primary parent can be
picked multiple times. If this is the case, Step 8 allows the network to grow
deeper and not only wider.

4 Experimental Results

4.1 Experiments with Small Models

We implement our model in PyTorch and evaluate it on AGNews and MNIST
[18].

AGNews: AG News (AG’s News Corpus) is a sub-dataset of A. Gulli’s corpus
of news articles constructed by assembling titles and description fields of articles
from the 4 largest classes (“World”, “Sports”, “Business”, “Sci/Tech”) of AG’s
Corpus. The AG News contains 30,000 training and 1,900 test samples per class.

228 P. Caillon and C. Cerisara

MNIST: The handwritten digit benchmark MNIST is a large collection of hand-
written digits. It has a training set of 60,000 examples, and a test set of 10,000
examples.

We compare our model with a fully connected network with the same number
of parameters as the final number of parameters of our model (after insertions).
Our objective is to study the properties of the final loss surface when adding neu-
rons one by one, all other hyper-parameters being equal (number of parameters,
activation functions, weight initialization, accuracy, batch size, SGD algorithm,
...).

In order to study the loss surface, we use the metric proposed in [31], and
more precisely the scale invariant measure to compare the flatness of the minima
found by our different models. This Hessian-based measure for flatness is invari-
ant to rescaling as the authors use a metric on a quotient manifold structure
that captures the rescaling that is natural to the space of parameters of neural
networks with positively homogeneous activations.

As done in [31], we train each network architecture and dataset up to 100% of
training accuracy with stochastic gradient descent (SGD). We test two different
batch sizes of 10 and 100 samples for MNIST, and 1 and 16 samples for AGNews.
No pre-trained word embeddings are used for AGNews. For both datasets we use
the categorical cross entropy loss. On AGNews, the learning rate is initially 10−4

and 10−3 on MNIST.
We further test two final model sizes, respectively with 10 and 500 hidden

neurons for MNIST, and 10 and 100 hidden neurons for AGNews. On both
the AGNews and MNIST corpora, we train the growing models for 100 epochs,
reaching 100% of training accuracy. We let the model learn the new inserted
parameters for a few epochs before inserting new neurons again. We used the
following insertion scheme:

– (MNIST, 10 final hidden neurons) 1 new unit every 10 epochs from epoch 5
– (AGNews, 10 final hidden neurons) 1 new unit every 10 epochs from epoch 5
– (MNIST, 500 final hidden neurons) 50 new units every 10 epochs from epoch

10 to 60
– (AGNews, 100 final hidden neurons) 10 new units every 10 epochs from

epoch 5

The initialization scheme for all the models follows a uniform distribution
between −0.5 and 0.5. The inserted neurons are thus initialized in the same way
as those in the standard feedforward neural networks we compare our network
with. In this way, the insertion process is the only difference between the two
training methods, every hyper-parameter being equal otherwise.

Furthermore, we train different feedforward neural network architectures
with a various number of hidden layers:

– (MNIST, 10 final hidden neurons):
• 1 hidden layer of 10 neurons

– (AGNews, 10 final hidden neurons)
• 1 hidden layer of 10 neurons

Growing Neural Networks Achieve Flatter Minima 229

– (MNIST, 500 final hidden neurons)
• architecture a: 1 hidden layer of 500 neurons
• architecture b: 2 hidden layers of 400 then 100 neurons
• architecture c: 3 hidden layers of 300 then 150 then 50 neurons

– (AGNews, 100 final hidden neurons)
• architecture a: 1 hidden layer of 100 neurons
• architecture b: 2 hidden layers of 80 then 20 neurons
• architecture c: 3 hidden layers of 60 then 30 then 10 neurons

Testing multiple architectures with the same number of neurons allows us to
verify whether the results presented in Table 1 are due to the insertion process or
are influenced by the possible difference in terms of depth between the standard
feedforward networks and the layered structure obtained through our growing
process.

4.2 Growing RoBERTa’s Classification Head

BERT [6] is a well-known and reference contextual word embeddings model that
is pre-trained with a Denoising Autoencoding objective and is at the basis of
most state of the art results in many Natural Language Processing (NLP) tasks.
RoBERTa [24] builds on BERT’s language masking strategy, but fine-tunes the
original BERT model with a different choice of tasks and conditions.

As most of today’s state of the art NLP models, RoBERTa is a complex
and large neural network, which thus faces the issue of over-parametrization.
It is composed of 355 million parameters stored in 24 layers of self-attention,
with a classification head on top to output the desired number of classes. In our
experiments, we strictly keep the same number of parameters, without adding
more complexity to the model. The classification head is classically composed
of a two-layers feed-forward network with 1024 hidden neurons. We thus pro-
pose next to replace this classification head with a bare one-layer feed-forward
network, and to grow it until it reaches the same number of parameters as the
reference classification layer. The rest of the pre-trained Roberta large model,
i.e., the self-attention layers, stays the same. We use the standard CoLA bench-
mark [36] to train and evaluate our growing model against RoBERTa. The CoLA
dataset is composed of 9594 training and 1063 test sentences. The objective is
to classify each sentence into two classes: grammatically correct and incorrect
English sentences.

In order to study the impact of growing the network, we insert neurons
progressively throughout the whole learning process, which consists in 10 epochs
in the original RoBERTa experiment. To do so, a total of 1024 hidden neurons are
inserted through three different phases: after the second, fifth and seventh epoch.
We also compute the sharpness of both the original RoBERTA model and of our
grown model, and compare the models performances and loss characteristics.
The batch size used is 16. The results are compiled in Table 2.

230 P. Caillon and C. Cerisara

Table 1. Test Accuracy and Spectral Norm of Hessian at Minima for different trained
networks.

Corpus : MNIST

Model Batch size Test accuracy Spectral norm

10 hidden neurons

Growing
10 84% 2.23

100 77.91% 24.29

Fully connected
10 84.03% 38.01

100 77.74% 68.39

500 hidden neurons

Growing
10 96.98% 4.45

100 94.84% 179.01

Fully Connected a
10 87.27% 1030.07

100 66.86% 12111.28

Fully Connected b
10 84.57% 820.54

100 64.17% 21517.66

Fully Connected c
10 84.26% 1253.72

100 74.01% 12893.59

(a) Results on MNIST corpus

Corpus : AGNews

Model Batch Size Test Accuracy Spectral Norm

10 hidden neurons

Growing
1 90.2% 9.83 · 10−5

16 88.2% 3.22

Fully Connected
1 90.1% 7.91 · 10−4

16 88.3% 20.83

100 hidden neurons

Growing
1 90.7% 0.57

16 89.2% 31.31

Fully Connected a
1 90.5% 3.43

16 89.0% 69.53

Fully Connected b
1 90.4% 7.02

16 89.0% 60.89

Fully Connected c
1 90.5% 3.25

16 88.9% 73.28

(b) Results on AGNews

Growing Neural Networks Achieve Flatter Minima 231

Table 2. Test Accuracy and Spectral Norm of Hessian at Minima on COLA

Model Test Accuracy Spectral Norm

Growing 68.2% 1.8945 · 105

Fully connected 68% 6.7778 · 105

5 Discussion

The results obtained with our small models experiments first confirm what was
shown in [31], i.e., that by increasing the batch size, we increase the sharpness of
the minima. But these experiments further show that inserting neurons during
the training phase of the model allows to decrease the sharpness of the minima.
These results are obtained with shallow networks and standard but relatively
simple classification tasks.

Another interesting observation is that our method not only decreases the
spectral norm and thus improves the flatness of the minima of a shallow network,
but we can also observe in Table 1, that a lower spectral norm seems to correlate
with higher generalization performances, as the test accuracies are better for the
growing networks when the number of parameters is larger.

Another interesting conclusion that can be drawn from Table 2 is that these
good results translate to complex and state-of-the-art neural networks. Indeed,
we can observe that growing the final classification head of such a model leads to
an optimum solution that is flatter by an order of magnitude, according to the
flatness metric, without any negative impact in terms of accuracy. We note that
the classification head represents approximately only 0.6% of the total number
of parameters of the model, which may explain why the models performances in
terms of accuracy are similar. Despite the fact that only a small proportion of the
total number of parameters is grown, it is interesting to note that the growing
process leads to spectral norm of the optimum that is much lower, which means
that we reach a flatter minimum.

Our results tend to show that the growing paradigm, more and more used in
the Neural Architecture Search field, is an important asset to reach flatter min-
ima. However, there is no theoretical guarantee for now that a flatter minimum
will systematically translate into better generalization performances, although
several related works results tend to exhibit such a correlation.

With regard to this question, we can observe in our experiments that with
very small neural networks (the case with only 10 hidden neurons in Table 1),
the performances are similar although the growing method achieves a minimum
that is at least 2.5 (up to more than 10) times flatter than the standard method.
We believe that this is due to the small capacity of the neural network, which
can not learn more because of its limited size.

Second, when inserting a greater amount of neurons, we can observe two
different behaviors. On the one hand, when comparing on MNIST, the growing
method leads to flatter minima and better Test Accuracy, as it was also shown

232 P. Caillon and C. Cerisara

in [31]. On the other hand, the flatter minima given by the growing approach
do not correlate with better performances on AG News: models with 10 and 100
hidden neurons have roughly the same performances. Similarly, when trained
on CoLA with a complex structure, the growing method still leads to a flatter
minimum but no significant improvement in accuracy is observed. Our hypothesis
is that, in these two cases, the number of parameters of the growing model is
too small when compared to the total number of parameters of the model to
have a real impact on accuracy, as most of the information is learned in the
embeddings.

6 Conclusion and Future Work

Our main contribution is the proposal of a growing neural network approach,
which we experimentally validate in several conditions on three tasks and with
small and large deep learning models. The results show that the resulting loss
function has flatter minima than with the traditional training procedure on the
full network. We further show that such flatter minima improves the gener-
alization capability of the trained models when they do not rely on complex
embeddings. These results tend to show that the paradigm of growing neural
networks during the learning phase intrisically leads to flatter minima, which is
an interesting observation, although these results have to be confirmed on dif-
ferent datasets, potentially with transfer learning experiments in order to better
assess the generalization performances across related tasks. Furthermore, in the
case of Natural Language Processing tasks, a potentially interesting extension
could be to adapt the approach to further grow the embeddings in order to have
a greater impact on both the loss surface characteristics and model’s perfor-
mances. As this work focuses on feedforward neural networks, an extension to
more complex structures, such as convolutions and recurrent networks is also
envisaged.

References

1. Barron, A.R.: Approximation and estimation bounds for artificial neural networks.
Mach. Learn. 14(1), 115–133 (1994)

2. Chaudhari, P., et al.: Entropy-SGD: biasing gradient descent into wide valleys.
arXiv e-prints arXiv:1611.01838, November 2016

3. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss
surfaces of multilayer networks. arXiv e-prints arXiv:1412.0233, November 2014

4. Dai, X., Yin, H., Jha, N.K.: NeST: a neural network synthesis tool based on a
grow-and-prune paradigm. arXiv e-prints arXiv:1711.02017, November 2017

5. Dai, X., Yin, H., Jha, N.K.: Grow and prune compact, fast, and accurate LSTMs.
arXiv e-prints, page arXiv:1805.11797, May 2018

6. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv e-prints
arXiv:1810.04805, October 2018

http://arxiv.org/abs/1611.01838
http://arxiv.org/abs/1412.0233
http://arxiv.org/abs/1711.02017
http://arxiv.org/abs/1805.11797
http://arxiv.org/abs/1810.04805

Growing Neural Networks Achieve Flatter Minima 233

7. Dinh, L., Pascanu, R., Bengio, S., Bengio, Y.: Sharp minima can generalize for
deep nets. arXiv e-prints arXiv:1703.04933, March 2017

8. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. arXiv
e-prints arXiv:1808.05377, August 2018

9. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization
for efficiently improving generalization. arXiv e-prints arXiv:2010.01412, October
2020

10. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv e-prints
arXiv:1406.2661, June 2014

11. Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition with deep recurrent
neural networks. arXiv e-prints arXiv:1303.5778, March 2013

12. Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: Graph Drawing
(2001)

13. Hung, S.C.Y., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan, Y.-M., Chen, C.-S.: Com-
pacting, picking and growing for unforgetting continual learning. arXiv e-prints
arXiv:1910.06562, October 2019

14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. arXiv e-prints arXiv:1710.10196, October
2017

15. Kawaguchi, K.: Deep learning without poor local minima. arXiv e-prints
arXiv:1605.07110, May 2016

16. Kawaguchi, K., Pack Kaelbling, L.: Elimination of all bad local minima in deep
learning. arXiv e-prints arXiv:1901.00279, January 2019

17. Kawaguchi, K., Kaelbling, L.P., Bengio, Y.: Generalization in deep learning. arXiv
e-prints arXiv:1710.05468, October 2017

18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

19. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature Cell Biol. 521(7553),
436–444 (2015)

20. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function (1993)

21. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture
search. arXiv e-prints arXiv:1902.07638, February 2019

22. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual struc-
ture learning framework for overcoming catastrophic forgetting. arXiv e-prints
arXiv:1904.00310, March 2019

23. Liang, S., Sun, R., Lee, J.D., Srikant, R.: Adding one neuron can eliminate all bad
local minima. arXiv e-prints arXiv:1805.08671, May 2018

24. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
e-prints arXiv:1907.11692, July 2019

25. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. Psychol. Learn. Motiv. Adv. Res. Theo. 24(C),
109–165, January 1989. Funding Information: The research reported in this chapter
was supported by NIH grant NS21047 to Michael McCloskey, and by a grant from
the Sloan Foundation to Neal Cohen. We thank Sean Purcell and Andrew Olson for
assistance in generating the figures, and Alfonso Caramazza, Walter Harley, Paul
Macaruso, Jay McClelland, Andrew Olson, Brenda Rapp, Roger Rat-cliff, David
Rumelhart, and Terry Sejnowski for helpful discussions

26. Negrinho, R., Patil, D., Le, N., Ferreira, D., Gormley, M., Gordon, G.: Towards
modular and programmable architecture search. arXiv e-prints arXiv:1909.13404,
September 2019

http://arxiv.org/abs/1703.04933
http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/2010.01412
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1910.06562
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1605.07110
http://arxiv.org/abs/1901.00279
http://arxiv.org/abs/1710.05468
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1904.00310
http://arxiv.org/abs/1805.08671
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1909.13404

234 P. Caillon and C. Cerisara

27. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011 (2011)

28. Neyshabur, B., Tomioka, R., Srebro, N.: Norm-based capacity control in neural
networks. arXiv e-prints arXiv:1503.00036, February 2015

29. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: a review. arXiv e-prints arXiv:1802.07569, February
2018

30. Petzka, H., Adilova, L., Kamp, M., Sminchisescu, C.: A reparameterization-
invariant flatness measure for deep neural networks. arXiv e-prints
arXiv:1912.00058, November 2019

31. Rangamani, A., Nguyen, N.H., Kumar, A., Phan, D., Chin, S.H., Tran, T.D.:
A scale invariant flatness measure for deep network minima. arXiv e-prints
arXiv:1902.02434, February 2019

32. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. arXiv e-
prints arXiv:1609.04836, September 2016

33. Sinha, S., Garg, A., Larochelle, H.: Curriculum by smoothing. arXiv e-prints
arXiv:2003.01367, March 2020

34. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. arXiv e-prints, page arXiv:1409.3215, September 2014

35. Wang, D., Li, M., Wu, L., Chandra, V., Liu, Q.: Energy-aware neural architecture
optimization with fast splitting steepest descent. arXiv e-prints arXiv:1910.03103,
October 2019

36. Warstadt, A., Singh, A., Bowman, S.R.: Neural network acceptability judgments.
arXiv e-prints arXiv:1805.12471, May 2018

37. Wen, W, et al.: SmoothOut: smoothing out sharp minima to improve generalization
in deep learning. arXiv e-prints arXiv:1805.07898, May 2018

38. Wu, L., Liu, B., Stone, P., Liu, Q.: Firefly neural architecture descent: a gen-
eral approach for growing neural networks. arXiv e-prints, page arXiv:2102.08574,
February 2021

http://arxiv.org/abs/1503.00036
http://arxiv.org/abs/1802.07569
http://arxiv.org/abs/1912.00058
http://arxiv.org/abs/1902.02434
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/2003.01367
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1910.03103
http://arxiv.org/abs/1805.12471
http://arxiv.org/abs/1805.07898
http://arxiv.org/abs/2102.08574

Dynamic Neural Diversification: Path
to Computationally Sustainable Neural

Networks

Alexander Kovalenko , Pavel Kord́ık , and Magda Friedjungová(B)

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

{kovalale,pavel.kordik,magda.friedjungova}@fit.cvut.cz

Abstract. Small neural networks with a constrained number of train-
able parameters, can be suitable resource-efficient candidates for many
simple tasks, where now excessively large models are used. However, such
models face several problems during the learning process, mainly due to
the redundancy of the individual neurons, which results in sub-optimal
accuracy or the need for additional training steps. Here, we explore the
diversity of the neurons within the hidden layer during the learning pro-
cess, and analyze how the diversity of the neurons affects predictions of
the model. As following, we introduce several techniques to dynamically
reinforce diversity between neurons during the training. These decorre-
lation techniques improve learning at early stages and occasionally help
to overcome local minima faster. Additionally, we describe novel weight
initialization method to obtain decorrelated, yet stochastic weight ini-
tialization for a fast and efficient neural network training. Decorrelated
weight initialization in our case shows about 40% relative increase in test
accuracy during the first 5 epochs.

Keywords: Diversification · Negative correlation · Weight
initialization · Computational sustainability · Neural networks

1 Introduction

Over the last decade, machine learning algorithms have achieved vast progress
in various fields. Namely, general approach called deep neural networks (DNN)
with multiple hidden layers [16], has enabled machine learning algorithms to
perform at an acceptable level in the many areas, in some cases outperforming
human accuracy [7]. Such progress, in no small measure, has become available
due to modern hardware computational capabilities, enabling the training of
large DNN on an immense amount of data.

On the other hand, even though large models perform very well on complex
tasks, we cannot endlessly rely on an infinite increase in computational resources
and size of datasets. Training large neural networks is energy, time and memory
demanding task. Recently, researchers started questioning energy consumption
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 235–247, 2021.
https://doi.org/10.1007/978-3-030-86340-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_19&domain=pdf
http://orcid.org/0000-0002-7194-1874
http://orcid.org/0000-0003-1433-0089
http://orcid.org/0000-0002-3363-294X
https://doi.org/10.1007/978-3-030-86340-1_19

236 A. Kovalenko et al.

of machine learning algorithms and their carbon footprint [24]. Thus it will not
be superfluous to develop a strategy for the models that have a constrained
number of parameters, sufficient enough for the certain task, and can be trained
fast, rather than chasing higher accuracy by enlarging the number of parameters
and using more complex hardware.

Universal approximation theorem [8] claims that a feed-forward artificial
neural network with a single hidden layer can approximate any continuous well-
behaved function of arbitrary number of variables with any accuracy. The condi-
tions are: a sufficient number of neurons in the hidden layer, and a correct weight
selection. Above mentioned theorem for an arbitrary width case was originally
proved by Cybenko [8] and Hornik [19] and later extended to an arbitrary depth
case (DNN) in [27].

In this paper we get a deeper insight on the practical application of Cybenko’s
theorem, in order to train a neural network, where all hidden neurons will be
used efficiently. Therefore, we have to pay attention to two following aspects:
number of neurons and correct weight selection.

Number of neurons in a hidden layer is a quite straightforward parameter
that became trendy with availability of multi-threaded parallel computing on
GPU [30]. Models of a vast number of trainable parameters are not devoid of
logic, as they generalize better and can be so-called ‘universal learners’. For
example, GPT-3 having 175 billion parameters, is a perfect example of a univer-
sal learner [5]. Thus, the community has been experimenting with model archi-
tectures increasing width [27] or depth [36] of neural networks. Issues, such as
vanishing gradient [17,18] was resolved by applying methods, including second-
order Hessian-free optimization [29], training schedules by using greedy layer-
wise training [15,34,39], sparse rectifier activation function, widely known as
ReLU [11], layer-size-dependent initialization, such as Xavier [10] and Kaiming
[14] and skip connections [13]. Even though, we can make arbitrarily large mod-
els make good predictions, to achieve computational sustainability by expand-
ing the number of trainable parameters up to infinity, would not be the best
option for the tasks of lower complexity. The community has been already try-
ing to address this problem, thus several solutions dealing with this issue have
occurred. For example, widely used ReLU activation function, saturated only
in one dimension, which helps with vanishing gradient problem, on the other
hand results in so-called ‘dying neurons’ [26], modified activation functions such
as Leaky ReLU [41], adaptive convolutional ReLU [9], Swish [32], Antirectifier
[28] and many other were addressed to solve the problem of ‘neural graveyard’.
Resource efficient solutions, such as pooling operations [33], LightLayers [21]
depth-wise separable convolutions [6] were developed to reduce the complexity
of the models.

Correct weight selection, at first sight, depends on training parameters, such
as loss function, number of epochs, learning rate etc. However, to train the neural
network competently these weights have to be initialized stochastically. There
are several ways to initialize weight, mainly aimed to avoid vanishing gradients.
Nevertheless, stochastic weight initialization can result in neuron redundancy,

Dynamic Neural Diversification 237

when different neurons are trained in a similar manner. This is not crucial if
the neural network is excessively large, however, in computationally sustain-
able models, neuron redundancy and ‘neural graveyards’ are undesirable. More-
over, there are numerous application when memory efficient model is required
(e.g. autonomous devices such as sensors, detectors, mobile or portable devices).
Such devices require memory and performance efficient solutions to learn spon-
taneously and improve from experience. In this case adding excessive parameters
to the model can be rather questionable for the model application.

Therefore, once we consider each neuron of the model as an individual learner,
the neural network can be seen as an ensemble. It is known that for ensembles
diversity of learners is desirable to some extent [4]. Thus, we can assume that
diversity between neurons or reinforced diversification during the training can
be beneficial for the model.

In this paper we foremost explore how the diversity between neurons evolves
during the training and as a following step suggest methods for diversification
of the neurons during the model training. This is especially relevant in resource
constrained models, where neuron redundancy means reducing the number of
predictors. Additionally, we show how weight pre-initialization can affect neural
network training at the early steps.

2 Our Approach

Let us start with a term negative correlation (NC) learning [4], which is a sim-
ple, yet elegant technique to diversify individual base-models in the ensemble
and reduce their correlations. Ambiguity decomposition [12] of the loss func-
tion raises the possibility of controlling the trade-off between bias, variance, and
covariance [38] using the strength parameter, to reduce covariance. In its order
the concept of an NC learning is originated from bias-variance decomposition
[3,20] of ensemble learning. In this case, bias is the output shift from the true
value, and variance is the measure of ensemble ambiguity, which simply means
dispersion around the mean output value.

As it was first demonstrated by Krogh and Vedelsby [23] quadratic error of
ensemble prediction is always less that the quadratic error of each individual
estimator of the ensemble:

(fens − d)2 =
∑

i

wi (fi − d)2 −
∑

i

wi (fi − fens)2 (1)

Later Brown [4] demonstrated decomposition of ensemble error into three
components - bias, variance and covariance, and shown, the connection between
ambiguity and covariance:

E
{

1
M

∑
i (fi − d)2 − 1

M

∑
i

(
fi − f̄

)2} =

bias
2

+ 1
M var +

(
1 − 1

M

)
covar

(2)

238 A. Kovalenko et al.

The ensemble ambiguity is nothing less than the variance of the weighted
ensemble around the weighted mean. Therefore, higher ambiguity, i.e. decorre-
lation between the ensemble output is desirable up to some measure.

Our first trial was to decorrelate neurons in the hidden layer by penalizing
the difference between mean weight of the neurons w̄ and each neuron wi:

NC =
1
n

γ
∑

i

(w̄ − wi) (3)

where γ is the regularization strength parameter, and n is the number of neurons
in a layer.

However, it is likely more profitable to compare not only single weights,
but weight matrices or e.g. kernels in convolutional neural networks (CNN), as
trainable kernels represent. Thus, the second way to define diversity is comparing
neurons by cosine similarity:

1
D

=
1
n

γ
∑

i

∑

j

wi · wj (4)

where w are weights of individual neurons and D is the diversity measure.
In this technique we compare each weight in the layers and define a diver-

sity measure D. However, it has quadratic complexity of such expression, which
would oppose the idea of the current work, as our indent is fast and efficient
training of resource constrained neural networks.

Therefore, combining the first two approaches we introduce and explore
another method to define diversity in the neural networks:

1
D

=
1
n

γ
∑

i

w̄ · wi (5)

After observing the training process and evolution of diversity measure in
the models, we explored the possibility of weight pre-optimization using diver-
sification. In this case, we used Kaiming weight initialization, with further opti-
mization to enlarge the diversity between the weights, and at the same time keep
weight mean and standard deviation of the weight matrix close to initial:

L = (
∣∣W̄ − w̄k

∣∣ + |σW − σwi
|)

∑

i

∑

j

wi · wj (6)

where L is loss, W̄ is the initial weight mean, w̄k is the weight mean at k training
step, σW is standard deviation of the initial weights array, and σwi

is standard
deviation of the weights array at k training step.

3 Experiments

We perform some initial experiments using DNN in order to study diversity evo-
lution during the model training and demonstrate the effectiveness of proposed
diversification mechanisms.

Dynamic Neural Diversification 239

The experiments were performed on publicly available benchmark dataset
Fashion MNIST [40]. This dataset was chosen as it is suitable for DNN training
and has higher variance than traditional hand-written digits dataset MNIST [25].
We implemented one-hidden-layer neural network with 16, 32, 64, 128, and 256
neurons in the hidden layer (see Table 1), using PyTorch [31] library. Otherwise,
we used standard parameters for the training, including Adam optimizer [22]
with a learning rate of 0.01, cross entropy loss function with penalization terms
(Eq. 3–5):

H(T, p) = −
N∑

i=1

1
N

log2 q (xi) +
1
D

(7)

where T presents training set, p is true distribution, q is predicted distribution,
N is standard deviation of the weights array at k training step, q(x) is the
probability of event x estimated from the training set, and D is the diversity
measure, obtained using Eq. 3, 4, or 5.

4 Results and Discussion

4.1 Evolving Diversity and Symmetry Breaking

During the model training, one can notice sub-optimal accuracy stagnation for a
several epochs, this can be associated with the existence of local minima on a loss
function surface [2,35]. This can be associated with a symmetry in the neural
network layer, which is shown to be a critical point especially for small neural
networks [1,37]. We found out that naturally the model tends to decrease the
correlation between the neurons, however when the model converges to a local
minimum with a sub-optimal accuracy, the similarity between the neurons rises
up until the moment when the optimization process surpasses the local minimum
and the accuracy increases. (see Fig. 1) This correlates with an existence of
symmetry in the weights, once weights are symmetrical (correlated) and the
number of neurons is constrained, the overall output of the model will likely to
be inefficient.

4.2 Negative Correlation Learning

The experiment above inspired us to study certain ways to decorrelate neurons
in the hidden layer, thus brake the symmetry that can appear during the learn-
ing process. As we discussed earlier, we consider the output of neural network
as an output of an ensemble. Thus, first, we did simple NC learning, applied to
the individual neurons, rather than ensemble of classifiers. The logic behind this
experiment was rather comprehensible. Once the model has constrained number
of parameters to generalize the data, higher variance would help to eliminate
redundant neurons and overall prediction has to be more accurate. As it can be
seen from the Fig. 2. Decorrelation mechanism helps to avoid local minima at the

240 A. Kovalenko et al.

Fig. 1. Training curve and Diversity measure (Eq. 4) for the first 50 epochs on Fashion
MNIST dataset. DNN with 1 hidden layer of 32 neurons.

Table 1. First 10 epochs average of the neural network training for various number of
neurons, hidden layer diversified according to the Eq. 5.

γ Number of neurons & Test accuracy, %

16 32 64 128 256

0.0 54.19 58.25 62.46 69.62 72.10

1 · 10−5 55.17 60.17 62.45 68.64 70.65

1 · 10−4 56.41 61.25 64.13 70.32 72.27

1 · 10−3 54.48 60.81 65.04 70.45 72.83

1 · 10−2 53.54 60.04 63.19 70.26 72.36

1 · 10−1 54.22 59.46 62.23 70.20 71.64

1.0 50.09 57.49 60.53 69.84 71.65

early stage on the model learning. Nevertheless, decorrelation using NC learning
generally did not result in the higher accuracy overall. We associate it to several
factors, such as Kaiming weight initialization that help to avoid vanishing gradi-
ent, and Adam optimizer which is a replacement optimization algorithm that can
handle sparse gradients on noisy data, and thus is able to efficiently overcome
local minima due to adaptive learning rated for each parameter. Eventhough,
these widely used techniques are dealing with the above mentioned problem of
the neuron redundancy, our proposed model can help at the early stages of a
model training.

Moreover, with an increasing number of neurons the influence of decorrelation
diminishes, this can be explained, that excessively large NN performs good at the
low variance data as well as not every neuron is needed for a good prediction.
However, in the present work we consider computationally sustainable DNN,
where all the neuron are forced to contribute the prediction and on the other

Dynamic Neural Diversification 241

Fig. 2. Validation accuracy training curves of the model with various γ values.

hand, for complex data larger amount of neurons would be needed to generalize
the dataset. Therefore, for more sophisticated problems neuron diversification
may be efficient for a larger number of neurons. However, in the present case we
performed further experiments on the model with 64 neurons in the hidden layer,
which we consider sufficient for a given dataset. All the models were trained for
10 times to calculate mean and standard deviation. In Table 2 the average testing
accuracy of the first 10 epoch for the DNN with 64 neurons in the hidden layer
trained using negative correlation learning (Eq. 3) is shown.

Table 2. First 10 epochs average of the neural network training, hidden layer diversified
according to the Eq. 3.

γ Train Acc., % Test Acc., %, Test Acc. STD

0.0 61.46 62.46 2.34

1 · 10−5 62.26 62.45 2.34

1 · 10−4 63.65 64.13 1.59

1 · 10−3 63.12 65.04 1.76

1 · 10−2 62.54 63.19 1.03

1 · 10−1 64.23 62.23 0.95

1.0 59.56 60.53 1.57

4.3 Pairwise Cosine Similarity Diversification

It has to be noted that, unlike in [4], where universal diversification strength
parameter was found for the ensembles of all sizes, in our case γ value depends
on the size of the hidden layer and has to be rather considered as γ per neuron.
However, on the other hand it is loss-dependent, which means that, ideally, it
has to be same or one order of magnitude smaller than the output of the loss
function during the training, otherwise, rather than the model loss (e.g. cross
entropy), reciprocal diversity measure 1

D will be optimized. Thus, the reader has
to consider optimizing γ value for each certain neural network and loss function.
Thus optimal γ approximately can be estimated as:

242 A. Kovalenko et al.

γ =
0.5 · 10bloss

n
(8)

where n is the number of neurons in the hidden layer and bloss is the loss function
order of magnitude.

In addition to NC learning, we introduced diversity measure based on cosine
similarity between the neurons (Eq. 4). Such technique, seems to be promising
due to several reasons: first, we, rather that mean values, compare patterns,
which can be useful for more complex models, such as CNNs or transformers,
moreover here, each neuron is compared with each, thus such model is intended
to be more robust. Nevertheless, at least for DNN, results we comparable with
NC learning (see Table 3), additionally, such method has quadratic complexity,
which opposes our initial aim to train small models faster and more efficient.

Table 3. First 10 epochs average of the neural network training, hidden layer diversified
according to the Eq. 4.

γ Train Acc., % Test Acc., %, Test Acc. STD

0.0 55.94 62.83 1.18

5 · 10−8 56.52 64.20 1.11

5 · 10−7 57.98 65.76 0.92

5 · 10−6 55.48 59.96 0.71

5 · 10−5 56.47 49.20 1.52

5 · 10−4 56.47 44.60 1.06

5 · 10−3 42.66 38.61 1.10

4.4 Reaching Linear Complexity

To enable our diversification method to compare patterns, however avoid
quadratic complexity, we combined the fist concept of NC learning with the sec-
ond one, and implemented diversity measure based on penalization of the cosine
similarity of each neuron in the hidden and layer’s neurons mean (Eq. 5). The
algorithm (see Table 4) overhead is comparable with L regularization. Moreover,
it has shown the highest accuracy gain among three.

4.5 Iterative Diversified Weight Initialization

However, it can be noticed, that occasionally, during the training, the model
do not behave exactly as expected, creating an outlying learning curves. This is
most likely associated with stochastic weight initialization. In this case Kaiming
initalization is used [13]. Kaiming initialization is widely used for the neural
networks with ReLU activation functions and related to the nonlinearities of

Dynamic Neural Diversification 243

Table 4. First 10 epochs average of the neural network training, hidden layer diversified
according to the Eq. 5.

γ Train Acc., % Test Acc., %, Test Acc. STD

0.0 61.54 63.15 2.08

5 · 10−7 62.37 63.3 1.63

5 · 10−6 63.60 64.54 1.25

5 · 10−5 64.87 64.95 1.66

5 · 10−4 60.36 62.14 1.66

5 · 10−3 52.54 55.86 0.45

5 · 10−2 41.26 42.71 1.32

the ReLU activation function, which make it non-differentiable at x = 0. The
weights, in this case are initialized stochastically with the variance that depends
on the number of neurons N :

v2 = 2/N (9)

It is fair to suggest, that correlation between the initialized weights can play
significant role in the model learning process. Indeed, in the Fig. 1. It is clearly
seen, the model gained the most of its accuracy while reducing the correlation
between neurons during the first few epochs. However, the aim of weight initial-
ization is to prevent layer activation outputs from exploding or vanishing during
the course of a forward pass through a deep neural network. Usually weight are
initialized stochastically with a small number to avoid vanishing gradients espe-
cially if tanh or sigmoid activation functions are used. Thus, to obtain stochas-
tically initialized, yet decorrelated, weights we introduced iteratively diversified
Weight initialization, using custom loss function based on Eq. 6. The logic behind
such initialization is to reduce the diversity measure between the weights and at
the same time keep weights mean w̄ and weights standard deviation σw close to
the originally initialized using Kaiming initialization (Table 5).

244 A. Kovalenko et al.

Table 5. First 5 epochs average of the neural network training initialized with decor-
related weights according to the Eq. 6 pre-optimized for 5 epochs.

γ Train Acc., % Test Acc., %, Test Acc. STD

0.0 29.54 34.23 2.04

1 · 10−4 42.43 43.43 1.81

1 · 10−3 43.92 45.65 1.53

1 · 10−2 44.65 47.01 1.24

1 · 10−1 38.32 39.83 1.06

1.0 36.64 38.94 1.37

10.0 32.5 37.57 1.41

5 Conclusion

In this paper we show how to explore and tame the diversity of neurons in the
hidden layer. We studied how the correlation between the neurons evolves dur-
ing the training and what is the effect on prediction accuracy. In appears, that
once the model is converged to the local minimum on the loss landscape, cor-
relation between the neurons increases up to the point when the optimization
process overcome the local minimum. Thus, we introduced three methods how to
dynamically reinforce diversification and thus decorrelate neural network layer.
The concept of negative correlation suggested by Brown [4] was reviewed and
expanded. Instead of decorrelation individual neural networks in the ensemble
we diversified neurons in the hidden layer, using three techniques: negative cor-
relation learning, cosine pairwise similarity, cosine similarity around the mean.

First technique is originated from the neural networks ensembles and shows a
decent performance in our example using DNN, however for more sophisticated
models, such as CNNs and transformers, second and third technique is likely
to be more advantageous as far as it can compare patterns. Additionally to
reach correct weight selection, we introduced weight iterative optimization using
weight diversification. It was shown that such techniques are suitable for the fast
training of small models and notably affect their accuracy at the early stage.
Which is a small, yet important step towards the development of a strategy
towards energy-efficient training of neural networks.

Our future plans for using neural network diversification primarily consists in
using above described diversification techniques in more sophisticated models in
order to explore the possibility to improve training speed and reduce the number
of training parameters. Popular architectures, such as transformers can benefit
from the individual head diversification in multi-head attention block, as far as
multiple heads are intended to learn various representation. Furthermore, we
are planning to explore more pattern-oriented techniques for defining diversity
between neurons to enable efficient diversification application in CNNs.

Dynamic Neural Diversification 245

Acknowledgment. This research is supported by the Czech Ministry of Education,
Youth and Sports from the Czech Operational ProgrammeResearch, Development,
and Education, under grant agreement No. CZ.02.1.01/0.0/0.0/15003/0000421 and the
Czech Science Foundation (GAČR 18-18080S).

References

1. Arjevani, Y., Field, M.: Symmetry & critical points for a model shallow neural
network (2020)

2. Atakulreka, A., Sutivong, D.: Avoiding local minima in feedforward neural net-
works by simultaneous learning. In: Orgun, M.A., Thornton, J. (eds.) AI 2007:
Advances in Artificial Intelligence, pp. 100–109. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76928-6 12

3. Bian, Y., Chen, H.: When does diversity help generalization in classification ensem-
bles? (2021)

4. Brown, G.: Diversity in neural network ensembles. Tech. rep. (2004)
5. Brown, T.B., et al.: Language models are few-shot learners (2020)
6. Chollet, F.: Xception: deep learning with depthwise separable convolutions (2017)
7. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexi-

ble, high performance convolutional neural networks for image classification. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

8. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2(4), 303–314 (1989)

9. Gao, H., Cai, L., Ji, S.: Adaptive convolutional relus. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 3914–3921 (2020)

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference
Proceedings (2010)

11. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

12. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 12(10), 993–1001 (1990)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1026–1034 (2015)

15. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

16. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

17. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F.
(eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press (2001)

18. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 6(02),
107–116 (1998)

https://doi.org/10.1007/978-3-540-76928-6_12

246 A. Kovalenko et al.

19. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
Netw. 4(2), 251–257 (1991)

20. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging
weights leads to wider optima and better generalization (2019)

21. Jha, D., Yazidi, A., Riegler, M.A., Johansen, D., Johansen, H.D., Halvorsen, P.:
LightLayers: parameter efficient dense and convolutional layers for image classifi-
cation (2021)

22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
23. Krogh, A., Vedelsby, J.: Validation, and active learning. In: Advances in Neural

Information Processing Systems, vol. 7, no. 7, p. 231 (1995)
24. Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T.: Quantifying the carbon emis-

sions of machine learning. arXiv preprint arXiv:1910.09700 (2019)
25. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.

lecun.com/exdb/mnist/
26. Lu, L.: Dying relu and initialization: theory and numerical examples. Commun.

Comput. Phys. 28(5), 1671–1706 (2020). https://doi.org/10.4208/cicp.oa-2020-
0165. http://dx.doi.org/10.4208/cicp.OA-2020-0165

27. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural net-
works: a view from the width (2017)

28. Luijten, B., et al.: Deep learning for fast adaptive beamforming. In: ICASSP 2019–
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1333–1337. IEEE (2019)

29. Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free
optimization. In: ICML (2011)

30. Marziale, L., Richard, G.G., Roussev, V.: Massive threading: using GPUs to
increase the performance of digital forensics tools. Digital Invest. 4, 73 –
81 (2007). https://doi.org/10.1016/j.diin.2007.06.014. http://www.sciencedirect.
com/science/article/pii/S1742287607000436

31. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learn-
ing library. In: Advances in Neural Information Processing Systems, vol. 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

32. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

33. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolu-
tional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis,
L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15825-4 10

34. Schmidhuber, J.: Learning to control fast-weight memories: an alternative to
dynamic recurrent networks. Neural Comput. 4(1), 131–139 (1992)

35. Swirszcz, G., Czarnecki, W.M., Pascanu, R.: Local minima in training of neural
networks (2017)

36. Szegedy, C., et al.: Going deeper with convolutions (2014)
37. Tayal, K., Lai, C.H., Kumar, V., Sun, J.: Inverse problems, deep learning, and

symmetry breaking (2020)
38. Ueda, N., Nakano, R.: Generalization error of ensemble estimators. In: Proceedings

of International Conference on Neural Networks (ICNN 1996), vol. 1, pp. 90–95.
IEEE (1996)

39. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning, pp. 1096–1103 (2008)

http://arxiv.org/abs/1910.09700
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.4208/cicp.oa-2020-0165
http://dx.doi.org/10.4208/cicp.OA-2020-0165
https://doi.org/10.1016/j.diin.2007.06.014
http://www.sciencedirect.com/science/article/pii/S1742287607000436
http://www.sciencedirect.com/science/article/pii/S1742287607000436
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1710.05941
https://doi.org/10.1007/978-3-642-15825-4_10

Dynamic Neural Diversification 247

40. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

41. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1505.00853

Curved SDE-Net Leads to Better Generalization
for Uncertainty Estimates of DNNs

YongGuang Wang1 , HuoBin Tan2(B) , and ShuZhen Yao1

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
{wangyongguang,szyao}@buaa.edu.cn

2 School of Software, China, Beihang University, Beijing 100191, China
thbin@buaa.edu.cn

Abstract. Reliable uncertainty estimates of Deep Neural Networks (DNNs) are
significant for safety-critical domains. Existing Neural Stochastic Differential
Equation model (SDE-Net) can quantify epistemic uncertainties of DNNs from
the perspective of a dynamical system. The SDE-Net is dominated by its drift net
with In-Distribution (ID) data to obtain good predictive accuracy, or dominated by
its diffusion net with Out-Of-Distribution (OOD) data to generate high diffusion
for characterizing model uncertainty. However, the SDE-Net does not consider
the local optimal problem caused by the high-dimensional parameter spaces of
DNNs, which still leads to unstable prediction results. Therefore, we propose a
curved SDE-Net (cSDE-Net) model which is implementedwith a quadratic Bezier
curve to discover high-accuracy and nearly constant loss paths between pretrained
SDE-Net models. In the cSDE-Net, the optimization goal is transformed from the
weights of DNNs to the parameters of Bezier curve. Experimental results show
that, the proposed cSDE-Net model can not only provide more stable and reliable
prediction results than ensembling of independent trained SDE-Net (iSDE-Net),
but also be more effective for general situation, where aleatoric uncertainty is
caused by ID data with noise or missing rate.

Keywords: Neural Stochastic Differential Equation · Deep Neural Networks ·
Uncertainty estimates · Bezier curve

1 Introduction

Deep learning model has achieved great success in various fields, such as image classi-
fication [1], computer vision [2], machine translation [3] and reinforcement learning [4]
and so on. However, uncertainty estimates of deep learning are critical for decision mak-
ing to avoid dangerous accidents in safety-critical areas, such as in medical diagnoses or
autonomous vehicles. Existing studies have shown that Deep Neural Networks (DNNs)
models are usually overconfident in prediction results, which can result in misleading
decisions, so it is very significant to add credible uncertainty estimates to the prediction
results [5].

© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 248–259, 2021.
https://doi.org/10.1007/978-3-030-86340-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_20&domain=pdf
http://orcid.org/0000-0002-0470-9178
http://orcid.org/0000-0003-3113-6552
http://orcid.org/0000-0001-7785-9698
https://doi.org/10.1007/978-3-030-86340-1_20

Curved SDE-Net Leads to Better Generalization 249

Bayesian Neural Networks (BNNs) method was once regarded as a gold standard
for uncertainty estimates in machine learning field [6, 7]. Unfortunately, Bayesian app-
roach is inefficient to perform Bayesian inference in high-dimensional parameter space
of DNNs. Existing studies apply Principal Components Analysis (PCA) or non-linear
Incremental Kernel PCA (InKPCA) method to construct parameter subspace of DNNs
for Bayesian inference [8, 9].

Non-Bayesian methods are also studied for uncertainty estimates of DNNs models.
For example, ensemble learning approach can train several DNNs models with diverse
initialization seeds and apply predicted values for uncertainty estimates [10].Meanwhile,
ifDNNsare trainedwith aStochasticGradientDescent (SGD), the trainingprocedure can
average multiple points along the trajectory of SGD to construct a Stochastic Weight
Averaging (SWA), which can generate much broader optima than SGD method [11].
And due to the loss functions of DNNs are complex and high-dimensional in parameters
space, the previous study [12] finds that the optima of these complex loss functions can
be connected by simple curves, which can build a rich subspace containing diverse high
performing models with nearly constant accuracy.

Meanwhile, the process of forward passes in DNNs can be regarded as state transfor-
mations of a dynamical system, which can be defined by a neural network parameterized
Ordinary Differential Equation (ODE) [13]. However, ODE method is a deterministic
expression so that epistemic uncertainty message of DNNs cannot be obtained.

Recently, an original SDE-Net model for uncertainty estimates of DNNs has been
proposed to capture epistemic uncertainty with Brownian motion [14, 15], which is
widely used tomodel uncertainty or randomness inmathematics, physics and economics
[16, 17]. The SDE-Net uses two separate neural networks (NNs): the drift net and
diffusion net. The drift net f is designed to control the system to obtain good predictive
accuracy and describe the aleatoric uncertainty for ID data. The diffusion net g is used
to master the variance of the Brownian motion based on the regions of In-Distribution
(ID) orOut-Of-Distribution (OOD) dataset, that is, when training ID dataset the diffusion
should be small and training OOD dataset the diffusion should be large. The components
of SDE-Net are described in Fig. 1(a).

However, most uncertainty estimates models mentioned above mainly consider the
predictive uncertainty, which comes from models and their training processes, and this
situation is called epistemic uncertainty. Meanwhile, the other predictive uncertainty
derives from natural randomness such as data noise, class overlap, data missing and so
on, we call this situation aleatoric uncertainty, which is inherent in the task. Another
important source of uncertainty is the local optimal of DNNs, which is caused by the
high-dimensional parameter space of DNNs and leads to different prediction results
after each training. The problems of SDE-Net that need to be improved are described in
Fig. 1(b).

Therefore, we propose a curved SDE-Net (cSDE-Net), which is implemented with
a quadratic Bezier curve to discover high-accuracy and nearly constant loss paths for
stably achieving train and test results.

Experimental results show that, the proposed cSDE-Net model can not only provide
more stable and reliable prediction results than ensembling of independent trained SDE-
Net (iSDE-Net), and be more effective for general situation, such as encountering noisy

250 Y. Wang and H. Tan

Fig. 1. Illustration of SDE-Net and its problem. (a) Components of SDE-Net; (b) The problem
of SDE-Net should be improved.

ID dataset or ID dataset with missing rate, which can generate aleatoric uncertainty in
predictions. Benchmark datasets MNIST and CIFAR10 are used for experiments. The
major contributions of our work are summarized as follows.

1. We propose the curved SDE-Net model, which serves to discover high-accuracy and
nearly constant loss paths between pretrained models.

2. When dealing with ID and OOD data, the cSDE-Net can produce more stable and
accurate results.

3. We extend cSDE-Net to the field of aleatoric uncertainty and find it still useful.

This paper is organized as follows: Sect. 2 describes thematerials. Sect. 3 presents the
objective function and implementation algorithm of the proposed cSDE-Net for image
classification tasks. Sect. 4 presents the experimental results. Finally, Sect. 5 gives the
conclusions and future work.

2 Describing Ensembled SDE-Net by Bezier Curve

2.1 Connection Curves: Bezier Curve

Assume ŵ1 and ŵ2 be two sets of weights corresponding to two trained neural networks,
which are independently trained by minimizing loss function L(w). Let n represents for
the number of weights of the DNNs, and φθ : [0, 1] → R

n is a continuous piecewise
smooth curve with parameters θ , where ŵ1 = φθ (0) and ŵ2 = φθ (1).

Curved SDE-Net Leads to Better Generalization 251

Suppose there exists a curve path φθ (T) and T ∈ [0, 1], which has a high accuracy
between ŵ1 and ŵ2, so the loss function of DNNs can be described as follows [12]:

�(θ) =
∫ 1

0
L(φθ (T))dT = ET∼U (0,1)L(φθ (T)) (1)

At each iteration,we sample t from the uniformdistributionU (0, 1) and then perform
gradient descent for optimizing the parameter θ with respect to the loss L(φθ (T)). Then
we can obtain unbiased estimates of the gradients of loss �(θ):

∇θL(φθ (t)) ≈ ET∼U (0,1)∇θL(φθ (T)) = ∇θET∼U (0,1)L(φθ (T)) = ∇θ �(θ) (2)

To be specific, a quadratic Bezier curve φθ (T) is adopted to provide a smooth path
with given endpoints ŵ1 and ŵ2, so φθ (T) can be expressed as follows:

φθ (t) = (1 − t)2ŵ1 + 2t(1 − t)θ + t2ŵ2, t ∈ [0, 1] (3)

Where the Bezier curve φθ (T) can be generalize by n bends, that is θ =
{w1,w2, . . . ,wn}.

2.2 Definition of SDE-Net

Neural ordinary differential equation (ODE-Net) [13]. Existing neural nets such as
residual networks (ResNet) [18], normalizing flows [19], and recurrent neural network
decoders [20] can map an input x to an output y through a sequence of hidden layers,
the hidden representations can be viewed as the states of a dynamical system:

xt+1 = xt + f (xt, t) (4)

Where t ∈ {0 · · · T } is the index of the layer, xt ∈ R
D is the hidden state at neural

network layer t. The equation can be reorganized as xt+�t−xt
�t = f (xt, t), where �t = 1.

If we assuming �t→ 0, then we can obtain the parameterized continuous dynamics of
hidden units, which can apply an ODE specified by NNs:

lim
�t→0

xt+�t − xt
�t

= dxt
dt

= f (xt, t, θ) (5)

The solution ofODE-Net can be computed by a black-boxdifferential equation solver
to evaluate the hidden unit state wherever necessary. However, ODE-Net is a determin-
istic model for predictions and it cannot model epistemic uncertainty. To overcome the
disadvantage, the novel SDE-Net model can characterize a stochastic dynamical system
and capture epistemic uncertainty with Brownian motion, which is widely used to model
the randomness of the motion of atoms or molecules in Physics [16].

SDE-Net [14]. A standard Brownian motion term is added into (4) to form a neural SDE
dynamical system. The continuous-time dynamical system is expressed as follows:

dxt = f (xt, t)dt + g(xt, t)dWt (6)

Where g(xt, t) indicates the variance of the Brownian motion and represents the
epistemic uncertainty for the dynamical system. However, a standard Brownian motion
Wt is a stochastic process, which follows the three nproperties:

252 Y. Wang and H. Tan

1) W0 = 0;
2) ∇W = Wt − Ws should follow normal distribution N (0, t − s) for all t ≥ s ≥ 0;
3) For any two different time intervals, the increments ∇W1 and ∇W2 are independent

random variables.

More importantly, f (xt, t) and g(xt, t) in (6) can be represented by neural networks
to construct SDE-Net. Where f (xt, t) is used as drift net to control the system to achieve
good predictive accuracy and aleatoric uncertainty, and g(xt, t) is utilized as diffusion
net to represent the epistemic uncertainty of dynamical system.

Theorem 1. When there exists C > 0 such that [14]:
∥∥f (x, t; θf

) − f
(
y, t; θf

)∥∥ + ∥∥g(
x; θg

) − g
(
y; θg

)∥∥ ≤ C‖x − y‖,∀x, y ∈ R
n, t ≥ 0

Then for every x0 ∈ R
n, there exists a unique continuous and adapted process(

xx0t
)
t≥0 such that for t ≥ 0:

xx0t = x0 +
∫ t

0
f
(
xx0s , t; θf

)
ds +

∫ t

0
g
(
x0; θg

)
dWs

Moreover, for every T ≥ 0, E
(
sup1≤s≤T |xs|2

)
< +∞.

Where f
(
x, t; θf

)
and g

(
x0; θg

)
are uniformly Lipschitz continuous to use Lipschitz

nonlinear activations in the NNs, such as ReLU, sigmoid and Tanh.

3 Methods

Theoverviewof our algorithm is illustrated inFig. 2, including twomain parts: cSDE-Net
model can give reliable and accurate uncertainty estimates of DNNs, and the parameter
generation module produces parameters from two pretrained vanilla SDE-Net by Bezier
curve. Then the curved parameters of NNs and the location information of fix points are
assigned to cSDE-Net model, θ is the parameter needed to be trained.

3.1 The Objective Function of CSDE-Net

Since we use Bezier curve φθ(T) to reconstruct the SDE-Net parameter space based
on two pretrained vanilla SDE-Net models, the training target becomes the parameter
θ of Bezier curve. However, vanilla SDE-Net contains drift net f and diffusion net g
and has more than 200K parameters in total, so to train parameter θ of Bezier curve has
the similar complexity to vanilla SDE-Net. Assume θ has the parameters θc−f and θc−g

corresponding to net f and g.
Assume the bends of Bezier curve is 1, fix-points= [True, False, True], which means

the two pretrained ŵ1 and ŵ2 are fixed at the endpoints of Bezier curve, and the middle
point corresponding to Bezier curve value φθ (t) in defined Eq. (4) needs to be trained,
and each training iteration sample t ∈ [0, 1] to train θ .

Curved SDE-Net Leads to Better Generalization 253

The objective function for training cSDE-Net model can be described as follows:

min
θc−f

Ex0∼PIDE
(
f

(
xT , t; θc−f ; fix − points

)
, L(xT)

)+
min
θc−g

Ex0∼PID g
(
x0; θc−g; fix − points

) + max
θc−g

Ex̃0∼POOD g
(
x̃0; θc−g; fix − points

) (7)

s.t. dxt = f
(
xt, t; θc−f ; fix − points

)
︸ ︷︷ ︸

drift neural net

dt + g
(
x0; θc−g; fix − points

)
︸ ︷︷ ︸

diffusion neural net

dWt

Fig. 2. The overview of the proposed algorithm

Where the first item of Eq. (7) represents for the training parameters and loss function
L of drift net f , T is the terminal time of the stochastic processes, and PID represents for
the distribution of ID dataset.

The second item of (7) stands for the training parameters of diffusion net g with ID
dataset. The last item of (7) indicates the net g is trained with OOD dataset, where POOD
stands for the distribution of OOD dataset, which can be obtained by adding additive
Gaussian noise to the inputs x0, such as x̃0 = x0+ ∈ and ∈∼ N (0, 1).

Finally, Eq. (7) should subject to Eq. (6) to construct a cSDE-Net.

3.2 Algorithm of CSDE-Net Model

The algorithm 1 of cSDE-Net is used for training classification tasks, and the benchmark
datasets MNIST and CIFAR10 are adopted for this algorithm. Because cSDE-Net con-
tains different net architectures for different goals, the training processes are designed
respectively.

254 Y. Wang and H. Tan

For training MNIST and CIFAR10 datasets, the vanilla SDE-Net has nmnist =
283723 and ncifar10 = 322507 parameters respectively. For training the parameter θ of
Bezier curve in cSDE-Net, we need to pretrain vanilla SDE-Net twice for two fix points
ŵ1 and ŵ2, and training the parameter θ has the similar complexity to vanilla SDE-Net.
So cSDE-Net has the time cost O(3nmnist) and O

(
3ncifar10

)
of MNIST and CIFAR10

respectively, however, cSDE-Net and vanilla SDE-Net have similar computational cost.
For training drift net f of cSDE-Net model, first of all, ID dataset passes through a

downsampling net to generate latent variable Xm
0 , and then Xm

0 is iteratively processed
by a vanilla SDE-Net to produce a latent state Xm

k according to Eq. (6). Finally, the
latent state Xm

k passes through a fully-connected layer. L1 represents for cross entropy
loss function.

For trainingdiffusionnetgof cSDE-Netmodel,L2 represents for binary cross entropy
loss function. The dataset from ID or OOD is respectively marked with label 0 and 1,
so the process of training diffusion net g in line 14 of algorithm1 is to minimize the loss
function L2 for ID dataset and maximize L2 for OOD dataset.

Curved SDE-Net Leads to Better Generalization 255

4 Experiments

4.1 Datasets

We perform experiments on cSDE-Net and iSDE-Net model with two benchmark
ID datasets MNIST and CIFAR10. The MNIST dataset consists of 70,000 28×28
monochrome images in handwritten digits from 0 to 9, including 60,000 training images
and 10,000 test images. And the CIFAR-10 dataset consists of 60,000 32 × 32 color
images in 10 classes, each class has 6,000 images, including 50,000 training images and
10,000 test images. SVHN is used as an OOD dataset in our experiments, SVHN is a
real-world MNIST-like 32 × 32 image dataset from house numbers in Google Street
View images, and it has 73257 digits for training and 26032 digits for testing.

4.2 Parameter Setting

Model Setting andParameter.For iSDE-NetmodelwithMNIST dataset, we follow the
settings of paper [14]. That is for the downsampling layers of iSDE-Net, which contain
three 2-dimensional convolution (Conv2d) layers, and the Conv2d can be traditionally
described as

[
in_channel, out_channel, kernel_size, stride, padding

]
, so the architec-

ture of the downsampling layer is {[1, 64, 3, 1, 0],[64, 64, 4, 2, 1],[64, 64, 4, 2, 1]}. The
drift net of iSDE-Net contains twoConv2d layerswith {[65, 64, 3, 1, 1],[65, 64, 3, 1, 1]}
architecture. The diffusion net has the same convolutional layers as drift net, but has an
extra linear connection described as [inputs, outputs], which is [64, 1] in the last layer
of diffusion net. The fully-connected layer of iSDE-Net is [64, 10]. To independently
train vanilla SDE-Net, the model parameter defined as follows: the layer depth is 6 and
training epochs are 100, batch size is 128, SGD is used as the optimizer, the learning
rate for diffusion net is 0.01 and for the other nets is 0.1, the momentum and weight
decay are 0.9 and 5e-4 respectively. For iSDE-Net model with CIFAR10 dataset, the
in_channel of the first Conv2d in downsampling layer is 3, and the other settings and
parameters are the same as MNIST dataset.

For cSDE-Net model with MNSIT and CIFAR10 dataset, the bend of Beizer curve
is one, so the fix_points = [True, False, True], which means that we fix two pretrained
vanilla SDE-Nets’ parameters as endpoints, and the parameter θ of Bezier curve between
the two fixed endpoints needs to be trained. Importantly, Conv2d and GroupNorm are
reconstructed according to fix_points.The settings of other parameters are the same as
iSDE-Net model. All experiments are performed on NVIDIA GeForce RTX 3090 and
based on PyTorch.

4.3 Quantitative Analysis of ID Dataset

As is shown in Fig. 3, the cSDE-Net is trained for 60 epochs with two pretrained vanilla
SDE-Net, and iSDE-Net is ensembled by the two vanilla SDE-Net. We mainly compare
the accuracy of test sets, which are showed in red and blue dashed lines.

In Fig. 3(a), we find that red dashed line reaches the peak of accuracy faster, and the
test accuracy results of cSDE-Net are relatively more stable than the blue dashed line of
iSDE-Net.

256 Y. Wang and H. Tan

Fig. 3. The train and test accuracy of cSDE-Net and iSDE-Net forMNIST and CIFAR10 datasets.

Figure 3(b) and Fig. 3(a) show the similar results. Besides, we also find that the
accuracy of iSDE-Net described with blue dashed line has degraded after the 22nd
epoch in Fig. 3(b), this phenomenon presents that ensemble learning method does not
guarantee amore optimal and stable performance.Meanwhile, the accuracy of cSDE-Net
is about 2% higher than that of iSDE-Net for color image dataset CIFAR10.

4.4 Bezier Curve Finding Experiment

To construct cSDE-Net and iSDE-Net model, we train two vanilla SDE-Net model with
different initializations to generate twomodels. For iSDE-Netmodel, we just average the
results of two vanilla SDE-Net. For cSDE-Net model, we use the proposed algorithm 1
to find a path connecting the two pretrained models, which have the weight parameter
space with a quadratic Bezier curve.

Figure 4 shows the results of the proposed model connecting procedure for cSDE-
Net and iSDE-Net on benchmark datasets MNIST and CIFAR10. Experimental results
show that Bezier curve φ(t) found by cSDE-Net can produce nearly constant train
loss of cross-entropy and test error of accuracy. However, the line segment φ(t) =
(1 − t) ∗ φ(0) + t ∗ φ(1) connects the two models’ parameters φ(0) and φ(1) for iSDE-
Net, when φ(t) is far away from two endpoints φ(0) and φ(1), segment iSDE-Net
generates higher train loss and test error than cSDE-Net in Fig. 4.

Finally, we believe there may be many other curves, which can connect the two
models to form a better generalization performance of DNNs, and these curves can be
further studied in the future.

4.5 Quantitative Analysis of ID Dataset with Missing Rate

Although vanilla SDE-Net can effectively capture the epistemic uncertainty of DNNs
model, duo to the high-dimensional parameter space of DNNs, the local optimal problem
still leads to unstable results of DNNs. The introduction of the Bezier curve into SDE-
Net can generate more stable and reliable model performance than ensemble learning
method, this is very important for the study of uncertainty estimates in deep learning.

We have tested the performance of cSDE-Net model between ID and OOD dataset,
however, for aleatoric uncertainty caused by the noisy dataset, we still want to know

Curved SDE-Net Leads to Better Generalization 257

Fig. 4. The cross-entropy train loss (a), (c) and test error (b), (d) as a function of Bezier curve
φ(t) found by cSDE-Net or line segment φ(t) found by iSDE-Net on the point t, and t is the value
of the interval [0,1] divided equally into 61 points. Endpoints φ(0) and φ(1) represent for the
parameters of two pretrained vanilla SDE-Net,φ(t) = (1 − t)∗φ(0)+ t ∗φ(1) is the line segment.

the performance of cSDE-Net in general situation for ID dataset with noise and missing
rate.

To evaluate the performance of iSDE-Net and cSDE-Net models for ID dataset I
with missing rate in classification tasks MNIST and CIFAR10.We assume missing rate
(MR) takes values from [0.0,0.1,0.3,0.5,0.7,0.9], so the mask = Bernoulli (1-MR) and
the masked ID dataset can be obtained by mask*I. Then we can evaluate the average
performance and standard deviation with 5 independently running the two models with
masked data.

Table 1 shows that as the MR increases, the advantages of cSDE model over iSDE-
Net are becoming more and more obvious in classification accuracy. Especially for
color image dataset CIFAR10, when missing rate is 0.1, the performance of iSDE-Net
has a great degradation from accuracy 79.87 to 23.23. From these experiments, we
find that cSDE-Net can still achieve better performance than iSDE-Net, even when it
encounters the general situation with noisy ID dataset.

258 Y. Wang and H. Tan

Table 1. Detection results of cSDE-Net and iSDE-Net model on ID dataset with missing rate =
[0.0, 0.1, 0.3, 0.5, 0.7, 0.9] and OOD dataset is SVHN.

MR Model MNIST CIFAR10

MR = 0.0 cSDE-Net 99.43 ± 0.06 81.54 ± 0.02

iSDE-Net 99.40 ± 0.10 79.87 ± 0.06

MR = 0.1 cSDE-Net 98.87 ± 0.03 51.33 ± 0.04

iSDE-Net 98.87 ± 0.06 23.23 ± 0.25

MR = 0.3 cSDE-Net 94.99 ± 0.02 33.31 ± 0.04

iSDE-Net 94.98 ± 0.19 13.11 ± 2.89

MR = 0.5 cSDE-Net 80.96 ± 0.03 25.40 ± 0.03

iSDE-Net 80.54 ± 0.36 10.33 ± 0.06

MR = 0.7 cSDE-Net 55.61 ± 0.33 19.13 ± 0.02

iSDE-Net 49.25 ± 0.11 10.10 ± 0.08

MR = 0.9 cSDE-Net 22.78 ± 0.58 14.10 ± 0.03

iSDE-Net 14.56 ± 0.34 10.18 ± 0.06

5 Discussion and Further Work

In this paper, we propose a cSDE-Net model, which can connect two different pretrained
models and produce more stable and consistent predictions along with the Bezier curve
than ensembled iSDE-Net model. Experimental results show that cSDE-Net not only
can produce more stable results, but also it is effective for aleatoric uncertainty derived
from the noisy ID dataset. cSDE-Net and vanilla SDE-Net has the smilar computational
cost, but cSDE-Net takes about three times as much time cost as vanilla SDE-Net.

There are two promising directions for future research. On the one hand, neural
processes (NPs) family, including conditional NPs, attentive NPs and convolutional
conditional NPs, which have the permutation invariance property or translation equiv-
ariance and can be incorporated into SDE-Net to improve the performance in dealing
with the noisy ID dataset. On the other hand, advanced ResNets such as VGGs, ResNet-
18/34/152 and DenseNets can be applied to replace the ordinary drift and diffusion nets
in SDE-Net, for improving the performance when dealing with big datasets such as
CIFAR10/100, COCO and ImageNet.

Acknowledgment. This work was supported by the National Key Research and Development
Program of China under Grant 2018YFB1402600.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional
neural networks. In: 26thAdvances inNeural InformationProcessingSystems, pp. 1097–1105
(2012)

Curved SDE-Net Leads to Better Generalization 259

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp.770–778 (2016)

3. Singh, S.P., Kumar, A., Darbari, H., Singh, L., Jain, S.: Machine translation using deep
learning: an overview. In: 2017 International Conference on Computer, Communications and
Electronics, pp.162–167 (2017)

4. Mousavi, S.S., Schukat, M., Howley, E.: Deep reinforcement learning: an overview. In: Bi,
Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 16, pp. 426–440. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-56991-8_32

5. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks.
In: Proceedings of the 34th International Conference on Machine Learning, pp.1321–1330
(2017)

6. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in Neu-
ral Network. In: Proceedings of the 32nd International Conference on Machine Learning,
pp.1613–1622 (2015)

7. Kingma, D.P., Salimans, T.,Welling,M.: Variational dropout and the local reparameterization
trick. In: Proceedings of the 28th International Conference on Neural Information Processing
Systems, pp. 2575–2583 (2015)

8. Izmailov, P., Maddox, W.J., Kirichenko, P., Garipov, T., Vetrov, D.P., Wilson, A G.: Sub-
space Inference for Bayesian deep learning. In: 35th Conference on Uncertainty in Artificial
Intelligence, pp. 1169–1179 (2019)

9. Wang, Y., Yao, S., Xu, T.: Incremental Kernel principal components subspace inference with
nyström approximation for Bayesian deep learning. IEEE Access 9, 36241–36251 (2021)

10. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty
estimation using deep ensembles. In: Advances in Neural Information Processing Systems,
pp. 6402–6413 (2017)

11. Izmailov, P., Podoprikhin,D.,Garipov, T.,Vetrov,D.P.,Wilson,A.G.:Averagingweights leads
to wider optima and better generalization. In: 34th Conference on Uncertainty in Artificial
Intelligence, pp. 876–885 (2018)

12. Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D.P., Wilson, A.G.: Loss surfaces, mode
connectivity, and fast ensembling of DNNs. In: 32nd Conference on Neural Information
Processing Systems, pp. 8789–8798 (2018)

13. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equa-
tions. In: Proceedings of the 32nd International Conference onNeural Information Processing
Systems, pp. 6572–6583 (2018)

14. Kong, L., Sun, J., Zhang, C.: SDE-Net: equipping deep neural networks with uncertainty
estimates. In: 37th International Conference on Machine Learning, pp. 5405–5415 (2020)

15. Øksendal, B.: Stochastic differential equations. In: Stochastic differential equations, Springer,
p. 11 (2003)

16. Bass, R.F.: Stochastic processes. In: Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 40 W.20 St. (2011)

17. Jeanblanc, M., Yor, M., Chesney, M.: Continuous-path random processes: mathematical pre-
requisites. In: Avellaneda, M., Barone-Adesi, G. (eds.) Mathematical Methods for Financial
Markets, Springer Dordrecht Heidelberg, London New York (2009). https://doi.org/10.1007/
978-1-84628-737-4_1

18. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B.,
Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

19. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of
the 32nd International Conference on Machine Learning, pp.1530–1538 (2015)

20. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial
differential equations. J. Comput. Phys. 357, 125–141 (2018)

https://doi.org/10.1007/978-3-319-56991-8_32
https://doi.org/10.1007/978-1-84628-737-4_1
https://doi.org/10.1007/978-3-319-46493-0_38

EIS - Efficient and Trainable Activation
Functions for Better

Accuracy and Performance

Koushik Biswas1(B) , Sandeep Kumar1,3 , Shilpak Banerjee2 ,
and Ashish Kumar Pandey2

1 Department of Computer Science, IIIT Delhi, New Delhi, India
{koushikb,sandeepk}@iiitd.ac.in

2 Department of Mathematics, IIIT Delhi, New Delhi, India
{shilpak,ashish.pandey}@iiitd.ac.in

3 Department of Mathematics, Shaheed Bhagat Singh College, University of Delhi,
New Delhi, India

sandeep kumar@sbs.du.ac.in

Abstract. Activation functions play a pivotal role in function learning
using neural networks. The non-linearity in a neural network is achieved
by repeated use of the activation function. Over the years, numerous acti-
vation functions have been proposed to improve neural network perfor-
mance in several deep learning tasks. Basic functions like ReLU, Sigmoid,
Tanh, or Softplus have been favorites among the deep learning commu-
nity because of their simplicity. In recent years, several novel activation
functions arising from these basic functions have been proposed, which
have improved accuracy in some challenging datasets. We propose three
activation functions with trainable parameters, namely EIS-1, EIS-2, and
EIS-3. We show these three activation functions outperform widely used
activation functions on some well-known datasets and models. For exam-
ple, EIS-1, EIS-2, and EIS-3 beats ReLU by 5.55%, 5.32%, and 5.60%
on ResNet V2 34, 5.27%, 5.24%, and 5.76% on VGG 16, 2.02%, 1.93%,
and 2.01% on Wide-Res-Net 28-10, 2.30%, 2.11%, and 2.50% on Shuf-
flenet V2 in CIFAR100 dataset while 1.40%, 1.27%, and 1.45% on ResNet
V2 34, 1.21%, 1.09%, and 1.17% on VGG 16, 1.10%, 1.04%, and 1.16%
on Wide-Res-Net 28-10, 1.85%, 1.60%, and 1.67% on Shufflenet V2 in
CIFAR10 dataset respectively. The proposed functions also perform bet-
ter than traditional activation functions like ReLU, Leaky ReLU, Swish,
etc. in Object detection, Semantic segmentation, and Machine Transla-
tion problems.

Keywords: Deep learning · Neural networks · Trainable activation
function

1 Introduction

Multi-layered neural networks are widely used to learn nonlinear functions from
complex data. An activation function is an integral part of neural networks that
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 260–272, 2021.
https://doi.org/10.1007/978-3-030-86340-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_21&domain=pdf
http://orcid.org/0000-0002-9818-8966
http://orcid.org/0000-0002-5464-929X
http://orcid.org/0000-0003-1036-9576
https://doi.org/10.1007/978-3-030-86340-1_21

EIS - Efficient and Trainable Activation Functions 261

provides essential non-linearity. A universal activation function may not be suit-
able for all datasets, and it is important to select an appropriate activation
function for the task at hand. Nevertheless, a piecewise activation function, Rec-
tified Linear Unit (ReLU) [16], defined as max(x, 0), is widely used due to its
simplicity, convergence speed, and lesser training time.

Despite its simplicity and better convergence rate than Sigmoid and Tanh,
ReLU has drawbacks like non-zero mean, negative missing, unbounded output,
dying ReLU, to name a few (see[40]). Various activation functions have been
proposed to overcome the drawbacks of ReLU and improve performance over it.
Some of the variants of ReLU are Leaky ReLU [25], Randomized Leaky Rectified
Linear Units (RReLU) [38], Exponential Linear Unit (ELU) [5], Inverse Square
Root Linear Units (ISRLUs) [3], and Parametric Rectified Linear Unit (PReLU)
[13]. But none of the above-mentioned activation functions has come close to
ReLU in terms of popularity. Most recently, Swish [30] has managed to gain
attention from the deep learning community. Swish is a one-parameter family of
activation functions defined as x sigmoid(βx). Worth noting that what is popu-
larly recognized by the machine learning community now as the Swish function
was first indicated in 2016 as an approximation to the GELU [15] function, and
again in 2017 was introduced as the SiLU [7] function, and again for a third time
in 2017 as the Swish [30] function. Though for the time being, we have stuck to
the name Swish. Some other hyper-parametrized families of activation functions
include Soft-Root-Sign [40] and TanhSoft [2]. In fact, many functions from the
TanhSoft family have managed to outperform ReLU and Swish as well.

The most prominent drawback of ReLU is the dying ReLU that is provid-
ing zero output for negative input. Many novel activation functions are built to
overcome this problem. It was resolved by many activation functions by sim-
ply defining a piecewise function that resembles ReLU for positive input and
takes non-zero values for negative input. Swish is different from such piecewise
activation functions in the sense that it is a product of two smooth functions
and manages to remain close to ReLU for positive input and takes small nega-
tive values for the negative input. Recently, a four hyper-parameters family of
activation functions, TanhSoft [2], have been proposed and showed that many
functions from TanhSoft have a similar closeness to ReLU as Swish and perform
better when compared to ReLU and Swish.

In the next sections, we have proposed three parametric activation functions
and shown that they outperform widely used activation functions, including
ReLU and Swish. To validate the performance of these activations, we have
performed a wide range of experiments, and the results are reported in the
experiment section.

2 Related Works

Several activation functions have been proposed as a substitute to ReLU that
can overcome its drawbacks. Because of the dying ReLU problem, it has been
observed that a large fraction of neurons become inactive due to zero outcome.

262 K. Biswas et al.

Fig. 1. Graph of F1(x; α, β)
for different values of α, β.

Fig. 2. Graph of F2(x; γ)
for different values of γ.

Fig. 3. Graph of F3(x; δ, θ)
for different values of δ, θ.

Fig. 4. Graph of first
derivative of F1(x; α, β) for
different values of α, β.

Fig. 5. Graph of first
derivative of F2(x; γ) for
different values of γ.

Fig. 6. Graph of first
derivative of F3(x; δ, θ) for
different values of δ, θ.

Another issue which activation functions face is that during the flow of gradient
in the network, the gradient can become zero or diverge to infinity, which is
commonly known as vanishing and exploding gradient problems. Leaky Relu [25]
has been introduced with a small negative linear component to solve the dying
ReLU problem and has shown improvement over ReLU. A hyper-parametric
component is incorporated in PReLU [13] to find the best value in the negative
linear component. Many other improvements have been proposed over the years
- Randomized Leaky Rectified Linear Units (RReLU) [38], Exponential Linear
Unit (ELU) [5], and Inverse Square Root Linear Units (ISRLUs) [3] to name a
few. Swish [30] is proposed by a team of researchers from Google Brain by an
exhaustive search [27] and reinforcement learning techniques [1].

3 EIS-1, EIS-2, and EIS-3

We have proposed three families of activation functions with learnable parame-
ters. We call them EIS-1 (F1(x;α, β)), EIS-2 (F2(x; γ)), and EIS-3 (F3(x; δ, θ)).
They are defined as follows:-

EIS - Efficient and Trainable Activation Functions 263

Fig. 7. Graph of Swish, F1(x; α, β),
F2(x; γ) and F3(x; δ, θ)

Fig. 8. Graph of first order deriva-
tives of Swish, F1(x; α, β), F2(x; γ),
and F3(x; δ, θ)

F1(x;α, β) =
x ln(1 + ex)
x + αe−βx

, (1)

F2(x; γ) =
x ln(1 + ex)
√

γ + x2
, (2)

F3(x; δ, θ) =
x

1 + δe−θx
. (3)

The derivative of the above activations are:-

d

dx
F1(x;α, β) =

ln(1 + ex)
x + αe−βx

+
x

x + αe−βx

ex

1 + ex
− (1 − αβe−βx)(x ln(1 + ex))

(x + αe−βx)2
(4)

d

dx
F2(x; γ) =

ln(1 + ex)
√

γ + x2
+

x
√

γ + x2

ex

1 + ex
− x2 ln(1 + ex)

(γ + x2)
3
2

, (5)

d

dx
F3(x; δ, θ) =

1
1 + δe−θx

+
δθxe−θx

(1 + δe−θx)2
. (6)

The hyper-parameters α, β for EIS-1, γ for EIS-2, and δ, θ for EIS-3 controls
the slope of the functions in both negative and positive axes as evident from
Fig. 1, 2, and 3. For square root function, we have considered only the positive
branch. Note that F1(x; 0, β) and F2(x; 0) recovers the Softplus function while
F3(x; 0, θ) recovers the identity function x. Moreover,

lim
δ→∞

F3(x; δ, θ) = 0 ∀x ∈ R. (7)

264 K. Biswas et al.

Graph of some functions from these three families are given in Figs. 1, 2, and
3. The first-order derivatives of these functions are shown in Figs. 4, 5, and 6.
Moreover, one function from each of these three families and their derivatives are
compared with Swish in Figs. 7 and 8. As evident from graphs, chosen functions
of these three subfamilies have bounded negative domain, smooth derivative and,
non-monotonic curve like Swish.

4 Experiments with EIS-1, EIS-2, and EIS-3

In all the experiments, the learnable parameters in EIS-1, EIS-2, and EIS-3 are
first initialized and then updated using the back propagation [22] algorithm (see
[13]). For a single layer, the gradient of a hyper-parameter η is:

∂E

∂η
=

∑

x

∂E

∂F (x)
∂F (x)

∂η
(8)

where E is the objective function, η ∈ {α, β, γ, δ, θ} and F (x) ∈
{F1(x;α, β),F2(x; γ),F3(x; δ, θ)}. Table 1 provides a detailed comparison of EIS-
1, EIS-2, and EIS-3 with seven baseline activation functions, ReLU [16], Leaky
Relu [25], ELU [5], Softplus [10], Swish [30], Mish [26], and GELU [15]. We have
given detailed experimental setup and results for different deep learning problems
like image classification, object detection, semantic segmentation, and Machine
translation in the next section. We have initialized the learnable parameters at
α = 1.25, β = 0.75 for EIS-1, γ = 1.0 for EIS-2, and δ = 0.75, θ = 1.25 for
EIS-3 throughout all the experiments and they are updated in network models
during back-propagation.

Table 1. Baseline table for EIS-1, EIS-2, and EIS-3. The integers represents the total
number of models in which EIS-1, EIS-2, and EIS-3 outperforms, equal or underper-
forms when compared to baseline activations

Baselines ReLU Leaky ReLU ELU Swish Softplus Mish GELU

EIS-1 > Baseline 29 29 29 28 29 26 29

EIS-1 = Baseline 0 0 0 0 0 0 0

EIS-1 < Baseline 0 0 0 1 0 3 0

EIS-2 > Baseline 29 29 29 28 29 26 29

EIS-2 = Baseline 0 0 0 0 0 0 0

EIS-2 < Baseline 0 0 0 1 0 3 0

EIS-3 > Baseline 29 29 29 28 29 26 29

EIS-3 = Baseline 0 0 0 0 0 0 0

EIS-3 < Baseline 0 0 0 1 0 3 0

It is evident from the baseline Table 1 that EIS-1, EIS-2, and EIS-3 outper-
form when compared to baseline activations in most cases and perform equally or

EIS - Efficient and Trainable Activation Functions 265

underperform occasionally. The forward pass is implemented in both Pytorch [29]
& Tensorflow-Keras [4] API and automatic differentiation updates the parame-
ters. All the experiments are conducted on an NVIDIA tesla V-100 GPU with
16 GB RAM.

4.1 Image Classification:

We have reported results for image classification with six benchmarking
databases like MNIST, Fashion MNIST, Street View House Numbers (SVHN),
CIFAR10, CIFAR100, and Tiny Imagenet. A brief description of the databases
and experimental setup is as follows.

MNIST: MNIST [23] is a well established standard databases consisting of 28 ×
28 pixels grey-scale images of handwritten digits from 0 to 9. The dataset consists
of 60k training images and 10k testing 28 × 28 grey-scale images. We consider a
custom 8-layer homogeneous convolutional neural network (CNN) architecture
to carried out experiments on MNIST. Channel depths of size 128 (twice), 64
(thrice), 32 (twice), a dense layer of size 128, Max-pooling layer(thrice), batch-
normalization [19] and dropout [34] is being used on the CNN architecture. No
data augmentation is used. The results are reported in Table 2.

Fashion-MNIST: :- Fashion-MNIST [37] is a database consisting of 28 × 28
pixels grey-scale images of Zalando’s ten fashion items class like T-shirt, Trouser,
Coat, Bag, etc. It’s consists of 60k training examples and 10k testing examples.
No data augmentation is used. The same CNN model architecture used in the
MNIST dataset is also used for this database as well for training and testing
purpose and, the results are given in Table 2.

Table 2. Results on MNIST, Fashion-MNIST and SVHN Datasets.

Activation function 5-fold mean accuracy

on MNIST data

5-fold mean accuracy on

Fashion MNIST data

5-fold mean accuracy

on SVHN data

EIS-1 99.39 93.32 95.46

EIS-2 99.38 93.29 95.45

EIS-3 99.44 93.30 95.43

ReLU 99.17 92.95 95.20

Swish 99.21 92.92 95.21

Leaky ReLU 99.18 92.99 95.18

ELU 99.15 92.83 95.10

Softplus 99.02 92.51 95.01

GELU 99.20 93.08 95.23

Mish 99.26 93.16 95.29

266 K. Biswas et al.

Street View House Numbers (SVHN) Database: SVHN [28] is a popular
computer vision database consists of real-world house numbers with 32×32 RGB
images. The database has 73257 training images and 26032 testing images. The
database has a total of 10 classes. We have used the data augmentation method
in this database. The same CNN model architecture used in the MNIST dataset
is also used for this database as well for training and testing purpose and, the
results are given in Table 2.

CIFAR: The CIFAR [21], is another standard well established computer-vision
dataset that is generally used to establish the efficacy of deep learning models. It
contains 60k color images of size 32 × 32, out of which 50k are training images,
and 10k are testing images. It has two versions CIFAR 10 and CIFAR100, which
contains 10 and 100 target classes, respectively. Top-1 accuracy for mean of
9 different runs is reported on CIFAR10 and CIFAR100 datasets in Table 3
and Table 4 respectively on ResNet-50 (RN 50) [12], ResNet V2 34 (RN-V2
34) [14], VGG-16 (with Batch-normalization) [33], Densenet-121 (DN 121) [17],
DenseNet-169 (DN 169) [17], InceptionNet V3 (IN V3) [35], SimpleNet (SN) [11],
MobileNet V2 (MN V2) [32], WideResNet 28-10 (WRN 28-10) [39], ShuffleNet
V2 (SF Net) [24] and SqueezeNet (SQ Net) [18] models. The networks have
been trained with batch size 128, Adam optimizer [20] with 0.001 learning rate
and up-to 100 epochs for all the models mentioned above except SimpleNet
and VGG-16 which is trained till 200 epochs. Data augmentation is used for
both datasets. Accuracy and loss graphs on WRN 28-10 model with CIFAR100
dataset for ReLU, Swish, EIS-1, EIS-2, and EIS-3 are given in Figs. 9 and 10.

Table 3. Comparison between baseline activation functions and EIS-1, EIS-2, & EIS-
3 on image classification problem on CIFAR10 dataset based on top-1 test accuracy.
Top-1 accuracy(in %) for mean of 9 different runs have been reported.

AF VGG

16

WRN

28-10

RN 50 RN-V2

34

DN

121

DN

169

IN V3 MN V2 SN SQ Net SF Net

EIS-1 90.83 92.75 91.37 91.92 91.29 91.17 92.11 91.22 92.45 87.09 90.17

EIS-2 90.71 92.69 91.35 91.79 91.17 91.33 92.02 91.11 92.37 86.99 90.02

EIS-3 90.79 92.81 91.30 91.97 91.29 91.31 92.15 91.32 92.47 87.22 90.09

ReLU 89.62 91.65 90.35 90.52 90.31 90.47 91.25 89.77 91.01 86.72 88.42

Leaky

ReLU

89.64 91.77 90.53 90.62 90.69 90.52 91.52 89.71 91.15 86.22 88.40

ELU 89.01 91.22 90.22 90.27 90.23 90.27 91.02 89.09 90.89 86.31 88.31

Swish 89.86 92.01 90.77 90.87 90.71 91.34 91.32 90.12 91.41 86.41 89.01

Softplus 89.22 91.36 89.67 89.98 90.12 90.17 91.11 88.99 91.23 85.61 88.01

Mish 90.01 92.23 90.99 90.87 91.45 90.77 91.52 90.42 91.99 86.71 89.00

GELU 89.72 92.11 90.78 90.91 90.42 90.73 91.77 90.01 91.52 86.80 89.19

EIS - Efficient and Trainable Activation Functions 267

Table 4. Comparison between baseline activation functions and EIS-1, EIS-2, & EIS-3
on image classification problem on CIFAR100 dataset based on top-1 test accuracy.
Top-1 accuracy(in %) for mean of 9 different runs have been reported.

AF VGG

16

WRN

28-10

RN 50 RN-V2

34

DN

121

DN

169

IN V3 MN V2 SN SQ Net SF Net

EIS-1 62.52 69.22 65.62 65.44 67.05 64.92 69.29 65.87 65.11 61.42 63.42

EIS-2 62.49 69.11 65.52 65.21 67.01 64.94 69.27 65.71 64.99 61.23 63.23

EIS-3 63.01 69.21 65.61 65.49 67.11 65.19 69.52 65.90 65.40 61.50 63.62

ReLU 57.25 67.20 64.45 59.89 66.11 64.01 68.11 63.24 63.12 60.12 61.12

Leaky

ReLU

57.29 67.86 64.15 60.22 66.82 64.49 68.01 63.27 63.64 60.01 61.03

ELU 56.12 67.58 64.11 59.87 66.11 64.02 67.99 63.02 63.45 60.00 61.07

Swish 60.25 68.22 65.01 60.89 66.92 64.52 68.42 64.11 64.74 60.45 61.15

SoftPlus 54.13 67.01 62.20 59.11 66.20 64.54 68.02 62.98 62.81 59.79 60.89

Mish 60.02 68.99 65.11 62.33 67.42 65.20 68.51 64.82 64.68 60.12 61.48

GELU 59.89 68.71 64.92 62.45 66.52 64.54 68.40 64.10 64.49 60.03 61.55

Fig. 9. Graph for train and test
accuracy on CIFAR100 dataset on
WideResNet 28-10 model

Fig. 10. Graph for train and test loss
on CIFAR100 dataset on WideResNet
28-10 model

Tiny Imagenet. The ImageNet Large Scale Visual Recognition Challenge (ILS-
VRC) is the standard and most popular benchmark for image classification prob-
lems. The database contains images of size 64 × 64 with 200 image classes with
a training dataset of 100,000 images, a validation dataset of 10,000 images, and
a test dataset of 10,000 images. Top-1 accuracy for mean of 5 runs for different
activation functions are reported in Table 5 on WideResNet 28-10 (WRN 28-10)
[39] model. The model is trained with a batch size of 32, He Normal initializer
[13], 0.2 dropout rate [34], adam optimizer, initial learning rate(lr rate) 0.01,
and reduce lr rate by a factor of 10 after every 50 epochs up-to 250 epochs. Data
augmentation is used.

268 K. Biswas et al.

4.2 Object Detection

Object Detection is one of the most important problems in computer vision.
We have shown our experimental results on the Pascal VOC dataset [8]. Results
are reported on Single Shot MultiBox Detector(SSD) 300 model. VGG-16(with
batch-normalization) is used as the base network. No pre-trained weight is used
in the network. The network is trained on Pascal VOC 07+12 training data and
tested model performance on Pascal VOC 2007 test data. The model is trained
with a batch size of 8, 0.001 learning rate, SGD optimizer with 0.9 momentum,
5e−4 weight decay for 120000 iterations. A mean of 5 different runs for the mean
average precision(mAP) is reported in Table 6.

Table 5. Comparison between baseline
activation functions and EIS-1, EIS-
2, & EIS-3 on Tiny ImageNet dataset
on WRN 28-10 model. Results are
reported for mean of 5 different runs.

Activation function Wide ResNet
28-10 model

EIS-1 61.85

EIS-2 61.70

EIS-3 61.95

ReLU 60.11

Leaky ReLU 60.05

Swish 60.45

ELU 59.87

Softplus 59.55

Mish 60.61

GELU 60.59

Table 6. Comparison between baseline
activation functions and EIS-1, EIS-
2, & EIS-3 on Object Detection prob-
lem on SSD 300 model on Pascal-VOC
dataset. Results are reported for mean
of 5 different runs.

Activation function mAP

EIS-1 77.7

EIS-2 77.6

EIS-3 77.7

ReLU 77.2

Swish 77.3

Leaky ReLU 77.2

ELU 75.1

Softplus 74.2

Mish 77.4

GELU 77.3

4.3 Semantic Segmentation

We carry out our experiment for semantic segmentation task on the CityScapes
dataset [6]. We use U-net [31] as the base network and train till 250 epochs,
with adam optimizer [20], learning rate 5e−3, batch size 32 and Xavier Uniform
initializer [9]. Mean of 5 different runs for Pixel Accuracy and mean Intersection-
Over-Union (mIOU) on test data is reported on Table 7.

4.4 Machine Translation

In this section, we report results for the machine translation problem. For this
problem, we use WMT 2014 English→German dataset, which has 4.5 million

EIS - Efficient and Trainable Activation Functions 269

training sentences, and evaluate model performance on the newstest2014 dataset
using BLEU score metric. We use an Attention-based multi-head transformer
model [36]. 8-head attention model is used with Adam optimizer, 0.1 dropout,
and trained for 100000 steps. We try to kept other hyper-parameters similar
as mentioned in the original paper [36]. Table 8 shows the results on the test
dataset(newstest2014). A mean of 5 different runs is reported on Table 8.

Table 7. Comparison between base-
line activation functions and EIS-
1, EIS-2, & EIS-3 on semantic seg-
mentation problem on U-NET model
on CityScape dataset. Results are
reported for mean of 5 different runs.

Activation
function

Pixel
accuracy

mIOU

EIS-1 80.55 70.34

EIS-2 80.61 70.29

EIS-3 80.51 70.27

ReLU 79.64 69.45

Swish 79.94 69.73

Leaky
ReLU

79.71 69.65

ELU 79.05 68.07

Softplus 78.98 68.02

Mish 80.03 69.55

GELU 79.77 69.67

Table 8. Comparison between baseline
activation functions and EIS-1, EIS-2,
& EIS-3 on Machine translation prob-
lem on multi-head transformer model
on WMT-2014 dataset. Results are
reported for mean of 5 different runs.

Activation
function

BLEU Score on
the newstest2014
dataset

EIS-1 26.6

EIS-2 26.5

EIS-3 26.6

ReLU 26.2

Swish 26.4

Leaky
ReLU

26.3

ELU 25.1

Softplus 23.6

Mish 26.3

GELU 26.2

4.5 Computational Time Comparison

In this section, computational time comparison are reported for baseline activa-
tion functions and EIS-1, EIS-2, & EIS-3 for both forward and backward pass
for a 32 × 32 RGB image on the VGG-16 model. All the runs are performed
on an NVIDIA Tesla V100 GPU with 16 GB ram, and results are reported in
Table 9 for the mean of 100 runs.

270 K. Biswas et al.

Table 9. Runtime comparison between baseline activation functions and EIS-1, EIS-2,
& EIS-3 for the forward and backward passes for a 32 × 32 RGB image. Results are
reported for mean of 100 runs.

Activation function Forward pass (STD) Backward pass (STD)

EIS-1 6.52 (±0.99) µs 7.11 (±0.96) µs

EIS-2 6.34 (±1.17) µs 7.81 (±1.74) µs

EIS-3 6.99 (±1.01) µs 6.96 (±1.34) μs

ReLU 5.10 (±1.02) µs 4.95 (±0.81) µs

Swish 5.52 (±1.11) µs 5.70 (±1.05) µs

Leaky ReLU 5.11 (±0.59) µs 4.99 (±1.01) µs

ELU 5.15 (±0.70) µs 5.01 (±0.45) µs

Softplus 5.12 (±1.01) µs 5.07 (±0.99) µs

Mish 6.29 (±1.16) µs 5.52 (±0.79) µs

GELU 7.59 (±1.04) µs 7.89 (±1.11) µs

5 Conclusion

In this paper, we proposed three parametric activation functions, which we call
EIS-1, EIS-2, and EIS-3, and exhibit that they consistently outperform well-
known activation functions such as ReLU and Swish, as evident from the baseline
table on several well-known datasets and models.

We also advocate through this article that it is time to move away from sim-
ple activation functions and adopt comprehensive search schemes on parametric
functions to build models. This allows for building more accurate and depend-
able models. Another scope of future research is to develop a mathematical
understanding of reasons leading to improved accuracy.

References

1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning (2016)

2. Biswas, K., Kumar, S., Banerjee, S., Pandey, A.K.: TanhSoft - a family of activation
functions combining Tanh and Softplus (2020)

3. Carlile, B., Delamarter, G., Kinney, P., Marti, A., Whitney, B.: Improving deep
learning by inverse square root linear units (ISRLUs) (2017)

4. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
5. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network

learning by exponential linear units (ELUs) (2015)
6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding

(2016)
7. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network

function approximation in reinforcement learning (2017)
8. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal

visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

https://github.com/fchollet/keras

EIS - Efficient and Trainable Activation Functions 271

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings, Chia Laguna Resort, Sardinia, Italy, 13–
15 May 2010. Proceedings of Machine Learning Research, vol. 9, pp. 249–256 (2010)
http://proceedings.mlr.press/v9/glorot10a.html

10. Zheng, H., Yang, Z., Liu, W., Liang, J., Li, Y.: Improving deep neural networks
using Softplus units. In: 2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–4 (2015)

11. Hasanpour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M.: Lets keep it simple,
using simple architectures to outperform deeper and more complex architectures
(2016)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification (2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

15. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs) (2020)
16. Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines Vinod

Nair (2010)
17. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected

convolutional networks (2016)
18. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model
size (2016)

19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift (2015)

20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
21. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical

report (2009)
22. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.

Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541
23. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database, February

2010. ATT Labs http://yann.lecun.com/exdb/mnist
24. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for

efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 8

25. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech
and Language Processing (2013)

26. Misra, D.: Mish: a self regularized non-monotonic activation function (2020)
27. Negrinho, R., Gordon, G.: Deeparchitect: automatically designing and training

deep architectures (2017)
28. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits

in natural images with unsupervised feature learning (2011)
29. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning

library (2019)

http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1162/neco.1989.1.4.541
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1007/978-3-030-01264-9_8

272 K. Biswas et al.

30. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions (2017)
31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-

ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

32. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks (2019)

33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2015)

34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision (2015)

36. Vaswani, A., et al.: Attention is all you need (2017)
37. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-

marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
38. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations

in convolutional network (2015)
39. Zagoruyko, S., Komodakis, N.: Wide residual networks (2016)
40. Zhou, Y., Li, D., Huo, S., Kung, S.Y.: Soft-root-sign activation function (2020)

https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1708.07747

Deep Learning and Optimization II

Why Mixup Improves the Model
Performance

Masanari Kimura(B)

Ridge-i Inc., Tokyo, Japan
mkimura@ridge-i.com

Abstract. Machine learning techniques are used in a wide range of
domains. However, machine learning models often suffer from the prob-
lem of over-fitting. Many data augmentation methods have been pro-
posed to tackle such a problem, and one of them is called mixup. Mixup
is a recently proposed regularization procedure, which linearly interpo-
lates a random pair of training examples. This regularization method
works very well experimentally, but its theoretical guarantee is not ade-
quately discussed. In this study, we aim to discover why mixup works
well from the aspect of the statistical learning theory.

Keywords: Machine learning · Data augmentation · Generalization
bounds

1 Introduction

Machine learning has achieved remarkable results in recent years. However,
despite such excellent performance, machine learning models often suffer from
the problem of over-fitting [5]. In recent years, a concept called mixup [12] has
attracted attention as one of the powerful regularization methods for machine
learning models. The main idea of these regularization methods is to prepare

(x̃ij , ỹij) = (λxi + (1 − λ)xj , λyi + (1 − λ)yj) (1)

mixed with random pairs (xi,xj) of input vectors and their corresponding labels
(yi, yj) and use them as training data. This regularization method is very power-
ful and has been applied in various fields such as image recognition [9] or speech
recognition [6]. Despite these strong experimental results, there is not enough
discussion about why this method works well.

In this paper, we give theoretical guarantees for regularization by mixup and
reveal how regularization changes in each setting. To summarize our results,
mixup regularization leads to the following effects:

– For linear classifiers, the effect of regularization is higher when the sample
size is small, and the sample standard deviation is large.

– For neural networks, the effect of regularization is higher when the number
of samples is small, and the training dataset contains outliers.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 275–286, 2021.
https://doi.org/10.1007/978-3-030-86340-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_22&domain=pdf
http://orcid.org/0000-0002-9953-3469
https://doi.org/10.1007/978-3-030-86340-1_22

276 M. Kimura

– When the parameter λ is close to 0 or 1, mixup can reduce the variance of
the estimator, but this will be affected by bias.

– When the parameter λ has near the optimal value, mixup can reduce both
the bias and variance of the estimator.

– Geometrically, mixup reduces the second-order derivative of the convex func-
tion that characterizes the Bregman divergence.

2 Related Works

2.1 Mixup Variants

Mixup is originally proposed by [11]. The main idea of these regularization meth-
ods is to prepare

(x̃ij , ỹij) = (λxi + (1 − λ)xj , λyi + (1 − λ)yj)

mixed with random pairs (xi,xj) of input vectors and their corresponding labels
(yi, yj) and use them as training data, where λ ∼ Beta(α, α), for α ∈ (0,∞).

Because of its power and ease of implementation, several variants have been
studied [3,10]. However, most of them are heuristic methods and have insufficient
theoretical explanations.

3 Notations and Preliminaries

We consider a binary classification problem in this paper. However, our analysis
can easily be applied to a multi-class case.

Let X be the input space, Y = {−1,+1} be the output space, and C be
a set of concepts we may wish to learn, called concept class. We assume that
each input vector x ∈ R

d is of dimension d. We also assume that examples
are independently and identically distributed (i.i.d) according to some fixed but
unknown distribution D.

We consider a fixed set of possible concepts H, called hypothesis set. We
receive a sample B = (x1, . . . ,xn) drawn i.i.d. according to D as well as the labels
(c(x1), . . . , c(xn)), which are based on a specific target concept c ∈ C : X �→ Y.
Our task is to use the labeled sample B to find a hypothesis hB ∈ H that has
a small generalization error with respect to the concept c. The generalization
error R(h) is defined as follows.

Definition 1 (Generalization error). Given a hypothesis h ∈ H, a target con-
cept c ∈ C, and unknown distribution D, the generalization error of h is defined
by

R(h) = Ex∼D

[
1h(x) �=c(x)

]
, (2)

where 1ω is the indicator function of the event ω.

Why Mixup Improves the Model Performance 277

Fig. 1. The relationship between R̂B(H�)− R̂∗
B(H�) and the number of samples n and

variance σ2 when mixup is applied. Each data point was sampled from the normal
distribution N (0, σ2) and the constant part was set to 1.

The generalization error of a hypothesis h is not directly accessible since both
the underlying distribution D and the target concept c are unknown Then, we
have to measure the empirical error of hypothesis h on the observable labeled
sample B.

Definition 2 (Empirical error). Given a hypothesis h ∈ H, a target concept
c ∈ C, and a sample B = (x1, . . . ,xn), the empirical error of h is defined by

R̂(h) =
1
n

n∑
i=1

1h(xi) �=c(xi). (3)

In learning problems, we are interested in how much difference there is
between empirical and generalization errors. Therefore, in general, we consider
the relative generalization error R̂(h) − R(h).

Definition 3 (Empirical Rademacher complexity). Given a hypothesis set H
and a sample B = (x1, . . . ,xn), the empirical Rademacher complexity of H is
defined as:

R̂B(H) = Eσ

[
sup
h∈H

1
n

n∑
i=1

σih(xi)
]
, (4)

where σ = (σ1, . . . , σn)T with Rademacher variables σi ∈ {−1,+1} which are
independent uniform random variables.

Definition 4 (Rademacher complexity). Let D denote the distribution accord-
ing to which samples are drawn. For any sample size n ≥ 1, the Rademacher
complexity of H is the expectation of the empirical Rademacher complexity over
all samples of size n drawn according to D:

Rn(H) = EB∼Dn

[
R̂B(H)

]
. (5)

278 M. Kimura

Intuitively, this describes the richness of hypothesis class H.
The Rademacher complexity is a very useful tool for investigating hypothesis

class H.

Lemma 1. Let G : Z = X × Y �→ [0, 1] be a family of functions. Then, for any
δ > 0, with probability at least 1 − δ, the following holds for all g ∈ G:

E

[
g(z) ≤ 1

n

n∑
i=1

g(zi) + 2Rn(G) +

√
log 1

δ

2m

]
(6)

E

[
g(z) ≤ 1

n

n∑
i=1

g(zi) + 2RB(G) + 3

√
log 2

δ

2m

]
. (7)

Proof. For any sample B = (z1, . . . ,zn) and for any g ∈ G, we denote by ÊB[g]
the empirical average of g over B : ÊB[g] = 1

n

∑n
i=1 g(zi). We define the function

Φ(·) for any sample B as follows:

Φ(B) = sup
g∈G

E[g] − ÊB [g]. (8)

Let B and B′ be two samples differing by exactly one point, which mean zn ∈
B ∧ zn /∈ B′ and z′

n ∈ B′ ∧ z′
n /∈ B. Then, we have

Φ(B′) − Φ(B) ≤ sup
g∈G

ÊB [g] − ÊB′ [g] = sup
g∈G

g(zn) − g(z′
n)

n
≤ 1

n
(9)

Φ(B) − Φ(B′) ≤ sup
g∈G

ÊB′ [g] − ÊB [g] = sup
g∈G

g(z′
n) − g(zn)

n
≤ 1

n
. (10)

Then, by McDiarmid’s inequality, for any δ > 0, with probability at least 1 − δ
2 ,

the following holds:

Φ(B) ≤ EB [Φ(B)] +

√
log 2

δ

2n
(11)

EB [Φ(B)] ≤ Eσ ,B,B′

[
sup
g∈G

1
n

n∑
i=1

σi(g(z′
i) − g(zi))

]
= 2Eσ ,B

[
sup
g∈G

1
n

n∑
i=1

σig(zi)

]

Then, using MacDiarmid’s inequality, with probability 1− δ
2 , Rn(G) ≤ R̂B(G)+√

log 2
δ

2n . Finally, we use the union bound and we can have the result of this
lemma.

Lemma 2. Let H be a family of functions taking values in {−1,+1} and let G
be the family of loss functions associated to H: G = {(x, y) �→ 1h(x) �=y : h ∈ H}.
For any samples B = ((x1, y1), . . . , (xn, yn)), let SX denote the its projection
over X : SX = (x1, . . . ,xn). Then, the following relation holds between the
empirical Rademacher complexities of G and H:

R̂B(G) =
1
2
R̂SX (H). (12)

Why Mixup Improves the Model Performance 279

Proof. For any sample B = ((x1, y1), . . . , (x2, y2)) of elements in X × Y, the
empirical Rademacher complexity of G can be written as:

R̂B(G) = Eσ

[
sup
h∈H

1
n

n∑
i=1

σi1h(xi) �=yi

]
=

1
2
Eσ

[
sup
h∈H

1
n

n∑
i=1

σih(xi)

]
. (13)

Theorem 1. Given a hypothesis h ∈ H and the distribution D over the input
space X , we assume that R̂B(H) is the empirical Rademacher complexity of the
hypothesis class H. Then, for any δ > 0, with probability at least 1 − δ over a
sample B of size n drawn according to D, each of the following holds over H
uniformly:

R(h) − R̂(h) ≤ R̂n(H) +

√
log 1

δ

2m
, (14)

R(h) − R̂(h) ≤ R̂B(H) + 3

√
log 2

δ

2m
. (15)

Proof. From Lemma 1 and Lemma 2, we can have the result of Theorem 1
immediately.

From the above discussion, we can see that if we can quantify the change of
empirical Rademacher complexity before and after mixup, we can evaluate the
relative generalization error of the hypothesis class H. Our main idea is to clarify
the effects of the mixup regularization by examining how these Rademacher com-
plexity changes before and after regularization. Note that we are not interested
in the tightness of the bound, but only in the difference in the bound.

4 Complexity Reduction of Linear Classifiers with Mixup

In this section, we assume that H� is a class of linear functions:

h(x) ∈ H� =
{

x �→ wT x
∣∣ w ∈ R

d, ‖w‖2 ≤ Λ
}

, (16)

where w is the weight vector and Λ is a constant that regularizes the L2 norm
of the weight vector.

Theorem 2. Given a hypothesis set H� and a sample B = (x1, . . . ,xn), we
assume that R̂B(H�) is the empirical Rademacher complexity of the hypothesis
class H� and R̂∗

B(H�) is the empirical Rademacher complexity of H� when mixup
is applied. The difference between the two Rademacher complexity R̂B(H�) −
R̂∗

B(H�) is less than or equal to a constant multiple of the sample variance of
the norm of the input vectors:

R̂B(H�) − R̂∗
B(H�) ≤ CΛ

λ√
n

√
s2‖x‖2, (17)

where CΛ
λ is a constant that depends on the parameter λ of mixup and s2 is the

sample variance computed from the sample set.

280 M. Kimura

Proof. By the Definition 3, empirical Rademacher complexity of h(x) = wT x is
as follows:

R̂B(H) = Eσ

[
1
n

sup
‖w‖2≤Λ

n∑
i=1

σiw
T xi

]
= Eσ

[
1
n

sup
‖w‖2≤Λ

wT
n∑

i=1

σixi

]

=
1
n
Eσ

[
sup

‖w‖2≤Λ

wT
n∑

i=1

σixi

]
=

1
n
Eσ

[
Λ

∥∥∥∥∥
n∑

i=1

σixi

∥∥∥∥∥
2

]

≤ Λ

n

(
Eσ

[∥∥∥∥∥
n∑

i=1

σixi

∥∥∥∥∥
2

2

]) 1
2

=
Λ

n

(
n∑

i=1

‖xi‖22
) 1

2

. (18)

Let x̃i = Exj
[λxi + (1 − λ)xj] be the expectation of the linear combination of

input vectors by mixup, where λ is a parameter in mixup and is responsible for
adjusting the weights of the two vectors. Then, we have

R̂∗
B(H) ≤ Λ

n

(
n∑

i=1

‖x̃i‖22
) 1

2

=
Λ

n

(
n∑

i=1

∥∥∥∥∥Exj

[
λxi + (1 − λ)xj

]∥∥∥∥∥
2

2

) 1
2

=
Λ

n

(
n∑

i=1

∥∥∥∥∥λxi + (1 − λ)Exj

[
xj

]
∥∥∥∥∥
2

2

) 1
2

≤ Λ

n

(
n∑

i=1

(
‖λxi‖22+

∥∥∥(1 − λ)Exj
[xj]

∥∥∥
2

2

)) 1
2

=
Λ

n

(
λ2

n∑
i=1

‖xi‖22 + (1 − λ)2
n∑

i=1

∥∥∥Exj
[xj]

∥∥∥
2

2

) 1
2

. (19)

From (18) and (19), we can have

R̂B(H) − R̂∗
B(H) ≤ Λ|1 − λ|

n

(
n∑

i=1

‖xi‖22 −
n∑

i=1

∥∥∥Exj
[xj]

∥∥∥
2

2

) 1
2

=
Λ|1 − λ|√

n

(
1
n

n∑
i=1

‖xi‖22 − 1
n

n∑
i=1

‖x̄‖22
) 1

2

=
Λ|1 − λ|√

n

(
s2(‖x‖2) + ‖x̄‖22 − ‖x̄‖22

) 1
2

=
Λ|1 − λ|√

n

√
s2(‖x‖2) ≥ 0. (20)

The above results are in line with our intuition and illustrate well how mixup
depends on the shape of the data distribution. As can be seen from the (17), the
complexity relaxation by mixup decreases as the number of samples n increases
(see Fig. 1).

Why Mixup Improves the Model Performance 281

10 30 50 70 90

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ax

R̂ B
(G

L
,W

L
)−

m
ax

R̂∗ B(
G L

,W
L
) = 40

= 80
= 160

Fig. 2. The relationship between max R̂B(HL,W L)−max R̂∗
B(HL,W L) and the number

of samples n and the noise of the outliers ε.

5 Complexity Reduction of Neural Networks with Mixup

Let HL,WL
be the function class of a neural network:

h(x) ∈ HL,WL
=

{
h : ‖v‖2 = 1,

L∏
i=1

‖Wi‖F ≤ WL

}
, (21)

where L is the number of layers, Wi is the weight matrix, v ∈ R
ML represents

the normalized linear classifier operating on the output of the neural networks
with input vector x and ‖A‖F is the Frobenius norm of the matrix A = (aij).

Theorem 3. Given a hypothesis set HL,WL
and a sample B = (x1, . . . ,xn), we

assume that R̂B(HL,WL
) is the empirical Rademacher complexity of the hypoth-

esis class HL,WL
and R̂∗

B(HL,WL
) is the empirical Rademacher complexity of

HL,WL
when mixup is applied. In addition, we assume that each sample xi occurs

with the population mean μx plus the some noise εi. In other words, we assume
that xi = μx +εi. The difference between the maximum of two Rademacher com-
plexity R̂B(HL,WL

) − R̂∗
B(HL,WL

) is less than or equal to a constant multiple
of the maximum value of noise in a sample of training data when the number of
samples n is sufficiently large:

max R̂B(HL,WL
) − max R̂∗

B(HL,WL
) ≤ CL

λ√
n

max
i

‖εi‖, (22)

where CL
λ is a constant that depends on the parameter λ of mixup and the number

of layers L of neural networks.

Proof. By the upper bound of [8], empirical Rademacher complexity of h(x) ∈
HL,WL

is as follows:

R̂B(HL,WL
) ≤ 1√

n
2L+ 1

2 WL max
i

‖xi‖. (23)

282 M. Kimura

Let x̃i = Exj
[λxi + (1 − λ)xj] be the expectation of the linear combination of

input vectors by mixup, where λ is a parameter in mixup and is responsible for
adjusting the weights of the two vectors. Then, we have

R̂∗
B(HL,WL

) ≤ 1√
n

2L+ 1
2 WL max

i
‖Ej [λxi + (1 − λ)xj]‖

=
1√
n

2L+ 1
2 WL max

i
‖λxi + (1 − λ)Ej [xj]‖

≤ 1√
n

2L+ 1
2 WL max

i

{
λ‖xi‖ + (1 − λ)‖Ej [xj]‖

}
. (24)

Now we consider to bound the difference between the maximum values of each
quantity,

max R̂B(HL,WL
) =

1√
n

2L+ 1
2 WL max

i
‖xi‖,

max R̂∗
B(HL,WL

) =
1√
n

2L+ 1
2 WL max

i

{
λ‖xi‖ + (1 − λ)‖Ej [xj]‖

}
,

and then, from (23) and (24), and let J (HL,WL
, B) = max R̂B(HL,WL

) −
max R̂∗

B(HL,WL
) we can have

J (HL,WL
, B) ≤ 1 − λ√

n
2L+ 1

2 WL max
i

∣∣∣‖xi‖2 − ‖x̄‖2
∣∣∣

=
1 − λ√

n
2L+ 1

2 WL max
i

∣∣∣‖μx + εi‖2 − ‖x̄‖2
∣∣∣

≤ 1 − λ√
n

2L+ 1
2 WL max

i

∣∣∣‖μx‖2 + ‖εi‖2 − ‖x̄‖2
∣∣∣

=
1 − λ√

n
2L+ 1

2 WL max
i

‖εi‖2 ≥ 0 (∵ 1 − λ ≥ 0, ‖εi‖2 ≥ 0),

According to the above theorem, mixup allows the neural networks robust
learning for outliers with accidentally large noise ε in the training sample B (see
Fig. 2).

6 The Optimal Parameters of Mixup

Here, we let the parameter λ ∈ (0, 1). From (17) and (22), we can see that a
large 1 − λ has a good regularization effect. By swapping i and j, we can see
that λ should be close to 0 or 1.

In the original mixup paper [12], the parameter λ is sampled from the Beta
distribution Beta(α, α), where α is another parameter. We can see that when
α < 1, λ is sampled such that one of the input vectors has a high weight (in
other words, λ is close to 0 or 1). We treated λ as a constant in the above
discussion, but if we treat it as a random variable λ ∼ Beta(α, α), we can obtain

Why Mixup Improves the Model Performance 283

Fig. 3. Experimental results for CIFAR-10 dataset.We use ResNet-18 as a classifier
and apply mixup with each parameter α for λ ∼ Beta(α, α). Left: Learning curve of
ResNet-18 with mixup.

E[λ] = α
α+α = 1

2 and V ar(λ) = α2

(α+α)2(α+α+1) = α2

4α2(2α+1) = 1
4(2α+1) , where

α > 0. Since the E[λ] is a constant, we can see that when the weight parameter
λ is close to 0 or 1, α is expected to be close to 0.

Figure 3 shows the experimental results for CIFAR-10 [4]. We use ResNet-
18 [2] as a classifier with lr = 0.1, epochs = 200 and apply mixup with each
parameter α for λ ∼ Beta(α, α). In addition, we performed 10 trials with differ-
ent random seeds and reported the mean values of the trials. This shows that the
generalization performance is higher when the parameter α is a small value. The
right side of Fig. 3 shows a plot of the training loss and test loss of the classifier
and their differences for each α. We can see that when the value of parameter
α is small, the difference between train loss and test loss is small. Table 1 shows
the effect of the parameter α on the generalization gap between train and test
loss for each dataset.

Table 1. Effect of the parameter α on the generalization gap between train and test
loss for each dataset.

Dataset α = 0.1 α = 0.2 α = 0.4 α = 0.8 α = 1.0 α = 2.0 α = 4.0

CIFAR10 [4] 0.006 0.012 0.010 0.061 0.093 0.098 0.130

CIFAR100 [4] 0.182 0.259 0.277 0.292 0.348 0.596 0.695

STL10 [1] 0.013 0.0215 0.029 0.090 0.121 0.120 0.169

SVHN [7] 0.049 0.050 0.057 0.062 0.087 0.133 0.182

7 Geometric Perspective of Mixup Training: Parameter
Space Smoothing

Definition 5 (Bregman divergence). For some convex function ϕ(·) and d-
dimensional parameter vector ξ ∈ R

d, the Bregman divergence from ξ to ξ′

284 M. Kimura

Fig. 4. Bregman divergence from θ′ to θ. This divergence derived from the convex
function ψ(θ) and its supporting hyperplane with normal vector ∇ψ(θ0).

is defined as follows:

Dϕ[ξ : ξ′] = ϕ(ξ) − ϕ(ξ′) − ∇ϕ(ξ′) · (ξ − ξ′). (25)

Theorem 4. Let p(x;θ) be the exponential distribution family that depends
on the unknown parameter vector θ. When mixup is applied, the second-order
derivative ∇∇ψλ(θ) of ψλ(θ) that characterizes the Bregman divergence between
the parameter θ and θ + dθ, which is a slight change of the parameter, satisfies
the following:

∇∇ψλ(θ) = λ2(∇∇ψ(θ)), (26)

where ψ(θ) is a convex function of the original data distribution and λ ∈ (0, 1)
is a parameter of the mixup (Fig. 4).

Proof. An exponential family of probability distributions is written as

p(x;θ) = exp

{∑
θixi + k(x) − ψ(θ)

}
, (27)

where p(x;θ) is the probability density function of random variable vector x
specified by parameter vector θ and k(x) is a function of x. Since

∫
p(x;θ) = 1,

the normalization term ψ(θ) can be written as:

ψ(θ) = log
∫

exp

{∑
i

θi xi + k(x)

}
dx (28)

which is known as the cumulant generating function in statistics. By differenti-
ating (28), we can confirm that the Hessian becomes a positive definite matrix,
which means that ψ(θ) is a convex function. Here, the Bregman divergence from
ξ to ξ′ is defined by using the convex function ϕ(ξ):

Dϕ[ξ : ξ′] = ϕ(ξ) − ϕ(ξ′) − ∇ϕ(ξ′) · (ξ − ξ′) (29)

Why Mixup Improves the Model Performance 285

Let ψ(·) = ϕ(·) and θ = ξ, then we can naturally define the Bregman divergence
for ψ(·) and θ. Differentiating (27), we can obtain

0 =
∂

∂θi

∫
exp

{∑
i

θixi + k(x) − ψ(θ)

}
dx

=
∫ {

xi − ∂

∂θi
ψ(θ)

}
p(x;θ)dx =

∫
xip(x;θ)dx − ∂

∂θi
ψ(θ)

∴ ∂

∂θi
ψ(θ) =

∫
xip(x;θ)dx = E[xi]

∇ψ(x) = E[x]. (30)

Differentiating it again,

0 =

∫
∂

∂θj

{
xi − ∂

∂θi
ψ(θ)

}
p(x; θ) +

{
xi − ∂

∂θi
ψ(θ)

} ∂

∂θj
p(x; θ)dx

=

∫
− ∂2

∂θi∂θj
ψ(θ)dx +

∫ {
xi − ∂

∂θi
ψ(θ)

}{
xj − ∂

∂θj
ψ(θ)

}
p(x; θ)dx

= − ∂2

∂θi∂θj
ψ(θ) +

∫
(xi − E[xi])(xj − E[xj])p(x; θ)dx

= − ∂2

∂θi∂θj
ψ(θ) + E[(xi − E[xi])(xj − E[xj])]

∴ ∇∇ψ(θ) = V ar(x). (31)

Here, if we adopt the linear combination x̃ = λx+(1−λ)xj to find the parameter
θ, we can obtain

∇ψλ(θ) = E[x̃] = E[λx + (1 − λ)E[x]] = E[x], (32)
∇∇ψλ(θ) = V ar(λx + (1 − λ)E[x])

= λ2V ar(x) + (1 − λ)2V ar(E[x]) = λ2V ar(x) = λ2ψ(θ) (33)

where ψλ(·) is defined by

p(x̃;θ) = exp

{∑
θix̃i + k(x̃) − ψλ(θ)

}
. (34)

From Bayes theorem, we would be computing the probability of a parameter
given the likelihood of some data: p(x̃;θ) = p(x̃;θ)p(θ)∑′

θ p(x̃;θ ′)p(θ ′) , and applying mixup
means p(x;θ) → p(x̃;θ). And then, we can obtain (26).

Bregman divergence is a generalization of KL-divergence, which is frequently
used in probability distribution spaces. The above theorem means that the mag-
nitude of the gradient of the convex function characterizing the Bregman diver-
gence can be smoothed by using the mixup.

286 M. Kimura

8 Conclusion and Discussion

In this paper, we provided a theoretical analysis of mixup regularization for linear
classifiers and neural networks with ReLU activation functions. Our results show
that a theoretical clarification of the effect of the mixup training.

References

1. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 215–223 (2011)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

3. Kim, J.H., Choo, W., Song, H.O.: Puzzle mix: exploiting saliency and local statis-
tics for optimal mixup. In: International Conference on Machine Learning (ICML)
(2020)

4. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

5. Lawrence, S., Giles, C.L.: Overfitting and neural networks: conjugate gradient and
backpropagation. In: Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges
and Perspectives for the New Millennium, vol. 1, pp. 114–119. IEEE (2000)

6. Medennikov, I., et al.: An investigation of mixup training strategies for acoustic
models in ASR. In: Interspeech, pp. 2903–2907 (2018)

7. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

8. Neyshabur, B., Tomioka, R., Srebro, N.: Norm-based capacity control in neural
networks. In: Conference on Learning Theory, pp. 1376–1401 (2015)

9. Tokozume, Y., Ushiku, Y., Harada, T.: Between-class learning for image classifi-
cation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5486–5494 (2018)

10. Verma, V., et al.: Manifold mixup: better representations by interpolating hid-
den states. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 97, pp. 6438–6447. PMLR, Long Beach, California, USA (2019).
http://proceedings.mlr.press/v97/verma19a.html

11. Xu, K., et al.: Mixup-based acoustic scene classification using multi-channel con-
volutional neural network. In: Hong, R., Cheng, W.-H., Yamasaki, T., Wang, M.,
Ngo, C.-W. (eds.) PCM 2018. LNCS, vol. 11166, pp. 14–23. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00764-5 2

12. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (2018).
https://openreview.net/forum?id=r1Ddp1-Rb

http://proceedings.mlr.press/v97/verma19a.html
https://doi.org/10.1007/978-3-030-00764-5_2
https://openreview.net/forum?id=r1Ddp1-Rb

Mixup Gamblers: Learning to Abstain
with Auto-Calibrated Reward for Mixed

Samples

Takumi Yamaguchi1,2(B) and Masahiro Murakawa1,2

1 University of Tsukuba, Tsukuba, Japan
2 National Institute of Advanced Industrial Science and Technology (AIST),

Tsukuba, Japan
{yamaguchi.t,m.murakawa}@aist.go.jp

Abstract. Deep learning models have recently been used in a wide range
of fields. However, one of the problems with deep learning is the reliability
of the inference results. Models that can evaluate the reliability of their
inference results are important, and therefore methods such as selective
classification have been proposed. Selective classification is classification
with a reject option, which reduces false inferences by allowing an infer-
ence to be rejected. Inspired by portfolio theory, L. Ziyin et al. proposed
a deep gamblers method that learns to reject. Taking this approach a
step further, we propose a learning method for selective classification,
mixup gamblers, to improve rejection ability. This method exploits data
augmentation parameters for rejection learning. The proposed method
outperforms existing state-of-the-art methods on a selective classification
benchmark.

Keywords: Classification with a reject option · Selective
classification · Data augmentation · Loss adjustment

1 Introduction

In recent years, deep learning has been applied in various fields [2–4,10] because
of its ability to perform highly accurate inference using convolutional neural net-
works (CNNs) [7,8,15]. However, there are some issues regarding the reliability
of a model’s inference results, such as susceptibility to adversarial examples [12]
and tendency to memorize the training data [1]. These problems can lead to
an incorrect inference by a model and consequently to the failure of embedded
systems based on deep learning models. Therefore, models that can evaluate the
reliability of their own inference results are required.

One approach to evaluate prediction results is selective classification [5].
Selective classification refers to classification with a reject option, which enables
an inference to be rejected. This method does not make any inferences for sam-
ples that are likely to be misclassified. The inference is therefore performed

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 287–294, 2021.
https://doi.org/10.1007/978-3-030-86340-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_23&domain=pdf
http://orcid.org/0000-0003-2910-8181
http://orcid.org/0000-0002-8406-7426
https://doi.org/10.1007/978-3-030-86340-1_23

288 T. Yamaguchi and M. Murakawa

only on the samples that are not rejected, thereby improving classification accu-
racy. Y. Geifman et al. proposed softmax response [6], which adopts the most
straightforward policy of using the maximum value after softmax activation as
the confidence, and L. Ziyin et al. proposed deep gamblers [17], which learns
rejection by adding the (m + 1)-th rejection class to an m-class classifier.

Deep gamblers is a practically useful model because it can be trained in
an end-to-end manner and does not require significant changes in the model
structure or complex resampling during inference. In this approach, the rejection
class is trained with a rejection reward, which is a hyperparameter. Thus, the
value of the rejection reward must be adjusted using validation data. This is a
problem because the quality of the validation data determines the performance
of the model. It is therefore necessary to conduct a large number of trials to
determine the optimal rejection reward. Another problem is that the rejection
reward is constant for all samples. Essentially, every sample has a different level
of inference difficulty. Therefore, the rejection reward should also vary.

To tackle the aforementioned problems, we propose a learning method that
adjusts the rejection reward for each sample. We need to determine the rejec-
tion reward for each sample to use this method for model training. Thus, we
must increase the rejection reward so that difficult samples are rejected and also
decrease the rejection reward so that easy samples are not rejected. However,
humans cannot determine the rejection reward for each sample because the diffi-
culty of inferring a sample is not the same for deep learning models and humans.
To solve this problem, we propose an auto-calibration of the rejection reward
using mixup data augmentation. In mixup data augmentation [16], new data are
generated by linearly combining two training samples weighted by the mixup
ratio λ. We assume that the mixup ratio is correlated with the difficulty of infer-
ence. On the basis of this assumption, we propose using the mixup ratio to tune
the rejection reward during training. The rejection reward is the highest when
the mixup ratio is 0.5 because this generated sample can be the most difficult to
infer, and it decreases as the mixup ratio deviates from 0.5. Thus, we exploit the
mixup ratio to adjust the rejection reward automatically for each sample. The
proposed method outperforms existing state-of-the-art methods on a selective
classification task on the CIFAR-10 dataset [11], achieving an error rate of less
than 1% with 85% test coverage.

The remainder of this paper is structured as follows. We introduce the related
studies in Sect. 2, then propose our method in Sect. 3. The proposed method’s
effectiveness is evaluated in Sect. 4. A summary of this study is given in Sect. 5.

2 Related Work

2.1 Selective Classification

Selective classification generally has a trade-off between classifier accuracy and
predictive coverage, which is the fraction of samples in a dataset that can be
inferred. A model with a low error rate at a high level of coverage is ideal.
However, the coverage will be lower if only samples that can be inferred with

Mixup Gamblers 289

high confidence are inferred to increase the classification accuracy. In contrast,
the coverage will be higher if the classification accuracy is sacrificed by inferring
samples that can only be inferred with low confidence. In selective classification,
the trade-off between coverage and accuracy is used to control the error rate by
adjusting the coverage.

Let X be the input space and Y be the label space. A prediction model
f : X → Y and a selection function g : X → R are defined. The selective
prediction model (f, g) makes inferences on D-dimensional input feature x ∈ R

D

only when the predicted value of g(x) exceeds the threshold h, and it rejects
inferences in other cases as follows.

(f, g)(x) =

{
f(x), g(x) ≥ h

ABSTAIN, otherwise
(1)

2.2 Softmax Response

Softmax response is a baseline method for selective classification. It adopts the
most straightforward policy of using the maximum value after softmax activation
as the confidence level. Because it does not explicitly learn to reject results, there
is no change in the learning process. The selection function, gsr, is defined as
follows

p̂ = f(x) (2)

gsr(x) = max
j

p̂j (3)

where p̂ ∈ [0, 1]m is the m-class classification model’s prediction that satisfies∑m
i=1 p̂i = 1.

2.3 Deep Gamblers

Deep gamblers extends the m-class classification to (m + 1)-class classification
and designates the (m + 1)-th class as an “abstain” class. It uses a loss function
based on the doubling rate of gambling, inspired by portfolio theory [13]. In this
method, the reward for rejection is given as a hyperparameter, and the rejection
class is learned accordingly; that is, the value of the rejection reward must be
adjusted using validation data.

Let p̂ ∈ [0, 1](m+1) be the model’s prediction and rejection score (p̂m+1)
that satisfies

∑(m+1)
i=1 p̂i = 1 and p ∈ [0, 1]m be the target vector. The selection

function gdg and loss function Ldg are expressed as follows.

gdg(x) = 1 − p̂m+1 (4)

Ldg(p̂|p) = −
m∑
i=1

pi log
(
p̂i +

1
o
p̂m+1

)
(5)

The hyperparameter o ∈ [1,m] is the rejection reward through training, and it
needs to be tuned to the dataset.

290 T. Yamaguchi and M. Murakawa

Fig. 1. Overview of proposed mixup gamblers

The problem with this approach is that the rejection reward is constant for
all samples. Because humans cannot determine the rejection reward for each
sample, the only way to learn rejection is to use the predictor’s output as a
cue under a constant rejection reward. However, keeping the rejection reward
constant throughout training means that both difficult and easy samples are
used for training with the same rejection reward, which does not reflect reality.

2.4 Mixup Augmentation

Mixup augmentation is a recent data augmentation technique. It creates a new
training sample using a linear combination of two data points. A training sample
is created by adding two samples weighted by the mixup ratio λ ∈ [0, 1]. The
generalization and robustness of CNNs are improved by learning the linearly
interpolated training samples. The mixup data augmentation is done by

x̃ = λx(i) + (1 − λ)x(j) (6)

ỹ = λy(i) + (1 − λ)y(j) (7)

where x(i) ∈ R
D and y(i) ∈ [0, 1]m denote input feature and target vector at

i-th sample. (x(i),y(i)) and (x(j),y(j)) (i �= j) are two input-target pairs from
training samples.

3 Proposed Method

Our aim is to improve the rejection performance by learning while adjusting the
rejection reward for each sample. In this study, we introduce two key components
for determining the rejection reward: 1) mixup augmentation of the samples and
2) mixup at the CNN feature level. An overview of the proposed method is shown
in Fig. 1. The learning algorithm is given in Algorithm 1.

Mixup Gamblers 291

Algorithm 1. Training procedure of mixup gamblers
Input: Sample batch X, Target batch Y , Batch size b, CNN feature extractor fh with

parameters θh, Fully Connected layer fc with parameters θc, learning rate η, a
range of λ from λmin > 0 to λmax < 1 steps by λs, mixup gamblers loss function
L(p̂|ỹ, λ)

Output: Model parameters θh, θc

1: X ′, Y ′ ← RandomShuffle(X, Y) � Shuffle batch for mixup pairs
2: L ← 0
3: for λ = λmin to λmax steps by λs do
4: for i = 1 to b do
5: x ← X[i], x′ ← X ′[i] � D-dimensional input feature x ∈ R

D

6: y ← Y [i], y′ ← Y ′[i] � m-class target vector y ∈ [0, 1]m

7: z̃ ← λfh(x) + (1 − λ)fh(x
′) � Mixup in CNN feature

8: ỹ ← λy + (1 − λ)y′ � New target for mixed feature
9: p̂ ← fc(z̃) � Classify on mixed feature

10: L ← L + L(p̂|ỹ, λ)/b � Summarize the loss
11: end for
12: end for
13: θh ← θh − η∇θhL
14: θc ← θc − η∇θcL

3.1 Calibrating the Rejection Reward Utilizing Mixup
Augmentation

We use mixup data augmentation to control the difficulty of the generated sam-
ples. When mixing ratio λ = 0.5, the difficulty of classification is the highest, and
as the value of λ deviates from 0.5, the difficulty decreases. Thus, the value of
λ is correlated with the difficulty of classification. Therefore, we propose mixup
gamblers, a mechanism for learning to abstain in a supervised manner by using
mixup to generate samples with controlled difficulty. Let the binary entropy
function H(λ) be the rejection reward for a mixup ratio λ. In other words, when
the mixup ratio is close to 0.5, the rejection reward increases, and as the mixing
ratio deviates from 0.5, the rejection reward decreases. The rejection performance
should improve because the model learns by adjusting the rejection reward for
each sample. In addition, mixup data augmentation encourages the learning of
the linear interpolation of two data points, which should improve the classifier
accuracy.

3.2 CNN Feature Mixup

For mixup gamblers to work, the intermediate feature of the CNN should be
mixed up instead of the pixel feature. In our proposed learning method, aug-
menting in an abstract feature space is essential.

Let Z be the hidden feature space extracted by CNNs. The prediction func-
tion f : X → Y can be divided into two functions, the CNN feature extractor
fh : X → Z and the classifier fc : Z → Y . Thus, our proposed CNN feature
mixup is represented as follows

292 T. Yamaguchi and M. Murakawa

Table 1. Selective classification error rate (%) on the CIFAR-10 dataset at various test
coverage levels. CF: CNN feature mixup, P: Pixel feature mixup, mixup+SR: softmax
response with pixel feature mixup training without gamblers loss, SA: Self-Adaptive
Training, DG: deep gamblers, SR: softmax response.

Coverage (%) Ours (CF) Ours (P) mixup+SR SA DG SR

100 5.28 ± 0.10 4.75 ± 0.17 5.48 ± 0.14 6.05 ± 0.20 6.12 ± 0.09 6.79 ± 0.03
95 3.20 ± 0.15 4.33 ± 0.19 3.18 ± 0.18 3.37 ± 0.05 3.49 ± 0.15 4.55 ± 0.07
90 1.69 ± 0.10 4.26 ± 0.29 1.64 ± 0.11 1.93 ± 0.09 2.19 ± 0.12 2.89 ± 0.03
85 0.86 ± 0.07 4.24 ± 0.28 1.02 ± 0.13 1.15 ± 0.18 1.09 ± 0.15 1.78 ± 0.09
80 0.51 ± 0.06 4.30 ± 0.31 0.94 ± 0.10 0.67 ± 0.10 0.66 ± 0.11 1.05 ± 0.07
75 0.42 ± 0.11 4.38 ± 0.35 0.92 ± 0.06 0.44 ± 0.03 0.52 ± 0.03 0.63 ± 0.04
70 0.39 ± 0.14 4.41 ± 0.39 0.89 ± 0.10 0.34 ± 0.06 0.43 ± 0.07 0.42 ± 0.06

z̃ = λfh(x(i)) + (1 − λ)fh(x(j)) (8)

p̂ = fc(z̃) (9)

where p̂ ∈ [0, 1](m+1) denotes the output prediction of the model in m-class
classification and rejection that satisfies

∑(m+1)
i=1 p̂i = 1.

Finally, we propose the mixup gamblers loss function.

L(p̂|ỹ, λ) = −
m∑
i=1

ỹi log
(
p̂i +

1
1 + H(λ)(m − 1)

p̂m+1

)
(10)

H(λ) = −λ log2 λ − (1 − λ) log2(1 − λ) (11)

Here, ỹ ∈ [0, 1]m denotes the target vector generated by mixup that satisfies∑m
i=1 ỹi = 1. In addition, we sum up losses with several mixup ratio λ ∈ [0, 1]

and optimize a model to minimize the total loss.

4 Experiments

In this section, we demonstrate the effectiveness of the proposed method through
comparative experiments on the selective classification task. For a fair compari-
son, the experiments were conducted under the same conditions used in previous
studies. We used an open-source script1 by [17] and modified the loss function in
the training phase. We used a VGG16 [15] with batch normalization and dropout
for training and evaluation. We optimized the model using stochastic gradient
descent with an initial learning rate of 0.1, momentum of 0.9, weight decay of
0.0005, batch size of 128, and a total of 300 training epochs. Furthermore, the
learning rate decayed by a factor of 0.5 every 25 epochs. We report the mean
and standard deviation of each model’s performance over three trials on the
CIFAR-10 and SVHN [14] datasets for each level of coverage. In both experi-
ments, we trained the model on classification for 100 epochs before training with
1 https://github.com/Z-T-WANG/NIPS2019DeepGamblers.

https://github.com/Z-T-WANG/NIPS2019DeepGamblers

Mixup Gamblers 293

Table 2. Selective classification error rate (%) on the SVHN dataset at various test
coverage levels.

Coverage (%) Ours (CF) DG SR

100 2.75 ± 0.08 3.24 ± 0.09 3.21
95 1.26 ± 0.06 1.36 ± 0.02 1.39
90 1.02 ± 0.01 0.76 ± 0.05 0.89
85 0.91 ± 0.09 0.57 ± 0.07 0.70
80 0.86 ± 0.10 0.51 ± 0.05 0.61

the proposed method. We set the mixup ratio λ to a range of λmin = 0.05 to
λmax = 0.5 steps by λs = 0.05.

The results of the experiment are shown in Table 1 and Table 2, and the
results of prior methods are cited from the original papers [6,9,17]. The proposed
method with CNN features outperforms state-of-the-art methods for most levels
of test coverage. In particular, we achieved an error rate of less than 1% at 85%
test coverage in CIFAR-10. However, the rejection class was not learned properly
when pixel feature mixup was used. This implies that an abstract mixup at the
CNN feature level is essential component in the proposed method.

5 Conclusion

We studied a learning method to output a confidence for the reliability of the
self-evaluation of inference results. We proposed mixup gamblers, which learns
to reject inference results from data augmentation parameters. The key concept
of mixup gamblers is that the mixing ratio of the mixup data augmentation
is assumed to indicate the inference difficulty of a generated sample. In the
proposed method, when to reject a result is learned by adjusting the rejection
reward based on the mixup ratio. Additionally, we proposed using a CNN’s
intermediate features instead of pixel feature for the mixup data augmentation
in the mixup gamblers method. Using the proposed method, we achieved state-
of-the-art performance in the selective classification task.

Another possible application of the proposed method is to detect unknown
classes. In the proposed method, mixup is performed with features abstracted
into a class-like feature space; therefore, it can be regarded as learning to reject
unknown classes that are not included in the training class. We expect to con-
tribute to the efficiency of human-in-the-loop systems, which involve humans in
the machine learning cycle, by improving the detection of unknown classes.

Acknowledgments. This paper is partly based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Industrial Technology Development
Organization (NEDO).

294 T. Yamaguchi and M. Murakawa

References

1. Arpit, D., et al.: A closer look at memorization in deep networks. In: International
Conference on Machine Learning, pp. 233–242. PMLR (2017)

2. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection
in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma,
I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–
418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

4. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.:
Deep learning for classical Japanese literature. arXiv preprint arXiv:1812.01718
(2018)

5. El-Yaniv, R., et al.: On the foundations of noise-free selective classification. J.
Mach. Learn. Res. 11(5), 1605–1641 (2010)

6. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In:
Advances in Neural Information Processing Systems, vol. 30, pp. 4878–4887 (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016

8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

9. Huang, L., Zhang, C., Zhang, H.: Self-adaptive training: beyond empirical risk min-
imization. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

10. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732
(2014)

11. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
12. Kurakin, A., Goodfellow, I., Bengio, S., et al.: Adversarial examples in the physical

world (2016)
13. Markowitz, H.: Portfolio selection (1959)
14. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits

in natural images with unsupervised feature learning (2011)
15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)
16. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk

minimization. arXiv preprint arXiv:1710.09412 (2017)
17. Ziyin, L., Wang, Z., Liang, P., Salakhutdinov, R., Morency, L., Ueda, M.: Deep

gamblers: learning to abstain with portfolio theory. In: Proceedings of the Neural
Information Processing Systems Conference (2019)

http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-642-40763-5_51
http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1710.09412

Non-iterative Phase Retrieval with
Cascaded Neural Networks

Tobias Uelwer(B), Tobias Hoffmann, and Stefan Harmeling

Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
{tobias.uelwer,tobias.hoffmann,stefan.harmeling}@hhu.de

Abstract. Fourier phase retrieval is the problem of recovering an image
given only the magnitude of its Fourier transformation. Optimization-
based approaches, like the well-established Gerchberg-Saxton or the
hybrid input output algorithm, struggle at reconstructing images from
magnitudes that are not oversampled. This motivates the application
of learned methods, which allow reconstruction from non-oversampled
magnitude measurements after a learning phase. In this paper, we want
to push the limits of these learned methods by means of a deep neural
network cascade that reconstructs the image successively on different res-
olutions from its non-oversampled Fourier magnitude. We evaluate our
method on four different datasets (MNIST, EMNIST, Fashion-MNIST,
and KMNIST) and demonstrate that it yields improved performance
over other non-iterative methods and optimization-based methods.

Keywords: Phase retrieval · Neural network cascade · Deep learning

1 Introduction

The two-dimensional discrete Fourier transform F(x) of an image x ∈ R
n×n can

be represented by the magnitude ω and the phase ϕ, more precisely

ω = |F(x)| ∈ R
n×n, (1)

ϕ = arg F(x) ∈ [−π, π]n×n, (2)

where arg denotes the argument of a complex number (that is applied element-
wise). Fourier phase retrieval is the problem of reconstructing the original image
only from its magnitude ω.

While zero-padding is often assumed, it is a strong assumption on the support
of x which facilitates the phase retrieval problem. Concretely, it assumes that
we are reconstructing an m × m image

xpadded =
[

x 0n,m−n

0m−n,n 0m−n,m−n

]
∈ R

m×m, (3)

where the 0a,b denotes the a × b matrix with zeros. The oversampled magnitude
can then be written as

ωoversampled = |F(xpadded)| ∈ R
m×m. (4)

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 295–306, 2021.
https://doi.org/10.1007/978-3-030-86340-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_24

296 T. Uelwer et al.

For example, given m = 2n, the magnitude is oversampled by a factor of four
when considering the two-dimensional case. There exist algorithms, e.g., the
Gerchberg-Saxton algorithm [6] or Fienup’s hybrid input-output algorithm [5],
that are able to reconstruct the image from the magnitude that is oversampled
by a factor of four. However, in practice the true images to be recovered are not
zero-padded and the magnitude is almost never oversampled. So the assumption
of zero-padding does not hold in general, as many applications measure the non-
oversampled magnitude (i.e., m = n) posing a great challenge for existing phase
retrievals methods. In this paper, we try to solve the more difficult problem,
where we reconstruct the image from the non-oversampled magnitude ω.

1.1 The Phase Contains the Relevant Information

It is well known, that the phase contains most of the information of the image.
This can be observed by comparing an image with a random phase to an image
with a random magnitude. To create these images we exchange (i) the phase of
an image by a random phase ϕ̃ which has entries that were uniformly sampled
from [−π, π] while respecting the symmetries of the phase (to ensure a real-
valued image), and (ii) the magnitude with a random magnitude ω̃ that has been
sampled from a truncated normal distribution with appropriate parameters. To
create an image given the random phase ϕ̃ and the correct magnitude ω, we
apply the relationship

xϕ̃ = F−1 (ω � exp(iϕ̃)) , (5)

where F−1 is the inverse Fourier transform, i =
√−1 is the imaginary unit and

� is the elementwise multiplication. Analogously, we construct the image with
the original phase ϕ and a random magnitude ω̃ as

xω̃ = F−1 (ω̃ � exp(iϕ)) . (6)

Figure 1 shows that the image with the random phase is completely destroyed
whereas the image with the random magnitude only exhibits some cloud-like
artifacts.

1.2 Non-iterative Phase Retrieval

To tackle the non-oversampled phase retrieval problem we formulate phase
retrieval as a learning problem. Concretely, non-iterative phase retrieval directly
recovers the image from the magnitude only using a mapping that has been
learned to solve the problem in a particular problem domain. The mapping is
parameterized by a neural network G that is trained to invert the measurement
process, i.e.,

x̂ ≈ G(ω). (7)

Since the measurement process is known, training pairs can be generated on-the-
fly from sample images of a given dataset. The weights of G can then be learned
using stochastic gradient descent by minimizing a loss function. The benefit

Non-iterative Phase Retrieval with Cascaded Neural Networks 297

Fig. 1. Most information about the image is contained in the phase, which can be
demonstrated by exchanging the phase with a random phase. For comparison we also
exchange the magnitude with a random magnitude. Original image x, original magni-
tude ω, random phase ϕ̃, image obtained by combining the original magnitude and the
random phase xϕ̃, original phase ϕ, random magnitude ω̃, image obtained by combining
the original phase and the random magnitude xω̃.

of non-iterative methods is the fast computation of the reconstruction because
only a single forward-pass through the neural network is used to calculate the
reconstruction.

1.3 Contributions

This paper addresses the challenge of improving the performance of non-iterative
phase retrieval methods based on neural networks. We show that a multi-scale
approach based on cascading neural networks is able to improve previous non-
iterative phase retrieval methods.

1.4 Related Work

Cascades of neural networks have been proposed previously by Schlemper et al.
[19] but in the context of compressed sensing which is a related but differ-
ent problem than phase retrieval. Phase retrieval has applications in many
areas of research, e.g., in X-ray crystallography [15], astronomical imaging [5]
or microscopy [25]. We distinguish between three classes of methods for phase
retrieval:

1. Iterative methods without a learned component: Gerchberg and Saxton [6]
proposed a simple algorithm that is based on alternating reflections. The idea
behind this algorithm is to iteratively enforce the constraints in the Fourier
space and the image space. Later Fienup modified the Gerchberg-Saxton algo-
rithm in different ways which led to the input-output, the output-output

298 T. Uelwer et al.

and the hybrid-input-output (HIO) algorithm [4], where the HIO algorithm
is most commonly used for phase retrieval. Luke [12] analyzed the relaxed
averaged alternating reflection (RAAR) algorithm. In general, these iterative
methods without a learning component work well when the signal is oversam-
pled.

2. Iterative methods with a learned component: For non-oversampled phase
retrieval Işıl et al. [9] extend the HIO algorithm by a neural network that
removes artifacts. Metzler et al. [14] and Wu et al. [23] use the regularization-
by-denoising framework [18] to solve oversampled phase retrieval problems.
Another class of learned methods rely on the optimization of a latent vari-
able of a learned generative model [7,21] and produce high quality results.
However, these methods require a training phase and an optimization phase
during application and are therefore very costly.

3. Non-iterative methods with a learned component: Non-iterative phase
retrieval with a deep convolutional neural network that is trained end-to-end
is proposed by Nishizaki et al. [16]. Recently, Tayal et al. [13] use symme-
try breaking to solve the oversampled phase retrieval problem with neural
networks. The benefit of non-iterative learned methods is the highly efficient
reconstruction of images using only a single forward-pass through the model
while also producing good results in the non-oversampled case.

2 Proposed Method

In this paper, we propose to use a cascaded neural network architecture for
Fourier phase retrieval. Throughout the paper we refer to it as cascaded phase
retrieval (CPR) network. The CPR network consists of multiple sub-networks
G(1), . . . , G(q) which are updated successively to reconstruct the different down-
sampled instances of the original image, where G(2), . . . , G(q) are fed with the
intermediate reconstruction produced by the previous network. In that way, each
of these sub-networks can iteratively refine the reconstruction. In addition to
that, each of the sub-networks is provided with the measurement ω as an input.
The first few sub-networks are trained to reconstruct a down-sampled version of
the image, where we denote the resolutions by np × np for p = 1, . . . , q. The last
sub-networks predict the image at full-resolution nq × nq. The nearest-neighbor
interpolation scheme is used for down-sampling the training images. Figure 2
shows an overview of the CPR network architecture.

2.1 Loss Functions

A common choice for reconstruction tasks is the mean squared error (MSE)
which can be defined for a batch X = (x1, . . . , xb) of original images and a
corresponding batch of reconstructions X̂ = (x̂1, . . . , x̂b) as

L(p)
MSE(X, X̂) =

1
b

1
n2

p

b∑
k=1

np∑
u=1

np∑
v=1

(xk[u, v] − x̂k[u, v])2 . (8)

Non-iterative Phase Retrieval with Cascaded Neural Networks 299

Fig. 2. An overview of the network architecture of the CPR approach. The magnitude
image is fed to each of the networks. The sub-networks are updated stage-wise, i.e., we
use L1 to update G(1), then the output of G(1) is passed as additional input to G(2)

and so on. The first few networks focus on reconstructing a sub-sampled instance of
the image, whereas the last sub-network predict the image at full-resolution.

Although, it seems to work well in practice and provides good gradients for train-
ing, the reconstructions tend to be blurry. This phenomenon has been discussed
in [17]. Hence, we also implement the mean absolute error (MAE), i.e.,

L(p)
MAE(X, X̂) =

1
b

1
n2

p

b∑
k=1

np∑
u=1

np∑
v=1

|xk[u, v] − x̂k[u, v]| (9)

for measuring the reconstruction error.

2.2 Training

During training, each sub-network G(p) is trained using an individual loss L(p).
Each sub-network is updated one after another, where the loss L(p) influences
only G(p) and does not impact the parameters of the previous sub-networks.
Alternatively, the CPR network could be trained in an end-to-end fashion, how-
ever, since the intermediate reconstructions have different resolutions, we would
need to carefully choose weights to balance the influence of each loss function
L(1), . . . ,L(q). The training procedure is shown in more detail in Algorithm1.

300 T. Uelwer et al.

Algorithm 1: Training algorithm for CPR network
Input: Dataset X, downsampling functions g2, . . . , gq, networks

G1, . . . , Gq, loss functions L(1), . . . ,L(q)

1 for e = 1, . . . , N do

2 for batch (x1, . . . , xb) in X do

3 Calculate magnitudes Ω = (ω1, . . . , ωb) with ωk = |F(xk)|, for

k = 1, . . . , b

4 for p = 1, . . . , q do

5 Calculate X̃(p) = (x̃1, x̃2, . . . , x̃b), where x̃k = gp(xk) for

k = 1, . . . , b

6 if p == 1 then

7 X̂(p) = Gp(Ω)

8 else

9 X̂(p) = Gp(Ω, X̂(p−1))

10 Update network parameters using ∇L(p)
(
X̂(p), X̃(p)

)
11 end

12 end

13 end

3 Experimental Evaluation

In this section, we empirically evaluate the performance of our model. In order to
do this, we report the results of the fully-convolutional residual network (ResNet)
employed by Nishizaki et al. [16], the multi-layer-perceptron (MLP) used in [21]
and the PRCGAN [21]. In addition to these learned networks we include the
results of the well-established HIO algorithm [4] and the RAAR algorithm [12]
as a baseline.

3.1 Datasets

For the experimental evaluation we use the MNIST [11], the EMNIST [3], the
Fashion-MNIST [24] and the KMNIST [2] datasets. All datasets consist of 28 ×
28 grayscale images, i.e., n = 28. MNIST contains images of digits, EMNIST
contains images of letters and digits, Fashion-MNIST contains images of clothing
and KMNIST contains images of cursive Japanese characters. Although these
datasets are considered to be toy datasets when it comes to classification tasks,
they provide quite challenging data for two-dimensional Fourier phase retrieval.
For the EMNIST dataset we use the balanced version of the dataset.

Non-iterative Phase Retrieval with Cascaded Neural Networks 301

3.2 Experimental Setup

We compare our CPR approach with the MLP and the ResNet that are trained
to minimize LMSE for the MNIST, the EMNIST and the KMNIST dataset.
The LMAE is used for the Fashion-MNIST dataset. Furthermore, we report the
results of an MLP trained with an adversarial loss in combination with LMAE

(PRCGAN) as proposed in [21]. For our proposed CPR network we consider a
cascade of five MLPs with three hidden layers where we increased the scales of
the (intermediate) reconstructions according to Table 1. The number of hidden
units for each sub-network is also shown in Table 1. Furthermore, we compare
the results with a CPR network that produces intermediate reconstructions at
full scale. We refer to this variant as CPR-FS. All sub-networks are trained using
dropout [20], batch-normalization [8] and ReLU activation functions. For the last
layer we use a Sigmoid function to ensure that the predicted pixels are in [0, 1].
To optimize the weights we used Adam [10] with learning rate 10−4. We train
all versions of the CPR network for 100 epochs with the LMSE, except for the
Fashion-MNIST dataset where we use LMAE for the final layer. These choices
gave the best results on the validation dataset.

We ran the HIO algorithm and the RAAR algorithm for 1000 steps each and
allowed three random restarts, where we selected the reconstruction x̂ with the
lowest magnitude error |||F(x̂)| − ω||Fro. For HIO we set β = 0.8 and for RAAR
we set β = 0.87.

Table 1. Scales used for the (intermediate) reconstructions and number of hidden units
used for each network of the cascade.

G(1) G(2) G(3) G(4) G(5)

Scale CPR 7 × 7 12 × 12 17 × 17 22 × 22 28 × 28
CPR-FS 28 × 28 28 × 28 28 × 28 28 × 28 28 × 28

Hidden layer size CPR 1136 1336 1536 1736 1936
CPR-FS 1936 1936 1936 1936 1936

3.3 Metrics

For a quantitative evaluation we compare the MSE and the MAE as defined in
Eq. 8 and Eq. 9. Moreover, we report the structural similarity index (SSIM) that
was introduced by Wang et al. [22]. The SSIM measures perceived quality of
an reconstruction on various windows of an image and takes values between 0
(worst quality) and 1 (perfect reconstruction).

Because translating signals by a constant shift or rotating them by 180◦ does
not change their Fourier magnitude, we considered these reconstructions equally
correct. Thus, we register the predictions (and their rotated variants) using cross-
correlation as described by Brown [1] before calculating the evaluation metrics.

302 T. Uelwer et al.

3.4 Results

Figure 3 compares six reconstructions by the different methods on the MNIST
and the Fashion-MNIST test dataset. We observe that the HIO algorithm and
the RAAR algorithm fail to recover the image in most of the cases. From all
learned methods, the Resnet produced the worst reconstructions. The estimated
images are very blurry and in some cases the reconstruction exhibit deformations
(e.g., the last two images from the Fashion-MNIST dataset that are shown in
Fig. 3). The PRCGAN produces reconstructions that are sharp and overall the
visual quality is similar to the reconstructions of the MLP. Most of the learned
methods struggle to recover the first image of the MNIST dataset (depicting the
“5”). We suppose that this sample is very different from the samples that were
used to train the networks. Only, the CPR and the CPR-FS network are capable
of recovering this image.

Fig. 3. Reconstructions from the Fourier magnitudes of samples from the MNIST and
the Fashion-MNIST test dataset.

Table 2 shows the MSE, the MAE and the SSIM of the reconstructions and
Fig. 4 visualizes the MSE for the five different learned methods. Overall, the
learned methods outperform RAAR and HIO by a large margin. For MNIST,
EMNIST and KMNIST we see that the CPR network greatly improves the
reconstruction quality compared to the other learned methods. We hypothesize
that our proposed CPR network yields better results when the signals of interest
have a small support (e.g., MNIST, EMNIST, KMNIST). However, for signals
with a large support (e.g., Fashion MNIST) we only observe a small improvement
compared to the other learned methods.

Non-iterative Phase Retrieval with Cascaded Neural Networks 303

Table 2. Quantitative comparison of the reconstructions produced by the different
methods. We report MSE, MAE and SSIM between the reconstructions and the original
images of the test dataset. MSE, MAE: lower is better. SSIM: larger is better. The best
result is printed bold.

MNIST EMNIST
MSE MAE SSIM MSE MAE SSIM

HIO [4] 0.0441 0.1016 0.5708 0.0653 0.1379 0.5241
RAAR [12] 0.0489 0.1150 0.5232 0.0686 0.1456 0.4973
ResNet [16] 0.0269 0.0794 0.6937 0.0418 0.1170 0.5741
MLP [21] 0.0183 0.0411 0.8345 0.0229 0.0657 0.7849
PRCGAN [21] 0.0168 0.0399 0.8449 0.0239 0.0601 0.8082
CPR (ours) 0.0123 0.0370 0.8756 0.0153 0.0525 0.8590
CPR-FS (ours) 0.0126 0.0373 0.8729 0.0144 0.0501 0.8700

Fashion-MNIST KMNIST
MSE MAE SSIM MSE MAE SSIM

HIO [4] 0.0646 0.1604 0.4404 0.0835 0.1533 0.3414
RAAR [12] 0.0669 0.1673 0.4314 0.0856 0.1559 0.3208
ResNet [16] 0.0233 0.0820 0.6634 0.0715 0.1711 0.3783
MLP [21] 0.0128 0.0526 0.7940 0.0496 0.1168 0.5991
PRCGAN [21] 0.0151 0.0572 0.7749 0.0651 0.1166 0.5711
CPR (ours) 0.0115 0.0503 0.8077 0.0447 0.1068 0.6488
CPR-FS (ours) 0.0113 0.0497 0.8092 0.0433 0.1034 0.6626

Fig. 4. Comparison of the MSE for the results of the learned methods.

3.5 Intermediate Prediction at Full-Scale

We briefly study the effect of predicting down-sampled versions of the
image. Therefore, we evaluate the CPR-FS network which produces full-scale

304 T. Uelwer et al.

intermediate reconstructions. Table 2 also shows that the CPR-FS network per-
forms similarly in terms of the overall reconstruction quality. For the EMNIST,
the Fashion-MNIST and the KMNIST dataset the full-scale variant is slightly
better. However, due to the larger input, the sub-networks need to have more
parameters and thus training is more expensive.

3.6 Ablation Study

In this section, we demonstrate that increasing the number of sub-networks
has a beneficial effect on the overall reconstruction quality. To do so, we train
five network cascades exemplarily on the EMNIST dataset where we increase
the number of sub-networks from one to five. We report the MSE on the test
dataset after 50 epochs. Figure 5 shows that the MSE for the EMNIST dataset
decreases with an increasing number of sub-networks used for the CPR-FS app-
roach. Furthermore the gain in terms of MSE saturates after q = 5, such that
additional sub-networks do not bring any further improvements. We expect the
same relative behavior on the other datasets when increasing q.

Fig. 5. Test MSE on the EMNIST test dataset for different number of sub-networks.
Error bars indicate the 95% confidence interval.

4 Conclusion and Future Work

In this paper, we use a cascade of neural networks for non-oversampled Fourier
phase retrieval. Our approach successively reconstructs images from their Fourier
magnitudes and outperforms other existing non-iterative networks noticeably in
terms of the reconstruction quality. However, non-iterative methods do not yet
reach the reconstruction quality of iterative methods with a learning component
which require high computational cost at test time.

Future work could also evaluate different strategies for training the neural
network cascade. For example, greedy sub-network-wise training could be imple-
mented and compared with our training procedure. Moreover, the CPR network
architecture can easily be adapted to solve inverse problems other than Fourier
phase retrieval.

Non-iterative Phase Retrieval with Cascaded Neural Networks 305

References

1. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv.
(CSUR) 24(4), 325–376 (1992)

2. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.:
Deep learning for classical Japanese literature. arXiv preprint arXiv:1812.01718
(2018)

3. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to
handwritten letters. In: 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2921–2926. IEEE (2017)

4. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–
2769 (1982)

5. Fienup, J.R., Dainty, J.C.: Phase retrieval and image reconstruction for astronomy.
Image Recovery Theory Appl. 231, 275 (1987)

6. Gerchberg, R.W.: A practical algorithm for the determination of phase from image
and diffraction plane pictures. Optik 35, 237–246 (1972)

7. Hand, P., Leong, O., Voroninski, V.: Phase retrieval under a generative prior. In:
Advances in Neural Information Processing Systems, pp. 9136–9146 (2018)

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Işıl, Ç., Oktem, F.S., Koç, A.: Deep iterative reconstruction for phase retrieval.
Appl. Opt. 58(20), 5422–5431 (2019)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

12. Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse
Probl. 21(1), 37 (2004)

13. Manekar, R., Tayal, K., Kumar, V., Sun, J.: End-to-end learning for phase retrieval
(2020)

14. Metzler, C., Schniter, P., Veeraraghavan, A., Baraniuk, R.G.: prDeep: robust phase
retrieval with a flexible deep network. In: International Conference on Machine
Learning, pp. 3501–3510 (2018)

15. Millane, R.P.: Phase retrieval in crystallography and optics. JOSA A 7(3), 394–411
(1990)

16. Nishizaki, Y., Horisaki, R., Kitaguchi, K., Saito, M., Tanida, J.: Analysis of non-
iterative phase retrieval based on machine learning. Opt. Rev. 27(1), 136–141
(2020). https://doi.org/10.1007/s10043-019-00574-8

17. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context
encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

18. Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by
denoising (RED). SIAM J. Imaging Sci. 10(4), 1804–1844 (2017)

19. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cas-
cade of convolutional neural networks for dynamic MR image reconstruction. IEEE
Trans. Med. Imaging 37(2), 491–503 (2017)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10043-019-00574-8

306 T. Uelwer et al.

21. Uelwer, T., Oberstraß, A., Harmeling, S.: Phase retrieval using conditional gen-
erative adversarial networks. In: 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 731–738. IEEE (2021)

22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

23. Wu, Z., Sun, Y., Liu, J., Kamilov, U.: Online regularization by denoising with
applications to phase retrieval. In: 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pp. 3887–3895 (2019)

24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

25. Zheng, G., Horstmeyer, R., Yang, C.: Wide-field, high-resolution Fourier ptycho-
graphic microscopy. Nat. Photonics 7(9), 739 (2013)

http://arxiv.org/abs/1708.07747

Incorporating Discrete Wavelet
Transformation Decomposition
Convolution into Deep Network

to Achieve Light Training

Guihua Tao, Wentao Rong, Wanlin Weng, Tingting Dan, Bin Zhang,
and Hongmin Cai(B)

School of Computer Science and Engineering, South China University of Technology,
Guangzhou, China

{csghtao,cswwl,201810102902}@mail.scut.edu.cn, hmcai@scut.edu.cn

Abstract. The deep neural network achieves superior performance in
various tasks. However, it is notoriously known that its training needs a
considerable time cost to refine a large number of parameters. We pro-
posed a deep wavelet network to tackle the issue. The proposed net-
work is built by processing blocks with various decomposition levels
which named Discrete Wavelet Transformation Decomposition Convo-
lution (DWTDC). The DWTDC aims to fulfill the task of feature map
discrete wavelet transformation decomposition and subbands differential
fusion. We employ the DWTDC block to act as the convolution layer so
that the parameters are estimated within the frequency domain space.
Because of the merits of economic representation in the wavelet domain,
the training parameters are greatly reduced, only requiring 33% of the
parameters of the popular networks. Extensive experiments by compar-
ing with benchmark models show that the proposed DWTDC dramati-
cally reduced the number of parameters and achieved light training with-
out sacrificing the classification performance.

Keywords: Light training · Discrete wavelet transformation
decomposition convolution · Feature map decomposition · Subbands
differential fusion · Frequency domain

1 Introduction

Deep learning has achieved great success in computer vision areas [11]. However,
due to the numerous parameters of the deep neural network, the calculation cost
of training a deep neural network is very large, which limits the application of
these models to a great extent. In case of dealing with challenging computation-
ally intensive applications, such as mobile health, real-time automatic driving,
intensive virtual enhancement, which relies on a platform with limited comput-
ing power [17], The current deep models are seriously limited by the bottleneck

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 307–318, 2021.
https://doi.org/10.1007/978-3-030-86340-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_25

308 G. Tao et al.

of computing ability from the graphics processing unit. Optimizing the neural
network to reduce network scale and computing consumption is the key to break
through the current limitation.

Intensive efforts have been invested in tackling the issue. For example, [9]
regarded filters in a layer as a tensor and utilized Tucker tensor decomposition
to speed up CNNs. Gong et al. [8] employed k-means to obtain the cluster centers
of weights of convolution filters and then approximately represented convolution
filters using their corresponding clustering centers. Wen et al. [20] excavated
redundancy by pruning weights in different aspects resulting in a sparse and
compact CNN for speeding up.

Wavelet analysis has achieved great successes in engineering [19] due to its ele-
gant mathematical formulation and economic representation. The wavelet trans-
form, evolved from the classical Fourier transform, is a local transformation on
space and frequency. It is shown to be powerful to extract information from
signals effectively [6]. The applications of wavelet analysis in image recognition,
signal analysis, data compression, computer vision, and other fields have achieved
scientific significance and application values.

To enjoy the merits of strong feature extraction capability by neural net-
work and economic representation of wavelet decomposition, this paper aims
to incorporate the powerful wavelet decomposition within the benchmark deep
network. 1) We proposed to fuse the wavelet decomposition and convolution
operation jointly to form an independent module, named DWTDC block. The
module can be freely embedded in most of the popular neural networks. This
block contains two sub-operations, including the feature map discrete wavelet
transformation decomposition (FM-DWTD) module and the subbands differ-
ential fusion (SDF) module. With the DWTDC block, the neural network can
be trained within the frequency domain. The entire network is shown to be
still trained end-to-end by stochastic gradient descent with backpropagation. It
can be easily implemented using the common libraries, e.g., Tensorflow, without
modifying the solvers. 2) We conducted extensive experiments by incorporating
the proposed DWTDC block into five benchmark networks to evaluate its power
in reducing computational consumption. 3) Experiments of performing classi-
fication tasks on five popular computer vision datasets and diagnostic tasks
on three medical image datasets were conducted. The experimental results show
that DWTDC can greatly reduce the volume of network parameters, and achieve
comparable performances with benchmark models.

2 Related Work

Recently, there are a variety of related works have been proposed to reduce
the storage and complexity of CNNs [17,21]. Most of the works attempted
to compress the over-parameterized weights to reduce their redundancy [2].
Denton et al. [7] used singular value decomposition technique to discover a low-
rank approximation on the weight matrix [1]. Kim et al. [9] used Tucker tensor
decomposition in each layer to speed up CNNs. Wen et al. [20] excavated redun-
dancy by pruning weights in different aspects resulting in sparse and compact

Incorporating DWTDC into Deep Network to Achieve Light Training 309

CNNs for speeding up. Most of the such works attempted to prune the huge vol-
ume of weighting parameters in the spatial domain, which is performed until the
training phase is successfully accomplished. Therefore, the training and testing
of the networks are typically decoupled.

From the perspective of network structure, MobileNet [17] and Xception [3]
explore the separable convolution to maintain accuracy, reduce the number of
the parameters. Binarization also can be used to reduce the model size and
lower the computation overheads. BinaryNet [5] and XNORNet [16] are typical
examples of this way. Such neural networks reduce memory size and access with
binary weights and activations at run-time. It is convenient to computation on
both forward propagation and backward propagation.

It is important to explore new spaces in which to learn. Recently, Cotter
et al. [4] are committed to exploring the new space for the learning of filters. They
have proposed a preliminary idea of learning filters by taking activations into the
wavelet domain, learning mixing coefficients, and returning to the pixel space
by taking the inverse wavelet transform. However, in experiments, they briefly
go into the wavelet domain and coming back to the spatial domain to do ReLU
nonlinearities. Instead, we try to reduce the parameters of the neural network
by exploring the merits of strong feature extraction capability by neural network
and economic representation of wavelet decomposition. We go into the wavelet
domain and perform feature map discrete wavelet transformation decomposition
and subbands differential fusion.

3 Preliminaries

The 2D discrete wavelet transformation is the direct generalization of the 1D
discrete wavelet transformation. A single level 2D DWT can be separated into
two times operations of 1D DWT. Thus, a 1D DWT of a signal x is calculated
by passing it through a series of filters, i.e. the samples are passed through a low
pass filter with impulse response g resulting in a convolution of the two,

y[n] = (x ∗ g)[n] =
∞∑

k=−∞
x[k]g[n − k] (1)

To perform a 1D discrete wavelet transformation, a signal x[n] ∈ R
N is firstly

passed through a half band high-pass filter GH [n] and a low-pass filter GL[n].
For example, the classical Haar wavelet [13] are defined by,

GH [n] =

⎧
⎨

⎩

1, n = 0
−1, n = 1
0, otherwise

, GL[n] =
{

1, n = 0, 1
0, otherwise (2)

A digital image x can be viewed as a 2D signal with n row and m column.
Therefore, the 2D DWT of x can be treated as 1D DWT along rows and columns
of x. After DWT, although the decomposition has halved the time resolution, the

310 G. Tao et al.

frequency resolution has been doubled. The frequency resolution can be further
increased by decomposing the approximation coefficients. After n-level DWT,
there are about 3n+1 subbands are obtained.

The 2D-DWT are defined as follows:

xJ
LL (n1, n2) =

K−1∑

i1=0

K−1∑

i2=0

g (i1) · g (i2)

· xJ−1
LL (2n1 − i1) (2n2 − i2)

(3)

where J is decompostition level, K is filter length, g(n) is the impulse response
of the low-pass filter G(z), h(n) is the impulse response of the high-pass filter
H(z), x0

LL (n1, n2) is input image. Detailed wavelet decomposition introduction
can be found in [13].

The 2D-DWT converts the raw image into four sub-bands: average (LL), ver-
tical (HL), horizontal (LH), and diagonal (HH) information, corresponding to
each wavelet sub-band coefficient. Note that after 2D-DWT decomposition, the
combination of four sub-bands always has the same dimensions as the original
input images [13]. After decomposing the raw image by DWT, four subbands
are obtained. When we examine the frequency distribution of the obtained coef-
ficients in each subband, one will find that most of the values being nearly zero,
shown in the second row of Fig. 1. This decomposition provides a nice condition
for reducing the network parameters.

4 Discrete Wavelet Transformation Decomposition
Convolution

This paper proposed a method that combines discrete wavelet transformation
and convolution to reduce the spatial size of the parameters used in the deep
network. The proposed decomposition and differential fusion method, named
by discrete wavelet transformation decomposition convolution, guides the net-
work work on the frequency domain and efficiently differential fuse the subband
coefficients after feature map decomposition.

Specifically, in the neural network, discrete wavelet transformation decom-
poses the image details in four subbands (1-level) or 3N +1 subbands (N -level).
In 1-level DWT, note that each subband’s spatial size is a quarter of the original
input image. Then, the processing in the original image can be transformed into
the one in the subbands with a smaller spatial scale and more sparse informa-
tion. Due to the above fact as well as the convolutional neural network’s powerful
feature extraction ability and representation ability, we proposed to combine the
wavelet transformation with convolution operation and also proposed differen-
tial fusion method to combinate high frequency subbands with low frequency
subbands.

The entire architecture of the DWTDC block is illustrated in Fig. 2. It can be
separated into the decomposition part, the fused part, and further level DWTDC,
which are detailed in the following subsections.

Incorporating DWTDC into Deep Network to Achieve Light Training 311

Fig. 1. An example of 1-level 2d-DWT with Haar kernel. Most of the resulted coeffi-
cients along different directions are nearly to be zero and thus the representation of
the image could be economic.

4.1 Feature Map DWT Decomposition

To embed DWT in the neural network, we extend 2D discrete wavelet transform
to tensor discrete wavelet transform, named by feature map DWT decomposi-
tion (FW-DWTD). FM-DWTD can be freely embedded in the neural network.
It receives the previous layer’s output as its input and generates four sub-bands:
average (A), vertical(V), horizontal(H), and diagonal(D) feature map when car-
rying on 1-level FW-DWTD. Further, the scale of the feature map can be reduced
to 1

4N
of the original scale after N -level FM-DWTD. Obviously, the scale of the

feature map is greatly reduced. It means that the subsequent network layer will
receive smaller scale feature vectors, which brings many benefits. On the one
hand, it can reasonably reduce the depth of the neural network and maintain
the same receptive field. On the other hand, it can reduce the neurons of the
full connectivity layer, which is notoriously known for its huge parameters. In a
word, thank the economic expression of wavelet decomposition, the scale of the
feature map is reduced in a reasonable way, which provides conditions for the
reduction of parameters and calculation amount of the neural network.

The FM-DWTD is in light-blue background in Fig. 2. As a discrete signal,
feature map is inputted into network, and filtered through low-pass filter and
high-pass filter to get the low-frequency part and the high-frequency part, respec-
tively. And then the high-frequency part and the low-frequency part can be
further filtered to get four subbands, which are average subband, horizontal
subband, vertical subband, and radial subband.

4.2 Subbands Differential Fusion

By benefiting from the FM-DWTD processing block, the neural network obtains
several small scale subbands. The naive method is concatenated all the sub-
bands together and convolute on the concatenated subband. However, in such

312 G. Tao et al.

Fig. 2. The proposed DWTDC consists of two parts: the feature map DWT decom-
position and the subbands differential fusion. The light-blue area represents the DWT
decomposition, the light-gray area represents the subbands differential fusion. After
N-level DWTDC, DWT decomposition generates 3N + 1 subbands, SDF fuses all sub-
bands. (Color figure online)

a method, all the subbands will be treated equally. Thus, the solution is not
optimal. We proposed a differential fusion scheme, named by SDF, to utilize
the subbands with complementary information. This strategy can make ratio-
nal use of computing resources, reduce parameters, and avoid wasting too many
resources on task-irrelevant feature computation.

In the light gray background of Fig. 2, it is subbands differential fusion. N
level decomposition generates 3N + 1 subbands. Different subbands contain dif-
ferent frequencies. The low-frequency part contains coarse content of image while
the high-frequency part contains detailed content of image, such as edge bound-
ary details and most of the noises. According to the fact that generalized fea-
tures are from the low-level layer and task-specific features are from high-level,
we proposed a method for preferentially convolution on high frequency. Instead
of equally treating convolution, high frequency information is given high priority
to convolution to obtain deeper features. Then we concatenate the low frequency
part and the convoluted high frequency part to prepare the next SDF operation.
Most notably, the convolution performed at low frequency is an adjunct to the
high frequency. It results in that relatively few convolution operations are car-
ried out for low frequency information which acts as complementary information.
This means that it reduced the computation of task-weak-correlated information
reasonably. To sum up, the more important the feature, the higher the priority,
the earlier it enters the differential fusion block. The result of the current convo-
lution and the feature maps of the next priority will be taken as the next input.

Incorporating DWTDC into Deep Network to Achieve Light Training 313

Differential fusion block continually convolutes, and the attained feature map
continually is added by priority, until all feature maps are input into the block.

5 Experiments

To evaluate the effectiveness of our proposed method, we compared the per-
formance of PlainNet and DWTNet on eight datasets. The details of datasets
and experiment setting, PlainNet, and DWTNet are in Sect. 5.1, Sect. 5.2, and
Sect. 5.3, respectively. Finally, the experimental results are in Sect. 5.4.

5.1 Datasets and Experiment Setting

We first verify the effectiveness of the proposed method on five computer vision
benchmark datasets using five classical neural networks and then experiment to
verify the proposed method also achieves light training on medical image datasets.
Specifically, the models were trained and evaluated on the various datasets includ-
ing COVID-19 CT dataset [23], wide-angle retinal images dataset [22], childhood
medulloblastoma microscopic images dataset [12], MNIST dataset, cifar10 [10]
dataset, cifar100 dataset, Coil20 dataset [14], Coil100 dataset [15]. In experiments,
we compared DWTNets with corresponding PlainNets. We compared the number
of parameters, the memory occupied by the model, and the classification accuracy
of DWTNet with those of plaint net to validate the effectiveness of our block.

5.2 PlainNet

Network without DWRDC block, we call it PlainNet, such as LeNet, VGGNet,
AlexNet, GoogLeNet, ResNet and so on [18]. As shown in Fig. 3 (a), the PlainNet
is the hierarchical model, which is mainly composed of non-linear convolutional
layers, pooling layers, and fully connected layers. Five classic PlainNets were
trained on five benchmark datasets to record the classification accuracy, loss,
memory occupied by the model, and the number of parameters.

5.3 DWTNet

Based on the PlainNet, we replaced some convolution layers with the DWTDC
block proposed in this paper to get a corresponding new network, which is called
DWTNet. As shown in Fig. 3 (b), the DWTNet is the hierarchical model, which
is also mainly composed of non-linear convolution layers, pooling layers, and
fully connected layers. While different, it also contains DWT convolution layers.
Meanwhile, it has shallower architecture than the PlainNet, because the DWT
convolution layer has the ability to compress the representation space of the
feature map.

314 G. Tao et al.

Fig. 3. DWTDC for PlainNet. (a): A PlainNet which contains plain operation, such as
convolution, downsampling and fully connection. (b): Proposed block as in Fig. 2 for
plain net.

5.4 Experimental Results

The results in Table 1 show that training DWTNet equipped with DWTDC
instead of plain convolution can considerably reduce the parameters scale. Exper-
imental results on five benchmark datasets show its effectiveness and feasibility
compared with the plain network’s results. Lenet, Vgg16, Alexnet, ResNet, and
Inception networks equipped with DWTDC module reduce the model parame-
ters to 57.00%, 15.57%, 48.87%, 19.01% and 36.83%, respectively, while result-
ing in equivalent or even better performance compared with the original mod-
els. Compared with the original network, the parameter amounts of DWTNet-
works have greatly decreased by 64.54% on average. Meanwhile, DWTNetworks
need less memory consumption. Lenet, Vgg16, Alexnet, ResNet, and Inception
networks equipped with DWTDC module reduce the memory consumption to
57.76%, 15.57%, 48.88%, 33.13% and 36.83%, respectively.

In detail, Fig. 4 shows the comparisons of the convergence process of PlainNet
and DWTNet trained on Coil datasets. With the number of iterations increasing,
the DWTNet converges faster than the PlainNet, and the classification accuracies
of the two networks reach the same level. Specifically, the accuracy of the model
gradually converges with the increasing of iterations. The DWTNet quickly con-
verges around in the 13th epoch on the coil20 dataset, while the PlainNet model
converges around in the 25th epoch. Both methods achieve comparable perfor-
mance. The parameters used in both two DWTNet neural network models are
75.47% and 74.48% lower than those in the PlainNet models, respectively.

It is worth noting that the deeper and more complex the network is equipped
with, the more obviously the parameters drop. In this experiment, the param-
eters of the five-layer network (LeNet) decreased by 43.00%, and those of the
deep, complex network, such as Vgg16, AlexNet, ResNet, and Inception network,
decreased by 84.43%, 51.13%, 80.99% and 63.17%, respectively. This is due to
DWTDC’s powerful ability to spatial scale compression. 1-level DWTDC can
reduce the spatial scale size of feature map to a quarter of the original size. This

Incorporating DWTDC into Deep Network to Achieve Light Training 315

Table 1. Experiments on five benchmark datasets by incorporating the proposed
DWTDC block into five benchmark networks.

Datasets

MNIST Cifar10 Cifar100 Coil20 Coil100

Measurements PlainNet DWTNet PlainNet DWTNet PlainNet DWTNet PlainNet DWTNet PlainNet DWTNet

LeNet # of Parameters (M) 0.044 0.039 0.062 0.044 0.070 0.052 1.629 0.413 1.636 0.421

Memory Cost (MB) 0.197 0.173 0.266 0.195 0.296 0.225 6.240 1.600 6.27 1.63

Loss train 0.0084 0.0199 0.968 1.0015 2.5488 2.5035 0.0016 0.0019 0.0023 0.0027

Accuracy train 0.9985 0.9939 0.6606 0.6418 0.3576 0.3604 1.0000 1.0000 1.0000 1.0000

Testing Loss 0.0359 0.0547 1.1127 1.1723 2.9039 2.8843 0.025 0.0145 0.0102 0.0073

Testing Accuracy 0.9888 0.9842 0.61 0.588 0.288 0.2944 0.9931 0.9977 0.9991 1.0000

Vgg16 # of Parameters (M) 134.276 20.772 134.277 20.772 134.646 21.141 134.317 20.813 134.646 21.141

Memory cost (MB) 512.28 79.27 512.29 79.27 513.69 80.68 512.44 79.43 513.69 80.68

Loss train 0.0101 0.02 0.5912 0.5153 1.2354 1.2699 5.97E−05 9.83E−05 0.0022 4.10E−04

Accuracy train 0.9966 0.9934 0.792 0.8191 0.6471 0.6344 1.0000 1.0000 0.9996 0.9998

Loss test 0.0172 0.0183 0.8193 0.7384 2.2308 2 1.54E−07 4.29E−06 0.0054 7.87E−07

Accuracy test 0.9944 0.9944 0.721 0.7561 0.4442 0.4869 1.0000 1.0000 0.9986 1.0000

Alexnet # of Parameters (M) 50.832 24.813 50.855 24.836 50.946 24.926 50.842 24.823 50.946 24.926

Memory cost (MB) 193.96 94.70 194.05 94.79 194.39 95.13 193.99 94.74 194.39 95.13

Loss train 0.0101 0.0149 0.5611 0.777 1.1693 1.6039 0.0029 0.001 7.52E−04 0.0028

Accuracy train 0.9968 0.9955 0.8036 0.7281 0.652 0.5456 0.999 1.0000 0.9996 0.9992

Loss test 0.0135 0.0209 0.7002 0.9575 1.9222 2.3511 7.19E−06 6.27E−06 7.08E−07 1.56E−05

Accuracy test 0.9952 0.9938 0.7673 0.6693 0.506 0.4226 1.0000 1.0000 1.0000 1.0000

ResNet # of Parameters (M) 0.078 0.023 0.079 0.023 0.085 0.025 0.079 0.024 0.085 0.025

Memory cost (MB) 0.376 0.126 0.378 0.125 0.401 0.132 0.379 0.126 0.401 0.132

Loss train 0.0212 0.0147 0.6338 0.7292 1.7068 2.4425 0.0785 0.0116 0.0749 0.0125

Accuracy train 0.9999 0.9970 0.7994 0.7455 0.5476 0.3572 1.0000 1.0000 0.9994 0.9992

Loss test 0.0409 0.0365 0.8546 0.9113 2.3088 2.7331 0.0776 0.0210 0.0718 0.0110

Accuracy test 0.9932 0.9908 0.7220 0.6916 0.4240 0.3090 1.0000 0.9954 0.9995 1.0000

Inception # of Parameters (M) 36.661 13.472 36.661 13.473 36.800 13.611 36.677 13.488 36.900 13.612

Memory cost (MB) 140.86 51.76 140.87 51.76 141.39 52.28 140.92 51.81 141.39 52.28

Loss train 0.0357 0.004 0.2578 0.4956 1.5493 2.0172 0.0023 0.0017 0.0011 7.98E−04

Accuracy train 0.9906 0.9988 0.9133 0.8303 0.5658 0.4663 1.0000 1.0000 1.0000 1.0000

Loss test 0.0136 0.0133 0.5075 0.7838 1.921 2.0544 1.67E−07 6.86E−07 2.00E−07 8.64E−07

Accuracy test 0.9954 0.9957 0.8406 0.7517 0.5224 0.4617 1.0000 1.0000 1.0000 1.0000

1 3 5 7 9 11 13 15 17 19 21 23
Epoch

0

0.2

0.4

0.6

0.8

1

Va
lid

at
io

n
ac

cu
ra

cy

PlainNet
DWTNet(Ours)

(a) Validation accuracy on dataset coil20.

1 3 5 7 9 11 13 15 17 19 21 23
Epoch

0

0.2

0.4

0.6

0.8

1

Va
lid

at
io

n
ac

cu
ra

cy

PlainNet
DWTNet(Ours)

(b) Validation accuracy on dataset coil100.

Fig. 4. Comparisons of convergence process of PlainNet and DWTNet on dataset coil20
and coil100 dataset.

is an exponential powerful compression. As shown in Fig. 2, the feature map of
size H · W is transformed into 1

2N
H · 1

2N
W through DWTDC.

DWTDC reduces the number of weight parameters and the consumption
of memory, with minor (or no) accuracy loss. LeNet, Vgg16, Alexnet, ResNet
and Inception network drop by +0.2960%, −1.584%, +6.9220%, +3.0380%, and
+2.9860%, respectively. Summarily, the accuracy was reduced by an average of

316 G. Tao et al.

2.3316%. Compared with the test results, the decline of the parameters does not
have a great negative impact on the accuracy and loss of the PlainNet.

The proposed method maintains the same performance on medical images.
We take the diagnosis-task experiments on three difficult datasets, there are
diagnoses of COVID-19, screening of Retinopathy of prematurity (ROP), and
childhood medulloblastoma (CMB) diagnosis respectively. As shown in Table 2,
Vgg16 equipped with DWTDC module reduces the PlainNet parameters from
134.244M to 20.739M. And the memory is reduced from 537.039 to 82.995 MB.
Besides, the experiment results of COVID-19, ROP, and CMB show that DWT-
Nets achieve more stability than original PlainNets. DWTNet’s loss is consis-
tently less than the loss of PlainNet. On COVID-19 diagnosis task, training loss,
validation loss, and testing loss are reduced from 0.477, 0.712, 0.799 to 0.429,
0.659, 0.692 respectively. On the CMB diagnosis task, training loss, validation
loss, and testing loss are reduced from 0.361, 0.309, 0.242 to 0.179, 0.133, 0.146
respectively. Meanwhile, the accuracy of the experiments on COVID-19, ROP,
and CMB are improved by −0.005, +0.037 and +0.082 respectively. It means
that DWTNets have a scale of only 15.45% of the original model but also can
achieve or even surpass the performance of the original model.

Experiments by comparing with benchmark models on cifar10 show that the
method equipped with the proposed DWTDC dramatically reduced the number
of parameters and achieved light training. It maintains considerable superior-
ity in classification performance. As shown in Table 3, our method, a ResNet-
like network equipped with our proposed DWTDC block, achieves better per-
formance than other methods on all the metrics. Specifically, the parameter
amount, memory occupy, and classification accuracy of our proposed method is
0.024, 0.126, and 0.9014, which are better than by the BinaryNet (0.171, 0.716,
0.8257), XNORNet (0.171, 0.719, 0.8685), Xception (20.882, 79.960, 0.8768) and
Mobilenetv2 (2.271, 9.027, 0.8990).

Table 2. Experiment on three diagnosis tasks

Dataset Method # of

Parame-

ters(M)

Memory

Cost(MB)

Loss Accuracy

train val test train val test

COVID-19 CT PlainNet 134.244 537.039 0.477 0.712 0.799 0.771 0.686 0.696

DWTNet (Ours) 20.739 82.995 0.429 0.659 0.692 0.799 0.720 0.691

Wide-angle retina PlainNet 134.244 537.039 0.144 0.245 0.897 0.945 0.920 0.734

DWTNet (Ours) 20.739 82.995 0.209 0.245 0.579 0.916 0.909 0.771

Medulloblastoma

microscopic

PlainNet 134.244 537.039 0.361 0.309 0.242 0.792 0.821 0.871

DWTNet (Ours) 20.739 82.995 0.179 0.133 0.146 0.938 0.964 0.953

Incorporating DWTDC into Deep Network to Achieve Light Training 317

Table 3. Computation resources costed by the tested models

Method # of Parameters (M) Memory (MB) Accuracy

BinaryNet [5] 0.171 0.716 0.8257

XNORNet [16] 0.171 0.719 0.8685

Xception [3] 20.882 79.960 0.8768

Mobilenetv2 [17] 2.271 9.027 0.8990

Ours 0.024 0.126 0.9014

6 Conclusion

Our work presents a deep wavelet convolution technique that reduces a mass of
parameters in the neural network with minor (or no) accuracy loss and guides
the network to work in the frequency domain whose representation space is
sparse and of small spatial size. Moreover, we effectively incorporate the proposed
method in the neural network without breaking the end-to-end architecture of
the network. In addition, thanks to the wavelets, we are able to guide the network
to pay more attention to detailed information. Furthermore, by fusing all the
subbands, we reduce the spatial size of the representation to reduce the number
of parameters and computation in the network.

Acknowledgment. This work was partially supported by the National Natural Sci-
ence Foundation of China (61771007), Key-Area Research and Development of Guang-
dong Province (2020B010166002, 2020B111119001), Science and Technology Planning
Project of Guangdong Province (2017B020226004), and the Health & Medical Collab-
orative Innovation Project of Guangzhou City (202002020049).

References

1. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found.
Comput. Math. 9(6), 717 (2009)

2. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural
networks with the hashing trick. In: International Conference on Machine Learning,
pp. 2285–2294 (2015)

3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

4. Cotter, F., Kingsbury, N.: Deep learning in the wavelet domain. arXiv preprint
arXiv:1811.06115 (2018)

5. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: training deep neural networks with weights and activations constrained
to +1 or −1. arXiv preprint arXiv:1602.02830 (2016)

6. Daubechies, I.: The wavelet transform, time-frequency localization and signal anal-
ysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)

http://arxiv.org/abs/1811.06115
http://arxiv.org/abs/1602.02830

318 G. Tao et al.

7. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
Neural Information Processing Systems, pp. 1269–1277 (2014)

8. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks
using vector quantization. arXiv preprint arXiv:1412.6115 (2014)

9. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530 (2015)

10. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep. Citeseer (2009)

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

12. Mahanta, D.D.D.L.B.: Childhood medulloblastoma microscopic images (IEEE
Dataport (2020). https://dxdoi.org/1021227/w0m0-mw21. https://doi.org/10.
21227/w0m0-mw21

13. Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier (1999)
14. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20. Tech.

rep. (1996)
15. Nene, S.A., Nayar, S.K., Murase, H.: object image library (coil-100). Tech. rep.

(1996)
16. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classi-

fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

17. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

18. Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures.
IEEE Access 7, 53040–53065 (2019)

19. Subhashini, A., Victor, S.: A new approach on denoising for 1D, 2D and 3D images
based on discrete wavelet transformation and thresholding. Int. J. Adv. Res. Comp.
Sci. 9(1), 708–710 (2018)

20. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. arXiv preprint arXiv:1608.03665 (2016)

21. Yang, L., Yang, P., Ni, R., Zhao, Y.: Xception-based general forensic method on
small-size images. In: Pan, J.-S., Li, J., Tsai, P.-W., Jain, L.C. (eds.) Advances
in Intelligent Information Hiding and Multimedia Signal Processing. SIST, vol.
157, pp. 361–369. Springer, Singapore (2020). https://doi.org/10.1007/978-981-
13-9710-3 38

22. Zhang, Y.: DNN classifier of wide-angle retinal images in computer-aided screening
for ROP (IEEE Dataport 2018). https://dxdoi.org/1021227/q5jw-t682. https://
doi.org/10.21227/q5jw-t682

23. Zhao, J., Zhang, Y., He, X., Xie, P.: COVID-CT-dataset: a CT scan dataset about
COVID-19. arXiv preprint arXiv:2003.13865 (2020)

http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1511.06530
https://dxdoi.org/1021227/w0m0-mw21
https://doi.org/10.21227/w0m0-mw21
https://doi.org/10.21227/w0m0-mw21
https://doi.org/10.1007/978-3-319-46493-0_32
http://arxiv.org/abs/1608.03665
https://doi.org/10.1007/978-981-13-9710-3_38
https://doi.org/10.1007/978-981-13-9710-3_38
https://dxdoi.org/1021227/q5jw-t682
https://doi.org/10.21227/q5jw-t682
https://doi.org/10.21227/q5jw-t682
http://arxiv.org/abs/2003.13865

MMF: A Loss Extension for Feature
Learning in Open Set Recognition

Jingyun Jia(B) and Philip K. Chan

Florida Institute of Technology, Melbourne, FL 32901, USA
jiaj2018@my.fit.edu, pkc@fit.edu

Abstract. The objective of open set recognition (OSR) is to classify the
known classes as well as the unknown classes when the collected samples
cannot exhaust all the classes. This paper proposes a loss extension that
emphasizes features with larger and smaller magnitudes to find represen-
tations that can more effectively separate the known from the unknown
classes. Our contributions include: First, we introduce an extension that
can be incorporated into different loss functions to find more discrim-
inative representations. Second, we show that the proposed extension
can significantly improve the performances of two different types of loss
functions on datasets from two different domains. Third, we show that
with the proposed extension, one loss function outperforms the others in
training time and model accuracy.

Keywords: Open set recognition · Feature learning · Loss extensions

1 Introduction

The OSR problem aims to classify the multiple known classes for a multinomial
classification problem while identifying the unknown classes. The OSR problem
defines a more realistic scenario and has drawn significant attention in applica-
tion areas such as face recognition [12], malware classification [5] and medical
diagnoses [15].

In this paper, we introduce a loss extension to help the existing loss func-
tions better handle the open set scenario. The proposed extension is inspired by
Extreme Value Signatures (EVS) in [17]. Borrowing from a pre-trained neu-
ral network for regular classification, EVS uses only the top K activations
(i.e., largest in magnitude) at one layer for calculating the distance between an
instance and a class. The EVS distance function can help identify the unknown
class. Instead of using a pre-trained network and the top K activations, we
directly emphasize features with the largest, as well as smallest, magnitudes
during network training. We name our approach Min Max Feature (MMF).
Although the MMF extension is not a standalone loss function, it can be incor-
porated into different loss functions. Our contribution in this paper is threefold:

Partially supported by grants from Amazon and Rockwell Collins to Philip Chan.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 319–331, 2021.
https://doi.org/10.1007/978-3-030-86340-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_26&domain=pdf
http://orcid.org/0000-0003-0865-049X
http://orcid.org/0000-0002-3878-4205
https://doi.org/10.1007/978-3-030-86340-1_26

320 J. Jia and P. K. Chan

First, we propose MMF as an extension to different types of loss functions for
the OSR problem. Second, we show that MMF achieves statistically significant
AUC ROC improvement when applied to two types of loss functions (classi-
fication and representation loss functions) on four datasets from two different
domains (images and malware). Third, our results indicate that the combination
of MMF and the ii loss function [5] outperforms the other combinations in both
training time and overall F1 score.

We organize the paper as follows. In Sect. 2, we give an overview of related
work. Section 3 presents the MMF loss extension. Finally, Sect. 4 shows that the
MMF extension can improve different types of loss functions significantly.

2 Related Work

The OSR problem is related to PU (Positive and Unlabeled) learning [10], which
can be regarded as a binary classification problem with the absence of nega-
tive samples. The OSR problem extends the binary classification problem to
a multi-class classification problem, with some classes missing from the train-
ing set, and will be recognized as an unknown class during testing. We can
divide OSR techniques into three categories based on the training set compo-
sitions. The first category includes the techniques that borrow additional data
in the training set. Dhamija et al. [2] utilize the differences of feature mag-
nitudes between known and borrowed unknown samples as part of the objec-
tive function. Hendrycks et al. [6] propose Outlier Exposure(OE) to distinguish
between anomalous (unknown) and in-distribution (known) examples. In gen-
eral, although borrowing and annotating additional data turns OSR into a com-
mon classification problem, the retrieval and selection of additional datasets
remain an issue.

The research works that generate additional training data fall in the second
category of open set recognition techniques. Most data generation methods are
based on GANs. Neal et al. [11] add another encoder network to traditional
GANs to map from images to a latent space. Lee et al. [9] generate “boundary”
samples in the low-density area of in-distribution acting as unknown samples.
While generating unknown samples for the OSR problem has achieved great
performance, it requires more complex network architectures.

The third category of open set recognition does not require additional data.
Most of the research works require outlier detection for the unknown class. Pid-
horskyi et al. [13] propose manifold learning based on training an Adversarial
Autoencoder (AAE) to capture the underlying structure of the distributions of
known classes. Hassen and Chan [5] propose ii loss for open set recognition. It
first finds the representations for the known classes during training and then
recognizes an instance as unknown if it does not belong to any known classes. In
EVS, Schultheiss et al. [17] investigate class-specific representations for novelty
detection tasks. The research work shows that each class’s mean representation
can capture discriminative information of both known and unknown classes.
EVS focuses on the top K activations via binarizing the activations; however,

MMF: A Loss Extension for Feature Learning in Open Set Recognition 321

Fig. 1. An overview of the network
architectures of different types of loss
functions. The convolutional layers are
optional. The MMF module in red is our
proposed loss extension. (Color figure
online)

Fig. 2. Squared differences of MAV val-
ues between the known and unknown
classes in Fig. 3a. The x-axis is the abso-
lute feature values in six features, and
the y-axis is their corresponding squared
differences to the unknown class.

choosing an appropriate K can be challenging. Also, EVS assumes that all the
activation values are positive and only looks at the larger ones. We address both
limitations in our proposed approach.

While our approach can be incorporated into different loss functions, we
focus on two types of loss functions in this paper: the classification loss func-
tions and the representation loss functions. The objective of classification loss,
such as cross-entropy loss, is to lower the classification error of the training data.
The representation loss functions are normally applied to the representation lay-
ers, such as triplet loss in [16] and ii loss in [5]. Triplet loss intends to find an
embedding space where the distance between an anchor instance and another
instance from the same class is smaller by a user-specified margin than the dis-
tance between the anchor instance and another instance from a different class.
Ii loss aims to maximize the distance between different classes (inter-class sepa-
ration) and minimize the distance of an instance from its class mean (intra-class
spread).

3 Approach

We propose the MMF extension to learn more discriminative representations
through known classes, thus better separating known and unknown classes. The
proposed MMF extension does not borrow or generate additional data for the
unknown class, and it can be incorporated into different loss functions. We focus
on classification loss functions such as cross-entropy loss and representation loss
functions, such as triplet loss and ii loss (Sect. 2).

A typical classification neural network consists of an input layer, hidden
layers, and classification layer. We can consider the hidden layers as different
levels of representations of the input. We call the values of the last hidden layer

322 J. Jia and P. K. Chan

Fig. 3. The heatmap of MAVs (columns) of the MNIST classes using cross-entropy
loss without and with different extensions. Each row is a learned feature. The
largest/smallest magnitude magnitude of a feature in each MAV is in a red/yellow
box. MAV of the unknown class is in a green column/box. (Color figure online)

activation vector (AV), and each activation is a learned feature. The mean acti-
vation vectors (MAV) of a class is the average of the activation vectors of the
class. For example, the network in Fig. 1a contains one convolutional layer, one
fully connected layer, one representation layer (representation layer Z), and one
classification layer (softmax layer). In some scenarios, a neural network only
consists of the input layer and hidden layers as in Fig. 1b, where we use learned
representations instead of a classification layer for classification tasks. Figure 3a
shows the learned MAV values from the representation layer using standalone
cross-entropy loss.

To improve the accuracy of detecting open set samples from unknown classes,
we can increase the distances (we use Euclidean distance here) between the
learned features of known and unknown samples, summarized by the MAVs
of the known and unknown classes. Squared differences are the components of
Euclidean distance. Thus we can increase the distance by increasing squared
differences. Figure 2 depicts the relationship between squared differences with
the absolute feature values (feature magnitudes) of the six known classes. We
consider a feature with a larger magnitude is more significant than that with a
smaller magnitude. We observe that a more significant feature leads to a higher
squared difference to the unknown class. The reason is that the MAV of the
unknown class has a relatively small magnitude (green column), as we observe
in Fig. 3a. The small magnitude is due to the unknown class being absent from
training, and hence its features are not learned. More importantly, the squared
difference increases faster with more significant features, which indicates a slight
improvement in a more significant feature will increase squared difference more.
Thus, we want the features with larger magnitudes to become even more signif-
icant to increase the distance between the unknown and known classes.

However, based on the preliminary experiments, we found that after enlarg-
ing the magnitudes of the most significant features for the known classes, the
unknown class’s MAV became further away from the origin, which reduces the

MMF: A Loss Extension for Feature Learning in Open Set Recognition 323

increase in the distance between the known and unknown classes. As shown in
Fig. 3b, the MAV of the unknown class (green column) has significantly increased
compared to the one only using standalone cross-entropy loss in Fig. 3a. To fur-
ther improve accuracy and increase the magnitudes of the most significant fea-
ture, we also decrease the magnitudes of the least significant features to mitigate
the increase of the MAV of the unknown class. Comparing Fig. 3c and Fig. 3a,
we can see that after reducing the magnitude of the least significant features,
the feature values of unknown classes indeed get smaller. Consequently, the dis-
tance between the MAV of a known class and the MAV of the unknown class
has increased, and the classes are more separated. For example, the Euclidean
distance between class “9” and the unknown class learned from standalone cross-
entropy loss in Fig. 3a is 2.32. After adding “MMF” in Fig. 3c enlarges the dis-
tance to 2.62, making the two classes more separable.

Therefore, our MMF extension has two properties. Property A maximizes
the most significant feature, i.e., the feature with the largest magnitude, for all
the known classes. Property B minimizes the least significant feature, i.e., the
feature with the smallest magnitude, for all the known classes. As a result, the
learned representations for known classes should be more discriminative, while
the unknown classes should be less affected.

3.1 Learning Objectives

Let x ∈ X be an instance and y ∈ Y be its label. The hidden layers in a
neural network can be considered as different levels of representations of input
x. Suppose that there are C known classes in training data, and C +1 classes in
test data with the additional class as unknown class. We denote the MAV of class
i as μi, and μij represents the jth feature of the MAV of class i. Assume the AVs
and MAVs have F dimensions, representing F features, we stack the MAVs for
all the classes to form a representation matrix U

C×F . To satisfy Property A, we
first select the most significant features for each class to form the “max feature”
vector. The ith element in “max feature” is for class i:

max featurei = max
1≤j≤F

|μij |, (1)

In the example of Fig. 3a, the “max feature” would be (1.8, 1.2, 1.3, 1.4, 1.6,
1.4) (the absolute values of the red boxes). Likewise, for Property B, we measure
the vector of the “min feature” as the least significant feature for each class. The
ith element is for class i:

min featurei = min
1≤j≤F

|μij | (2)

The “min feature” in the example of Fig. 3a would be (0.13, 0.45, 0.27, 0.34,
0.25, 0.32) (the absolute values of the yellow boxes). Then, to maximize all the
values in the “max feature”, we maximize the lower boundary (i.e., the smallest
value) in “max feature” directly. Thus the most significant features for all the
known classes would be maximized as Property A. Meanwhile, we minimize the

324 J. Jia and P. K. Chan

largest value in the “min feature” to implicitly minimize all the values in the
“min feature”. The least significant features for all the known classes would be
minimized as Property B. As a result, the proposed MMF extension satisfies
both properties:

MMF = max
1≤i≤C

(min featurei) − min
1≤i≤C

(max featurei) (3)

In the example of Fig. 3a, we would like to maximize the “1.2” in the
“max feature” and minimize the “0.45” in the “min feature”. There are alter-
native methods to generate the “max feature” and “min feature”, for example,
instead of selecting the highest absolute values for “max feature”, we exper-
imented with the highest values (max feature1i = max1≤j≤F (μij)) and the
lowest values (max feature2i = max1≤j≤F (−μij)) to form two “max feature”
vectors and later to be maximized at the same time. However, our experiments
indicate that using the single “max feauture” vector can achieve better perfor-
mances. There are also other methods to implicitly maximize the most significant
features and minimize the least significant values for all the classes, such as max-
imizing the average value of the “max feature”, or minimizing the average value
of the “min feature”, i.e.

∑C
i=1

1
C (min featurei −max featurei). However, the

results of using average value are weaker than using the extreme values across
all classes, hence we choose to use the extreme values in our extension function
and in our experiments.

3.2 Training with MMF and Open Set Recognition

In addition to Properties A and B, the MMF extension can be incorporated into
different loss functions. We focus on two types of loss functions: a) loss functions
designed for decision layers such as cross-entropy loss; b) loss functions designed
for representation layers such as triplet loss and ii loss. Notably, we combine the
MMF extension with these two types of loss functions differently, as Fig. 1.

We use the network architecture in Fig. 1a to simultaneously train the net-
work with classification loss functions and the MMF extension. During each
iteration, first, we extract AVs and generate the representation matrix; second,
we construct the MMF extension function from the “max feature” vector and
“min feature” vector; third, the weights of each layer of the network are first
updated to minimize the MMF extension then updated to minimize classifica-
tion loss functions using stochastic gradient descent.

The MMF extension can also be incorporated into representation loss func-
tions such as triplet loss and ii loss. As both representation loss functions and
the MMF extension should be applied to the layer learning representations, their
combination gives us:

L = Lrep + λMMF, (4)

Lrep is a representation loss function, and λ is a hyperparameter that strikes
a balance between the representation loss function and the MMF extension.

MMF: A Loss Extension for Feature Learning in Open Set Recognition 325

Figure 1b shows the network architecture using a representation loss function
with an MMF extension. The combination serves on the Z-layer of the network.
Moreover, the network weights get updated using stochastic gradient descent
during each iteration.

After the training process, we obtain the representation centroids for each
class. Then during the inference, we use the same strategy as used in ii loss [5].
First, we calculate the outlier score as the distance of learned representation to
the nearest representation centroid. Then we sort the outlier score of the training
data in descending order and pick the 99 percentile outlier score value as the
outlier threshold. If the outlier score of a test sample exceeds the threshold, it
will be recognized as the unknown class. Otherwise, it will be classified as the
known class with the nearest representation centroid.

4 Experimental Evaluation

We evaluate the MMF extension with simulated open-set datasets from the
following four datasets.

MNIST [14] contains 70,000 handwritten digits from 0 to 9, which is 10
classes in total. To simulate an open-set dataset, we randomly pick six digits as
the known classes participant in the training, while the rest are treated as the
unknown class only existing in the test set.

CIFAR-10 [7] contains 60,000 32 × 32 color images in 10 classes, with 6,000
images per class. There are 50,000 training images and 10,000 test images. We
first convert the color images to grayscale and randomly pick six classes out of
the ten classes as the known classes, while the remaining classes are treated as
the known class only existing in the test set.

Microsoft Challenge (MC) [8] contains disassembled malware samples
from 9 families. We use 10260 samples that can be correctly parsed then extract
their function call graphs (FCG) as in [4] for the experiment. The dimensionality
of the FCG is 63 × 63. Again, to simulate an open-set dataset, we randomly
pick six classes as the known classes, while the rest are considered unknowns.

Android Genome (AG) [18] consists of malicious android apps from many
families in different sizes. We use nine families (986 samples) with a relatively
larger size for the experiment to be fairly split into the training set, the test
set, and the validation set. We first use [3] to extract the function instructions
and then extract 1453 raw FCG features as in [4]. Like the MNIST and the MC
dataset, we randomly pick six classes as the known classes in the training set and
consider the rest as the unknown class, which are only used in the test phase.

4.1 Network Architectures and Evaluation Criteria

We evaluate the MMF extension associated with two types of loss functions:
classification loss functions and representation loss functions. Specifically, we
use the cross-entropy loss as the example of classification loss functions, and use

326 J. Jia and P. K. Chan

ii loss [5] and triplet loss [16] as the examples of representation loss functions.
Moreover, we compare these pairs with OpenMax [1].

For the MNIST dataset, the padded input layer is of size (32, 32), followed
by two non-linear convolutional layers with 32 and 64 nodes. We also use the
max-pooling layers with kernel size (3, 3) and strides (2, 2) after each convo-
lutional layer. We use two fully connected non-linear layers with 256 and 128
hidden units after the convolutional component. Furthermore, the linear layer Z,
where we extract the representation matrix, is six dimensions in our experiment.
We use the Relu activation function for all the non-linear layers and set the
Dropout’s keep probability as 0.2 for the fully connected layers. We use Adam
optimizer with a learning rate of 0.001. The network architecture of the CIFAR-
10 experiment is similar to the MNIST dataset, except the padded input layer is
of size (36, 36). The experiment for the MS Challenge dataset also implements
two convolutional layers. The padded input layer is of size (67, 67). However, we
only use one fully connected layer instead of two after the convolutional layers.
Also, we make the keep probability of Dropout as 0.9. The Android Genome
dataset does not use the convolutional component. We use a network with one
fully connected layer of 64 units before the linear layer Z. We also used Dropout
with a keep probability of 0.9 for the fully connected layers. We set the learning
rate of Adam optimizer as 0.1. Besides, we use batch normalization in all the
layers to prevent features from getting excessively large. And as mentioned in
Sect. 3.2, we use contamination ratio of 0.01 for the threshold selection.

As we discussed in Eq. 4, we use a hyperparameter λ combine the MMF
extension with the representation loss functions (i.e. ii loss and triplet loss in the
experiments) as: L = Lrep + λMMF . While the range of λ is (0, 1], we set λ
as 0.2 and 0.5 for ii loss and triplet loss for the MNIST and CIFAR-10 datasets.
For the MC dataset, we set λ as 0.5 and 0.3 for ii loss and triplet loss. We set λ
as 0.4 for both ii loss and triplet loss in the AG dataset’s experiments.

We simulate three different groups of open sets for each dataset then repeat
each group 10 runs, so each dataset has 30 runs in total. When measuring the
model performance, we use the average AUC scores under 10% and 100% FPR
(False Positive Rate) for recognizing the unknown class, as lower FPR is desirable
in the real world for cases like malware detection. Furthermore, we measure the
F1 scores for known and unknown classes (C +1 classes) separately as one of the
OSR tasks is to classify the known classes. Moreover, we perform t-tests with
95% confidence in both the AUC scores and F1 scores to see if the proposed
MMF extension can significantly improve different loss functions.

4.2 Experimental Results

We compare the model performances of OpenMax as well as three loss function
quadruples: cross-entropy loss, ii loss, and triplet loss. Table 1 shows the AUC
scores of the models in the four datasets; mainly, we focus on comparing the
“Standalone” with the corresponding “+MMF” subcolumns. We observe that
the quadruples, in general, achieve better AUC scores than OpenMax. Moreover,
with the MMF extension, the AUC scores of the loss functions have achieved

MMF: A Loss Extension for Feature Learning in Open Set Recognition 327

Table 1. The average AUC scores of 30 runs at 100% and 10% FPR of OpenMax and
three loss functions quadruples. The underlined values are statistical significant better
than the standalone loss functions via t-test with 95% confidence. The values in bold
are the highest values in each quadruple. The values in brackets are the highest values
in each row.

OpenMax ce ii triplet

FPR Standalone +MMF +MaxF +MinF Standalone +MMF +MaxF +MinF Standalone +MMF +MaxF +MinF

MNIST 100% 0.9138 0.9255 0.9479 0.9515 0.9393 0.9578 [0.9649] 0.9579 0.9607 0.9496 0.9585 0.9480 0.9404

10% 0.0590 0.0765 0.0744 0.0761 0.0751 0.0821 [0.0842] 0.0826 0.0830 0.0750 0.0796 0.0777 0.0739

CIFAR-10 100% [0.6757] 0.5803 0.5982 0.6103 0.5807 0.6392 0.6419 0.6437 0.6439 0.6106 0.6248 0.6131 0.6127

10% 0.0065 0.0070 0.0089 0.0090 0.0077 [0.0103] 0.0096 0.0100 0.0100 0.0089 0.0102 0.0092 0.0093

MC 100% 0.8739 0.9148 [0.9500] 0.9387 0.9352 0.9385 0.9461 0.9407 0.9397 0.9240 0.9430 0.9317 0.9178

10% 0.0405 0.0530 0.0635 0.0600 0.0588 0.0627 [0.0656] 0.0629 0.0619 0.0565 0.0622 0.0563 0.0546

AG 100% 0.4150 0.7506 0.8205 0.8152 0.7501 0.8427 0.8694 0.8763 [0.8831] 0.8271 0.8379 0.8203 0.8256

10% 0.0010 0.0058 0.0148 0.0163 0.0036 0.0285 0.0305 [0.0368] 0.0366 0.0229 0.0275 0.0260 0.0235

Table 2. The average F1 scores of 30 runs of OpenMax and three loss functions pairs.
The underlined values show statistically significant improvements (t-test with 95%
confidence) comparing with the standalone loss functions. The values in bold are the
highest values in each column.

MNIST CIFAR-10 MC AG

OpenMax Known Unknown Overall Known Unknown Overall Known Unknown Overall Known Unknown Overall

0.8964 0.7910 0.8814 0.6456 0.5407 0.6306 0.8903 0.7329 0.8679 0.2273 0.7761 0.3057

ce Standalone 0.7596 0.7561 0.7591 0.5672 0.3697 0.5390 0.8881 0.6643 0.8562 0.5346 0.0033 0.4587

+MMF 0.8504 0.7902 0.8809 0.5994 0.3271 0.5605 0.9090 0.7963 0.8929 0.5555 0.1142 0.4925

ii Standalone 0.9320 0.8833 0.9250 0.6206 0.3570 0.5829 0.9128 0.7257 0.886 0.6349 0.6677 0.6396

+MMF 0.9373 0.8916 0.9308 0.6205 0.3660 0.5842 0.9210 0.7680 0.8991 0.6407 0.7251 0.6528

triplet Standalone 0.9103 0.8302 0.8989 0.5798 0.4515 0.5614 0.8998 0.7018 0.8715 0.5929 0.6323 0.5986

+MMF 0.9239 0.8625 0.9152 0.5943 0.4790 0.5778 0.9064 0.7213 0.8800 0.6005 0.6895 0.6132

statistically significant improvements in 16 out of 24 cases (3 loss functions × 4
datasets × 2 FPR values).

Table 2 shows the average F1 scores for the four datasets. We first calculate
the F1 scores for each of the C known classes and the unknown class, then
average the C + 1 classes as the Overall F1 scores. We can see that the loss
functions with the MMF extension have better results than their corresponding
standalone versions for both the known and the unknown classes. We observe
that ii loss with the MMF extension is more accurate than the other five methods
in six out of twelve F1 scores. Particularly, it achieves the highest Overall F1
scores for three out of four datasets.

Table 3 shows the comparison of the average training time of the 30 runs
for the MNIST dataset with 5000 iterations via NVIDIA Tesla K80 GPU on
AWS. We find that adding the MMF extension almost doubles the training time
of using standalone cross-entropy. While for ii loss and triplet loss, adding the
extension increases the training time by around 1%. The reason is that the MMF
extension needs to create the representation matrix from scratch for the network
with ce loss, which needs an extra backpropagation step, both of which take more
time. We also observe that ii loss has the fastest training time among three loss
functions with our MMF extension. Overall F1 scores and training time indicate
that “ii+MMF” is the most accurate and efficient combination.

328 J. Jia and P. K. Chan

Fig. 4. The distributions of outlier scores in MNIST.

Table 3. The comparison of
training time for the MNIST
dataset.

Regular +MMF delta

ce 119.33 230.43 +111.1

ii 122.17 123.30 +1.14

triplet 223.27 225.70 +2.43

4.3 Analysis

Figure 3c shows the heatmap of MAV values of the simulated open MNIST
dataset trained by cross-entropy loss with the MMF extension. We take dig-
its “0”, “2”, “3”, “4”, “6”, “9” as the known classes and the remaining digits
as the unknown class. Comparing with the MAV values from the network with
standalone cross-entropy loss (Fig. 3a), we can find that the MAVs of the known
classes become more discriminative from each other, and each of the known
classes has its representative feature. (e.g. Z1 for class “0”, Z2 for class “2”).
Whereas the MMF extension has less effect on the unknown class, its MAV
values are relatively evenly distributed.

Since we recognize the unknown class based on the outlier score described
in Sect. 3.3, we analyze both the test samples’ outlier scores from the known
classes and the unknown class from the MNIST experiment. Figure 4 shows the
histogram of the distributions of the outlier scores in triplet loss experiments
and triplet loss with the MMF extension. Compared with standalone triplet
loss, adding an MMF extension increases the outlier scores of the unknown class,
which pushes the score distributions further away from those of the known classes
and results in fewer overlaps between the known classes the unknown class. It
is the reduced overlaps that make the known classes and the unknown classes
more separable than before. Figure 5 shows the t-SNE (perplexity: 50) plots of
the Z-layer representations of the MNIST dataset from the same experiments.
With the MMF extension, the known classes and the unknown class are more
separate from each other, and the known classes become more disparate than
before.

We also perform an ablation analysis for the MMF loss extension to under-
stand the importance of the MMF extension’s two properties. As shown in
Table 1, our baselines include (1) standalone loss functions; (2) loss functions
with an extension that maximize the most significant feature as Property A
(MaxF); (3) loss functions with an extension that minimizes the least significant
feature as Property B (MinF). In general, the MMF extension with both prop-
erties outperforms the baselines. This result is consistent with our motivation
for the two properties at the beginning of Sect. 3. Moreover, we find that MaxF
and MinF extensions can also achieve better performance than standalone loss
functions. While both properties improve AUC scores, Property A (MaxF) has

MMF: A Loss Extension for Feature Learning in Open Set Recognition 329

Fig. 5. The t-SNE plots of the MNIST dataset in the experiments of triplet vs.
triplet+MMF. The left subplots of (a) and (b) are the representations of the unknown
class (a mixture of digits “1”, “5”, “7” and “8”), and the right plots are the represen-
tations of the known classes.

Fig. 6. The heatmap of the unknown class’s MAV in the experiment of cross entropy
loss (ce) on the Microsoft Challenge dataset (MC).

a more significant improvement. Hence, Property A plays a more critical role in
AUC improvement than Property B.

To investigate why MinF also helps improve AUC performance, we show
the heatmap of the MAV for the unknown class in the experiment of ce on
the MC dataset in Fig. 6. Comparing Fig. 6a and Fig. 6b, we observe that MinF
reduced the feature magnitudes for the unknown class, thus increased the dis-
tance between the known and unknown classes. Similarly, from Fig. 6c and
Fig. 6d, we observe that the feature magnitudes of the unknown class in MMF
(MaxF+MinF) are much smaller than the ones in MaxF. The second observation
is consistent with the earlier discussion on adding MinF to help MaxF in MMF
at the beginning of Sect. 3. In addition, we observed similar behaviors from other
datasets.

5 Conclusion

We introduced a loss function extension for the OSR problem. The extension
maximizes the feature with the largest magnitude meanwhile minimizes the one
with the smallest magnitude for all the known classes during training so that the
learned representations are more discriminative from each other. We have shown
that while the known classes are more discriminative from each other, the feature

330 J. Jia and P. K. Chan

values of unknown classes are less affected by the extension, hence simplifying the
open set recognition. We incorporated the proposed extension into classification
and representation loss functions and evaluated them in images and malware
samples. The results show that the proposed approach has achieved statistically
significant improvements for different loss functions.

References

1. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572
(2016)

2. Dhamija, A.R., Günther, M., Boult, T.E.: Reducing network agnostophobia. In:
Advances in Neural Information Processing Systems, vol. 31, pp. 9175–9186 (2018)

3. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of android
malware using embedded call graphs. In: AISec 2013, pp. 45–54 (2013)

4. Hassen, M., Chan, P.K.: Scalable function call graph-based malware classification.
In: Proceedings ACM Conference on Data and Application Security and Privacy,
pp. 239–248 (2017)

5. Hassen, M., Chan, P.K.: Learning a neural-network-based representation for open
set recognition. In: Proceedings SIAM International Conference Data Mining, pp.
154–162 (2020)

6. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier
exposure. In: 7th International Conference on Learning Representations (2019)

7. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

8. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database (1999). http://yann.
lecun.com/exdb/mnist/

9. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for
detecting out-of-distribution samples. In: International Conference Learning Rep-
resentations (2018)

10. Li, X.-L., Liu, B.: Learning from positive and unlabeled examples with different
data distributions. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo,
L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 218–229. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564096 24

11. Neal, L., Olson, M., Fern, X., Wong, W.-K., Li, F.: Open set learning with coun-
terfactual images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11210, pp. 620–635. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01231-1 38

12. Ortiz, E.G., Becker, B.C.: Face recognition for web-scale datasets. Comput. Vis.
Image Underst. 118, 153–170 (2014)

13. Pidhorskyi, S., Almohsen, R., Doretto, G.: Generative probabilistic novelty detec-
tion with adversarial autoencoders. In: NeurIPS, vol. 31, pp. 6823–6834 (2018)

14. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M.: Microsoft malware
classification challenge. CoRR arXiv:1802.10135 (2018)

15. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsu-
pervised anomaly detection with generative adversarial networks to guide marker
discovery. In: Information Processing in Medical Imaging, pp. 146–157 (2017)

16. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Conference on CVPR, pp. 815–823 (2015)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/11564096_24
https://doi.org/10.1007/978-3-030-01231-1_38
https://doi.org/10.1007/978-3-030-01231-1_38
http://arxiv.org/abs/1802.10135

MMF: A Loss Extension for Feature Learning in Open Set Recognition 331

17. Schultheiss, A., Käding, C., Freytag, A., Denzler, J.: Finding the unknown: novelty
detection with extreme value signatures of deep neural activations. In: Pattern
Recognition - 39th German Conference, pp. 226–238 (2017)

18. Zhou, Y., Jiang, X.: Android malware genome project (2015). http://www.
malgenomeproject.org/

http://www.malgenomeproject.org/
http://www.malgenomeproject.org/

On the Selection of Loss Functions Under
Known Weak Label Models

Daniel Bacaicoa-Barber1(B) , Miquel Perello-Nieto2 ,
Raúl Santos-Rodŕıguez2 , and Jesús Cid-Sueiro1

1 University Carlos III of Madrid, 28670 Leganés, Madrid, Spain
{dbacaico,jcid}@ing.uc3m.es

2 University of Bristol, Bristol, UK
{miquel.perellonieto,enrsr}@bristol.ac.uk

Abstract. This paper considers the problem of constructing proper loss
functions for learning from weak labels by means of linear transforma-
tions of proper losses based on true labels. Recent works have shown
that linear transformations defined by a left inverse of the transition
matrix of the weak labelling process, transforms a true-label proper loss
into a weak-label proper loss. In this paper, we show that the choice of
both the true-label loss and the left inverse has a major influence on the
performance of the learning algorithm, and we propose a novel method
to optimize the loss selection. Some simulation results demonstrate the
advantages of the proposed method.

Keywords: Weak labels · Proper loss · Convexity

1 Introduction

Supervised learning algorithms rest on the assumption that a reliable set of
labeled data is available. However, data labeling is frequently a costly process
that can be affected by different sources of errors. In some applications, data
samples with labels from the target class are rare, but large datasets with partial
information about the class of the data, in the form of weak labels, may be
available. Since standard algorithms require a large dataset with true labels for
supervised learning, the design of efficient algorithms for learning with imperfect
supervision are of great practical importance.

In this work, a weak label is interpreted as an element from a finite set of
classes that is statistically related to the target class. This is the denomination
used by Cid-Sueiro et al. (2014) or Yoshida et al. (2021), although corrupted
labels (Van Rooyen and Williamson 2017) has been used with the same meaning.

This work was supported by FEDER/ Ministerio de Ciencia, Innovación y Universi-
dades – Agencia Estatal de Investigación, grant TEC2017-83838-R; and the SPHERE
Next Steps Project funded by the UK Engineering and Physical Sciences Research
Council (EPSRC) [grant EP/R005273/1]. RSR is funded by the UKRI Turing AI Fel-
lowship EP/V024817/1.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 332–343, 2021.
https://doi.org/10.1007/978-3-030-86340-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_27&domain=pdf
http://orcid.org/0000-0002-6423-0679
http://orcid.org/0000-0001-8925-424X
http://orcid.org/0000-0001-9576-3905
http://orcid.org/0000-0002-5243-5992
https://doi.org/10.1007/978-3-030-86340-1_27

On the Selection of Loss Functions Under Known Weak Label Models 333

The problem of learning from weak labels encompasses several problems
that can be taken as particular cases: noisy labels (Biggio et al. 2011), par-
tial labels (Grandvalet 2002; Nguyen and Caruana 2008; Cour et al. 2011) (also
named ambiguous (Hüllermeier and Beringer 2006), or candidate labels (Jin and
Ghahramani 2002), or complementary labels (Ishida et al. 2017). Also some prob-
lems in semi-supervised learning and learning from multiple annotators (Raykar
et al. 2010) can be integrated into this framework.

We will focus situations where a statistical model relating the weak labels and
the true classes is available, or can be estimated from data. Although in these
situations, classification models can be adjusted by maximum likelihood applying
and expectation-maximization algorithm (see, for instance Jin and Ghahramani
(2002) or Perello-Nieto et al. (2020)), the construction of weak-label losses as a
linear transformation of true-label losses is an interesting alternative for several
reasons (Cid-Sueiro et al. 2014): (1) the adaptation of code for true labels to weak
labels is straightforward, (2) the transformations are robust to some situation
of partial knowledge about the true-to-weak transition probabilities, and (3)
these adaptations can be applied not only on the proper loss setting but also
to construct classification or ranking calibrated losses. The idea was used in
Natarajan et al. (2013) for noisy labels, and proposed for general weak label
models in Cid-Sueiro (2012), showing that these losses can be robust even in
situations where the knowledge of the model relating weak labels and true classes
is incomplete. Van Rooyen and Williamson (2017) have shown how to select the
transformation in order to preserve convexity.

More recently, Yoshida et al. (2021) has shown that the convexification pro-
posed by Van Rooyen and Williamson (2017) can transform the cross entropy
into a convex loss that is not lower-bounded, which undermines the efficiency
of learning from a finite set of samples. To solve this issue, a correction method
has been proposed to obtain a modified cross entropy which is lower-bounded.

In this paper we provide theoretical an experimental evidence that not only
the choice of the true-label loss but also the choice of the linear transformation
have a strong influence of the performance of weak label learning algorithms
based on transformations. We show that the selection of the loss can be opti-
mized by taking into account the prior distribution of the weak labels. Several
experiments will serve to illustrate the advantages of our method.

2 Formulation

2.1 Notation

Vectors are written in boldface, matrices in boldface capital and sets in cal-
ligraphic letters (e.g. v, M, and S respectively). For any integer n, en

i is a n-
dimensional unit vector with all zero components apart from the i-th component
which is equal to one, and 1n is an n-dimensional all-ones vector.

334 D. Bacaicoa-Barber et al.

Superindex ᵀ denotes transposition. Ψ() denotes a weak-label loss, and Ψ̃ a
true-label loss. The number of classes is c, and the number of possible weak label
vectors is d. |v| is the number of nonzero elements in vector v. The n-dimensional
probability simplex is Pn = {p ∈ [0, 1]n : pᵀ1n = 1}.

2.2 Learning from Weak Labels

Let X be a sample space, Y a finite set of c target classes, and W a finite set
of d ≥ c weak classes. Sample (x,ω) ∈ X × W is drawn from an unknown
distribution P .

We will assume that the target classes are encoded in one-hot vectors, so
that Y = {ec

j , j = 0, 1, . . . , c − 1}. The goal of learning from weak labels consists
on training a predictor of the target class y ∈ Y given sample x, using a dataset
S = {(xk,ωk), k = 0, . . . , K − 1} whose labels correspond to weak classes in W

In general, the meaning of the classes represented in Y and W will be specific
of each application. Our general formulation is useful to encompass very different
scenarios with different forms of partial supervision but, in common situations,
the classes in W represent subsets of the classes in Y. The following are some
examples:

– Supervised learning: In this case, W = Y and ω = y with probability 1.
– Noisy labels Raykar et al. (2010): W = Y but P{ω �= y} > 0.
– Semisupervised learning: W = Y ∪{0}, where ω = 0 when the true target

class is not observed.
– Partial labels Jin and Ghahramani (2002), Cour et al. (2011), Grandvalet

and Bengio (2004), Ambroise et al. (2001): each label is a set of candidate
target classes, only one of them being true. In this case, each element in W
is a non empty subset of Y.

When the weak labels represent a subset of classes, we will represent them
as binary vectors indicating which of the target classes are observed, e.g. ω =
(1, 0, 0, 1, 1) means that the weak label contains target classes 0, 3 and 4, but
not 1 and 2.

For mathematical convenience, we will often represent the weak classes as
one-hot vectors. For any ordered set W = {ω0, . . . ,ωd−1} unit vector ed

i will be
used as the one-hot representation of ωi, and the set Z = {ed

i , i = 0, 1, . . . , d−1}
will be referred as the one-hot representation of W. Also, we will use z ∈ Z to
represent the weak class of sample x. Thus, z = ed

i is equivalent to ω = ωi.
Using the one-hot representation, the learning goal consists on training a

predictor of the target class y ∈ Y given sample x, using a weakly labelled
dataset S = {(xk, zk), k = 0, . . . , K − 1} whose labels are weak classes from Z.

Without loss of generality, we assume that Z contains only weak classes with
nonzero probability (i.e. P (z) > 0 for any z ∈ Z).

The dependency between z and y is modelled through a d × c transition
probability matrix M ∈ M with components

mij = P{zi = 1|yj = 1,x} (1)

On the Selection of Loss Functions Under Known Weak Label Models 335

We will assume that the transition matrix is independent of x, which is a com-
mon assumption in this setting (Raykar et al. 2010; Jin and Ghahramani 2002;
Ambroise et al. 2001; Grandvalet and Bengio 2004; Yoshida et al. 2021). Defining
posterior probability vectors p(x) and η(x) with components pi = P{zi = 1|x}
and ηj = P{yj = 1|x}, we can write p(x) = Mη(x). In general, the dependency
with x in posterior probabilities will be omitted and we will write, for instance,

p = Mη. (2)

2.3 Proper Losses

For every input x the classifier computes a score f ∈ Rc and a prediction
pred(x) ∈ argmaxi{fi(x)}. A weak-label loss is any lower bounded function
Ψ(z, f) ∈ R. We are interested in losses that are minimized when the score vec-
tor is an estimate of the posterior class probabilities:

Definition 1 (Properness). Weak loss Ψ(z, f) is proper to predict y from f if

η ∈ arg min
f

Ez∼Mη{Ψ(z, f)}, (3)

where η is the probability vector with components ηj = P{yj = 1}. The loss is
strictly proper if η is the unique minimizer.

A vector representation of losses will be useful: we define

Ψ(f) = (Ψ(ed
0, f), . . . Ψ(ed

d−1, f)) (4)

Ψ̃(f) = (Ψ̃(ec
0, f), . . . , Ψ̃(ec

c−1, f)) (5)

as the vector representations of the weak-label loss Ψ(z, f) and true-label loss
Ψ̃(y, f), respectively, so that Ψ(z, f) = zᵀΨ (f) and Ψ̃(y, f) = yᵀΨ̃ (f). Also, the
expected los in (3) can be written as

Ez∼Mη{Ψ(z, f)} = ηᵀMᵀΨ(f) (6)

which shows that, in general, the properness of a given weak-label loss depends
on the transition matrix. To make this dependency explicit, we will say that Ψ
is M-proper if it is proper for a transition matrix M.

Note, also, that defining the equivalent true-label loss

Ψ̃ (f) = MᵀΨ(f), (7)

it is straightforward to show that weak-loss Ψ(f) is (strictly) M-proper iff true-
label loss Ψ̃(f) is (strictly) proper (Cid-Sueiro et al. 2014; Van Rooyen and
Williamson 2017; Yoshida et al. 2021).

Equation (7) can be used to check if a given loss is M-proper. However, since
Mᵀ is d × c, it has no left inverse (in general), and we cannot take Mᵀ out
from the left side of (7) to compute Ψ from Ψ̃ . For any given M and any given
true-label loss Ψ̃ (f), there is an uncountable number of losses Ψ (f) satisfying (7).

336 D. Bacaicoa-Barber et al.

3 Linear Transformations of Losses

The linear relation in (7) suggests to compute a weak-label loss as a linear
transformation of a given true-label loss Ψ̃

Ψ = ỸᵀΨ̃ (8)

Noting that Ψ(z,η) = (zᵀỸᵀ)Ψ̃ (η) and, by analogy with the relation Ψ̃(y,η) =
yᵀΨ̃(η) we can compute weak loss Ψ by replacing in Ψ̃ the target label y by a
virtual label ỹ = Ỹz (which is a column of Ỹ). Following Y). Following (Van
Rooyen and Williamson 2017), we will call Ỹ a reconstruction matrix.

Note that, according to (7), if Ỹ is a left-inverse of M, Ψ̃ in (8) is the
equivalent loss of Ψ . This can be summarized on the following

Theorem 1. (Cid-Sueiro et al. 2014) Given a transition matrix M and a
bounded and strictly proper loss Ψ̃ (f), weak loss Ψ(f) = ỸᵀΨ̃(f) is strictly M-
proper if and only if ỸM = λI, for some λ > 0.

3.1 Characterization of Convex Weak Losses

Since the left inverse of a non-negative matrix M has, in general, negative compo-
nents, the convexity of true-label loss Ψ̃ does not imply the convexity of Ψ = ỸΨ̃ .
However, taking ideas from the theory of composite losses (Williamson et al.
2016) and the dual representation of losses (Blondel et al. 2020); Van Rooyen
and Williamson (2017) have shown that convexity can be preserved with the
appropriate choice of the reconstruction matrix and using a canonical loss. More
specifically, they show that, if the prediction is computed through an inverse link
function, f = κ(v), where v is a linear map in the form

v = Wᵀx − 1
c

(1ᵀ
cW

ᵀx)1c (9)

in such a way that the composite loss Ψ̃ (κ(v)) has the form

Ψ̃ (κ(v)) = −v + φ(v)1c (10)

for some convex function φ, and, in addition, the reconstruction matrix satisfies

Ỹᵀ1c � 0 (11)

then the transformed loss (8) is a convex function of the weights W. Note that
we could make v in (9) nonlinear by replacing x with a nonlinear function of the
observations.

Example 1 (Logistic regression). Taking κ(v) as the softmax activation function
and φ(v) = log(

∑c
i=1 exp(vi)), the true-label loss in (10) is Ψ̃ (f) = − log(f),

which is the standard cross entropy.

On the Selection of Loss Functions Under Known Weak Label Models 337

3.2 Lower-Bounded Losses

The previous analysis shows that we can construct convex proper weak-label
losses from a bounded convex proper true-label loss using a reconstruction matrix
that, according to Theorem 1, must be (proportional to) a left-inverse of the tran-
sition matrix and satisfy (11). We can be tempted to construct M-proper losses
based on the cross entropy from this approach. However, as noted by (Yoshida
et al. 2021), the resulting loss may be not lower bounded. As an alternative, they
propose to use a modified cross entropy given by (10) with

φ(v) = log

(
c∑

i=1

exp(vi)

)

+
k

2

c∑

i=1

|vi|α (12)

which includes a regularization term with hyperparameters k > 0 and α > 1.

4 Optimizing the Selection of the Weak Loss

Our contribution in this paper is twofold: (1) we will show, experimentally, that
both the selection of the loss function (e.g. the value of hyperparameters k and
α in (12)) and the reconstruction matrix have a major influence on the perfor-
mance of the classifiers, measured both in terms of the quality of the probability
estimates and also the accuracy of class predictions, and (2) we provide the-
oretical evidence on the influence of the reconstruction matrix, and propose a
method for its optimization. The latter is the goal of this section.

4.1 Optimizing Virtual Labels

Even though any virtual label matrix satisfying ỸM = λI provides an M-
proper loss, the choice of the virtual matrix is relevant when η is estimated
from a finite sample set. A simple way to demonstrate the influence of Ỹ is
to consider a scenario of posterior probability estimation based on a dataset of
i.i.d. weak labels (in one hot form), S = {z0, . . . , zK−1} that have been generated
independently from the distribution given by Mη. We can estimate η from S
by minimizing the empirical risk

R̂(Ψ) =
K−1∑

k=0

Ψ(zk, f) =
K−1∑

k=0

zk
ᵀỸᵀΨ̃ (f) =

(
K−1∑

k=0

ỹᵀ
k

)

Ψ̃ (f) (13)

where ỹk = Ỹzk is the virtual label corresponding to weak label zk. If Ψ̃ is
proper, the empirical risk is minimized for

f∗ =
1
K

K−1∑

k=0

ỹk (14)

That is, the virtual labels are unbiased estimates of the posterior class probabil-
ities, and the minimizer of the empirical risk (irrespective on the choice of the

338 D. Bacaicoa-Barber et al.

proper loss) is the average of the virtual labels associated to S. The quality of
the estimate can be evaluated as the variance of f∗ over random generations of
the sample set,

var{f∗} = ES{‖f∗ − η‖2} =
1
K

Eỹ{‖ỹ∗ − η‖2} (15)

The above example suggests that we can select the virtual labels in order to
minimize the mean square error

E{‖ỹ − η‖2} =
d−1∑

i=0

(ỹi − η)ᵀ(ỹi − η)
(
(ed

i)
ᵀMη

)

= diag
((

Ỹ − η1ᵀ
d

)ᵀ (
Ỹ − η1ᵀ

d

))ᵀ
Mη

= diag
(
ỸᵀỸ

)ᵀ
Mη − 2 ηᵀỸMη + ηᵀη (16)

Assuming ỸM = I and using (2),

E{‖ỹ − η‖2} = diag(ỸᵀỸ)ᵀp − ηᵀη (17)

where p = Mη are the weak class probabilities. Note that if η and p depend on
x, a similar expression is obtained by taking expectations over x:

Ex{‖ỹ − η‖2} = diag(ỸᵀỸ)ᵀp − Ex{ηᵀη}
(18)

where p = Ex{p} In general, the above expression cannot be computed because
neither Ex{ηᵀη} nor Ex{p} are known. However, the former is not relevant for
the optimization, and the latter can be estimated from the training set.

Therefore, we can select the virtual labels by solving the quadratic program

min
Ỹ

{
diag(ỸᵀỸ)ᵀp

}
, subject to ỸM = I. (19)

whose solution has the closed-form

Ỹ = (Mᵀdiag(p)−1M)−1Mᵀdiag(p)−1 (20)

We can illustrate the influence of the choice of the virtual label matrix on
the variance of the estimation with the following example:

Example 2 (Partial labels).Consider the scenario given by W = {(1, 0, 0), (0, 1, 0),
(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)} transition matrixM = (0.2 I | 0.4(1c1ᵀ

c − I))ᵀ,
where I is the identity matrix, and a true class probability vector η = (0.05, 0.6,
0.35)ᵀ. This corresponds to a scenario of partial labels (Cour et al. 2011), where the
weak label contains the true class and possibly another false class taken at random
from the other target classes. It is easy to see that virtual matrices Ỹu = (9I | 0)
and Ỹd = (0 | 1.125131

ᵀ
3 − 2.25I) satisfy the condition ỸM = λI and, thus, losses

On the Selection of Loss Functions Under Known Weak Label Models 339

Ψu(f) = ỸuΨ̃(f) and Ψd(f) = ỸdΨ̃(f) are proper. Moreover, any convex combi-
nation of the virtual label matrices Ỹu = (wỸu+(1−w)Ỹd)Ψ̃ (f) with 0 ≤ w ≤ 1,
defines an M-proper loss.

Figure 1 shows the expected MSE in (16) for any mixed loss Ψw(f) as a function
of w, for a set of 1000 samples. We can observe that the MSE depends quadratically
onw. The horizontal lines represent theMSE for theMoore-Penrose pseudoinverse,
and the MSE of the optimal reconstruction in (20), using the true value of the weak
probabilities in p and also an empirical estimate based on 1000 samples.

Fig. 1. MSE in (16) for loss Ψw(f) as a function of w, for a set of 1000 samples. The
horizontal lines represent the MSE for the Moore-Penrose pseudoinverse, and the MSE
of the optimal reconstruction (20), using the true value of the weak probabilities in p
and also an empirical estimate based on 1000 samples.

Estimating Weak Label Priors. The prior weak label probabilities in p
are, in general, unknown, but they can be estimated from data. Assuming that
the number of weak labels from each weak class, n = (n0, . . . , nd−1) follows a
multinomial distribution

f(n;K,p) =
K!pn0

0 · · · pnd−1
d−1

n0! · · · nd−1!
(21)

for
∑d−1

i=0 ni = K, the ML estimate of the weak label priors is given by the
solution to the optimization problem given by

max
p∈Pd

nᵀ logp, subject to p = Mη, η ∈ Pc (22)

which is equivalent to take p̂ML = MηML with

ηML = argmax
η∈Pc

nᵀ log (Mη) . (23)

340 D. Bacaicoa-Barber et al.

4.2 Optimizing Convexity-Preserving Virtual Labels

The weak-label loss given by reconstruction (20) is optimal in the MSE, but
may be non convex. In order to obtain a convex loss, we should add in (19) the
convexity condition (11), to obtain the quadratic program

min
Ỹ

{
d−1∑

i=0

pi ỹ
ᵀ
i ỹi

}

, subject to ỸM = I, Ỹᵀ1c = 1d (24)

There is no simple closed form solution for this minimization problem, but it
can be found using standard optimization methods.

5 Experiments

We have conducted two types of experiments in the present study. First, we
analyze the impact of the hyperparameters k and α in Eq. (12). Second, we
show the advantages of the optimal reconstruction matrices proposed in this
paper.

Datasets. We have used 2 synthetic datasets based on a given posterior
probability model. The marginal input distribution is uniform in one of them
(uniform), and Gaussian mixture on the other (blobs). Synthetic datasets are
usefull to analyze the behavior of the algorithm on the realizable case (where
the classifier model can fit the posterior map), and to evaluate the quality of the
posterior probability estimates.

In addition, we have also tested our models in 3 real world classification
datasets from openml.org. For illustrating purposes, we chose datasets with a
small amount of samples, with number of classes between 3 and 5 and no missing
values: balance-scale (625 samples, 4 features, 3 classes) car (1728 samples,
21 features, 4 classes) and wine (178 samples, 13 features, 3 classes).

Before training, all the categorical features were transformed into binary
features using a one-hot encoding. Finally, every feature was standardised with
mean zero and standard deviation one.

As all datasets have only one true label per sample, we generated synthetic
weak labels using transition matrix M ∈ (0,1)2

c×c generated at random, in
which the true label appears with probability (1−α), i.e., P (zi = 1|yj = 1,x) =
(1 − α) if i = 2j ; while other labels may appear with probability P (z|yj = 1,x)
modelled as a Dirichlet distribution.

Implementation. For each dataset we trained a Logistic Regression (LR) with
the BFGS optimization algorithm and 500 epochs. We used the regularized loss
function (12) derived from the cross-entropy loss. For each reconstruction, we
carried out one hundred repetitions of the algorithm each one with different weak
labels generated at random by the same mixture matrix M. All implementations
are publicly available1.
1 https://github.com/DaniBacaicoa/ICANN2021 WeakLabels/.

https://github.com/DaniBacaicoa/ICANN2021_WeakLabels/

On the Selection of Loss Functions Under Known Weak Label Models 341

Fig. 2. Dependency of the hyperparameters on the dataset agains MSE and error rate.

Metrics. We have used two performance metrics: (1) the average square errors
‖η − f‖2, to evaluate the quality of the posterior probability estimates; and (2)
the classification error rate, to evaluate the efficiency of class predictions. For
the synthetic datasets η is the exact posterior, while it is an estimate of the prior
probabilities in the case of real data. We have evaluated the metrics discussed
above on a test set that we have extracted from samples for which we have access
to the true labels.

Models. We evaluate several reconstruction matrices: (M-pinv) the Moore-
Penrose pseudo inverse, equivalent to (20) but using the identity matrix instead
of diag(p), (M-conv) the pseudo inverse with the convexity condition in (11),
(M-opt) the optimal reconstruction proposed in (20), and (M-opt-conv) the
solution of (24) that provides the optimal reconstruction with convexity con-
straints. As a gold standard we include the results of supervised learning using
both the loss function with the correction term (SLBL) and the one trained with
the standard cross entropy (SCe).

Results. Figure 2 shows the dependency of the parameters α and k in (12). The
results confirm the observation in Yoshida et al. (2021) that the choice of the
hyperparameters has a major influence on the performance metrics. In addition,
we have observed that the optimal values of α and k may depend on the dataset.
Therefore, for optimal performance, these parameters should be selected using
some form of cross-validation (which is non-trivial, since no true test labels will
be available in practice).

Figure 3 shows that the reconstruction presented in this study leads to a better
estimation of the posterior probabilities than the Moore-penrose reconstruction
matrix. This is a key fact as we are dealing with proper losses but we have a finite
sample to estimate the posterior probabilities. We also show how, although the
difference seems less marked, that the choice of an optimized reconstruction overall
results in a better accuracy performance. Note that as η is not known in the real
datasets, we have replaced it by the prior distribution of the clean labels in order to
get a discrepancy measure. We show the mean squared error and the accuracy for
the synthetic uniform dataset in Figs. 3a and 3f; for the synthetic uniform dataset
in Figs. 3b and 3g; for the Balance-Scale dataset in Figs. 3c and 3h; for the Car
dataset in Figs. 3d and 3i and for the Wine dataset in Figs. 3e and 3j.

342 D. Bacaicoa-Barber et al.

Fig. 3. Performance measures for the considered datasets under each reconstruction.
First row shows average square errors and second row classification error rate.

As expected optimizing, the virtual label matrix leads to better approxi-
mations in average of the true posterior distribution of the clean labels when
learning from finite weak datasets.

6 Conclusions

This paper analyzes the behavior of weak-label proper losses based on linear
transformations of true-label proper losses. We have provided theoretical and
experimental evidence that the choice of both the transformation (i.e. the recon-
struction matrix) and the true-label proper loss have a major influence of the
classification performance under different metrics. We provide a method to com-
pute the optimal reconstruction matrix that only requires an estimate of the
weak label prior probabilities, which can be estimated from data.

References

Ambroise, C., Denoeux, T., Govaert, G., Smets, P.: Learning from an imprecise teacher:
probabilistic and evidential approaches. Appl. Stoch. Models Data Anal. 1, 100–105
(2001)

Biggio, B., Nelson, B., Laskov, P.: Support vector machines under adversarial label
noise. In: Asian Conference on Machine Learning, pp. 97–112 (2011)

Blondel, M., Martins, A.F.T., Niculae, V.: Learning with fenchel-young losses. J. Mach.
Learn. Res. 21(35), 1–69 (2020)

Cid-Sueiro, J.: Proper losses for learning from partial labels. In: Advances in Neural
Information Processing Systems 25, pp. 1574–1582 (2012)

On the Selection of Loss Functions Under Known Weak Label Models 343

Cid-Sueiro, J., Garćıa-Garćıa, D., Santos-Rodŕıguez, R.: Consistency of losses for learn-
ing from weak labels. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.)
ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 197–210. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44848-9 13

Cour, T., Sapp, B., Taskar, B.: Learning from partial labels. J. Mach. Learn. Res. 12,
1225–1261 (2011)

Grandvalet, Y.: Logistic regression for partial labels. In: 9th Information Processing
and Management of Uncertainty in Knowledge-Based System, pp. 1935–1941 (2002)

Grandvalet, Y., Bengio, Y.: Learning from partial labels with minimum entropy (2004)
Hüllermeier, E., Beringer, J.: Learning from ambiguously labeled examples. Intell. Data

Anal. 10(5), 419–439 (2006). ISSN 1088-467X
Ishida, T., Niu, G., Hu, W., Sugiyama, M.: Learning from complementary labels. In:

Advances in Neural Information Processing Systems, pp. 5639–5649 (2017)
Jin, R., Ghahramani, Z.: Learning with multiple labels. In: Advances in Neural Infor-

mation Processing Systems 15, pp. 897–904 (2002)
Natarajan, N., Dhillon, I.S., Ravikumar, P.K., Tewari, A.: Learning with noisy labels.

In: Advances in Neural Information Processing Systems, pp. 1196–1204 (2013)
Nguyen, N., Caruana, R.: Classification with partial labels. In: Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 551–559. ACM, New York (2008). ISBN 978-1-60558-193-4

Perello-Nieto, M., Santos-Rodriguez, R., Garcia-Garcia, D., Cid-Sueiro, J.: Recycling
weak labels for multiclass classification. Neurocomputing 400, 206–215 (2020)

Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 99, 1297–1322 (2010).
ISSN 1532-4435

Van Rooyen, B., Williamson, R.C.: A theory of learning with corrupted labels. J. Mach.
Learn. Res. 18(1), 8501–8550 (2017)

Williamson, R.C., Vernet, E., Reid, M.D.: Composite multiclass losses. J. Mach. Learn.
Res. 17, 1–52 (2016)

Yoshida, S.M., Takenouchi, T., Sugiyama, M.: Lower-bounded proper losses for weakly
supervised classification. arXiv e-prints, p. arXiv-2103 (2021)

https://doi.org/10.1007/978-3-662-44848-9_13

Distributed and Continual Learning

Bilevel Online Deep Learning in Non-stationary
Environment

Ya-nan Han, Jian-wei Liu(B), Bing-biao Xiao, Xin-Tan Wang, and Xiong-lin Luo

Department of Automation, College of Information Science and Engineering, China University
of Petroleum, Beijing Campus (CUP), Beijing, China

liujw@cup.edu.cn

Abstract. Recent years have witnessed enormous progress of online learning.
However, a major challenge on the road to artificial agents is concept drift, that
is, the data probability distribution would change where the data instance arrives
sequentially in a stream fashion, which would lead to catastrophic forgetting and
degrade the performance of the model. In this paper, we proposed a new Bilevel
Online Deep Learning (BODL) framework, which combine bilevel optimization
strategy and online ensemble classifier. In BODL algorithm, we use an ensemble
classifier, which use the output of different hidden layers in deep neural network
to build multiple base classifiers, the important weights of the base classifiers are
updated according to exponential gradient descent method in an online manner.
Besides, we apply the similar constraint to overcome the convergence problem
of online ensemble framework. Then an effective concept drift detection mecha-
nism utilizing the error rate of classifier is designed to monitor the change of the
data probability distribution. When the concept drift is detected, our BODL algo-
rithm can adaptively update the model parameters via bilevel optimization and
then circumvent the large drift and encourage positive transfer. Finally, the exten-
sive experiments and ablation studies are conducted on various datasets and the
competitive numerical results illustrate that our BODL algorithm is a promising
approach.

Keywords: Online Deep Learning · Bilevel optimization · Concept drift

1 Introduction

Deep learning techniques have achieved enormous success in a wide range of artificial
intelligence (AI) and machine learning applications in recent years [1, 2]. However,
most of these existing deep learning approaches suppose that the models often work in a
batch learning setting or offline learning fashion, where the entire training dataset must
be available to train a model by some learning techniques. Such learning approaches are
poorly scalable for many real-word tasks, where the data instances arrive in a sequential
manner. Thus, making deep learning available for the streaming data is a desideratum
in the field of machine learning.

Unlike traditional batch learning, online learning represents a significant family of
learning algorithms that are designed to optimize and learn models incrementally over

© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 347–358, 2021.
https://doi.org/10.1007/978-3-030-86340-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_28

348 Y. Han et al.

streaming data sequentially [3]. Online learning shows the tremendous advantages that
the models can be updated efficiently in an online manner compared with traditional
offline learning fashion when the new data instance comes. Similar to batch learning
algorithms, online learning can also be applied for various real-word tasks, such as
supervised classification task [4], unsupervised learning task [5], and so on.

However, in general, online learning algorithms cannot be directly employed to deep
neural network. They have to cope with the intractable convergence problems, such as
vanishing gradient. Besides, the traditional shallow or fixed neural network structure is
poorly scalable for the most real-world applications where the data instances arrive in a
sequential order and the probability distribution of data is non-stationary. Therefore, a
promising online deep learning framework should be developed that can effectively and
rapidly learn knowledge in non-stationary.

It should also be noted that the probability distribution obeyed by streaming data
could occur the concept drift, in other words, the data probability distribution changes.
In this circumstance, the leaning algorithms must take some actions to prevent the large
drift and encourage positive transfer, in other words, the learner should make a trade-off
between both the new and old knowledge and alleviate the catastrophic forgetting. The
classical algorithms for catastrophic forgetting are Elastic Weight Consolidation (EWC)
[6] and their variants [7], but this kind of algorithms attempt to address catastrophic
forgetting by augmenting objective function and then control the whole network, that is,
let the learning model’s weights balance between these two factors, rather than directly
take actions to cope with catastrophic forgetting. Based on the above fact, therefore this
reminds us of the importance to enhance the different-depth latent representations and
the ability to rapidly adapt to dynamic changing situations.

To achieve this, in this work, we devise a novel Bilevel Online Deep Learning
(BODL) framework, which consists of three major components: online ensemble clas-
sifier, concept drift detection and bilevel online deep learning. Our BODL framework
can effectively utilize the different abstract level latent feature representations to build
classifiers via the online ensemble framework, where the important weights of the base
classifiers would be updated by online exponential gradient descent strategy. consider
the convergence problem of online ensemble framework, we apply the similar constraint
to generate the favorable latent representation. Besides, a concept drift detected mech-
anism is devised according to the error rate of base classifiers. When the concept drift
is detected, our BODL model can adaptively update the model parameters via bilevel
optimization and then prevent the large drift and encourage positive transfer.

In a summary, our main contributions in this paper are listed below:

1) We design an effective bilevel learning strategy. Specifically, if the concept drift is
detected, the model would adaptively adjust the parameters θ tn for all base classifiers
and Wt

n of the different-depth feature representation mentioned in Sect. 2 using
bilevel optimization,where this process is achieved based on a tiny episodicmemory.
After that, the model can circumvent the large drift and encourage positive transfer
in non-stationary environment.

2) In this work, consider the convergence problem of online ensemble framework, we
impose the similar constraint between the shallower and the deeper layer’s feature,
which would be beneficial to generate the favorable feature representations.

Bilevel Online Deep Learning in Non-stationary Environment 349

3) The comparative experiments are devised to verify the effectiveness of the proposed
BODL algorithm, and we analysis the experimental results of a variety of algorithms
from different perspectives in terms of accuracy, precision, recall-score and F-1
score, and then we can see that our BODL algorithm can exploit the different-depth
feature representations and adapt to rapidly changing environment.

The remainder of this paper is organized as follows. In Sect. 2, we introduce our
BODL algorithm in details, which consists of three parts: online ensemble classifier,
concept drift detection mechanism, bilevel learning for concept drift. In Sect. 3 we
empirically compare BODL algorithmwith several state-of-the-art online learning algo-
rithms. In Sect. 4 we elaborate related works. In Sect. 5 we summarize the whole work
and the interested directions in the future.

2 Bilevel Online Deep Learning (BODL)

In this work, we present bilevel online deep learning, a conceptually novel framework
for online learning based on bilevel optimization [8] and online ensemble framework.
Our BODL architecture can be divided into three main parts: online ensemble classifier,
concept drift detection mechanism, bilevel learning for concept drift. The online deep
ensemble classifier can make a trade-off among the different-level base classifiers and
improve the performance of classification; Concept drift detection mechanism is used to
monitor the change in non-stationary environment; When the concept drift is detected,
bilevel learning is designed to adaptively adjust the parameters θ tn andW

t
n, then themodel

can adapt to the change in non-stationary environment.

2.1 Online Ensemble Classifier

We illustrate the online deep ensemble classifier in Fig. 1, where ωt =
[
ωt

1 , . . . , ω
t
N

]

represents the importance of the N base classifiers. The online deep ensemble classifier
can make a trade-off among the different-level base classifiers via Exponential Gradient
Descent (EGD) algorithm in an online manner [4].

More specifically,we character aDeepNeuralNetwork (DNN)withN+1hidden lay-
ers, and the final ensemble classifier can be achieved by dynamically updating the weight
parameters of the base classifiers for each hidden layer based on their classification loss.
The specific ensemble prediction function can be written as Eq. (1).

F(x) =
N∑
n=0

ωnfn

fn = softmax(hnθn), ∀n = 0, . . . ,N

hn = σ(Wnhn−1), ∀n = 1, . . . ,N

(1)

Compared to the traditional network, in which the feature representation constructed
by outputs of the final hidden layer is used as input of the classifier, here we can make
a favorable classifier by an online ensemble framework, which can benefit from the

350 Y. Han et al.

different depth feature representation and improve the prediction performance of the
whole model. It is noted that the parameters ωt

n, θ
t
n and Wt

n in Eq. (1) can be learned in
an online flavor.

Fig. 1. Online deep ensemble classifier.

Update the Parameters ωn. We update the weights ωn for base classifiers using expo-
nential gradient descent11. Firstly, the weights ω are initialized using a uniform distri-
bution: ωn = 1

N+1 , n = 0, . . . ,N , i.e., each base classifier has equal probability to be
picked. At each iteration, the prediction loss of the n-th base classifier fn can be written as
L(

ŷtn, y
t
n

)
, where ŷtn and y

t
n represent the base classifier prediction and the target variable

respectively. Then, the weight of each base classifier can be learned according to the
loss suffered and the update rule is given by follow:

ωt+1
n ← ωt

ne
−ηL(ŷtn,y

t
n) (2)

whereη ∈ (0,+∞) andη is set to 0.01 in ourwork.After that, the trained base classifier’s
important weight is discounted by an exponential weight e−ηL(ŷtn,y

t
n).

Update the Parameters θ tn. The parameters θ tn for all base classifiers are updated using
Stochastic Online Gradient Descent (SOGD), and this process is analogical to the
traditional feedforward networks.

Update the Parameters Wt
n. The update rule about the parametersWt

n of the different-
depth feature representation is different from the traditional backpropagation frame-
work. The objective function includes two parts: the adaptive loss function and similar
constraint, which are defined as follow:

L(F(x), y) =
N∑
n=0

ωnLpre(fn(x), y) + λLsim(hsh, hde) (3)

where, the first part in loss function represents the adaptive prediction loss. Note that,
the parameters of shallower layer tend to converge faster than the ones of deeper layer,

Bilevel Online Deep Learning in Non-stationary Environment 351

which can lead to deeper base classifiers learn slowly [2]. Thus,we incorporate the similar
constraint between the shallower and deeper layer’s features, which can be beneficial to
generate the favorable feature representations and improve the convergence rate and the
prediction performance of the deeper layer. In this work, λ is a tradeoff parameter and is
set to 0.1. Note that, the similarity can be modelled in multiple manners and we choose
the squared distance metric in this paper.

2.2 Bilevel Online Deep Learning

As the streaming data comes gradually and the data probability distribution could change.
We monitor the change of the data probability distribution utilizing the error rate of
classifier. This concept drift detection mechanism is similar to the drift detection method
in [10] but the warning phase is not arranged in this paper in order to avoid the use of
slide window methods. In this section, we describe our adaptive online deep learning
based on bilevel optimization in detail. Figure 2 shows a flowchart of the bilevel online
deep learning framework.

Fig. 2. The bilevel online deep learning framework. BODL utilizes the memory replay weights
� and the episodic memory to optimize the base classifiers’ weights � in the non-stationary
environment, where the episodic memory is obtained by reservoir sampling.

2.2.1 Bilevel Learning

For each arriving instance in online learning scenario, we detect the concept drift uti-
lizing the error rate of classifier. If the concept drift is observed, the learning algorithm
obviously needs to takes some actions to prevent large drift and achieve online incre-
mental learning. Specifically, when the concept drift occurs, BODL initializes a memory
weight � to replay the knowledge in the memory. Then we apply the trained memory
weight �∗ to update � such that it can prevent large drift and weight the new and old
knowledge in a non-stationary environment as shown in the Fig. 2.

352 Y. Han et al.

Bearing this in mind, the objective function can be defined as the following bilevel
optimization problem:

min
�

Louter(�∗(�),Bt
train;�

)

s.t. �∗ = argmin
�

Linner(�∗,Mmemory) (4)

where Bt
train denotes the current training data that exists concept drift. We parameterize

each � as an inner optimization problem Lmemory
� , which the learner optimizes the

corresponding�. During the bilevel learning, firstly the agent learns the memory weight
�∗ about the inner problem. After that, the agent learns the outer problem with respect
to �. In this process, we apply the cross-entropy loss as objective function for the inner
and outer problems respectively.

2.2.2 First Order Approximation

Generally, the data comes gradually in non-stationary environment and the concept drift
mechanism will monitor the change in online manner. When the concept drift occurs,
the learner can adaptively adjust the model parameters and weight the new and old
knowledge in a non-stationary environment via bilevel learning.

Specifically, assume that for an incoming training data Bt
train reported as concept

drift, the inner problem is settled by:

�i ← �i − μ∇�iL
(
�i,Bt

train;�
)
where �0 ← � (5)

After receiving �∗ via Eq. (5), the outer learning for the parameters � can be solved
by the chain rule.

�t ← �t − γ∇�L
(
�∗,Mmemory)

← �t − γ
∂�∗

∂�
· ∂

∂�∗L
(
�∗,Mmemory) (6)

Note that solving the Eq. (6) is a cumbersome problem in real word scenario because
of the Hessian vector product in the second term [11]. In order to improve the efficiency
of the computation, we apply first-order approximation to simplify the Eq. (6) in this
work [12, 13]. Thus, the outer learning is given by interpolating only in the parameter
space:

�t = �t + γ
(
�

′ − �t

)

where �
′ = �∗ − μ∇�∗L(

�∗,Mmemory) (7)

We apply Eq. (7) to obtain a one-step look-ahead parameter �
′
from �∗. After that,

we can adjust � by linearly interpolate between the current parameters � and �
′
. It is

noted thatwe onlymaintain the parameters of themainmodel�, i.e., once the parameters
� is obtained and then we discard it after every outer update. In this process, the inner
optimization should be carried out via tiny experience memory [14].

Bilevel Online Deep Learning in Non-stationary Environment 353

2.2.3 Bilevel Online Deep Learning Algorithm

In this section, we show that our BODL algorithm can effectively learn in non-stationary
environment by an online manner.

Our proposed BODL algorithm is shown in Algorithm 1.

In BODL algorithm, firstly we present an online ensemble framework that attempts
to dynamically weight the different depth classifiers and the base classifier’s weights for
each hidden layer are update based on the exponential gradient descent algorithm in an
online manner. In particular, we impose the similar constraint between the shallower and
the deeper layer’s features, which would be beneficial to generate the favorable feature
representations and improve the performance of the convergence.

In addition, consider that the data probability distribution would change in real-
world scenarios. Thus, a concept drift detection mechanism is used to monitor the data
changes according to the error rate of classifier. Once the drift is detected, the learner
would update the model parameters via bilevel optimization. Thus, the learner would
effectively prevent the large drift and alleviate the catastrophic forgetting.

3 Experiments

In this section, we evaluate the baselines and our proposed BODL algorithm on various
stationary and non-stationary datasets. We report and analysis the experimental results
in detail.

3.1 1Experiment Setup

We use the neural network architecture with 15 hidden layers of 30 units with ReLU
nonlinearities. In all experiments, the entire network parameters are updated by Adam

354 Y. Han et al.

optimizer with a learning rate of 0.01. When the drift is detected, the model would
adaptively learn the parameters via the tiny memory budge and this process is achieved
using the bilevel optimization strategy. It is well worth note that we apply a test-then-train
strategy for evaluating the learning algorithms to cast this as a classification task.

We compare against with several state-of-the-art baselines: Perceptron, the Relaxed
Online Maximum Margin (ROMMA) [15], OGD [16], the recently proposed Soft Con-
fidence Weighted algorithms (SCW) [17], the Adaptive Regularization of Weight Vec-
tors (AROW) [18], the Confidence-Weighted (CW) learning algorithm [19]. Here, the
BODL-Base algorithm is regarded as an online learning approach without the bilevel
optimization strategy.

3.2 Datasets

The learning performance of BODL algorithm is numerically validated on stationary
and non-stationary data, but evolving data stream usually characterize non-stationary
properties in real-word task. Thus, in our experiments, we select three non-stationary
datasets and two stationary datasets for experimental comparison. Here, the datasets are
obtained from UCI repositories and the properties are shown in details in Table 1.

Table 1. Batch datasets properties.

Dataset Size Features Type

MNIST 70000 786 Stationary

Magic 19020 10 Stationary

PIMA 768 8 Non-stationary

Weather 18140 8 Non-stationary

KDDCUP 1036241 127 Non-stationary

3.3 Experimental Results

In this section, the experimental comparative results of all baselines and the proposed
BODL algorithmwith four different metric criteria: average accuracy, average precision,
F1-Score and recall-score are reported in Table 2. In additional, in order to study the
contribution of each component, a complete ablation studies are conducted in our work
where BODL-2: the model is trained using the bilevel learning and the similar constrain,
BODL-1: the model is trained using the similar constrain alone, BODL-Base: the model
is trained without the bilevel learning and the similar constrain.

The experiment results show that our BODL-2 algorithm enjoys competitive per-
formance on different datasets implementing different evaluation criteria. BODL-2 is
slightly better than BODL-1 with the help of bilevel learning since it can alleviate the
catastrophic forget when the concept drift occurs. BODL-Base have lower accuracy

Bilevel Online Deep Learning in Non-stationary Environment 355

Table 2. Numerical results of different algorithms on different datasets.

Method Average accuracy

MNIST Magic PIMA Weather KDDCUP

BODL-2 92.00% 78.73% 74.36% 74.90% 99.68%

BODL-1 91.99% 78.49% 73.84% 73.28% 99.44%

BODL-Base 90.80% 78.31% 71.69% 72.34% 99.35%

Perceptron 84.77% 70.60% 64.45% 65.85% 99.31%

ROMMA 83.22% 66.67% 64.45% 65.63% 99.34%

OGD 90.10% 78.72% 72.78% 72.70% 99.61%

SCW 88.98% 78.64% 70.31% 76.12% 99.75%

AROW 89.04% 78.71% 72.14% 75.15% 99.58%

CW 86.88% 67.90% 63.41% 36.81% 99.62%

PA 85.68% 70.13% 66.41% 65.74% 99.41%

Method Average precision

MNIST Magic PIMA Weather KDDCUP

BODL-2 91.91% 74.65% 54.83% 77.35% 98.55%

BODL-1 91.89% 73.96% 54.38% 75.76% 97.46%

BODL-Base 90.70% 73.80% 51.88% 76.06% 96.99%

Perceptron 84.61% 67.77% 64.03% 60.78% 98.96%

ROMMA 82.99% 64.16% 63.74% 60.69% 99.08%

OGD 89.99% 77.66% 71.77% 67.91% 99.35%

SCW 88.83% 76.75% 69.18% 74.90% 99.55%

AROW 88.92% 77.62% 70.84% 71.13% 99.31%

CW 86.70% 64.75% 62.55% 53.55% 99.56%

PA 85.45% 67.19% 65.06% 59.95% 99.01%

Method F1-score

MNIST Magic PIMA Weather KDDCUP

BODL-2 91.97% 65.81% 60.83% 82.62% 99.21%

BODL-1 91.97% 65.73% 63.30% 81.80% 98.61%

BODL-Base 90.78% 65.70% 59.66% 81.69% 98.38%

Perceptron 84.78% 70.61% 65.27% 66.07% 99.31%

ROMMA 83.21% 67.05% 65.27% 65.95% 99.33%

OGD 90.08% 78.02% 73.39% 71.04% 99.61%

SCW 88.97% 78.41% 70.96% 77.53% 99.75%

AROW 88.98% 78.16% 72.73% 74.28% 99.66%

CW 86.87% 67.86% 64.24% 29.00% 99.67%

PA 85.66% 70.08% 67.12% 65.58% 99.41%

356 Y. Han et al.

than BODL-1, which means the similar constrain would be beneficial to generate the
favorable feature representations.

Compared to the state-of-the-art methods, we can draw several conclusions. In terms
of average accuracy, first but not surprise, traditional online learning techniques, such as
Perceptron and CW, achieve relatively poor performance on almost all datasets. Next,
we also note that the algorithms, such as OGD, could obtain relatively competitive
numerical results on MNIST datasets. However, lacked the ability to further explore the
power of depth or adaptively adjust the model parameters when concept drift occurs,
so they receive poor performance on weather and PIMA dataset. SCW and AROW
achieve favorable accuracy in concept drift datasets such as weather and KDDCUP, but
they product poor results in PIMA dataset which features highly imbalance and non-
stationary. In contrary, our BODL-2 algorithm can exploit the different-level favorable
feature representation base on the deep learning framework, besides, when the concept
drift is observed, the learner can adaptively adjust the model parameters via bilevel
optimization strategy based on memory replay and then encourage positive transfer and
prevent the large drift.

In additional, BODL-2 algorithm outperform all other approaches onMagic,MNIST
and KDDCUP dataset under accuracy evaluation criteria. It is noted that our method
can produce good performance from highly imbalance data streams with concept drift,
such as PIMA. Only 1.22% less than the highest one in terms of accuracy on weather
dataset but achieve highest results under the average precision, F1-Score and recall-
score evaluation criteria and so on. To conclude, the experimental results demonstrate
that our BODL-2 algorithm is a promising online learning approach comparing to the
state-of-the-art online methods.

4 Related Works

Recent yearswe havewitnessed enormous success in the deep neural network. Compared
to traditional off-line learning, online learning is more suitable in many real-word tasks.
Online learning algorithms represents a class of scalable algorithms which are devised to
optimize the models incrementally where the data instance comes gradually. Perceptron
based onmaximum-margin classification is the earliest online learning algorithm, which
is primarily developed to learn linear models. However, the class of perceptron algorithm
is fragile to the samples that are linearly inseparable. Thus, perceptron algorithmwith the
kernel functions are developed [20], which give a solution to online learning techniques
with nonlinear models.While such approaches are able to solve the non-linear classifica-
tion, determining the type and number of kernel function is an open challenge.Moreover,
these approaches are not explicitly built to extract the different-depth feature represen-
tations for the data instances. Base on this fact, Sahoo et al. present an online algorithm
with different depth network for evolving data streams [4]. However, they neglect the
intractable problem of catastrophic forgetting, or cannot cope with the non-stationary
environment very well. Recently, there are some specific algorithms handle for concept
drift in non-stationary environment. Thesemethods concentrate on incrementally update
the model as long as the data instance arrives in a stream, such as dynamic combination
model; the onlineGradient Descent Algorithm (OGD) [16]; the relaxed onlinemaximum

Bilevel Online Deep Learning in Non-stationary Environment 357

margin algorithm and its aggressive version aROMMA, ROMMA, and aROMMA [15];
the Adaptive Regularization of Weight Vectors (aROW) [18]; the Confidence-Weighted
(CW) learning algorithm [19]; The recently proposed Soft Confidence Weighted algo-
rithms(SCW) [17]. However, these methods characterize the constant updating of their
models, which would make the model evolve in an extremely regular manner regardless
of the concept drift.

5 Conclusion and Future Work

Concept drift is an inevitable problem with learning from evolving data streams, which
must be handled for data instances to be practically useful. In this work, we proposed
a novel Bilevel Online Deep Learning (BODL) framework to learn in non-stationary
environment in anonlinemanner.BODLcreates an ensemble classifier using the different
depth feature representations, where the important weights of each classifier would be
updated by online exponential gradient descent strategy. In order to make the deeper
layers converge faster and generate the favorable feature representation, we impose
the similar constraint between the shallower and the deeper layer’s features. Besides,
a concept drift detected mechanism is devised according to the error rate of classifier.
When the concept drift is detected, our BODL algorithm can adaptively update themodel
parameters via bilevel optimization based on tiny episodic memory and then prevent the
large drift and encourage positive transfer.

At last, we validated the proposed BODL algorithm through extensive experiments
on various stationary and non-stationary datasets and the competitive numerical results
show our BODL algorithm is a promising online learning approach.

In the future work, we would consider the online learning problem for class incre-
mental learning. Besides, in order to obtain the more favorable feature representation,
we also consider incorporating the recently proposed self-supervised learning and data
augment methods.

Acknowledgements. This work was supported by the Science Foundation of China University
of Petroleum, Beijing (No. 2462020YXZZ023).

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

2. Chen, T., Goodfellow, I.J., Shlens, J.: Net2Net: accelerating learning via knowledge transfer.
In: BT - 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016)

3. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press,
Cambridge (2006). https://doi.org/10.1017/CBO9780511546921

4. Sahoo, D., Pham, Q., Lu, J., Hoi, S.C.H.: Online deep learning: learning deep neural networks
on the fly. In: BT - Proceedings of the 27th International Joint Conference on Artificial
Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 2660–2666 (2018).
https://doi.org/10.24963/ijcai.2018/369

https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.24963/ijcai.2018/369

358 Y. Han et al.

5. Hoi, S.C.H., Lu, J.: Online Learning: A Comprehensive Survey, vol. 1, pp. 1–100 (2018)
6. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. CoRR vol.

abs/1612.00796 (2016)
7. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental

learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01252-6_33

8. Jenni, S., Favaro, P.:Deepbilevel learning. In: Ferrari,V.,Hebert,M., Sminchisescu,C.,Weiss,
Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 632–648. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01249-6_38

9. Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends Mach.
Learn. 4, 107–194 (2012)

10. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: BT - (e)Proceedings
of the Thirtieth International Conference on Very Large Data Bases, VLDB 2004, Toronto,
Canada, 31 August–3 September 2004, pp. 180–191 (2004)

11. Pham, Q., Sahoo, D., Liu, C., Hoi, S.C.H.: Bilevel Continual Learning. CoRR vol.
abs/2007.15553 (2020)

12. Nichol, A., Achiam, J., Schulman, J.: On First-Order Meta-Learning Algorithms. CoRR vol.
abs/1803.02999 (2018)

13. Zhang, M.R., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: k steps forward, 1 step
back. In: BT - Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada,
8–14 December 2019, pp. 9593–9604 (2019)

14. Chaudhry, A., et al.: Continual Learning with Tiny Episodic Memories. CoRR vol.
abs/1902.10486 (2019)

15. Li, Y., Long, P.M.: The relaxed onlinemaximummargin algorithm.Mach. Learn. 46, 361–387
(2002)

16. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent.
In: BT - Machine Learning, Proceedings of the Twentieth International Conference (ICML
2003), Washington, DC, USA, 21–24 August 2003, pp. 928–936 (2003)

17. Hoi, S.C.H.,Wang, J., Zhao, P.: Exact soft confidence-weighted learning. In: BT - Proceedings
of the 29th International Conference onMachine Learning, ICML 2012, Edinburgh, Scotland,
UK, 26 June–1 July 2012 (2012)

18. Crammer, K., Kulesza, A., Dredze, M.: Adaptive regularization of weight vectors. Mach.
Learn. 91(2), 155–187 (2013). https://doi.org/10.1007/s10994-013-5327-x

19. Crammer, K., Dredze, M., Pereira, F.: Exact convex confidence-weighted learning. In: BT -
Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second
AnnualConference onNeural Information Processing Systems,Vancouver, BritishColumbia,
Canada, 8–11 December 2008, pp. 345–352 (2008)

20. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE Trans. Signal
Process. 52, 2165–2176 (2004)

https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01249-6_38
https://doi.org/10.1007/s10994-013-5327-x

A Blockchain Based Decentralized
Gradient Aggregation Design

for Federated Learning

Jian Zhao1, Xin Wu2, Yan Zhang3, Yu Wu3, and Zhi Wang2(B)

1 Shenzhen Technology University, Shenzhen, China
zhaojian@sztu.edu.cn

2 Tsinghua University, Beijing, China
wux17@mails.tsinghua.edu.cn, wangzhi@sz.tsinghua.edu.cn

3 School of Cyberspace Security, Dongguan University of Technology,
Dongguan, China

yzha1032@asu.edu, wuyu@dgut.edu.cn

Abstract. Based on the concept of letting training organizations only
exchange their partial gradients instead of the proprietary datasets
owned by them, federated learning has become a promising approach
for organizations to train deep learning models collaboratively. However,
conventional federated learning based on a centralized parameter server is
susceptible to “recovery” attacks, in which the original data can be recov-
ered if the attacker can collect enough gradients from the organizations.
To solve the problem, we first propose a blockchain-based decentralized
model training architecture for federated learning, which is more robust
than the centralized architecture. Based on this architecture, we develop
a joint efficiency and randomness aware gradient aggregation approach.
Our real-world experiments show that our design is not affected by a sin-
gle point of failure. Moreover, it can increase the model accuracy of the
participating organization, while mitigating the data privacy disclosure
risk and improving the gradient aggregation performance.

Keywords: Federated learning · Blockchain · Smart contract

1 Introduction

In recent years, artificial intelligence technology has attracted tremendous atten-
tion from both academia and industry. The availability of high-quality data is the
key to the success of the various machine learning algorithms [8]. As the amount
and dimensions of the data increase, the machine learning algorithm training per-
formance is greatly improved [3]. However, data, e.g., financial data or medical
data is usually owned by different organizations. The General Data Protection
Regulation (GDPR) limits organizations not to take a risk of data privacy disclo-
sure. Hence, organizations are not willing to contribute their data for training.

J. Zhao and X. Wu—Contributed equally to this work.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 359–371, 2021.
https://doi.org/10.1007/978-3-030-86340-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_29

360 J. Zhao et al.

(a) Centralized parameter server (b) Decentralized smart contract

Fig. 1. Comparison of two different architectures.

Based on the concept of letting organizations only exchange their partial gra-
dients instead of the proprietary datasets owned by them, federated learning
has become a promising approach for organizations to train deep learning mod-
els collaboratively [12]. Existing federated learning is mainly based on a central-
ized architecture. It uses third-party collaborators to enable each worker node
to perform encryption training. The collaborators aggregate and decrypt the
encrypted gradients, and then pass the gradients back to corresponding worker
nodes. Finally, the worker nodes update the parameters of the local model accord-
ing to the gradients. This architecture relies on a centralized third-party aggre-
gator, as illustrated in Fig. 1a, which is similar as the traditional parameter server
architecture [11]. Conventional federated learnings based a centralized “parameter
server” is vulnerable to “recovery” attacks, in which the original data can be recov-
ered if the attacker can collect enough gradients from the organizations. Third-
party collaborators in federal learning are a centralized structure that captures the
full gradient information of the entire training process. However, researchers have
proved that the important information about the training data can be inferred
through the intermediate gradient information [2,9]. Therefore, when the collab-
orator is “curious”, it will threaten the data privacy of the worker nodes, and the
worker nodes cannot verify whether third-party collaborators have used the gra-
dient information to collect data privacy.

In order to solve the above problems due to centralized “parameter servers”,
we propose a blockchain-based decentralized approach. Blockchain is appropriate
for this application scenario of connecting multiple independent entities together
for cooperation. Developers can write smart contracts and deploy them on the
blockchain platform for specific application services. As illustrated in Fig. 1(b),
our design utilizes smart contracts [5] on the blockchain to achieve the aggrega-
tion and control logic in the training process, replacing the traditional centralized
architecture. Because of the openness and transparency of the blockchain, the
control logic of the entire federated learning process is also open and transpar-
ent, and can be audited by any organization, ensuring that the entire process
is safe and reliable. Besides, the blockchain-based smart contract is executed on
all nodes participating in federated learning, and any single node cannot affect
its operation. Even if any node quits or fails, other nodes can continue to train
their models. Our contributions can be summarized as follows:

Decentralized Gradient Aggregation Design for Federated Learning 361

First, we build a federated learning system coordinated by the blockchain
platform. Compared to conventional architecture, our architecture is completely
decentralized and does not require third-party aggregators or collaborators. In
consideration of blockchain not suitable for large data transmission and storage,
we design an architecture including control and data layer. The control layer is
based on smart contracts for coordinating the training process such as gradient
aggregation. The data layer is for transmitting data. The architecture inherits the
characteristics of blockchain technology and provides a mathematical and cryp-
tographic based trust mechanism for organizations participating in the training.
Most importantly, the architecture is very robust and unaffected by a single point
of failure.

Second, by reducing the risk of data privacy disclosure, this architecture
ensures the effectiveness of the federated training. This approach can help orga-
nizations involved in the training get a model with higher accuracy than training
alone. The embedded gradient aggregation algorithm with random enforcement
strategy considers both randomness and system performance, improving data
privacy security and time performance of the system.

Finally, our real-world experiments demonstrate the effectiveness of our archi-
tecture design. When any node fails and exits, other nodes can still continue
training. In the case of sparse data, our approach increases the model accuracy
by up to 8.40%. For the indicator of randomness, our strategy is 90.19% higher
than the conventional centralized approach, and 53.43% higher than a perfor-
mance priority approach. For the time to accomplish an aggregation in the case
of synchronous training, our approach saves up to 66.52% of the time compared
to the centralized approach, and up to 35.32% of the time compared to the
completely random approach.

The remainder of this paper is organized as follows: Sect. 2 describes research
background. Sect. 3 presents system design and workflow of our proposed archi-
tecture. Sect. 4 proposes a gradient aggregation algorithm with random enforce-
ment for our architecture. Sect. 5 evaluates the architecture and the proposed
algorithm. Sect. 6 concludes our paper.

2 Background

2.1 Studies on Federated Learning

The number of studies on federated learning is increasing. Many studies have
pointed out the data privacy problem of federated learning with centralized
“parameter server”. The gradient information transmitted in the training process
can be used to infer the original data itself or important information about the
original data. Aono et al. [2] proved that an honest but curious centralized server
can even partially recover the original data based on the gradient information
under certain conditions. To enhance the protection of data privacy, Shokri et al.
[14] used differential privacy techniques to add noise to gradient information.
However, Hitaj et al. [9] demonstrated that the centralized server can still obtain
private data from the gradient information after differential privacy by using

362 J. Zhao et al.

generative adversarial network. In order to protect gradient information from the
central node, Phong et al. [13] applied homomorphic encryption to the gradient
information, and they assume that all training nodes are not curious about the
privacy of other nodes. Some researchers tried to transmit part of the model
parameters instead of the gradients, but this is even more likely to learn data
privacy. Song et al. [15] proved that model parameters can contain important
information about original training data. Carlini et al. [6] showed that when a
deep learning based sequence generation model is trained based on text data, it
unintentionally memorizes the training data information that can be extracted
from the model. Emerging federated learning technologies have used third-party
collaborators to encrypt and decrypt intermediate information [4]. However, once
the third-party collaborator is curious, the intermediate information it holds is
sufficient to infer the privacy of the original data.

In contrast, there are very few studies on the system architecture of decen-
tralized federated learning. The existing federated learning still mainly adopts
the centralized parameter server architecture, which is similar to traditional dis-
tributed computing [11].

2.2 Enforcement by Smart Contract Platform - Blockchain

Blockchain has three categories: public blockchain, private blockchain and con-
sortium blockchain. Here we use the consortium blockchain for connecting mul-
tiple cooperated organizations. The consortium blockchain also supports smart
contracts for developing specific applications, such as hyperledger fabric [10].

Blockchain is a platform that every participating node synchronizes data and
runs according to the same codes. Hence, it is a suitable platform for multiple
independent entities that want to cooperate and keep their own data, as every
entity can have one copy of the shared data and run the same codes to process
the data.

A smart contract is a message-driven program deployed on a blockchain [5].
It is automatically executed according to pre-defined rules that are transparent
to all entities. We introduce smart contract technology into coordinating the
model training in deep learning. The decentralization feature of smart contracts
provides a mechanism without the need for centralized collaborators or servers.
This mitigates the risk of data privacy disclosure due to “recovery” attacks
through gradient information.

3 System Design and Workflow

In this section, we present the design of our blockchain-based federated learning
system. Figure 2 shows our system architecture.

3.1 Terms and Entities

Some key terms and entities in Fig. 2 are listed below:

Decentralized Gradient Aggregation Design for Federated Learning 363

Fig. 2. System architecture.

Round: Each node will upload a local encrypted path from time to time to share
the gradient information once. When all the nodes participating in the collab-
orative training have uploaded the path and realized the gradient information
sharing, this process is called a round.

Node: Each node in the system has its corresponding organization, which is
authorized to enter the blockchain. These institutions have a stake in each other,
and have a similar industry background to maintain the chain’s operations. These
nodes access the blockchain and interact with the smart contract. Each node may
play two different roles in different rounds of the federated training process.

NodeID: This is a string of numbers. Each node has its corresponding nodeID.
The nodeID of each node is different as their identity.

Worker: One of the roles played by the node. When a node works as such a role,
it uses local data to calculate the gradient to update the model. On the other
hand, it also uses aggregated gradient information to update the local model.

Leader: One of the roles played by the node. In each round, only the selected
node can play this role. Worker nodes use the public key of the leader node to
encrypt the gradient path and upload the encrypted path to the blockchain. The
leader node decrypts these paths. Based on these paths, the gradient information
is acquired, and aggregated locally. The aggregated gradient path is encrypted
and uploaded to the blockchain, through the key generated by our encrypted
communication mechanism for the current round, thereby ensuring the consis-
tency and confidentiality of the path information.

3.2 System Workflow

Each participating node needs to negotiate in advance before the training begins.
The content of the negotiation includes the number N of nodes participating in

364 J. Zhao et al.

the training, the structure of the target model, the format of the training samples,
and a balance factor λ for balancing the randomness and time performance of
the training. This information does not involve data privacy and does not require
communication negotiation on the blockchain. They can be negotiated over the
peer-to-peer network or other means.

Our system consists of several steps to complete a round of training. The
specific steps are as follows.

Local Training: The nodes cyclically use local data for training and update the
local models. It should be noted that in the first round, nodes need to initialize the
parameters of the agreed model structure. When the nodes think that gradient
sharing is needed, it stores the gradient information generated by the training at
this time, generates a shared gradient information file, and sends a query request
to the smart contract deployed on the blockchain. Although the file is for sharing,
only the leader node of this round can parse its content due to the encryption mech-
anism. The timing of gradient information sharing is determined by each node.

Role Confirmation: The smart contract returns a response each time it receives
a query request. The response message contains the nodeID of leader in this round.
The leader node is selected by varying randomness, and will be re-selected in the
next round, which is performed by the smart contract. The selection takes into
account the randomness and time performance. Since the selection process is done
by the smart contract, it also inherits the decentralization of the smart contract.
This method guarantees that it cannot be controlled by any node within the sys-
tem, so its result is credible for all nodes. The specific selection algorithm will be
introduced in the next section. Nodes know their roles in the current round by
querying the nodeID of leader, and perform the corresponding operations in the
subsequent steps.

Gradient Collection and Aggregation: Each worker node encrypts the
shared gradient file path and sends a request to the smart contract to register
the encrypted path. When all the worker nodes have been registered, the leader
node will obtain these encrypted paths from the smart contract and decrypt
them. The decrypted paths are used by the leader node to obtain corresponding
shared gradient information from the peer-to-peer network.

The leader node aggregates the shared gradient information of this round,
which also contains its own shared gradient information. The method of gradi-
ent aggregation is not limited, and is determined by the leader node [16]. The
simplest method is to take the average of all the shared gradient information in
this round, and this method still helps all the nodes involved in the training to
improve the model accuracy a lot. The aggregated gradient information is stored
as a new file, and its path is encrypted and registered by the leader node to the
smart contract. In addition, the smart contract deployed on the blockchain auto-
matically records the time that it takes for the current leader to complete the
aggregation process, which is used as one of the reference factors for selecting
the leader node in subsequent rounds. It is worth noting that during gradient
collection and aggregation, worker nodes can continue to train with local data

Decentralized Gradient Aggregation Design for Federated Learning 365

in parallel. This approach helps to increase the efficiency of the entire system
and avoids wasted performance due to waiting for aggregated information.

Local Model Update with Aggregated Gradient: The leader node directly
updates the local model with locally stored aggregated gradient information. In
terms of worker nodes, they get the encrypted path of the aggregated gradient
from the smart contract. After decrypting it, the aggregated gradient information
is acquired by the worker nodes through the peer-to-peer network and then
used to update their local models. After completing the update, each node can
continue to the next round of training, or apply to quit training.

Exit: When the node reaches its predefined conditions, it sends an exit request
to the smart contract and completely withdraws from the training in the next
round. The predefined conditions may be that the number of shared rounds
reaches a threshold set in advance, the local model accuracy satisfies its own
target value, or the number of nodes participating in the current round is less
than the expected value. In addition, for a training process, the nodes may
choose to quit midway through training, but the nodes that are not involved in
this training cannot join in the middle.

4 Aggregation Algorithm with Random Enforcement

We design a leader selection algorithm that combines performance and random-
ness. The algorithm is implemented through a transparent and decentralized
smart contract, rather than a third-party organization, ensuring that no node
can control the generation of subsequent leaders. The selection of the leader node
is random, which makes the gradient aggregation process random and decentral-
ized. Such a method enables no node to continuously obtain gradient information
of other nodes. Under the premise of ensuring randomness, the advantages of
higher performance nodes are utilized, to improve the efficiency of the whole
system. The specific algorithm is as Algorithm 1.

Before the start of the training, the smart contract will store the nodeID of
nodes that will participate in this training, and select the nodeID l of leader in
the first round randomly. In every round, when all workers complete the reg-
istration of the encrypted gradient path, the smart contract will automatically
start timing, which is achieved by a counter in the smart contract. After the
leader node performs the gradient aggregation and registers the aggregated gra-
dient path on the smart contract, the smart contract stops timing. The time is
recorded as t, which is the sum of the communication time tc and the aggre-
gation time ta. For the entire system, it only cares about the value of t. If t
corresponds to the leader node of the first round, it will be used to initialize the
time mapping T . This mapping stores the time recorded by each node when it
was last selected as the leader. Next, the values in mapping T will be normalized
and stored in weight mapping W :

W [l] = log(1 + λ/t)

366 J. Zhao et al.

Algorithm 1. Leader selection based on randomness and performance
1: Select leader node l of the first round randomly
2: Initialize balance factor λ
3: for all round i do
4: Record the aggregation time t of l
5: if i is 1 then
6: Initialize time mapping T with t
7: w ← log(1 + λ/t)
8: Initialize weight mapping W with w
9: else

10: T [l] ← t
11: W [l] ← log(1 + λ/t)
12: end if
13: Initialize ws to 0
14: for all node j that participates in the next round do
15: ws ← ws + W [j]
16: end for
17: Initialize probability mapping P
18: for all node j that participates in the next round do
19: P [j] ← W [j]/ws

20: end for
21: Select leader node l of the next round according to probability P
22: end for

l is the nodeID of the current leader. The weights stored in mapping W are
used to calculate the probability mapping P . Mapping P stores the probability
that each node will be selected as the leader in the next round. The specific
calculation steps are as follows:

ws =
∑

W [j]∈W

W [j]

P [j] = W [j]/ws

The smart contract selects the leader node of the next round, according to
the probability P [j] corresponding to the nodeID j.

5 Evaluation

In this section, we carry out several experiments based on our decentralized
training system. We demonstrate the effectiveness of the system in enhancing
robustness, improving the accuracy of local models for each node, and striking
a balance between system performance and randomness.

Decentralized Gradient Aggregation Design for Federated Learning 367

5.1 Experiment Setup

In our system, the blockchain and smart contract are implemented based on
Hyperledger Fabric. Hyperledger Fabric is an open source collaborative effort
hosted by The Linux Foundation, created to advance cross-industry blockchain
technologies.

The system we design and implement is based on the sharing of gradient
information, so it is applicable to almost all deep learning models. To demon-
strate the effectiveness of the system, we use the MNIST dataset that is widely
used and researched. More importantly, current research on federated learning
is mainly based on the MNIST dataset [1,7], which allows us to compare with
other methods. We have 5, 500 training samples for each node participating in
federated training in the system. For each node, the class distribution of the
training samples is random. For the deep learning model, we choose a commonly
used CNN model, which contains two convolutional layers, two fully connected
layers and one output layer.

(a) Rare local samples (b) Sufficient local samples

Fig. 3. Training accuracy with ten nodes.

5.2 Baselines and Metrics

We compare our training method to the following baselines in our experiments. 1)
Training alone, in which each node only trains the local model with locally owned
data. 2) Federated training based on completely random selection, in which the
leader nodes of each round are completely randomly selected, regardless of the
time performance requirements of the federated training. 3) Federated training
based on performance priority selection, in which the probability that a node is
selected as a leader is directly proportional to its performance, and it is possible
that the selection of the leader node is almost monopolized. 4) Federated training
based on centralized parameter server, in which the training process relies on a
centralized node.

368 J. Zhao et al.

5.3 Results

Training Accuracy. First, we validate the accuracy of our training approach.
We compare the accuracy of ten nodes with federated training. The conven-
tional centralized training approach not only shares a large amount of gradient
information, but also synchronizes the model parameters. In order to show the
impact of differences in the original data owned by different organizations, our
training approach only shares part of the gradient information. In our system,
the accuracy of the model is still improved compared to that of training alone.
When each node has 5, 000 samples, the accuracy of federated training in our
system is 1.22% higher than training alone. However, when the node has only
50 samples, the accuracy of the improvement is as high as 8.40%, as shown in
Fig. 3. At the same time, for the node with higher quality and more number of
local samples, the final training model will tend to be better than other nodes,
while the final model obtained by each node is exactly the same through the
centralized approach. Our training approach is more fair and drives nodes to use
more and better samples for federated training.

Fig. 4. Model accu-
racy increases as
No. of joining nodes
increases.

Fig. 5. Model
accuracy is still
improved after the
dropout occurs.

Fig. 6. Time com-
parison among
completely random
approach & ours.

Fig. 7. Difference
in the No. of times
the node is selected
as leader.

Fig. 8. The distribution of leader node. Fig. 9. The utility of randomness.

In addition, we choose three nodes for observation. When they perform feder-
ated training with different numbers of nodes, the accuracy of their local models
changes as shown in Fig. 4. An increase in the number of federated nodes can
be observed, which helps each training node to achieve higher model accuracy,
motivating more nodes to participate in our federated training together.

Decentralized Gradient Aggregation Design for Federated Learning 369

System Robustness. We select ten nodes to perform 1000 rounds of training.
At this time, three nodes dropout, and the model accuracy after 1000 rounds
is shown in Fig. 5. It can be seen that the federated learning continues, and the
model accuracy is slightly higher than the training with seven nodes throughout.
This shows the extremely robustness of the system.

Time Performance. The training approach we designed considers system per-
formance. In Fig. 6, we show the variation of the gradient aggregation time of
the system as the balance factor λ changes. The results show that our training
approach can save up to 35% of the time, compared to a completely random
approach. Even when the balance factor λ is taken as 100, it can still save about
17% of the time. We assign balance factor λ to different values and compare
the corresponding aggregation time with other approaches. The specific time
for aggregation is listed in Table 1. In terms of the centralized approach, the
worst performing node becomes a bottleneck. For the time required to complete
an aggregation in the case of synchronous training, our approach saves up to
66.52% of the time compared to the centralized approach, and up to 35.32% of
the time compared to the completely random approach.

Table 1. Aggregation time

Approach λ = 1 λ = 100 Completely random Parameter server

Aggregation time (s) 6.96 8.91 10.73 20.79

Randomness for Gradient Aggregation. We introduce randomness into
the training process by weighted random selection of the leader nodes. This
selection requires the balance factor λ, which is negotiated by the participating
nodes before training to balance randomness and system performance. In our
approach, let λ be 100 to compare with other approaches. We count the number
of occurrences of the most frequently selected node and the least frequently
selected node in the 500 rounds of training, with the different values of the
balance factor λ, as shown in Fig. 7. The larger the balance factor is, the more
average the probability that each node is selected. When the balance factor λ
approaches infinity, the selection approximates a completely random election.

In Fig. 8, we also compare our approach to performance priority selection. In
the performance priority selection approach, the probability that each node is
selected is proportional to its performance, while our approach only guarantees
that the probability is positively correlated with the performance. The parameter
normalization of the logarithmic function prevents the probability of each node
from being too large. It can be seen that in the performance priority approach,
the sum of the two most frequently selected nodes is close to half of the total
number. This creates the possibility of monopolizing the leader role through the
performance advantages of the node. Once a node in the system has performance
far exceeding that of other nodes, such a selection will result in the system
degenerating into a centralized parameter server architecture.

370 J. Zhao et al.

Finally, we calculated the standard deviations for the different approaches,
and divided them by the standard deviation of the completely random method,
as the corresponding utility value to measure the randomness. The results are
shown in Fig. 9. It can be observed that our approach is not much different from
completely random selection, while far superior to the other two methods. For
the utility of randomness, our design is 90.19% higher than the conventional cen-
tralized approach, and 53.43% higher than the performance priority approach.

6 Conclusion

We design and implement a blockchain-based federated learning system through
deploying smart contract on the blockchain, and develop corresponding ran-
dom enforcement training approach. In our system, the organizations involved
in training trust the mathematics and cryptography rather than third-party
organizations. All participating organizations are equal. They participate in the
model training of federated learning, and jointly maintain the normal conduct
of federated learning. Compared with existing centralized systems and methods,
our design is more robust and avoids the threat of a single point of failure.

Acknowledgments. This work is supported in part by NSFC (Grant No. 61872215),
Shenzhen Science and Technology Program (Grant No. RCYX20200714114523079),
Shenzhen Nanshan District Ling-Hang Team Project (Grant No. LHTD20170005),
Featured Innovation Project of Guangdong Education Department (Grant No. 2020
KTSCX126), and Natural Science Foundation of Top Talent of SZTU (Grant No.
2018010801008).

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on CCS, pp. 308–318 (2016)

2. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning: revisited and enhanced. In: Batten, L., Kim, D.S., Zhang, X., Li, G. (eds.)
ATIS 2017. CCIS, vol. 719, pp. 100–110. Springer, Singapore (2017). https://doi.
org/10.1007/978-981-10-5421-1 9

3. Banko, M., Brill, E.: Scaling to very very large corpora for natural language disam-
biguation. In: Proceedings of the 39th Annual Meeting on Association for Compu-
tational Linguistics, pp. 26–33. Association for Computational Linguistics (2001)

4. Bonawitz, K., et al.: Towards federated learning at scale: System design. arXiv
preprint arXiv:1902.01046 (2019)

5. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White Paper, vol. 3, no. 37 (2014)

6. Carlini, N., Liu, C., Kos, J., Erlingsson, Ú., Song, D.: The secret sharer: measur-
ing unintended neural network memorization & extracting secrets. arXiv preprint
arXiv:1802.08232 (2018)

7. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

8. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data (2009)

https://doi.org/10.1007/978-981-10-5421-1_9
https://doi.org/10.1007/978-981-10-5421-1_9
http://arxiv.org/abs/1902.01046
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1712.07557

Decentralized Gradient Aggregation Design for Federated Learning 371

9. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 603–618. ACM (2017)

10. HyperLedger Fabric. https://www.hyperledger.org
11. Li, M., et al.: Scaling distributed machine learning with the parameter server. In:

11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2014), pp. 583–598 (2014)

12. McMahan, B., Ramage, D.: Federated learning: collaborative machine learning
without centralized training data. Google Research Blog 3 (2017)

13. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur.
13(5), 1333–1345 (2018)

14. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC Conference on CCS, pp. 1310–1321. ACM (2015)

15. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember
too much. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 587–601. ACM (2017)

16. Yu, M., et al.: Gradiveq: vector quantization for bandwidth-efficient gradient aggre-
gation in distributed CNN training. In: Advances in Neural Information Processing
Systems, pp. 5123–5133 (2018)

https://www.hyperledger.org

Continual Learning for Fake News
Detection from Social Media

Yi Han(B) , Shanika Karunasekera , and Christopher Leckie

School of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

{yi.han,karus,caleckie}@unimelb.edu.au

Abstract. The prevalence of fake news over social media has a profound
impact on justice, public trust and society as a whole. Although signif-
icant effort has been applied to mitigate its negative impact, our study
shows that existing fake news detection algorithms may perform poorly
on new data. In other words, the performance of a model trained on
one dataset degrades on another and potentially vastly different dataset.
Considering that in practice a deployed fake news detection system is
likely to observe unseen data, it is crucial to solve this problem with-
out re-training the model on the entire data from scratch, which would
become prohibitively expensive as the data volumes grow. An intuitive
solution is to further train the model on the new dataset, but our results
show that this direct incremental training approach does not work, as the
model only performs well on the latest dataset it is trained on, which is
similar to the problem of catastrophic forgetting in the field of continual
learning. Instead, in this work, (1) we first demonstrate that with only
minor computational overhead, balanced performance can be restored on
both existing and new datasets, by utilising Gradient Episodic Memory
(GEM) and Elastic Weight Consolidation (EWC)—two techniques from
continual learning. (2) We improve the algorithm of GEM so that the
drop in model performance on the previous task can be further min-
imised. Specifically, we investigate different techniques to optimise the
sampling process for GEM, as an improvement over random selection
as originally designed. (3) We conduct extensive experiments on two
datasets with thousands of labelled news items to verify our results.

Keywords: Fake news detection · Continual learning · Social media

1 Introduction

A series of incidents over recent years have demonstrated the profound damage
fake news can cause to society, and it has become an urgent challenge to study
how to automatically and accurately identify fake news1 before it is widespread.

1 Here we use the definition in [38]: fake news is intentionally and verifiably false news
published by a news outlet.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 372–384, 2021.
https://doi.org/10.1007/978-3-030-86340-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_30&domain=pdf
http://orcid.org/0000-0001-6530-4564
http://orcid.org/0000-0001-7080-5064
http://orcid.org/0000-0002-4388-0517
https://doi.org/10.1007/978-3-030-86340-1_30

Continual Learning for Fake News Detection from Social Media 373

A variety of techniques have been proposed for fake news detection [17,38],
including content-based approaches that use news headlines and body content
to verify the validity of the news, context-based approaches that rely on the
interactions between users, e.g., tweet, retweet, reply, mention and follow, and
mixed approaches. However, we find that even though these methods may
achieve satisfactory results on the dataset on which they are trained,
their performance often degrades considerably on another and poten-
tially vastly different dataset. In practice, a deployed fake news detection
system is likely to observe new, unseen data. Therefore, it is crucial to solve this
problem without re-training the model from scratch every time a new dataset
is obtained, which would become prohibitively expensive as the data volumes
grow.

Specifically, we start with the most intuitive approach of direct incremen-
tal training—further train the model on the new dataset. However, our results
suggest that using this approach the obtained model only performs well on the
latest dataset it is trained on. This is similar to the problem of catastrophic
forgetting [12] in the field of continual learning: when a deep neural network is
trained to learn a sequence of tasks (in this case, a new dataset represents a
different task), its performance degrades on the earlier tasks after it learns new
tasks, as the new tasks override the weights. Therefore, in this work:

– We first demonstrate that with only minor computational overhead, balanced
performance can be restored on both existing and new datasets, by utilis-
ing GEM [9] and EWC [7]—two popular techniques from continual learning,
although GEM-trained models perform better in general.

– We improve GEM so that the drop in model performance on the previous
task can be further minimised. GEM keeps a certain number of samples from
the previous task when training a model on the new task. In contrast to
existing approaches that use uniform random sampling, we investigate more
sophisticated sampling techniques—maximum entropy sampling and support
samples—so that the chosen instances are more informative.

– We conduct extensive experiments on two datasets with thousands of labelled
news items. Specifically, our experimental results show that after the above
sampling techniques are applied, the trained models can achieve better per-
formance on the previous task, while maintaining their performance on the
new task.

The remainder of this paper is organised as follows: Sect. 2 briefly reviews
existing work on fake news detection; Sect. 3 describes the problem with current
detection algorithms when facing new, unseen data; Sect. 4 investigates how to
restore balanced performance on both existing and new data using GEM and
EWC, as well as how to improve GEM; and finally Sect. 5 concludes the paper
and offers directions for future work.

374 Y. Han et al.

2 Background: Fake News Detection Algorithms and
Datasets

Detecting fake news on social media has been a popular research problem over
recent years. In this section, we briefly review the prior work on this topic, and
introduce the datasets chosen in our experiments. Specifically, similar to [17,
24], we classify existing work into three categories: content-based approaches,
context-based approaches and mixed approaches.

Content-Based Approaches. Content-based approaches use news headlines
and body content to verify the validity of the news. It can be further classified
into two categories [24,38]: (1) knowledge-based detection. In order for this type
of method to work, a knowledge base or knowledge graph [15] has to be built first.
Here, knowledge can be represented in the form of a triple: (Subject, Predicate,
Object), i.e., SPO triple. Then, to verify an item of news, knowledge extracted
from its content is compared with the facts in the knowledge graph [3]. (2)
Style-based detection. Since the purpose of fake news is to mislead the public, it
often exhibits unique writing styles that are rarely seen in real news. Therefore,
style-based methods aim to identify these characteristics [19,27,29].

In addition to textual information, images posted in social media have also
been investigated to facilitate the detection of fake news [5,30,33,37].

Context-Based Approaches. Social context here refers to the interactions
between users, including tweet, retweet, reply, mention and follow. These engage-
ments provide valuable information for identifying fake news spread on social
media. For example, Jin et al. [6] build a stance network where the weight of an
edge represents how much each pair of posts support or contradict each other.
Then fake news detection is based on estimating the credibility of all the posts
related to the news item. Tacchini et al. [26] propose to detect fake news based
on user interactions, i.e., users who liked them on Facebook.

Unlike the above supervised methods, an unsupervised approach is proposed
in Yang et al. [32]. It builds a Bayesian graphical model to capture the generative
process among the validity of news, user opinions and user credibility.

Mixed Approaches. Mixed approaches use both news content and associated
user interactions over social media to differentiate between fake news and real
news. Ruchansky et al. [20] design a three-module architecture that combines
the text of a news article, the received user response and the source of the news.
Other methods that fall into this category include [25,36]

In addition to the above work, a few recent papers have started to work on
explainability, i.e., why their model labels certain news items as fake [10,18,21].

Datasets. A number of datasets covering different domains have been col-
lected for fake news detection. In our work, we use the dataset of FakeNews-
Net [22], which contains labelled news from two websites: politifact.com and
gossipcop.com. The news content includes both linguistic and visual informa-
tion, all the tweets and retweets for each item of news, and the information of
the corresponding Twitter users (please refer to [22] for more details).

http://politifact.com/
http://gossipcop.com/

Continual Learning for Fake News Detection from Social Media 375

3 Problem Description

In previous work on fake news detection, most proposed methods were evaluated
on multiple datasets separately. However, our experimental results on several
detection algorithms suggest that models trained on one dataset, e.g., PolitiFact,
do not perform well on another dataset, e.g., GossipCop. Note that these two
datasets are chosen for demonstration purpose only. Similar findings can be made
on other datasets as well, e.g., recently collected COVID-19 datasets, or from
two splits of the same dataset that are temporally far away from each other.

A natural thought is to re-train the model on both datasets, but this may not
be feasible, or at least not ideal in practice: there will always be new data that
our model has not seen before, and it does not make sense to re-train the model
from scratch on the entire data every time a new dataset is obtained, especially
since as the data size grows, this can become prohibitively expensive.

Therefore, we aim to find an incremental training method to address
the issue of dealing with new, unseen data in fake news detection.
Specifically, let one dataset, e.g., PolitiFact, represent the existing data that our
model has been trained on, and the other dataset, e.g., GossipCop, represent
the unknown data that our model will face in the future, we investigate how
to train models incrementally so that balanced performance can be achieved on
both datasets.

To answer the above question, we choose a widely-cited content-based app-
roach HAN [34], and design a context-based method that applies graph neural
networks (GNNs) to differentiate between the propagation patterns of fake and
real news on social media. More details are given in the next subsection.

3.1 Propagation Patterns for Fake News Detection

Empirical evidence suggests that fake news and real news spread differently
online [28], and the idea of using propagation patterns to detect fake news has
been explored in a number of previous studies [1,8,10,11,14,23,31,39]. However,
considering the capability of graph neural networks (GNNs) in dealing with non-
Euclidean data, we use GNNs to differentiate between the propagation patterns
of fake and real news on social media. In addition, given that machine learning
models are vulnerable to adversarial attacks [4], we decide not to rely on any
text information, e.g., news content or tweet content, so that our model can be
less susceptible to the manipulation of advanced fake news fabricators.

Notation in GNNs. Consider a graph G = (A, F) with n vertices/nodes and
m edges, where A ∈ {0, 1}n×n is the adjacency matrix. Ai, j = 1 if there is an
edge from node i to node j, and Ai, j = 0 otherwise; F ∈ Rn×d is the feature
matrix, i.e., each node has d features. Given A and F as inputs, the output
of a GNN after the k th step is: H(k) = f

(
A,H(k−1); θ(k)

)
∈ Rn×d, where f is the

propagation function parameterised by θ, and H0 = F. H(k) can be used for node-
or graph-level classification. There have been a number of implementations for
the propagation function. In our work, since the goal is to label the propagation

376 Y. Han et al.

pattern of each item of news, which is a graph, we choose the algorithm of
DiffPool [35] that is specifically designed for graph classification.

Below we explain how we define the adjacency matrix and the feature matrix
in our model, and then present a brief performance comparison.

Adjacency Matrix. Once an item of news is published, it may be tweeted by
multiple users. We call these tweets that directly reference the news URL root
tweets. Each of them and their retweets form a separate cascade [28], and all the
cascades form the propagation pattern of an item of news.

Each propagation pattern is a graph, where a node refers to a tweet (including
the corresponding user)—either the root tweet that references the news or its
retweets. A special case is that an extra node representing the news is added to
connect all cascades together. All the feature values for this node are set to zero.
Edges here represent information flow, i.e., how the news transfers from one
person to another. However, since Twitter APIs do not provide the immediate
source of a retweet, we first sort the tweets by their timestamps within each
cascade, and then search for the potential source of a retweet from all the tweets
published earlier. Specifically, there is an edge from node i to node j2 if:

– The user of node i mentions the user of node j in the tweet, e.g., user i
retweets a news item and also recommends it to user j via mentioning;

– Tweet i is public and tweet j is posted within a certain period of time after
tweet i. We set the time limit to ten hours in our experiments.

Note that edges only exist between nodes within the same cascade. We
have also further considered the follower and following relations, but our results
demonstrate that there is no significant improvement. In addition, since Twitter
applies a much stricter rate limit on corresponding APIs, these types of infor-
mation may not be available in real time, especially if a number of news items
need to be validated at the same time and within a detection deadline.

Feature Matrix. Since our method does not rely on any textual information,
we only choose the following information from user profiles as the features for
each node: (1) whether the user is verified, (2) the timestamp when the user was
created, encoded as the number of months since March 2006—the time when
Twitter was founded, (3) the number of followers, (4) the number of friends, (5)
the number of lists, (6) the number of favourites; (7) the number of statuses,
(8) the timestamp of the tweet, encoded as the number of seconds since the
first tweet that references the news is posted. Another important reason why we
choose the above features is that they are easily accessible—they are directly
available within the tweet object, which is preferable for online detection.

Performance Comparison. We compare our method with the content-based
approach HAN [34] and a state-of-the-art algorithm dEFEND [21]. To make
our results comparable with those reported in [21] (as they also tested fake news
detection algorithms on the same dataset), we follow the same procedure to train

2 Node i is published before node j, and the information goes from user i to user j.

Continual Learning for Fake News Detection from Social Media 377

and test the GNNs: randomly choose 75% of the news as the training data while
keeping the rest as the test data, and the final result is the average performance
over five repeats. The model is evaluated with the following commonly used
metrics: accuracy, precision, recall and F1 score.

For our method, the hyper-parameters for the DiffPool algorithm are set as
follows: 2 pooling layers, 64 hidden dimensions and 64 embedding dimensions. In
addition, since it is more critical to detect fake news at an early stage
before it becomes widespread, we train GNNs on a clipped dataset
that only contains the first K = 100 tweets for each news item3.

Accuracy Precision Recall F1
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

HAN
dEFEND
Ours

(a) PolitiFact

Accuracy Precision Recall F1
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

HAN
dEFEND
Ours

(b) GossipCop

Fig. 1. Performance comparison on the datasets of PolitiFact and GossipCop.

As can be seen from Fig. 1, by only relying on the limited set of non-textual
features and the clipped dataset, our model can achieve comparable performance
on PolitiFact, and the best result on GossipCop.

4 Dealing with Degraded Performance on New Data

As mentioned in the problem description, we have tested several fake news detec-
tion algorithms and find that models trained on PolitiFact perform poorly on
GossipCop, and vice versa, where all four metrics drop to around 0.6 or below.
An examination of the news content and the generated graphs reveals that (1)
since PolitiFact is mainly about political news while GossipCop is more about
entertainment news, the writing style, the commonly discussed subjects and top-
ics are vastly different; (2) the graphs generated from PolitiFact and GossipCop
are also distinct from each other, in terms of the numbers of nodes and edges.

Similar observations can also be made between PolitiFact/GossipCop and
other datasets, or from two splits of one dataset that are temporally far away
from each other. In practice, no matter how much data a model has been trained
on, it is likely that it will face unknown, different data in the future. This section
investigates effective incremental training techniques so that balanced perfor-
mance can be achieved on both existing and new data for fake news detection.

3 We have also tested K = 200, 500, 1000,∞ (not clipped). Those results are omitted
due to space limits (the results are better under those settings).

378 Y. Han et al.

4.1 Incremental Training Reverses the Model Performance

We first test incremental training, i.e., further train the model obtained from
PolitiFact (or GossipCop) on the other dataset of GossipCop (or PolitiFact).
However, then the models only perform well on the latest dataset on which they
are trained, while achieving degraded results on the former dataset. Note that
during incremental training, we still randomly choose 75% of news as the training
data and the rest as the test data.

This is similar to the problem of catastrophic forgetting which was first recog-
nised in [12]: a neural network tends to forget the information learned in the
previous tasks when training on new tasks. In our case, each new dataset can
be considered as a new task. In the next subsection, we investigate how to solve
the problem by proposing techniques based on continual learning.

Accuracy Precision Recall F1
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

PolitiFact
GossipCop

(a) Our method

Accuracy Precision Recall F1
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

PolitiFact
GossipCop

(b) HAN

Fig. 2. Performance of models first trained on PolitiFact and then on GossipCop using
GEM (|M| = 300).

4.2 Continual Learning Restores Balanced Performance

In order to deal with catastrophic forgetting, a number of approaches have been
proposed, which can be roughly classified into three types [16]: (1) regularisation-
based approaches that add extra constraints to the loss function to prevent the
loss of previous knowledge; (2) architecture-based approaches that selectively
train a part of the network for each task, and expand the network when nec-
essary for new tasks; (3) dual-memory-based approaches that build on top of
complementary learning systems (CLS) theory, and replay samples for memory
consolidation. In this paper, we consider the following two popular methods:

– Gradient Episodic Memory (GEM)—GEM uses episodic memory to store a
number of samples from previous tasks, and when learning a new task t,
it does not allow the loss over those samples held in memory to increase
compared to when the learning of task t − 1 is finished;

– Elastic Weight Consolidation (EWC)—its loss function consists of a quadratic
penalty term on the change of the parameters, in order to prevent drastic
updates to those parameters that are important to the old tasks.

In our case, the learning on the two datasets (D1 and D2) are considered
as two tasks. When the model learns the first task, it is trained as usual; then
during the learning of the second task, we incorporate GEM and EWC:

Continual Learning for Fake News Detection from Social Media 379

– Let C be the model, θ1 be the parameters after the first task, and M be the
set of instances sampled from the first dataset, then the optimisation problem
under GEM becomes:

minθ
∑

(xi,yi)∈D2

loss (C(xi; θ), yi)

subject to
∑

(x j,yj)∈M

loss
(
C(xj ; θ), yj

)
≤

∑

(x j,yj)∈M

loss
(
C(xj ; θ1), yj

)

– Let λ be the regularisation weight, F be the Fisher information matrix, and
θ∗
D1

be the parameters of the Gaussian distribution used by EWC to approx-
imate the posterior of p(θ |D1), then the loss function under EWC is:

∑

(xi,yi)∈D2

loss (C(xi; θ), yi) +
λ

2
F(θ − θ∗

D1
)

2

Table 1. Performance of models first trained on GossipCop and then on PolitiFact
using EWC (|M| = 300, λ = 103 ∼ 105, the other results are omitted).

λ Our method HAN

PolitiFact GossipCop PolitiFact GossipCop

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

103 0.71 0.71 0.71 0.71 0.76 0.74 0.68 0.69 0.72 0.72 0.72 0.72 0.69 0.65 0.71 0.64

3 × 103 0.72 0.72 0.72 0.72 0.73 0.70 0.66 0.67 0.73 0.73 0.73 0.72 0.68 0.65 0.71 0.64

104 0.72 0.72 0.71 0.71 0.79 0.77 0.73 0.74 0.73 0.72 0.72 0.72 0.71 0.66 0.73 0.66

3 × 104 0.72 0.72 0.72 0.72 0.76 0.74 0.71 0.72 0.72 0.73 0.72 0.72 0.73 0.68 0.74 0.68

105 0.71 0.71 0.71 0.71 0.77 0.75 0.71 0.72 0.73 0.73 0.72 0.72 0.72 0.67 0.74 0.67

Note that when estimating the Fisher information matrix F, we sample a set
of instances (M) and compare the model performance under different sample
sizes.

In terms of parameters, we test sample size |M| = 100, 200, 300 (all the sam-
ples are chosen randomly), and λ = 1, 3, 10, 30, 102, 3 × 102, 103, 3 × 103, 104, 3 ×

104, 105 (for EWC only). Figure 2 shows the results of models first trained on
PolitiFact and then on GossipCop using GEM when |M| = 300, and Table 1
presents the performance of models first trained on GossipCop and then on Poli-
tiFact using EWC when |M| = 300, λ = 103, 3 × 103, 104, 3 × 104, 105 (the other
results are omitted due to space limits). The results demonstrate that both meth-
ods can achieve relatively balanced performance over the two datasets, although
GEM trained models work better in general. Comparing Figs. 1 and 2, we can see
that the GEM-trained models almost restore their performance on the previous
task, where the drop in all four metrics is below 3% in most cases.

380 Y. Han et al.

Efficiency. In terms of efficiency, we observe that: (1) compared with the normal
training process, training with GEM and EWC requires slightly more time: 5%
to 10%—this is a significant improvement over re-training from scratch, the time
of which grows linearly with the number of nodes and edges in our case; (2) there
is no significant difference in training time between GEM and EWC; and (3) the
impact of the parameters on the training time is also not significant.

4.3 Optimise the Sampling Process to Further Minimise
Performance Drop

In the above experiments, the set of instances M from the previous task is
chosen randomly. In this section, we explore other techniques so that the selected
samples are more informative about the data of the previous task. Note that
all the experiments below are conducted using the propagation-based approach
introduced in Sect. 3.1 with GEM (which outperforms EWC) and |M| = 300,
while we leave the improvement of content-based approaches for future work.

Technique I: Maximum Entropy Sampling (MES). We first consider max-
imum entropy sampling, which aims to select a subset S from the entire dataset
N such that the obtained information of N is maximised. According to the prin-
ciple of MES, the entropy of the remaining data points N\S must be minimised,
while the entropy of S must be maximised, i.e.,

M = argmax
S

H(S) = argmax
S

−

∑

xi

p(xi)log2p(xi), xi ∈ S

In our case, considering that the graphs generated from the two datasets have
quite different numbers of nodes, we calculate the entropy over the graph
size.

The MES problem is NP-hard [13]. A quasi-optimal solution adopts a greedy
strategy: it starts with an empty set S = ∅, and in each step, a new sample is
chosen that maximises the marginal gain, i.e., x = argmaxxi�S H(S∪{xi})−H(S).
However, this greedy algorithm is computationally expensive, and is not suitable
for large datasets. We explain our approaches later in this section.

Technique II: Support Samples. A similar idea has been explored in [2],
which is inspired by margins in SVMs. For SVMs the support vectors deter-
mine the decision boundary, and in our case, we can define the margin as
Margin(x) = C(x, y) − C(x, 1 − y), where C is the classifier, x is the input, and
y ∈ {0(real), 1(f ake)} is the label. A negative margin means that x is misclas-
sified, while a larger margin suggests that the classifier is more confident of the
prediction. Since the purpose of sampling instances from the previous task is to
ensure that the model performance does not degrade, it does not make sense to
choose misclassified instances, nor would it be efficient to select samples with
large margins.

Proposed Sampling Approaches. Our sampling approaches combine the
above two techniques—(1) first we calculate the margin for each graph in the

Continual Learning for Fake News Detection from Social Media 381

previous task, and initialise S with the graphs whose margin is within the range
of (0, δ), δ ∈ [0, 1]. Three values, 0.05, 0.1, 0.2, are tested and we finally set δ = 0.1.
Note that the size of this initialised set is normally much smaller than the sample
size of 300. (2) Then we propose the following two strategies (Algorithm 1):

– Strategy I goes through the graphs in N\S ordered by their margin values,
and add one graph xi if the entropy increases, i.e., H(S∪{xi}) > H(S);

– Strategy II adopts a stochastic greedy method [13], where in each step
we randomly sample a set of graphs (R) from N\S, and find xi ∈ R that
maximises the marginal gain, i.e., x = argmaxxi ∈R H(S∪{xi})−H(S). Please
refer to [13] for how to choose the size of R. In our experiments, we set
|R | = max(|N |

|M |

, 20).

In addition, we design another two strategies as baselines: (1) choose the
graphs with the top |M| = 300 smallest margin values, and (2) initialise S =

{x |0 < Margin(x) ≤ δ = 0.1}, sort the remaining graphs N\S by size, and sample
uniformly at random.

Figure 3 compares the five sampling strategies—(1) random as originally
designed, (2) Baseline 1, (3) Baseline 2, (4) Strategy I, (5) Strategy II—for mod-
els first trained on PolitiFact and then on GossipCop using GEM with |M| = 300
(results for models first trained on GossipCop and then on PolitiFact are omit-
ted due to space limits). We can see that while all models perform similarly on
GossipCop (i.e., the new task), Strategy II can improve the results on Politi-
Fact (i.e., the previous task), which indicates the effectiveness of this sampling
method. However, Strategy I does not work well—a comparison reveals that the
selected samples differ significantly from those under Strategy II.

Algorithm 1: Sampling Strategies
Input : Sample size |M|; The number of instances from the previous task |N |

Output : Samples, S

1 Initialise S = {x |0 < Margin(x) ≤ δ = 0.1}
2 Strategy I:
3 Sort N\S by their margin values from smallest to largest
4 while |S| < |M| do
5 for xi ∈ N\S do
6 if H(S∪{xi}) > H(S) then
7 S = S ∪ {xi}

8 Strategy II:
9 while |S| < |M| do

10 R = randomly sample max(|N |

|M |

, 20) instances from N\S

11 x = argmaxxi ∈R H(S ∪ {xi}) − H(S)

12 S = S ∪ {x}

13 return S

382 Y. Han et al.

Accuracy Precision Recall F1
0.65

0.7

0.75

0.8

Random
Baseline 1
Baseline 2
Strategy I
Strategy II

(a) Performance on PolitiFact

Accuracy Precision Recall F1
0.65

0.7

0.75

0.8

Random
Baseline 1
Baseline 2
Strategy I
Strategy II

(b) Performance on GossipCop

Fig. 3. Comparison of different sampling strategies for models first trained on Politi-
Fact and then on GossipCop using GEM (|M| = 300).

5 Conclusions and Future Work

The prevalence of fake news over social media has become a serious social prob-
lem. Although a number of detection methods have been proposed, we identify
the problem that models trained on a given dataset may not perform well on new
data, and direct incremental training cannot solve the issue. Since this is similar
to catastrophic forgetting in continual learning, we propose to apply two popular
approaches, GEM and EWC, during the incremental training, so that balanced
performance can be achieved on both existing and new data. This avoids re-
training on the entire data, which becomes prohibitively expensive as data size
grows. In addition, we further improve the results by optimising the sampling
process with maximum entropy sampling and support samples.

For future work, we will investigate whether Algorithm 1 also improves the
performance of content-based approaches. Specifically, entropy needs to be rede-
fined, and one possibility is to calculate it over the topic of each news item.

References

1. Bian, T., et al.: Rumor detection on social media with bi-directional graph convo-
lutional networks. arXiv:2001.06362 (2020)

2. Chen, Z., Lin, T.: Revisiting gradient episodic memory for continual learning
(2019). https://openreview.net/pdf?id=H1g79ySYvB

3. Cui, L., Seo, H., Tabar, M., Ma, F., Wang, S., Lee, D.: DETERRENT: knowledge
guided graph attention network for detecting healthcare misinformation. In: 26th
ACM SIGKDD, KDD 2020, pp. 492–502 (2020)

4. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. eprint arXiv:1412.6572 (2014)

5. Jin, Z., Cao, J., Zhang, Y., Zhou, J., Tian, Q.: Novel visual and statistical image
features for microblogs news verification. IEEE Trans. Multimedia 19(3), 598–608
(2017)

6. Jin, Z., Cao, J., Zhang, Y., Luo, J.: News verification by exploiting conflicting
social viewpoints in microblogs. In: 30th AAAI, pp. 2972–2978 (2016)

7. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. NAS
114(13), 3521 (2017)

8. Liu, Y., Wu, Y.F.B.: Early detection of fake news on social media through propaga-
tion path classification with recurrent and convolutional networks. In: 32nd AAAI,
pp. 354–361 (2018)

http://arxiv.org/abs/2001.06362
https://openreview.net/pdf?id=H1g79ySYvB
http://arxiv.org/abs/1412.6572

Continual Learning for Fake News Detection from Social Media 383

9. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In:
31st NeurIPS, pp. 6467–6476. Curran Associates, Inc. (2017)

10. Lu, Y.J., Li, C.T.: GCAN: graph-aware co-attention networks for explainable fake
news detection on social media. arXiv:2004.11648 (2020)

11. Ma, J., Gao, W., Wong, K.F.: Detect rumors in microblog posts using propagation
structure via kernel learning. In: 55th ACL, pp. 708–717 (2017)

12. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. In: Psychology of Learning and Motivation, vol.
24, pp. 109–165. Academic Press (1989)

13. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák, J., Krause, A.: Lazier
than lazy greedy. In: 29th AAAI, pp. 1812–1818 (2015)

14. Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M.: Fake news detec-
tion on social media using geometric deep learning. arXiv:1902.06673

15. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. IEEE 104(1), 11–33 (2016)

16. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: a review. arXiv:1802.07569 (2018)

17. Pierri, F., Ceri, S.: False news on social media: a data-driven survey. SIGMOD
Rec. 48(2), 18–27 (2019)

18. Popat, K., Mukherjee, S., Yates, A., Weikum, G.: Debunking fake news and false
claims using evidence-aware deep learning. arXiv:1809.06416 (2018)

19. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of
fake news. In: 27th COLING, pp. 3391–3401 (2018)

20. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection.
In: 26th CIKM, pp. 797–806 (2017)

21. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: DEFEND: explainable fake news
detection. In: 25th KDD, pp. 395–405 (2019)

22. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: a data
repository with news content, social context and spatialtemporal information for
studying fake news on social media. arXiv:1809.01286 (2018)

23. Shu, K., Mahudeswaran, D., Wang, S., Liu, H.: Hierarchical propagation net-
works for fake news detection: investigation and exploitation. arXiv e-prints
arXiv:1903.09196 (2019)

24. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media:
a data mining perspective. SIGKDD Explor. 19(1), 22–36 (2017)

25. Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for
fake news detection. In: 12th WSDM, pp. 312–320 (2019)

26. Tacchini, E., Ballarin, G., Della Vedova, M.L., Moret, S., de Alfaro, L.: Some
like it hoax: Automated fake news detection in social networks. arXiv e-prints
arXiv:1704.07506 (2017)

27. Volkova, S., Shaffer, K., Jang, J.Y., Hodas, N.: Separating facts from fiction: lin-
guistic models to classify suspicious and trusted news posts on twitter. In: 55th
ACL, pp. 647–653 (2017)

28. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science
359(6380), 1146–1151 (2018)

29. Wang, W.Y.: “Liar, liar pants on fire”: a new benchmark dataset for fake news
detection. In: 55th ACL, pp. 422–426 (2017)

30. Wang, Y., et al.: EANN: event adversarial neural networks for multi-modal fake
news detection. In: 24th KDD, pp. 849–857 (2018)

31. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation
structures. In: 31st ICDE, pp. 651–662 (2015)

http://arxiv.org/abs/2004.11648
http://arxiv.org/abs/1902.06673
http://arxiv.org/abs/1802.07569
http://arxiv.org/abs/1809.06416
http://arxiv.org/abs/1809.01286
http://arxiv.org/abs/1903.09196
http://arxiv.org/abs/1704.07506

384 Y. Han et al.

32. Yang, S., Shu, K., Wang, S., Gu, R., Wu, F., Liu, H.: Unsupervised fake news
detection on social media: a generative approach. In: 33rd AAAI, vol. 33, pp.
5644–5651 (2019)

33. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., Yu, P.S.: TI-CNN: convolutional
neural networks for fake news detection. arXiv:1806.00749 (2018)

34. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: 2016 NAACL, pp. 1480–1489 (2016)

35. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: 32nd NeurIPS, pp.
4805–4815 (2018)

36. Zhang, J., Dong, B., Yu, P.S.: FAKEDETECTOR: effective fake news detection
with deep diffusive neural network. arXiv:1805.08751 (2018)

37. Zhou, X., Wu, J., Zafarani, R.: SAFE: similarity-aware multi-modal fake news
detection. In: 24th PAKDD, pp. 354–367 (2020)

38. Zhou, X., Zafarani, R.: Fake news: a survey of research, detection methods, and
opportunities. arXiv:1812.00315 [cs] (2018)

39. Zhou, X., Zafarani, R.: Network-based fake news detection: a pattern-driven app-
roach. arXiv e-prints arXiv:1906.04210 (2019)

http://arxiv.org/abs/1806.00749
http://arxiv.org/abs/1805.08751
http://arxiv.org/abs/1812.00315
http://arxiv.org/abs/1906.04210

Balanced Softmax Cross-Entropy
for Incremental Learning

Quentin Jodelet1,3(B), Xin Liu2,3, and Tsuyoshi Murata1,3

1 Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan
jodelet@net.c.titech.ac.jp, murata@c.titech.ac.jp

2 Artificial Intelligence Research Center, AIST, Tokyo, Japan
xin.liu@aist.go.jp

3 AIST-Tokyo Tech RWBC-OIL, Tokyo, Japan

Abstract. Deep neural networks are prone to catastrophic forgetting
when incrementally trained on new classes or new tasks as adaptation to
the new data leads to a drastic decrease of the performance on the old
classes and tasks. By using a small memory for rehearsal and knowledge
distillation, recent methods have proven to be effective to mitigate catas-
trophic forgetting. However due to the limited size of the memory, large
imbalance between the amount of data available for the old and new classes
still remains which results in a deterioration of the overall accuracy of the
model. To address this problem, we propose the use of the Balanced Soft-
max Cross-Entropy loss and show that it can be combined with exiting
methods for incremental learning to improve their performances while also
decreasing the computational cost of the training procedure in some cases.
Experiments on the competitive ImageNet, subImageNet and CIFAR100
datasets show states-of-the-art results.

Keywords: Incremental learning · Continual learning

1 Introduction

In a class incremental learning scenario, the complete training dataset is not avail-
able at once. Instead, the training samples are gradually available, few classes at a
time. The model has to be trained on new classes in a sequential manner similarly
to some real world scenarios where it is not possible to either store all the data
for training due to memory constraints or re-train the model from scratch each
time new samples are available due to time and computational power limitations.
For example, a robot learning new objects while interacting with its environment
may not have enough memory to store images of all past encountered objects and
may not be able to be re-trained on the complete dataset each time a new object
is discovered due to the limited computational power.

This work is partly supported by JST CREST (Grant Number JPMJCR1687), JSPS
Grant-in-Aid for Scientific Research (Grant Number 21K12042, 17H01785), and the
New Energy and Industrial Technology Development Organization (Grant Number
JPNP20006).

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 385–396, 2021.
https://doi.org/10.1007/978-3-030-86340-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_31&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_31

386 Q. Jodelet et al.

Although deep neural networks achieve state-of-the-art performance for many
problems in computer vision, it is challenging to use them in an incremen-
tal learning scenario due to their high propensity to steeply forget previously
learned classes while learning new ones. This situation is known as catastrophic
forgetting [10,24,26].

In this context, replay has proven to be an effective solution to mitigate
catastrophic forgetting. A small memory buffer is used to store examples from
previously encountered classes which are then used for rehearsal while learning
new classes. However, a large imbalance problem appears due to the limited size
of the memory buffer: at a given incremental step, the model will mainly see
data from the new classes and only few from the previous classes. This leads the
model to be biased toward the new classes which greatly deteriorates its overall
performance. Methods designed to tackle this issue mainly rely on using some
finetuning steps on a small balanced dataset after the main training process or
using specifically designed classifiers.

In this work, we propose a novel approach to address the bias toward new
classes in the context of incremental learning using a rehearsal memory. Our
proposed method relies on the use of the Balanced Softmax activation func-
tion [28] for the Cross-Entropy loss instead of the commonly used Softmax
function during the training procedure. When combining the Balanced Softmax
Cross-Entropy loss with recent advanced methods in incremental learning, the
average incremental accuracy of the models can be improved which enables us to
reach state-of-the-art performances on competitive datasets. Moreover, the com-
putational cost of the training procedure can also decrease as using the Balanced
Softmax Cross-Entropy loss does not require any additional balanced finetuning
step. Finally, we also investigate the use of a meta-learning algorithm to further
improve the accuracy of the models.

2 Related Work

Various scenarios for continual learning can be considered [17,23]. In this work we
will mostly consider the class incremental scenario. When applied on large scale
datasets, methods for this scenario usually rely on three components: constraints
to preserve past knowledge, a memory for rehearsal and bias correction methods.

The distillation loss [15] initially proposed by Hinton et al. for transferring
knowledge from a large teacher model into a smaller student model has been
adapted to continual learning by Li et al. [21] to distill the knowledge of the model
learned during the previous step into the next step one using the output logits. This
method was applied by several authors [6,27,32]. Recently, several proposal have
been made to improve the distillation for incremental learning. Hou et al. [16] pro-
posed a novel distillation loss applied on the final class embeddings instead of the
output logits. Dhar et al. [8] proposed to penalize changes in the attention maps of
the classifiers. Douillard et al. [9] proposed a new distillation loss using a pooling
function and applied it to several intermediate layers of the neural network in addi-
tion to the final class embedding. Tao et al. [30] proposed to model the class embed-
ding topology using an elastic Hebbian graph and then used a topology-preserving

Balanced Softmax Cross-Entropy for Incremental Learning 387

loss to constrain the change of the neighboring relationships of the graph during
each incremental step. Similarly, Lei et al. [20] adopted a feature-graph preserva-
tion approach and proposed the weighted-Euclidean regularization to preserve the
knowledge.

Rehearsal using a small memory [7] containing sample data from previously
learned classes has been shown to be an effective method to mitigate catas-
trophic forgetting. The output logits can be stored instead of the true labels
for distillation if the model from the previous step is not available [4]. Using
compressed versions [5] or intermediate representations as proposed by Hayes et
al. [13] instead of the input images allows the memory to store more samples for
a fixed size compared to other methods. Liu et al. [22] proposed to parameterize
the exemplars of the memory and to learn them in an end-to-end manner.

However, using a small memory results in an unbalanced training set mainly
composed of examples from the new classes. Several recent works highlighted
this problem and proposed methods to address it. Rebuffi et al. [27] introduced
iCaRL which relies on a nearest-mean-of-exemplars (NME) classifier. Castro et
al. [6] proposed to use more data augmentation on the training set and to then
finetune the model on a small balanced dataset. Wu et al. [32] proposed to learn
a two parameters linear model on a small balanced dataset to correct the bias
of the last fully connected layer while Hou et al. [16] proposed to use cosine
normalization on the classifier and finetuning on a balanced dataset. A recent
work [1] proposed to use oversampling of old classes and to separately compute
the softmax probabilities of the new and old classes for the Cross-Entropy loss.

In this work, we propose a new method to address the issue of unbalanced
training set in incremental learning by using the Balanced Softmax Cross-
Entropy loss. Compared to the previously presented methods, it does not require
oversampling or any finetuning step while achieving similar or higher accuracy.

3 Proposed Method

The objective of class-incremental learning is to learn an unified classifier (also
denoted single-head classifier) from a sequence of training steps, each containing
new previously unseen classes, as described on Fig. 1. The first step, named base
step, is followed by several incremental training step, numbered from 1 to T ,
each composed of the training set Xt containing samples of the classes from set
Ct. Each incremental step contains different classes such that

⋂T
t=0 Ct = Ø. In

addition to Xt, at each incremental step, the model also has access to the small
replay memory XM which contains samples from classes encountered during
previous incremental steps. The number of classes learned up to the incremental
step t included is denoted Nt.

3.1 Incremental Learning Baseline

To highlight the strengths of our method, we use a simple baseline for incremental
learning, denoted IL-baseline, initially proposed in [32]. This baseline consists

388 Q. Jodelet et al.

Fig. 1. Illustration of the class incremental training procedure. At each incremental
step i, the model has access for the training to the new data Xi containing samples
from new classes Ci and the memory XM containing few samples from previously
encountered classes

⋃i−1
t=0 Ct. The step 0, named the base step, contains the base classes.

in a deep neural network combined with a small replay memory and optimized
using the Softmax Cross-Entropy loss and the distillation loss.

The total loss L used to train the model, is defined as a weighed sum of the
distillation loss Ld and the Softmax Cross-Entropy loss Lc:

L = ρLd + (1 − ρ)Lc (1)

where ρ is defined as Nt−1
Nt

with Nt the total number of classes at incremental
step t and is used to balance the importance of the two losses.

At the beginning of each incremental step t, the previous step parameters θt−1

are first copied to initialize the new parameters θt and are then used to maintain
the knowledge of previously learned classes using the distillation loss [15,21]:

Ld(x) =
Nt−1∑

k=1

−p̂k(x) log(pk(x)) T 2 ,

p̂k(x) =
eẑk(x)/T

∑Nt−1
j=1 eẑj(x)/T

, pk(x) =
ezk(x)/T

∑Nt−1
j=1 ezj(x)/T

(2)

where (x, y) ∈ Xt ∪ XM are the input image and the associated ground truth
label, z(x) = [z1(x), ..., zNt

(x)] is the output logits of the current model θt,
ẑ(x) = [ẑ1(x), ..., ẑNt−1(x)] is the output logits of the model at the previous
incremental step θt−1 and T is the temperature.

The replay memory used is a growing memory: the number of stored samples
per class is fixed so the total size of the memory increases at each incremental
step. The herding selection [31] is used to select the samples as it has been shown
to be more efficient than the random selection [3].

3.2 Balanced Softmax Cross-Entropy

Due to the limited size of the replay memory, the training set Xt ∪ XM contains
only few tens of samples for each of the old classes while containing hundreds or

Balanced Softmax Cross-Entropy for Incremental Learning 389

thousands of samples for each of the new classes at each incremental step. The
discrepancy in the classes frequency between the training and testing sets, as the
latter contains the same number of samples for each classes, induces a bias toward
the most recently learned classes [2,16,32]. It appears that the model tends to
predict the classes which had the largest number of samples in the training set
during the last incremental steps (the new classes) rather than the old classes.
This situation is similar to the Long-Tailed Visual Recognition problem where
a model is evaluated on a balanced test dataset after being trained on a dataset
composed of few classes which are over-represented (the head classes) and a large
number of classes which are under-represented (the tail classes).

Based on this observation, we propose to replace the Softmax activation
function by the Balanced Softmax for the Cross-Entropy loss during the train-
ing procedure. This activation function has been initially introduced by Ren et
al. [28] to address the label distribution shift between the training and testing
in Long-Tailed Visual Recognition. The Balanced Softmax is defined as:

qk(x) =
λke

zk(x)

∑Nt

j=1 λjezj(x)
with λi = ni (3)

where x is the input, z(x) = [z1(x), ..., zNt
(x)] is the output logits of the current

model and ni is the number of samples in the training set for the ith class.
The new classification loss Lc is then defined as the Cross-Entropy loss using

the Balanced Softmax instead of the Softmax:

Lc(x) =
Nt∑

k=1

− δk=y log(qk(x)) (4)

The Balanced Softmax Cross-Entropy loss, denoted BalancedS-CE, can be
used as replacement of the Softmax Cross-Entropy loss in the previously defined
IL-Baseline or in any other model for incremental learning.

3.3 Meta Balanced Softmax Cross-Entropy

The expression of the Balanced Softmax presented in Eq. (3) allows for a direct
control on the importance of each class by selecting a dedicated weighting coeffi-
cient λi for each of them, which may be different from the number of samples for
this class in the training dataset, similarly to [18]. In the context of large scale
incremental learning, the modification of these weighting coefficients offers a new
method for controlling the plasticity-rigidity trade-off of the trained model but
also for controlling separately the importance of each individual class.

We propose to extend the Balanced Softmax by introducing a new global
weighting coefficient α to control the importance of the past classes:

qk(x) =
λke

zk(x)

∑Nt

j=1 λjezj(x)
with λi = ni (δi/∈P + α δi∈P) (5)

390 Q. Jodelet et al.

where P is the set of old classes, δ is the indicator function and the weight-
ing coefficient α is a real number, usually between 0 and 1. This expression is
equivalent to Eq. (3) for α equal to 1.0 .

In practice, it appears that 1.0 may not be the optimal value for α when
only considering the average incremental accuracy of the model. However, it
is difficult to determine beforehand a satisfying value for α without perform-
ing several trials with different values. Therefore, to further improve the accu-
racy of Balanced Softmax Cross-Entropy for Incremental Learning, we propose
a new training procedure, named Meta Balanced Softmax Cross-Entropy (Meta
BalancedS-CE), in order to slightly adjust the weighting coefficient α of the
Balanced Softmax during the training as described by Algorithm 1.

Algorithm 1: Meta Balanced Softmax Cross-Entropy training procedure

Initialize parameters θ and function Z of the model ; Initialize memory XM

for t ← 1 to T do
α ← 1.0
Dt, Bt ← split(Xt ∪ XM)
for r ← 1 to R do

for (X, Y) ∼ Dt do
θ∗ ← θ − �θbalancedLoss(Z(θ, X), Y)
(X̄, Ȳ) ∼ Bt

α ← α − �αsoftmax CE(Z(θ∗, X̄), Ȳ)
θ ← θ − �θbalancedLoss(Z(θ, X), Y)

XM ← updateMemory(Xt)

Instead of using the same fixed weighting coefficient α during the complete
training procedure, we propose to jointly learn α during the training of the deep
neural network. To achieve this, we propose a meta-learning algorithm which
estimates at each optimization step the optimal value of α using a balanced
validation set Bt. At the beginning of each incremental step, the unbalanced
training set Xt ∪ XM composed of the samples from the new classes and the
samples of old classes stored in the memory is split into a training set Dt and a
validation set Bt. Unlike Dt which is a large unbalanced dataset, Bt is a smaller
set containing the same number of samples for every classes. At each optimization
step, a temporary model θ∗ is created by training the current model θ on the
incoming batch of data (X,Y) from Dt using the balanced loss which is the sum
of the Balanced Softmax Cross-Entropy loss and secondary losses (such as the
distillation loss). By using a batch (X̄, Ȳ) from the balanced validation set Bt,
the value of α is then updated using the gradient of the standard Softmax Cross-
Entropy loss of (Z(θ∗, X̄), Ȳ) with respect to α. Finally we update the current
model θ on the batch (X,Y) previously sampled from Dt using the balanced loss
with the newly learned value of α.

Unlike the Balanced Softmax Cross-Entropy which does not modify the
computational cost of the training procedure compared to the Softmax Cross-

Balanced Softmax Cross-Entropy for Incremental Learning 391

Entropy, the Meta Balanced Softmax Cross-Entropy have an impact on the
training procedure. The method requires to compute gradients through the opti-
mization process. One of the main drawbacks is a large increase of the memory
requirement which makes it more difficult to combine this approach with some
existing methods for incremental learning.

4 Experiments

4.1 Experimental Setups

Datasets. Experiments are conducted on three competitive datasets for large
scale incremental learning: CIFAR100, subImageNet and ImageNet. We used the
experimental settings defined in [16] by initially training the models on the first
half of the classes of the dataset (referred as the base classes) before learning the
remaining classes during the next 5 or 10 incremental steps. Following [16,27],
the class order is defined by NumPy using the random seed 1993.

– CIFAR100 [19] is composed of 60,000 32 × 32 RGB images equally divided
among 100 classes. There are 50 base classes and the remaining ones are
learned by groups of 5 or 10 depending on the number of incremental steps.

– ImageNet (ILSVRC 2012) [29] is composed of about 1.3 million high-
resolution RGB images divided among 1,000 classes. There are 500 base classes
and the remaining classes are learned by groups of 50 or 100 depending on the
number of incremental steps.

– SubImageNet is a subset of ImageNet only containing the first 100 classes.
There are 50 base classes and the remaining classes are learned by groups of
5 or 10 depending on the number of incremental steps.

Baselines. The IL-Baseline which uses the Softmax Cross-Entropy loss is con-
sidered as the lower-bound method and used to highlight the impact of the Bal-
anced Softmax Cross-Entropy loss function for incremental learning. Furthermore,
the proposed models are compared with iCaRL [27], LUCIR [16], Mnemonics [22],
PODNet [9] and Topology-Preserving Class-Incremental Learning (TPCIL) [30].

To measure the performance of the different models and compare them, the
average incremental accuracy is used following [27]. It is defined as the average
of the Top-1 accuracy of the model on the test dataset at the end of each training
step, including the initial base step.

Implementation Details. All compared methods use the 32-layer ResNet [14]
for CIFAR100 and the 18-layers ResNet for ImageNet and SubImageNet. The
input images are normalized, randomly horizontally flipped and cropped with
no further augmentation applied. For a fair comparison, each method uses a
growing memory containing exactly 20 samples per class.

The Balanced Softmax Cross-Entropy is used with α equal to 1.0 and when
combined with other methods, the same hyper-parameters as those reported in

392 Q. Jodelet et al.

their respective original publications are used. Meta-Balanced Softmax Cross-
Entropy is implemented using Higher [12] and 10% of the memory size is used
for the balanced validation set Bt. To decrease the training cost of the method,
α is only updated every 10 optimization steps instead of every optimization step.

4.2 Comparison Results

Table 1. Average incremental accuracy (Top-1) on CIFAR100, SubImageNet and Ima-
geNet with 5 incremental steps and 10 incremental steps settings, using a growing
memory of 20 samples per class for all methods. Results for iCaRL and LUCIR are
reported from [16] ; results for Mnemonics and BiC are reported from [22]; results for
PODNet and TPCIL are reported from their respective paper. Results marked with
“*” correspond to our own experiments. Results on CIFAR-100 averaged over 3 random
runs. Results on ImageNet and SubImageNet are reported as a single run.

Number of incremental steps CIFAR100 SubImageNet Imagenet

5 10 5 10 5 10

iCaRL [27] 57.17 52.57 65.04 59.53 51.36 46.72

BiC [32] 59.36 54.20 70.07 64.96 62.65 58.72

LUCIR [16] 63.42 60.18 70.47 68.09 64.34 61.28

LUCIR w/ Mnemonics [22] 63.34 62.28 72.58 71.37 64.54 63.01

PODNet [9] 64.83 63.19 75.54 74.33 66.95 64.13

TPCIL [30] 65.34 63.58 76.27 74.81 64.89 62.88

IL-Baseline* 43.80 37.00 51.52 42.22 43.23 36.70

IL-Baseline w/BalancedS-CE (ours) 62.22 58.32 72.57 68.25 66.45 62.14

IL-Baseline w/Meta BalancedS-CE (ours) 64.11 60.08 72.88 69.26 66.15 61.59

LUCIR* 63.37 60.88 70.25 67.84 66.69 64.06

LUCIR w/BalancedS-CE (ours) 64.83 62.36 71.18 70.66 67.81 66.47

PODNet* 64.46 62.69 74.97 71.57 65.20 62.87

PODNet w/BalancedS-CE (ours) 67.67 66.63 76.08 74.93 69.67 68.65

The average incremental accuracy on CIFAR100, SubImageNet and ImageNet
for our methods and the different baselines are reported in Table 1.

First, we use the IL-Baseline to precisely compare the Balanced Softmax
Cross-Entropy loss with the standard Softmax Cross-Entropy loss. On every
dataset and in every settings, IL-Baseline trained using the Balanced Softmax
Cross-Entropy loss outperforms the IL-Baseline trained using the standard Soft-
max Cross-Entropy by a large margin. Moreover, by meta-learning the weight-
ing coefficient α instead of using the fixed value of 1.0, it is possible to further
improve the accuracy of the Balanced Softmax Cross-Entropy loss.

Then, to demonstrate the flexibility of the proposed loss function, we com-
bined it with both LUCIR and PODNet. By using the Balanced Softmax Cross-
Entropy loss instead of the NCA loss [11,25] used by PODNet and the Soft-
max Cross-Entropy loss used by LUCIR, we were able to significantly improve

Balanced Softmax Cross-Entropy for Incremental Learning 393

the performance of both methods while decreasing the computation cost of the
training procedure by removing the need of a balanced finetuning step without
modifying any hyper-parameters. On every dataset and in every settings, using
the Balanced Softmax Cross-Entropy significantly improves the average incre-
mental accuracy of both LUCIR and PODNet, this improvement is especially
important in the challenging 10 incremental steps settings. It improves the aver-
age incremental accuracy from 0.93% up to 2.82% for LUCIR and from 1.11%
up to 5.78% for PODNet depending on the setting and the dataset considered.
On ImageNet with 5 incremental steps, PODNet with Balanced Softmax Cross-
Entropy reaches a final overall Top-1 accuracy of 64.4% which is only about 6%
below the theoretical Top-1 accuracy of the model trained on the whole dataset
at once.

4.3 Ablation Study

Effect of the Memory Size. The average incremental accuracy of the IL-
Baseline trained with different losses on the CIFAR100 using the 5 incremen-
tal steps settings is reported in Table 2 for various number of exemplars per
class stored in the replay memory. The Meta Balanced Softmax Cross-Entropy
appears to be especially efficient in scenarios with highly restricted memory.

Table 2. Average incremental accuracy on the test set of CIFAR100 with 5 incremental
steps of the Incremental Learning Baseline depending on the number of samples stored
in memory for each class and the training loss. Results averaged over 3 random runs.

Training procedure Memory size

1 5 10 20 50

IL-Baseline w/Softmax Cross-Entropy 24.83 30.59 37.27 43.80 52.99

IL-Baseline w/BalancedS-CE (ours) 51.55 56.93 60.11 62.22 64.44

IL-Baseline w/Meta BalancedS-CE (ours) – 62.13 63.02 64.11 65.60

Impact of the Weighting Coefficient Alpha. The accuracy of the IL-
Baseline trained using the Balanced Softmax Cross-Entropy loss on CIFAR100
is reported in Table 3 depending on the value of the weighting coefficient α.
It appears that decreasing the value of the weighting coefficient α induces an
increase of the accuracy of the old classes at the end of the incremental training.
The impact on the final overall accuracy of the model remains marginal com-
pared to the impact on the base classes accuracy: by decreasing the weighting
coefficient α from 1.0 to 0.1, the accuracy on the 50 base classes increases by
16.3% while the final overall accuracy of the model only decreases by 3.01%.
While using the weighting coefficient α equal to 1.0 achieves in both 5 and 10
steps settings the most balanced models between base classes and new classes,

394 Q. Jodelet et al.

Table 3. Accuracy on the test set of CIFAR100 with 5 and 10 incremental steps of the
Incremental Learning Baseline depending on the value used for the weighing coefficient
α of the Balanced Softmax Cross-Entropy; using a growing memory of 20 samples per
class. Results averaged over 3 random runs.

Final
base
acc.

Final
overall
acc.

Average
inc.
acc.

α = 0.1 68.38 51.54 62.68

α = 0.25 63.99 54.88 64.09

α = 0.5 58.78 55.44 63.80

α = 1.0 52.08 54.55 62.22

Meta α 61.20 55.21 64.11

(a) CIFAR100 - 5 incremental steps

Final
base
acc.

Final
overall
acc.

Average
inc.
acc.

α = 0.1 63.43 44.71 57.68

α = 0.25 60.28 47.86 59.40

α = 0.5 56.48 49.62 59.52

α = 1.0 51.01 49.57 58.32

Meta α 60.39 49.65 60.08

(b) CIFAR100 - 10 incremental steps

it does not achieve the highest average incremental accuracy. Carefully select-
ing the value of α can improve the average incremental accuracy on CIFAR100
by up to 1.87% for 5 incremental steps settings and by 1.2% for 10 incremen-
tal steps settings. The proposed meta-learning procedure achieves the highest
average incremental accuracy in both setting. This shows the strength of this
method for determining an efficient value for the weighting coefficient α without
conducting several trials.

Table 4. Accuracy on the test set of CIFAR100 with 5 incremental steps of the Incre-
mental Learning Baseline depending on the bias correction method used; using a grow-
ing memory of 20 samples per class. Results averaged over 3 random runs.

Training procedure Average incremental accuracy

IL-Baseline 43.80

IL-Baseline w/memory oversampling 49.75

IL-Baseline w/class oversampling 55.95

IL-Baseline w/loss rescaling 57.01

IL-Baseline w/balanced finetuning 59.46

IL-Baseline w/Separated Softmax [1] + oversampling 61.21

IL-Baseline w/BalancedS-CE (ours) 62.22

IL-Baseline w/Meta BalancedS-CE (ours) 64.11

Mitigation of Imbalance. In Table 4, different bias correction procedures are
compared on CIFAR100 with 5 incremental steps. Memory oversampling and
class oversampling are both types of replay memory oversampling but the former
ensures that each mini-batch theoretically contains the same number of sample

Balanced Softmax Cross-Entropy for Incremental Learning 395

from new and old classes while the latter ensures that each class has the same
probability of appearing in each mini-batch. For Loss rescaling, the loss for each
sample is rescaled in inverse proportion to the number of samples corresponding
to this label in the train dataset. For Balanced finetuning, the model is finetuned
after each incremental step on a small balanced set similar to PODNet and
LUCIR. Our proposed methods achieve the highest average incremental accuracy
without requiring a two steps training procedure or oversampling.

5 Conclusion

In this work, we proposed to replace the Softmax Cross-Entropy loss by the
Balanced Softmax Cross-Entropy loss in order to mitigate the bias toward new
classes in large scale incremental learning. We propose a simple, yet efficient,
training procedure to meta-learn the balance between old and new classes using
this new loss. Experiments show that by combining the Balanced Softmax Cross-
Entropy with advanced methods for incremental learning, it is possible to further
increase the accuracy of those methods while decreasing the computational cost
of the training procedure by removing the need for a balanced finetuning step.

References

1. Ahn, H., Moon, T.: A simple class decision balancing for incremental learning.
arXiv preprint arXiv:2003.13947 (2020)

2. Belouadah, E., Popescu, A.: Il2m: class incremental learning with dual memory.
In: IEEE/CVF International Conference on Computer Vision (2019)

3. Belouadah, E., Popescu, A., Kanellos, I.: A comprehensive study of class incre-
mental learning algorithms for visual tasks. Neural Netw. 135, 38–54 (2020)

4. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience
for general continual learning: a strong, simple baseline (2020)

5. Caccia, L., Belilovsky, E., Caccia, M., Pineau, J.: Online learned continual compres-
sion with adaptive quantization modules. In: International Conference on Machine
Learning (2020)

6. Castro, F.M., Maŕın-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01258-8 15

7. Chaudhry, A., et al.: On tiny episodic memories in continual learning (2019)
8. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memo-

rizing. IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)
9. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs

distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox,
T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58565-5 6

10. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci.
3(4), 128–135 (1999)

11. Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood
components analysis. Adv. Neural. Inf. Process. Syst. 17, 513–520 (2004)

http://arxiv.org/abs/2003.13947
https://doi.org/10.1007/978-3-030-01258-8_15
https://doi.org/10.1007/978-3-030-01258-8_15
https://doi.org/10.1007/978-3-030-58565-5_6

396 Q. Jodelet et al.

12. Grefenstette, E., et al.: Generalized inner loop meta-learning. arXiv preprint
arXiv:1910.01727 (2019)

13. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural
network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58598-3 28

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network
(2015)

16. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: IEEE Conference on Computer Vision and Pattern
Recognition (2019)

17. Hsu, Y.C., Liu, Y.C., Ramasamy, A., Kira, Z.: Re-evaluating continual learn-
ing scenarios: a categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488 (2018)

18. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive
learning of deep feature representations from imbalanced data. IEEE Trans. Neural
Netw. Learn. Syst. 29(8), 3573–3587 (2017)

19. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)
20. Lei, C.H., Chen, Y.H., Peng, W.H., Chiu, W.C.: Class-incremental learning with

rectified feature-graph preservation. In: Proceedings of the Asian Conference on
Computer Vision (2020)

21. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach.
Intell. 40(12), 2935–2947 (2017)

22. Liu, Y., Su, Y., Liu, A.A., Schiele, B., Sun, Q.: Mnemonics training: multi-class
incremental learning without forgetting. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12245–12254 (2020)

23. Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark for continuous
object recognition. In: Conference on Robot Learning, pp. 17–26. PMLR (2017)

24. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989)

25. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss dis-
tance metric learning using proxies. IEEE International Conference on Computer
Vision (2017)

26. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)

27. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental clas-
sifier and representation learning. In: IEEE Conference on Computer Vision and
Pattern Recognition (2017)

28. Ren, J., Yu, C., Sheng, S., Ma, X., Zhao, H., Yi, S., Li, H.: Balanced meta-softmax
for long-tailed visual recognition. arXiv preprint arXiv:2007.10740 (2020)

29. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge (2015)
30. Tao, X., Chang, X., Hong, X., Wei, X., Gong, Y.: Topology-preserving class-

incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12364, pp. 254–270. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58529-7 16

31. Welling, M.: Herding dynamical weights to learn. In: Proceedings of the 26th
Annual International Conference on Machine Learning, pp. 1121–1128 (2009)

32. Wu, Y., et al.: Large scale incremental learning. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2019)

http://arxiv.org/abs/1910.01727
https://doi.org/10.1007/978-3-030-58598-3_28
http://arxiv.org/abs/1810.12488
http://arxiv.org/abs/2007.10740
https://doi.org/10.1007/978-3-030-58529-7_16
https://doi.org/10.1007/978-3-030-58529-7_16

Generalised Controller Design Using
Continual Learning

Diana Benavides-Prado1(B), Chathura Wanigasekara2, and Akshya Swain2

1 Auckland University of Technology, Auckland, New Zealand
diana.benavides.prado@aut.ac.nz

2 The University of Auckland, Auckland, New Zealand
{c.wanigasekara,a.swain}@auckland.ac.nz

Abstract. In control systems applications, controllers for different
plants are usually designed with different methods. Although plants may
share common characteristics, these controllers are generally designed in
isolation. The problem of continually learning a sequence of related tasks
has been extensively studied recently. A challenge in continual learning is
the phenomenon of catastrophic forgetting of knowledge of previous tasks
which have been integrated into a neural network model. In this paper
we evaluate the feasibility of modelling different controllers using con-
tinual learning. We explore regression versions of state-of-the-art meth-
ods and demonstrate that even the simplest continual learning approach
decreases the overall Mean Average Error (MAE) by 39% of the MAE
achieved by a non-continual strategy. Furthermore, a method based on
dynamically expanding the network can achieve an overall MAE which is
only 18% of the non-continual MAE. We also propose a set of new met-
rics that allow us to characterise the nature of catastrophic forgetting
experienced while using different continual learning methods.

Keywords: Continual learning · Catastrophic forgetting

1 Introduction

Many control methods are available for controlling a wide variety of systems
(plants) [5,9]. Typical control schemes include PID control, feedback control,
sliding mode control among others [22,23]. Most of these systems usually have
similar characteristics and can be reduced to standard forms such as state-space
models, since they are subjected to similar variations due to various factors such
as heat, dust, wear and tear. However, control methods are commonly designed
in isolation for each system. This results in redesign/tuning/re-calibration of
existing controllers, which is a time-consuming and tedious task that in practice
might need to be carried out a few times each year.

An alternative strategy to avoid redesign is by treating these plant control
schemes as tasks learned continually. Reusing knowledge acquired in previously
learned plant control schemes may help to avoid the need for learning different
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 397–408, 2021.
https://doi.org/10.1007/978-3-030-86340-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_32&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_32

398 D. Benavides-Prado et al.

plants from scratch. Therefore, a single neural network can be used in a wide
range of similar problems in the context of plant control. An example of this
approach is depicted in Fig. 1.

Fig. 1. Generalised controller modelled as a continual learning problem. Different
plants correspond to different tasks T = {T1, T2, . . . , TK} with different distributions
D1, D2, . . . , DK . Those tasks are learned sequentially.

Continual learning has been an increasingly active area of research in deep
neural networks [6,13]. In continual learning, a machine learning system observes
a sequence of tasks from a particular domain. Training examples of these tasks
are observed sequentially, with limited or no access to training data from previ-
ously learned tasks. A long-standing challenge in continual learning is the prob-
lem of catastrophic forgetting of knowledge since new tasks may interfere with
knowledge acquired for previous tasks. This is related to the stability-plasticity
dilemma which has been studied for decades in the context of connectionist sys-
tems [3]. A single network that is used to learn a sequence of tasks should be
plastic or adaptive enough to accommodate knowledge of new tasks, while also
stable enough to not forget knowledge of previous tasks.

A range of methods have been proposed to tackle the problem of catastrophic
forgetting in supervised continual learning systems [6]. Memory replay methods
rely on storing or generating some training examples of previous tasks which
are reused in future tasks. Regularisation-based methods regularise the objec-
tive function to be optimised for each incoming task, therefore controlling how
parameters or weights learned for previous tasks change. Parameter-isolation
methods allocate sub-networks to specific tasks, by possibly changing the net-
work size as more tasks are sequentially observed. Hybrid methods combine two
or more of these strategies.

In this paper we study the problem of designing a generalised controller
using a continual learning approach. We explore three existing state-of-the-art
continual learning methods which are based on memory replay, regularisation

Generalised Controller Design Using Continual Learning 399

and parameter-isolation. We propose regression versions of these algorithms for
the generalised controller domain. We also define two new metrics to characterise
the amount and the type of catastrophic forgetting occurring in this system. Our
main contributions are:

1. We propose an approximation to the problem of optimising multiple con-
trollers using continual learning. Each of these problems is treated as a learn-
ing task with training examples observed sequentially.

2. We perform a systematic evaluation of continual learning methods for learning
a generalised controller, which includes state-of-the-art metrics in continual
learning such as overall accuracy, accuracy per task and time complexity. For
this we cast existing continual learning methods which are originally designed
for classification problems as regression tasks.

3. We propose two new metrics for better characterising the levels and the types
of catastrophic forgetting occurring in the continual learning system under
exploration.

2 Existing Research

The challenge of learning systems that learn a sequence of tasks was first studied
more than two decades ago [20]. Several approaches from transfer, multitask, and
lifelong learning have been categorised as alternatives for learning a sequence of
tasks [21]. These approaches explored the ability of a learning system to improve
the performance while more training examples were observed and tasks were
learned. Silver [19] described lifelong learning systems that retain knowledge
and use it to learn new tasks more efficiently and effectively. Silver and Mercer
[18] studied lifelong learning in the context of neural networks. More recently,
three core properties of lifelong learning systems were identified [4]: 1) learning
new tasks by leveraging knowledge from previous tasks, 2) learning continuously
and incrementally, 3) retaining knowledge acquired during previous tasks.

Continual learning tackles the problem of lifelong learning of a sequence of
tasks using a deep neural network. This area has recently gained extraordinary
interest. A vast of continual learning research has focused on the problem of
catastrophic forgetting of knowledge of previous tasks. Parisi et al. [13] and De
Lange et al. [6] described methods that tackle the problem of catastrophic for-
getting. These methods are typically categorised into: 1) regularisation-based
methods to impose constraints on how the network changes as new tasks are
observed [10], 2) memory management and dual-memories for memory replay,
e.g. long-term and short-term memories [12,14] and, 3) dynamic network archi-
tectures that change as more tasks are observed, e.g. by expanding or shrinking
sub-networks [17,24]. The problem of catastrophic forgetting was also studied
in the context of knowledge consolidation in neural networks [15,16]. Recent
research has also explored the problem of improving existing knowledge as tasks
are learned sequentially [1,2].

Besides catastrophic forgetting, a latent challenge in continual learning sys-
tems is how to measure their performance. Although general metrics such as

400 D. Benavides-Prado et al.

accuracy may be applicable, it is of interest to understand the performance
per task and the forgetting behaviour for each task. Diaz-Rodriguez et al. [7]
surveyed and proposed a set of metrics for a variety of characteristics of con-
tinual learning systems, including accuracy, backward transfer of knowledge,
and forward transfer of knowledge [12]. Other studies have proposed metrics to
determine the ratio of catastrophic forgetting at the end of learning [11].

3 Methodology

Continual learning systems are composed of a set of T = {T1, T2, . . . , TK}
tasks observed in a sequence of consecutive time steps. In supervised learn-
ing, a task Tk is about learning a mapping from an input feature space Xk

to an output feature space Yk. This mapping is represented by a function
fk : Xk → Yk. A training sample Dk is available for learning a task Tk, where
Dk = {(xk,1, yk,1), (xk,2, yk,2), . . . , (xk,n, yk,n)} contains training vectors xk sam-
pled from the input feature space Xk and their corresponding outputs or labels yk
sampled from the output feature space Yk. The challenge in supervised continual
learning is when the distributions of multiple tasks differ, i.e. D1 �= D2 �= . . . DK ,
therefore making it hard for a single neural network to perform well for examples
from all these distributions.

The phenomenon of catastrophic forgetting is experienced when a deep neural
network diminishes its ability to retain knowledge of previous tasks while more
tasks are learned, therefore affecting their accuracy. A number of approaches have
been proposed to deal with this problem, including regularisation-based methods
to protect existing knowledge, replay-based methods to retain and replay data
from previous tasks, and parameter-isolation methods to dynamically expand a
network [6,13]. Section 2 points to existing research in these three settings.

We experiment with three existing methods for the problem of catastrophic
forgetting: 1) Elastic Weight Consolidation (EWC) [10], which regularises learn-
ing of network weights for new tasks with respect to existing weights, 2) Orthogo-
nal Weight Modification (OWM) [25], which combines regularisation and reten-
tion of data from previous tasks for replay and, 3) Dynamically Expandable
Networks (DEN) [24], a method that allows to dynamically expand a network
as new tasks are learned. We explore variants of these methods for our sequence
of regression tasks for multiple controllers. We then propose two new metrics
to characterise the level and the type of forgetting experienced by each of these
approaches in the context of a generalised controller.

3.1 Methods

EWC [10] is a regularisation-based method for continual learning. The problem
of EWC at a current task Tk is to find a set of parameters θTk

that are optimal for
that task while avoiding interference with the set of optimal parameters θ∗

Tk−1

learned for previous tasks. The loss function L to be minimised at task Tk is
given by:

Generalised Controller Design Using Continual Learning 401

L(θTk
) = L(θTk

) +
∑

i

λ

2
Fi(θTk,i − θ∗

Tk−1,i
) (1)

where Fi is a cell of the Fisher information matrix for a network weight value for
the current task, θTk,i, and the corresponding network weight value for previous
tasks, θ∗

Tk−1,i
. The parameter λ controls the influence of previous tasks. In our

regression version of EWC, named EWCReg, the function L is a loss function
for regression such as Mean Absolute Error (MAE).

OWM regularises learning of new network weights by forcing these to be
orthogonal to the subspace spanned by inputs from previous tasks. This ensures
that new weights do not interact with previous inputs, therefore avoiding inter-
ference with past tasks. To determine the orthogonal direction to these inputs,
OWM finds a projector PTk

= I − ATk−1(A
T
Tk−1

ATk−1 + αI)−1ATk−1 , where
the columns of ATk−1 , such that ATk−1 = {xk−1,1,xk−1,2, . . . ,xk−1,n}, consist
of past inputs from tasks T = {T1, . . . Tk−1}, I is the unit matrix and α is a
small constant. Note that AT

Tk−1
denotes the transpose of ATk−1 . During gradi-

ent descent at a learning task Tk, the vector of weights θTk
is modified according

to:

θTk
= ηPTk

θTk
(2)

where PTk
is the projector of previously learned inputs for previous tasks up to

task Tk−1. The parameter η is the learning rate. Similar to OWM for classi-
fication problems, the loss function of the proposed regression variant, named
OWMReg, can be any loss function used for regression such as MAE.

DEN is a dynamic network expansion method that tackles the problem of
catastrophic forgetting during learning of a new task in three steps: 1) selective
retraining of parameters affected by the new task, 2) dynamic expansion of
selected layers and units of the network, 3) split and duplication of selected units
of the network. A new task is first trained on the current version of the network
while enforcing sparsity. Then, in the first step, a sub-network S is identified.
This sub-network contains parameters that are connected to the outputs of the
current task. Re-training of this sub-network is performed by minimising:

min
θS
Tk

L(θS
Tk

;θS
Tk−1

,DTk
) + μ

∥∥∥θS
Tk

∥∥∥
2

(3)

where θS
Tk

are the parameters for the sub-network S on the current task Tk,
θS
Tk−1

is the set of parameters for this sub-network on the previous task and DTk

is the training data for the current task. μ is a regularisation parameter.
The second step uses group sparse regularisation to dynamically decide the

number of neurons to be added to a particular layer L, by minimising:

min
θL
Tk,N

L(θL
Tk,N ;θL

Tk−1
,DTk

) + μ
∥∥∥θL

Tk,N
∥∥∥
1

+ γ
∑

g

∥∥∥θL,g
Tk,N

∥∥∥
2

(4)

402 D. Benavides-Prado et al.

where θL
Tk,N is the expanded set of parameters for task Tk at layer L, and g ∈ G

is a group defined on the parameters for each neuron. The network is expanded
using (4), when the loss is above a user-specified threshold. In that case, the
network is expanded by u units, with u a user-defined parameter.

In the final step, the network is split/duplicated by solving:

min
θTk

L(θTk
;DTk

) + λ
∥∥θTk

− θTk−1

∥∥2

2
(5)

where λ is the L2 regularisation parameter. In our regression version of DEN,
named DENReg, the loss functions L used in (3), (4) and (5) can be any typical
loss function for regression problems such as MAE.

3.2 Metrics to Characterise Catastrophic Forgetting

In this section, we propose two new metrics that aim to provide more insights
into the behaviour of a continual learning system. Our first metric determines
the level of forgetting of a task once the full sequence of tasks has been learned.
This metric is similar in nature to the catastrophic forgetting ratio proposed
by Lee et al. [11], which measures the final performance on a task with respect
to the best performance that can be achieved for that particular task. In our
proposed metric, the final performance of a task once all tasks in a sequence have
been learned is compared to the performance of that task when it was learned
for the first time. This helps to identify the level of forgetting derived from
including that task as part of a continual learning system rather than learning
it in isolation, in a non-continual manner. For a given sequence of K tasks, the
forgetting level FLTk

for a task Tk is formally defined as:

FLTk
= PK

Tk
− P t

Tk
(6)

where the overall level of forgetting of task Tk, FLTk
is the difference between

the performance P at the final time step of the sequence K and the performance
P on that task when that task was originally learned for the first time, t. Note
that the level of forgetting behaves differently depending on the type of perfor-
mance metric used. For example, for performance metrics measuring accuracy, a
task experiencing a low level of forgetting has an FLTk

close to zero. Small neg-
ative values denote low levels of forgetting, while positive values would denote a
gain in performance. Similarly, for performance metrics measuring error, such as
MAE, a task experiencing low levels of forgetting should have an FLTk

close to
zero. However, in this case small positive values denote low levels of forgetting,
while negative values for this metric will denote gain in performance.

The forgetting level metric can effectively help quantify the degree to which
forgetting is occurring. However, it is also interesting to look at various types
of forgetting which may often occur in a continual learning system. Gama et al.
[8] provide some ideas into a useful categorisation about changes or drifts in
dynamic learning systems. Similar to online learning, in the context of continual
learning it is important to understand the nature of changes in performance,

Generalised Controller Design Using Continual Learning 403

which could occur: 1) abruptly (i.e. when tasks experience high levels of forget-
ting suddenly at a single time step in the sequence), 2) incrementally (i.e. when
tasks experience and accumulate forgetting across several consecutive time steps
of the sequence) or 3) gradually (i.e. when forgetting levels are experienced
across several time steps with a seasonal pattern of performance increasing and
decreasing over consecutive time steps). This categorisation would help to better
profile forgetting, and therefore to react to this more appropriately for different
tasks.

To determine if abrupt forgetting is occurring for a task, we first need to
determine the maximum level of forgetting for that task at any pair of consecu-
tive time steps using: MFTk

= max (P t
Tk

− P t−1
Tk

), ∀ t ∈ {0, 1, . . . ,K}1. Given a
fixed threshold τa, a task Tk is said to be experiencing abrupt forgetting if:

MFTk

FLTk

≤ τa and MFTk
× FLTk

> 0 (7)

To determine if a task is experiencing incremental forgetting up to some level
τi for li consecutive time steps, we first need to determine the number of times
that:

P t
Tk

− P t−1
Tk

FLTk

≤ τi,∀t ∈ {0, 1, . . . ,K} (8)

If this number of times is above some fixed threshold li then task Tk is experi-
encing incremental forgetting, since we can say that large fractions of forgetting
are continuously observed for that task as the sequence of tasks progresses.

Finally, to determine whether a task is experiencing gradual forgetting up to
some level τg for up to lg consecutive time steps, we need to determine the
number of times that:

∣∣∣∣
P t
Tk

− P t−1
Tk

FLTk

∣∣∣∣ ≤ τg,∀t ∈ {0, 1, . . . ,K} (9)

If this number of times is above some fixed threshold lg then task Tk experiences
gradual forgetting, since we can say that forgetting occurs for that task at a
number of consecutive time steps.

4 Experiments and Results

We evaluate the feasibility of various methods described in earlier sections for
an example of controlling a DC motor. We investigate learning a sequence of
plant control schemes using the three continual learning methods explained in
Sect. 3: EWCReg, OWMReg and DENReg. The performance of these learning
methods are compared with Vanilla CL and Vanilla NonCL. Vanilla CL learns

1 Note that we make a common assumption of the number of time steps being the
same as the number of tasks.

404 D. Benavides-Prado et al.

Table 1. Mean MAE and total training time after training all 20 tasks sequentially,
averaged across task orders.

Method Mean MAE Training time (sec.)

DENReg 0.252 ± 0.001 501.0 ± 18.3

EWCReg 0.401 ± 0.048 6, 330.0 ± 190.34

OWMReg 0.364 ± 0.038 276.0 ± 12.4

Vanilla CL 0.538 ± 0.106 179.00 ± 19.1

Vanilla NonCL 1.36 ± 0.068 7.18 ± 0.34

tasks sequentially without considering the effects of catastrophic forgetting while
Vanilla NonCL learns all tasks jointly. We also measure the level and nature of
forgetting using the metrics proposed in Sect. 3.

Experiments are carried out by generating data for 20 tasks. For each task,
we generated values of input parameters of the DC such as for example inertia,
inductance, resistance. A dataset for a specific task is generated by making a
DC motor to follow a fixed trajectory. Each task is composed of 7, 500 train-
ing examples, 1, 500 validation examples and 1, 500 test examples, and 21 input
features. One of the input features corresponds to previously observed speeds
of a DC motor, while the other 20 features correspond to the values of their
corresponding output feature (y) in the previous 20 times. This output feature
for each task corresponds to the speed of the DC motor. For Vanilla NonCL,
all training examples available for each task were used. For the other methods,
we used only the first 1, 000 training examples, to simulate real-world contin-
ual learning scenarios where training data is scarce. We arranged 30 randomly
selected task orders, ensuring that each task is the first task of the sequence
for at least one of these orders. Results are averaged across task orders, unless
stated otherwise. To make these tasks more varied, we added random noise to
50% of the training examples. Furthermore, the order of the input features was
shuffled randomly for each task, except for Vanilla NonCL which is not subject
to any of the above types of noise.

For all methods under evaluation, we train a two-layer fully-connected deep
neural network with 200 units in each layer. We use 1, 000 epochs for batches con-
taining 128 training examples per batch. The learning rate is set to 0.001 in all
cases. In all cases except OWMReg, we use gradient descent to optimise MAE.
For OWMReg, a momentum optimiser of value 0.99 is used, while also optimising
for MAE. For the remaining hyperparameters of each method, we set their cor-
responding values according to previous studies. EWC λ parameter is set to the
number of tasks, 20. We use 200 validation examples from each previous tasks to
construct the Fisher information matrix in EWCReg. For OWMReg, α parameter
is set to 10. For DENReg, we set the lambda sparsity parameter L1 to 0.001 and
L2 to 0.0001. The group LASSO lambda is set to 0.001, the number of units to be
increased in the expansion process is set to 5, the threshold for dynamic expansion
is 0.1 and the threshold for split and duplication is set to 0.1.

Generalised Controller Design Using Continual Learning 405

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
Time

M
ea

n
M

AE

● DENReg EWCReg OWMReg Vanilla CL

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●●●

●

Task 17 Task 18 Task 19 Task 20

Task 13 Task 14 Task 15 Task 16

Task 9 Task 10 Task 11 Task 12

Task 5 Task 6 Task 7 Task 8

Task 1 Task 2 Task 3 Task 4

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Time

M
ea

n
M

AE

● DENReg EWCReg OWMReg Vanilla CL

Fig. 2. Mean MAE of tasks learned sequentially, at each timestep, across all task orders,
overall (left) and per task (right).

4.1 Overall Performance

Table 1 presents the MAE after all tasks are learned sequentially and the total
training time at the end of the sequence of tasks, averaged across task orders.
A naive method such as Vanilla CL, with no control for catastrophic forgetting,
outperforms the approach of Vanilla NonCL, which possibly indicates related-
ness of these tasks. EWCReg and OWMReg achieve lower MAE than Vanilla
CL, demonstrating the ability of these methods to avoid catastrophic forget-
ting. However, the training time of EWCReg is approximately 35 times higher
compared to Vanilla CL. DENReg clearly outperforms counterparts with a final
MAE of 0.252, which is only 18% of Vanilla NonCL and 47% of Vanilla CL.
DENReg requires only 3 times more training time than Vanilla CL. Figure 2
(left) presents the mean MAE averaged across task orders at each timestep of
the sequence, for DENReg, EWCReg, OWMReg and Vanilla CL. Although the
MAE of Vanilla CL decreases with increasing number of tasks, its performance is
poorer compared to other methods such as DENReg, OWMReg and EWCReg.

4.2 Performance per Task

Figure 2 (right) shows MAE of each task during the learning sequence, for one
of the task orders used in the experiments. Vanilla CL achieves a low MAE for
each of the tasks when these are learned for the first time. However, high levels
of catastrophic forgetting are experienced as new tasks are learned. EWCReg
also experiences forgetting after a task is learned for the first time, although
at a lower rate than Vanilla CL. OWMReg experiences forgetting during the
initial task (Task 1). However, this method is capable of retaining knowledge of
previous tasks with small forgetting later in the sequence. DENReg is stable for

406 D. Benavides-Prado et al.

Task 16 Task 17 Task 18 Task 19 Task 20

Task 11 Task 12 Task 13 Task 14 Task 15

Task 6 Task 7 Task 8 Task 9 Task 10

Task 1 Task 2 Task 3 Task 4 Task 5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

M
AE

DENReg EWCReg OWMReg Vanilla CL

Task 16 Task 17 Task 18 Task 19 Task 20

Task 11 Task 12 Task 13 Task 14 Task 15

Task 6 Task 7 Task 8 Task 9 Task 10

Task 1 Task 2 Task 3 Task 4 Task 5

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

FL
DENReg EWCReg OWMReg Vanilla CL

Fig. 3. Left: Mean MAE of tasks when tasks are learned for the first time, for all task
orders. Right: Forgetting level for each task, measured as the difference of MAE at the
last timestep of the sequence and the MAE on the first time a task was learned, for a
specific task order.

the full sequence of 20 tasks. The result for DENReg is consistent with previous
findings for this method, where it has been shown that DEN is able to maintain
its performance for the full sequence when the number of tasks is relatively small
[2].

Similarly, Fig. 3 (left) explores MAE of each task when these are learned
for the first time, averaged across task orders. Vanilla CL achieves a low MAE
when a task is learned for the first time. However, contrasting to Fig. 3 (right),
tasks learned using this method are always affected in their performance in the
next timestep. On the other hand, OWMReg tends to perform worse than other
methods while learning tasks for the first time. However, as depicted in Fig. 3
(right), this allows the method to control catastrophic forgetting later in the
sequence. EWCReg and DENReg achieve values of MAE which are more similar
to Vanilla CL when a task is learned for the first time.

4.3 Characterisation of Catastrophic Forgetting

Figure 3 (right) shows levels of forgetting for tasks presented in Fig. 3 (left).
Overall forgetting levels for all tasks in this sequence are: Vanilla CL, 0.376,
EWCReg, 0.129, OWMReg, 0.0137, and DENReg, 0.0. Consistent with previous
results, DENReg does not experience forgetting once the sequence of tasks is
finished. Table 2 shows the types of forgetting experienced by each method and
task, for a specific task order. The abrupt forgetting threshold τa was set to 0.95.
Incremental forgetting would occur if the level of forgetting is at least τi = 0.05 of
the level of forgetting for that task for at least 3 consecutive timesteps. Similarly,
gradual forgetting would occur if the level of forgetting is at least τg = 0.01 of

Generalised Controller Design Using Continual Learning 407

Table 2. Number of tasks that experience each type of forgetting, for a specific task
order.

Type of drift DENReg EWCReg OWMReg Vanilla CL

Abrupt 0 19 11 19

Incremental 0 0 1 0

Gradual 0 0 1 0

No/Unclassified 20 1 7 1

the level of forgetting for that task for at least 2 consecutive timesteps. Methods
such as EWCReg and Vanilla CL experience abrupt forgetting for all the tasks.
OWMReg, on the contrary, experiences different kinds of forgetting for different
tasks. DENReg experiences no forgetting at all, a result that is consistent with
findings in Fig. 2 (right).

5 Conclusions

We investigated the problem of learning a sequence of controllers continually.
We explored a variety of state-of-the-art continual machine learning methods.
Experiments demonstrated that formulating this problem as a continual learning
problem results in much lower error compared to learning all these controllers
jointly. Dynamic network expansion methods showed a potential to retain knowl-
edge of previous controller tasks thus helping to avoid the problem of catas-
trophic forgetting in this context for a small number of tasks. An important
future work derived from these results is the exploration of scenarios using real-
world data. More complex problems of controllers that are designed to systems
such as generic classes of linear systems, T-S fuzzy nonlinear systems, or control
systems composed of a larger number of tasks could also be potentially explored.

References

1. Benavides-Prado, D., Koh, Y.S., Riddle, P.: Selective hypothesis transfer for
lifelong learning. In: 2019 International Joint Conference on Neural Networks
(IJCNN), pp. 1–10. IEEE (2019)

2. Benavides-Prado, D., Koh, Y.S., Riddle, P.: Towards knowledgeable supervised
lifelong learning systems. J. Artif. Intell. Res. 68, 159–224 (2020)

3. Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a
self-organizing neural network. Computer 21(3), 77–88 (1988)

4. Chen, Z., Liu, B.: Lifelong machine learning. In: Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 12, no. (3), pp. 1–207 (2018)

5. Cloosterman, M.B.G., Hetel, L., Van De Wouw, N., Heemels, W.P.M.H., Daafouz,
J., Nijmeijer, H.: Controller synthesis for networked control systems. Automatica
46(10), 1584–1594 (2010)

6. Delange, M., et al.: A continual learning survey: defying forgetting in classification
tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

408 D. Benavides-Prado et al.

7. Dı́az-Rodŕıguez, N., Lomonaco, V., Filliat, D., Maltoni, D.: Don’t Forget, There
is More than Forgetting: New Metrics for Continual Learning. arXiv preprint
arXiv:1810.13166 (2018)

8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)

9. Heij, C., Ran, A.C., Schagen, F.V.: Introduction to Mathematical Systems Theory:
Linear Systems, Identification and Control. Birkhäuser, Basel (2007)

10. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
Nat. Acad. Sci. 114(13), 3521–3526 (2017)

11. Lee, S., Stokes, J., Eaton, E.: Learning shared knowledge for deep lifelong learning
using deconvolutional networks. In: IJCAI, pp. 2837–2844 (2019)

12. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In:
Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)

13. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)

14. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental clas-
sifier and representation learning. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2001–2010 (2017)

15. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Sci. 7(2), 123–146 (1995)

16. Robins, A.: Consolidation in neural networks and in the sleeping brain. Connection
Sci. 8(2), 259–276 (1996)

17. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671
(2016)

18. Silver, D.L., Mercer, R.E.: Selective Transfer of Neural Network Task Knowledge.
The University of Western Ontario (Canada) (2000)

19. Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: beyond learning
algorithms. In: AAAI Spring Symposium: Lifelong Machine Learning, vol. 13, pp.
49–53 (2013)

20. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Advances
in Neural Information Processing Systems, pp. 640–646 (1996)

21. Thrun, S., Pratt, L.: Learning to Learn: Introduction and Overview. In: Thrun,
S., Pratt, L. (eds.) Learning to Learn, pp. 3–17. Springer, Boston (1998). https://
doi.org/10.1007/978-1-4615-5529-2 1

22. Wanigasekara, C., Almakhles, D., Swain, A., Nguang, S.K.: Delta-modulator-based
quantised output feedback controller for linear networked control systems. IEEE
Access 8(1), 175169–175179 (2020)

23. Wanigasekara, C., Almakhles, D., Swain, A., Zhou, L.: Design of dynamic fuzzy
Q-learning controller for networked wind energy conversion systems. In: Proceed-
ings of 20th International Conference on Environment and Electrical Engineering
(EEEIC) (2020)

24. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong Learning with Dynamically
Expandable Networks. arXiv e-prints (2017)

25. Zeng, G., Chen, Y., Cui, B., Yu, S.: Continual learning of context-dependent pro-
cessing in neural networks. Nat. Mach. Intell. 1(8), 364–372 (2019)

http://arxiv.org/abs/1810.13166
http://arxiv.org/abs/1606.04671
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1

DRILL: Dynamic Representations
for Imbalanced Lifelong Learning

Kyra Ahrens(B), Fares Abawi, and Stefan Wermter

Knowledge Technology, Department of Informatics, University of Hamburg,
Hamburg, Germany

{kyra.ahrens,fares.abawi,stefan.wermter}@uni-hamburg.de
http://www.informatik.uni-hamburg.de/WTM

Abstract. Continual or lifelong learning has been a long-standing chal-
lenge in machine learning to date, especially in natural language process-
ing (NLP). Although state-of-the-art language models such as BERT
have ushered in a new era in this field due to their outstanding per-
formance in multitask learning scenarios, they suffer from forgetting
when being exposed to a continuous stream of non-stationary data. In
this paper, we introduce DRILL, a novel lifelong learning architecture
for open-domain sequence classification. DRILL leverages a biologically
inspired self-organizing neural architecture to selectively gate latent lan-
guage representations from BERT in a domain-incremental fashion. We
demonstrate in our experiments that DRILL outperforms current meth-
ods in a realistic scenario of imbalanced classification from a data stream
without prior knowledge about task or dataset boundaries. To the best
of our knowledge, DRILL is the first of its kind to use a self-organizing
neural architecture for open-domain lifelong learning in NLP.

Keywords: Continual learning · NLP · Imbalanced learning ·
Self-organization · BERT

1 Introduction

Humans possess the ability to continuously acquire, reorganize, integrate, and
enrich linguistic concepts throughout their lives. As early as infancy and based on
an innate inference capability, the conventional symbols of language are learned
within a socio-communicative context. The underlying neuro-cognitive mecha-
nisms involved in human language acquisition are still far from being fully under-
stood. However, they offer great potential for computational models that are
inspired by the neuroanatomical mechanisms in the mammalian brain, enabling
the continual integration of consolidated linguistic knowledge with current expe-
rience [27].

With the advent of deep learning and the surge of computational resources
and data collection, state-of-the-art transformer-based language models (LM)
such as BERT [5] and OpenAI GPT [20] have gradually moved away from the
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 409–420, 2021.
https://doi.org/10.1007/978-3-030-86340-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_33&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_33

410 K. Ahrens et al.

symbolic level and given way to isolated learning solutions revealing an out-
standing performance on downstream NLP tasks in a multitask set-up [4]. Yet
when being exposed to a sequence of tasks, catastrophic forgetting or catastrophic
interference of previously learned concepts was observed [17]. As re-training on
all prior data would be inefficient both in terms of computational cost and mem-
ory capacity, this observation motivated the introduction of continual or lifelong
language learning (LLL).

Despite recent advances in LLL, most current methods make overly simplis-
tic assumptions that are in stark contrast to realistic, biologically inspired learn-
ing settings. This includes enabling multiple passes over the input data stream
instead of single-epoch training, resulting in a surge of computational cost. Such
methods further rely on perfectly balanced and annotated data, arranged in
a way that the assumption of independent and identically distributed samples
holds. As a consequence, they are poorly applicable to few-shot, unsupervised,
or self-supervised learning scenarios [2].

Thus, striving for a more biologically grounded model architecture and train-
ing set-up, we introduce DRILL, a text classification model applicable to CL set-
tings that involve the presence of a continuous stream of imbalanced data without
prior knowledge about task boundaries or probability distributions. DRILL is
a hybrid architectural and rehearsal-based CL method that uses meta-learning
and a self-organizing neural architecture to enable rapid adaptation to novel
data while minimizing catastrophic forgetting.

Due to the lack of a continual text classification benchmark of imbalanced
data, we introduce two sampling strategies to induce class imbalance artificially.
These strategies are evaluated on five text classification datasets presented by
Zhang et al. [30], commonly used as CL benchmarks in NLP. With this setting,
we show in our experiments that our model outperforms current baselines while
better generalizing to unseen data.

2 Related Work

2.1 Continual Learning

Striving for a balance between memory consolidation and generalization to new
input data from non-stationary distributions, also referred to as the stability-
plasticity dilemma [7], paved the way for various LLL approaches in recent
years. These approaches can be fully or partially categorized into regulariza-
tion, rehearsal, and dynamic architectures:

Regularization-based approaches constrain the plasticity of a learning model
either by introducing additional loss terms for weight adaptation at a fixed model
capacity [13,29], or by setting an additional constraint on prior tasks’ predic-
tions to be kept invariant using knowledge distillation [15]. This fixed-capacity
paradigm contrasts with architecture-based CL models that assign some model
capacity to each task and therefore dynamically expand in response to novel
input [18,22]. Inspired by the concept of memory consolidation, rehearsal-based

DRILL: Dynamic Representations for Imbalanced Lifelong Learning 411

(or memory replay) approaches maintain performance on prior tasks by stor-
ing and retraining the model on old training samples from an episodic mem-
ory [3,16,21].

To limit the associated memory overhead with an increasing number of tasks,
pseudo-rehearsal approaches employing generative network architectures have
been proposed. Such models rely on experience replay of task-representative
samples or latent representations based on statistical properties learned from
old training data [11,19]. Two such generative replay approaches based on GPT-
2 [20], i.e. Language Modelling for Lifelong Language Learning (LAMOL) [24]
and Distill and Replay (DnR) [25] view LLL through the lens of question
answering. DnR deviates from LAMOL in that it bounds model complexity
through knowledge distillation following a teacher-student strategy. Although
both approaches are the current performance leaders on datasets benchmarked
in this work, they require multiple epochs of training and explicit knowledge
about task boundaries. Such preconditions deviate from the realistic CL sce-
nario we advocate for in this work.

2.2 Meta-Learning

Meta-learning [26] has become increasingly popular in recent years as it paved
the way for sophisticated algorithms capable of quickly adapting to new data.
Online aware Meta-Learning (OML) [10] combines the common meta-learning
objective of maximizing fast adaptation to new tasks with the CL objective of
minimizing catastrophic interference during training. A Neuromodulated Meta-
Learning Algorithm (ANML) [1] extends OML by an independent representation
learning stream to selectively gate latent activations. Holla et al. [8] introduce
a sparse experience replay mechanism to OML and ANML, denoting their two
novel methods by OML-ER and ANML-ER respectively. Both extensions out-
perform state-of-the-art methods for text classification and question answering
benchmarks under a training set-up in which data becomes only available over
time and a lack of information about when a dataset or task boundary is crossed.

2.3 Growing Memory and Self-organization

In an attempt to mimic the explicit memory formation in the mammalian brain,
early artificial neural networks based on competitive learning mechanisms and
self-organization have been developed and refined [6,14]. One more recent exten-
sion to such topology learning methods is the Self-organizing Incremental Neural
Network (SOINN) algorithm, which regulates plasticity in unsupervised learn-
ing tasks by means of dynamically creating, adapting, and deleting neurons [23].
SOINN+ [28] extends the original SOINN algorithm by introducing a novel
node deletion mechanism based on (i) idle time, (ii) trustworthiness, and (iii)
non-usage of a network unit. Given that SOINN+ successfully demonstrates its
resilience to noisy data and its ability to learn a high-quality topology from
the input domain while keeping the number of nodes small, we utilize it as a
semantic memory component in our DRILL architecture.

412 K. Ahrens et al.

3 Methods

With the challenge of achieving LLL from unbalanced data in mind, we lay the
theoretical foundation for our proposed DRILL method.

3.1 Task Formulation

Consider an ordered sequence of tasks T = {T1, T2, . . . , TN}, where we observe
nk annotated input samples from the k-th task, i.e. Tk = {(xi

k, yi
k)}nk

i=1 drawn
from the distribution Pk(X ,Y). Assuming a realistic scenario of missing task and
dataset descriptors, we have no knowledge about which task each input sample
belongs to. Following prior work [8], we define task in terms of text classifica-
tion domain, i.e. sentiment, news topic, question-and-answer, and ontology. Our
objective is to learn a model fθ : X → Y with parameters θ to minimize the
negative log-likelihood averaged across all N tasks

L(θ) = − 1
N

N∑

k=1

ln P (xk | yk ; θ) (1)

3.2 Progressive Imbalancing

Prior work on lifelong text classification [8,16,24,25] has traditionally deployed
the perfectly balanced version of the five NLP datasets by Zhang et al. [30]. Fol-
lowing the idea of d’Autume et al. [16], we introduce two sampling techniques
called progressive reduction (R) and progressive expansion (E), which exponen-
tially increase or decrease the number of samples for each incoming task, such
that

nR
k+1 ←

⌊
nR

k

2

⌋
(2)

with progressive reduction and

nE
k+1 ← 2 · nE

k (3)

with progressive expansion respectively, and k ∈ {1, . . . , N}. Both sampling
techniques allow us to simulate two opposite LLL settings in which data at an
early or late stage are significantly less present.

3.3 Episode Generation

For the construction of training episodes and experience rehearsal from episodic
memory, we follow a commonly adopted set-up [8,16]:

Under the assumption that samples arrive in batches of size s and are written
into episodic memory module ME with probability pE , we construct the i-th
episode from b batches, where the first b − 1 batches denote support set Si and
the b-th batch denotes query set Qi.

DRILL: Dynamic Representations for Imbalanced Lifelong Learning 413

After having observed RI samples from the stream, �r · RI� samples from ME
are randomly being drawn for rehearsal, where r ∈ [0, 1] denotes the predefined
replay ratio.

Aligned with the episodic fashion of meta-learning, we calculate the replay
frequency

RF =
⌈

RI/s + 1
b

⌉
(4)

Thus, every RF -th episode can be considered as replay episode in a way that
its query set does not consist of data from the stream, but from the episodic
memory module ME .

3.4 DRILL

The DRILL architecture comprises four main elements, namely a dual-memory
system of (1) an episodic memory module ME and (2) a semantic memory
module MS , and, following the original OML algorithm [10], (3) a representation
learning network (RLN) hφ as well as (4) a prediction learning network (PLN)
gW .

We use the SOINN+ [28] algorithm as semantic memory module MS . Each
neural unit is a d-dimensional real-valued vector. The network is parameterized
by a pull factor η denoting the influence of a new observation on neighbor-
ing nodes. For the sake of simplicity and as proposed by Wiwatcharakoses and
Berrar [28], we set the pull factor to a constant value η = 50. Thus, our model fθ

optimizes for the set of parameters θ = φ ∪ W , consisting of parametrization φ
from X → R

d of the RLN hφ and W from R
d → Y of the PLN gW respectively.

Taking inspiration from the mammalian thalamus as a ‘gate to consciousness’,
we propose two DRILL variants that differ in how latent representations from
the RLN are integrated with signals from the semantic memory MS , translating
its internal selective plasticity to the entire learning process.

Fig. 1. Overview of the two variants DRILLM (left) and DRILLC (right). Latent repre-
sentation signals retrieved from RLN are integrated with neural weight signals from MS
either by multiplication (DRILLM) or concatenation (DRILLC). Input to the model is
either an new observation x from the stream or an episodic replay sample from ME .

414 K. Ahrens et al.

The first variant, called Integration by Multiplication (DRILLM), can be
described as follows: On receiving input x, the model gates the activations hφ(x)
arriving from the RLN by multiplying them element-wise with a set of neural
weights wS drawn from MS in a procedure described in Subsect. 3.5. We express
the model variant DRILLM as

fM
θ (x) = gW (wS · hφ(x)) (5)

For the second variant called Integration by Concatenation (DRILLC), each of
the d-dimensional signals wS and hφ(x) retrieved from MS and the RLN respec-
tively are reduced to half of their dimension d

2 and subsequently concatenated
in a d-dimensional linear layer that is allocated to the PLN, as shown in Fig. 1.
Thus, we derive the following model

fC
θ (x) = gW ([wS , hφ(x)]) (6)

where [·, ·] denotes the concatenation operator. The meta-learning procedure for
both DRILL variants works as follows: During inner-loop optimization of the
i-th episode, the RLN is kept frozen while the PLN is fine-tuned using SGD
with an inner-loop learning rate α, such that

W ′ ← SGD(Li(φ,W),Si, α) (7)

Subsequently, both RLN and PLN are fine-tuned on the query set Qi during
outer-loop optimization, such that all model parameters are updated using the
Adam optimizer [12] with an outer-loop learning rate β to give

θ′ ← Adam(Li(φ,W ′),Qi, β) (8)

For the RLN, we use the state-of-the-art transformer-based language model
BERTBASE [5] with 12 transformer layers and d = 768 hidden dimensions. With
DRILLM, the PLN is a single linear layer with softmax activation that outputs
the class probabilities, while a linear concatenation layer additionally precedes
this layer with DRILLC.

3.5 Self-supervised Sampling

In contrast to the episodic memory ME that we solely use for experience replay,
we use the semantic memory MS for generating high-quality representations,
which influence the fine-tuning of the PLN. For every input sample (xi, yi), we
initiate a competitive voting mechanism among all nodes in MS to determine
the two neurons with neural weights w1

S and w2
S that have most frequently been

best-matching units (BMUs) for class yi. According to the original SOINN+
algorithm [28], the network node that lies closest to the input in Euclidean
space is denoted as BMU.

The two winners are then either multiplied element-wise (DRILLM) or con-
catenated (DRILLC) with the activations of the latent representation hφ(xi)
coming from the RLN, thus generating two inputs to the PLN from one output
of the RLN. During the evaluation phase, only one signal from the winning node
wS is retrieved from MS for the purpose of unambiguous label prediction by
the PLN.

DRILL: Dynamic Representations for Imbalanced Lifelong Learning 415

4 Experiments

4.1 Benchmark Datasets

We train our model sequentially on five text classification datasets by Zhang et
al. [30] covering four different tasks: Sentiment analysis, news topic detection,
question-and-answer classification, and ontology categorization. We summarize
them in Table 1. Following d’Autume et al. [16], the datasets are arranged in
four randomized permutations reflecting the significant impact of task ordering
on evaluation results.

Table 1. The five balanced text classification datasets as in Zhang et al. [30], each
containing 7,600 test samples randomly drawn from the original datasets. The num-
ber of training samples differs depending on order position and imbalanced sampling
strategy.

Classification domain Dataset Classes
Order position

I II III IV

Sentiment Amazon 5 4 4 3 3

Yelp (merged) 1 5 1 2

News Topic AGNews 4 2 3 5 1

Question Topic Yahoo 10 5 2 2 4

Ontology DBPedia 14 3 1 4 5

Total: 33

For evaluation, we follow prior work [8,16,24,25] and randomly draw 7,600
samples from each of the five datasets, yielding a total test size of 38,000. How-
ever, we depart from the perfectly balanced and thus poorly realistic scenario of
115,000 training samples per dataset and instead apply progressive imbalancing
as described in Subsect. 3.2 with nR

0 = 115, 000 and nE
0 = 7, 187, thus providing

a total training size of 222, 812 for either sampling strategy.

4.2 Baselines

For performance evaluation, we compare our two proposed model variations
DRILLM and DRILLC with the two performance leaders given a realistic
single-epoch set-up without prior task-specific knowledge, i.e. ANML-ER and
OML-ER [8]. Just like our method, they use a pretrained BERTBASE language
encoder. We further implement the lower bound for CL model performance,
SEQ, in which we fine-tune both RLN and PLN on all tasks sequentially without
any rehearsal. We also compare our methods with REPLAY, an extension of
SEQ towards experience rehearsal with samples stored in an episodic memory.
Finally, we train RLN and PLN jointly in a multitask set-up MTL, which we
consider as an upper bound for CL model performance. For a fair comparison, we

416 K. Ahrens et al.

choose the same memory-write and rehearsal policies for REPLAY, ANML-ER,
and OML-ER, as well as our two proposed DRILL variants.

4.3 Implementation Details

Our experimental set-up consists of three independent runs on seeds 42–44,
each run performed on the four order permutations and two sampling strategies
respectively. Accordingly, the comparison results are averaged over all three runs.

Due to computational limitations, we train all baseline models on normalized
batches of size s = 8 following the procedure of Ioffe and Szegedy [9] and optimize
based on the cross-entropy loss on all 33 classes. We truncate the BERTBASE

input sequences to length 448 and set the buffer size b = 6. The inner-loop
and outer-loop learning rates of the four meta-learning-based models DRILLM,
DRILLC, OML-ER, and ANML-ER are set to α = 8e−3 and β = 1.5e−5 respec-
tively. The learning rate of all remaining baselines SEQ, REPLAY, and MTL is
set to 1e−5.

All models are trained for a single epoch, whereas MTL is trained for two
epochs. The probability of storing an observation in the episodic memory module
ME is governed by the maximum write probability pE = 0.8. The pE is inversely
proportional to the expansion or reduction for all rehearsal-based models, restor-
ing class balance within ME . The learning rates and pE are derived using a
Parzen–Rosenblatt estimator1. The hyperparameter optimization is applied to
OML-ER as the representative model for all meta-learning-based approaches
and SEQ for inferring the learning rate of the remaining models. Both OML
and SEQ are trained on the full dataset (without expansion or reduction) with
order I and random seed 42. With both DRILL architectures, the unsupervised
SOINN+ algorithm is performed as described in the original paper [28], including
setting the pull factor η = 50.

We follow the rehearsal and evaluation strategies adopted by Holla et al. [8],
setting RI = 9, 600 and r = 1%, such that we draw 96 samples from ME after
observing 9,600 samples from the data stream. The evaluation of the four meta-
learning models is performed by generating five episodes, each containing the
test datasets as query sets. All baseline models were trained on an NVIDIA
TITAN RTX with 24 GB VRAM and 64 GB RAM. The training time ranges
between 1 and 7 h, depending on the model and number of observations.

5 Results

5.1 Imbalanced Lifelong Text Classification

Unlike prior work, we report F1 scores rather than macro-averaged classification
accuracy due to the unbalanced nature of the training data. Our main results
are summarized in Table 2.

1 CometML Hyperparameter Optimizer: https://www.comet.ml/.

https://www.comet.ml/

DRILL: Dynamic Representations for Imbalanced Lifelong Learning 417

Table 2. Text classification F1 scores on four permutations of task orders and pro-
gressive expansion (E) and progressive reduction (R) sampling respectively. The two
rightmost columns denote the macro-average and standard deviation across all order-
ings and sampling strategies.

Order (E) Order (R)

Method I II III IV I II III IV μ σ

SEQ 17.4 27.6 26.6 21.0 23.7 32.7 28.8 25.0 25.4 4.9

REPLAY 55.3 67.9 58.6 65.7 44.2 57.7 53.5 37.0 55.0 10.5

ANML-ER 66.7 70.5 55.0 62.9 57.0 58.6 62.7 45.2 59.8 8.8

OML-ER 70.2 64.9 52.2 64.4 56.0 62.0 66.5 48.7 60.6 8.1

DRILLM 23.2 36.5 37.1 37.6 58.0 51.7 41.0 50.4 41.9 13.7

DRILLC 68.4 68.1 59.1 65.5 61.8 61.6 62.9 49.5 62.1 6.2

MTL 77.9 78.7 76.2 76.7 77.7 76.4 78.3 78.2 77.5 1.0

Our DRILLC variant outperforms existing methods in terms of higher overall
average performance and higher median under equal conditions (the latter is
depicted in Fig. 2). In addition, it has a significantly smaller variance than all
other replay-based comparison methods, thus demonstrating its robustness to
the order of training data and the imbalancing strategy. Consequently, it narrows
the gap to the upper bound of multitask learning.

Interestingly, the DRILLM method is trailing the current models with respect
to absolute performance. Yet, it provides a smaller variance for progressively
expanded data than all other baselines except SEQ, exhibiting robustness against
undersampled classes at the beginning of training. The enormous performance
difference of our two DRILL variants motivates a more detailed analysis of the
impact of knowledge integration mechanisms from RLN and MS .

Fig. 2. F1 scores of all comparison models aggregated across three seeds and four
orderings. Sequential (SEQ) and multitask (MTL) learning can be viewed as lower and
upper bound for model performance respectively.

418 K. Ahrens et al.

5.2 Knowledge Integration Mechanisms

Although the introduction of class-representative signals drawn from semantic
memory yields greater robustness under a realistic training scenario, the overall
model performance varies greatly depending on how the latent signals retrieved
are integrated during training. The relatively poor performance of DRILLM could
be attributed to the multiplicative gating mechanism that we adopted from the
original ANML algorithm [1]. The ANML is designed so that ‘gating parameters’
of preceding layers are learned in a supervised fashion, which is in contrast to
the unsupervised nature of SOINN+.

Conversely, with DRILLC, signals from RLN are enriched with those from the
SOINN rather than fused, allowing for better linear separation, thus resulting in
an increase of model performance. From this, we conclude that the concatena-
tion of modalities in our training scenario provides a better knowledge retention
strategy.

5.3 Self-organized Networks in NLP

A generally known problem of self-organizing networks is that they capture the
entire evolution of hidden representations in feature space along with obsolete
knowledge and are therefore unsuitable for training on shifting latent distri-
butions. With the DRILL architecture, we overcome this problem by freezing
the RLN parameters during inner-loop optimization and by the choice of our
retrieval strategy for neural weight signals coming from the SOINN. The former
leads to a more stable latent data distribution over a longer period. The latter
ensures that neural units residing in the current input distribution are more
likely to be considered as high-quality class representatives.

As this is the first work to combine a self-organizing neural architecture
with a transformer-based language model in a CL setting, we advocate further
exploring such set-ups in future work. This is due to the intrinsic ability of the
SOINN and its various extensions to be applicable in an infinite learning setting
with an unlimited number of tasks. The model can additionally handle partially
annotated data, setting the basis for semi-supervised LLL scenarios.

6 Conclusion and Future Work

In this work, we introduce a novel, more challenging continual learning set-up
with imbalanced data. We further propose Dynamic Representations for Imbal-
anced Lifelong Learning (DRILL), a neuroanatomically inspired CL method
which combines a state-of-the-art language model with a self-organizing neu-
ral architecture. It outperforms current baselines, yet is more stable against
data ordering and imbalancing. Thus, the fusion of supervised language models
with unsupervised clustering algorithms has proven effective for lifelong learning
methods, further narrowing the gap to multitask learning approaches. DRILL
achieves the best results on imbalanced data, with the least overall variance in

DRILL: Dynamic Representations for Imbalanced Lifelong Learning 419

comparison to other meta-learning-based lifelong learning approaches. For future
work, we plan to extend our model towards infinite learning of an unknown num-
ber of tasks as well as sequence-to-sequence learning.

Acknowledgements. We would like to thank Dr. Cornelius Weber (University of
Hamburg) and Katja Kösters (University of Hamburg) for their feedback and sugges-
tions. The authors gratefully acknowledge partial support from the German Research
Foundation (DFG) under Project CML (TRR-169).

References

1. Beaulieu, S., et al.: Learning to continually learn. In: 24th European Conference
on Artificial Intelligence, vol. 325, pp. 992–1001. IOS Press (2020)

2. Biesialska, M., Biesialska, K., Costa-jussá, M.R.: Continual lifelong learning in
natural language processing: a survey. In: 28th International Conference on Com-
putational Linguistics, pp. 6523–6541. International Committee on Computational
Linguistics (2020)

3. Chaudhry, A., Marc’Aurelio, R., Rohrbach, M., Elhoseiny, M.: Efficient lifelong
learning with A-GEM. In: 7th International Conference on Learning Representa-
tions (2019)

4. Chen, Z., Liu, B.: Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn.
12(3), 1–207 (2018)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 4171–4186. Association for Computational Linguistics (2019)

6. Fritzke, B., et al.: A growing neural gas network learns topologies. Adv. Neural.
Inf. Process. Syst. 7, 625–632 (1995)

7. Grossberg, S.: How does a brain build a cognitive code? Stud. Mind Brain 1–52
(1982)

8. Holla, N., Mishra, P., Yannakoudakis, H., Shutova, E.: Meta-Learning with
Sparse Experience Replay for Lifelong Language Learning. arXiv preprint
arXiv:2009.04891 (2020)

9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: 32nd International Conference on Machine
Learning, vol. 37, pp. 448–456. PMLR (2015)

10. Javed, K., White, M.: Meta-learning representations for continual learning. Adv.
Neural. Inf. Process. Syst. 32, 1820–1830 (2019)

11. Kemker, R., Kanan, C.: FearNet: brain-inspired model for incremental learning.
In: 6th International Conference on Learning Representations (2018)

12. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations (2015)

13. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
Natl. Acad. Sci. U.S.A. 114(13), 3521–3526 (2017)

14. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)
15. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach.

Intell. 40(12), 2935–2947 (2017)
16. de Masson d’Autume, C., Ruder, S., Kong, L., Yogatama, D.: Episodic memory in

lifelong language learning. In: Advances in Neural Information Processing Systems
32 (2019)

http://arxiv.org/abs/2009.04891

420 K. Ahrens et al.

17. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. In: Bower, G.H. (ed.) Psychology of Learning
and Motivation, Psychology of Learning and Motivation, vol. 24, pp. 109–165.
Academic Press (1989)

18. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)

19. Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Lifelong learning of spatiotemporal
representations with dual-memory recurrent self-organization. Front. Neurorobot.
12, 78 (2018)

20. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving Language
Understanding by Generative Pre-Training. OpenAI (2018)

21. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classi-
fier and representation learning. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2017)

22. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671
(2016)

23. Shen, F., Hasegawa, O.: Self-organizing incremental neural network and its appli-
cation. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS,
vol. 6354, pp. 535–540. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15825-4 74

24. Sun, F.K., Ho, C.H., Lee, H.Y.: LAMOL: LAnguage MOdeling for lifelong language
learning. In: 8th International Conference on Learning Representations (2020)

25. Sun, J., Wang, S., Zhang, J., Zong, C.: Distill and replay for continual lan-
guage learning. In: 28th International Conference on Computational Linguistics,
pp. 3569–3579. International Committee on Computational Linguistics, Barcelona
(2020)

26. Thrun, S., Pratt, L.: Learning to learn: introduction and overview. In: Thrun, S.,
Pratt, L. (eds.) Learning to Learn, pp. 3–17. Springer, Boston (1998). https://doi.
org/10.1007/978-1-4615-5529-2 1

27. Tomasello, M.: The social bases of language acquisition. Soc. Dev. 1(1), 67–87
(1992)

28. Wiwatcharakoses, C., Berrar, D.: SOINN+, a self-organizing incremental neural
network for unsupervised learning from noisy data streams. Expert Syst. Appl.
143, 113069 (2020)

29. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: 34th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 70, pp. 3987–3995. PMLR (2017)

30. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: 28th International Conference on Neural Information Processing
Systems, pp. 649–657. MIT Press (2015)

http://arxiv.org/abs/1606.04671
https://doi.org/10.1007/978-3-642-15825-4_74
https://doi.org/10.1007/978-3-642-15825-4_74
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1

Principal Gradient Direction
and Confidence Reservoir Sampling

for Continual Learning

Zhiyi Chen1 and Tong Lin2,3(B)

1 Georgia Institute of Technology, Atlanta, USA
zchen798@gatech.edu

2 The Key Laboratory of Machine Perception (MOE), School of EECS,
Peking University, Beijing, China

lintong@pku.edu.cn
3 Peng Cheng Laboratory, Shenzhen, China

Abstract. Task-free online continual learning aims to alleviate catas-
trophic forgetting of the learner on a non-iid data stream. Experience
Replay (ER) is a SOTA continual learning method, which is broadly used
as the backbone algorithm for other replay-based methods. However, the
training strategy of ER is too simple to take full advantage of replayed
examples and its reservoir sampling strategy is also suboptimal. In this
work, we propose a general proximal gradient framework so that ER can
be viewed as a special case. We further propose two improvements accord-
ingly: Principal Gradient Direction (PGD) and Confidence Reser-
voir Sampling (CRS). In Principal Gradient Direction, we optimize a
target gradient that not only represents the major contribution of past
gradients, but also retains the new knowledge of the current gradient. We
then present Confidence Reservoir Sampling for maintaining a more infor-
mative memory buffer based on a margin-based metric that measures the
value of stored examples. Experiments substantiate the effectiveness of
both our improvements and our new algorithm consistently boosts the
performance of MIR-replay, a SOTA ER-based method: our algorithm
increases the average accuracy up to 7.9% and reduces forgetting up to
15.4% on four datasets.

Keywords: Continual learning · Principal gradient direction ·
Confidence reservoir sampling

1 Introduction

Primates and humans can continually learn new skills and accumulate knowledge
throughout their lifetime [5]. However, in machine learning, the agents hardly
have a steady good performance when they learn a data stream. Catastrophic
forgetting [10] is a common challenge when training a single neural network

This work was supported by NSFC Tianyuan Fund for Mathematics (No. 12026606),
and National Key R&D Program of China (No. 2018AAA0100300).

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 421–432, 2021.
https://doi.org/10.1007/978-3-030-86340-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_34&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_34

422 Z. Chen and T. Lin

model on consecutive tasks: the model may perform well over the first task but
suffers a serious accuracy decay along with the training process on the next tasks.
Continual learning [14], also known as lifelong learning [16], is a special field in
machine learning that focuses on avoiding or alleviating catastrophic forgetting.

The primary setting of continual learning (CL) is the task-incremental setting
[17], which assumes the stream of data can be clearly divided into sequential tasks
and learnt offline. However, task-free online has received increasing attention
recently, which is more practical: not only each sample can be merely observed
once (single pass setting) but also the data stream is non-iid without any task
information to assist the process of continual learning.

There are three major families of architecture in CL: expansion-based meth-
ods, regularization-based methods and replay-based methods. In this paper, we
focus on the last one, which store the previous raw data and replay some of them
when learning current data to alleviate forgetting. Experience Replay (ER) [4] is
one of the most representative methods, and has been proven as a strong base-
line. Because of its superior performance, ER becomes the backbone algorithm
for many recent replay-based methods, such as ER-MIR [1], GSS [2], etc.

However, there is still room for improvement: on the one hand, the training
strategy of ER is too simple to make full use of examples. On the other hand,
reservoir sampling, which is a commonly used memory update strategy, can only
ensure the equilibriumof previous samples but not good enough tomaintain amore
informative memory buffer. Our paper aims to tackle these defects and produces
a stronger backbone algorithm for other continual learning methods based on ER.

In this paper, we firstly present a new algorithm for the training strategy
called Principal Gradient Direction (PGD), which attempts to optimize a new
gradient that not only represents the past data better but also retains the new
knowledge of the current example. Secondly, we define a margin-based metric
to measure the value of stored data and propose Confidence Reservoir Sampling
(CRS), which helps to maintain a more informative memory buffer.

Under the online CL setting, our experimental results show that both of our
two approaches improve ER and also boost the performance of other ER-based
CL methods, such as MIR [1], which achieve the best accuracy and forgetting
measure among all the replay-based methods.

2 Methods

In this section, we will first discuss the setup of task-free online continual learning
and replay-based methods in Sect. 2.1, and then propose a proximal gradient
framework to analyze the training strategy of ER from a new perspective in
Sect. 2.2. Finally, we elaborate our two methods: Principal Gradient Direction
and Confidence Reservoir Sampling in Sect. 2.3 and 2.4.

2.1 Setup

In task-free online continual learning setting, there is a stream of non-iid data:
..., (xt, yt), ..., which doesn’t contain any task information to identify the specific

Principal Gradient Direction and Confidence Reservoir Sampling 423

task that one example belongs to. The learner f(.; θt) can only observe (xt, yt)
at the tth training step due to the single pass constraint.

For replay-based methods, a space-limited memory buffer M can be used to
store some examples to help provide information of past data. The learner should
try to maximize the overall performance of all data, i.e., the average accuracy,
and minimize the forgetting of past knowledge.

Many methods [1,2] have addressed their improvements on the simple random
selection used in ER, which is orthogonal to our improvements. In the following
subsections, we will analyze the shortcomings of ER on training strategy and stor-
age strategy and present our improvements in Sect. 2.3 and 2.4 accordingly.

2.2 Proximal Gradient Framework

In this subsection, we use Proximal operator [12], a well-studied numerical
method in optimization, to build a proximal gradient framework, which is the
foundation of our Principal Gradient Direction and also provides a new perspec-
tive to the training strategy of ER.

The proximal operator of a function f(·) with a scalar parameter λ (> 0) is
defined by

proxλf (v) := arg minxf(x) +
1
2λ

‖x − v‖22, (1)

where x ∈ R
n, v ∈ R

n are two n dimensional vectors and f : Rn → R is a
closed proper convex function. Proximal operators can be interpreted as modified
gradient steps:

proxλf (v) = v − λ∇Mλf (v), (2)

where Mλf is a smoothed or regularized form of f termed as Moreau envelop
Mλf (v) := infx f(x) + 1

2λ‖x − v‖22.
As shown in [9], continual learning can be formulated as a minimization

problem that finds a new gradient close enough to the gradient of the new data
and satisfies some constraints at the same time. In other words, the new gradient
should still be beneficial to the current task and also takes the past tasks into
consideration.

Based on this insight, we introduce the proximal operator into the setting of
continual learning:

proxλf (g) = arg minwf(w) +
1
2λ

‖g − w‖22, (3)

where g is the gradient vector calculated on the new data, and w is the target
gradient to update the network weights. f(·) is the convex function we need to
design which characterizes the relation between the target gradient and gradients
of past examples selected from the memory.

The training strategy of ER is simple: the learner randomly samples a small
batch of past data from memory and directly uses the sampled data Bt as well
as the new input data (xt, yt) to co-train the network. From the perspective of
proximal gradient framework, the constraint function f(·) of ER is the inner

424 Z. Chen and T. Lin

product of the target gradient and the average gradient of selected past data
without λ:

min
w

1
2
‖g − w‖22 − 〈gref , w〉, (4)

where gref is the reference gradient of Bt. The Eq. (4) has an analytic solution
as follows, which is the actual training strategy of ER:

w∗ = g + gref . (5)

However, this strategy ignores the difference of sampled examples and it also
regards new data and past data equally weighted, which is suboptimal.

2.3 Principal Gradient Direction

A more reasonable idea of utilizing the new data and selected examples is to
find a target gradient that not only represents the overall contribution of the
sampled past examples, but also maintains the knowledge of new data. Such a
gradient can be found in the neighbor of g, which should also follow the principal
direction of all past gradients. In this way, the new gradient will not violate the
past knowledge for the reason that principal direction ensures a gradient descent
towards a overall decrease on losses of past examples. In addition, the gradient
also promotes the memorization of new data because it is a near neighbour of g.

To find the principal direction, we attempt to minimize the sum of solid
angles between the new gradient vector and the past gradients, i.e., maximize
the sum of cosine value. Besides, the length of a gradient should also be taken
into consideration, because the “short” gradient vector means that current model
f(.; θt) can learn it well and hence is less important than a “long” gradient. So
we apply sigmoid function on length of the gradient as weight. We can also set
a small threshold ε for the length of gradient: ‖gi‖ε = max(ε, ‖gi‖) to further
decrease the impact of the short one.

Under the proximal gradient framework, we formulate a optimization prob-
lem as follows:

min
w

−
K∑

i=0

〈w, gi〉
‖w‖ ‖gi‖ε

sigmoid(‖gi‖) +
1
2α

‖w − g‖22, (6)

where w is the target gradient, g is the gradient of the new input, gi is the
gradient of the sampled past example, α is a hyperparameter to balance the two
parts and K is the size of sampled batch Bn.

To solve this optimization problem, we choose Proximal Gradient Method
[12] to get an iterative solution of the proximal problem. Considering a general
optimization problem:

minimize f(x) + h(x), (7)

where f : Rn → R and h : Rn → R ∪ {+∞} are two closed proper convex
functions and f is differentiable. The Proximal Gradient Method is formulated
as follows:

Principal Gradient Direction and Confidence Reservoir Sampling 425

x(k+1) = proxβh(x(k) − β∇f(x(k))). (8)

As for our problem, we regard the target gradient w as the optimization vari-
able, the principal direction term in (6) as function f and the distance constraint
term as function h.

After substituting the variables and expanding the formulation of (8), we get
the standard form of proximal gradient method for our optimization problem:

w(k+1) =arg minw

1
2β

‖w − (w(k) − β∇f(w(k)))‖22

+
1
2α

‖w − g‖22. (9)

To find the solution, we need to set the derivative of (9) to zero. Note that
we can ignore the constant term, e.g. gT g, so we can get:

w(k+1) =
α(w(k) − β∇f(w(k))) + βg

α + β
. (10)

For the gradient ∇f(w(k)), with the rule of derivation for fraction, the solu-
tion is:

∇f(w(k)) = −
K∑

i=0

(
gi∥∥w(k)
∥∥ ‖gi‖ε

sigmoid(‖gi‖)

−〈w(k), gi〉w(k)

∥∥w(k)
∥∥3

2
‖gi‖ε

sigmoid(‖gi‖)

)
. (11)

Here we choose the gradient of new input data g as w(0) for the reason that
the new gradient should be a neighbor of g. From empirical observation, we find
that just one step optimization is good enough, so an approximate solution is:

w(1) = g − αβ

α + β
∇f(g). (12)

We replace the fraction αβ/(α + β) in (12) with a single hyperparameter
λ in experiment, which makes it look like one step gradient descent from g
on our principal direction function f . In practice, we can choose to group the
examples averagely to decrease the number of backward propagation to obtain
an appropriate computational complexity.

2.4 Confidence Reservoir Sampling

In this subsection, we focus on the storage strategy about how to update the
memory with the new example (xt, yt).

426 Z. Chen and T. Lin

Algorithm 1. Reservoir sampling
Procedure: M, mem sz, t, (xt, yt)
if |M| ≤ mem sz then

M.append((xt,yt))
else

i = randint(0, t)
if i ≤ mem sz then

M[i] ← (xt, yt)
end if

end if

ER and many other replay-based methods apply reservoir sampling strategy
(Algorithm 1) [18], where mem sz is the total memory size of M and t is the
order number of input (xt, yt).

Though this strategy can ensure the equilibrium for memory buffer, the ran-
dom replacement (the blue row in Algorithm 1) still has a room for improvement
considering the limited memory space. We aspire to maintain a more informative
memory buffer by replacing the less useful examples, which can improve continual
learning no matter which subset is selected to consolidate the past knowledge.

Just like the exploration and exploitation dilemma in reinforcement learning,
the same situation also exists in online continual learning: exploration is replacing
the old data with the new one to explore the new knowledge, while exploitation
is keeping the old data intact. Actually, only when an example is selected, it is
really exploited by the learner.

Inspired by the idea of Upper-Confidence Bound (UCB) algorithm, which
balances the uncertainty and reward of a certain action to choose one from the
action set, we use a similar strategy to calculate a score for each example in
memory buffer and choose the appropriate one to be replaced.

The exploitation rate, denoted as EX, is the first part of the metric, which
is calculated by a division from the times n that the example is selected into
Bt and the age of the example a: EX = n/a. We intend to replace the highly
exploited one, which is more likely to be overfitted by the learner.

Then we define margin [8] based on the prediction probability from the for-
ward propagation: the output prediction p(x; θ) on an example (x, y) is computed
through a softmax activation function, and we formulate margin, denoted as m,
as:

m := py(x; θ) − max
y′ �=y

py′(x; θ). (13)

When the model makes a correct prediction, the margin of the certain input
is positive, otherwise, we get a negative margin. Margin value indicates the
confidence of the prediction: larger the margin is in magnitude, more confidence
we have in the prediction.

At the tth training step, we can first get mt of (xt, yt) from model f(.; θt)
and then mt+1 from the new model f(.; θt+1) that executes one step gradient
descent. Then we define margin increment: MI = mt+1 − mt, which measures

Principal Gradient Direction and Confidence Reservoir Sampling 427

Algorithm 2. Confidence Reservoir sampling
Procedure: M, mem sz, t, (xt, yt)
if |M| ≤ mem sz then

M.append((xt,yt))
else

i = randint(0, t)
if i ≤ mem sz then

if Using strategy s1 then
j ← max(S(M))

else if Using strategy s2 then
j ∼ P (j) = Sj/

∑
k Sk

end if
M[j] ← (xt, yt)

end if
end if

the importance of a certain example at one training step. If margin increment is
large, it means that this training step has learnt the example very well, in other
words, the example is simple and less informative for the model.

So we can calculate our metric, denoted as S, for all the examples in memory
buffer:

S := EX + c · MI, (14)

where EX is the exploitation rate, MI is the margin increment and c is a
weight hyperparameter. For a high score, the example is either over-exploited or
less informative, which is more appropriate to be replaced.

We have two strategies to replace examples based on S: s1 directly chooses the
biggest score, and s2 replaces each example with a probability P (i) = Si/

∑
j Sj ,

which applies to different datasets.
So far, we complete the definition of our margin-based metric and implement

it on reservoir sampling as Confidence Reservoir Sampling (Algorithm 2). In this
way, Confidence Reservoir Sampling not only satisfies the requirment of equal
storage, but also maintains a more informative memory buffer. Note that our
margin-based metric can also be extended to other storage strategy.

3 Experiments

In this section, we report the details of experiments and the performance of our
two improvements. We apply PGD and CRS on ER and conduct ablation study.
We also use the renewed backbone algorithm over MIR-replay [1] to demonstrate
the effectiveness of our approaches.

3.1 Datasets and Architectures

We consider four commonly used datasets:

428 Z. Chen and T. Lin

Table 1. Average accuracy (%) of ablation Study (↑)

Method ER ER-P ER-C ER-PC

MNIST-S 79.8 ± 3.2 82.4 ± 2.1 81.5 ± 2.1 84.0±2.3

MNIST-P 79.1 ± 0.7 80.9 ± 0.3 79.9 ± 0.5 81.7±0.6

CIFAR10-S 30.7 ± 2.0 36.1 ± 1.8 38.5 ± 1.1 40.0±2.1

Mini-S 23.0 ± 1.2 25.5 ± 0.6 25.2 ± 0.8 25.8±1.0

Table 2. Forgetting measure (%) of ablation Study (↓)

Method ER ER-P ER-C ER-PC

MNIST-S 19.2 ± 4.0 13.2 ± 3.1 17.3 ± 3.2 9.6±1.9

MNIST-P 4.3 ± 0.5 2.6 ± 0.5 4.0 ± 0.6 2.4±0.4

CIFAR10-S 63.3 ± 2.7 56.6 ± 3.7 49.4±1.7 49.7 ± 3.3

Mini-S 32.1 ± 2.0 25.7 ± 1.4 28.5 ± 1.1 25.7±1.1

(1) MNIST Split is derived from MNIST, the famous dataset on handwritten
digits, which directly splits 10 classes of MNIST into 5 non-overlapping
different tasks.

(2) MNIST Permutations is also derived from MNIST, which randomly gen-
erates different pattern of pixel permutation for each task to exchange the
position of the original images of MNIST. For both MNIST Split and MNIST
Permutations, we use the similar benchmark setting as [9] that each task
consists of 1000 examples.

(3) CIFAR10 Split is derived from CIFAR10, which averagely divides the
whole classes in CIFAR10 into 5 tasks, where each task has 9750 samples
and 250 retained for validation just as [1].

(4) MiniImageNet Split is derived from miniImageNet, a subset of ImageNet
with 100 classes and 600 images per class, which averagely divides the whole
classes into 20 tasks.

For MNIST-S and MNIST-P, all baselines use fully-connected neural net-
works with two hidden layers of 100 ReLU units. A smaller version of ResNet18
[6] is used for CIFAR10-S and MINI-S, which has three times less feature maps
for each layer than the original ResNet18.

3.2 Metrics

We use Average Accuracy and Forgetting Measure [3] to evaluate the perfor-
mances of the baselines over four datasets. For Average Accuracy, the higher the
number (indicated by ↑) the better is the model. For Forgetting Measure, the
lower the number (indicated by ↓) the better is the model. We run 10 times to
get each result.

Principal Gradient Direction and Confidence Reservoir Sampling 429

Fig. 1. Performances on MNIST-S Fig. 2. Performances on MNIST-P

3.3 Ablation Study

We conduct ablation study on four datasets by combining our two approaches
with ER, and the resulting algorithms are as follows: basic ER (noted as ER), ER
pluses PGD (noted as ER-P), ER pluses CRS (noted as ER-C) and ER pluses
both PGD and CRS (noted as ER-PC). We store 50 examples per class and
select 10 past examples for Bt on MNIST-S, MNIST-P and CIFAR10-S while
store 100 examples per class and select 20 examples on MINI-S. The results are
showed in Table 1 and 2.

Effectiveness of PGD and CRS. From the results, we can observe that both
PGD and CRS can improve the performance of ER on all four datasets: the two
methods can boost the average accuracy up to 7.7% and reduce the forgetting
measure up to 13.9%. On MNIST-S and MNIST-P, whose size are relatively
small and network is simpler, PGD contributes more than CRS. The situation
reverses on CIFAR10-S. MINI-S has the longest task sequence (20 tasks) and
the biggest input size, where our two approaches have similar contribution in
average accuracy. The comparative relations are same in forgetting measure.

Joint Improvement of PGD and CRS. The results also demonstrate that
PGD and CRS can always jointly render a further improvement. On all four
datasets, ER-PC is the best algorithm in terms of average accuracy which out-
performs ER from 2.6% to 9.3%. ER-PC also achieves least forgetting on the first
three datasets, which only performs slightly worse than ER-C on CIFAR10-S.

Our aim is to produce a stronger backbone algorithm for other ER-based
methods, so we use ER-PC as a renewed backbone algorithm for the following
comparison.

3.4 Performance of ER-PC

In this subsection, we will show the performance of ER-PC, where we use it
as the new backbone algorithm by overlying MIR-replay [1] on it, which is an
example-selection strategy for replay and is SOTA replay-based method so far.
We note the new method as ER-PC-MIR.

430 Z. Chen and T. Lin

Fig. 3. Performances on CIFAR10-S Fig. 4. Performances on MINI-S

Basic Comparison. We take the following four baselines into comparison:
VAN (a vanilla method that a single predictor for all the tasks without any
continual learning strategy), ER [4], ER-MIR [1] (the basic version of MIR-
replay based on ER) and GSS [2].

For the reason that the training time of GSS on MINI-S is unacceptable, we
don’t take GSS into comparison on this dataset. We also don’t take GEM [9] and
A-GEM [3] into comparison because they all need the task information to update
the memory and train the network, which violate the task-free online CL setting.
Prior works show that ER and ER-MIR outperform GEM-like algorithms. The
settings of memory size are same as our ablation study. The results are reported
in Figs. 1, 2, 3 and 4.

First, ER-PC-MIR achieves the best average accuracy on all four datasets.
On MNIST-S, MNIST-P and CIFAR10-S, ER-PC-MIR achieves better average
accuracy than ER-MIR, the best baseline on these datasets, with improvements
up to 7.9%. In MINI-S, our method is better than ER, the best baseline, with
improvement 2.8%.

Second, our method also forgets least knowledge among the baselines on all
four datasets: ER-PC-MIR reduces forgetting than ER-MIR with improvements
from 1.1% to 15.4%. On CIFAR10-S, ER is the best baseline in terms of forget-
ting measure, and ER-PC-MIR is better than it with 13.6%.

The results show that our method ER-PC is a stronger backbone algorithm
than vanilla ER: after combining with MIR-replay, ER-PC-MIR not only out-
performs than ER-MIR, but also achieves the best performance among all other
replay-based methods.

Comparison in Different Memory Size. As MNIST-P and CIFAR10-S
are two representative datasets in domain-incremental and class-incremental
datasets, we run ER-MIR and ER-PC-MIR on them in different memory size.
We store 100, 50, 25 and 10 examples per class, which means that the total size
of memory buffer is 1000, 500, 250, 100 on two datasets. We report the average
accuracy and forgetting measure in Tables 3 and 4.

Principal Gradient Direction and Confidence Reservoir Sampling 431

Table 3. Average accuracy (%) on MNIST-P and CIFAR10-S in different memory
size (↑)

MNIST-P 1000 500 250 100

ER-MIR 82.7 ± 0.4 80.5 ± 0.5 77.5 ± 0.9 73.6 ± 1.0

ER-PC-MIR 84.4±0.4 82.9±0.3 79.6±0.6 76.1±0.4

CIFAR10-S 1000 500 250 100

ER-MIR 43.5 ± 1.7 33.1 ± 1.1 27.1 ± 2.3 22.0 ± 2.2

ER-PC-MIR 48.9±2.5 41.0±1.8 33.7±1.9 26.6±3.0

Table 4. Forgetting measure (%) on MNIST-P and CIFAR10-S in different memory
size (↓)

MNIST-P 1000 500 250 100

ER-MIR 2.3 ± 0.4 3.9 ± 0.3 6.0 ± 0.6 8.8 ± 0.9

ER-PC-MIR 1.2±0.3 1.9±0.3 4.4±0.5 7.0±0.7

CIFAR10-S 1000 500 250 100

ER-MIR 46.4 ± 5.1 64.6 ± 1.6 72.2 ± 4.3 77.0 ± 2.5

ER-PC-MIR 36.0±4.8 49.2±3.4 54.6±3.8 69.1±5.3

In all memory size, ER-PC-MIR consistently improves the performance of
ER-MIR. ER-PC-MIR achieves more average accuracy than ER-MIR from 1.7%
to 2.5% on MNIST-P. On CIFAR10-S, ER-PC-MIR gains over ER-MIR from
4.6% to 7.9% in average accuracy. The results show the reliability of our renewed
backbone algorithm in different memory size.

4 Conclusion

In this paper, we firstly focus on the training strategy of CL and present a
proximal gradient framework. Based on it, Principal Gradient Direction is
proposed to take full advantage of replayed examples and new data. Then we pay
attention to memory updating strategy: we define a new margin-based metric
to measure the value of stored data and propose Confidence Reservoir Sam-
pling based on it to maintain a more informative memory buffer. The experi-
ments demonstrate that our two approaches are both beneficial and can jointly
give a further improvement. After applied with PGD and CRS, the renewed back-
bone algorithm can boost the performance of MIR-replay and always achieves
the best performance among other replay-based baselines on four datasets. On
task-incremental and domain-incremental datasets, our method also consistently
outperforms ER-MIR in different memory size. The experiments show that our
method is a reliable and stronger backbone algorithm than vanilla ER.

432 Z. Chen and T. Lin

References

1. Aljundi, R., Caccia, L., Belilovsky, E., et al.: Online continual learning with max-
imally interfered retrieval. In: NeurIPS (2019)

2. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for
online continual learning. In: NeurIPS (2019)

3. Chaudhry, A., Ranzato, M.A., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learn-
ing with A-GEM. In: ICLR (2019)

4. Chaudhry, A., Rohrbach, M., Elhoseiny, M., et al.: Continual Learning with Tiny
Episodic Memories. arXiv, abs/1902.10486 (2019)

5. Fagot, J., Cook, R.G.: Evidence for large long-term memory capacities in baboons
and pigeons and its implications for learning and the evolution of cognition. Proc.
Natl. Acad. Sci. 103(46), 17564–17567 (2006)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

7. Hsu, Y.-C., Liu, Y.-C., Kira, Z.: Re-evaluating Continual Learning Scenarios: A
Categorization and Case for Strong Baselines. CoRR, abs/1810.12488 (2018)

8. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the
generalization error of combined classifiers. Ann. Stat. 30(1), 1–50 (2002)

9. Lopez-Paz, D., Ranzato, M.A.: Gradient episodic memory for continual learning.
In: NeurIPS (2017)

10. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. In: Psychology of Learning and Motivation (1989)

11. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: CVPR (2014)

12. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231
(2014)

13. Riemer, M., Cases, I., Ajemian, R., et al.: Learning to learn without forgetting by
maximizing transfer and minimizing interference. In: ICLR (2019)

14. Ring, M.B.: Continual Learning in Reinforcement Environments. University of
Texas at Austin (1994)

15. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In:
NeurIPS (2018)

16. Thrun, S.: A lifelong learning perspective for mobile robot control. In:
IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (1994)

17. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. CoRR:
abs/1904.07734 (2019)

18. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

Explainable Methods

Spontaneous Symmetry Breaking in Data
Visualization

Cilie W. Feldager(B), Søren Hauberg, and Lars Kai Hansen

Section for Cognitive Systems, Technical University of Denmark,
Kongens Lyngby, Denmark
{cife,sohau,lkai}@dtu.dk

Abstract. Data visualization tools should create low-dimensional rep-
resentations of data that emphasize structure and suppress noise. How-
ever, such non-linear amplifications of structural differences can have side
effects like spurious clustering in t-SNE [1]. We present a more general
class of spurious structure, namely broken symmetry, defined as visual-
izations that lack symmetry present in the underlying data. We develop
a simple workflow for detection of broken symmetry and give examples
of spontaneous symmetry breaking in t-SNE and other well-known algo-
rithms such as GPLVM and kPCA. Our extensive, quantitative study
shows that these algorithms frequently break symmetry, thereby high-
lighting new shortcomings of current visualization tools.

1 Motivation

Data visualization is a core tool in the machine learning toolbox. Data sets are
visualized for exploration, to formulate hypotheses and to make modeling deci-
sions. Visualization is commonly used for interpretation of learned models, e.g.
visualization of latent variables of a generative model to understand representa-
tions. Data visualization is also very useful for debugging. For these applications
faithfulness is a concern—can we trust the structure revealed in a visualization?

Most data of interest is high dimensional, hence can not be directly visualized.
Rather, some form of dimensionality reduction is required, which inevitably will
lead to loss of information. Popular schemes such as t-SNE [27], aim at two or three-
dimensional representations that capture both local and global structure in data.
Figure 1 shows a two-dimensional t-SNE visualization of images from the COIL-
20 dataset [20]; the given example concerns a wooden object on a turntable that is
viewed from multiple, equidistant angles forming full 360◦ rotation. Such an incre-
mental physical rotation leads to a set of images with a simple topological struc-
ture which can be quantified by the neighborhood graph. More specifically, we form
a graph with the images as nodes and connect neighboring nodes along the rota-
tion path to obtain the graph of a circle. The neighborhood graph presents us with
a strong physical symmetry and we naturally expect a visualization of the data
to reveal this pattern by a structure which is topologically equivalent to a circle.
Evidently, this does not happen: The visualization has broken the symmetry and
“invented” a difference between neighboring points that is non-physical.
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 435–446, 2021.
https://doi.org/10.1007/978-3-030-86340-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_35&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_35

436 C. W. Feldager et al.

Fig. 1. We analyse a set of images of an
object subject to a 360◦ rotation on a
turntable. The nearest neighbor graph
forms a simple circle, however when the
set is visualized using t-SNE the sym-
metry is lost.

The significance of transformations
and the ensuing question of symmetry
preservation goes beyond the physical
rotations of the COIL data set. Parame-
terized transformations are key to mod-
ern data augmentation strategies. The
question of preservation of symmetries in
augmented data sets is then related to
whether given symmetries are successfully
represented during learning.

Our contribution is to identify a
new, general class of spurious structures in
data visualization, namely spontaneously
broken symmetry, defined as representa-
tions that lack symmetry present in the
underlying data. We provide a topological,
quantitative measure to detect broken symmetry (Sect. 2) allowing for a system-
atic study. Our empirical studies (Sect. 3) show that widely used visualization
techniques break simple symmetries like rotations, hence, challenging the notion
that they conserve global structure.

2 Symmetries, Graphs, and Persistent Homology

Fig. 2. The latent space of a model
that preserves symmetry (a) and
one that does not (b). (c) A barcode
as a function of thresholds Bt.

Symmetry Groups. We consider symmetries,
i.e. a property of a system that remains
unchanged under a given transformation. The
images of the wooden toy in Fig. 1 are formally
equivariant when the toy is rotated physically
on the turn-table, while the outputs of a deep
network for image based object classification
ideally would be invariant (symmetric) under
rotation.

Mathematically, such transformations and
symmetries are described by Lie groups [11]. A
real Lie group is a smooth differentiable man-
ifold on which points are connected through a
group operation and its inverse. For instance,
rotation matrices form a smooth group with
the matrix multiplication group operation.
The unit circle can then be generated by a
single unit vector and its multiplication with all members of the group of rota-
tion matrices. If the rotation group governs a physical phenomenon then we
expect to observe data along a path that topologically is a circle, disregarding
observation noise.

Spontaneous Symmetry Breaking in Data Visualization 437

This paper focus on situations where the governing group is known and inves-
tigate if its structure is preserved by common visualization techniques. This is
achieved by verifying if the group topology remains intact under visualizations.

Discrete Approximations. In practice, we only observe a finite number of data
points, rather than the entirety of a group. We can, however, approximate the
path spanned by the observations with a graph, where points are connected if
their generating group elements are close under the group metric. For instance,
we may connect rotated images in a graph if their rotation angles are similar.

Measuring Broken Symmetry. For visualization, we map data to a low-
dimensional space (typically R

2); we let X = {xi} denote data coordinates
in this low-dimensional space. We can now determine if a symmetry has been
preserved under visualization by asking if the associated graph can be recovered
from the low-dimensional coordinates. As the graph informs as to which points
should be neighbors, we measure for each set of neighbors the radius of the ball
needed to include one in the other’s neighborhood graph. To compare across
methods, we scale all distances by their median

Bmedian = median
(xi,xj)∈G

(‖xi − xj‖), (1)

where G denotes the graph associated with the generating group. We rely on the
median due to its high breakdown point [15]. We, thus, measure

Bij =
‖xi − xj‖
Bmedian

. (2)

We can then threshold this measure such that, we say that a symmetry has
been broken if Bij > Bt for any pair or equivalently, max(Bij) > Bt. We define
Bmax := max(Bij). Note that this measure does not distinguish between one or
multiple instances of broken symmetry.

Persistent Homology. The measure above is linked with persistent homology [12].
This is a key mathematical tool in topological data analysis that has been shown
to be robust to perturbations of the input data [6]. Following Carlsson [5], we
place balls on each data point with radius ε and points falling within this ball
defines a neighborhood. This defines a topological space Ωε. By varying ε, we can
create multiple topological spaces and let the Betti numbers bi(Ωε) quantify the
structure of the topological space. The number b0 represents the approximate
number of connected components and b1 the number of circles or holes.

In persistent homology, we study a spectrum of neighborhood sizes. For a
known generating group, we would know its Betti numbers, and may ask which
(if any) ε yield the given Betti numbers in the visualization point set. This allows
us to consider multiple thresholds of our measure (2) of symmetry.

438 C. W. Feldager et al.

Barcodes. A broken symmetry is defined by the maximum of the normalized
pairwise distances Bmax being greater than a threshold Bt. This we can repre-
sent by a bar ranging from zero to Bmax that visualizes the birth and death of
symmetry. Stacking such bars (as in Fig. 2) yields a barcode. This lets us inspect
the sensitivity of a chosen threshold for multiple models visually as each bar
corresponds to a model [10]. The ‘sharper’ the transition from short bars to long
bars is, the more robust the conclusion is. The barcode in Fig. 2 suggests that a
choice of Bt = 3 is robust as any value in Bt ∈ [2,8] yields the same conclusions.
For quantitative comparisons across experiments we consistently use Bt = 3
though this may be suboptimal for some models.

Fig. 3. (a) Bmax vs. the perplexity for t-SNE. Each blue line represents the mean over
30 repeats for an object in COIL-20. The dotted, red line marks Bt = 3 and the black
lines represent mean and standard error over all objects. (b) Histogram of models. (c)
Barcode for the mean (black lines in (a) of objects. (d) Latent space in model with
perplexities 50 (Bmax is small). (e) Latent space in model with perplexities 5 (Bmax is
large).

3 Experiments

We consider four methods representing the spectrum of visualization techniques:
t-SNE matches an exponential distribution of pairwise distances in data

space with a t-distribution of pairwise distances in the latent space [27]. The
visualization is controlled by a perplexity parameter that quantifies the effective
number of neighbors used in the exponential distribution over pairwise distances.
This is a randomized model as implemented in scikit learn [22].

TriMap [2] is a recent method that relies on an elaborate triplet weighting
scheme such that point triplets are weighted with their pairwise distance before
obtaining the final triplet weight ωijk = ζγ (δ + ω̃ijk/ωmax). Here ζγ(u) = log(1 +
γu), where the the locality parameter γ is said to place focus on either local or
global structure. The method is randomized and experiments were performed
using software provided by Amid and Warmuth [2] where the default value is
γ = 500.

Spontaneous Symmetry Breaking in Data Visualization 439

Kernel principle component analysis (kPCA) [25] extends classic PCA
through the kernel trick. We use the squared exponential kernel k(xi, xj) =
exp (−||xi − xj ||2/λ), which is controlled by the scale parameter λ. The model is
deterministic and experiments were performed using scikit learn [22].

Gaussian process latent variable model (GPLVM) [17] visualizes data
using a latent representation with a Gaussian process prior with covariance func-
tion kij = θ exp

(−1/2‖xi − xj‖2
)
+σ2δij , where xi, xj denote latent points. The

model is deterministic for a given initial condition of the hyperparameters θ and
σ2, θ0 and σ2

0 . Experiments were performed using Pyro [4].
In all experiments, we vary method parameters over a large range, and

randomized methods are repeated multiple times and reported numbers are aver-
ages. Experimentally, we focus on the most elementary symmetry of interest: the
rotation group. We consider images from (1) COIL-20 where objects are rotated
360◦ in 72 steps and (2) MNIST where we synthetically rotate images with
up to 360◦ and 5% Gaussian noise is added to the pixel intensities. We perform
a detailed analysis of each model’s behavior, and quantitatively compare and
summarize in Sect. 3.5.

3.1 t-Distributed Stochastic Neighborhood Embedding (t-SNE)

To investigate possible symmetry breaking in t-SNE, we fit 30 t-SNE models
to images of each COIL-20 object over a large span of perplexity parameters.
We measure Bmax = max Bij and report averages over the 30 models (the blue
lines in Fig. 3a).1 As perplexity increase, Bmax becomes smaller. This is to be
expected as perplexity controls the smoothness of the t-SNE model. In 73% of all
models, we observe broken symmetry (Bmax > 3). The barcodes reveal that this
percentage is not particular sensitive to the choice of threshold (the red dotted
line correspond to Bt = 3). On MNIST, we observe a similar pattern (omitted
due to space constraints) with 96.5% of all models having a broken symmetry.

In our experience, t-SNE tends to amplify small gaps in the data, leading
to broken symmetry. This is linked to the ‘spurious clustering’ effect observed
by Amid and Warmuth [1]. We generally observe that random initialization of
t-SNE seems to better preserve symmetries than initialization by other methods
such as PCA or Isomap. This former approach requires multiple restarts and
choosing the embedding with lowest KL divergence.

3.2 TriMap

Amid and Warmuth [2] developed TriMap motivated by the spurious clustering
effect in t-SNE, and we hypothesized that TriMap would lead to less symmetry
breaking. However, the evidence in Fig. 4 does not support that conclusion. As
before, each blue line shows the average Bmax for 30 randomly initialized models
for each object in COIL-20 over a wide span of the γ parameter. Here 77% of all
models are estimated to show broken symmetry, which is roughly on par with

1 Bmax axis is cut off intentionally as the value for some object diverge.

440 C. W. Feldager et al.

t-SNE. The barcode indicates that the choice of threshold is robust, though we
find some inter-object variability (omitted). Our findings for MNIST are similar
with 93.32% estimated symmetry breaking.

3.3 Kernel Principal Component Analysis (kPCA)

In kPCA, we examine symmetries as a function of the kernel scale parameter
λ. The barcode (Fig. 5) shows the robustness of the conclusion of preserved
symmetry for the mean across COIL-20 objects. For large values of the scale
parameter, the conclusion is robust as Bt can vary, but for smaller values, our
conclusions become sensitive to the specific choice of Bt.

Fig. 4. (a) Bmax vs. the locality parameter γ for TriMap. Each blue line represents
the mean over 30 repeats for an object in COIL-20. The dotted, red line marks Bt = 3
and the black lines represent mean and standard error over all objects. (b) Histogram
of models. (c) Barcode for the mean (black lines in (a) of objects. (d) Latent space in
model with γ = 1000. (e) Latent space in model with γ = 0.

In the non-linear regime (small values of λ), Bmedian (1) is driven to small
values (Fig. 5d) and Bmax diverges. In the linear regime (large values of λ), the
model approaches PCA which explains the flattening (Fig. 5e).

In 42% of models, we observe broken symmetry and note that five objects
in COIL-20 give rise to broken symmetries: Object 2 (wooden toy), object 16
(round bottle), object 16 (ceramic vase), object 18 (tea cup) and object 20 (round
container). Of these, four are rotationally symmetric in the plane of rotation, sup-
porting our hypothesis that additional symmetry can induce symmetry breaking.

On MNIST data, the rate of broken symmetries was 7.23%. One possible
explanation for this reduction, is that if PCA on the MNIST data does not
induce symmetry breaking then fewer models will break the symmetry because
kPCA converges to PCA in the linear regime.

3.4 Gaussian Process Latent Variable Model (GPLVM)

We investigated the GPLVM design space by varying the initial values of the
kernel hyperparameters, θ0 and σ2

0 all with identical initialization of the latent

Spontaneous Symmetry Breaking in Data Visualization 441

space (isomap [26]). In Fig. 6a, θ0 is fixed and σ2
0 is varying and in Fig. 6b, σ2

0

is fixed while θ0 varies. An interesting thing to notice is while we mostly get
consistent results, sometimes a small change in the initial condition induces a
large change in the Bmax leading to somewhat complex behavior.

The loss is often an indicator of broken symmetry as we saw with the KL
divergence for t-SNE. If the parameter space contains symmetry-preserving mod-
els then these generally have lower loss than models that break symmetry.

Fig. 5. (a) Bmax vs. the scale parameter λ for kPCA. Each blue line represents an
object in COIL-20. The dotted, red line marks Bt = 3 and the black lines represent
mean and standard error over all objects. (b) Histogram of models. (c) Barcode for the
mean of objects (black lines in (a)). (d) Latent space of model with log λ = 3 (Bmax is
large). (e) Latent space of model with log λ = 6 (Bmax is small).

The hyperparameters θ and σ2 converge to the final values independent of the
model preserving the symmetry. This means that the difference in loss between
symmetry-preserving and symmetry-breaking models must be accounted for by
the latent variables. It also means that it is not possible to detect a broken
symmetry from the optimized hyperparameters but rather, one have to consider
the latent variables to detect a broken symmetry.

Like in kPCA, we find broken symmetries in the most symmetric objects.
In the GPLVM, this is linked to the choice of initialization of the latent space.
Overall, we found broken symmetries in 65.48% of the models and similarly in
MNIST (46.32%).

3.5 Summary of Experiments

We found broken symmetry in all models with a high prevalence as summa-
rized in Fig. 7. Note that we did not tune the parameters but varied important
parameters across large ranges and used default parameters for others.

All objects in COIL-20 are indeed symmetric in data space according to
our estimator. One may expect that high-level features may be less susceptible
to broken symmetry than raw data. To investigate we extracted features using
ResNet18 [13] and found no broken symmetries in the extracted features and no

442 C. W. Feldager et al.

consistent, significant difference when looking at symmetry in the models trained
on extracted features. We noticed that the most symmetric objects generally
experienced more broken symmetry across models.

4 Related Works

Data visualization is important at many steps in the machine learning process.
Visualization is used exploratively to form hypotheses [3], for understanding
latent representations in supervised learning [8] and generative models [9].

Fig. 6. (a) Bmax vs. the initial value of the noise variance σ2
0 for GPLVM. (b) Bmax

vs. the initial value of the kernel variance θ0 for GPLVM. Each blue line represents an
object in COIL-20. The dotted, red line marks Bt = 3 and the black lines represent
mean and standard error over all objects. (a) Parameter space in σ2

0 with fixed θ0. (b)
Parameter space in θ0 with fixed σ2

0 . (c) Histogram of models in a. (d) Histogram of
models in b. (e) Barcode for the mean of objects (black lines in (a) and (b)). (f) Latent
space of model with θ0 = 1 and σ2

0 = 0.2. (g) Latent space of model with θ0 = 0.2 and
σ2
0 = 0.2.

The desiderata of visualization are discussed by Kaski et al. [16] and Venna
et al. [28], who argue that visualizations should be trustworthy, meaning that
samples appearing similar (e.g., neighbors) in the visualization should be similar
in a physical sense. Also, they point out that data points close in a physical sense
should be close in visualization. They noted the similarity with the concepts of
precision and recall in information retrieval. Our concept of broken symmetry is
related to the “recall” dimension, i.e., data that are physical neighbors, should
also be visualized as such. The precision and recall criteria together measure the
faithfulness of the visualization, see also Najim [19] for a related quantitative
measure of the preservation of neighborhood relations in visualizations.

The immensely popular visualization scheme t-SNE [27] is constructed with
the aim of representing both global and local structure. The original motivation
for t-SNE included a critique of its predecessor SNE [14] for creating crowded
visualizations, i.e., visualizations that did not show a clear separation of known
clusters. Crowding is closely related to the trustworthiness concept of [16,28].

Spontaneous Symmetry Breaking in Data Visualization 443

By using a long-tailed distribution of the representations, t-SNE aims to fix
the crowding problem. However, this emphasis of local dissimilarity comes at a
price as noted in [18], simple manifolds like lines and sheets are broken apart
in clusters. These clustering problems are examples of broken symmetry in our
definition. Motivated by the problem of over-fitting cluster structure Amid and
Warmuth [2] proposed TriMap. We observed, however, that TriMap cannot heal
the problem of broken symmetry.

For detecting symmetries, we used topological data analysis [5], specifically
persistent homology. Using this, we examined all values of thresholds simultane-
ously rather than study just a single threshold. Conveniently, Cohen-Steiner et al.
[6] showed that the persistent homology tool is robust under pertubations of the
data. [23] used persistent homology in its classical form whereas we have adapted
it slightly as we knew which Betti numbers were required to preserve the symme-
try. Our work exploits the coordinate and deformation invariances in topology
and these properties aid in detecting symmetries as various deformations of the
“circle” graph.

Fig. 7. Each panel shows the rate of broken symmetries in percent at Bt = 3 with
the mean and standard error plotted displayed on the axis for t-SNE, TriMap, kPCA,
and GPLVM. Top, left pane) Summary of results on COIL-20. Top, right pane) Sum-
mary of results on MNIST. Bottom, left pane) Summary of results on features extract
from COIL-20 using ResNet-18. Bottom, right pane) Summary of results on features
extracted from MNIST using ResNet-18.

5 Discussion

We have investigated to which extend common visualization techniques are able
to preserve simple symmetries, and have largely found the answer to be negative.

5.1 Empirical Findings

We have investigated four popular algorithms that also represent different
branches of the literature, namely t-SNE [27], TriMap [2], kPCA [25] and the

444 C. W. Feldager et al.

GPLVM [17]. We have performed a systematic study of the influence of param-
eter choices in these methods by training more than 85.000 models over a wide
parameter span. To quantitatively summarize these models’ performance, we
have introduced a simple scheme for detecting whether known symmetries are
broken. Tools from persistent homology verify that this scheme is generally reli-
able, with some deviations for kPCA (see below).

t-SNE was found to be particularly sensitive to local optima and generally we
found a need for multiple restarts. Fortunately, we generally observe that smaller
KL reported values imply less symmetry breaking. Even with such mechanisms
in place, we still see an overwhelming number of broken symmetries. Symmetry
breaking can, to some extend, be reduced by increasing the perplexity parameter,
but this also limits the flexibility and expressivity of the model.

TriMap, which was developed in part to alleviate problems with t-SNE, over-
all had comparable behavior to t-SNE with regards to broken symmetry. The γ
parameter, that controls the trade-off between capturing local or global struc-
ture, was found to have practically no effect with regards to symmetry breaking.
We did not expect this, but have manually verified that broken symmetry is
prevalent across large spans of γ.

kPCA was in a sense the most successful method according to our estimator.
Kernel PCA, however, has a tendency to collapse points on to each other when
mapping only two latent dimensions in the non-linear regime leading to strong
symmetry breaking. On the other hand, kPCA reduces to conventional PCA in
the limit of large kernel length scales, showing less symmetry breaking.

GPLVM was generally found to be sensitive to choice of initial parameters.
While we have found it helpful to consider multiple restarts and choosing the
model with highest likelihood, broken symmetries remain rather prevalent.

High-Level Features. One could suspect that symmetries are broken more
commonly when working with raw data than with high-level abstract features,
e.g., as those extracted by deep neural networks. We found no broken symmetries
directly in the high-level features though when applying visualization algorithms,
the prevalence was indeed high.

Summary. Our general finding is that symmetries are broken consistently across
the studied methods. It is generally possible to manually tweak parameters to
enforce that a known symmetry remains intact, but such strategies are not possi-
ble when the symmetry is unknown,2 e.g. for knowledge discovery. We also note
that default parameters of publicly available implementations of the studied
methods generally perform poorly with regards to broken symmetry.

5.2 Faithful Representations

At the heart of our study is the quest for faithful representations, i.e. represen-
tations that reflect the underlying physics of the data generating process. These
have wider applicability than just visualization as studied here. For instance, a

2 It should be emphasized that while we consider known symmetries, we only do so in
order to make quantitative statements.

Spontaneous Symmetry Breaking in Data Visualization 445

representation that is not faithful will most likely not result in a fair prediction.
A broken symmetry can be viewed as model that violates the Lipschitz continu-
ity condition. Individual fairness [7] can then no longer be ensured as similar
individuals should be treated similarly.

Similar statements can be made for interpretable models, where ‘almost dis-
continuous’ models are generally difficult to interpret. From a purely predictive
point of view, it is strictly not required that representations are faithful, though
there is some evidence in that direction [24].

Finally, we note that visualization may be particularly sensitive to symmetry
breaking as we tend to embed onto R

2. While it is well-known that only few
graphs (namely the planar ones) can be embedded in R

2, then all graphs can
be embedded in R

3 [21]. This suggests that symmetries are likely to be broken
when data is forced onto a two-dimensional view (as is often the case in visu-
alization), and indeed our experiments indicate that symmetry breaking is less
frequent when embedding into three or more dimensions (omitted due to space
constraints).

5.3 Concluding Remarks

We have here pointed to a previously unnoticed problem in visualizations, namely
broken symmetries. Through a systematic study of more than 85.000 trained
models, we have found an alarming rate at which even the most simple symme-
tries are spontaneously broken during data visualizations. This suggest a need
for both new methods that can reliably visualize high-dimensional data, but also
for more systematic and quantitative evaluations of visualization techniques.

We have purposefully not investigated more complex symmetries as these
raise complications that are beyond existing techniques; for instance, the two-
dimensional torus is mathematically impossible to embed in R

2 without breaking
the underlying symmetry. This calls for visualization techniques that embed onto
curved surfaces in order to preserve symmetries, just as we use a sphere when
we visualize global geoinformatics patterns.

Acknowledgements. This work received funding from the European Research Coun-
cil (ERC) under the European Unions Horizon 2020 research and innovation pro-
gramme (757360). SH were supported in part by a research grant (15334) from VILLUM
FONDEN.

References

1. Amid, E., Warmuth, M.K.: A more globally accurate dimensionality reduction
method using triplets. arXiv:1803.00854, March 2018

2. Amid, E., Warmuth, M.K.: TriMap: large-scale dimensionality reduction using
triplets. arXiv:1910.00204, October 2019

3. Arora, S., Hu, W., Kothari, P.K.: An analysis of the t-SNE algorithm for data
visualization. arXiv preprint arXiv:1803.01768 (2018)

4. Bingham, E., et al.: Pyro: deep universal probabilistic programming. J. Mach.
Learn. Res. 20(1), 973–978 (2019)

http://arxiv.org/abs/1803.00854
http://arxiv.org/abs/1910.00204
http://arxiv.org/abs/1803.01768

446 C. W. Feldager et al.

5. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
6. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.

Discrete Comput. Geom. 37(1), 103–120 (2006). https://doi.org/10.1007/s00454-
006-1276-5

7. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. arXiv:1104.3913, November 2011

8. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542(7639), 115–118 (2017)

9. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.:
Gan-based synthetic medical image augmentation for increased CNN performance
in liver lesion classification. Neurocomputing 321, 321–331 (2018)

10. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1),
61–75 (2008)

11. Hall, B.C.: Lie Groups, Lie Algebras, and Representations. GTM, vol. 222.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13467-3

12. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2005)
13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

arXiv:1512.03385, December 2015
14. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: Advances in Neural

Information Processing Systems, pp. 857–864 (2003)
15. Huber, P.J.: Robust Statistics, vol. 523. Wiley, New York (2004)
16. Kaski, S., et al.: Trustworthiness and metrics in visualizing similarity of gene expres-

sion. BMC Bioinform. 4, 48 (2003)
17. Lawrence, N.D.: Probabilistic non-linear principal component analysis with Gaus-

sian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)
18. Linderman, G.C., Steinerberger, S.: Clustering with t-SNE, provably.

arXiv:1706.02582, June 2017
19. Najim, S.A.: Information visualization by dimensionality reduction: a review. J.

Adv. Comput. Sci. Technol. 3(2), 101 (2014)
20. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20).

Technical Report CUCS-006-96, p. 6 (1996)
21. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Elsevier, Ams-

terdam (1988)
22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.

12, 2825–2830 (2011)
23. Pokorny, F.T., Kjellström, H., Kragic, D., Ek, C.: Persistent homology for learning

densities with bounded support. In: Pereira, F., Burges, C.J.C., Bottou, L., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25,
pp. 1817–1825. Curran Associates, Inc. (2012)

24. Rieger, L., Singh, C., Murdoch, W.J., Yu, B.: Interpretations are useful: penal-
izing explanations to align neural networks with prior knowledge. arXiv preprint
arXiv:1909.13584 (2019)

25. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a Kernel
eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

26. Tenenbaum, J.B.: A global geometric framework for nonlinear dimensionality
reduction. Science 290(5500), 2319–2323 (2000)

27. van der Maaten, L., Hinton, G.: Visualizing Data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

28. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval per-
spective to nonlinear dimensionality reduction for data visualization. J. Mach.
Learn. Res. 11(13), 451–490 (2010)

https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1007/s00454-006-1276-5
http://arxiv.org/abs/1104.3913
https://doi.org/10.1007/978-3-319-13467-3
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1706.02582
http://arxiv.org/abs/1909.13584

Deep NLP Explainer: Using Prediction
Slope to Explain NLP Models

Reza Marzban(B) and Christopher Crick

Computer Science Department, Oklahoma State University, Stillwater, OK, USA
reza.marzban@okstate.edu

Abstract. Natural Language Processing models have been increasingly
used for many tasks, from sentiment analysis to text summarization.
Most of these models are reaching the performance of human experts.
Unfortunately, not only are these models not intuitive to the end-user,
but they are also not even interpretable to highly-skilled Machine Learn-
ing scientists. We need explainable artificial intelligence to be able to
trust models in high-stakes scenarios, and also to develop insights to
optimize them by removing existing limitations and biases. In this paper,
we devise a new tool called “Prediction Slope” that can be applied to
any NLP model, extracting the importance rate of the component words
and thereby helping to explain the model. It uses the average effect each
word has on the final prediction slope as the word importance rate. We
compared our technique with preceding approaches and observed that
although they perform similarly, the earlier approaches do not general-
ize as well. Our method is independent of the model’s architecture and
details.

Keywords: Natural language processing · Deep learning · Artificial
neural networks · Explainable artificial intelligence · Transformers

1 Introduction

The rapid growth in the amount of data available has provided both oppor-
tunities and challenges. It has helped us to build and optimize new models
like different architectures of deep learning models. On the other hand, much
of the available data cannot be processed by traditional statistical models and
machine learning algorithms. These algorithms are desirable when we have small
to medium-sized formatted data in tables inserted by a domain expert, but they
are not able to handle modern tasks that require analyzing unstructured data
(e.g. texts, movies, pictures). Neural networks are not a new technology – percep-
trons were invented in 1958 – but they were not terribly successful until recently,
due to the small amount of available data and weak computing power. However,
both of these conditions have changed recently, and deep artificial neural net-
works have become the superhero of each and every Artificial Intelligence (AI)
task from Natural Language Processing (NLP) to voice recognition and machine
vision.
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 447–458, 2021.
https://doi.org/10.1007/978-3-030-86340-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_36&domain=pdf
http://orcid.org/0000-0003-2762-1432
http://orcid.org/0000-0002-1635-823X
https://doi.org/10.1007/978-3-030-86340-1_36

448 R. Marzban and C. Crick

Although we have seen a huge jump in deep learning models’ performance,
they are not without drawbacks. The most important is that they are not as
intuitive as basic machine learning models like decision trees. These models are
more like black boxes, in that we throw data at them, use the output, and
hope for the best, but we do not understand how or why. If the user does not
understand the logic behind a model’s decision, it will cause distrust, especially in
high-stakes situations like autonomous vehicles. As a result, recently researchers
have made large efforts toward explainable artificial intelligence. Not only should
this boost the users’ trust, but interpretability also helps developers, ML experts,
and data scientists learn the defects of their models, detect bias, and tune them
for further improvement.

In the relevant literature, many papers have contributed toward making deep
learning models interpretable and intuitive, although they have mostly concen-
trated on image processing problems, as 2D pictures are much easier to visualize.
They use a broad range of techniques like segmentation or creating heatmaps
and saliency maps to highlight the pixels that are critical to a specific final
model decision. Such approaches help users to understand the logic behind each
decision, as humans can digest 2-dimensional images and find patterns in them.
On the other hand, there is a huge gap in the literature on explainable AI in
other contexts like NLP. Natural Language Processing is the science of enabling
machines to communicate (understand and generate) in human languages. Tex-
tual data that is consisted of sentences, words, and letters are very hard to
visualize, especially in a 2d space where humans can find patterns, even though
accessible visualization is a key component of explainable AI.

Deep learning models come in various flavors with different architectures.
Convolutional neural networks (CNNs) were originally designed for image clas-
sification but can be applied to other types of data like texts. Recurrent neural
networks (RNNs) are assumed to be a natural choice for time-series data; Long
Short Term Memory (LSTMs) and Gated Recurrent Units (GRUs) are common
types of RNN. LSTMs are believed to be one of the most effective options in
NLP tasks, as they are constructed with time series in mind. Each word or token
can be looked at as a time step in a sentence. CNNs (1-dimensional versions) can
also be used on textual data. Their performance is comparable with LSTM on
well-known textual benchmarks for various tasks like sentiment analysis. They
are also much faster than LSTMs.

Our contribution in this paper creates a brand new explainable AI technique
that can be applied to any type of NLP model. Our technique uses a model’s
inner logic to come up with an importance rate for each and every unique word
in the corpus. This has many benefits: we can take a look at the model’s most
important words to understand its overall general logic. It also can be used
to inject insights into future models for further performance improvements. We
observed that using our technique, models that were trained on just the 5% most
important words perform equally as well as baseline models that have access to
100% of data. However, because only a small fraction of words are used, the
model’s speed is much greater. In order to create an importance rate for all

Deep NLP Explainer: Using Prediction Slope to Explain NLP Models 449

words, we use and compare the mean significance of the effect of each unique
word to the overall sentence prediction. In other words, we compare the change
in the prediction of all sentences that contain a specific word with and without
that word and use the average prediction change throughout all sentences in the
corpus to create an importance rate.

Previously there has been some related work on finding and targeting the
most important words to a model, but they mainly suffer from a couple of
disadvantages. They provide the most important words locally, in a single output
to a specific decision, which is useful but does not help in understanding the logic
of the model in general. In addition, the techniques that are used for extracting
the most important words are highly dependent on the architecture of the model
and are thus limited to specific types of NLP models (e.g. CNNs). However,
our technique can be applied to all types of NLP models and provides general
explainability for the overall model.

2 Related Work

If we want users to understand and trust deep learning models we should provide
justifications along with predictions. Explainable artificial intelligence (XAI) [10]
attempts to address this problem, as well as helping data scientists to find the
models’ weaknesses, biases, and blind spots and thereby improve them.

XAI enables models to explain themselves to satisfy non-technical users [9],
and helps developers to justify and improve them. XAI approaches can have
various flavors [1]; they can provide local explanations of each and every predic-
tion or globally explain the logic of the model as a whole. Layer-wise relevance
propagation (LRP) [3,21] matches each prediction in the model to the input
features that have a significant effect on the prediction. LIME [26] is a technique
for providing local interpretable model-agnostic explanations. These tools and
techniques help us to trust deep learning models.

Almost all deep learning researchers working toward XAI have concentrated
on image processing and machine vision, as humans find it easy to understand
and find patterns in visual data. This research has created heat maps, saliency
maps [27] and attention networks [29]. However, other artificial intelligence fields,
such as NLP, have seen far fewer research efforts. NLP has made many significant
improvements in model performance on various types of tasks and data in recent
years [7], but very few of them concentrate on creating self-explanatory models.

Arras [2] identified the words that support or contradict a specific classi-
fication using LRP, highlighting them to create a visual aid for the user to
understand the reasoning behind each model’s decisions and predictions. This
can help identify when a model arrives at a correct prediction through incorrect
logic or bias, and provide clues toward fixing such errors. This technique is local,
which helps to confirm single model predictions, but in order to improve and
optimize models, we need tools for understanding their global logic.

RNNs and LSTMs [11] are efficient architectures for NLP tasks and textual
data; however, 1-dimensional CNNs are also used for common NLP tasks like

450 R. Marzban and C. Crick

sentence classification [13] and modeling [12]. Le [14] demonstrates how CNN
depth affects performance in sentiment analysis. Yin [32] compares RNN and
CNN performance on various NLP tasks. Wood [30] proves that CNNs might
outperform RNNs on textual data, in addition to being faster.

In 2017, a new generation of NLP models appeared, starting with Vaswani’s
first Transformer attention-based architecture [28]. Instead of remembering an
entire text, it assigns an attention weight to each token, which allows it to pro-
cess much longer texts. The attention technique enabled the creation of much
more advanced transformer-based models like BERT [8], RoBERTa [16], and
GPT-3 [5]. All of these models have tried to overcome their predecessor mod-
els’ limitations. Some researchers have changed the inner architecture of these
models and others have created auto-encoders to overcome the sequence length
limitation of these models [19], adding a custom encoder layer to compress the
input so that models like LSTM and BERT can accept and process longer texts.

Many researchers have tried to interpret and visualize CNN models, often on
famous visual object recognition databases and benchmarks like ImageNet [34].
There are four basic techniques to visualize models in image processing tasks:
activation maximization, network inversion, deconvolutional neural networks,
and network dissection [23]. Yosinski [33] has devised tools to visualize features
of a CNN model at each layer in image space. Model explanation, visualization,
and interpretation for other types of data, such as text, are nowhere near as well-
developed, but there have been a few attempts. Choi [6] attempted to explain a
CNN model that classifies genres of music, and showed that deeper layers capture
textures. Xu [31] used attention-based models to describe the contents of images
in natural language, showing saliency relationships between image contents and
word generation.

One of the hardest challenges in NLP is visualizing data after tokenizing
textual data with available tools like NLTK [4]. Each token or word is represented
by an embedding [17,20,25]. An embedding is a vector of numbers that represent
a word’s semantic relationship to other words. Pre-trained embeddings like GloVe
[22] are available that are trained on a huge corpus. However, they are not
understandable by humans, and it is very challenging to explain models that use
them. Li [15] created methods to illustrate the saliency of word embeddings and
their contribution to the overall model’s comprehension. Rajwadi [24] trained
a 1-dimensional CNN for a sentiment analysis task and used a deconvolution
method to explain text classification. They estimate the importance of each
word to the overall decision by masking it and checking its effect on the final
prediction score.

Activation Maximization (AM) is a technique that can be applied on CNN
models trained on textual data; some research has focused on creating an impor-
tance rate for each unique word in a corpus using AM on CNNs by analyzing
the convolution filter weights [18]. However, instead of creating a local explana-
tion for each prediction and decision, they used this technique to describe the
whole model’s logic and tried to explain it in a layer-wise manner by study-
ing the filters of the trained model. They used the IMDb dataset [17] as their

Deep NLP Explainer: Using Prediction Slope to Explain NLP Models 451

benchmark. It is very useful as their result is not dependent on every prediction,
but provides a general justification for overall model logic. However, it is limited
to CNN models, while we need a technique that is independent of the model
architecture.

In this paper, we created a brand new tool to generate a word importance
rate for an entire model, for all unique words in a corpus. This is similar to
previous tools, except that this new technique is independent of the models’
inner details and architecture. In other words, it can be applied to any type of
NLP model.

3 Technical Description

3.1 Dataset Introduction and Preprocessing

In this research, we used two benchmark datasets with different tasks. The first
is the IMDb review dataset [17],1 which contains movie reviews and a binary
target value (no neutral reviews are included). The task of this benchmark is
sentiment analysis, one of the basic but crucial NLP tasks. The second dataset
is the Stack Overflow dataset2, in which each question is tagged with one of 20
possible tags. In other words, it is a multinomial classification. Obviously, the
first task is easier for models as it contains only two classes.

Both of these benchmark datasets were preprocessed by removing all stop-
words, special characters, numbers, HTML tags, and hapax legomena (words
that appear only once in an entire corpus). All characters were converted to
lower case. We used NLTK [4] to tokenize the reviews. Word2Vec [25] was used
to generate 100-dimensional embeddings for each word. In the final results, our
IMDb dataset had around 43,000 documents and 23,000 unique words while the
Stack Overflow dataset had around 40,000 documents and 28,000 unique words.
Our final step was splitting them into training and test sets.

3.2 Overview of the Latest Importance Rate (Activation
Maximization)

Most of the work on XAI in NLP fields concentrates on providing local inter-
pretability or justifying each and every prediction for all inputs. In contrast, we
need a global explainability technique or tool to understand the overall logic of
a model. Recently, some research has tried to handle that issue by identifying
the most important words to the whole model [18].

They used a 1-d CNN model and activation maximization to create an impor-
tance rate with Eq. 1. They used this technique to inject insights into newer
models. They proved that new models that use only a tiny fraction of the most

1 https://ai.stanford.edu/∼amaas/data/sentiment/.
2 https://console.cloud.google.com/marketplace/product/stack-exchange/stack-

overflow.

https://ai.stanford.edu/~amaas/data/sentiment/
https://console.cloud.google.com/marketplace/product/stack-exchange/stack-overflow
https://console.cloud.google.com/marketplace/product/stack-exchange/stack-overflow

452 R. Marzban and C. Crick

important words (extracted with the help of their equation) result in no signifi-
cant accuracy change and dramatic increase in speed.

importance =

⎧
⎨

⎩

F∑

f=1

S∑

s=1

I∑

i=1

|wi ∗ Filterf∗s∗i| |w ∈ Corpus, F ilter

⎫
⎬

⎭
(1)

In Eq. 1, F is the number of filters in the CNN layer, S is the size of the
filters, and I is the embedding length. w is a word embedding vector with a
length of I. Corpus is a matrix of the entire word embedding of size m ∗ I, in
which m is the count of unique words in our corpus dictionary. Filter is a 3-D
tensor of size F ∗ S ∗ I. This equation calculates the sum of activations of all
filters caused by a single word from the Corpus.

While this technique (which will be referred to as “activation maximiza-
tion” in this paper) is innovative, providing as it does a global interpretability
rather than a local justification, it has one main limitation. The equation is highly
dependent on CNN filters, and it can only be used on CNN models trained on
textual data. We need similar tools that can be applied to any type of model
inner architecture. In this paper, our contribution is to create a brand new tech-
nique for choosing the most important words, that is independent of the NLP
model architecture.

Fig. 1. Effect of each word in an IMDb document on the binary prediction of 3 different
models (CNN, LSTM, and Transformer). Predictions above 50% represent positive
sentiment and below 50% represent negative sentiment.

3.3 Introduction of Prediction Slope

In order to create an importance rate that is independent of the model’s inner
architecture and details, we created the concept of the prediction slope, which
will be defined and clarified in this section. In all machine learning models,
and specifically in Artificial Neural Networks (ANNs), there is a final prediction
(a.k.a. output layer), where the model’s decisions are found. In NLP our inputs

Deep NLP Explainer: Using Prediction Slope to Explain NLP Models 453

consist of words or tokens. To understand the significance of each of these words
on the final prediction, we can feed them one by one into our model and observe
the effect of each word on the final prediction.

In Fig. 1, an IMDb document with negative sentiment is randomly chosen to
visualize the prediction slope in a binary classification problem. In a multiclass
task like the Stack Overflow dataset, we would have 20 predictions due to the
fact that there are 20 classes, and the highest probability output is taken as the
model’s decision. We observe this maximum probability class and the effect of
adding new words.

Si = F (x0, x1, x2, ..., xi−1, xi) − F (x0, x1, x2, ..., xi−1) (2)

In Eq. 2, Si is the prediction slope of the ith word in a document, and F is
simply the function defined by the model, which receives a sentence as input and
produces a prediction. xn is the nthword in a document.

3.4 Extracting Word Importance Rate from the Prediction Slope

The prediction slope technique is not entirely new; it has been used in the lit-
erature to map a prediction to the most important words in a single input, and
is sometimes also known as the temporal score. However, until now it has not
been considered as a tool to perform a similar technique to an entire model, and
this is where our contribution comes into play.

In each document of our corpus, we can monitor the local significance and
effect of each word on the final prediction slope, but we needed a way to find
the global importance rate of each unique word to the whole model. In order
to do so, we use Eq. 3, in which Si is extracted from Eq. 2, Dj is all documents
in our corpus that contain the jth unique word, and |Dj | is the count of those
documents. Notice that the jth unique word in our corpus is the ith word that
appears in a document. After applying this equation, we will a global importance
rate for all unique words applicable to the whole model rather than just a single
prediction. This importance rate is the mean value of the prediction slope of a
particular word in all sentences containing it.

importancej =

∑
Dj

Si

|Dj | (3)

3.5 Comparing Importance Rates

The prediction slope importance rate technique can be applied to any type of
model, but we chose to use it on a basic Transformer model, as it is one of the
hardest models to interpret and understand. Now that we have two importance
rates at hand, one generated by activation maximization and the other created
by prediction slope, we performed experiments to compare them. As a result, we
created several brand new models that were trained on a subset of the unique
words which were selected by one of our two importance rates, and we examined
their respective performances.

454 R. Marzban and C. Crick

4 Experimental Results

In order to test our hypothesis on both of our datasets, and compare the perfor-
mance of each of the two importance rates extracted, we designed new models
that were just trained on the most important words based on three different
algorithms: Activation Maximization, Prediction Slope, Random. In the
random technique, words are chosen randomly as a naive baseline for comparison
with our two other models. We also compare them against the Base Model that
uses all 100% of the words. The final model is called Hybrid, and it averages
the importance rates for each word generated by each of the two techniques.

We created a threshold that identified the percentage of the most important
words that our models would train on. We tested different threshold values: 10%,
5%, 2%, 1%, 0.5%.

4.1 Comparing Importance Rates on the IMDb Dataset

In our IMDb dataset, as it is a sentiment analysis problem with a binary target
value, the prediction accuracy starts from 50% and the baseline accuracy with
access to all words was 84%. Results are shown in Fig. 2.

Fig. 2. Comparison of different importance rate techniques on IMDb dataset.

Both models are interchangeable, with no significant difference in their per-
formance. In addition, both perform superbly while using just 2% of the data.
Accuracies are very similar to the base model while they are much faster. The
random model performs poorly as expected.

Deep NLP Explainer: Using Prediction Slope to Explain NLP Models 455

4.2 Comparing Importance Rates on the Stack Overflow Dataset

The Stack Overflow dataset presents a multinomial task with 20 possible classes
or tags. Accuracy, therefore, starts at 5%, and the accuracy of the base model
with access to all words is 74%.

Fig. 3. Comparison of different importance rate techniques on Stack Overflow dataset.

Figure 3 shows that both models are still very similar, although the prediction
slope technique has lower performance at thresholds smaller than 2%. The acti-
vation maximization model, however, has very good performance – even slightly
better than the baseline model – even when training on only 0.5% of words.
The model focuses on critical keywords, and it turns out that in this task, they
are extremely predictive. Both models still perform well overall, even when they
have access to a small subset of the data. Again, they are much faster than the
baseline model. Also as in the previous experiment, the random model performs
weakly as expected.

4.3 Analysis of the Result

It was observed that both techniques have quite similar performance (They per-
formed equally in the IMDb dataset, Activation Maximization was slightly better
in the Stack Overflow dataset), and both are much faster than the base model
as they are just using a small subset of the input. However, the Activation Max-
imization can just be applied on CNN models and is very dependent on the

456 R. Marzban and C. Crick

model architecture, while the Prediction Slope can be applied on any type of
NLP model architecture (In our case it was applied on a transformer model).
This is very beneficial to have a tool that can analyze the model independent
of the inner architecture or details and gives us insights from the model’s global
logic.

(a) Activation Maximization (b) Prediction Slope

Fig. 4. Wordcloud of the top 100 most important words in IMDb dataset

These techniques can be used to generate insights to improve future models,
and we can also use them to visualize the most important words to a model to
make it more explainable and understandable. Figure 4 shows the top 100 most
important words extracted from both techniques in the IMDb dataset. The size
of the word represents its importance rate. The most important words according
to the activation maximization technique exhibited higher document frequencies.

5 Conclusion

Now that many AI models, for many tasks, have reached acceptable performance
levels, and often even surpass human experts, it is time to focus on other aspects
of machine learning models beyond their raw accuracies. Machine learning mod-
els raise many challenging questions about AI fairness, ethical issues, and biases.
In order to answer all these questions, we need to develop infrastructure and tools
that make our models explainable in order to justify their decisions. Our contri-
bution in this paper was to generate a new method for explaining NLP models’
logic. Our experiments show that our method is as accurate as previous ones,
while it is much more generalized. Our technique is not dependent on the NLP
architecture and type and can be applied to any NLP model and task.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Arras, L., Horn, F., Montavon, G., Müller, K.R., Samek, W.: “What is relevant in
a text document?”: an interpretable machine learning approach. PLoS ONE 12(8),
e0181142 (2017)

Deep NLP Explainer: Using Prediction Slope to Explain NLP Models 457

3. Bach, S., et al.: On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

4. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly Media Inc., Sebastopol (2009)

5. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020)

6. Choi, K., Fazekas, G., Sandler, M.: Explaining deep convolutional neural networks
on music classification. arXiv preprint arXiv:1607.02444 (2016)

7. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug),
2493–2537 (2011)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

9. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun.
ACM 63(1), 68–77 (2019)

10. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research
Projects Agency (DARPA), nd Web 2 (2017)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

13. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

14. Le, H.T., Cerisara, C., Denis, A.: Do convolutional networks need to be deep
for text classification? In: Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence (2018)

15. Li, J., Chen, X., Hovy, E., Jurafsky, D.: Visualizing and understanding neural
models in NLP. arXiv preprint arXiv:1506.01066 (2015)

16. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

17. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
vol. 1, pp. 142–150. Association for Computational Linguistics (2011)

18. Marzban, R., Crick., C.: Interpreting convolutional networks trained on textual
data. In: Proceedings of the 10th International Conference on Pattern Recognition
Applications and Methods, ICPRAM, vol. 1, pp. 196–203. INSTICC, SciTePress
(2021). https://doi.org/10.5220/0010205901960203

19. Marzban, R., Crick., C.: Lifting sequence length limitations of NLP models using
autoencoders. In: Proceedings of the 10th International Conference on Pattern
Recognition Applications and Methods, ICPRAM, vol. 1, pp. 228–235. INSTICC,
SciTePress (2021). https://doi.org/10.5220/0010239502280235

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

21. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understand-
ing deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

22. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1607.02444
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1506.01066
http://arxiv.org/abs/1907.11692
https://doi.org/10.5220/0010205901960203
https://doi.org/10.5220/0010239502280235

458 R. Marzban and C. Crick

23. Qin, Z., Yu, F., Liu, C., Chen, X.: How convolutional neural network see the world-
a survey of convolutional neural network visualization methods. arXiv preprint
arXiv:1804.11191 (2018)

24. Rajwadi, M., Glackin, C., Wall, J., Chollet, G., Cannings, N.: Explaining sentiment
classification. In: Interspeech 2019, pp. 56–60 (2019)

25. Rehurek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. Citeseer (2010)

26. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

27. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

29. Wang, F., et al.: Residual attention network for image classification. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3156–3164 (2017)

30. Wood-Doughty, Z., Andrews, N., Dredze, M.: Convolutions are all you need (for
classifying character sequences). In: Proceedings of the 2018 EMNLP Workshop
W-NUT: The 4th Workshop on Noisy User-generated Text, pp. 208–213 (2018)

31. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

32. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for
natural language processing. arXiv preprint arXiv:1702.01923 (2017)

33. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)

34. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

http://arxiv.org/abs/1804.11191
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1506.06579
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

Empirically Explaining SGD from a Line
Search Perspective

Maximus Mutschler(B) and Andreas Zell(B)

University of Tübingen, Sand 1, 72076 Tübingen, Germany
{maximus.mutschler,andreas.zell}@uni-tuebingen.de

Abstract. Optimization in Deep Learning is mainly guided by vague
intuitions and strong assumptions, with a limited understanding how and
why these work in practice. To shed more light on this, our work provides
some deeper understandings of how SGD behaves by empirically analyz-
ing the trajectory taken by SGD from a line search perspective. Specifi-
cally, a costly quantitative analysis of the full-batch loss along SGD tra-
jectories from common used models trained on a subset of CIFAR-10 is
performed. Our core results include that the full-batch loss along lines in
update step direction is highly parabolically. Further on, we show that
there exists a learning rate with which SGD always performs almost exact
line searches on the full-batch loss. Finally, we provide a different perspec-
tive why increasing the batch size has almost the same effect as decreasing
the learning rate by the same factor.

Keywords: Empirical analysis · Optimization · Line search · SGD

1 Introduction

Although the field of Deep Learning has made impressive progress in recent years
both in theory and application, little is known about why and how approaches
work in detail. In general, Deep Learning approaches are based on vague intu-
itions in practice or rather strong assumptions in theory, without providing com-
prehensive empirical evidence that their intuitions and assumptions hold (e.g.:
[1,8,10,11,22,23,25,26,28]).1 Consequently, empirical analyses that search for a
deeper understanding and try to explain in detail why specific approaches work,
are rare to find.

This is in particular valid for optimization, which, in this domain, is optimizing
the mean of a stochastic loss function with an extremely high-dimensional param-
eter space. The landscape of such a loss function is generally assumed to be highly
non-convex, however, recent works [2,5–7,15,17,19,29] claim that loss landscapes
look rather simplistic for common Deep Learning benchmarks used in optimiza-
tion.2 This is shown to be valid for the full-batch loss with low evidence and for

1 Better performance does not imply that the assumptions used are correct.
2 Image classification on MNIST, SVHN, CIFAR-10, CIFAR-100 and ImageNet.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 459–471, 2021.
https://doi.org/10.1007/978-3-030-86340-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_37&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_37

460 M. Mutschler and A. Zell

mini-batch losses with higher evidence. So far there exists no detailed analysis of
the relation of mini-batch losses to the full-batch loss to be optimized as well as
of the exact performance of approaches using mini-batches on the full-batch loss.
Globally, such an empirical analysis is not feasible in terms of resources and time,
even if performed for a single model only. To nevertheless shed light on the sub-
ject, this work focuses on the quantitative analysis of full-batch and mini-batch
losses along lines in SGD update step directions of a ResNet-20, a ResNet-18 [8]
and a MobileNet-V2 [24] trained on a subset of CIFAR-10 [14]. Since the evalua-
tion on each of the models supports our claims, we concentrate on the results of
ResNet-20.3

Our core results are: 1. We provide further quantitative evidence that the full-
batch loss along lines in update step direction behaves locally to a high degree
parabolically (Sects. 3,4).2.Weanalyze thebehavior of SGD [23],PAL [19] and fur-
ther approaches on the full-batch loss when trained on mini-batch losses (Sect. 5).
We showempirically that there exists a leaning rate forwhichSGDalways performs
almost exact line searches on the full-batch loss. This is since the optimal update
step size on the full-batch loss and the norm of the gradient of the mini-batch loss
behave approximately proportional. 3. We consider the behavior of optimization
approaches for different batch sizes (Sect. 6) and, from a different perspective, can
quantitatively explain why increasing the batch size has virtually the same effect
as decreasing the learning rate by the same factor, as experienced by [27].

2 Related Work

SGD Trajectories: Similar to this work [29] analyzes the loss along SGD
trajectories, but with less focus on line searches and the exact shape of the full-
batch loss. [12] and [16] consider second order information along SGD trajecto-
ries. Where [12] investigates the spectral norm of the Hessian (highest curvature)
along the SGD trajectory and shows, inter alia, that it initially visits increasingly
sharp regions. [16] investigates the dynamics and generalization of SGD based
on the Hessian of the loss. They show, among other things, that the primary
subspace of the second momentum of stochastic gradients overlaps substantially
with that of the Hessian. Thus, to an extent, SGD uses second order information.

The Simple Loss Landscape: Loss landscapes of Deep Learning problems
can generally be highly non-convex, and thus, hard to optimize. In practice,
however, loss landscapes tend to be simple: [15] suggests that loss landscapes
of networks with skip connections behave smoothly. [29] shows that the full-
batch loss along SGD update step directions is roughly convex and that SGD
bounces of walls of a valley like structure. [2,19] reveal that the batch loss along
the update step direction is almost parabolically and [19] suggests with weak

3 See the GitHub link in Sect. 7 for further analyses and code. We are aware that our
analysis of a small set of problems provides low evidence. Nevertheless, we consider it
to be guiding. With the code published with this paper, it is simple to run our exper-
iments on further problems.

Empirically Explaining SGD from a Line Search Perspective 461

empirical evidence that this holds also for the full-batch loss. Regarding this,
[17] claims that the full-batch loss can be fitted by cubic splines along negative
gradient directions. [7] points out that on a straight path from initialization
to solution optimizers do not encounter any significant obstacles on the loss
landscape. [6] models the loss landscape as a set of high-dimensional wedges and
demonstrates the existence of a low loss subspace connecting a set of minima.
Similarly [5] constructs continuous low-loss paths between minima and suggests
that minima are best seen as points on single connected low-loss manifolds.

Line Searches: Recently, line searches have gained attention for optimization
in Deep Learning. [19] shows empirically that a parabolic approximation line
search on batch losses performs well across models and datasets. [28] proposes a
simple, well performing backtracking line search on mini-batch losses based on
the interpolation assumption. The latter states that, if the full-batch loss has
zero gradient, then each mini-batch loss has zero gradient. [17] builds a local
model of the full-batch loss along the update direction based on a Gaussian
Process.

Batch Size and Learning Rate: Besides choosing the learning rate, selecting
an appropriate batch size remains an important choice for SGD. [18] introduces
the empirically based “gradient noise scale”, which predicts the largest useful
batch size over datasets and models. [3] adaptively increases the batch size over
update steps to assure that the negative gradient is a descent direction. [27]
claims that decreasing the learning rate has virtually the same effect as increasing
the batch size by the same factor.

3 The Empirical Method

For the empirical analysis, a Deep Learning problem has to be chosen which is (a)
computationally so cheap that the analysis of the full-batch loss can be performed
in a reasonable amount of time and (b) still is representative for common Deep
Learning benchmarks used in optimization. Therefore, this work considers the
problem of training a ResNet-20 [8] on eight percent of the CIFAR-10 dataset
[14]. ResNet-like architectures are widely used in practice and CIFAR-10 is a
commonly used baseline. The dataset is scaled down, so that computations for
one training process take less than three weeks. Typical data augmentation is
applied.4 Using PyTorch [20], the model is trained with SGD [21] with learning
rate λ = 0.1,5 batch size 128 and momentum β of 0 and 0.9 for 10000 steps.

4 Cropping, horizontal flipping and normalization with mean and standard deviation.
5 Best performing λ chosen of a grid search over {10−i|i ∈ {0, 1, 1.3, 2, 3, 4}}.

462 M. Mutschler and A. Zell

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

training step ·104

ac
cu
ra
cy

train. acc. SGD mom 0
train. acc. SGD mom 0.9
val. acc. SGD mom 0
val. acc. SGD mom 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

training step ·104

lo
ss

train. loss SGD mom 0
train. loss SGD mom 0.9
val. loss SGD mom 0
val. loss SGD mom 0.9

Fig. 1. Training processes of a ResNet-20 trained on 8% of CIFAR-10 with SGD with
momentum 0 and 0.9. In the course of this work these processes will be analyzed in
significant deeper details.

Figure 1 shows the results of these SGD trainings. We note that the shown
accuracies and losses do not provide much insight on what is happening on a
deeper level. E.g. it does not provide much information why SGD performs well.
To deal with this and further issues, the full-batch loss for each SGD update
step is measured along lines in update step direction. This loss l along direction
d through the current parameters θ0 is given by:

l(s) = L(θ0 + sd) =
1

|T |
∑

t∈T

L(t; θ0 + sd), (1)

where s is the step size along the line, L is the full batch loss, L is the sample loss
and T is the dataset. In the case of SGD without momentum, d is the negative
unit gradient −g/||g|| of the original SGD trajectory whereas, in the case of
SGD with momentum, d is the negative unit momentum direction −m/||m||.

For each of the 10000 update steps, we analyze the full-batch loss along the
corresponding line in the interval s ∈ [−0.5, 0.5] with a fine grained resolution
of 0.006. For each of the 167 sample step sizes along the line the sample loss of
each element in the dataset is calculated and then all losses at a step size are
averaged. All in all, this procedure requires more than 52 million inferences or
1.67 million epochs.

Representative visualizations of mini- and full-batch losses along such lines
are given in Fig. 2. The following is observed considering all 10000 visualizations:
The full-batch loss along lines has a simple almost parabolic shape and does not
change substantially across all lines. Further on is the slope of the direction
defining mini-batch around s = 0 is always steeper than the full-batch loss. The
following sections provide further quantitative evidence that these observations
hold.

Empirically Explaining SGD from a Line Search Perspective 463

−0.4 −0.2 0.0 0.2 0.4
1.5

2.0

2.5

3.0

3.5

4.0

step on line (s)

lo
ss

line number: 10

fill between min. and max. batch losses
quartiles of batch losses
loss of direction defining batch
full batch loss

−0.4 −0.2 0 0.2 0.4

0.1

0.2

0.3

0.4

0.5

0.6

step on line (s)

lo
ss

line number: 4000

−0.4 −0.2 0 0.2 0.4

0.05

0.1

0.15

0.2

0.25

0.3

step on line (s)

lo
ss

line number: 8000

−0.4 −0.2 0 0.2 0.4

2.2

2.4

2.6

2.8

3.0

3.2

3.4

step on line (s)

lo
ss

line number: 10

−0.4 −0.2 0 0.2 0.4

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

step on line (s)

lo
ss

line number: 4000

−0.4 −0.2 0 0.2 0.4

0.005

0.01

0.015

0.02

0.025

0.03

step on line (s)

lo
ss

line number: 8000

Fig. 2. Losses along lines of the SGD training processes exhibit a simple shape. There
is a significant difference between the full batch loss (red) and the loss of the direction
defining batch (green). The loss of the direction defining batch is always steeper around
0. A mini-batch size of 128 is used. Row 1: SGD with momentum 0.0. Row 2: SGD
with momentum 0.9. The mini-batch loss distributions exclude the direction defining
mini batch. (Color figure online)

In addition, we found the following interesting observations, but do not inves-
tigate them further. There is a significant difference between the full-batch loss
and the loss of the direction defining batch. Further, the loss of the direction
defining batch does not follow the distribution of any other mini-batch loss along
the line, especially for SGD without momentum. In addition, for SGD without
momentum this loss is always lower and steeper as the other mini-batch losses.

4 On the Similarity of the Shape of Full-Batch Losses
Along Lines

The visualization of the full-batch loss along 10000 lines suggests that the shape
of this loss does not vary significantly during the training process. For a more
detailed investigation, the Mean Absolute Error (MAE) of the full-batch loss
between each pair of lines is analyzed on a relevant interval. Since solely the
shape of the loss is of interest and not the offset, each loss along a line is
shifted along the y-axis, such that the minimum is at zero. The interval from
s ∈ [−0.2, 0.2] is considered for SGD and from s ∈ [−0.5, 0.5] for SGD with
momentum. This ensures that the minimum position and the origin are always
included. The resulting distance matrices are depicted in Fig. 3. They show
that only the shapes of the full-batch loss of the very first lines vary
strongly, whereas, later shapes behave more alike. In particular, the
full-batch loss along consecutive lines behave similarly. This favors opti-
mization with fixed step sizes, since the optimal update step does not change

464 M. Mutschler and A. Zell

0 10 20 30 40

0

10

20

30

40

line number

lin
e
nu
m
be
r

Distance Matrix first 50 lines

0

0.5

1

M
A
E

50 2000 4000 6000 8000

50

2000

4000

6000

8000

line number

lin
e
nu
m
be
r

distance matrix after line 50

0

0.1

0.2

0.3

M
A
E

0 2 4 6 8 10

10−3

10−2

10−1

100

line number ·103

M
A
E

loss distance of consecutive lines

0 10 20 30 40

0

10

20

30

40

line number

lin
e
nu
m
be
r

distance matrix first 50 lines

0

0.5

1

1.5
M
A
E

50 2000 4000 6000 8000

50

2000

4000

6000

8000

line number

lin
e
nu
m
be
r

distance matrix after line 50

0

5 · 10−2

0.1

0.15

M
A
E

0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

line number ·103

M
A
E

loss distance of consecutive lines

Fig. 3. Distances of the shape of full-batch losses along lines in a window around
the current position s = 0. Row 1: SGD without momentum. Row 2: SGD with
momentum. Since the offset is not of interest the minimum is shifted to 0 on the y-
axis. The distances are rather high for the first 10 lines (left). For the following lines
the distances are less than 0.3 MAE (middle) and concentrate around 0.01. The MAEs
of the full-batch loss of pairs of consecutive lines are given on the right.

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

line number ·103

M
A
E

MAE of fitted degree 1 polynomials

0 2 4 6 8 10
0

0.001

0.002

0.003

0.004

0.005

0.006

line number ·103

M
A
E

MAE of fitted degree 2 polynomials

0 2 4 6 8 10
0

2

4

6

line number ·103

co
ef
fic
ie
nt

si
ze

coefficients of fitted degree 2 polynomials

c (offset)
b (slope)
a (curvature / 2)

2 4 6 8 10
0

0.02

0.04

0.06

line number ·103

M
A
E

MAE of fitted degree 1 polynomials

0 2 4 6 8 10
0

0.001

0.002

0.003

0.004

0.005

line number ·103

M
A
E

MAE of fitted degree 2 polynomials

0 2 4 6 8 10
0

1

2

3

4

line number ·103

co
ef
fic
ie
nt

si
ze

coefficients of fitted degree 2 polynomials

Fig. 4. MAE of polynomial approximations of the full-batch loss of degree 1 and 2.
Row 1: SGD without momentum. Row 2: SGD with momentum. Full-batch losses
along lines can be well fitted by polynomials of degree 2. The slope of the approximation
stays roughly constant whereas the curvature decreases.

much. These results are also valid for the full-batch loss along each line in multi-
ple noisy gradient directions starting from the same position in parameter space
(Appendix Fig. 8). This implies from an optimization point of view that it does
not matter which of the descent directions is taken.

Empirically Explaining SGD from a Line Search Perspective 465

Figure 2 also indicates that the full-batch loss along lines exhibits an
almost parabolic shape locally (core result 1). Figure 4 shows in detail that
this is valid since the fitting error of a parabola is always low. In addition, we can
see that the curvature of the fitted parabolas (i.e. the second directional deriva-
tive) decreases during training, whereas, the slope stays roughly constant. This
implies that the approximated loss becomes flatter and suggests that
SGD follows a simple valley like structure which becomes continuously
wider. Considering the even faster decreasing curvature of SGD with momen-
tum, its valley becomes even wider (see also Fig. 2). This might be a reason why
SGD with momentum optimizes and generalizes better [9,13]. In accordance to
[12], we also found that the curvature is increasing rapidly during the very first
steps and then decreases.

5 On the Behavior of Line Search Approaches on the
Full-Batch Loss

The previous section showed that the full-batch loss along lines in update step
direction behaves parabolically and exhibits positive curvature. This means that
l(s) ≈ as2 + bs + c with a > 0 (see Eq. 1). In the following the performance of
several parabolic approximation line searches applied on the direction defining
mini-batch loss are analyzed. From now on, we concentrate on SGD without
momentum, but, Fig. 9 (appendix) shows that the upcoming results for SGD
with momentum support the same derivations.

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1.8

2

2.2

2.4

2.6

step on line

lo
ss

line number 10

full-batch loss
loss of direction defining batch
SGD λ = 0.1 (ori.)
SGD λ = 0.05
PAL μ = 0.1
minima locations

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.1

−0.05

0

0.05

0.1

0.15

0.2

step on line

lo
ss

line number 4000

−0.05 0 0.05 0.1 0.15 0.2

−0.02

0

0.02

0.04

0.06

step on line

lo
ss

line number 8000

Fig. 5. Several parabolic line approximations and their minimum positions on rep-
resentative losses along lines. The optimal update step, from a local perspective, is
depicted by the red dashed line. The other update steps are derived from the direction
defining mini-batch loss. (Color figure online)

For SGD the mini-batch loss and its gradient g are given at the origin (s = 0)
of a line. In addition, the directional derivative, which is the negative norm
of g, can be computed easily (-g/||g|| · gT = -||g||). To perform a parabolic
approximation, either one additional loss along the line has to be considered or
the curvature has to be estimated. The first approach is proposed by [19]. The
default update step of their optimizer PAL is given as:

spal = − b

2a
= − l′m(0)μ2

2(lm(μ) − lm(0) − l′m(0)μ)
, (2)

466 M. Mutschler and A. Zell

where lm is the mini-batch loss along a line in the direction of g and μ is the
sample step size for the second loss. The second approach is a reinterpretation of
SGD as a parabolic approximation line search with estimated curvature. SGD’s
update step is given as −λg, where λ is the learning rate. Considering a normal-
ized gradient and defining k = 1

λ as the curvature, we get

−λg = λ||g||· −g

||g|| =
||g||
k

· −g

||g|| = −
−g
||g||g

T

k
· −g

||g|| = − first directional derivative

second directional derivative
·direction

(3)
Note that the latter is a Newton update step.
To get a first intuition of how these approaches operate, several parabolic

approximations and their resulting update steps on representative lines are
shown in Fig. 5.

The next step is to compare several update step strategies using three met-
rics. Beforehand, we have to define sopt as the step size to the minimum of the
full-batch loss along a line, which is the optimal update step size from a local
perspective. supd is the update step size of an arbitrary optimization strategy
considered. The metrics are: the update step size supd, the distance of supd to the
minimum of the full-batch loss (sopt − supd), and the loss improvement per step,
given as: l(0)− l(supd), where l is the full-batch loss along a line (see Eq. 1). Note
that this improvement measure does not represent actual training performance,
since the next considered line is independent of the previous update step size for
all strategies except for SGD. which training process we are considering. How-
ever, it does represent the performance on full-batch losses along lines, which
are likely to occur during training.

0 2,000 4,000 6,000 8,000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

line number

up
da
te
st
ep

le
ng
th

update steps (smoothed)

0 2,000 4,000 6,000 8,000

10−4

10−3

10−2

−10−4

−10−3

−10−2

−10−1

0

line number

di
st
an
ce
st
o
fu
ll-
ba
tc
h
m
in
im

um
(s
ym

lo
g)

distances to full-batch minimum (smoothed)

0 2,000 4,000 6,000 8,000

10−4

10−3

10−2

10−1

−10−4

−10−3

−10−2

0

line number

fu
ll-
ba
tc
h
lo
ss

im
pr
ov
em

en
t(
sy
m
lo
g)

full-batch loss improvement (smoothed)

0 2,000 4,000 6,000 8,000

0

200

400

600

800

1,000

line number

di
st
an
ce
st
o
fu
ll-
ba
tc
h
m
in
im

um

accumulated distances to full-batch minimum

full-batch loss (optimal)
loss of direction defining batch
FBPAL μ = 0.1
SGD (original) λ = 0.1
SGD λ = 0.05
PAL μ = 0.1

0 2,000 4,000 6,000 8,000

0

50

100

150

200

line number

fu
ll-
ba
tc
h
lo
ss

im
pr
ov
em

en
t

accumulated loss improvement

0 2,000 4,000 6,000 8,000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

line number

ra
tio

fu
ll-
ba
tc
h
m
in
.n
or
m

of
di
r.
gr
ad
.

ratio of step to full-batch min. and norm of dir. grad.

ratio

Fig. 6. Several metrics to compare update step strategies: 1. update step sizes. 2. the
distance to the minimum of the full batch loss (sopt−supd), which is the optimal update
step from a local perspective. 3. the loss improvement per step given as: l(0) − l(supd)
where supd is the update step of a strategy. Average smoothing with a kernel size of 25
is applied. The right lower plot shows almost proportional behavior between sopt and
the directional derivative of the direction defining mini-batch loss.

Empirically Explaining SGD from a Line Search Perspective 467

Figure 6 shows that some strategies exhibit varying behavior on the met-
rics. To strengthen our previous observation, a parabolic approximation on the
full-batch loss (FBPAL) yields almost optimal performance. Surprisingly, SGD
with λ = 0.05 estimates the minima of the full-batch loss almost as well. This is
because the step to the minimum of the full-batch loss sopt is almost pro-
portional to the directional derivative (−||g||) of the direction defining
mini-batch loss (core result 2), as shown in the lower plot of Fig. 6. Observe
that the variance becomes larger during the end of the training and thus the pro-
portionality holds less. This almost proportional behavior explains why
a constant learning rate can lead to a good performance, since it is
sufficient to control the update step size with the norm of the noisy
mini-batch gradient. In practice, however, this locally optimal learning rate
is unknown. The globally best performing learning rate of 0.1 always does a step
far beyond the locally optimal step. This is what [29] described as bouncing off
walls of a valley-like structure. Contrary to their intuition, we have not found any
boundaries at all in the valley. Finally, Fig. 6 suggests that exact line searches
on the mini-batch loss perform poorly. For SGD with momentum, similar
results are obtained (Appendix Fig. 9).

Combining the last core results suggest that the locally optimal step size
sopt can be well approximated by a Newton step on the full-batch loss
or by a simple proportionality:

sopt ≈ − −||gfbl||
gfblHfblgT

fbl

≈ c · −||gdl|| (4)

where fbl stands for the full-batch loss and dl for the loss of the direction defin-
ing mini-batch. However, on a global perspective a step size larger than
sopt, can perform better, although it yields locally lower improvement
(Appendix Fig. 10).

6 On the Influence of the Batch Size on Update Steps

This section analyzes to which extent the performance of SGD and PAL changes
with varying batch sizes. In addition, we show why, on the losses along lines
measured, increasing the batch size has almost the same effect as decreasing the
learning rate by the same factor, as suggested by [27].

The presented results are simplified assuming that the SGD trajectory keeps
identical with changing batch size. Thus, the same losses over lines can be con-
sidered. The original batch size is 128. For larger batch sizes additional sample
losses from the set of all measured losses are drawn without replacement. For
smaller batch sizes, the sample losses with the highest directional derivatives are
removed, assuming that for smaller batch sizes steeper steepest directions are
found.

468 M. Mutschler and A. Zell

0 2,000 4,000 6,000 8,000
−1,400

−1,200

−1,000

−800

−600

−400

−200

0

200

line number

fu
ll-
ba
tc
h
lo
ss

im
pr
ov
em

en
t

accumulated loss improvement SGD (original) λ = 0.1

batch size: 32
batch size: 64
batch size: 128
batch size: 256
batch size: 512
batch size: 1024
batch size: 2048
full-batch loss (bs 4000)

0 2,000 4,000 6,000 8,000

−50

0

50

100

150

200

line number

fu
ll-
ba
tc
h
lo
ss

im
pr
ov
em

en
t

accumulated loss improvement PAL μ = 0.1

0 2,000 4,000 6,000 8,000

0

2

4

6

8

10

12

line number

ab
s.
of

di
re
ct
io
na
ld

er
iv
at
iv
e

abs. of directional derivative (= ||g||)
depending on the batch size

0 2,000 4,000 6,000 8,000

2−4

2−3

2−2

2−1

20

21

22

line number

ra
tio

of
di
r.
de
riv

.a
ts
ev
er
al
bs

ratio of directional derivatives at several
batch sizes & directional derivatives at bs 128

bs: 32 e.r.: 22
bs: 64 e.r.: 21
bs: 128 e.r.: 20
bs: 256 e.r.: 2−1

bs: 512 e.r.: 2−2

bs: 1024 e.r.: 2−3

bs: 2048 e.r.: 2−4

full-bs e.r.: 2−5

Fig. 7. Row 1 Comparing the influence of the batch size on the loss improvement. Left:
SGD with the original learning rate of 0.1. Right: parabolic approximation line search
(PAL). Row 2: Analysis of the relation of the batch size to the absolute directional
derivative (=gradient norm) which shows in detail that increasing the batch size has a
similar effect as decreasing the learning rate by the same factor. e.r. stands for expected
ratio.

The upper plots of Fig. 7 show that SGD performs significantly worse for
smaller batch sizes than PAL does. Both approaches become significantly more
accurate at larger batch sizes. A batch size of 512 is already sufficient to perform
almost optimally.

[27] shows that when training a ResNet-50 [8] on ImageNet [4], increasing
the batch size has virtually the same effect as decreasing the learning rate by the
same factor. Their interpretation is based on the noise on the full-batch gradient
introduced by mini-batches whereas, we argue from the perspective of mini-batch
losses. The SGD update step length on losses along a line is the absolute of the
learning rate times the directional derivative (λ · |l′m(0)| = λ · ||g||). The lower left
plot of Fig. 7 shows that with higher batch sizes the absolute of the directional
derivative, and thus the step size, decreases. This can be figuratively explained
with the help of Fig. 2. As the batch size increases, the loss of the direction
defining batch becomes more similar to the full-batch loss, consequently, the
absolute of the directional derivative decreases. The lower plot of Fig. 7 shows by
which factor the directional derivative is divided when the batch size is multiplied
by a factor. For batch size 32 to 256 the assumption that if the batch
size is increased by a factor, then the update step size decreases by the
same factor, is valid during the whole training (core result 3). For larger
batch sizes the directional derivative is divided by a lower factor, at the beginning
of the training, then the batch size is multiplied but converges towards the same

Empirically Explaining SGD from a Line Search Perspective 469

factor during the training. Based on the data collected, we cannot estimate the
momentum term for a different batch size for each line, therefore, this analysis
was not performed for SGD with momentum.

7 Discussion and Outlook

With this work, we provided a better understanding of what happens in detail
during SGD training from a line search perspective. In short, we quantitatively
showed that the full-batch loss along lines in update step direction locally is
highly parabolically. Further on, we found a learning rate for which SGD always
performs an almost optimal line search. This questions the usefulness of line
searches for deep learning in general. Finally, we quantitatively analyzed the
relation of learning rate and batch size in detail and provide a different perspec-
tive on why increasing the batch size has almost the same effect as decreasing
the learning rate by the same factor.

We have to emphasize that this work focused on a small set of representative
problems only.6 Therefore, our results have to be handled with care. To get a
more general view about the behavior of SGD and other optimizers across mod-
els and datasets, we propose to repeat these or similar experiments for as many
as possible. This can be easily done with the published code, but is extraor-
dinarily time consuming (see https://github.com/cogsys-tuebingen/empirically
explaining sgd from a line search perspective).

In general, we want to emphasize that a prospective goal of future studies in
Deep Learning should be, beyond reporting of good results, to provide empirical
evidence that the assumptions used hold.

8 Appendix

0 5 10 15 20 25 30

0

10

20

30

line number

lin
e
nu
m
be
r

Distance Matrix line 0

0

5 · 10−2

0.1

0.15

0.2

0.25

M
A
E

0 5 10 15 20 25 30

0

10

20

30

line number

lin
e
nu
m
be
r

Distance Matrix line 4000

0

1

2

3

4

·10−2

M
A
E

0 5 10 15 20 25 30

0

10

20

30

line number

lin
e
nu
m
be
r

Distance Matrix line 8000

0

2

4

6

·10−3

M
A
E

Fig. 8. Distances (MAE) of the shape of full-batch losses along lines in multiple noisy
gradient direction in a window of 0.3 around the line origin s = 0. The minimum is
shifted to 0 on the y-axis. At fixed positions in parameter space the full-batch loss
along lines in several noisy gradient directions reveals low distances. Those plots are
representative for 100 positions we analyzed.

6 Note that we have done the same evaluation for a ResNet-18 [8] and a MobileNetV2
[24] trained on the same data and obtained results supporting our claims. See GitHub
link.

https://github.com/cogsys-tuebingen/empirically_explaining_sgd_from_a_line_search_perspective
https://github.com/cogsys-tuebingen/empirically_explaining_sgd_from_a_line_search_perspective

470 M. Mutschler and A. Zell

0 0.2 0.4 0.6 0.8 1
·104

0

0.2

0.4

0.6

0.8

1

line number

up
da
te
st
ep

le
ng
th

update steps (smoothed)

full-batch loss (optimal)
loss of direction defining batch
FBPAL μ = 0.1
SGD (original) λ = 0.1
SGD λ = 0.05
PAL μ = 0.1

0 0.2 0.4 0.6 0.8 1
·104

−60

−40

−20

0

20

40

line number

fu
ll-
ba
tc
h
lo
ss

im
pr
ov
em

en
t

accumulated loss improvement

0 0.2 0.4 0.6 0.8 1
·104

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

line number

R
at
io

fu
ll-
ba
tc
h
m
in
.n
or
m

of
di
r.
gr
ad
.

ratio of step to full-batch min. and norm of dir. grad

Fig. 9. SGD training process with momentum 0.9. See Fig. 6 for explanations.
The core differences are, that for the proportionality, the noise is higher than in the
SGD case. In addition, SGD with momentum overshoots the locally optimal step size
less and does not perform an as exact line search.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−2

10−1

100

training step ·104

tra
in
in
g
lo
ss

SGD λ 0.1
SGD λ 0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.8

0.85

0.9

0.95

1

training step ·104

tra
in
.a
cc
ur
ac
y

Fig. 10. SGD with a locally optimal learning rate of 0.05 performs worse than SGD
with a globally optimal learning rate of 0.01. Trainings are performed on a ResNet-20
and 8% of CIFAR-10 with SGD without momentum.

References

1. Berrada, L., Zisserman, A., Kumar, M.P.: Training neural networks for and by
interpolation. In: ICML (2020)

2. Chae, Y., Wilke, D.N.: Empirical study towards understanding line search approx-
imations for training neural networks. arXiv (2019)

3. De, S., Yadav, A.K., Jacobs, D.W., Goldstein, T.: Big batch SGD: automated
inference using adaptive batch sizes. arXiv (2016)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR (2009)

5. Draxler, F., Veschgini, K., Salmhofer, M., Hamprecht, F.A.: Essentially no barriers
in neural network energy landscape. In: ICML (2018)

6. Fort, S., Jastrzebski, S.: Large scale structure of neural network loss landscapes.
In: NeurIPS (2019)

7. Goodfellow, I.J., Vinyals, O., Saxe, A.M.: Qualitatively characterizing neural net-
work optimization problems. In: ICLR (2015)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

9. Hochreiter, S., Schmidhuber, J.: Simplifying neural nets by discovering flat minima.
In: NeurIPS (1994)

10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

Empirically Explaining SGD from a Line Search Perspective 471

11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

12. Jastrzebski, S., Kenton, Z., Ballas, N., Fischer, A., Bengio, Y., Storkey, A.J.: On
the relation between the sharpest directions of DNN loss and the SGD step length.
In: ICLR (2019)

13. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. In: ICLR
(2017)

14. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, Citeseer (2009)

15. Li, H., Xu, Z., Taylor, G., Goldstein, T.: Visualizing the loss landscape of neural
nets. In: NeurIPS (2018)

16. Li, X., Gu, Q., Zhou, Y., Chen, T., Banerjee, A.: Hessian based analysis of SGD
for deep nets: dynamics and generalization. In: SDM21 (2020)

17. Mahsereci, M., Hennig, P.: Probabilistic line searches for stochastic optimization.
J. Mach. Learn. Res. 18(1), 4262–4320 (2017)

18. McCandlish, S., Kaplan, J., Amodei, D., Team, O.D.: An empirical model of large-
batch training. arXiv (2018)

19. Mutschler, M., Zell, A.: Parabolic approximation line search for dnns. In: NeurIPS
(2020)

20. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: NeurIPS (2019)

21. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22,
400–407 (1951)

22. Rolinek, M., Martius, G.: L4: Practical loss-based stepsize adaptation for deep
learning. In: NeurIPS (2018)

23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533 (1986)

24. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2:
inverted residuals and linear bottlenecks. In: CVPR (2018)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

26. Smith, L.N.: Cyclical learning rates for training neural networks. In: WACV (2017)
27. Smith, S.L., Kindermans, P., Ying, C., Le, Q.V.: Don’t decay the learning rate,

increase the batch size. In: ICLR (2018)
28. Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G., Lacoste-Julien, S.:

Painless stochastic gradient: Interpolation, line-search, and convergence rates. In:
NeurIPS (2019)

29. Xing, C., Arpit, D., Tsirigotis, C., Bengio, Y.: A walk with sgd. arXiv (2018)

Towards Ontologically Explainable
Classifiers

Grégory Bourguin(B), Arnaud Lewandowski, Mourad Bouneffa,
and Adeel Ahmad

LISIC, Université du Littoral Côte d’Opale, 62228 Calais, France
gregory.bourguin@univ-littoral.fr

Abstract. In order to meet the explainability requirement of AI using
Deep Learning (DL), this paper explores the contributions and feasibility
of a process designed to create ontologically explainable classifiers while
using domain ontologies. The approach is illustrated with the help of the
Pizzas ontology that is used to create a synthetic image classifier that is
able to provide visual explanations concerning a selection of ontological
features. The approach is implemented by completing a DL model with
ontological tensors that are generated from the ontology expressed in
Description Logic.

Keywords: Machine learning · Ontology · Explainability · Classifier

1 Introduction

The last years have been characterized by a large democratization of solutions
using Machine Learning (ML), and particularly Deep Learning (DL). This wide
spread has been accompanied by questions regarding their trustworthiness. Many
research papers have recently underlined the problem of the opacity of DL algo-
rithms. This issue is at the heart of the XAI [1] initiative.

As stated in [8], “clearly explaining a rationale for a classification decision
to an end-user can be as important as the decision itself”. It is thus necessary
to create AI solutions that are able to provide explanations regarding their deci-
sions, but moreover, these explanations also need to be understandable by the
users, i.e. while using the adequate abstraction level. The users’ abstraction level
mainly depends on their knowledge, their expertise, or even their viewpoint.

Widely used in the Knowledge Management and Engineering research
domains, the ontologies aim at reifying the knowledge of users involved in spe-
cific domains, thus allowing algorithms to use it. Taking note of the crucial need
for explainable AI, the purpose of this paper is to explore a process for creating
automatic classifiers that are able to provide explanations founded on an ontol-
ogy. We do not focus here on new means for improving classification, but on the
contributions of ontologies for explainable AI. We also explore the feasibility of
such an approach while using the classical ML tools, and propose a solution that

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 472–484, 2021.
https://doi.org/10.1007/978-3-030-86340-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_38&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_38

Towards Ontologically Explainable Classifiers 473

allows to complement a DL model with a graph of tensors that is automatically
generated from description logic assertions coming from the targeted ontology.

The 2nd part of the paper proposes a state of the art concerning solutions
for providing explainable AI. The 3rd part of the paper illustrates the benefits
expected from a process involving ontological reasoning for explainability, and
introduces the generic approach we propose. The 4th part presents its application
through the implementation of an ontologically explainable image classifier. The
5th part presents our conclusions resulting from this experiment.

2 Explainability

The systems using ML are more and more efficient, but also more and more com-
plex and opaque. They appear as black-boxes [6] making problematic for human
to step in and understand their decisions, and to control their deployment, exe-
cution, and evolution [1,9]. As a consequence, the need for transparency, and
moreover, AI explainability has been revealed crucial.

2.1 Post-hoc Model Explanation

The tools for explaining decisions of DL systems mainly follow post-hoc
approaches designed to provide explanations about pre-existing models. Most
of theses methods are also called agnostic because they can be applied to any
DL algorithm.

Most explanation techniques rely on the idea of associating each input feature
with a value representing its importance for highlighting the key factors partic-
ipating in the final prediction. It is thus possible to get explanations concerning
a particular prediction, or more global ones represented with different graph-
ics associating features, importance factors and predictions. One of the domains
where this type of works is the best represented is Computer Vision (CV). In CV,
the raw input features correspond to the image’s pixels. The propositions consist
in making a correspondence between the predictions and the pixels that leaded
to a classification. Diverse approaches have been adopted and one of the most
representative is the Grad-CAM [20] method (and derivatives) that uses the gra-
dient of a targeted class to produce a heatmap highlighting the image’s regions
that most participated to its prediction. The techniques using input features to
explain a model are not limited to CV. Tools like LIME [15] allow to identify
some pixels in an image in a CV problem, but also to highlight the terms most
participating in a prediction in a NLP (Natural Language Processing) model. In
the same idea, while using different methods, we can also cite SHAP (SHapely
Additive exPlanation) [11], or What-If [13].

All these techniques and tools have already proved to be really useful for
explaining AI models. However, as it was underlined by [10], and as we will show
in part 3.2, these approaches do not guarantee that the provided explanations
are in fact understandable by the users.

474 G. Bourguin et al.

2.2 Explainablity, Semantics and Ontologies

As recalled by [2]: “Concept-based explanation approach is a popular model
interpertability tool because it expresses the reasons for a model’s predictions
in terms of concepts that are meaningful for the domain experts”. The benefits
from ontologies for providing explanations have already been proven. For many
authors, it is obvious that ontologies can help in providing adequate explanations
about the decision process of DL models [3].

Following this idea, the concept of semantic bottleneck has recently been for-
malized in [10] and further developed in [12]: a classifier is built while integrat-
ing semantic layers in its very conception in order to extract semantic features.
These latter are then used to compute the final classification. The pondered con-
tribution of each semantic feature helps in providing explanations regarding a
prediction, and in understanding misclassification errors. However, it should be
noted that even if these interesting works speak about semantics, none of them
use an ontological approach.

Research works like [4] are dedicated to image interpretations while using
ontologies. A DL process (e.g. object detection) is used to extract features cor-
responding to ontological concepts. These features are then used to infer pre-
dictions at a higher abstraction level. Such approach implies reasoning while
using description logic for enabling complex classification tasks. Even if they do
not explicitly focus on the explainability issue, such reasoning is intrinsically
explainable, and these solutions should indeed be able to provide explanations
at the users’ ontological abstraction level.

2.3 Positioning

As in Grad-CAM or LIME, our goal is to provide explanations while highlighting
in the raw data the features that leaded to a classification. However, our approach
is not agnostic: the explanations we want to provide are intimately bound to the
targeted domain, and the features we want to highlight need to be at the user’s
abstraction level, i.e., from our viewpoint, ontological features.

Our approach is neither post-hoc because we need the ontology to be directly
involved in the very process of the classifier creation. We follow a semantic
bottleneck approach, with the difference that the semantics is here provided by
an ontology which moreover is itself directly used to compute the predictions.

From this viewpoint, we are inspired by the research works implying ontolo-
gies for high abstraction level image interpretation. Our approach is however
somehow different while definitely focusing on the explainability issue, and by
advocating for explainable classifiers that involve ontologies in classification tasks
that would a priori not need it.

3 Ontological Explainability Approach

3.1 Illustration Domain: Pizzas

To illustrate our approach, we choose to reuse the Pizzas ontology (Manchester
University). The reasons are multiple, but the main one is the fact that this ontol-
ogy is accessible and really famous, and thus already known by many researchers.

Towards Ontologically Explainable Classifiers 475

The Pizzas ontology defines a set of pizzas classes (e.g. Napoletana), that are
subclasses of the NamedPizza class (being itself a subclass of Pizza). The pizzas
definitions mainly involve the hasTopping object property whose domain is the
Pizza class, and whose range is the PizzaTopping class which is the superclass
of diverse toppings concepts like anchovies (AnchoviesTopping), etc.

We will then for example find the Napoletana pizza defined by:

Napoletana ≡ Pizza
� (∃ hasTopping . AnchoviesTopping)
� (∃ hasTopping . OliveTopping)
� (∀ hasTopping . (AnchoviesTopping � OliveTopping))

As our aim is to link the results of an image classifier with the ontological
definitions, we built a dataset in which the samples are labeled with the sub-
classes of NamedPizza. Other searchers have already created some pizzas images
datasets [14]: to our knowledge, none of them corresponds to the definitions of
the Pizzas ontology. Moreover, our goal in this experiment is not to enhance the
classification performance (in terms of accuracy, etc.), but rather to study the
benefits and the feasibility of an approach that implies an ontology for enhancing
a classifier’s explainability. Inspired by [14] in which the authors generate syn-
thetic pizzas images to constitute a controlled dataset, we generated synthetic
images of ontological pizzas by combining toppings cliparts (cf. Fig. 1).

The Pizza ontology defines 22 subclasses of NamedPizza while using 36 sub-
classes of PizzaTopping. To simplify the construction of our dataset, we decided
to focus on 14 subclasses of NamedPizza involving 16 subclasses of PizzaTop-
ping, thus keeping diversity while removing the pizzas made of toppings like
TobascoPepperSauce that are hard do illustrate with cliparts, and that are not
essential to our demonstration.

The generated images voluntary use the same “pizza base”: only the toppings
distribution is varying in number, position and orientation, in order to force any
(non-ontological) classifier to focus on the toppings for classifying the pizzas.
The classification task for these synthetic pizza images being relatively simple,
we only generated a “small” and totally balanced dataset containing 200 pizzas
per each of the 14 NamedPizza subclasses.

Fig. 1. Generating synthetic images of ontological pizzas.

476 G. Bourguin et al.

3.2 Problems of a Non-ontological Approach

To illustrate our thoughts about the problems of post-hoc tools for explainabil-
ity, we built and trained a “classical” image classifier based on a VGG19 [19]
CNN architecture, we used transfer learning by reusing the weights of VGG19
pretrained on Imagenet, and complemented it by a Dense (256) and a SoftMax
(14 pizzas classes) layers. The images data being simple, we were able to train
this classifier while achieving 100% accuracy on a test set constituted by 20% of
our samples.

We then used tools implementing the LIME [15] and Grad-CAM [18] methods
which both explain a specific prediction by generating a heatmap highlighting
the image’s pixels that most participated to the classification. As our images
were generated in a way to let the toppings being the sole elements that can
help in differentiating the pizzas classes, we can expect the heatmaps to focus
on the toppings’ corresponding pixels.

Fig. 2. Grad-CAM explanations for a specific pizza classification.

The Fig. 2 shows the explanations provided by Grad-CAM for a pizza pre-
dicted as Napoletana, i.e. a pizza only containing olive and anchovies toppings
(cf. definition in part 3.1). We only show Grad-CAM’s results here, but the
explanations provided by LIME and Grad-CAM are similar. We can notice that
the CNN focuses well on the anchovies. However, it ignores the olives while also
focusing on a part of the pizza base (empty of toppings). We can thus consider
that for this DL model, this pizza is a Napoletana because it has some anchovies
and some void: this of course does not correspond to the definition we expected.

Nevertheless, the Pizzas ontology can help in explaining this phenomenon if
it is used to generate an ontological correlation matrix regarding the toppings.
This matrix reveals to what extent the toppings are correlated in the pizzas
definitions: we can notice that the anchovies (AnchoviesTopping) always appear
with olives (OliveTopping). On the other hand, the olives frequently appear with
other toppings. As a result, for the CNN, on a Napolitana only made of anchovies
and olives, the discriminant is the presence of anchovies.

Towards Ontologically Explainable Classifiers 477

The purpose of these remarks is not to discredit tools like Grad-CAM and
LIME at all. As we just showed it, they are truly useful for explaining a classifier.
However, these explanations can generally only be interpreted by an AI specialist
and, as in works trying to associate some semantics to CNN filters [7], this
example demonstrates that the abstraction level of the discriminants emerging
from the training of a CNN does not coincide with the abstraction level of a
pizza specialist. As a result, these tools do not seem to be the most adequate for
providing explanations that are easily understandable by domain experts.

3.3 Proposed Approach

Our proposition aims at creating classifiers that are able to provide explanations
at the domain experts’ abstraction level, i.e. using the terms of their ontology.
The steps for this realization are:

(a) Build a set C of the classes from the ontology that will be predicted as
output of the classifier.

(b) Consider D : the set of definitions in the ontology such as
D = {d | ∃ c ∈ C, d ≡ c is an axiom of the ontology}.
Consider P : the set of properties in the ontology involved in D.
Consider R: the set of ranges such as R = {r | r = range(p), p ∈ P}
Build the set F of the ontological features f ∈ F, i.e. the triplets (c, p, r)
involved in D and that will be used while explaining the predictions.

(c) Implement a DL technique to build the set FI ⊆ F of the identified
ontological features (satisfied assertions) in a data sent to the classifier
such as
FI = {fi ∈ F | fi ≡ ∃ p.r }

(d) Implement an ontological reasoning using D and FI for calculating CI ⊆
C, the set of the ci classes predicted for a data.

(e) Use the set DI ⊆ D such as DI = {di ≡ ci} and the set FI for explaining
the CI classification.

One can note that the (b) and (c) steps are tightly linked because it would
be useless to build F with ontological features that cannot be extracted from
the data. In our example, we focus on the hasTopping object property because
it defines the pizzas, but also because the presence of toppings (elements of R)
can be deduced from the image.

We also want to underline that the abstraction level of the explanations is
intrinsically linked to the abstraction level of the ontological features. Indeed, if
in our example it will be possible to explain that an image represents a Napo-
letana because it contains anchovies and olives, the classifier will not be able to
explain how it decided that an image region corresponds to a specific topping.
We need to recall that any approach for explainability is facing the fact that, at
some abstraction level, one considers not having to provide deeper explanations.
We for example can cite [8] that proposes a birds species classifier while mar-
rying a CNN and NLP for providing explanations: the system can explain that
an image represents an Albatross because it contains a yellow beak, etc., but it
does not try to demonstrate what is a yellow beak.

478 G. Bourguin et al.

4 Ontological Classifier

This section presents the implementation of our approach with the pizzas exam-
ple. This implementation is mainly constituted by 2 modules (Fig. 3): a semantic
segmentation (DL) module designed to extract the ontological features from an
image, and an ontological reasoning module called OntoClassifier designed to
compute the CI classes that can be deduced from FI, while being able to provide
explanations. These 2 modules are implemented in Tensorflow 2.

Fig. 3. Architecture of the ontologically explainable classifier.

4.1 DL Module: Semantic Segmentation

The first part of our classification pipeline aims at extracting the ontological
features from an image, i.e. the satisfiability of the assertions corresponding to
the triplets of F, considering that here:

F = {(c 	 Pizza, hasTopping, r 	 PizzaTopping)}
We choose to use a semantic segmentation technique whose purpose is to

label each pixel of an image with the classes from R = {r 	 PizzaTopping}.
We use a model architecture based on U-Net [16] and, as our dataset is fully
controlled, we generate the segmentation masks (that are necessary to train the
model) during the image generation process.

This U-Net implementation (based on MobileNetV2 [17] with the Imagenet
weights) has for input 3 channels (RGB) pizzas images (224 × 224 × 3), and for
output an image segmentation with 17 channels (224 × 224 × 17): each channel
corresponds to one of the 16 PizzaTopping subclasses, excepted for 1 channel
that is intended to receive the pixels not corresponding to any topping.

The central part of Fig. 3 shows how an image sent to the DL module is
segmented: to represent this segmentation here, we have overlaid the different
channels while associating each of them with a different color.

Towards Ontologically Explainable Classifiers 479

4.2 Ontological Module: OntoClassifier

The presence of pixels in a segmentation layer can be interpreted as the presence
of an ontological feature (∃ hasTopping . topping), topping ∈ R, thus letting to
deduce the set FI of the satisfied assertions for each image treated by this model.
It then remains to reason from FI while using the set of definitions D to deduce
the set of classes CI that can label the image.

This reasoning process using properties extracted from an image is similar
to those that can be found in diverse works merging DL and ontologies to pro-
pose interpretations at high abstraction level. A classical approach would be to
populate the ontology with instances representing the samples to be classified
(using their identified ontological features), and then to start an ontological rea-
soner like Jena, Hermit or Pellet to obtain a classification. However, as it was
underlined in [5], this process is costly because it needs to complement the DL
model with external tools, and these tools that are designed to reason in global-
ity about an ontology are much slower that the DL pipelines nowadays used to
create classifiers.

Fig. 4. Generating an OntoClassifier.

In our proposed approach, we do not need the full power of a classic ontolog-
ical reasoner to deduce CI from FI and D. We thus created the OntoClassifier
module whose constructor generates a set of tensors directly from the ontology,
and in particular from C, D and F. This process is illustrated in Fig. 4: after
the selection of the targeted classes and definitions constituting C and D (1),
and of the ontological features constituting F (2), a graph of tensors is auto-
matically generated (3): these tensors are typed and interconnected thanks to
the decomposition of the OWL (Web Ontology Language) definitions found in

480 G. Bourguin et al.

D. The resulting OntoClassifier is then ready to complement the classification
pipeline directly after the output of the DL module (right part of Fig. 3). This
assemblage is able to compute the satisfiability of ontological assertions like the
definition of a Napoletana (cf. Sect. 3.1), or more complex assertions for example
implying toppings’ superclasses (using inheritance) like in:

CheesyPizza ≡ ∃ hasTopping . CheeseTopping
VegetarianPizza ≡ ¬ (∃ hasTopping . FishTopping) �

¬ (∃ hasTopping . MeatTopping)

Moreover, the OntoClassifier being implemented as a graph of tensors that rep-
resents the decomposition of the elements of D, this module allows to trace back
the graph to identify the elements of FI that satisfied each assertion for a given
data.

4.3 Results

Generating the OntoClassifier under the form of tensors allows the integration of
the ontological dimension directly inside the classification pipeline. The resulting
global model is then truly faster than in the case where the ontological reasoning
is delegated to an external “classic” inference engine. For instance, using our
semantic segmentation (DL) module combined with the Hermit reasoner on our
computers (I9-10850K 3.6 GHz, 32 Go DDR4 3200 MHz, GPU RTX 3080), the
classification of 100 pizzas images takes on average 130s. With the OntoClassifier,
on the same computers, this classification only takes on average 1,6 s. As in
Sect. 3.2, we were able to train this pipeline to achieve 100% accuracy on the
test set.

Fig. 5. Classification and ontological segmentation.

The Fig. 5 shows the example of an image of Fiorentina. The classifier predicts
the set of classes that can label this image (Fiorentina, Vegetarian, Cheesy). The
segmentation mask highlights the set of identified toppings. One can notice that

Towards Ontologically Explainable Classifiers 481

in contrast to the example presented in Sect. 3.2, the abstraction level of this
heatmap is in line with the ontology: no topping is ignored by the classifier,
the highlighted entities correspond to the class definitions, and each topping is
differentiated and identifiable thanks to a color code.

Fig. 6. Classification and visual ontological explanations.

The Fig. 6 illustrates the fact that this system also allows to focus on a
specific identified class (here focusing on the Cheesy class identified for the image
classified in Fig. 5), and to use the OntoClassifier’s introspection mechanism to
explain this classification. This focus reuses the ontological segmentation mask,
and adds (in the right part), an explanation that binds the OWL definition of
the targeted class with the parts of the image that satisfied the (sub-)assertions.
Here, the binding is represented using a heatmap color code, but we can imagine
more interactive means like dynamically highlighting the original image while
moving the cursor over parts of the definition.

Fig. 7. Explanations for classification due to missing features.

The Fig. 7 shows that the OntoClassifier can focus on an identified class and
also explain a classification due to the absence of elements.

482 G. Bourguin et al.

5 Conclusion

Accounting the need for explainable AI, we explored the benefits and the feasi-
bility of a process for creating classifiers that are ontologically explainable, i.e.
providing explanations at the abstraction level for their domain users. We pro-
posed a generic approach that results in an architecture mainly constituted by
2 modules: a DL module dedicated to the ontological features extraction, and
another module named OntoClassifier and dedicated to ontological reasoning.
In order to integrate the ontological dimension in the very heart of the classi-
fier without burdening the resulting classification pipeline, we have introduced a
tool for automatically generating the OntoClassifier as a graph of tensors directly
built from the class definitions provided in the ontology. We have exemplified
our approach by creating an image classifier and have illustrated the possibilities
for ontological classification, as well as for visual explanation.

It is true that this approach involves additional work around the creation of
an ontology that reifies the users’ abstraction level, the construction of the sets
C, D, and F, and also the use of a DL technique that is more complex than for a
“simple” classification. One can however also notice that this approach not only
results in an ontologically explainable classifier, but also presents other bene-
fits. As long as the set of ontological features (F) does not change, it is easily
possible to evolve the classifier, for example by adding new classes/definitions,
and to integrate this evolution into the pipeline without having to retrain the
DL model. The sole thing to do is to automatically re-generate the OntoClassi-
fier. As underlined in [21], the notion of viewpoint is important too, even while
considering ontologies. Our proposed approach and tools can offer a solution to
the need for multi-viewpoints because it is easily possible to generate different
OntoClassifier modules, each one dedicated to a specific viewpoint on the same
domain. Our approach also allows to introduce the notion of viewpoints in the
explanations themselves. Indeed, for the same C set, it is possible to build dif-
ferent D sets, and then to generate different explainable classifiers focusing on
different ontological definitions for the same classes. For example, in the Pizza
ontology, a Vegetarian pizza can be defined as:

(1)
VegetarianPizza ≡ ¬ (∃ hasTopping . FishTopping) �

¬ (∃ hasTopping . MeatTopping)
(2) VegetarianPizza ≡ ∀ hasTopping . VegetarianTopping

If these 2 definitions lead to the same classification, the associated visual
explanations correspond to different viewpoints focusing on (or highlighting) (1)
the fish or meat toppings (cf. Fig. 7), or (2) the vegetarian toppings.

These approach and tools are still in development. In this paper, the visual
explanations directly use the OWL expressions: this representation needs to be
improved, and then evaluated through experiments while involving end-users. We
also are working on the human-machine interfaces that will allow end-users to
manipulate and explore the provided explanations. The presented elements how-
ever already let imagine functionalities that are promising, and even necessary
in the frame of projects involving actors with different cultures and viewpoints.

Towards Ontologically Explainable Classifiers 483

References

1. Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. ArXiv abs/1910.10045 (2020)

2. Bahadori, M.T., Heckerman, D.: Debiasing concept bottleneck models with a causal
analysis technique (2020)

3. Confalonieri, R., Besold, T.R.: Trepan reloaded: a knowledge-driven approach to
explaining black-box models. In: ECAI (2020)

4. Conigliaro, D., Ferrario, R., Hudelot, C., Porello, D.: Integrating computer vision
algorithms and ontologies for spectator crowd behavior analysis. In: Group and
Crowd Behavior for Computer Vision (2017)

5. Ding, Z., Yao, L., Liu, B., Wu, J.: Review of the application of ontology in the field
of image object recognition. In: ICCMS 2019 (2019)

6. Dosilovic, F.K., Brčič, M., Hlupic, N.: Explainable artificial intelligence: a sur-
vey. In: 2018 41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215 (2018)

7. Gonzalez-Garcia, A., Modolo, D., Ferrari, V.: Do semantic parts emerge in convo-
lutional neural networks? Int. J. Comput. Vis. 126, 476–494 (2017)

8. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.:
Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46493-0 1

9. Lipton, Z.C.: The mythos of model interpretability. Queue 16, 31–57 (2018)
10. Losch, M., Fritz, M., Schiele, B.: Interpretability beyond classification output:

semantic bottleneck networks. ArXiv abs/1907.10882 (2019)
11. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.

In: NIPS (2017)
12. Marcos, D., Lobry, S., Tuia, D.: Semantically interpretable activation maps: what-

where-how explanations within CNNs. In: 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), pp. 4207–4215 (2019)

13. Martens, D., Provost, F.: Explaining data-driven document classifications. MIS Q.
38, 73–99 (2014)

14. Papadopoulos, D.P., Tamaazousti, Y., Ofli, F., Weber, I., Torralba, A.: How
to make a pizza: learning a compositional layer-based GAN model. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7994–8003 (2019)

15. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (2016)

16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. ArXiv abs/1505.04597 (2015)

17. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 4510–4520 (2018)

18. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. Int.
J. Comput. Vis. 128, 336–359 (2019)

19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2015)

https://arxiv.org/abs/1910.10045
https://doi.org/10.1007/978-3-319-46493-0_1
https://arxiv.org/abs/1505.04597

484 G. Bourguin et al.

20. Zhang, Q., Wu, Y., Zhu, S.: Interpretable convolutional neural networks. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8827–
8836 (2018)

21. Zhitomirsky-Geffet, M., Erez, E.S., Bar-Ilan, J.: Toward multiviewpoint ontology
construction by collaboration of non-experts and crowdsourcing: the case of the
effect of diet on health. J. Assoc. Inf. Sci. Technol. 68, 681–694 (2017)

Few-shot Learning

Leveraging the Feature Distribution
in Transfer-Based Few-Shot Learning

Yuqing Hu1,2(B) , Vincent Gripon1 , and Stéphane Pateux2

1 Electronics Department, IMT Atlantique, Brest, France
yuqing.hu@imt-atlantique.fr

2 Orange Labs, Cesson-Sévigné, France

Abstract. Few-shot classification is a challenging problem due to the
uncertainty caused by using few labelled samples. In the past few years,
methods have been proposed to solve few-shot classification, among
which transfer-based methods have consistently proved to achieve the
best performance. Following this vein, in this paper we propose a novel
transfer-based method that builds on two successive steps: 1) preprocess-
ing the feature vectors so that they become closer to Gaussian-like distri-
butions, and 2) leveraging this preprocessing using an optimal-transport
inspired algorithm. Using standardized vision benchmarks, we prove the
ability of the proposed methodology to achieve state-of-the-art accuracy
with various datasets, backbone architectures and few-shot settings.

Keywords: Few-shot classification · Transfer learning ·
Semi-supervised learning

1 Introduction

Thanks to their outstanding performance, Deep Learning methods have been
widely considered for vision tasks such as image classification and object detec-
tion. In order to reach top performance, these systems are typically trained using
very large labelled datasets that are representative enough of the inputs to be
processed afterwards.

However, in many applications, it is costly to acquire or to annotate data,
resulting in the impossibility to create such large labelled datasets. In this con-
text, it is challenging to optimize Deep Learning architectures considering the
fact they typically are made of way more parameters than the dataset contains.
This is the reason why in the past few years, few-shot learning (i.e. the problem
of learning with few labelled examples) has become a trending research subject
in the field. In more details, there are two settings that authors often consider:
a) “inductive few-shot”, where only a few labelled samples are available dur-
ing training and prediction is performed on each test input independently, and
b) “transductive few-shot”, where prediction is performed on a batch of (non-
labelled) test inputs, allowing to take into account their joint distribution.

Many works in the domain are built based on a “learning to learn” guidance,
where the pipeline is to train an optimizer [8,18] with different tasks of limited
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 487–499, 2021.
https://doi.org/10.1007/978-3-030-86340-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_39&domain=pdf
http://orcid.org/0000-0002-9093-1356
http://orcid.org/0000-0002-4353-4542
http://orcid.org/0000-0002-4345-7882
https://doi.org/10.1007/978-3-030-86340-1_39

488 Y. Hu et al.

O
ffl

in
e

tr
ai

ni
ng

of
a

ge
ne

ri
c

fe
at

ur
e

ex
tr

ac
to

r
us

in
g

a
la

rg
e

av
ai

la
bl

e
da

ta
se

t

P
ro

po
se

d
P

T
+

M
A

P
m

et
ho

d
to

le
ar

n
to

cl
as

si
fy

th
e

co
ns

id
ir

ed
fe

w
-s

ho
t
da

ta
se

t

Train feature extractor

Feature extraction Preprocessing MAP

large dataset Dbase

Train feature extractor

x �→ fϕ(x) ∈ R
+

)d

fϕ PT
S ∪ Q ∈ Dnovel

Sinkhorn mapping Initialized cj

Center update nsteps

Prediction

fQ

fS ∪ fQ

M∗

cj

Accuracy

hj(k)

h̃j(k)

PT

Fig. 1. Illustration of the proposed method. First we train a feature extractor fϕ using
Dbase that has a large number of labelled data, then we extract feature vectors of all the
inputs (support set S and query set Q) in Dnovel (the considered few-shot dataset) and
preprocess them with Power Transform (PT), which has the effect of mapping a skewed
feature distribution into a gaussian-like distribution (hj(k) denotes the histogram of
feature k in class j), to obtain the corresponding feature vectors fS ∪ fQ. In the next
step, we perform Sinkhorn mapping with class center cj initialized on labelled feature
vectors fS to obtain the class allocation matrix M∗ for unlabelled fQ, and we update
the class centers for the next iteration. After nsteps we evaluate the accuracy on fQ.

data so that the model is able to learn generic experience for novel tasks. Namely,
the model learns a set of initialization parameters that are in an advantageous
position for the model to adapt to a new (small) dataset. Recently, the trend
evolved towards using well-thought-out transfer architectures (backbones) [3,6,
17,24] trained one time on the same training data, but seen as a unique large
dataset.

A main problem of using feature vectors extracted using a backbone archi-
tecture is that their distribution is likely to be complex, as the problem the
backbone has been optimized for most of the time differs from the considered
task. As such, methods that rely on strong assumptions about the data distri-
butions are likely to fail in leveraging the quality of features. In this paper, we
tackle the problem of transfer-based few-shot learning with a twofold strategy: 1)
preprocessing the data extracted from the backbone so that it fits a Gaussian-like
distribution and 2) leveraging this specific distribution thanks to a well-thought
proposed algorithm based on maximum a posteriori and optimal transport (only
in the case of transductive few-shot). Using standardized benchmarks in the
field, we demonstrate the ability of the proposed method to obtain state-of-the-
art accuracy, for various problems and backbone architectures in some inductive
settings and most transductive ones.

2 Related Work

A large volume of works in few-shot classification is based on meta learning [23]
methods, where the training data is transformed into few-shot learning episodes
to better fit in the context of few examples. In this branch, optimization based
methods [8,18,23] train a well-initialized optimizer so that it quickly adapts to

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning 489

unseen classes with a few epochs of training. Other works [4,31] utilize data
augmentation techniques to artificially increase the size of the training datasets.

In the past few years, there have been a growing interest in transfer-based
methods. The main idea consists in training feature extractors able to efficiently
segregate novel classes it never saw before. For example, in [3] the authors train
the backbone with a distance-based classifier that takes into account the inter-
class distance. In [17], the authors utilize self-supervised learning techniques [2]
to co-train an extra rotation classifier for the output features. Many approaches
are built on top of a feature extractor. For instance, in [29] the authors implement
a nearest class mean classifier to associate an input with a class whose centroid
is the closest in terms of the �2 distance. In [14] an iterative approach is used
to adjust the class centers. In [10] the authors build a graph neural network to
gather the feature information from similar samples. Transfer-based techniques
typically reach the best performance on standardized benchmarks.

Although many works involve feature extraction, few have explored the fea-
tures in terms of their distribution. Often, assumptions are made that the fea-
tures in a class align to a certain distribution, even though these assumptions are
rarely experimentally discussed. In our work, we take into account the impact of
the features distributions and how they can be transformed for better processing
and accuracy. We also introduce a new algorithm to improve the quality of the
association between input features and corresponding classes.

Contributions. Let us highlight the main contributions of this work. (1) We
propose to preprocess the raw extracted features in order to make them more
aligned with Gaussian assumptions. Namely we introduce transforms of the fea-
tures so that they become less skewed. (2) We use a wasserstein-based method
to better align the distribution of features with that of the considered classes.
(3) We show that the proposed method can bring large increase in accuracy with
a variety of feature extractors and datasets, leading to state-of-the-art results in
the considered benchmarks.

3 Methodology

In this section we introduce the problem settings. We discuss the training of the
feature extractors, the preprocessing steps that we apply on the trained features
and the final classification algorithm. A summary of our proposed method is
depicted in Fig. 1.

3.1 Problem Statement

We consider a typical few-shot learning problem. We are given a base dataset
Dbase and a novel dataset Dnovel such that Dbase ∩Dnovel = ∅. Dbase contains a
large number of labelled examples from K different classes. Dnovel, also referred
to as a task in other works, contains a small number of labelled examples (support
set S), along with some unlabelled ones (query set Q), all from w new classes.
Our goal is to predict the class of the unlabelled examples in the query set.

490 Y. Hu et al.

The following parameters are of particular importance to define such a few-shot
problem: the number of classes in the novel dataset w (called w-way), the number
of labelled samples per class s (called s-shot) and the number of unlabelled
samples per class q. So the novel dataset contains a total of w(s + q) samples,
ws of them being labelled, and wq of them being those to classify. Note that
here, as it is standard in the field, the query set is well balanced among classes.
In the case of inductive few-shot, the prediction is performed independently on
each one of the wq samples. In the case of transductive few-shot [14,16], the
prediction is performed considering all wq samples together.

3.2 Feature Extraction

The first step is to train a neural network backbone model using only the base
dataset. In this work we consider multiple backbones, with various training pro-
cedures. Once the considered backbone is trained, we obtain robust embeddings
that should generalize well to novel classes. We denote by fϕ the backbone
function, obtained by extracting the output of the penultimate layer from the
considered architecture, with ϕ being the trained architecture parameters. Note
that importantly, in all backbone architectures used in the experiments of this
work, the penultimate layers are obtained by applying a ReLU function, so that
all feature components coming out of fϕ are nonnegative.

3.3 Feature Preprocessing

As mentioned in Sect. 2, many works hypothesize, explicitly or not, that the fea-
tures from the same class are aligned with a specific distribution (often Gaussian-
like). But this aspect is rarely experimentally verified. In fact, it is very likely
that features obtained using the backbone architecture are not Gaussian. Indeed,
usually the features are obtained after applying a relu function, and exhibit a
positive distribution mostly concentrated around 0.

Multiple works in the domain [14,29] discuss the different statistical methods
(e.g. normalization) to better fit the features into a model. Although these meth-
ods may have provable assets for some distributions, they could worsen the process
if applied to an unexpected input distribution. This is why we propose to prepro-
cess the obtained feature vectors so that they better align with typical distribution
assumptions in the field. Namely, we use a power transform as follows.

Power Transform (PT). Denote v = fϕ(x) ∈ (R+)d
,x ∈ Dnovel as the

obtained features on Dnovel. We hereby perform a power transformation method,
which is similar to Tukey’s Transformation Ladder [25], on the features. This
process is then followed by a unit variance projection, the formula is given by:

f(v) =

{
(v+ε)β

‖(v+ε)β‖2
if β �= 0

log (v+ε)
‖ log (v+ε)‖2

if β = 0
, (1)

where ε = 1e − 6 is used to make sure that v + ε is strictly positive and β
is a hyper-parameter. The rationales of the preprocessing above are: (1) Power

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning 491

transforms have the functionality of reducing the skew of a distribution, adjusted
by β, (2) Unit variance projection scales the features to the same area so that
large variance features do not predominate the others. This preprocessing step is
often able to map data from any distribution to a close-to-Gaussian distribution.

Note that β = 1 leads to almost no effect. More generally, the skew of the
obtained distribution changes when β varies. For instance, if a raw distribution
is right-skewed, decreasing β phases out the right skew, and phases into a left-
skewed distribution when β becomes negative. After experiments, we found that
β = 0.5 gives the most consistent results for our considered experiments. This
first step of feature preprocessing can be performed in both inductive and trans-
ductive settings. We observed that it typically brings more benefits compared
with other preprocessing methods such as batch normalisation. More details
based on our considered experiments are available in Sect. 4.

3.4 MAP

Let us assume that the preprocessed feature distribution for each class is Gaus-
sian or Gaussian-like. As such, a well-positioned class center is crucial to a good
prediction. In this section we discuss how to best estimate the class centers when
the number of samples is very limited and classes are only partially labelled. In
more details, we propose an Expectation–Maximization [7]-like algorithm that
iteratively finds the Maximum A Posteriori (MAP) estimates of the class centers.

We firstly show that estimating these centers through MAP is similar to
the minimization of Wasserstein distance. Then, an iterative procedure based
on a Wasserstein distance estimation, using the sinkhorn algorithm [5,11,26],
is designed to estimate the optimal transport from the initial distribution of
the feature vectors to one that would correspond to the draw of samples from
Gaussian distributions. Note that here we consider the transductive setting, as in
many other few shot learning works (e.g. [10,14–16]), where we exploit unlabelled
samples during the procedure and priors about their relative proportions.

To better explain our proposed method, here we denote by fS the set of
feature vectors corresponding to labelled inputs and by fQ the set of feature
vectors corresponding to unlabelled inputs. For a feature vector f ∈ fS ∪ fQ, we
denote by �(f) the corresponding label. The set of admissible labellings will be
denoted C. We use 0 < i ≤ wq to denote the index of an unlabelled sample, so
that fQ = (fi)i, and we denote cj , 0 < j ≤ w the estimated center for feature
vectors that correspond to class j.

Our algorithm consists of several steps in which we estimate class centers from
a soft allocation matrix M∗, then we update the allocation matrix based on the
newly found class centers and iterate the process. More details are provided in
the following paragraphs to illustrate the algorithm.

Sinkhorn Mapping. Considering using MAP estimation for the class centers,
and assuming a Gaussian distribution for each class, we typically aim at solving:

{l̂(fi)}, {ĉj} = arg max{�(fi)}∈C,{cj}
∏

i P (fi|j = �(fi))
= arg min{�(fi)}∈C,{cj}

∑
i(fi − c�(fi))

2,
(2)

492 Y. Hu et al.

Let us point out that the last term corresponds exactly to the Wasserstein dis-
tance used in the Optimal Transport problem formulation [5,26].

Therefore, in this step we find the class mapping matrix that minimizes the
Wasserstein distance. Inspired by the Sinkhorn algorithm [5,26], we define the
mapping matrix M∗ as follows:

M∗ = Sinkhorn(L,p,q, λ)

= arg min
M∈U(p,q)

∑

ij

MijLij + λH(M), (3)

where U(p,q) ∈ R
wq×w
+ is a set of positive matrices for which the rows

sum to p and the columns sum to q. Formally, U(p,q) can be written as:
U(p,q) = {M ∈ R

wq×w
+ |M1w = p,MT1wq = q}, where p denotes the dis-

tribution of the amount that each unlabelled example uses for class allocation,
and q denotes the distribution of the amount of unlabelled examples allocated to
each class. Therefore, U(p,q) contains all the possible ways of allocating exam-
ples to classes. The cost function L ∈ R

wq×w in Eq. (3) consists of the euclidean
distances between unlabelled examples and class centers, hence Lij denotes the
euclidean distance between example i and class center j. It is worth noting that
here we assume a soft class mapping, meaning that each example can be “sliced”
into different classes.

The second term on the right of Eq. (3) denotes the entropy of M: H(M) =
−∑

ij Mij logMij , regularized by a hyper-parameter λ. Increasing λ would force
the entropy to become smaller, so that the mapping is less homogeneous. This
term also makes the objective function strictly convex [5] and thus a practical
and effective computation. From lemma 2 in [5], the result of this Sinkhorn
mapping has the typical form M∗ = diag(u) · exp(−L/λ) · diag(v).

Iterative Center Estimation. In this step, our aim is to estimate class cen-
ters. As shown in Algorithm 1, we initialize cj as the average of labelled sam-
ples belonging to class j. Then cj is iteratively re-estimated. At each iteration,
we compute a mapping matrix M∗ on the unlabelled examples using Sinkhorn
mapping introduced in the previous step. Along with labelled examples, we re-
estimate cj (temporarily denoted µj) by weighted-averaging the feature vectors
with their allocated portions for class j:

µj = g(M∗, j) =

∑wq
i=1 M

∗
ijfi +

∑
f∈fS ,�(f)=j f

s +
∑wq

i=1 M∗
ij

. (4)

This formula corresponds to the minimization of Eq. (3). Note that labelled
examples do not participate in the mapping process. Since their labels are known,
we instead set allocations for their belonging classes to be 1 and to the others
to be 0. Therefore, labelled examples have the largest possible weight when re-
estimating the class centers.

Proportioned Center Update. To avoid taking risky harsh decisions in early
iterations of the algorithm, we propose to proportionate the update of class
centers using an inertia parameter. More specifically, we update the center with

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning 493

Algorithm 1. Proposed algorithm
Parameters: w, s, q, λ, α, nsteps

Initialization: cj = 1
s

· ∑
f∈fS ,�(f)=j f

for i = 1 to nsteps do
Lij = ‖fi − cj‖2, ∀i, j
M∗ = Sinkhorn(L,p = 1wq,q = q1w, λ)
µj = g(M∗, j)
cj ← cj + α(µj − cj)

end for
return �̂(fi) = arg maxj(M

∗[i, j])

a learning rate 0 < α ≤ 1. When α is close to 0, the update becomes very slow,
whereas α = 1 corresponds to directly allocating the newly found class centers:

cj ← cj + α(µj − cj). (5)

Final Decision. After a fixed number of steps nsteps, the rows of M∗ are inter-
preted as the probabilities of examples belonging to each class. Therefore, the
maximal value corresponds to the decision of the algorithm. A summary of our
proposed algorithm is presented in Algorithm 1.

4 Experiments

4.1 Datasets

We evaluate the performance of the proposed method using standardized few-
shot classification datasets: miniImageNet [27], tieredImageNet [19], CUB [28]
and CIFAR-FS [1]. The miniImageNet dataset contains 100 classes randomly
chosen from ILSVRC- 2012 [20] and 600 images of size 84×84 pixels per class. It
is split into 64 base classes, 16 validation classes and 20 novel classes. The tiered-
ImageNet dataset is another subset of ImageNet, it consists of 34 high-level cat-
egories with 608 classes in total. These categories are split into 20 meta-training
superclasses, 6 meta-validation superclasses and 8 meta-test superclasses, which
corresponds to 351 base classes, 97 validation classes and 160 novel classes respec-
tively. The CUB dataset contains 200 classes and has 11,788 images of size
84 × 84 pixels in total, it is split into 100 base classes, 50 validation classes and
50 novel classes. The CIFAR-FS dataset has 100 classes, each class contains
600 images of size 32×32 pixels. The splits of this dataset are the same as those
in miniImageNet.

4.2 Implementation Details

In order to stress the genericity of our proposed method with regards to the cho-
sen backbone architecture and training strategy, we perform experiments using
WRN [30], ResNet18 and ResNet12 [9], along with some other pretrained

494 Y. Hu et al.

backbones (e.g. DenseNet [12,29]). For each dataset we train the feature extractor
with base classes, tune the hyperparameters with validation classes and test the
performance using novel classes. Therefore, for each test run, w classes are drawn
uniformly at random among novel classes. Among these w classes, s labelled exam-
ples and q unlabelled examples per class are uniformly drawn at random to form
Dnovel. The WRN and ResNet are trained following [17]. In the inductive setting,
MAP is not suitable since there is only one unlabelled sample, therefore we use our
proposed Power Transform followed by a basic Nearest Class Mean (NCM) clas-
sifier. In the transductive setting, the MAP or an alternative is applied after PT.
In order to better segregate between feature vectors of corresponding classes for
each task, we implement the “trans-mean-sub” [14] before MAP where we sep-
arately subtract inputs by the means of labelled and unlabelled examples, fol-
lowed by a unit hypersphere projection. All our experiments are performed using
w = 5, q = 15, s = 1 or 5. We run 10,000 random draws to obtain mean accuracy
score and indicate confidence scores (95%) when relevant. The tuned hyperparam-
eters for miniImageNet are β = 0.5, λ = 10, α = 0.4 and nsteps = 30 for s = 1;
β = 0.5, λ = 10, α = 0.2 and nsteps = 20 for s = 5. Hyperparameters for other
datasets are detailed below.

4.3 Comparison with State-of-the-Art Methods

In the first experiment, we conduct our proposed method on different bench-
marks and compare the performance with other state-of-the-art solutions. The
results are presented in Table 1, we observe that our method with WRN as back-
bone reaches the state-of-the-art performance for most cases in both inductive
and transductive settings on all the benchmarks. In Table 2 we also implement
our proposed method on tieredImageNet based on a pre-trained DenseNet121
backbone following the procedure described in [29]. From these experiments we
conclude that the proposed method can bring gain with a variety of backbones
and datasets, leading to competitive performance. In terms of execution time,
we measured an average of 0.002s per run, which is relatively efficient.

4.4 Other Experiments

Ablation Study. To further stress the interest of the ingredients on the pro-
posed method in order to reach top performance, we report in Tables 3 and 4 the
results of ablation studies. In Table 3, we first investigate the impact of chang-
ing the backbone architecture. Together with previous experiments, we observe
that the proposed method consistently achieves the best results for any fixed
backbone architecture. We also report performance in the case of inductive few-
shot using a simple Nearest-Class Mean (NCM) classifier instead of the iterative
MAP procedure described in Sect. 3. We perform another experiment where we
replace the MAP algorithm with a standard K-Means algorithm where centroids
are initialized with the available labelled samples for each class. We can observe
significant drops in accuracy, emphasizing the interest of the proposed MAP
procedure to better estimate the class centers.

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning 495

Table 1. 1-shot and 5-shot accuracy of state-of-the-art methods in the literature,
compared with the proposed solution. We present results using WRN as the backbone
for our proposed solutions.

Setting Method Backbone miniImageNet

1-shot 5-shot

Inductive Baseline++ [3] ResNet18 51.87 ± 0.77% 75.68 ± 0.63%

MAML [8] ResNet18 49.61 ± 0.92% 65.72 ± 0.77%

ProtoNet [22] WRN 62.60 ± 0.20% 79.97 ± 0.14%

Matching Networks [27] WRN 64.03 ± 0.20% 76.32 ± 0.16%

SimpleShot [29] DenseNet121 64.29 ± 0.20% 81.50 ± 0.14%

S2M2 R [17] WRN 64.93 ± 0.18% 83.18 ± 0.11%

PT+NCM(ours) WRN 65.35 ± 0.20% 83.87 ± 0.13%

Transductive BD-CSPN [15] WRN 70.31 ± 0.93% 81.89 ± 0.60%

Transfer+SGC [10] WRN 76.47 ± 0.23% 85.23 ± 0.13%

TAFSSL [14] DenseNet121 77.06 ± 0.26% 84.99 ± 0.14%

DFMN-MCT [13] ResNet12 78.55 ± 0.86% 86.03 ± 0.42%

PT+MAP(ours) WRN 82.92 ± 0.26% 88.82 ± 0.13%

Setting Method Backbone CUB

1-shot 5-shot

Inductive Baseline++ [3] ResNet10 69.55 ± 0.89% 85.17 ± 0.50%

MAML [8] ResNet10 70.32 ± 0.99% 80.93 ± 0.71%

ProtoNet [22] ResNet18 72.99 ± 0.88% 86.64 ± 0.51%

Matching Networks [27] ResNet18 73.49 ± 0.89% 84.45 ± 0.58%

S2M2 R [17] WRN 80.68 ± 0.81% 90.85 ± 0.44%

PT+NCM(ours) WRN 80.57 ± 0.20% 91.15 ± 0.10%

Transductive BD-CSPN [15] WRN 87.45% 91.74%

Transfer+SGC [10] WRN 88.35 ± 0.19% 92.14 ± 0.10%

PT+MAP(ours) WRN 91.55 ± 0.19% 93.99 ± 0.10%

Setting Method Backbone CIFAR-FS

1-shot 5-shot

Inductive ProtoNet [22] ConvNet64 55.50 ± 0.70% 72.00 ± 0.60%

MAML [8] ConvNet32 58.90 ± 1.90% 71.50 ± 1.00%

S2M2 R [17] WRN 74.81 ± 0.19% 87.47 ± 0.13%

PT+NCM(ours) WRN 74.64 ± 0.21% 87.64 ± 0.15%

Transductive Transfer+SGC [10] WRN 83.90 ± 0.22% 88.76 ± 0.15%

PT+MAP(ours) WRN 87.69 ± 0.23% 90.68 ± 0.15%

496 Y. Hu et al.

Table 2. 1-shot and 5-shot accuracy of state-of-the-art methods on tieredImageNet.

Method Backbone tieredImageNet

1-shot 5-shot

ProtoNet [22]a ConvNet4 53.31 ± 0.89% 72.69 ± 0.74%

LEO [21]a WRN 66.33 ± 0.05% 81.44 ± 0.09%

SimpleShot [29]a DenseNet121 71.32 ± 0.22% 86.66 ± 0.15%

PT+NCM(ours)a DenseNet121 69.96 ± 0.22% 86.45 ± 0.15%

DFMN-MCT [13]b ResNet12 80.89 ± 0.84% 87.30 ± 0.49%

TAFSSL [14]b DenseNet121 84.29 ± 0.25% 89.31 ± 0.15%

PT+MAP(ours)b DenseNet121 85.67 ± 0.26% 90.45 ± 0.14%
a: Inductive setting.
b: Transductive setting.

Table 3. Accuracy of the proposed method in inductive and transductive settings,
with different backbones, and comparison with K-Means and NCM baselines.

Setting Inductive Transductive

Dataset Backbone (NCM baseline) Proposed PT+NCM PT+K-Means Proposed PT+MAP

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

miniImageNet ResNet12 (49.08) 62.68 ± 0.20% (70.85) 81.99 ± 0.14% 72.73 ± 0.23% 84.05 ± 0.14% 78.47 ± 0.28% 85.84 ± 0.15%

ResNet18 (47.63) 62.50 ± 0.20% (72.89) 82.17 ± 0.14% 73.08 ± 0.22% 84.67 ± 0.14% 80.00 ± 0.27% 86.96 ± 0.14%

WRN (55.31) 65.35 ± 0.20% (78.33) 83.87 ± 0.13% 76.67 ± 0.22% 86.73 ± 0.13% 82.92 ± 0.26% 88.82 ± 0.13%

CUB ResNet12 (61.30) 78.40 ± 0.20% (82.83) 91.12 ± 0.10% 87.35 ± 0.19% 92.31 ± 0.10% 90.96 ± 0.20% 93.77 ± 0.09%

ResNet18 (58.92) 76.98 ± 0.20% (82.69) 90.56 ± 0.10% 87.16 ± 0.19% 91.97 ± 0.09% 91.10 ± 0.20% 93.78 ± 0.09%

WRN (69.21) 80.57 ± 0.20% (88.33) 91.15 ± 0.10% 88.28 ± 0.19% 92.37 ± 0.10% 91.55 ± 0.19% 93.99 ± 0.10%

CIFAR-FS ResNet12 (52.50) 71.02 ± 0.22% (74.16) 84.68 ± 0.16% 78.39 ± 0.24% 85.73 ± 0.16% 82.45 ± 0.27% 87.33 ± 0.17%

ResNet18 (56.40) 71.41 ± 0.22% (78.30) 85.50 ± 0.15% 79.95 ± 0.23% 86.74 ± 0.16% 84.80 ± 0.25% 88.55 ± 0.16%

WRN (68.93) 74.64 ± 0.21% (86.81) 87.64 ± 0.15% 83.69 ± 0.22% 89.19 ± 0.15% 87.69 ± 0.23% 90.68 ± 0.15%

In Table 4 we show the impact of PT in the transductive setting, where we
can see about 6% gain for 1-shot and 4% gain for 5-shot in terms of accuracy.

Influence of the Number of Unlabelled Samples. To better understand the
gain in accuracy with access to more unlabelled samples, we depict in Fig. 2 (1)
the evolution of accuracy as a function of q, when w = 5 is fixed. Interestingly,
the accuracy quickly reaches a close-to-asymptotical plateau, emphasizing the
ability of the method to soon exploit available information in the task.

Hyperparameter Tuning. We also tune β, λ and α on the validation classes of
each dataset, and then apply them to test our model on novel classes. We vary
each hyperparamter in a certain range and observe the evolution of accuracy
to choose the peak that corresponds to the highest prediction. For example, the
evolving curve for β, λ and α with miniImageNet are presented in Fig. 2 (2) to (4).
In comparison, we also trace the corresponding curves on novel classes. We draw
a dash line on the hyperparameter values where the accuracy on the validation
classes peaks, meaning that this is the chosen value resulting in Table 1. Overall,
it is interesting to point out the little sensitivity of the proposed method accuracy
with regards to hyperparameter tuning.

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning 497

We followed this procedure to find the tuned hyperparameters for each
dataset. Therefore, we obtained that working with CUB leads to the same hyper-
parameters as miniImageNet. For tieredImageNet and CIFAR-FS, the best accu-
racy are obtained on validation classes when β = 0.5, λ = 10, α = 0.3 for s = 1;
β = 0.5, λ = 10, α = 0.2 for s = 5.

Table 4. Influence of Power Transform in the transductive setting with different back-
bones on miniImageNet.

PT MAP WRN ResNet18 ResNet12

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

75.60 ± 0.29% 84.13 ± 0.16% 74.48 ± 0.29% 82.88 ± 0.17% 72.04 ± 0.30% 80.98 ± 0.18%

82.92 ± 0.26% 88.82 ± 0.13% 80.00 ± 0.27% 86.96 ± 0.14% 78.47 ± 0.28% 85.84 ± 0.15%

10 30 50 75 100 150

80
85
90

(1) 5q

A
cc
ur
ac
y

cub

cifar − fs

mini

−2 −1−0.50 0.5 1 2
40

60

80

(2) β

A
cc
ur
ac
y

val

novel

0 10 20 30
70
75
80
85

(3) λ

A
cc
ur
ac
y

val

novel

0.5 1
82

84

86

(4) α

A
cc
ur
ac
y

val

novel

Fig. 2. (1) represents 5-way 1-shot accuracy on miniImagenet, CUB and CIFAR-FS
(backbone: WRN) as a function of q. (2), (3) and (4) represent 1-shot accuracy on
miniImageNet (backbone: WRN) as a function of β, λ and α respectively.

5 Conclusion

In this paper we introduced a new pipeline to solve the few-shot classification
problem. Namely, we proposed to firstly preprocess the raw feature vectors
to better align to a Gaussian distribution and then we designed an optimal-
transport inspired iterative algorithm to estimate the class centers. Our exper-
imental results on standard vision benchmarks reach state-of-the-art accuracy,
with important gains in both 1-shot and 5-shot classification. Moreover, the
proposed method can bring gains with a variety of feature extractors, with few
hyperparameters. Thus we believe that the proposed method is applicable to
many practical problems.

498 Y. Hu et al.

References

1. Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A.: Meta-learning with differ-
entiable closed-form solvers. arXiv preprint arXiv:1805.08136 (2018)

2. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural
Netw. 20(3), 542–542 (2009)

3. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at
few-shot classification (2019)

4. Chen, Z., Fu, Y., Wang, Y.X., Ma, L., Liu, W., Hebert, M.: Image deformation
meta-networks for one-shot learning. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8680–8689 (2019)

5. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In:
Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

6. Das, D., Lee, C.G.: A two-stage approach to few-shot learning for image recogni-
tion. IEEE Trans. Image Process. 29, 3336–3350 (2019)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22
(1977)

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning, vol. 70, pp. 1126–1135. JMLR.org (2017)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

10. Hu, Y., Gripon, V., Pateux, S.: Exploiting unsupervised inputs for accurate few-
shot classification. arXiv preprint arXiv:2001.09849 (2020)

11. Huang, G., Larochelle, H., Lacoste-Julien, S.: Are few-shot learning benchmarks
too simple? arXiv preprint arXiv:1902.08605 (2019)

12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

13. Kye, S.M., Lee, H.B., Kim, H., Hwang, S.J.: Transductive few-shot learning with
meta-learned confidence. arXiv preprint arXiv:2002.12017 (2020)

14. Lichtenstein, M., Sattigeri, P., Feris, R., Giryes, R., Karlinsky, L.: Tafssl: task-
adaptive feature sub-space learning for few-shot classification. arXiv preprint
arXiv:2003.06670 (2020)

15. Liu, J., Song, L., Qin, Y.: Prototype rectification for few-shot learning. arXiv
preprint arXiv:1911.10713 (2019)

16. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for
few-shot learning. arXiv preprint arXiv:1805.10002 (2018)

17. Mangla, P., Kumari, N., Sinha, A., Singh, M., Krishnamurthy, B., Balasubrama-
nian, V.N.: Charting the right manifold: manifold mixup for few-shot learning. In:
The IEEE Winter Conference on Applications of Computer Vision, pp. 2218–2227
(2020)

18. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)
19. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv

preprint arXiv:1803.00676 (2018)
20. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.

Comput. Vision 115(3), 211–252 (2015)

http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/2001.09849
http://arxiv.org/abs/1902.08605
http://arxiv.org/abs/2002.12017
http://arxiv.org/abs/2003.06670
http://arxiv.org/abs/1911.10713
http://arxiv.org/abs/1805.10002
http://arxiv.org/abs/1803.00676

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning 499

21. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv
preprint arXiv:1807.05960 (2018)

22. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

23. Thrun, S., Pratt, L.: Learning to Learn. Springer, Boston (2012). https://doi.org/
10.1007/978-1-4615-5529-2

24. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–
264. IGI Global (2010)

25. Tukey, J.W.: Exploratory Data Analysis, vol. 2. Addison-Wesley, Reading (1977)
26. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008).

https://doi.org/10.1007/978-3-540-71050-9
27. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks

for one shot learning. In: Advances in Neural Information Processing Systems, pp.
3630–3638 (2016)

28. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

29. Wang, Y., Chao, W.L., Weinberger, K.Q., van der Maaten, L.: Simpleshot:
revisiting nearest-neighbor classification for few-shot learning. arXiv preprint
arXiv:1911.04623 (2019)

30. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

31. Zhang, H., Zhang, J., Koniusz, P.: Few-shot learning via saliency-guided halluci-
nation of samples. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2770–2779 (2019)

http://arxiv.org/abs/1807.05960
https://doi.org/10.1007/978-1-4615-5529-2
https://doi.org/10.1007/978-1-4615-5529-2
https://doi.org/10.1007/978-3-540-71050-9
http://arxiv.org/abs/1911.04623
http://arxiv.org/abs/1605.07146

One-Shot Meta-learning for Radar-Based
Gesture Sequences Recognition

Gianfranco Mauro1,2(B), Mateusz Chmurski1,4, Muhammad Arsalan1,3,
Mariusz Zubert4, and Vadim Issakov1,3

1 Infineon Technologies AG, Neubiberg, Germany
gianfranco.mauro@infineon.com

2 Universidad de Granada, Granada, Spain
3 Technische Universität Braunschweig, Braunschweig, Germany

4 Lodz University of Technology, Lodz, Poland

Abstract. Radar-based gesture recognition constitutes an intuitive way
for enhancing human-computer interaction (HCI). However, training algo-
rithms for HCI capable of adapting to gesture recognition often require a
large dataset with many task examples. In this work, we propose for the
first time on radar sensed hand-poses, the use of optimization-based meta-
techniques applied on a convolutional neural network (CNN) to distin-
guish 16 gesture sequences with only one sample per class (shot) in 2-ways,
4-ways and 5-ways experiments. We make use of a frequency-modulated
continuous-wave (FMCW) 60GHz radar to capture the sequences of four
basic hand gestures, which are processed and stacked in the form of tempo-
ral projections of the radar range information (Range-Time Map - RTM).
The experimental results demonstrate how the use of optimization-based
meta-techniques leads to an accuracy greater than 94% in a 5-ways 1-shot
classification problem, even on sequences containing a type of basic gesture
never observed in the training phase. Additionally, thanks to the general-
ization capabilities of the proposed approach, the required training time
on new sequences is reduced by a factor of 8,000 in comparison to a typical
deep CNN.

Keywords: Gesture recognition · Meta learning · Millimeter wave radar

1 Introduction

Gesture sensing technology represents a very direct and intuitive method of
human-computer interaction (HCI). Under the needs of users and system inter-
face architectures, hand movements can be identified and tracked through the
use of a wide variety of sensors and detection algorithms [21]. Conventional meth-
ods for the classification of gestures involve the employment of camera sensors
for optical images or time of flight (ToF) images for depth information. These
sensors allow a complete and touchless understanding of the performed gestures,
but they usually lead to privacy issues and poor performance in the presence of

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 500–511, 2021.
https://doi.org/10.1007/978-3-030-86340-1_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_40&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_40

One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition 501

intense light [10,17,18]. In contrast, Radio-based sensing can be efficiently used
to estimate movements and poses of subjects even through walls and obstruc-
tions [14]. Through Wi-Fi technology, the hand-pose estimation can be addressed
with very high performance even in a cross-domain application, where the user’s
location, orientation, and environment can vary considerably [23]. However, Wi-
Fi-based sensing systems require often to develop high output power in the RF
range and a module in continuous working operation to exploit the functionali-
ties. To overcome these challenges, the use of radar sensors for this application
is becoming a widely adopted practice [2]. Among the various radar modulation
techniques, FMCW is a particularly suitable approach, thanks to its capability
of providing simultaneously accurate range and Doppler information of objects
and people located in the field of view [8,11,19,22]. Excellent results in the clas-
sification of gestures through range-Doppler images are achieved in [12], using
the BGT60TR13C FMCW radar sensor [20]. The authors in [12] use the domain
adaption applied to a CNN to minimize the differences among users’ gestures in
both learning and application stages. Through this approach, an average accu-
racy of 98.8% is achieved on seven gestures performed by ten different users.
Even though the state-of-the-art deep learning methods like [12] achieve excel-
lent accuracy and robustness on radar-based gestures recognition, they demand
a large amount of data to successfully train the detection algorithms [15]. This
suggests that an interface based on such systems, would not be able to learn
promptly how to distinguish new types of movements.

In contrast to the conventional deep learning approach, the meta-learning
(Meta-L) is designed to counter the problem of huge data demand. It is based on
multiple-episode few-shot optimization (tasks), which considers different learning
objectives in many training steps, to extract general information from available
data and efficiently solve series of problems by learning how to learn [7,9]. The
class of optimization-based Meta-L algorithms exploits the model’s parameters
and gradient propagation among several tasks (meta-iterations) to accomplish the
generalization goal. In the inner loop of each meta-iteration, a model tries to solve
anN -ways task, whereN is the number of classes, that are randomly sampled from
a training set of data. An example (1-shot) called support is then sampled for each
class and used for the training. Some algorithms such as Model Agnostic Meta-
Learning (MAML) [6], require additional examples per class called query for the
evaluation of inter-tasks generalization performance after every meta-iteration.

In this paper, we suggest for the first time, the application of optimization-
based meta-learning techniques to classify sequences of hand gestures using only
one sample per class. We make use of the radar range information only, in the
form of RTMs of four different basic gestures, to minimize preprocessing and the
CNN input data complexity. We evaluate the models with a common in-training
procedure (Fig. 1) and test them on a sufficient number of new tasks to prove the
robustness of the approach. With the use of only one sequence of gestures instance
and over 50 test examples per class, we achieve an accuracy of 94% even in the
5-ways experiments. Finally, we compare the performance results of the Meta-
L approach with the ones of a conventional CNN trained on a configuration of

502 G. Mauro et al.

CNN

Training
Tasks
Space

Test Tasks
Space

Eval Task

Eval Task

0

...

X: Meta-Iterations
Y: Accuracy

S: Last Meta-Iter in a Set

Bar-Range Plots
Y

Y

X

X

Meta
Iterations

0

...

Fig. 1. The in-training evaluation of the meta-model is performed after each meta-
iteration (adaptation of the CNN to the new extracted information) on both a train
and a test sampled tasks. Network generalization capability is assessed through bar
plots built on batches of tasks as the meta-iterations progress.

gesture sequences. We report how the potential offline adaptation to new gesture
sequences with the Meta-L model leads, in comparison with the traditional CNN,
to an average training time reduction of 4 orders of magnitude.

2 FMCW Radar Processing

2.1 Radar Sensor

To capture gestures, we use the BGT60TR13C FMCW radar sensor [20]. The
BGT60TR13C is equipped with one transmit (TX) and three receive (RX) chan-
nels including antennas integrated in package. During operations, the instanta-
neous local oscillator and reflected signals from targets are mixed and provide a
resulting signal called intermediate frequency (IF) signal. As an outcome of its
system power mode management and operation optimized duty-cycle, the device
can run at less than 5 mW for a detection range up to 5 m in smart presence
detection uses. Thanks to the center frequency of 60 GHz and a bandwidth of
7 GHz, this radar sensor enables a very high range resolution sensing (≈2 cm).
Moreover, time and micro-Doppler [4] analysis of the IF signal enable the discrim-
ination of elaborate hand gestures with millimeter accuracy. The BGT60TR13C
represents hence, a low-power and small-size solution for short-range sensing
applications.

2.2 Time-Range Preprocessing

The data is gathered with the 60 GHz radar and then processed. It consists of
RTM of four basic gestures [Down/Up, Left/Right, Rubbing, Up/Down] with a
shape of 62 × 32 pixels per sample. We used a single RX antenna and extracted
only the range information to reduce the power consumption and to simplify

One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition 503

the preprocessing pipeline. To obtain the representative RTMs of the gestures
starting from the IF signal, we performed the following preprocessing steps.
First of all, we subtracted the mean chirp value from every data frame (set of
chirps). In the next step, to resolve targets over the range, we computed the first
order Fast Fourier Transform (FFT) in the fast time direction. Then, to derive
the Doppler information, we performed the second-order FFT in the slow time
direction.

The steps mentioned above allowed us to generate the sequence of the range-
Doppler images (RDI) for every gesture. RDIs were then employed to produce
the range-time images. The procedure of obtaining the range-time image is as
follows:

1. identify the point with the highest intensity in the RDI;
2. cut the row in which the point with the highest intensity is localized. This

row corresponds to the distance of the object from the radar in the given time
step;

3. transpose each row and stack them together to form the range-time image.

The adopted preprocessing procedure in its steps is shown graphically in Fig. 2.

...

Range

Doppler

Range

Slow
 Tim

e

Fast Time

Slow
 Tim

e

Fast Time

Slow
 Tim

e

Set ofStack ... Transpose RDIs

Fig. 2. The Range Doppler images (RDI) are obtained through radar frames (IF signal)
preprocessing. The lines of the RDIs with the greatest intensity are then transposed
and stacked in time sequence, to obtain the RTMs.

To ensure a high level of variance of the dataset, the gestures were performed
by five different persons and collected in multiple environments. The experimen-
tal setup and the employed sensor (BGT60TR13C) are shown in Fig. 3.

504 G. Mauro et al.

Down/Up gesture

BGT60TR13 radar system

Fig. 3. Experimental Setup (Down/Up gesture) and BGT60TR13C.

Each gesture was recorded independently, in a timeslot of 3.1 s. To diversify
the gesture occurrence within the recording window, a random shift in time and
range was also applied to every RTM. An example of RTM for each of the four
basic gestures is shown in Fig. 4. Single gestures were then stacked in channels to
make sequences of two and used to generate the meta-dataset for our experiments
(Sect. 3.2).

Fig. 4. Examples of generated RTMs corresponding to the four gestures.

3 Meta-learning Based Network

3.1 Models and Training Procedure

As mentioned previously, we propose using an optimization-based meta-approach
applied on a CNN topology, to recognize hand gesture sequences with only one

One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition 505

sample per class in the 1-shot 2-ways, 1-shot 4-ways and 1-shot 5-ways experi-
ments. For all the experiments, we used a CNN topology with four convolution
layers of 128 filters each, for the extraction of the visual features, a kernel size
3 × 3 and a stride of size 2. All convolutional layers are followed by BatchNor-
malization, to speed up the deep network training, and by rectified linear unit
(ReLu) activation function. The classification is then performed by a fully con-
nected layer with a Softmax activation function. The chosen cost function is
Sparse Categorical Crossentropy while the optimizer is Adam. For each set of
experiments, belonging to a defined number of ways, we employed three tradi-
tional optimization-based meta algorithms: Reptile [16], MAML second-order [6]
and MAML first-order approximation. Additionally, we adopted a version of the
second-order MAML algorithm that uses Multi-Step Loss Optimization (MSL),
Derivative-Order Annealing (DA) and Cosine Annealing (CA) to stabilize inter-
tasks training, as defined by the authors in [3]. The evaluation of the models
is done after each meta-iteration, on a task sampled from the training set and
another one sampled from a set of classes never seen by the model (test). For
each S number of meta-iterations, a box-plot is built on the distribution of the
obtained accuracy values. The trend of inter-tasks accuracy values in the form of
box plots for sets of meta-iterations facilitates estimating the in-training learn-
ing capability of the algorithm. The employed in-training evaluation procedure
is shown as part of the meta-approach schema in Fig. 1.

3.2 Meta-dataset and Tasks Definition

Starting from the dataset D, containing the gathered data of the four basic
gestures [Down/Up, Left/Right, Rubbing, Up/Down] (Sect. 2), we generated a
meta dataset Dm with 16 classes, i.e. all the possible combinations of the four
initial classes. Dm consists of 51 samples per class, where every instance is a
sequence of two RTMs that are randomly sampled from D, augmented and
then stacked in the 3rd dimension (channels). Dm is then split into two sub-
datasets, Dm-train and Dm-test. All the examples of the 7 classes that contain
the basic ‘Left/Right’ move are included in Dm-test so that they never appear
in the training phase and therefore can be used to test the algorithm on never
seen before gestures. Dm-train contains instead all data belonging to the other
9 classes, which correspond to all the combinations of the other three basic
gestures. An example of possible training and test tasks in the 1-shot 2-ways
experiments, sampled respectively from Dm-train and Dm-test, is shown in Fig. 5.

4 Experimental Results

4.1 Models Performance

For each task in every experiment, the convolutional networks were trained for
4 epochs with inner-loop batches of size 2. The best performance results were
obtained with a meta-batch of size 1 in the outer loops (inter-tasks training).

506 G. Mauro et al.

Down-Up / Rubbing

1-shot 2-ways

Up-Down / Down-Up

ChannelsClass 0 Class 1

Left-Right / Rubbing

Test Task

Left-Right / Left-Right

Class 0 Class 1

Training Task

Time [s]
0.0 1.55 3.1

R
an

ge
 [c

m
]

0.
0

17
.1

34
.2

0.
0

3.1

Time [s]
0.0 1.55 3.1

R
an

ge
 [c

m
]

0.
0

17
.1

34
.2

0.
0

Time [s]
0.0 1.55 3.1

3.1

0.
0

17
.1

34
.2

0.
0

Time [s]
0.0 1.55 3.1

3.1

0.
0

17
.1

34
.2

0.
0

3.1

Fig. 5. 1-shot 2-ways meta-experiments. Training and test tasks examples.

An internal learning rate in the range [5 − 10]e−4 and an external one of 1e−4

were adopted for all MAML experiments. For the MAML version that uses
cosine annealing (CA), an initial outer learning rate of 2.5e−4 with a decay step
every 1/4 of the total meta iterations was used. For all the Reptile simulations
instead, an internal learning rate of 1e−3 and a meta step-size for the outer
loop of 0.25 have been employed. All hyperparameters, except for the outer
learning rate in MAML + CA + MSL + DA, were kept constant throughout
the entire meta-training procedure. The chosen number of meta-iterations was
respectively 100 for the 2-way experiments, 3,000 for the 4-ways, and 10,000
for the 5-ways. Only the Reptile algorithm required 15,000 meta-iterations in
the 5-way configuration to achieve a stationary inter-tasks accuracy. The inter-
task generalization capacity during training was evaluated at the end of each
meta-iteration following the procedure described in Sect. 3.1. All experiments
were performed using a Tesla P4 GPU [1,5] and the performance of the models
in terms of inter-task generalization was evaluated as the average percentage
classification accuracy. All experiments were reproduced 3 times each.

Table 1 and Table 2 present respectively, the inter-task percentage median
accuracy and interquartile range (IQR) values achieved with all the combinations
of employed algorithms and chosen number of ways. The listed values in all the
tables represent the mean values obtained over all the reproductions of each
experiment for the first and last meta-tasks batches.

Figure 6 shows the accuracy trend over meta-iterations as a sequence of box
plots of 1,000 samples each, for the MAML + CA + MSL + DA 1-shot 5-ways
experiment. The evaluation done on the training tasks is shown in red in the
upper subplot of Fig. 6, while the evaluation on test tasks is shown in blue in the
bottom subplot. The lighter colored lines in the box plots represent the median
value of the accuracy (50th percentile) in the set of meta-iterations, while the
green triangles indicate the average value.

One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition 507

Fig. 6. In-training evaluation of the inter-task generalization capacity for MAML + CA
+ MSL + DA in the 5-ways experiment. Evaluation on training tasks (upper subplot)
and test tasks (bottom subplot).

All the trained models were further tested on 250 tasks sampled from Dm-test.
For each task, one sample per class was used to train the model and 10 for the
test. This means that e.g. in the 5-ways experiments, 5 training samples and
50 test samples were used. The achieved percentage inter-task mean accuracy
values, averaged over 3 experiments reproductions are presented in Table 3.

As can be seen numerically from the tables, the MAML + CA + MSL + DA
algorithm achieves the best performances regardless of the number of ways. The
application of the second gradient in MAML favors the achievement of a greater
generalization and therefore of higher inter-task accuracy compared to the first-
order algorithms. Furthermore, the outer-loop update, done on a query sample,
increases the algorithm’s robustness thus reducing the dependence on individual
tasks. First-order algorithms (Reptile and MAML 1st order) on the other hand,
achieve very good results in the 2-way experiments but lead to significantly
lower results in more complex experiments (4-ways and 5-ways). This is due to
the first-order approximation of the gradient and therefore to the lack of part of
the information, which becomes significant in more complex experiments.

508 G. Mauro et al.

Table 1. Inter-task percentage median accuracy obtained on test tasks, on an average
of 3 experiment reproductions for the first and last meta tasks batches. * In the Reptile
5-ways experiments (first batch: 0–1,499, last batch: 13,500–14,999).

1-shot experiments - median accuracy

Algorithm 2-ways 4-ways 5-ways*

0–24 75–99 0–299 2700–2999 0–999 9000–9999

Reptile 91.67% 94% 81% 90% 70.67% 72.67%

MAML 1st Ord 94.67% 97% 76% 90.67% 72% 85%

MAML 2nd Ord 95.67% 98% 78% 92.67% 86% 96%

MAML 2nd CA+MSL+DA 96.33% 98% 82.67% 96% 87.33% 96%

Table 2. Inter-task interquartile range (IQR) measures, obtained on test tasks, on an
average of 3 experiment reproductions for the first and last meta tasks batches. * In
the Reptile 5-ways experiments (first batch: 0–1,499, last batch: 13,500–14,999).

1-shot experiments - interquartile ranges

Algorithm 2-ways 4-ways 5-ways*

0–24 75–99 0–299 2700–2999 0–999 9000–9999

Reptile 12.33% 6.33% 16% 12.33% 19.33% 16.67%

MAML 1st Ord 5% 1.67% 20% 13.33% 20% 18.33%

MAML 2nd Ord 4.33% 1% 12.33% 9% 16.67% 8%

MAML 2nd CA+MSL+DA 3.67% 1% 30% 9.33% 16% 6%

Table 3. Inter-task percentage mean accuracy obtained on 250 test tasks for each
experiment and number of ways on an average of 3 reproductions.

Algorithm 1-shot experiments - test accuracy

2-ways 4-ways 5-ways

Reptile 92.59% 86.22% 72.36%

MAML 1st Ord. 96.81% 89.37% 84.88%

MAML 2nd Ord. 96.87% 91.09% 93.20%

MAML 2nd Ord. CA+MSL+DA 97.12% 94.67% 94.12%

For all the experiments, the increment in the median and mean accuracy
(Table 1), and the reduction of whiskers and quartiles of box plots with progress-
ing of meta-iterations (Table 2), represent the models’ ability to learn faster to
solve new tasks. This means that with time, the CNN learns how to solve new
tasks with better performance than before, thanks to the context information
extracted from the previously faced tasks.

To exhibit the versatility of the meta-approach in adapting to new tasks, we
compared our best model in the 1-shot 4-ways, with the optimized CNN defined

One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition 509

in [13], that has been used to classify the four basic gestures dataset employing
a conventional deep learning approach. In our case, we trained this traditional
CNN on tasks sampled from Dm-test, using 1,000 sequences of two gestures for
training and 200 for testing. Through a transfer learning approach on new tasks,
this model fails to reach an appreciable accuracy value (over 85%) despite the
significant amount of training data. Consequently, each new training is done
starting from a random initialization of the model parameters.

In Table 4, the average performance values of 3 independent tests of the
traditional CNN are compared with the ones achieved by testing the best MAML
+ CA + MSL + DA model on 50 samples per class and over 250 tasks. The
training of both models in this case has been done using a 5 cores CPU. The
performance values achieved by the traditional CNN are presented in the relative
two sub-columns of the table. The maximum achieved test accuracy and its
required training time are listed in the first sub-column. The second sub-column
shows instead, the time required to reach an average test accuracy comparable
to that of the 1-shot Meta-L CNN. Besides, we also tested how many training
shots per class are needed for the meta-model to achieve a prediction accuracy
in the order of the traditional CNN.

Table 4. Performance comparison of traditional and Meta-L CNNs for the 4-ways
tasks. Training of both models done on a five cores CPU.

Trad. CNN Meta-L CNN

Training samples 1000 4 8

Test samples 200 200 200

Avg. train. time 56 min 39 min 400 ms 1,580 ms

Test accuracy 98.85% 93.67% 93.47% 98.32%

As can be observed, the optimized CNN achieves greater accuracy on the test
samples, at the expense of a large amount of data and a long adaptation time
to new tasks. The meta-model, on the other hand, thanks to the pre-acquired
knowledge during training, is capable of adapting to new contexts with only one
sample per class and in a very short time.

5 Conclusion

This paper demonstrates that the use of optimization-based meta-techniques
can bring significant benefits for the recognition of FMCW radar-based hand
gesture sequences. The inter-tasks learning approach considerably enhances the
model’s ability to adapt to new potential gestures or performing users. The
experimental results show how even with a single sample per sequence, it is
possible to achieve an inter-task accuracy of over 94% in the 5-way setup on new
test tasks. The outcomes also highlight how the Meta-L approach can lead to an

510 G. Mauro et al.

accuracy comparable to that of a traditional CNN with only a few more samples
per class. Furthermore, it is shown how the adaptation of the obtained models to
new tasks can take less than half of a second when performing the experiments
on a 5 cores CPU. Future work will focus on the application of meta-learning
for the recognition of a greater set of gestures and on an online demonstrator to
test the approach.

References

1. Awan, A.A., Subramoni, H., Panda, D.K.: An in-depth performance characteriza-
tion of CPU-and GPU-based DNN training on modern architectures. In: Proceed-
ings of the Machine Learning on HPC Environments, pp. 1–8 (2017)

2. Ahmed, S., Kallu, K.D., Ahmed, S., Cho, S.H.: Hand gestures recognition using
radar sensors for human-computer-interaction: a review. Remote Sens. 13(3), 527
(2021)

3. Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. arXiv preprint
arXiv:1810.09502 (2018)

4. Chen, V.C.: The micro-Doppler Effect in Radar. Artech House (2019)
5. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia tesla: a unified graph-

ics and computing architecture. IEEE Micro 28(2), 39–55 (2008)
6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation

of deep networks. In: International Conference on Machine Learning, pp. 1126–
1135. PMLR (2017)

7. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural
networks: a survey. arXiv preprint arXiv:2004.05439 (2020)

8. Issakov, V., Bilato, A., Kurz, V., Englisch, D., Geiselbrechtinger, A.: A highly
integrated D-Band multi-channel transceiver chip for radar applications. In: 2019
IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology
Symposium (BCICTS), pp. 1–4. IEEE (2019)

9. Vanschoren, J.: Meta-learning: a survey. arXiv preprint arXiv:1810.03548 (2018)
10. Khari, M., Garg, A.K., Crespo, R.G., Verdú, E.: Gesture recognition of RGB and

RGB-D static images using convolutional neural networks. Int. J. Interact. Multi-
media Artif. Intell. 5(7) (2019)

11. Lammert, V., Achatz, S., Weigel, R., Issakov, V.: A 122 GHz ISM-band FMCW
radar transceiver. In: 2020 German Microwave Conference (GeMiC), pp. 96–99.
IEEE (2020)

12. Lee, H.R., Park, J., Suh, Y.J.: Improving classification accuracy of hand gesture
recognition based on 60 GHz FMCW radar with deep learning domain adaptation.
Electronics 9(12), 2140 (2020)

13. Chmurski, M., Zubert, M., Bierzynski, K., Santra, A.: Analysis of edge-optimized
deep learning classifiers for radar-based gesture recognition. IEEE Access (2021)

14. Zhao, M., et al.: Through-wall human pose estimation using radio signals. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7356–7365 (2018)

15. Marcus, G.: Deep learning: a critical appraisal. arXiv preprint arXiv:1801.00631
(2018)

16. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

http://arxiv.org/abs/1810.09502
http://arxiv.org/abs/2004.05439
http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1803.02999

One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition 511

17. Oudah, M., Al-Naji, A., Chahl, J.: Hand gesture recognition based on computer
vision: a review of techniques. J. Imaging 6(8), 73 (2020)

18. Augustauskas, R., Lipnickas, A.: Robust hand detection using arm segmentation
from depth data and static palm gesture recognition. In: 2017 9th IEEE Interna-
tional Conference on Intelligent Data Acquisition and Advanced Computing Sys-
tems: Technology and Applications (IDAACS), vol. 2, pp. 664–667. IEEE (2017)

19. Rimmelspacher, J., Ciocoveanu, R., Steffan, G., Bassi, M., Issakov, V.: Low power
low phase noise 60 GHz multichannel transceiver in 28 nm CMOS for radar appli-
cations. In: 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
pp. 19–22. IEEE (2020)

20. Trotta, S., et al.: Soli: a tiny device for a new human machine interface. In: 2021
IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 42–44.
IEEE (2021)

21. Yasen, M., Jusoh, S.: A systematic review on hand gesture recognition techniques,
challenges and applications. PeerJ Comput. Sci. 5, e218 (2019)

22. Wang, Y., Ren, A., Zhou, M., Wang, W., Yang, X.: A novel detection and recog-
nition method for continuous hand gesture using FMCW radar. IEEE Access 8,
167 264–167 275 (2020)

23. Zheng, Y., et al.: Zero-effort cross-domain gesture recognition with wi-Fi. In: Pro-
ceedings of the 17th Annual International Conference on Mobile Systems, Appli-
cations, and Services, pp. 313–325 (2019)

Few-Shot Learning with Random Erasing
and Task-Relevant Feature Transforming

Xin Wang1,2, Shouhong Wan1,2, and Peiquan Jin1,2(B)

1 University of Science and Technology of China, Hefei, China
wx3435@mail.ustc.edu.cn, {wansh,jpq}@ustc.edu.cn

2 Key Laboratory of Electromagnetic Space Information, CAS, Hefei, China

Abstract. Few-shot learning for visual recognition aims to classify
images from unseen classes with only a few labeled samples. Many previ-
ous works address such a challenge by using a base set consisting of mas-
sive labeled samples to learn a feature extractor, which is transferred to
categorize unseen classes from a novel set. However, a challenging issue is
how to make the learned feature extractor transferable in few-shot learn-
ing because the categories extracted from the base set are different from
those in the novel set. To address this issue, this paper proposes a novel
Random Erasing Network(RENet) to make the network better utilize the
full context of the input image, yielding a more transferable network than
previous networks that only use the most discriminative features. Fur-
ther, we present a Task-Relevant Feature Transforming(TRFT) frame-
work based on CrossTransformers to generate embedding that can better
exploit the information within the current task. Then, we combine RENet
and TRFT to implement a cooperative training model RE-TRFT for the
episodic training. We conduct extensive experiments on two benchmarks
and the results show that our approach outperforms recent state-of-the-
art methods.

Keywords: Few-shot learning · Random erasing · Feature
transforming

1 Introduction

Deep learning-based methods have made significant achievements on a variety
of computer vision tasks, such as image classification [1,2], object detection [3,4]
and semantic segmentation [5,6]. However, these supervised methods commonly
rely on a large number of labeled samples, which are scarce or expensive in many
practical applications. In contrast, humans are good at learning new visual con-
cepts from very little direct supervision. Few-shot learning (FSL) aims to com-
putationally mimic human perception systems with the help of deep learning.
Conventionally, there are two fundamental data sets in few-shot learning prob-
lem, namely base set(seen classes) and novel set(unseen classes). Each class in

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 512–524, 2021.
https://doi.org/10.1007/978-3-030-86340-1_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_41&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_41

Few-Shot Learning with Random Erasing and Feature Transforming 513

the base set contains abundant labeled samples, while the class in the novel
set has only a few labeled samples. Note that there is no class overlap between
the base and novel sets. The main idea of FSL is to discover transferable visual
knowledge in the seen classes, and leverage it to construct a desired classifier
that can correctly categorize the unseen query samples from the novel set.

Compared to traditional image classification, few-shot learning has two major
challenges. The first challenge is the non-overlap categories between the base and
novel set, and the second is the low-data problem. A straightforward method to
solve FSL is to train a model with base set and fine-tune it with few labeled
novel set samples. However, with too little labeled data for each class, such a
system empirically performs poorly. Recently, the episodic training strategy [7]
is proposed to take place of the ineffective fine-tuning approach. As a typical
meta-learning paradigm, it samples a number of classification tasks from the
base set by imitating the settings in the test phase, which we call episodes, to
narrow the gap between the training and test settings and enhance the general-
ization ability of the model. With the help of episodic training, many methods
have been proposed to solve the challenging few-shot classification problem by
building a good metric function and encouraging the network to learn transfer-
able knowledge that can effectively compare the feature similarity of different
samples in a shared feature space [16–19,22].

While promising, such approaches suffer from an important limitation:
Assuming the test features extracted by the embedding function trained on the
seen classes are generalizable enough to represent the true distributions of the
unseen classes. However, since the feature extractor never sees the categories in
the novel set, it focuses much more likely on the discriminative visual knowledge
that will be useful for base classes recognition rather than novel ones and may
occasionally ignore the critical concepts for unseen classes. For the pre-trained
classification model, the classifier usually determines the category of an image
by only exploiting the discriminative information from part of target objects [8].
By contrast, extracting features that contain the intact target object [28] and
exploiting the full context of the whole image can be more transferable.

In this work, we propose a novel random-erasing network called RENet to
enhance the transferability of the feature embedding function. While we could
specifically remove important visual features from the input image with super-
vised information(e.g., Class Activation Map), we choose to randomly remove
regions of a fixed size as Cutout [9] due to its inherent simplicity and similar
effectiveness. Then, based on RENet, we further present a task-relevant feature
transforming framework to explore the latent task-relevant information within
the current episode. Intuitively, the most useful features for distinguishing “cat”
versus “fish” could be quite different and noise compared to the task of distin-
guishing “cat” versus “dog”. Therefore, it is necessary to make use of such useful
latent information especially when data is scarce. To summarize, we make the
following contributions in this paper:

(1) We propose a new Random-Erasing Network (RENet) to enhance the trans-
ferability of the feature extractor by exploiting the full context of the image in

514 X. Wang et al.

the base set. RENet presents a random erasing method to force the network
to concentrate on part of the areas for each image by removing regions repeat-
edly. Such a mechanism is helpful to exploit the extra subordinate information
for the input image and improve the model’s robustness.

(2) We establish a Task-Relevant Feature Transforming (TRFT) framework to
modulate features and reduce the feature similarity among different classes
within the current episode. TRFT can better utilize the potential correlation
information among different samples within a task and adapt the feature
embedding to the current task, which can enhance the effectiveness of the
feature learning.

(3) We combine RENet and TRFT to implement a cooperative training model
RE-TRFT for the episodic training, and conduct comprehensive experiments
on two datasets to verify the performance of our proposal. The results suggest
the effectiveness of RE-TRFT.

2 Related Work

According to the adopted techniques, existing few-shot learning methods can
be categorized into two groups, namely optimization-based methods and metric
learning-based methods.

2.1 Optimization-Based Methods

Optimization-based methods focus on quickly adapting the model parameters
to current tasks with a few fine-tuning updates [10,12–15]. Typical approaches
like MAML [10] and Reptile [12] target to learn a good way of parameters ini-
tialization that makes the model easy to fine-tune. MetaLSTM [11] adopts Long
Short-Term Memory(LSTM) as an optimizer and propose to treat the model
parameters as its hidden state. LEO [15] decoupled the gradient-based adapta-
tion procedure of the model parameters and performed meta-learning to find
suitable parameters for the current task in the low-dimensional latent space.
These methods commonly rely on simple base learners such as nearest neigh-
bor classifiers. Lee et al. [14] argued that discriminatively trained linear predic-
tors could offer better generalization than simple base learners. Specifically, this
approach exploited two properties of linear classifiers to use high-dimensional
embedding with improved generalization.

2.2 Metric Learning-Based Methods

Metric learning-based methods aim at learning representations that minimize
the intra-class distances within the same class while maximize the inter-class
distances among different classes. These approaches first learned an embedding
space with feature extractor and then employed a distance function to determine
the category of the input test samples [16–22,27,28]. For example, Prototypical
Network [16] viewed the learned features as the class prototype and performed

Few-Shot Learning with Random Erasing and Feature Transforming 515

nearest neighbor classification based on the Euclidean distance. Relation Net-
work [17] proposed to construct a learnable metric module to take place of spe-
cific distance functions such as cosine similarity and Euclidean distance. These
approaches conducted image-level feature comparison by performing global pool-
ing to the final features. DN4 [18] adopted a local descriptor-based image-to-class
measure instead of the image-level measure for the first time to calculate the
distance among different samples. This measure was conducted via a k-nearest
neighbor search over local descriptors of the feature maps. Similarly, Lifchitz et
al. [20] viewed each of the local representations as a single classification unit
and proposed dense classification among all the positions of the features. Hou et
al. [19] proposed a Cross Attention Module between a query set and a support
set to enhance the feature discriminability. Simon et al. [21] formulated FSL as
a two-stage learning paradigm and proposed an extension of existing dynamic
classifiers by using subspace.

Our approach is related to metric learning-based methods. We focus on how
to obtain good generalization ability for the feature extractor and exploit the
feature semantic relevance among the current task.

3 Methodology

In this section, we first formulate the FSL problem. Then, we detail the proposed
RENet and the TRFT framework.

3.1 Problem Statement

In the standard formulation of few-shot learning, we are given a large labeled
data set Dbase, test support set Stest with typically 1–5 labeled examples each
class and test query set Qtest which has the same label space with test support
set. We call the test task with C categories and K labeled examples per class
in Stest as C-way K-shot task. Our goal is to use Dbase and Stest to correctly
classify the samples in the test query set.

Following [7,16,19,22], we adopt episodic training mechanism and construct
training episodes by simulating the test process in the training stage. Specifically,
in each training episode, we sample a training support set Strain and a training
query set Qtrain from Dbase, which are formulated as Strain = {Si}Ns

i=1 and
Qtrain = {Qj}Nq

j=1 respectively, where Ns = C × K and Nq = C × M . M here
denotes the number of query samples per class in Qtrain. How to represent each
training support class and query sample and accurately measure the distance
between them is the key issue for FSL.

3.2 Random Erasing Network (RENet)

The first challenge in our approach is to improve the generalization ability of
the embedding function to extract better features for unseen classes. Motivated
by Cutout [9], we adopt the simple yet effective image-level random erasing

516 X. Wang et al.

approach to better exploit the full context of the input image rather than the
most discriminative features for the seen classes. Empirically, networks trained
in this way can be more sensitive to transferable semantic information.

Cutout

Random Erasing Module

Support Set

1S 2S 3S

Classifier

Transform
ed

Set

Support
Features

Transformed
Features

matchL

clsL

1
nS 2

nS 3
nS

Fig. 1. Illustration of the proposed RENet.

To this end, we randomly convert part of the training episodes into random
erasing episodes and retain the left episodes to imitate the test settings as before.
Specifically, let Strain = {Si}Ns

i=1 be the training support set in each episode,
and ρ (·) denote the random erasing operation, as shown in Fig. 1. Note that we
directly discard the query set in each random erasing episode since samples in
support set are enough for our purpose. We transform each sample in Strain with
ρ (·) for r times to generate a new support set formulated as Sn = {Sn

j }Ns
j=1, where

n ∈ {1, 2, ..., r}. The label for each new image in the random erasing episode
is its index in the original support set. Then, the original support set and new
transformed set are fed into a weight shared feature extractor to generate feature
embeddings, which denoted as {FSi

}Ns
i=1 and {FSn

j
}Ns
j=1. Finally, we conduct a

Ns − way match task and a global classification for the new support features.
To be specific, the Ns − way match loss is defined as the negative log-

probability according to the corresponding class index, as shown in Eq. 1 and
Eq. 2. Here, d represents the squared Euclidean distance.

L
match

= −
r∑

n=1

Ns∑

i=1

log p(y = i|FSn
i
) (1)

p(y = i|FSn
i
) =

exp(−d(GAP (FSn
i
), GAP (FSi

)))
Ns∑
j=1

exp(−d(GAP (FSn
i
), GAP (FSj

)))
(2)

Few-Shot Learning with Random Erasing and Feature Transforming 517

Cross
Transformers

Linear

Feature map
Query-aligned

Prototype
Support

Query

QQ

3P

2P

1P *
1P

*
2P

*
3P

FC+so�
m

ax

M
etric

clsL

1S

2S

3S

0Q

1S
F

2S
F

3S
F

0Q
F

metricL

⊗

⊗

⊗

1M

2M

3M
3P

2P

1P
Shared with

RENet

Spa�al
A�en�on

Fig. 2. Overview of the proposed TRFT framework. Here we take 3-way 1-shot as an
example. The symbol ⊗ denotes the pointwise multiplication.

In addition, the global classification loss Lcls is the regular CrossEntropy loss
generated by a learned linear layer W1 followed by a softmax operation (Eq. 3).

Lcls = −
r∑

n=1

Ns∑

i=1

log p(softmax(W1(FSn
i
))) (3)

To sum up, the overall loss function for RENet is defined by Eq. 4, where λ
is the weight to balance the effects of different losses.

LRE = Lcls + λLmatch (4)

3.3 Task-Relevant Feature Transforming (TRFT)

For the regular training episodes, support and query samples commonly get their
features independently, thus may well ignore the semantic relevance between the
class and query features. Recently, an effective feature fusion approach is pro-
posed in [22], which is called CrossTransformers. As shown in Fig. 2, CrossTrans-
formers gets input the support and query features and outputs the query-aligned
prototype for each class. Specifically, we denote the input support features as
FS = {FSi

}C×K
i=1 , where C and K represent C categories and K samples per

class in an episode. The query feature is defined as FQ0 . Following Transformer,
key-value pairs are generated for each image in support set using two different
linear maps, and a query linear map is adopted for the query feature. Then a dot-
product attention map can be obtained with key and query features, followed by
a softmax across all the spatial locations in F c

S for category c. The attention map
is used to align features in a support class with the query feature FQ0 . By using
CrossTransformers, we can effectively aggregate the information among support
and query samples. However, the obtained query-aligned prototypes get closer
with each other in the embedding space since all of them are aligned with the

518 X. Wang et al.

same query feature, which may confuse the downstream classifier. To reduce the
feature similarity among different class prototypes and in the meantime exploit
the relevant information within the current task, we propose a spatial attention
module as illustrated in Fig. 3 by utilizing only the query-aligned prototypes.

AT BT

1,2P 1,3P

2,1P 2,3P

3,1P 3,2P

'
1P

'
2P

'
3P

Mean

Spa�al A�en�on Module

Fig. 3. Illustration of our proposed spatial attention modulation. Here TA and TB are
two nonlinear transformation. The output channel of TB equals one to get a spatial
weight mask.

Assuming that we have got the query-aligned prototypes P = {Pi}Ci=1 and
the query feature Q, we first adopt a pointwise subtraction among P and denote
the output as Pi,j = Pi − Pj , which represents the difference between Pi and
Pj . Then, we conduct a nonlinear transformation TA for each Pi,j to aggregate
the local information in the difference maps. After that, we get the mean of

the transformed difference maps for the same class P
′
i =

C∑
j=1,j �=i

Pi,j , followed

by another nonlinear transformation TB . At last, the spatial attention masks
{Mi}Ci=1 are obtained which indicate the weight of each spatial location for P .
Note that TA and TB are both convolution operations.

Similarly, we build a C − way classification loss Lmetric and a global classifi-
cation loss Lcls as in the random erasing episodes. The difference is, we conduct
the form of dense classification like CAN [20]. As shown in Eq. 5, Eq. 6, and
Eq. 7.

Lmetric = −
M∑

j=1

H×W∑

i=1

log p(y = k|Qi
j) (5)

p(y = k|Qi
j) =

exp(sim(Qi
j , GAP (P ∗

k)))
C∑

m=1
exp(sim(Qi

j , GAP (P ∗
m)))

(6)

Lcls = −
M∑

j=1

H×W∑

i=1

log p(softmax(W2(Qi
j))) (7)

Few-Shot Learning with Random Erasing and Feature Transforming 519

Here, Qi
j represents the ith spatial position for the jth query feature, k is the

corresponding class for Qj , M denotes the query numbers in a task, H and W
are the height and width of the final query feature. We choose cosine similarity
as the metric function sim.

Finally, the overall classification loss for TRFT episodes can be defined by
Eq. 8.

LTRFT = Lcls + βLmetric (8)

where β denotes the weight hyperparameter.

3.4 RE-TRFT: Integration of RENet and TRFT

To better use the transferable and task-relevant properties, we incorporate
RENet and TRFT into the episodic training procedure to construct a coopera-
tive training modulation. Specifically, we randomly convert 50% of the training
episodes into random erasing episodes namely the RENet training process. The
feature extractor trained with RENet can capture generalized visual knowledge
that may transfer well to the unseen classes. Then, for the left 50% training
episodes, we perform the regular feature matching tasks with TRFT framework.
Note that, TRFT framework shares the same feature extractor with RENet.
With such a training strategy, the TRFT framework can acquire both transfer-
able meta-knowledge and task-relevant feature modulating ability in the episodic
training procedure, which are critical for novel set samples in the test phase.

4 Performance Evaluation

4.1 Implementation Details

Following the setting in [20,21,25], we use miniImageNet and tiredImageNet to
evaluate our proposed methods. The miniImageNet contains 100 classes with
600 images per class. These 100 classes are divided into 64 training classes, 16
validation classes, and 20 test classes, respectively. The tiredImageNet is a much
larger dataset, which consists of 34 categories(608 classes) and 779,165 images
in total. These are divided into 20 categories for training, 6 categories for vali-
dation, and 8 categories for testing. Note that the base set is formed by training
classes while the novel set is sampled from validation and test classes. We resize
the original images to 84 × 84 pixels and conduct basic image augmentation as
in [26].

We use ResNet-12 as our embedding model, and we stack two convolutional
layers to construct the non-linear transformation TA and TB . In random erasing
training episodes, we conduct different erasing manners following the operations
in [9] and we choose to cutout r = 2 times for each support image. The feature
extractor is pre-trained by conducting a traditional classification task(e.g., 64
classes in the miniImageNet) on the training set. The initial learning rate is
0.002 and decreased by half every 40 epochs. The weight hyperparameter λ and

520 X. Wang et al.

β are set to 0.5 and 0.1 respectively. At test time, each test task is fed into the
TRFT framework to modulate features without performing the random erasing
operation. We report the performance of our method using the mean accuracy
and the 95% confidence interval on 600 randomly generated episodes. PyTorch
and NVIDIA 2080Ti GPUs are used throughout our experiments.

4.2 Comparison with State-of-the-Arts

Table 1 and Table 2 show the results of our method and other state-of-the-art
methods on miniImageNet and tiredImageNet. We can observe from the results
that our proposed model achieves the best performance in both 1-shot and 5-shot
among those competitive methods on two commonly used datasets. Especially
in the 1-shot setting, we significantly improve the accuracy by 1.6% compared to
ConstellationNet [27] on miniImageNet and 1.3% than E3BM [25] on tiredIma-
geNet. This might due to the improved generalization ability of the model, and
a better way to exploit extra information within a task, which could be vital in
the extremely low data regime. In addition, our method achieves similar result
compared to the recently proposed CSEI [28] with the superiority of simplic-
ity and efficiency without complicated image pre-processing steps. It is worth
mentioning that we achieve relatively stable test accuracy compared with other
competitive methods.

Table 1. The 5-way, 1-shot and 5-shot classification testing accuracy(%) on mini-
ImageNet with 95% confidence intervals. These methods are divided into two types:
Optimization-based methods(O) and Metric-based methods(M). “†”: Results re-
implemented by ourselves.

Method Type Backbone 1-shot 5-shot

MAML [10] O Conv-32F 48.70 ± 1.84 63.11 ± 0.92

Meta-SGD [13] O Conv-32F 50.47 ± 1.87 64.03 ± 0.94

LEO [15] O WRN-28-10 61.76 ± 0.08 77.59 ± 0.12

ProtoNet [16] M Conv-64F 49.42 ± 0.78 68.20 ± 0.66

DN4 [18] M Conv-64F 51.24 ± 0.74 71.02 ± 0.64

CAN [19] M ResNet-12 63.85 ± 0.48 79.44 ± 0.34

DSN-MR [21] M ResNet-12 64.60 ± 0.72 79.51 ± 0.50

E3BM [25] M ResNet-12 63.8 ± 0.4 80.1 ± 0.3

FEAT [26] M ResNet-12 62.96 ± 0.2 78.49 ± 0.15

ConstellationNet [27] M ResNet-12 64.89 ± 0.23 79.95 ± 0.37

CSEI† [28] M ResNet-12 66.70 ± 0.65 81.41 ± 0.72

RE-TRFT(Ours) M ResNet-12 66.48 ± 0.32 81.24 ± 0.57

Few-Shot Learning with Random Erasing and Feature Transforming 521

Table 2. The 5-way, 1-shot and 5-shot classification testing accuracy(%) on tiredIm-
ageNet with 95% confidence intervals.

Method Type Backbone 1 shot 5 shot

ProtoNet [16] M Conv-64F 53.31 ± 0.89 72.69 ± 0.74

CAN [19] M ResNet-12 69.89 ± 0.51 84.23 ± 0.37

DSN-MR [21] M ResNet-12 67.39 ± 0.82 82.85 ± 0.56

E3BM [25] M ResNet-12 71.2 ± 0.4 85.3 ± 0.3

FEAT [26] M ResNet-12 70.80 ± 0.23 84.79 ± 0.16

RE-TRFT(Ours) M ResNet-12 72.49 ± 0.57 85.90 ± 0.43

4.3 Ablation Study

Effect of Different Modules. We evaluate the effectiveness of each compo-
nent of our method on miniImageNet with 5-way 1-shot and 5-shot settings. We
adopt ProtoNet [16] implemented by ourselves as the baseline for comparison.
Table 3 gives the results, we can observe that both RENet and TRFT are criti-
cal for the accuracy gain. Specifically, CrossTransformers [22] together with our
proposed spatial attention module achieves a great improvement in test accuracy
and stability compared with baseline. Besides, the RENet improves the perfor-
mance by more than 1% compared with baseline, which shows the importance
of capturing transferable features in few-shot classification task. When we use
RENet and TRFT together, we can get the best performance.

Table 3. Effect of RENet and each components of TRFT. TRFT is the combination
of CrossTransformers and Spatial Attention module.

Method 1 shot Acc(%) 5 shot Acc(%)

ProtoNet 60.37 ± 0.83 78.02 ± 0.74

ProtoNet+Spatial Attention 60.91 ± 0.87 78.15 ± 0.81

ProtoNet+CrossTransformers 64.57 ± 0.43 79.20 ± 0.59

ProtoNet+TRFT 65.73 ± 0.36 80.59 ± 0.52

ProtoNet+RENet 65.31 ± 0.45 80.34 ± 0.63

ProtoNet+RENet+TRFT 66.48 ± 0.32 81.24 ± 0.57

Effect of Different Erasing Manners. We conduct more experiments to
deeply investigate the influence of different erasing manners, i.e., size, shape,
and the inpainting content of the erasing region on miniImageNet with 5-way
5-shot setting. Figure 4 gives the results. We can observe from Fig. 4(a) that
a proper patch length makes a big difference to the result. When the patch

522 X. Wang et al.

0 5 10 16 21 28 42 59
77

77.5

78

78.5

79

79.5

80

80.5

81

81.5

Va
lid

a�
on

 A
cc

ur
ac

y
(%

)

Patch Length (pixels)

Baseline Cutout

(a) Result with different patch lengths.

80

80.2

80.4

80.6

80.8

81

81.2

81.4

1 2 0.5 random

Va
lid

a�
on

 A
cc

ur
ac

y
(%

)

Aspect Ra�o

(b) Result with different aspect ratios.

80

80.2

80.4

80.6

80.8

81

81.2

81.4

(0,0,0) random noise average

Va
lid

a�
on

 A
cc

ur
ac

y
(%

)

Inpain�ng Content

(c) Result with different inpainting contents.

Fig. 4. Effect of different erasing manners. (a) The input image size is 84 × 84, we ran-
dom erase

{
1
2
, 1
4
, 1
9
, 1
16
, 1
25

}
and a few other small patches of the input image. Baseline is

a model trained without random erasing. (b) “random” denotes a randomly generated
width with height calculated by the fixed area. (c) (0,0,0) represents the pure black
color inpainting. “average” indicates painting with the mean value of the input image.

length is about a quarter of the image width, we can get the best performance.
As the patch length increasing continuously, the validation accuracy decreases
rapidly. This might due to the vast information loss which could confuse the
global classifier in the random erasing episode. In Fig. 4(b) and Fig. 4(c), we
can observe that the simple square erasing and zero-padding can yield effective
results compared with other special operations. The square shape in the cutout
operation is compatible with the input image which is beneficial for erasing part
of the discriminative area and the zero-padding can easily eliminate the impact
of this region.

5 Conclusion

In this paper, we propose a novel random erasing training strategy to exploit
extra subordinate information for the input image to improve the robustness

Few-Shot Learning with Random Erasing and Feature Transforming 523

and transferability of the model. To be specific, we adopt the simple yet effec-
tive Cutout operation as our erasing method and conduct a few times to bet-
ter explore information within the current image. Besides, we propose a task-
relevant feature transforming framework to adapt generated features to the
current task base on CrossTransformers. Extensive experiments show that our
method can achieve better performance than recent competitive few-shot learn-
ing approaches.

Acknowledgments. This paper is supported by the National Science Foundation of
China (grant no. 62072419).

References

1. Tian, Q., Wan, S., Jin, P., et al.: A novel feature fusion with self-adaptive weight
method based on deep learning for image classification. In: PCM, pp. 426–436
(2018)

2. Yang, X., Wan, S., Jin, P., et al.: MHEF-TripNet: mixed triplet loss with hard
example feedback network for image retrieval. In: ICIG, pp. 35–46 (2019)

3. Yang, X., Wan, S., Jin, P.: Domain-invariant region proposal network for cross-
domain detection. In: ICME, pp. 1–6 (2020)

4. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time
object detection. In: CVPR, pp. 779–788 (2016)

5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR, pp. 3431–3440 (2015)

6. Chen, L.C., Papandreou, G., et al.: Deeplab: semantic image segmentation with
deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans.
Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

7. Vinyals, O., Blundell, C., Lillicrap, T., et al.: Matching networks for one shot
learning. In: NeurIPS, pp. 3630–3638 (2016)

8. Wei, Y., Feng, J., Liang, X., et al.: Object region mining with adversarial erasing: a
simple classification to semantic segmentation approach. In: CVPR, pp. 6488–6496
(2017)

9. DeVries, T., Taylor, G.: Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552 (2017)

10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning, PMLR, pp.
1126–1135 (2017)

11. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR
(2016)

12. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

13. Li, Z., Zhou, F., Chen, F., et al.: Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835 (2017)

14. Lee, K., Maji, S., Ravichandran, A., et al.: Meta-learning with differentiable convex
optimization. In: CVPR, pp. 10657–10665 (2019)

15. Rusu, A., Rao, D., Sygnowski, J., et al.: Meta-learning with latent embedding
optimization. In: International Conference on Learning Representations (2018)

16. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
NeurIPS, pp. 4080–4090 (2017)

http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1707.09835

524 X. Wang et al.

17. Sung, F., Yang, Y., Zhang, L., et al.: Learning to compare: relation network for
few-shot learning. In: CVPR, pp. 1199–1208 (2018)

18. Li, W., Wang, L., Xu, J., et al.: Revisiting local descriptor based image-to-class
measure for few-shot learning. In: CVPR, pp. 7260–7268 (2019)

19. Hou, R., Chang, H., Ma, B., et al.: Cross attention network for few-shot classifica-
tion. In: NeurIPS, pp. 4005–4016 (2019)

20. Lifchitz, Y., Avrithis, Y., Picard, S., et al.: Dense classification and implanting for
few-shot learning. In: CVPR, pp. 9258–9267 (2019)

21. Simon, C., Koniusz, P., Nock, R., et al.: Adaptive subspaces for few-shot learning.
In: CVPR, pp. 4136–4145 (2020)

22. Doersch, C., Gupta, A., Zisserman, A.: CrossTransformers: spatially-aware few-
shot transfer. In: NeurIPS (2020)

23. Wang, Y.K., Xu, C.M., et al.: Instance credibility inference for few-shot learning.
In: CVPR, pp. 12836–12845 (2020)

24. Li, K., Zhang, Y., Li, K., et al.: Adversarial feature hallucination networks for
few-shot learning. In: CVPR, pp. 13470–13479 (2020)

25. Liu, Y., Schiele, B., Sun, Q.: An ensemble of epoch-wise empirical bayes for few-
shot learning. In: ECCV, pp. 404–421 (2020)

26. Ye, H., Hu, H., Zhan, D., et al.: Few-shot learning via embedding adaptation with
set-to-set functions. In: CVPR, pp. 8808–8817 (2020)

27. Xu, W., Xu, Y., Wang, H., et al.: Attentional constellation nets for few-shot learn-
ing. In: ICLR (2021)

28. Li, J., Wang, Z., Hu, X.: learning intact features by erasing-inpainting for few-shot
classification. In: AAAI (2021)

Fostering Compositionality in Latent,
Generative Encodings to Solve the

Omniglot Challenge

Sarah Fabi(B) , Sebastian Otte , and Martin V. Butz

Neuro-Cognitive Modeling Group, University of Tübingen, Tübingen, Germany
sarah.fabi@uni-tuebingen.de

Abstract. The ability to develop representations of components and to
recombine them in a new but compositionally meaningful manner is con-
sidered a hallmark of human cognition, which has not been reached by
machines, yet. The Omniglot challenge taps into this deficit by posing
several one-shot/few-shot generation and classification tasks of handwrit-
ten character trajectories. In contrast to the original approach of provid-
ing character components, we investigated how compositional represen-
tations can develop naturally within a generative LSTM model. The net-
work’s performance and the underlying mechanisms are examined on the
original Omniglot dataset and on our own more representative dataset.
We show that solving the challenge becomes possible, because, during
training, the designed LSTM network fosters the learning of composi-
tional representations, which it can quickly reassemble into new, unseen
but related character trajectories. Evidence is provided by several exper-
iments, including an analysis of the latent states of the system, revealing
the emergent compositional structures with t-SNE, and the evaluation
of the network’s performance, when training and test alphabets do or
do not share components. Overall, we show how compositionality can be
fostered in latent, generative encodings, thus improving machine learn-
ing by further aligning technical methods to cognitive mechanisms in
humans.

Keywords: Omniglot challenge · Characters challenge ·
Compositionality · Efficient learning · Generative RNN · LSTM ·
One-shot inference mechanism

1 Introduction

Since the introduction of the first connectionist models, it has been debated
whether artificial neural networks were able to develop compositional represen-
tations [16]. With our investigations of their inner working mechanisms, we show
that generative long short-term memory (LSTM) [15] networks are indeed able
to recombine components of previously learned concepts, thereby enabling one-
and few-shot learning. However, an embedding layer as well as inverse latent
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 525–536, 2021.
https://doi.org/10.1007/978-3-030-86340-1_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_42&domain=pdf
http://orcid.org/0000-0001-7149-7147
http://orcid.org/0000-0002-0305-0463
http://orcid.org/0000-0002-8120-8537
https://doi.org/10.1007/978-3-030-86340-1_42

526 S. Fabi et al.

state inference is required to enable the flexible recombination of previously
learned compositional encodings, such as circles, dots, and lines, when facing
handwritten character trajectories.

We build on Partee’s [24] definition of compositionality from linguistics: ‘The
meaning of a whole is a function of the meanings of the parts and of the way they
are syntactically combined.’ When children learn new concepts, for example, the
concept of a ‘bird’, they only need very few examples in order to generalize to
other types of birds. One explanation for this efficient learning is that, when
viewing, for example, a blackbird, children decompose it into its components,
like wings, beak, feet etc. As a result, they recognize these components in other
blackbirds, and even other bird species, resulting in the correct classification of
‘bird’. Furthermore, children can rearrange these components in creative ways,
imagine new blackbirds, or even invent fictitious bird types that only exist in
their imagination [9].

For machine learning systems, on the other hand, the ability of combinatorial
generalization, that is, the construction of new things by recombining known
building blocks, is still a major challenge. Therefore, the demand to include
compositional capabilities into machines becomes more and more apparent [7,9,
20]. Battaglia et al. [1] even go as far as to ‘suggest that a key path forward for
modern AI is to commit to combinatorial generalization as a top priority’.

In order to motivate researchers to investigate how human-like efficient learn-
ing based on compositionality can be realized within machine learning algo-
rithms, the Omniglot challenge has been introduced six years ago [18]. It con-
sists of the following generation and classification tasks of handwritten character
trajectories: (i) one-shot regeneration of a character, (ii) one-shot generation of
concept variants, (iii) one-shot classification, (iv) and few-shot generation of new
concepts. In the same work [18], the researchers provided a model with a general
idea on how to draw a character, by providing basic motor components, like half
circles or straight lines, using Bayesian program learning. Since the release of
the Omniglot challenge, lots of researchers from Google DeepMind, the MIT,
and other universities aimed at solving the challenge without providing such
basic components [3,4,6,8,11,13,18,25–28]. Nevertheless, in a summary about
the progress on the Omniglot challenge within the last years, Lake et al. [19]
concluded that models’ performance on one-shot classification had been largely
improved [26–28], but the progress on the other tasks had been very limited.
Various generated examples of the same concept or of new concepts were either
very similar or too dissimilar, so that one could not recognize them any more
[8,13,25]. In other cases, only single tasks were tackled with no model being able
to perform all the tasks at once [3,4,11]. What seemed promising for solving the
Omniglot challenge, though, was putting strong inductive biases about composi-
tional structures into the models [6,18]. In their overview article, Lake et al. [19]
encourage the inclusion of causality (by applying sequential instead of pictorial
data) and compositionality into more neurally-grounded architectures that can
perform all instead of just some of the tasks.

Since LSTMs had proved to be successful in generating handwritten letters
[10], in Fabi et al. [5], we presented a way to tackle the Omniglot challenge on

Fostering Compositionality to Solve the Omniglot Challenge 527

sequential drawing data with a simple LSTM network and the one-shot inference
mechanism without providing basic motor components. In the current paper, we
investigate precisely how the algorithm accomplishes this and which role compo-
sitionality plays. Our main hypothesis is that the LSTM network is able to recom-
bine previously learned components in a meaningful manner when confronted
with new concepts. Following Jensen [17], who demanded that researchers should
investigate the underlying mechanisms of algorithms instead of just comparing
which system performs better, we apply methods from empirical research. We
formulate hypotheses that are falsifiable and conduct experiments to evaluate
the hypotheses, effectively addressing explainability and circumventing repro-
ducibility issues of Machine Learning research [12].

In detail, we perform two experiments to investigate the mechanisms in our
model thoroughly. In Experiment 1, the tasks of the Omniglot challenge are
solved on an own dataset and the cell and hidden states of the LSTM layer
are analysed. With t-distributed stochastic neighbour embedding (t-SNE) we
test our hypotheses that compositional representations are the reason for the
success on the Omniglot challenge and that they develop within the LSTM
network. In Experiment 2, we finally test the mechanism on alphabets of the
Omniglot dataset. This allows for experiments in which the model is provided
with learning stimuli of the same alphabet as the test stimuli, with stimuli of
different alphabets, and even with ones that do not share all components that are
necessary for the recombination, when presented with new characters. In short,
we aim at rendering our model explainable on two accounts: By providing post-
hoc interpretations of its performance on several experiments, and by rendering
the model transparent by analyzing the hidden LSTM states.

2 Method

2.1 Model and one-shot Inference Mechanism

In order to solve the Omniglot challenge’s tasks, we applied a generative RNN
as shown in Fig. 1. This RNN consists of a variable-sized input layer, a linear
latent embedding layer with 100 neurons, a recurrent generator module with
100 LSTM units [15], and a linear output layer with two neurons. The input
layer represents particular characters in form of one-hot encoded vectors. Each
input neuron projects its activity onto the next layer with its own set of weights.
Thus, a concept indicator induces a specific activity pattern within the latent
code layer. This code, which can be seen as the motor program encoding of
the network, seeds and continuously shapes the unfolding dynamics within the
recurrent generator. Eventually, the hidden dynamics are mapped onto the out-
put layer, generating a change in x and y position at every timestep.

During training, the model learned to generate trajectories out of one-hot
encoded inputs for a subgroup of characters. Since the examples per character
varied, the training resulted in the generation of average characters. When tack-
ling the Omniglot challenge, the tasks should be solved with very few examples,
which is why, after training, the model was presented with one example of a new

528 S. Fabi et al.

...

...

“a”

“m”

“n”

...

Recurrent
generator

(LSTM)

Δx

Δy

Concept
input

Latent code
layer

Dynamic
output

Fig. 1. Illustration of the one-shot inference mechanism. Only the blue weights that
map the concept indicator (here of the new concept “n”) onto a generative latent code
are trained. The other parts of the network remain unchanged. Thus, if dynamical
primitives are indeed learned from previously shown concepts, this mechanism should
reassemble them to generate the new trajectory.

character that had not been part of the training. If it had learned components
during training as expected, it should be able to reassemble these representations
compositionally in order to generate new trajectories. Therefore, we allowed only
the first weights into the first feedforward layer (cf. blue weights in Fig. 1) to
adapt for several iterations in order to re-arrange the already learned represen-
tations of components, leaving the remaining parts of the network, including the
recurrent layer, untouched. Note that this is conceptually equivalent to inversely
inferring (guided by prediction error-induced gradient signals) the latent activ-
ity pattern (cf. [2,23]), plus persisting the inferred code within the respective
weights. All learning was performed using the L2 loss function, the Adam opti-
mizer with standard parameters (η = 0.001, β1 = 0.9, β2 = 0.999), and a batch
size of 1.

2.2 Dataset

The Omniglot data, which underlies the Omniglot challenge, was originally picto-
rial data containing 50 alphabets, with 20 variants per character [18]. To include
stronger forms of compositionality and causality, Lake et al. [19] added a sequen-
tial stroke dataset, for which 20 Amazon Mechanical Turk participants traced the
pictures of the original characters. Even though the introduction of the Omniglot
challenge and datasets was of tremendous importance, we want to criticize the
sequential dataset in a certain regard: When looking at Fig. 2, it becomes appar-
ent that the characters were not naturally drawn with a pen, but traced with
a computer mouse, leading to “a”s and “beta”s that are composed of three or
four different and rather arbitrary strokes (different colors) instead of just one,
which would resemble a natural writing movement. This problem might be even
larger for unknown alphabets, about whose generation the Amazon Mechanical
Turk participants had no background knowledge. It was most problematic for

Fostering Compositionality to Solve the Omniglot Challenge 529

Fig. 2. Examples of the sequential Omniglot dataset provided by Lake et al. [19]. Colors
represent consecutive strokes in the following order: red, green, blue, purple, turquoise.
Note how “a” and “beta” as well as the first character of the Japanese Hiragana
alphabet are drawn with unusually many strokes and in an inconsistent sequential
manner.

alphabets with a manifold of different strokes instead of just a few, which is illus-
trated by the heterogeneous stroke orders of the first character of the Japanese
alphabet (cf. right handside of Fig. 2).

Because of these shortcomings, in Experiment 1, we applied a dataset of
handwritten character trajectories of the Latin alphabet that we had recorded
ourselves. With this, we wanted to ensure that the characters were produced by
experts of the alphabet, that they were generated freely instead of tracing previ-
ously drawn characters, leading to consistent, natural, and correct trajectories.
Furthermore, instead of a rather imprecise computer mouse, the participants of
our dataset used a dedicated pen on a touch-sensitive surface, making their writ-
ing more realistic. Furthermore, the 20 variants of the Omniglot dataset are very
similar, whereas our dataset provides more natural variability in 440 examples
per character from 10 different subjects, including script and print characters.

Nevertheless, to provide comparability, additionally to the analyses on our
dataset, we furthermore applied our network architecture to the sequential
Omniglot dataset [19] in Experiment 2. To do this, we transformed the tra-
jectory data into difference values of x and y positions. We furthermore deleted
the information about when a new stroke ended in order not to prime the net-
work, but to let it develop its own compositional representations. Because of
the shortcomings of the sequential Omniglot dataset described above, which are
worse in characters that are composed of lots of different strokes, we selected
alphabets that are complex, but originally not composed of too many strokes.

3 Results

3.1 Experiment 1

The five generative LSTM models that were trained for 10 epochs on the first
half of the Latin alphabet (“a” to “m”), together with the one-shot inference
mechanism for 1000 iterations per new character “n” to “z”, were able to regener-
ate new character trajectories, which have not been part of the training set and
of which only one example was presented (cf. Fig. 3a). Applying the one-shot
inference mechanism on untrained models did not lead to readable character
generations (Fig. 3b), showing how important the training was and support-
ing our hypothesis that sequence components are learned that can later on be
recombined in a compositional manner. It led to even worse results than the

530 S. Fabi et al.

(a) Pre-trained model plus
one-shot inference mecha-
nism

(b) one-shot inference
mechanism without pre-
trained model

(c) Pre-trained model
without one-shot inference
mechanism

Fig. 3. Human handwritten (blue) and regenerated trajectories (black) (Color figure
online)

Fig. 4. Generation tasks of the Omniglot challenge

trained models without the one-shot inference mechanism (Fig. 3c), showing
that the one-shot inference mechanism cannot be viewed as a generic training of
the network. Rather, it compositionally rearranges previously encoded sequence
dynamics (Dynamic Time Warping distances [22]: M = 0.320, SD = 0.063 vs.
M = 1.554, SD = 0.219 vs. M = 0.650, SD = 0.124).

Tackling the Tasks of the Omniglot Challenge. To generate new variants
of a character concept (cf. Fig. 4a), after having applied the one-shot inference
mechanism, we added normally-distributed noise with a scale between 0.009 and
0.15 onto the one-hot encoded input vectors. For the classification task, instead
of a one-hot encoded input, the network got a zero vector of length 26 for every
timestep. The error between the generated and the trajectory of the presented
variant was calculated and the gradient was backpropagated onto the input vec-
tor, which was then passed forward through the network again. This was repeated
10 000 times for every variant. The highest input activation represented the net-
work’s classification. If tested on the variants of Fig. 4a, the mechanism classified
96, 7% correctly (88 out of 91 characters). Looking at the three mistakes more
closely, they were not even implausible (e.g., the second “u” was classified as
an “f”). For the last generation task of new concepts, the model was confronted
with blended input vectors that indicated which character should be included
into the mixture to which extent. The results (Fig. 4b) show no abrupt changes,
but very smooth blendings between two characters, supporting our hypothesis

Fostering Compositionality to Solve the Omniglot Challenge 531

Fig. 5. Cell (left) and hidden states (right) of the corresponding trajectory of “w” with
timesteps (middle) show a repetition of similar activation patterns.

of compositionality. In short, the generative LSTM model, together with the
one-shot inference mechanism, was able to solve the tasks of the Omniglot chal-
lenge, advancing previous attempts to solve the Omniglot challenge which used
large amounts of background alphabets, complex algorithms, or tackled only one
instead of all tasks [3,19,25].

Analysis of the LSTM Cell and Hidden States. We wanted to more thor-
oughly investigate our hypothesis that solving the challenge was possible because
the model learned compositional structures during training, which it recombined
when generating new characters. Looking at the cell and hidden state activation
patterns of the LSTM layer provided hints that similar components were indeed
represented by similar hidden state activation patterns. This is illustrated exem-
plarily for the character “w” in Fig. 5, where the repetition of a similar compo-
nent applied when writing a “w” is represented in the cell as well as the hidden
states.

For a more systematic analysis, we analyzed the respective cell and hidden
states when generating characters “n” to “z” with t-SNE [14,21] with 1.000
iterations. Via a gradient-based procedure, t-SNE projects the relations between
data points from a high dimensional space onto a two-dimensional space, making
their interpretation a lot easier. For visualizing the corresponding trajectory
parts, clustering was applied with 2 as the maximum distance between two points
to be considered as in the same neighborhood. Furthermore, for a point to be
considered as a core point, 5 samples needed to be in a neighborhood.

The 2d-representations of the cell states are clearly clustered with respect to
their corresponding character (Fig. 6). Thus, the c-states might be an important
indicator for the network to stay in this attractor and generate this one charac-
ter. Focusing on the “w”, the spiral reflects the two similar components of which
the trajectory is made. Other components shared between characters can also be
identified in close proximity, like the half circle and downwards stroke in “q” and
“y”, or the stroke from bottom to top in “r” and “p” that look very similar in
the current trajectory variants. The projection of the hidden states h onto the 2d

532 S. Fabi et al.

Fig. 6. Results of the t-SNE analysis of the cell states c with the corresponding
timesteps when generating different characters.

Fig. 7. Results of the t-SNE analysis of the hidden states h. The corresponding tra-
jectory parts are drawn in black with a cross marking their beginning. The respective
trajectory plots are centered on the first respective cluster position. Note that the size
of the trajectory parts is not representative.

space identifies clear character components, since the end of one sequence repre-
sents a significant change in the hidden values from one timestep to another. It is
important to note, though, that the network forms its own representations that
might differ from components humans would identify. Nevertheless, most often
similar components led to sequences in close proximity (Fig. 7). For example, on

Fostering Compositionality to Solve the Omniglot Challenge 533

Fig. 8. Original (blue) and generated (black) character trajectories of the second half
of the Greek (top), Balinese (center), and Burmese (bottom) alphabets, after being
trained on the respective first halves. (Color figure online)

the left, there is a group of bottom to top trajectory parts, curves in specific
directions are clustered next to each other, and the “u” encoding in the middle
reflects the fact that it is generated by two very similar components, which are
encoded in the almost overlapping red circles. This speaks for our hypothesis
that components are represented in the LSTM hidden states.

3.2 Experiment 2

In Experiment 2, we applied the generative LSTM model together with the
one-shot inference mechanism onto alphabets of the Omniglot dataset. When
tackling the Omniglot challenge, most researchers applied 30 or more background
alphabets for training [13,25]. Since humans do not need as many background
alphabets and since most of the components are already represented in very
few alphabets, we hypothesized that our compositional approach does not need
training on that many character concepts. Therefore, we decided to train on
only one alphabet, giving us the additional opportunity to perform experiments
with different alphabet combinations, that either do or do not share components.
Nevertheless, it must be mentioned that the variants of one character concept
are unnaturally similar in the Omniglot dataset, whereas humans are confronted
with more varying examples (as represented in our dataset of Experiment 1).

In Experiment 2a, we tested whether the LSTM model and the one-shot
inference mechanism performed well on single alphabets of the Omniglot dataset.
Therefore, we trained the models on the first half of the Greek, the Balinese,
or the Burmese alphabet for 500 epochs. Then, we provided 2000 iterations
of the one-shot inference mechanism per character of the second half of these
alphabets. Even though in this experiment, the network was only trained on
20 similar variants instead of 440 varying ones per character, the results for the
one-shot regeneration of the characters of the second half of these alphabets look
quite promising, as can be seen in Fig. 8, as well as in the DTW values: 0.356
(Greek), 0.378 (Balinese), 0.241 (Burmese).

To investigate further whether recombining previously learned compositional
representations leads to success in learning new characters efficiently, in Experi-
ment 2b, we selected alphabets of the original Omniglot dataset for training and

534 S. Fabi et al.

Fig. 9. Original (blue) and generated (black) character trajectories of the Balinese
alphabet, trained on the first half of the Balinese, or the whole Burmese, Latin, or
Greek alphabet. Supporting our hypothesis, the quality of the results decreases with
the dissimilarity between the components of the training and test alphabets. (Color
figure online)

test with similar or differing components. For 500 epochs, we trained the generative
LSTM network on the Burmese, Greek, or Latin alphabet, or the first half of the
Balinese alphabet and tested its performance when confronted with one variant
of the characters of the Balinese alphabet. Since the components of the first and
the second half of the Balinese alphabet should be the most similar, we expected
best performance for this combination, followed by the Burmese-Balinese combi-
nation, since their characters share lots of components. Not so many components
are shared between the Balinese and the Latin, or Greek alphabets, which is why
we expected worst performance here, assuming our compositionality hypothesis
is true. Supporting our hypothesis, the one-shot inference mechanism led to the
best performance for training on the first half of the Balinese alphabet (Fig. 9a),
followed by the Burmese (Fig. 9b), Latin (Fig. 9c), and Greek (Fig. 9d) alpha-
bet (DTW distances: 0.378 vs. 0.384 vs. 0.427 vs. 0.509)1. Note as well that the
Burmese alphabet contains more characters than the Latin and the Greek alpha-
bet, which probably led to more variability in the compositional representations.

1 Similar results were found for other test alphabets. A deeper interaction analysis goes
beyond the scope of this paper. Test Burmese: Training Balinese (0.273) < Greek
(0.280) < Latin (0.299); Test Latin: Training Greek / Burmese (0.230) < Balinese
(0.251); Test Greek: Training Latin (0.329) < Burmese (0.334) < Balinese (0.339).

Fostering Compositionality to Solve the Omniglot Challenge 535

4 Conclusion

The Omniglot challenge can be solved with a generative LSTM model without
providing it any knowledge about specific motor components. We show how com-
positional structures that develop within such models can later on be recombined
when confronted with a new character. This provides explainable insights into
the inner working mechanisms of the models and advances previous work like
Lake et al. [18], who predefined the components that the model was supposed to
use. Ultimately, this research is a step towards bringing specific Machine Learn-
ing architectures towards closer resemblance to human cognitive mechanisms, by
introducing compositionality as an inductive bias into a simple LSTM network.

Acknowledgements. We thank Marcel Molière for help with the t-SNE plots, Thilo
Hagendorff for helpful comments on the manuscript, and Maximus Mutschler for main-
taining the GPU cluster of the BMBF funded project Training Center for Machine
Learning, on which the results were computed. This research was funded by the Ger-
man Research Foundation (DFG) within Priority-Program SPP 2134 - project “Devel-
opment of the agentive self” (BU 1335/11-1, EL 253/8-1). MB is part of the Machine
Learning Cluster of Excellence, EXC number 2064/1 – Project number 390727645.

References

1. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph net-
works. arXiv:1806.01261 (2018)

2. Butz, M.V., Bilkey, D., Humaidan, D., Knott, A., Otte, S.: Learning, planning,
and control in a monolithic neural event inference architecture. Neural Netw. 117,
135–144 (2019)

3. Edwards, H., Storkey, A.: Towards a neural statistician. In: Advances in Neural
Information Processing Systems (NeurIPS) (2016)

4. Eslami, S., et al.: Attend, infer, repeat: fast scene understanding with generative
models. In: Advances in Neural Information Processing Systems (NeurIPS) (2016)

5. Fabi, S., Otte, S., Wiese, J.G., Butz, M.V.: Investigating efficient learning and
compositionality in generative LSTM networks. In: Farkaš, I., Masulli, P., Wermter,
S. (eds.) ICANN 2020. LNCS, vol. 12396, pp. 143–154. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-61609-0 12

6. Feinman, R., Lake, B.M.: Learning task-general representations with generative
neuro-symbolic modeling. arXiv:2006.14448 (2020)

7. Franklin, N.T., Norman, K.A., Ranganath, C., Zacks, J.M., Gershman, S.J.: Struc-
tured event memory: a neuro-symbolic model of event cognition. Psychol. Rev. 127,
327–361 (2020)

8. George, D., et al.: A generative vision model that trains with high data efficiency
and breaks text-based CAPTCHAs. Science 358, 6368 (2017)

9. Gopnik, A.: AIs versus four-year-olds. In: Brockman, J. (ed.) Possible Minds:
Twenty-five ways of looking at AI. Penguin Press, New York (2019)

10. Graves, A.: Generating sequences with recurrent neural networks. arXiv:1308.0850
(2013)

11. Gregor, K., Besse, F., Rezende, D.J., Danihelka, I., Wierstra, D.: Towards con-
ceptual compression. In: Advances in Neural Information Processing Systems
(NeurIPS) (2016)

http://arxiv.org/abs/1806.01261
https://doi.org/10.1007/978-3-030-61609-0_12
http://arxiv.org/abs/2006.14448
http://arxiv.org/abs/1308.0850

536 S. Fabi et al.

12. Haibe-Kains, B., et al.: Transparency and reproducibility in artificial intelligence.
Nature 586, 1–7 (2020)

13. Hewitt, L.B., Nye, M.I., Gane, A., Jaakkola, T., Tenenbaum, J.B.: The variational
homoencoder: Learning to learn high capacity generative models from few exam-
ples. In: Uncertainty in Artificial Intelligence (2018)

14. Hinton, G.E., Roweis, S.: Stochastic neighbor embedding. In: Advances in Neural
Information Processing Systems (NeurIPS) (2003)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

16. Hupkes, D., Dankers, V., Mul, M., Bruni, E.: Compositionality decomposed: how
do neural networks generalise? J. Artif. Intell. Res. 67, 757–795 (2020)

17. Jensen, D.: Empirical research in machine learning: perspectives and strategies. In:
Advances in Neural Information Processing Systems (NeurIPS) (2020)

18. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning
through probabilistic program induction. Science 350, 1332–1338 (2015)

19. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: The omniglot challenge: a 3-year
progress report. Curr. Opin. Behav. Sci. 29, 97–104 (2019)

20. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines
that learn and think like people. Behav. Brain Sci. 40, e253 (2017)

21. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

22. Niels, R., Vuurpijl, L.: Using dynamic time warping for intuitive handwriting recog-
nition. In: Proceedings of the 12th Conference of the Internatonal Graphonomics
Society (2005)

23. Otte, S., Karlbauer, M., Butz, M.V.: Active tuning. arXiv:2010.03958 (2020)
24. Partee, B.: Lexical semantics and compositionality. Invitation Cogn. Sci. Lang. 1,

311–360 (1995)
25. Rezende, D., Danihelka, I., Gregor, K., Wierstra, D., et al.: One-shot generaliza-

tion in deep generative models. In: International Conference on Machine Learning
(2016)

26. Shyam, P., Gupta, S., Dukkipati, A.: Attentive recurrent comparators. In: Inter-
national Conference on Machine Learning (2017)

27. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems (NeurIPS) (2017)

28. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: Advances in Neural Information Processing
Systems (NeurIPS) (2016)

http://arxiv.org/abs/2010.03958

Better Few-Shot Text Classification with
Pre-trained Language Model

Zheng Chen(B) and Yunchen Zhang

School of Information and Software Engineering, University of Electronic Science and
Technology of China, Chengdu, China

zchen@uestc.edu.cn, yunchenz@std.uestc.edu.cn

Abstract. Recently, pre-trained language models achieve extraordinary
performance on numerous benchmarks. By learning the general language
knowledge from a large pre-train corpus, the language models could fit
for a specific downstream task with a relatively small amount of labeled
training data in the fine-tuning stage. More remarkably, the GPT-3 with
175 B parameters performs well in specific tasks by leveraging natural-
language prompts and few demonstrations of the task. Inspired by the
success of GPT-3, we desire to know whether smaller language models
could still have a similarly few-shot learning ability. Unlike the various
delicately designed tasks in previous few-shot learning research works, we
do it more practically. We present a question-answering-based method
to help the language model better understand the text classification task
by concatenating a label-related question to each candidate sentence.
By leveraging the label-related language knowledge, which the language
model has learned during the pre-trained stage, our QA model can out-
perform the traditional binary and multi-class classification approaches
over both English and Chinese datasets. Afterward, we test our QA
model by performing few-shot learning experiments on multiple pre-
trained language models of different sizes that range from the Distil-
BERT to the RoBERTa-large. We are surprised to find that even the
DistilBERT, which is the smallest language model we tested with only 66
M parameters, still holds undeniable few-shot learning ability. Moreover,
the RoBERTa-large with 355 M parameter could achieve a remarkable
high accuracy rate of 92.18% with only 100 labeled training data. This
result gives people a practical guideline that when a new category of
labeled data is needed, only as few as 100 data need to be labeled. Then
cooperate with an appropriate pre-training model and classification algo-
rithm, reliable classification results can be obtained. Even without any
labeled training data, that is, under the zero-shot learning setup, the
RoBERTa-large still achieves a solid accuracy rate of 84.84%. Our code
is available at https://github.com/ZhangYunchenY/BetterFs.

Keywords: Few-shot learning · Text classification · Pre-trained
language model

Supported by the Sichuan Science and Technology Plan Project 2020YFG0009.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 537–548, 2021.
https://doi.org/10.1007/978-3-030-86340-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_43&domain=pdf
http://orcid.org/0000-0003-4013-3492
http://orcid.org/0000-0002-3247-0141
https://github.com/ZhangYunchenY/BetterFs
https://doi.org/10.1007/978-3-030-86340-1_43

538 Z. Chen and Y. Zhang

1 Introduction

With the evolution of deep learning, various pre-trained language models (PLMs)
have been widely used to solve Natural Language Processing tasks. The first-
generation PLMs, such as Skip-Gram and GloVe, aim to learn context-free word
embeddings that fail to capture higher-level semantic concepts. The second-
generation PLMs, such as ELMo, BERT, and GPT, represent words in context.
By pre-trained over a large corpus in a self-supervised way, the PLMs only need
to be fine-tuned over a small amount of labeled data for specific downstream
tasks. Since then, the pre-training and fine-tuning paradigm started dominating
NLP. With 175 billion parameters trained on 400 billion tokens, GPT-3, intro-
duced by Brown et al. [3] in 2020, has pushed the PLMs to the next level. When
provided with only a description and few examples of the task, the GPT-3 model
could make accurate predictions without gradient updates or fine-tuning. Even
though remarkable few-shot learning capabilities have been obtained, it is also
prominent that the massive amount of parameters underlying GPT-3 makes it
challenging to apply it to real-world applications.

As a machine learning problem, few-shot learning has a longer history than
PLMs [5]. Humans are capable of learning new tasks rapidly by utilizing what
they learned in the past. Hence, researchers believed that designing an efficient
few-shot learning algorithm could let machines achieve the same intelligence
level as human beings [9]. However, inspired by GPT-3, we argue that few-
shot learning is a capability of a pre-trained language model itself, rather than
being considered as a task. Undoubtedly, language models with few-shot learning
abilities should have large parameters and be pre-trained over large corpora.
Nevertheless, how big is enough? So in this work, we conduct experiments to
explore the few-shot learning ability of various language models by doing text
classification. We design a question-answering-based text classification method
that the label information in the question can make good use of the pre-trained
model’s semantic knowledge, hence, help the model learn with few samples.
The pre-trained language models that we tested include DistilBERT [15], BERT
[4], and RoBERTa-large [11], which have 66M, 110M, and 355M parameters ,
respectively. Extending a regular-sized auto encoder language model’s few-shot
ability within text classification is appealing since (1) text classification is a
downstream task that the model can grasp with ease; (2) a few labeled samples
are easy to access; (3) such models can be fine-tuned on general hardware. So we
propose a feasible scenario to make a better few-shot text classifier and study the
impact of the language model scale on its few-shot learning ability. Specifically,
the main contributions of this paper are as follows.

• We propose a question-answering-based classification method that outper-
forms traditional binary and multi-class classification approaches over both
English and Chinese datasets.

• We perform a series of few-shot learning experiments on multiple pre-trained
language models of different sizes that range from the DistilBERT to the
RoBERTa-large. The results illustrate that all these models exhibit varying
levels of few-shot learning capability. Some even realize zero-shot learning.

Better Few-Shot Text Classification with Pre-trained Language Model 539

• We report detailed accuracy rates of each model with different training sam-
ples. The results can be used as a guideline for people to label samples in
practice.

• We also provide an in-depth illustration and discussion of the attention mech-
anism of the pre-trained language models. By which, we attempt to uncover
the mystery of the few-shot learning ability.

2 Related Work

2.1 Language Models

The evolution of language models can be divided into three periods, the statisti-
cal language model, the neural language model, and pre-trained language model.
Statistical language models dominated from the 1960 s to 2010 s, such as Hidden
Markov Model [1] and Conditional Random Field [8]. Since 2010, the advent of
deep learning models makes remarkable progress in text classification. Neural
models, such as CNN [7] and LSTM [23], are only data driven and avoid doing
feature engineering. However, they cannot deal with few-shot learning.

April July October 2018 April July October 2019 April July October 2020 April July October

Transformer BERT RoBERTa DistilBERTGPT GPT-2 GPT-3

Fig. 1. The language models in recent years (GPT series are in purple; BERT series
are in blue; Transformer, which is the basis of BERTs and GPTs, is in green).

Following the advances of the Transformer, pre-trained language models
spring up in recent years (Fig. 1). Remarkably, the GPT-like auto-regressive lan-
guage model [3,12,13] performs surprisingly well with a carefully chosen prompt
and only a few examples in many downstream tasks. Being attracted by these
few-shot learning ability, researchers start to explore BERT-like auto-encoder
language model [4,11,15], and find it also has the few-shot learning ability.

2.2 Traditional Few-Shot Learning

Over the years, deep learning has been hugely successful in data-bound indus-
tries, but it is often infeasible when the amount of data is small [22]. Therefore,
training a well-performed model with insufficient data is naturally seen as a
challenging task. Various methods are presented to tackle the few-shot learning
task, including Data argumentation [19] which uses the accessible data to gen-
erate more samples, siamese neural network [2] which calculates the similarities
between features, and meta-learning [14] which learns many datasets to learn
several examples. These approaches seem to be ways to ‘mechanically’ use the
knowledge. Motivated by GPT series, however, we argue that few-shot should
be considered as an inherent property of language models.

540 Z. Chen and Y. Zhang

2.3 Few-Shot Learning Based on Pre-trained LM

Employing prompts to let language models do better inferences seems to be more
‘humanized’. The pretraining on a large corpus endows language models with
strong linguistic skills, thus need only be finetuned within a small amount of
labeled data for specific downstream tasks. The auto-regressive language mod-
els, such as GPTs and CPM [21], can make predictions by generating the sub-
sequent text, with an literal definition of the task in the context, which is called
prompt. In recent works [6,16], they use a delicate-construct template to make
language models do cloze tasks, which helps LMs understand a specific task. It
seems effectual, but the limitation of the template makes these above approaches
cannot adapt to any tasks. Deviated from these studies, however, we focus on
the few-shot learning capability of the language model itself, and proposed a
task-agnostic method called QA classification.

3 Methodology

3.1 Text Classification

In this paper, we conduct experiments by doing text classification (see Fig. 2)
since text classification is a downstream task that is easy for a language model to
learn. Hence doing text classification makes the language model easier to show
the few-shot learning ability. Then we adopt the idea of doing questions and
answering could help language models better leverage the knowledge since we
give more information to the models. As a result, we transform multi-class text
classification to question and answering (QA), which provides prior information
to the language model and turn a the task into a simple binary classification.

We fine-tune a BERT M on the dataset D with label space Y. M takes an
input of a sequence xin and outputs the representation of the sequence. The first
of the output is always [CLS] which we take as the representation of the whole
sequence [17], and fine-tuning M to minimize the cross entropy. We take M′ as
the representation of M with a fully connected layer and the output of M′ is P
which consists of the probability corresponding to the class and dim(P) = |Y|.

Binary Classification. In binary classification, we just add a fully connected
layer with activation function sigmoid at the top of M to predict the label
ypredict, and the probability of the ypredict is:

p(y|xin) =
1

1 + exp(−W · h[CLS])
(1)

where h[CLS] is the hidden state of the [CLS], and W is the task-special matrix.

Better Few-Shot Text Classification with Pre-trained Language Model 541

Fig. 2. An illustration of approaches we used (a) multi-class classification, (b) multi
binary classification, (c) transforming multi-class classification to question answering.

In binary classification, dim(P) = 1. So for each sequence, the output of
M′ is a constant. We use a threshold to determine which category the sequence
belongs to. So the class is:

class =

{
positive, p ≥ threshold

negative, p < threshold
(2)

Multi-class Classification. In the multi-class classification, the inputs are the
same as the binary classification. The difference is we put a softmax layer on
the top of M, and the probability of the label y is:

p(y|xin) = softmax(W · h[CLS]) (3)

where W is the task-specific matrix. We fine-tune the parameters from BERT
and W jointly by maximizing the probability of the correct label.

Classification Based on QA. In terms of results, QA classification is a binary
classification. The difference between QA classification and binary classification
is the input xin. In QA classification, the input xin as:

xqa−in = [CLS]question[SEP]content[SEP]

We also take the [CLS] as the presentation of the whole sequence, and the pro-
cess of the classification is the same as the binary classification. For questions,

542 Z. Chen and Y. Zhang

we construct questions manually as simple as possible to avoid too much redun-
dancy(e.g. For one content, we can ask ‘does this sentence contain anger?’ or
‘contains anger?’. We choose the letter one). We will ask |Y| questions for each
sentence, and determine the class of the sentence by using a threshold. So in this
case, it could have multi answers in one sentence or no answers at all.

3.2 Few-Shot Classification

We conduct the few-shot text classification experiment based on our QA classi-
fication method. The input is as same as QA classification, the only difference
is how we use the data (see Fig. 3).

Fig. 3. An illustration of how we do few-shot learning with an example.

When doing few-shot learning, (1) we choose one class as the target to do
few-shot learning; (2) according to the class we have chosen, we split the train
set into target set (contains only one class) and the other set (contains the rest
classes); (3) we pick K positive examples from the target set and K negative
examples from the other data randomly, questioned by the class we have chosen
to form the few-shot dataset. But we use a constant random seed S to sample,
ensuring samples are the same when changing the size of language model; (4)
we use the whole other data, questioned by the rest classed to form the other
dataset; (5) we use the other dataset to train a plain classifier to get a zero-
shot classifier; (6) we use 2K examples from few-shot dataset to fine-tune the
zero-shot classifier to obtain a few-shot classifier.

4 Problem Setup

4.1 Datasets

We conduct a systematic study across 2 tasks (Table 1), a Chinese Sentiment
classification task (OCEMOTION[10]) and a English Topic classification task
(AG’s News [20]).

Better Few-Shot Text Classification with Pre-trained Language Model 543

Table 1. Statistics of two datasets

Dataset Classes Samples Labels

Train Test

OCEMOTION 7 32,124 3,570 Anger, Disgust, Fear, Like,
Happiness, Sadness, Surprise

AG’s News 4 120,000 7,600 World, Sports, Business, Sci/Tech

All datasets we have chosen are single-sentence text classification tasks. Our
goal is to make predictions based on xin and xqa−in. The tasks are range from
sentiment analysis to topic classification, from Chinese to English.

4.2 Evaluation Protocol

Text Classification. We take Dtrain and Dtest as the train set and the test
set of traditional classification respectively. We split each dataset D into a train
set Dtrain and a test set Dtest or the dataset has already been split. To evalu-
ate a classifier’s performance, we choose accuracy, micro-precision, micro-recall,
micro-f1 [18] of the classifier as performance metrics. And calculate these metrics
on Dtest, as the performance of the classifier.

Few-Shot Learning. We take D′
train and D′

test as the train set and the test
set of QA classification respectively. The data given to the zero-shot classifier
have balanced data between positive samples (target-label samples) and negative
samples. In other words, the dataset D′

train we give to the zero-shot classifier
has the same number of the positive samples and the negative samples. It is
worth to mention that the negative samples in dataset D′

train have been seen
by the zero-shot classifier. In the test set D′

test, we choose all target-related
samples from Dtest as the positive (target-label) samples and the same number
of the other samples from Dtest as the negative samples. Meanwhile, we use a
constant seed S to sample the negative examples, ensuring the D′

test is same
when evaluate the performance of the classifier. And we take average accuracy
between each target label as the performance metric of the few-shot classifier.

5 Experiments

5.1 Analysis of Text Classification

In general, the f1 scores get higher when the language models become lager
under the condition of the same approach we train the classifier. It reflects that
the lager model can learn more knowledge. It must to be mentioned is that
the OCEMOTION is a fine-grained emotion classification dataset, and AG’s
News is a news classification dataset. Hence the OCEMOTION dataset is

544 Z. Chen and Y. Zhang

Table 2. The results(precision, recall and f1 scores) of the multi binary classifications,
the multi-class classification, and the QA classification

Models OCEMOTION AG’s News

P R F P R F

DistilBERT-binary 50.82 52.72 51.75 92.21 95.07 93.62

DistilBERT-multi 53.05 53.05 53.05 93.83 93.83 93.83

DistilBERT-QA 50.78 53.61 52.16 92.45 94.09 93.26

BERT-base-binary 66.30 56.75 61.15 92.75 94.66 93.70

BERT-base-multi 62.07 62.07 62.07 93.64 93.64 93.64

BERT-base-QA 61.10 64.68 62.84 93.08 94.17 93.62

RoBERTa-large-binary 60.96 65.91 63.34 92.73 94.91 93.81

RoBERTa-large-multi 62.72 62.72 62.72 94.08 94.08 94.08

RoBERTa-large-QA 62.37 64.96 63.64 93.94 94.08 94.01

relatively difficult for the language model to learn. Meanwhile, we can see Table 2,
in the same model, the f1 scores of OCEMOTION is lower than AG’s News.

By comparing different scales of the language model, we can easily find out
that the larger model has better performance in the same situation. Especially in
the OCEMOTION dataset, from DistilBERT to BERT-base, the performance
improves 9.7% on average. However, the f1 scores in AG’s News dataset are
awfully close. As a result, increase the scale of the language model could improve
the performance of the classifier, especially on the harder dataset.

Furthermore, under the same scale model condition, the performance of the
QA classification is close to the other two methods in the AG’s News dataset,
while notably better than the other two methods in the OCEMOTION dataset.
In addition, the QA models’ f1 scores surpass the multi models when the models
become larger. In terms of this phenomenon, we think the prior knowledge we
provide is effective, since most of the performance of QA classification is better
than the binary classification. And the questions we add to the models can help
them to better understand the task, especially beneficial to the large-scale model
and the fine-grained task.

Besides that, we noticed that in most of the QA classification, the value of
the recall is higher than precision. We think the cause of this phenomenon is
that the prior knowledge sometimes will confuse the QA models. So the QA
language model will turn negative samples into positive samples more easily,
which resulted in the value of recall is higher than precision.

5.2 Analysis of Few-Shot Learning

We collected the average accuracy of each label as the indicator of few-shot
learning. In Table 3, we believe the language model is not working when the
acc-avg is around 50.00%, since the task is a binary classification.

For the comparison of the number of the learning samples, we can see that
the performances of the few-shot models are better as the number of the samples

Better Few-Shot Text Classification with Pre-trained Language Model 545

Table 3. The result of few-shot learning

Task K DistilBERT BERT-base RoBERTa-large

(avg-acc) (avg-acc) (avg-acc)

OCEMOTION 0 52.39 54.02 57.26

10 61.55 69.68 71.50

20 62.59 70.67 71.86

50 62.65 71.25 72.37

100 62.99 71.47 73.43

AG’s News 0 61.32 62.09 84.84

10 63.18 65.61 89.54

20 65.41 66.19 89.88

50 66.97 72.05 89.13

100 70.86 81.47 92.18

increases. Apparently, the more samples are given, the more knowledge the lan-
guage models can learn. However, with the increase of the number of samples,
the performances of these models are not grown linearly. From 0 samples to 10
samples, the performance increased 8.91%, but from 50 samples to 100 samples,
it is only 2.98%. We think it is because that the language model we trained can
easily learn some new things but not master them, so the increasing value of 0
to 10 is higher than 50 to 100. According to our experiment, 10 labeled samples
is the most cost-effective number to train a few-shot classifier.

For the comparison of the scales of the models, we can see that larger language
models have higher scores. We have mentioned this phenomenon in Sect. 5.1, that
larger models can better leverage the prompts. Especially, the average accuracy
of RoBERT-large’s zero-shot classifier in AG’s News dataset is 84.84%, which
is higher than the average accuracy of DistilBERT’s and BERT-base’s 100-shot
classifier. It strengthen the idea that the larger model could better understand
the task by leveraging the additional prompts. On the other hand, this value
means that the classifier of the RoBERTa-large realizes zero-shot learning. It
also approves our opinion that when a language model is strong enough, it will
realize few-shot learning, even zero-shot learning.

5.3 Visualization of Attention

Comparing the multi-class classification to the QA classification, we noticed
that the performance of QA classification is slightly superior to the multi-class
classification or on a par with multi-class classification. More wonderfully, the
QA method can help language models do few-shot learning. To figure out what
the reason is here, we associate it with the attention mechanism.

So in this section, we make visualizations of attention to explain the work of
the question. As shown in Fig. 4, we randomly chose a sample from the AG’s
News dataset, and generated four questions, according to the labels.

546 Z. Chen and Y. Zhang

Fig. 4. Visualizations of attention of a fine-tuned QA classifier based on BERT-base.
The content is: “Moore will replace banned world champion Torri Edwards in the
Olympic 100 and 200 m races”, which belongs to the sports class.

As we can see, when we ask “is sports?”, the word sports in the question
notice the champion and the races in the content (in blue boxes), which are
words representative of certain classes. Then the question helps the [CLS] notice
these keywords, so we use the [CLS] as the representation of the content is logical.
But when we ask other questions, it seems not well, the question noticed other
inconsequential words. Interestingly, the questions almost noticed the word the
and the word and (in green boxes), which have nothing to do with classification.

Fig. 5. An illustration of visualizations of the BERT-base’s attention, (a) a model have
never seen the sports class; (b) a model just have seen 10 examples of the sports class;
(c) the same model as (a), ask “is business?” which it has seen; (d) a model have seen
50 examples of the visualization class. All of the models have not seen the content.

In Fig. 5, comparing (a) and (c), (c) is much cleaner in the green box. We
can notice that the model of (a) pay some attention to the ‘edwards’, ‘100’ and
‘200’, and when we ask a different question that has already been seen, the model
knows it doesn’t need to pay attention to anything. The content is nothing to do

Better Few-Shot Text Classification with Pre-trained Language Model 547

with the business class, so it is logical that the attention weight of the content in
(c) is close to 0. But in (a), the language model guesses the words that should be
attention to. To some extent, the language model can identify and leverage the
prompt. In (b) and (d), the significant difference is in the blue box and the purple
box. In purple box, we think more training samples led to changes in attention,
that the question pay less attention to the content, while more attention to the
special token [SEP]. This phenomenon needs further discussion.

6 Conclusion

In this paper we present a QA-based method, helping language models do text
classification and exploring the few-shot learning ability of a language model,
which is simple but effective. This method enables the language model to demon-
strate the ability of a few-shot learning ability that only using 100 labeled data,
the average accuracy could reach 92.18%, some even achieve zero-shot learning.
In future work, we focus on the few-shot capability of the language model itself
and why it exists.

References

1. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite
state markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)

2. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a “siamese” time delay neural network. In: Advances in Neural Information
Processing Systems, pp. 737–737 (1994)

3. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural
Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186 (2019)

5. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

6. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot
learners. In: Association for Computational Linguistics (ACL) (2021)

7. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics, vol. 1, pp. 655–665 (2014)

8. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of the
Eighteenth International Conference on Machine Learning (ICML 2001), Williams
College, Williamstown, MA, USA, June 28 - July 1, 2001, pp. 282–289 (2001)

9. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines
that learn and think like people. Behavioral Brain Sciences, vol. 40 (2017)

10. Li, M., Long, Y., Qin, L., Li, W.: Emotion corpus construction based on selection
from hashtags. In: Proceedings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pp. 1845–1849. European Language
Resources Association (ELRA), Portorož, Slovenia (2016)

548 Z. Chen and Y. Zhang

11. Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

12. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language
understanding by generative pre-training (2018)

13. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

14. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24–26, 2017, Conference Track Proceedings (2017)

15. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

16. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification
and natural language inference. In: Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 255–269. Online (2021)

17. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification?
In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 2019. LNCS (LNAI),
vol. 11856, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32381-3 16

18. Tharwat, A.: Classification assessment methods. Applied Computing and Infor-
matics (2020)

19. Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting perfor-
mance on text classification tasks. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6382–6388.
Hong Kong, China (2019)

20. Zhang, X., Zhao, J.J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7–12, 2015, Montreal,
Quebec, Canada, pp. 649–657 (2015)

21. Zhang, Z., et al.: Cpm: A large-scale generative chinese pre-trained language model.
arXiv preprint arXiv:2012.00413 (2020)

22. Zhao, T., Yan, Z., Cao, Y., Li, Z.: Asking effective and diverse questions: a machine
reading comprehension based framework for joint entity-relation extraction. In:
Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pp. 3948–3954 (2020)

23. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., Xu, B.: Text classification improved by
integrating bidirectional LSTM with two-dimensional max pooling. In: Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, pp. 3485–3495 (2016)

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
http://arxiv.org/abs/2012.00413

Generative Adversarial Networks

Leveraging GANs via Non-local Features

Xuyang Peng1, Weifeng Liu2(B), Baodi Liu2, Kai Zhang3, Xiaoping Lu4,
and Yicong Zhou5

1 College of Oceanography and Space Informatics,
China University of Petroleum (East China), Qingdao, China

pengxuyang19972@163.com
2 College of Control Science and Engineering,

China University of Petroleum (East China), Qingdao, China
liuwf@upc.edu.cn, thu.liubaodi@gmail.com

3 School of Petroleum Engineering, China University of Petroleum (East China),
Qingdao, China

zhangkai@upc.edu.cn
4 Haier Industrial Intelligence Institute Co., Ltd., Qingdao, China

luxiaoping@haier.com
5 University of Macau, Macau, China

yicongzhou@um.edu.mo

Abstract. Recent years, Generative Adversarial Networks (GANs) have
achieved tremendous success in image synthesis, which usually employ
the convolutional operation to extract image features. However, most
existing convolutional GANs only extract features in a local neighbor-
hood at a time, which may often cause a lack of non-local information
resulting in generating the wrong semantic object in the wrong position.
In this paper, we propose a Graph Convolutional Architecture (GCA)
for GANs to tackle this problem. GCA constructs a pixel-level graph
structure between image regions through an attention mechanism and
leverages Graph Convolutional Networks (GCNs) to extract non-local
features. GCA extracts the connections between different regions of the
image through GCNs, which is a more effective method of using rela-
tionship information than directly adding long-range dependencies to
the model. We implement the GCA into Deep Convolutional Generative
Adversarial Networks (DCGAN), Self-Attention Generative Adversarial
Networks (SAGAN), and Concurrent-Single-Image-GAN (ConSinGAN).
Extensive experiments are conducted to verify the performance of GCA.
The results demonstrate that the GCA can significantly boost the quality
of the generated image with more non-local features.

Keywords: Generative adversarial networks · Non-local features ·
Attention mechanism

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 551–562, 2021.
https://doi.org/10.1007/978-3-030-86340-1_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_44&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_44

552 X. Peng et al.

1 Introduction

Recent years, GANs attract much attention for their prodigious performance in
image synthesis. And many GANs variants are reported in most of all aspects
of the image generating such as single image super-resolution reconstruction
[13,25,26], text-to-image synthesis [20,21,29], image-to-image translation [9,30],
single image synthesis [8,22] and multi-class image synthesis [17,28], etc. The
early GANs models only design straight-forward discriminators and generators
[3,5,19], which usually causes some problems such as unstable training and mode
collapse. To improve the performance, many varieties of GANs are reported and
can briefly divide into three categories, i.e. (1) Hierarchical Methods, (2) Iterative
Methods, and (3) Loss Methods.

Hierarchical methods aim to modify the architecture of discriminators and
generators with some specific modules to assist GANs for better image generat-
ing [16–18]. Wang et al. propose a Style and Structure Generative Adversarial
Network (S2-GAN) by generating a surface normal map to encode the texture
on the objects and the illumination with two GANs [24]. Karras et al. propose an
Alternative Generator Architecture for Generative Adversarial Networks (Sytle-
GAN) by employing a style transfer module to control the high-level attributes,
such as hairstyles, freckles [11]. Odena et al. propose Auxiliary Classifier Gen-
erative Adversarial Networks (AC-GAN) which deploys an auxiliary classifier in
the discriminator to exhibiting global coherence in GANs [18].

Iterative methods aim to design a skillful training process of GANs to drive
generating photorealistic images [8,10,22]. Karras et al. propose a progressive
growing method for GANs (ProgressiveGAN) by gradually increasing the layers
of generator and discriminator to generate images from a low resolution to high
resolution [10]. Shaham et al. propose a method for GANs in single image syn-
thesis (SinGAN) by exploiting the pyramid structure to learn the whole image
features from a single image [22]. Hinz et al. draw the pyramid structure of Sin-
GAN and adopt parallel computing to reduce training time while improving the
performance of the model [8].

Loss methods aim to apply suitable loss functions to stabilize the GANs
training and improve generation performance [1,6,17]. Arjovsky et al. propose
Wasserstein Generative Adversarial Networks (WGAN) by adopting the Wasser-
stein distance loss function instead of the Min-Max loss function to achieve a
more stable training process [1]. Gulrajani et al. propose an improved method
for WGAN by using a gradient penalty instead of a parameter clip [6]. Miy-
ato et al. propose a regularization method for GANs (SN-GAN) by limiting the
spectral norm of the parameters of the discriminator to constrain the Lipschitz
constant [17].

Most GANs mentioned above are based on Convolutional Neural Networks
(CNNs). However, traditional CNNs only capture the local spatial features in the
receptive field and can’t cover enough non-local information. The non-local infor-
mation e.g. long-range dependencies can reflect the relationship between image
regions and complement the neural network. Therefore, ignoring non-local infor-
mation will often make the convolutional GANs generate the wrong semantic

Leveraging GANs via Non-local Features 553

objects in the wrong positions. To alleviate the lack of non-local information
in the convolutional operation, Wang et al. propose a self-attention-mechanism-
based module called Non-Local (NL) block to capture long-range dependencies
in CNNs [23]. Han et al. introduce the NL block into GANs, proposing Self-
Attention Generative Adversarial Networks (SAGAN) to alleviate the lack of
non-local information in GANs [28]. SAGAN takes the long-range dependen-
cies captured by the NL block as the weight and performs a weighted summa-
tion with the convolution feature maps to supplement the non-local information
for the convolution GAN. Although SAGAN has supplemented convolutional
GANs with long-range dependencies, it has great research potential on utilizing
non-local information rather than simply adding long-range dependencies into
models.

In this paper, we propose a Graph Convolutional Architecture (GCA) for
GANs. GCA constructs a pixel-level graph structure between image regions by
the self-attention mechanism and leverages GCNs to capture non-local features.
Specifically, GCA employs an attention mechanism for pixel-level graph struc-
ture construction. Compared with the NL block directly adding long-distance
dependencies to models, the non-local features extracted by GCNs in GCA
further refine the non-local relationship information contained in long-distance
dependencies. And the non-local features also have higher generalization, because
GCNs are a kind of generalized form of CNNs. Equipped with GCA, the gen-
erator and the discriminator can successfully supplement non-local information
for GANs to generate more realistic images. Furthermore, GCA can be easily
applied to most convolutional GANs to improve the quality of the generated
images. We show the flow chart of GCA in Fig. 1.

To evaluate the generalization of GCA, we implement the GCA into DCGAN,
SAGAN, and ConSinGAN. And we conduct extensive experiments on these mod-
els. In addition, we also compare the NL block with GCA. The comparative
results demonstrate the superiority of GCA in both quantitative and qualita-
tive analysis. Briefly, the contribution of this paper can be summarized as the
following:

(1) A Graph Convolutional Architecture (GCA) is proposed to model non-
local information to GANs.

(2) The GCA is implemented into three GANs and extensive experiments
are conducted to show the superiority of the proposed GCA.

The rest of this paper is arranged as follows. Section 2 briefly introduces the
related work. Section 3 describes the details of GCA including the construction
of pixel-level global graph structure. Section 4, reports the experimental results
and provides some analysis. And finally, Sect. 5 concludes this paper.

2 Related Work

2.1 Generative Adversarial Networks

Ian et al. first propose Generative Adversarial Networks (GANs), which can
only generate gray-scale images by two fully-connected networks [5]. Inspired by

554 X. Peng et al.

self-attention
mechanism

GCA

NxNNxN

non-local
feature maps

GCNs

Fig. 1. GCA constructs a pixel-level graph structure among image regions through
self-attention mechanism and exploits GCNs to extract non-local features.

Convolutional Neural Networks (CNNs), DCGAN introduces convolution into
GANs and succeeds in unsupervised image synthesis [19]. The generator in
DCGAN is constructed by transposed convolution, batch normalization, and
ReLU activation, and the discriminator is constructed by convolution, batch
normalization, and LeakyReLU activation. SAGAN introduces an NL block that
models the long-range dependencies [28]. The NL block uses the weighted sum of
all features to construct the relationship between image regions. SAGAN deploys
the NL block in both the generator and discriminator, achieving great success
in multi-classes image synthesis. ConSinGAN is currently the state-of-the-art
GANs-based single image synthesis model [8]. ConSinGAN is an improvement
of the Single Natural Image Generative Adversarial Network (SinGAN). Unlike
SinGAN, ConSinGAN trains several stages in a sequential multi-stage manner,
allowing the model to learn the whole features of a single image with fewer stages
of increasing image resolution.

2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are networks that can extract informa-
tion in a more general domain, especially structural information. The early GCNs
are dedicated to generalizing CNNs to enable them to work on high-dimensional
irregular domains (for example, social networks, brain connection groups, or ref-
erence networks) [2,16]. Bruna et al. propose two constructions, one based on
a clustering of the domain, and the other based on the spectrum of the graph
Laplacian [2]. Defferrard et al. propose a graph convolution method that is based
on the spectrogram theory and design fast localized convolutional filters on the
graph [16]. Kipf et al. propose a scalable method for semi-supervised learning of
graph-structured data, which is based on the spectrum of the graph Laplacian,
and the convolution kernel is approximated by shifted Chebyshev polynomials
to reduce the algorithm complexity [12].

2.3 Attention Mechanism

The attention mechanism in the neural networks mainly models the relationship
between neural elements based on their correlation, which is a key component of

Leveraging GANs via Non-local Features 555

NxNNxN

NxNNxN

NxNNxN

NxNNxN

1 × 1
Conv

1 × 1
Conv

1 × 1
Conv

convolution
feature

maps

attention
map

1 × 1
Conv GCNs

NxNNxN

1 × 1
Conv

graph feature
map

transpose

soft max
non-local
feature

maps

GCNs Module

Fig. 2. The whole structure of GCA. The
⊗

denotes matrix multiplication.

various natural language processing and computer vision tasks. Attention mech-
anisms can process variable-sized inputs, focusing on the most relevant parts
of the input to assist the model to make decisions. Attention mechanisms used
to be adapted in many sequence-based tasks, such as machine reading [4] and
learning sentence representations [14]. In image generation, the long-distance
relationship modeling through the attention mechanism has proved effective for
learning high-dimensional and complex image distribution. Wang et al. propose
a self-attention-mechanism-based module for video processing called Non-Local
(NL) block [23]. The NL block can capture long-range dependencies about image
regions, and it can be inserted into many CNNs. In addition to being deployed
in image processing, this non-local structure is also applicable for sequence and
video problems. In addition to modeling the relationship between neural ele-
ments, the attention mechanism can also be used to construct graph structure
in a graph domain. GCA employs a self-attention mechanism to construct a
pixel-level global graph structure.

3 Graph Convolutional Architecture

The GCA employs an attention mechanism to construct a pixel-level graph struc-
ture and exploit GCNs to extract the non-local features. GCA is a complement
to the convolutional GANs, alleviating the disadvantage of convolution that only
captures local features. The whole structure of GCA is shown in Fig. 2.

The convolutional feature maps x ∈ R
C×H×W obtained by the previous net-

work are mapped into four feature spaces in GCA by f, g, j,m. Here, f, g, j,m are
all 1 × 1 convolutions and Wf ∈ R

c̄×c,Wg ∈ R
c̄×c,Wj ∈ R

c̄×1,Wm ∈ R
c×c, c̄ =

c
k , k = 1, 2, 4, 8. Because c̄ does not influence the essential characteristics of the
attention maps, we choose k = 8 for memory efficiency. Among them, f and g
are used to calculate the attention map,

556 X. Peng et al.

aj,i =
exp(ri,j)

∑N
i=1 exp(ri,j)

(1)

where ri,j = f(xi)T g(xj), N = H × W , and aj,i indicates the attention value
of the jth region to the ith region. The whole attention map A ∈ R

N×N is
assembled by aj,i, containing the relations between all the regions in x. Based
on these relations, A can directly consider as an adjacency matrix in a graph
domain. Also, according to different GANs models and GCNs algorithms, some
methods can be used to operate A to make GCA obtain better performance, e.g.
binarization, which is marked as a dotted box in Fig. 2.

J ∈ R
N×N is the feature matrix in a graph domain according to A. A and J

constitute the main input of GCNs, and the calculation formula of GCNs is

Y = D̃− 1
2 ÃD̃− 1

2 JΘ (2)

where Ã = A + IN , D̃ii =
∑

j Ãi,j , J = Wjx and Θ ∈ R
N×N which is the

parameter matrix. The output of GCNs Y ∈ RN×N is the graph feature map.
To make the input and output of GCA have the same dimensions, GCA

leverages convolution and matrix multiplication to adjust the size of the graph
feature map, the formula is

Z = MY (3)

where M = Wjx, and Z ∈ R
C×H×W . The property that GCA doesn’t change

the dimensions making it a plug-and-play module. The final convolution v is
deployed at the end of the model. This convolution allows GCA to map the
features to non-local features, the formula is

p = WvZ (4)

where v is a 1 × 1 convolution and Wv ∈ R
c×c.

C
onv

Batch-
N

orm
alization

A
ctivation

Function

Conv Block 1
Nx
N
Nx
N

GCAconvolution
feature maps

C
onv

Batch -
N

orm
alization

A
ctivation

Function

Conv Block 2
Nx
N
Nx
N

non-local
features

C
onv

B atch-
N

orm
alization

A
ctivation

Function

Conv Block 3

GCNs

Fig. 3. The way GCA works in convolutional GANs. GCA can be easily embedded
between two convolutional blocks.

Leveraging GANs via Non-local Features 557

To start training from easy to hard, we multiply the output of the GCNs
model by a learnable scale parameter α and add back the input feature map.
The α is initialized as 0. Therefore, the final output is given by

o = αp + x (5)

where x represents the previous convolutional feature maps.
The way GCA works in the convolutional GANs is shown in Fig. 3.

4 Experiments

We implement the GCA into DCGAN, SAGAN, and ConSinGAN. Two datasets
are adopted, including CelebA [15], and LSUN (church) [27]. Besides, we also
conduct single image synthesis experiments. We deploy the NL block in the same
position in DCGAN and SAGAN for comparison experiments. All models adopt
the same hyperparameters, loss function, and training method.

The GCA and NL block deployed in DCGAN, SAGAN adopt 8 × 8 convolu-
tional feature maps as input, and DCGAN and SAGAN are trained to generate
64 × 64 resolution images. The GCA deployed in ConSinGAN only works in the
first stage of training. It should be noted that the GCA deployed in SAGAN
replaces its original NL block instead of being equipped with an additional GCA
module. All models are trained on NVIDIA Tesla V100 GPU. Quantitative and
qualitative analyses are applied to the experimental results.

We quantitatively analyze the quality of the images generated by the above
model. We chose the Fréchet Inception Distance (FID) [7] and Single Image
Fréchet Inception Distance (SIFID) [22] to evaluate the generated images. FID
compares the distribution of a pre-trained network’s activations between a set of
generated and real images. Especially, SIFID is an adaptation of the FID to the
single image domain. The generated on CelebA and LSUN (church) synthesized
by DCGAN, DCGAN + NL, and DCGAN + GCA are shown in Fig. 4. The
FID scores of all models are shown in Table 1 (The real images for calculating
FID are the original images in datasets sampled to 64 × 64. All FID scores are
calculated on 50,000 generated images). We show the heatmap of convolutional
operation, NL block, and GCA in Fig. 5. The heatmap shows that GCA captures
more non-local information than the NL block.

Visually, when models are equipped with GCA, they can generate more real-
istic images. In quantitative analysis, the lower FID scores indicate that GCA
can bring significant enhancement to GANs. However, the NL block doesn’t
improve the performance, causing a side effect instead. This contrast shows that
the long-range dependencies captured by NL block are not generalized infor-
mation in GANs, simply adding them to the model will even bring negative
effects. In contrast, the non-local features modeled by GCA are extracted by
GCNs. GCNs are a generalized form of CNNs, so non-local features are more
generalized than long-range dependencies.

558 X. Peng et al.

DCGAN + GCA

DCGAN DCGAN + NL

Fig. 4. Generated images of CelebA and LSUN (church) synthesized by DCGAN,
DCGAN + NL, and DCGAN + GCA.

Conv NL GCA

Fig. 5. Heatmaps of convolutional operation, NL block, and GCA. GCA and NL block
can significantly increase the high activation regions. GCA and NL block enable CNNs
to have high activation values for multiple regions at the same time instead of being
limited to local regions. In addition, compared to NL block, GCA has more high acti-
vation regions. This means that GCA captures more non-local information.

Leveraging GANs via Non-local Features 559

Table 1. The FID scores of DCGAN, DCGAN + NL, DCGAN + GCA, SAGAN and
SAGAN + GCA.

Model Dataset

CelebA LSUN (church)

DCGAN [19] 33.39 33.59

DCGAN + NL 34.56 54.36

DCGAN + GCA 25.75 22.15

SAGAN [28] 54.75 36.56

SAGAN + GCA 37.39 28.74

ConSinGAN ConSinGAN + GCAReal Image

President
Mountain

Angkor
Wat

Parthenon

Marina
Bay Sands

SIFID

0.064/0.051

0.14/0.076

0.13/0.071

0.08/0.051

Fig. 6. Results of single image synthesis. The semantics that ConSinGAN fails to model
are marked with red boxes and the improvements of GCA are marked with green boxes.
The left side of the fourth column is the SIFID scores of ConSinGAN, and the right
side is the SIFID scores of ConSinGAN deployed with GCA.

Single image synthesis can intuitively reflect the improvement of GCA to the
GANs. However, SIFID itself has a large variance, qualitative analysis is more
intuitive in single image synthesis. The results of the experiments are shown in
Fig. 6 (All SIFID scores are the average of the scores of 10 generated samples).

Intuitively, after GCA is equipped, the semantics of the generated images
are significantly improved in space, structure, and texture. For example, in the
President Mountain image, GCA can correctly model the positional relation
between semantics. The generative model can correctly generate the position of
each semantic object, avoiding the defect that the semantic objects are mixed.
The improvements confirm that the pixel-level graph structure constructed by
GCA can indeed successfully model the relationship information between the
various features of the image. ConSinGAN uses a phased training method similar
to ProgressiveGAN. In Fig. 6, we show the results of different training phases of

560 X. Peng et al.

Stage 1 2 3 4 65

Fig. 7. The results of ConSinGAN + GCA in different training stages. The GCA helps
ConSinGAN to model the image semantics early in the training.

ConSinGAN after deploying GCA. The results of each stage of the ConSinGAN
deployed with GCA are shown in Fig. 7.

5 Conclusion

In this paper, we propose the Graph Convolutional Architecture (GCA) for
GANs. The GCA employs the self-attention mechanism to construct a pixel-
level graph structure and then incorporates the GCNs into the GANs. With
the captured graph structure, GCA successfully supplements non-local feature
extraction of GANs. Finally, we embed it into three representative GANs i.e.
DCGAN, SAGAN, and ConSinGAN for evaluation. Experimental results ver-
ify the superiority of GCNs and show that GCA can significantly improve the
performance of the convolutional GANs.

Acknowledgment. The paper was supported by the National Natural Science Foun-
dation of China (Grant No. 61671480), the Major Scientific and Technological Projects
of CNPC under Grant ZD2019-183-008, the Open Project Program of the National
Laboratory of Pattern Recognition (NLPR) (Grant No. 20200009).

Leveraging GANs via Non-local Features 561

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning, pp. 214–223 (2017)

2. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally con-
nected networks on graphs. In: International Conference on Learning Representa-
tions (2014)

3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: interpretable representation learning by information maximizing generative
adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2180–
2188 (2016)

4. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine
reading. In: Conference on Empirical Methods in Natural Language Processing,
pp. 551–561 (2016)

5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, pp. 5769–5779 (2017)

7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local Nash equilibrium. In: Advances
in Neural Information Processing Systems, pp. 6626–6637 (2017)

8. Hinz, T., Fisher, M., Wang, O., Wermter, S.: Improved techniques for training
single-image GANs. In: IEEE Winter Conference on Applications of Computer
Vision, pp. 1300–1309 (2021)

9. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5967–5976 (2017)

10. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. In: International Conference on Learning
Representations (2018)

11. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for genera-
tive adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4401–4410 (2019)

12. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional net-
works. In: International Conference on Learning Representations (2017)

13. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A.: Photo-
realistic single image super-resolution using a generative adversarial network. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 105–114 (2017)

14. Lin, Z., et al.: A structured self-attentive sentence embedding. In: International
Conference on Learning Representations (2017)

15. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

16. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

17. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: International Conference on Learning Repre-
sentations (2018)

562 X. Peng et al.

18. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
GANs. In: International Conference on Machine Learning, pp. 2642–2651 (2017)

19. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. In: International Conference
on Learning Representations (2016)

20. Reed, S., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what
and where to draw. In: Advances in Neural Information Processing Systems, pp.
217–225 (2016)

21. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adver-
sarial text to image synthesis. In: International Conference on Machine Learning,
pp. 1060–1069 (2016)

22. Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: learning a generative model from
a single natural image. In: IEEE International Conference on Computer Vision,
pp. 4570–4580 (2019)

23. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

24. Wang, X., Gupta, A.: Generative image modeling using style and structure adver-
sarial networks. In: European Conference on Computer Vision, pp. 318–335 (2016)

25. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-
resolution by deep spatial feature transform. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 606–615 (2018)

26. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial net-
works. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5 5

27. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-
scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv: 1411.7766 (2014)

28. Zhang, H., Goodfellow, I., Metaxas, D.N., Odena, A.: Self-attention generative
adversarial networks. In: International Conference on Machine Learning, pp. 7354–
7363 (2019)

29. Zhang, H., Xu, T., Li, H.: StackGAN: text to photo-realistic image synthesis with
stacked generative adversarial networks. In: IEEE International Conference on
Computer Vision, pp. 1060–1069 (2016)

30. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: IEEE International Conference on Com-
puter Vision, pp. 2242–2251 (2017)

https://doi.org/10.1007/978-3-030-11021-5_5
http://arxiv.org/abs/1411.7766

On Mode Collapse in Generative
Adversarial Networks

Kaifeng Zhang(B)

Nanjing, China

Abstract. Generative adversarial networks (GANs) have shown
extraordinary performance in generating high quality samples in domains
including image, video, and text. GANs therefore have great potential
in learning complex probability distributions in high dimensional spaces.
However, current methods often miss capturing some of the modes in
the examples, known as the mode collapse problem. The reason for this
issue can be traced to that the initial generated manifold fails to cover
the whole data manifold, while the training process is hard to recover
from this failure. In this paper, we propose GANs with supervision signal
(SSGAN), which introduces a supervision signal to alleviate this issue.
The supervision signal tells the generator an approximate output cor-
responding to the input noise, which ensures the generated manifold to
be close to the data manifold. Therefore, the generator could be able to
better capture the whole data distribution. We have conducted exper-
iments on MNIST, CIFAR 10 and CelebA datasets. The results show
that our method outperforms several SoTA approaches measured by the
inception score, mode score, and the newly proposed matching score.

1 Introduction

Learning probability distribution in high dimensional space is a fundamental
yet difficult task in artificial intelligence (e.g., [11]). Generative adversarial net-
works (GANs) [6] have shown great successes in generating vivid objects in high
dimensional space, such as image [5], video [13], and 3D model [20], by training
a generator G together with an adversarial discriminator D. These successes dis-
close the great potential of GANs in learning complex probability distribution
in high dimensional space.

The original study [6] has shown that, when the discriminator capacity and
the number of samples are both sufficient, the convergence of GANs implies that
the learned distribution Pgen will be very close to the ground-truth distribution
Preal. However, it is usually not the case in practice. The mode collapse issue is
often observed (e.g., [3]), which appears as that a significant part of the training
data is hard to be generated by the learned generative model. This observation
means that the learned distribution shifts away from the real distribution. There-
fore, the learned distribution by GANs could have a large error, e.g., especially
for imitation learning [8].

K. Zhang—Independent Researcher.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 563–574, 2021.
https://doi.org/10.1007/978-3-030-86340-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_45&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_45

564 K. Zhang

The reason that some modes in the training data are missed can be traced
to the initialization of GANs. In high dimensional sample space, it is hard for
the initial generated manifold to cover all the modes with limited training exam-
ples. Meanwhile, some theoretical results also indicate that the gradients on the
generator cannot lead the generated manifold to cover all the examples. There-
fore, training generative adversarial networks always suffers from the problem of
mode collapse.

In this paper, we introduce a supervision signal to formal GANs in order to
alleviate the mode collapse issue, which aims at drawing the generated manifold
close to the real data manifold. The intuition of our work is summarized as
follows. We add an inverse generator to the formal GAN, which learns a mapping
from high dimensional sample space to low dimensional noise space. Therefore,
we can use these data pairs to guide the generated manifold being close to
the real data manifold. Experiment results show that our method outperforms
several SoTA methods in training GANs with the measure: inception score, mode
score and newly proposed matching score.

The contributions of our work are threefold.

– We re-analyzes the reasons for mode collapse in GANs theoretically;
– We extend formal GAN to SSGAN in order to alleviate the mode collapse

issue in GANs;
– We introduce a new evaluation metric: matching score which can better

measure the performance on modes capturing.
– Experiments show that our SSGAN outperforms several SoTA methods in

both image quality and modes capturing.

2 Related Work

Mode collapse problem always occurs in training GANs. And there are also some
SoTA methods for alleviating this issue as follows.

WGAN [1] and WGAN-GP [7] use Wasserstein metric to avoid gradient van-
ishing when the discriminator trains to be optimal. It also shows that the mode
collapse in GANs is somehow alleviated in its experiments.

Unrolled GAN [14] defines the generator objective with respect to an unrolled
optimization of the discriminator. With more information from surrogate loss
function, the training for generator and discriminator can be more balanced.
This technique might be ideal for mode collapse issue in GANs but not feasible
in practice.

AdaGAN [19] is inspired by boosting algorithm. At every step of AdaGAN
procedure, a new component will be added into a mixture model by running a
GAN algorithm on a re-weighted training data set. Theoretical results show that
such an incremental procedure will lead the generated data distribution converge
to the real data distribution.

Spectral normalization generative adversarial networks (SNGAN) [15] pro-
pose to use spectral normalization to stabilize the training of the discriminator.
With such an operation to the discriminator at each iteration, Lipschitz constant

On Mode Collapse in Generative Adversarial Networks 565

for the discriminator can be bounded. So the training stability for the discrim-
inator can be better than before and the mode collapse problem can also be
alleviated.

Mode regularized GAN [3] introduces two regularizers to regularize the objec-
tive: geometric metrics regularizer and mode regularizer. And the proposed
manifold-diffusion training for GANs divides the training procedure into two
parts: a manifold step and a diffusion step. In the manifold step, the generated
manifold and the real data manifold can be matched. And in the diffusion step,
the probability mass on the generation manifold can be distributed according to
the real data distribution.

Variational encoder enhancement to generative adversarial networks (VEE-
GAN) [18] introduces a reconstructor network which reverses the action of the
generator by mapping the data distribution to noise distribution (a Gaussian).
Once the reconstructor learns to be an inverse of the generator network and the
mapping from data distribution to noise distribution, this will help to encourage
the generator to cover all the examples in real data distributions.

3 Reasons for Mode Collapse in GANs

Although minimizing the distance (e.g. JSD) between generated manifold and
real data manifold do help us to obtain a mapping from noise space to sample
space, there still exists some limitations in training GANs. Mode collapse is one of
severest problems. The reasons for mode collapse in GANs can be traced to that
the initial generated manifold cannot cover all the examples, and the training
process is hard to recover from this failure. In this section, we will analyze the
reasons for mode collapse phenomenon theoretically.

Firstly, we suppose the generator is a function composed by affine transfor-
mations and point-wise nonlinearities. Here we consider the nonlinearities are
rectifiers or leaky rectifiers of the form δ(x) = 1[x < 0]c1x + 1[x ≥ 0]c2x for
some c1, c2 ∈ R. Therefore, the generator network can be represented as:

g(z) = MnWn · · · M1W1z, (1)

where Mi are some diagonal matrices dependent on z that have diagonal entries
c1 or c2 and Wi are affine transformations.

Suppose M is the set of all diagonal matrices with diagonal entries c1 or c2,
then:

g(Z) ⊆
⋃

Mi∈M

MnWn · · · M1W1Z, (2)

which is a finite union of linear manifolds. Denote that in the singular value
decomposition, W = UΣV , the operations (multiplying by Σ and applying a
change of basis are diffeomorphisms, and adding 0s to new coordinates) indicate
a manifold embedding. Thus, the generated manifold will be projected onto a
subset of the coordinates. So the generated manifold g(Z) will be contained in a
countable union of low dimensional manifolds. Therefore, the generated manifold
has measure 0 in X .

566 K. Zhang

The illustrations above tell that the generated manifold will be contained
in a countable union of low dimensional manifolds. At the same time, the real
data manifold might be full of the sample space. Therefore, it is hard for the
generator to cover all the examples, especially in the beginning of the training
procedure. And it also points out the first reason for mode collapse in training
GANs: the initial generated manifold cannot cover all the examples.

Secondly, we consider the generalization in GANs which means that the pop-
ulation distance between the generated distribution and real data distribution
is close to the empirical distance between the empirical distributions.

We first assume the training objective function for GANs is Ex∼Pr
[φ(D(x))]+

Ez∼Pg
[φ(1−D(G(z)))]. Meanwhile we also assume the measuring function ranges

from −Δ to Δ, F = {Dv, v ∈ V} is the class of discriminators that is L-Lipschitz
with respect to the parameters v and p is to denote the number of parameters
in v.

Let μ, v be two distributions and μ̂, v̂ be empirical versions each with at
least m samples. We show that with high probability, for every discriminator
Dv, there exists:

|Ex∼μ[φ(Dv(x))] − Ex∼μ̂[φ(Dv(x))]| ≤ ε/2 (3)

|Ex∼v[φ(1 − Dv(x))] − Ex∼v̂[φ(1 − Dv(x))]| ≤ ε/2 (4)

The proof can be seen in [2] in detail.
Therefore, we can obtain a conclusion that if μ̂ is the empirical version of

distribution μ with m samples. There is a universal constant c such that when
m ≥ (cp2Δ2log(LLΦp/ε))/ε2, we have that with probability at least 1−exp(−p),
dF,Φ(μ, μ̂) ≤ ε.

It shows that a discriminator net with p parameters cannot distinguish a
distribution μ and a distribution with support Õ(p/ε2). That is, the low capacity
discriminator cannot detect the lack of sample diversity. Actually, the training
examples is very sparse and the sample space has a high dimensionality. That’s
why mode collapse occurs in GANs. It also leads to a conclusion that in GANs
training procedure, the gradients on the generator cannot lead the generated
manifold to cover all the examples. Therefore, it points out the second reason
for mode collapse in GANs: the training procedure for GANs cannot recover
from mode collapse failure.

Overall, the interpretations above show the reasons for mode collapse in
training GANs which also motivate us to design a new training architecture for
GANs.

4 Our Method

Our method to deal with mode collapse in GANs is to introduce a supervi-
sion signal to alleviate this issue. Therefore, the supervision signal will keep the
generated manifold and the real data manifold close even in the initialization.

On Mode Collapse in Generative Adversarial Networks 567

Inspired by variational auto-encoder, we set an encoder to learn the low dimen-
sional representation for training examples. Thus, we can train the generator to
ensure the generated manifold to be close to the real data manifold.

Fig. 1. Architecture for our model sGAN. Note that the red lines represents that using
the encoder to learn the low dimensional representations for high dimensional training
examples; Therefore, a supervision signal is added to typical GANs model. (Color figure
online)

Figure 1 shows the architecture of our model SSGAN. In SSGAN, we use
an encoder network (inverse generator) to learn the low dimensional represen-
tations for the training data. Meanwhile, the encoder can also restrict the low
dimensional distribution to be some distribution (e.g. a Gaussian). Thus, the
noise input for generator can be sampled from this distribution. Therefore, the
generated manifold can be trained to be close to the real data manifold via such
a supervision signal. The training paradigm is shown in the following paragraphs
in detail.

The encoder in our training architecture is actually an inverse generator
which can map the training examples to low dimensional representations. There-
fore, this low dimensional representation can be used to make the generated
manifold and real data manifold closely.

In our model, we regularizes the encoder by imposing a prior z ∼ N (0, I)
over the latent distribution. Thus the latent distribution can be restricted to
a Gaussian by Lprior = KL(N (μ(x), Σ(x))‖N (0, I)). The training objective
function for the encoder network can be shown as:

LE = Lprior + ‖G ◦ E(x) − x‖22 (5)

where minimizing ‖G ◦ E(x) − x‖22 is actually reducing the reconstruction error
for the encoder-generator networks.

In the typical setting of GANs, it consists of two components: a generator and
a discriminator. The discriminator tries to distinguish the real data examples and
generated samples while the generator tries to confuse the discriminator. Here
we assume the training objective function for GANs is:

LGAN = Ex∼Pr
[φ(D(x))] + Ez∼Pg

[φ(1 − D(G(z)))] (6)

568 K. Zhang

In SSGAN, the generated manifold is kept close to the real data manifold
via a supervision signal. Meanwhile, the generator should still be trained to
confuse the discriminator. By trading off these two motivations, we can obtain
the objective function for the generator:

LG = Ez∼pg
[φ(1 − D(G(z)))] + γ‖G ◦ E(x) − x‖22 (7)

On the other hand, the discriminator still tries to distinguish the real samples
and the generated samples. So the training objective function for the discrimi-
nator can be shown as:

LD = Ex∼pr
[φ(D(x))] + Ez∼pg

[φ(1 − D(G(z)))] (8)

By iteratively training the inverse generator, the generator and the discrim-
inator, a supervision signal will be added to the GANs model to help the gener-
ated manifold capture more modes in examples.

5 Evaluation Metrics

To evaluate both the sample quality and modes capturing phenomenon in GANs,
we use several different metrics for different experiments.

To estimate the sample quality, the inception score [17] is a very good assess-
ment. The expression of inception score can be shown as:

I = exp(ExKL(p(y|x)‖p∗(y))) (9)

Here, x represents one generated sample, p(y|x) is the soft-max output of a
strong classifier of the labels for a generated sample x, and p∗(y) is the overall
label distribution for the generated examples. Considered that the strong clas-
sifier always has a high confidence for good samples, the higher inception score
insures better sample quality.

However, the inception score do not consider the distribution of the training
data. So once the GAN model is not very good, the inception score can still be
very large for generated samples. [3] propose a new metric (mode score) to avoid
this issue. The expression for mode score is shown as:

M = exp(ExKL(p(y|x)‖p(y)) − KL(p∗(y)‖p(y))) (10)

Here, p(y) is the overall distributions for training samples. This metric con-
siders the human evaluation experiences. The former part of mode score insures
the sample quality and the latter part insures the sample diversity. However, the
overall distribution for training data might has a very high entropy which will
make the former part loss its efficacy.

The shortcomings of these two evaluation metrics motivate us to design a new
metric to evaluate the performance for different GAN models on mode capturing.

On Mode Collapse in Generative Adversarial Networks 569

Definition 1 (Matching Score). Given two datasets D1 = {x1, · · · , xn} and
D2 = {g1, · · · , gn} in the same sample space, and a similarity function between
two samples s(·, ·), the matching score between the two datasets w.r.t. s is

MS =
1
n

max
π∈Π

∑n

i=1
s(xi, gπ(i)),

where Π is all the permutations of {1, · · · , n}.

Definition 1 tells that the matching score is the average value of similarity
for generated samples and real samples with maximum matching. To calculate
the matching score directly demands a large computational cost. In practice, we
use maximum bipartite matching algorithm to search the optimal permutation
of generated samples corresponding to some permutation of training examples.
Therefore, the matching score can be obtained. Owing to that the matching score
considers the optimal matching of generated samples and real samples, higher
matching score insures more modes in generated manifold. That is why we use it
to evaluate the performance of GANs on mode collapse problem. Besides, cosine
similarity is chosen in our experiments.

6 Experiments

In order to show the efficacy of our newly proposed SSGAN, we conducted a
set of experiments on MNIST [10], CIFAR10 [9], and CelebA face dataset [12].
The compared algorithms consist: DCGAN [16], improved Wasserstein GAN [7],
VEEGAN [18], MDGAN [3], AdaGAN [19], and InfoGAN [4]. Meanwhile, we
also provide the performance on metrics include: inception score, mode score
and matching score.

In detail, we set the architecture from DCGAN as the architecture for our
SSGAN and also the compared models. Besides, in the setting of SSGAN, we
use the following standard objective function for training GANs:

L = Ex∼pr
[log(D(x))] + Ez∼pg

[log(1 − D(G(z)))] (11)

In the following paragraphs, we will provide the performance for different
GANs on different datasets respectively.

6.1 Ablation Study

We conduct ablation studies on MNIST dataset compared with WGAN [1] and
WGAN-GP [7]. MNIST is a dataset for hand written digits with 60,000 training
examples and 10,000 test examples. The digits have been size normalized and
centered in a fixed-size image. And these examples are from approximately 250
writers. Besides, we have made sure that the sets of writers for the training set
and test set are disjoint.

For MNIST dataset, we borrow the architecture from DCGAN with three de-
convolutional layers for the generator network and three convolutional layers for

570 K. Zhang

(a) WGAN (b) WGAN-GP (c) SSGAN (ours)

Fig. 2. Comparison on the histogram of inception score for generated samples.

(a) WGAN (b) WGAN-GP (c) SSGAN (ours)

Fig. 3. Comparison on the histogram of mode score for generated samples.

the discriminator network. We also assume the data generating distribution can
be approximated with ten dominant modes. So we train a regular three layers
convolutional neural network to classify the generated samples into 10 classes.
Therefore, we can get the inception score and the mode score respectively.

In Fig. 2, we use the histogram of inception score to evaluate the sample visual
quality. Clearly, our proposed model SSGAN improves the inception scores and
thus show the benefits of our model to improve the sample qualities. At the same
time, we also use the histogram of mode score to evaluate the modes dropping
phenomenon with these three models. In Fig. 3, the distribution of mode score
of our model shows that our model can capture more modes than other two
models.

Table 1. The proportion of digits for generated samples with 10,000 samples (%).

Method 0 1 2 3 4 5 6 7 8 9

WGAN 0.72 5.21 8.12 0.38 0.24 36.76 0.49 48.03 0.01 0.04

WGAN-GP 3.86 17.55 12.80 6.36 5.83 26.92 2.87 23.36 0.32 0.13

SSGAN (ours) 9.62 11.11 10.32 10.65 9.36 8.90 9.74 10.65 9.75 9.90

Table 1 shows the proportion of digits for generated samples with 10,000 sam-
ples. Clearly, the proposed SSGAN captures all the digits and the distribution
for generated samples is almost the ground truth distribution of training data.
On the other hand, WGAN missed a digit “8” and the digit distribution for
WGAN and WGAN-GP is far away from the ground truth distribution.

On Mode Collapse in Generative Adversarial Networks 571

Table 2. The inception score, mode score with 10,000 generated samples and the
results of matching score for different models.

Method Inception score Mode score Matching score

WGAN 5.158 3.390 0.025

WGAN-GP 5.800 3.765 0.159

SSGAN (ours) 9.364 9.296 0.737

In Table 2, we show the inception score, mode score and matching score for
different GAN models. The former two evaluation metrics are calculated via
10,000 generated samples. These results show that our model SSGAN has better
visual quality (higher inception score and mode score) and capture more modes
in generated manifold (higher mode score and matching score). Meanwhile, the
evaluation of matching score also shows that our model SSGAN can better match
the training examples.

Overall, by these three evaluation metrics and the histogram of inception
score and mode score, the proposed SSGAN outperforms WGAN and WGAN-
GP with better sample quality and more modes captured.

Owing to that the training data distribution for MNIST is uniform, it is
hard to evaluate the performance on mode collapse for different models. So we
synthesized a new unbalanced MNIST dataset for better evaluation on modes
dropping problem.

Table 3. The proportion of digits for generated samples with 10,000 samples (%).

Method 0 1 2 3 4 5 6 7 8 9 KL

Ground truth 0.48 0.48 0.96 2.39 4.78 9.57 14.35 19.14 23.92 23.92 –

WGAN 0.38 0.81 1.31 7.26 5.78 4.08 0.85 12.48 34.48 32.57 36.77

WGAN-GP 1.31 0.15 0.18 1.93 1.82 2.09 12.13 16.14 32.56 31.69 12.92

SSGAN (ours) 0.49 0.51 0.92 2.27 4.74 9.65 14.33 19.23 23.91 23.85 0.10

Table 3 shows the proportion for different digits in generated samples with
our new synthetic unbalanced MNIST dataset. According to the results of KL
divergence between the ground truth distribution and distribution generated
by different models, the distribution of our model SSGAN is more close to the
ground truth.

Table 4 shows the comparison on inception score, mode score and matching
score for different models. The results show that our model SSGAN has higher
inception score, mode score and matching score which ensures better visual qual-
ity and modes capturing.

572 K. Zhang

Table 4. The inception score, mode score with 10,000 generated samples and the
matching score results for different models.

Method Inception score Mode score Matching score

WGAN 4.103 3.987 0.076

WGAN-GP 5.475 4.776 0.175

SSGAN (ours) 9.043 8.975 0.832

Owing to the distribution of training data is not a uniform, the experiments
on MNIST dataset and synthetic unbalanced MNIST dataset can better evaluate
the capacity on modes capturing for different modes.

In CIFAR 10 dataset, there are 60,000 images (10 classes) with 6,000 images
per class. The dataset consists a training dataset with 50,000 images and a test
dataset with 10,000 images. The images are drawn randomly from the entire
dataset. And this dataset involve high quality and diverse images.

Fig. 4. Comparison on inception score for different models.

Figure 4 shows the comparison on inception score compared with WGAN and
WGAN-GP. By applying an inception network [17] to classify the images, the
inception score and mode score can be calculated. With the results for inception
score, we can observe that our model SSGAN is higher than the other two
methods. This indicates that SSGAN can generate better looking samples.

Overall, our proposed SSGAN outperforms WGAN and WGAN-GP on both
visual quality and modes capturing.

6.2 SoTA Comparison

In this section, we conduct the experiments on CelebA dataset. CelebA is a
large scale face dataset with more than 200,000 celebrity images. Each image

On Mode Collapse in Generative Adversarial Networks 573

has 40 attribute annotations. So CelebA images are very diverse with large pose
variations and background clutter. For the experiments involving CelebA face
dataset, we reshaped the images into 32 × 32 × 3. At the same time, we borrow
the architecture from DCGAN [16] for training GANs.

Table 5. The results of matching score for different models.

Method DCGAN WGAN WGAN-GP VEEGAN

Matching score 0.002 0.002 0.053 0.267

Method MDGAN AdaGAN InfoGAN SSGAN

Matching score 0.317 0.402 0.393 0.456

Table 5 shows the results of the matching score for different GAN models.
Our model SSGAN achieves 0.456 on CelebA face dataset which is much better
than other SoTA methods.

Overall, the SoTA comparison experiments tell that the proposed SSGAN
is not only capable of facing large scale dataset but also better capture more
modes in training examples.

7 Conclusions

GANs is known as one of the most popular generative models. However, some
limitations in training GANs unlock its power to be applied into more areas.
One of the most severest problem is mode collapse. In this paper, we blame the
mode collapse problem for the initial generated manifold cannot cover all the
examples, and the training process is hard to recover from this failure. Therefore,
we bring a supervision signal to GANs to keep the generated manifold being close
to the real data manifold even at the initialization. Experiment results show that
our method could outperform several SoTA methods in training GANs on both
visual quality and modes capturing.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: International Con-
ference on Machine Learning (ICML) (2017)

2. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generalization and equilibrium
in generative adversarial nets. In: International Conference on Machine Learning
(ICML) (2017)

3. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adver-
sarial networks. In: International Conference on Learning Representation (ICLR)
(2017)

574 K. Zhang

4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: interpretable representation learning by information maximizing generative
adversarial nets. In: Advances in Neural Information Processing Systems (NIPS)
(2016)

5. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems (NIPS), pp. 1486–1494 (2015)

6. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 2672–2680 (2014)

7. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems (NIPS) (2017)

8. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural
Information Processing Systems (NIPS), pp. 4565–4573 (2016)

9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images
(2009)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

11. Liu, H., Lafferty, J.D., Wasserman, L.A.: Sparse nonparametric density estimation
in high dimensions using the rodeo. In: Proceedings of the 11th International Con-
ference on Artificial Intelligence and Statistics, (AISTATS), pp. 283–290 (2007)

12. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of International Conference on Computer Vision (ICCV) (2015)

13. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. International Conference on Learning Representation (ICLR)
(2016)

14. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial
networks. In: International Conference on Learning Representation (ICLR) (2017)

15. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: International Conference on Learning Repre-
sentation (ICLR) (2018)

16. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. In: International Conference
on Learning Representation (ICLR) (2016)

17. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 2234–2242 (2016)

18. Srivastava, A., Valkov, L., Russell, C., Gutmann, M.U.: VEEGAN: reducing mode
collapse in GANs using implicit variational learning. In: Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 3310–3320 (2017)

19. Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C.J., Schölkopf, B.: Ada-
GAN: boosting generative models. In: Advances in Neural Information Processing
Systems (NIPS) (2017)

20. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic
latent space of object shapes via 3D generative-adversarial modeling. In: Advances
in Neural Information Processing Systems (NIPS), pp. 82–90 (2016)

Image Inpainting Using Wasserstein
Generative Adversarial Imputation

Network

Daniel Vašata , Tomáš Halama , and Magda Friedjungová(B)

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

{daniel.vasata,halamto2,magda.friedjungova}@fit.cvut.cz

Abstract. Image inpainting is one of the important tasks in computer
vision which focuses on the reconstruction of missing regions in an image.
The aim of this paper is to introduce an image inpainting model based on
Wasserstein Generative Adversarial Imputation Network. The generator
network of the model uses building blocks of convolutional layers with dif-
ferent dilation rates, together with skip connections that help the model
reproduce fine details of the output. This combination yields a universal
imputation model that is able to handle various scenarios of missingness
with sufficient quality. To show this experimentally, the model is simul-
taneously trained to deal with three scenarios given by missing pixels at
random, missing various smaller square regions, and one missing square
placed in the center of the image. It turns out that our model achieves
high-quality inpainting results on all scenarios. Performance is evaluated
using peak signal-to-noise ratio and structural similarity index on two
real-world benchmark datasets, CelebA faces and Paris StreetView. The
results of our model are compared to biharmonic imputation and to some
of the other state-of-the-art image inpainting methods.

Keywords: Imputation methods · Missing data · Image inpainting ·
Generative models · Wasserstein GAIN · Wasserstein GAN

1 Introduction

In computer vision, one of the most important tasks being solved is image
inpainting, also known as image completion, which aims to restore missing pixels
in a damaged image. The aim is to estimate and impute the pixel information
in missing locations based on the context from non-missing parts of the image.
Since locations of missingness can appear in many ways such as random noise or
entire connected regions of various size and shape, it may not be easy to have a
universal model that can handle most of these scenarios. Image inpainting can
also be used for replacing unwanted by a realistically looking output.

Conventional approaches understand pixel imputation as a smooth function
extension problem, see e.g. [2,4,7,19]. These methods work well for cases where
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 575–586, 2021.
https://doi.org/10.1007/978-3-030-86340-1_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_46&domain=pdf
http://orcid.org/0000-0003-0616-4340
http://orcid.org/0000-0001-6403-083X
http://orcid.org/0000-0002-3363-294X
https://doi.org/10.1007/978-3-030-86340-1_46

576 D. Vašata et al.

image corruption is minor or straightforward to fill in, but not so well for cases
with more significant damage, failing to produce reasonable or plausible out-
comes [16]. Recently, the most successful methods (e.g. [13,18,25,26]) combine
convolutional neural networks and generative adversarial networks which yield
improvements such as higher sharpness, matching colours and general shapes of
imputed objects in missing regions. Typically these models have the common
advantage that one does not need to know which pixels are missing in advance.
However, the most successful ones are often of high-complexity and with compli-
cated loss functions often based on pretrained networks for visual classification.

The aim of this work is to address image inpainting task using Wasserstein
Generative Adversarial Imputation Network (WGAIN) that was recently intro-
duced by the authors in [9] as a general imputation model. It is a generative impu-
tation model which, for non-visual imputation tasks, performs comparatively to
other state-of-the-art methods. It beneficially incorporates the Wasserstein met-
ric to adversarial training which does not suffer from vanishing gradients.

For the image inpainting domain one needs to adjust the model for the sce-
nario of image data, namely make use of convolutional layers. In our WGAIN
model, we adopt the architecture from [13] and extend it by using building blocks
composed from parallel convolutional layers with multiple dilation rates. This
leads to different sizes of the layers’ receptive fields which improves the ability
of the model to focus on both the local and global structure of the image hence
obtaining universality in terms of variable missing pixel regions. Moreover we
use skip connections allowing the model to propagate high resolution features in
the hourglass network topology of the generator in a sandwich like way which
helps the model reproduce the fine details.

Our aim is to research the ability of our WGAIN model to perform well even
without the highly complicated pre-trained elements. We experimentally show
that our model is able to perform well in three different scenarios of missingness
when trained for all of them at once. These scenarios are given by missing pixels
at random, missing various smaller square regions, and one missing square placed
in the center of the image. Hence the model is able to react properly on large
missing areas as well as on many missing small areas simultaneously. This shows
the universality of the proposed WGAIN model. The performance is evaluated
using peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).
The results are compared to conventional methods of inpainting by biharmonic
functions used e.g. in [1,3,6,7]. We also discuss the comparison to other state-
of-the art methods [11,13,16,18,25,26] where possible.

2 Related Work

Most conventional methods such as [2,4,7,8,19,20] used to perform computer-
aided inpainting rely on local features such as colours and textures, but they fail
to consider the global semantics of the image. These methods work well for cases
where image corruption is minor or scattered across the image in small regions,
but not so well for cases with more significant regions to fill, failing to produce
reasonable or plausible outcomes [16].

Image Inpainting Using WGAIN 577

A significant number of state-of-the-art methods use deep generative neural
networks with very promising results. One of the ways of creating globally well-
organized and coherent images is by introducing a second neural network, an
adversary, that tries to decide whether the produced results look artificial or
genuine. The original generating network can learn to produce results that are
much less likely to be discarded as artificial using information from this adversary
network. Such networks are called generator and discriminator. This type of
architecture is called generative adversarial network (GAN) [10].

Let us briefly mention some of state-of-the-art methods. A very inspiring
work handling inpainting using deep neural networks with an adversary dis-
criminative network is Context Encoders (CE) [16]. Based on the autoencoder
architecture and using only convolutional layers, they achieved superior results in
a semantic inpainting task. In [25] introduced contextual attention layer enables
distant areas of the image to influence each other. When combined with two
discriminating losses, one for determining whether the entirety of the resulting
image is real-looking and one only for the generated patch, the work achieved
more plausible results than other methods in a human evaluated test. Hui et al.
in [12] mitigated the problem of blurred outputs using a one-stage model called
dense multi-scale fusion network (DMFN), which utilizes dense combinations of
dilated convolutions to obtain larger and more effective receptive fields. They
designed a novel self-guided regression loss for concentrating on uncertain areas
and enhancing semantic details. In [26] presented network contains reconstruc-
tive and generative parts, both represented by GANs, and a new short+long
term attention layer improving appearance consistency. This network is able to
generate multi-modal results. The PiiGAN [5] based on [25] also adopted the idea
of producing multiple reasonable result. The recently proposed Symmetric Skip
Connection Wasserstein Generative Adversarial Network [13] contains encoder-
decoder with convolutional blocks, linked by skip connections, together with a
Wasserstein-Perceptual loss function to preserve colour and maintain realism
on a reconstructed image. PEPSI and Diet-PEPSI [18] are another recent very
successful GAN-based models incorporating parallel extended-decoder path for
semantic inpainting, which aims at reducing the number of convolution opera-
tions as well as improving the inpainting performance.

3 Wasserstein Generative Imputation Network

Here we introduce the WGAIN following [9] closely. Let us denote by X = R
m,n,3

the space of all possible images of size m × n and three color channels (RGB)
and let X be a random element of X whose distribution is denoted by P(X).
The identification of missing/damaged pixels is stored in a mask boolean matrix
M ∈ {0, 1}m,n, where:

M i,j =
{

1, if ijth pixel of X is valid,
0, if ijth pixel of X is missing.

The distribution of M corresponds to the distribution of missingness in the data.
Let us further denote by X̃ the image X having zeros in place of missing pixels

578 D. Vašata et al.

given by
X̃ = X � M ,

where � denotes element-wise multiplication performed along all three color
channels.

The next step is to prepare the input that can be used to replace the missing
pixels in X̃ by random values drawn independently from the normal distribution.
Formally, let Z ∈ R

m,n,3 be a random tensor with independent and identically
distributed components having normal distribution N (0, σ2) with variance σ2

and define
Z̃ = Z � (1 − M).

To impute missing pixels in X̃ based on the information from non-missing
pixels, we want the model to learn the conditional distribution P(X|X̃,M) of
X given X̃ and M .

The generator g of the WGAIN model is a mapping g : X ×X ×{0, 1}m,n → X
represented by a deep convolutional network that is fed by X̃, Z̃, and by M . It
produces a new random image g(X̃, Z̃,M) corresponding to X̃ with all pixels
imputed. The final image where only the missing pixels are imputed is then given
by

X̂Z = g(X̃, Z̃,M) � (1 − M) + X̃ � M

and it is a random image whose conditional distribution P(X̂Z |X̃,M) is given
by the distribution P(Z) of Z and should be as close as possible to P(X|X̃,M).

The critic part f of the WGAIN model is a Lipschitz mapping f : X ×
{0, 1}m,n → R represented by a deep convolutional network with norm restricted
weights and fed by images and masks trained to maximize

EX∼P(X),M ∼P(M)

(
f(X,M) − EZ∼P(Z)f(X̂Z ,M)

)

which is estimated by sample means from mini-batches. This corresponds to
the estimate of the expectation with respect to M and X of the Earth-
Mover’s or Wasserstein distance [17,21] between the two conditional distribu-
tions P(X̂Z |X̃,M) and P(X|X̃,M).

3.1 Training

The critic f is used in adversarial training of both the generator g and the critic
itself. There the generator and the critic play an iterative two-player minimax
game where the critic wants to recognize the imputed values from the real ones
and the goal of the generator is to trick the critic so it cannot recognize them.
Moreover, the generator’s output is tightened to the correct image by the abso-
lute error loss function LMAE.

Therefore, there are two objective functions to minimize. The first corre-
sponds to training of the critic given by

J(f) = EX∼P(X),M ∼P(M)λf

(
f(X,M) − EZ∼P(Z)f(X̂Z ,M)

)
,

Image Inpainting Using WGAIN 579

Algorithm 1: WGAIN training pseudo-code.
Input: α - the learning rate; wmax - maximal norm of critic weights used in

clipping; m - the mini-batch size; λf , λg, λMAE - weights of the objectives
Draw m samples {xj}m

j=1 from the dataset;
Draw m samples {mj}m

j=1 from the mask distribution;
Draw m samples {zj}m

j=1 from the normal distribution of Z ;
while not converged do

x̃z j ← zj � (1 − mj) + xj � mj ;
x̂z j ← g(x̃z j ,mj) � (1 − mj) + xj � mj ;

Update weights w of f using Adam optimizer with learning rate α and
gradient

∇J(f) = λf∇
[

1
m

∑m
j=1 f

(
x̂z j ,mj

) − 1
m

∑m
j=1 f

(
xj ,mj

)]
;

Clip the norm of w by wmax;

Update weights of g using Adam optimizer with learning rate α and gradient

∇J(g) = ∇
[
−λg

1
m

∑m
j=1 f

(
x̂z j ,mj

)
+ λMAE

1
m

∑m
j=1‖x̂z j − xj‖2

]
;

end

where the weight λf enables one to increase or decrease the influence of the
corresponding gradient. Second is the objective for the generator,

J(g) = EX∼P(X),Z∼P(Z),M ∼P(M)

(
− λgf(X̂Z ,M) + λMAELMAE(X̂Z ,X)

)
,

where λg and λMAE are weights enabling one to strengthen or weaken the influ-
ence of the absolute error loss function.

The pseudo-code of the WGAIN training is given in Algorithm 1. The values
of the objective functions are estimated from mini-batches. The optimization
is done via alternating gradient descent, where the first step is updating the
critic f and the second step is updating the generator g. Hence, when perfectly
trained, the discriminator gives negative values for cases with imputed features
and positive values for cases with true features. On the other hand, the generator
entering the critic will be pushed to obtain large positive values of the critic as
it gives to real values.

3.2 Architecture of Networks

Both the generator and the critic networks are based on convolutional layers. The
architecture of the generator g, as shown in Fig. 1, is composed of building blocks
of convolutional or deconvolutional layers with different dilation rates. Those
building blocks are then combined in the encoder-decoder bottleneck topology
with sandwich like skip connections as introduced in [13].

The skip connections allow the model to propagate high resolution features
from layers of the encoder into layers of the decoder (in reverse order) which
helps the model transfer the fine details in every depth better. The first skip

580 D. Vašata et al.

connection is fed by the concatenation of the network’s input (X̃, Z̃,M). The
subsequent ones by the outputs of the encoder’s blocks.

The building blocks are composed of three parallel convolutional (for encoder)
or deconvolutional (for decoder) layers with the same kernel size of 5 × 5 but
with different dilation rates 0, 2, 5 corresponding to different sizes of the layer’s
receptive field [24]. The layers use padding and no strides so that the same
dimension of the output is guaranteed. The numbers of channels for the three
layers are of the form (n/2, n/4, n/4) with increasing numbers in the encoder
as n = 128, 128, 256, 512 and decreasing in the decoder as n = 256, 128, 128. All
three layers of the block have ELU activation functions and are concatenated
into a single output. In the case of the encoder the output goes into the outgoing
skip connection and also into the next block. If the next block belongs to encoder
the max-pooling of pool size 2 × 2 is applied before entering it. In the case of
the decoder the input into the block is given by a concatenation of the previous
block output and the incoming skip connection. The output of the decoder’s
block is followed by an up-sampling operation of factor 2 × 2.

The final block of the decoder is not up-sampled but only concatenated with
the first skip connection and fed into the one other deconvolutional layer with 8
channels, kernel size of 3 × 3, and ELU activation which is then followed by the
last deconvolutional layer with 3 channels, kernel size of 3×3, and hard-sigmoid
activation function, defined by

h(x) =

⎧⎪⎨
⎪⎩

0 for x < −2.5,

0.2x + 0.5 for x ∈ [−2.5, 2.5],
1 for x > 2.5,

that is responsible for collection of the final output.

C
on

v
B
lo
ck

512

C
on

v
B
lo
ck

256

C
on

v
B
lo
ck

128

C
on

v
B
lo
ck

128

X̃

Z̃

M

D
ec
on

v
B
lo
ck

256

D
ec
on

v
B
lo
ck

128

D
ec
on

v
B
lo
ck

128

D
ec
on

v
L
ay
er
,
E
L
U

8

D
ec
on

v
L
ay
er
,
ha

rd
-s
ig
m
oi
d

3

g(X̃, Z̃,M)

Skip connections

Fig. 1. The architecture of the generator.

The critic f has a simple funnel topology with 5 convolutional layers with
kernel size of 5 × 5, 2 strides, and channel numbers 64, 128, 256, 256, 512. The
layers have Leaky ReLU activation function. The final output is produced by a
single neuron connected to the flattened output of the last convolutional layer

Image Inpainting Using WGAIN 581

with linear activation. The norm restriction needed for the Lipschitz property of
the critic is achieved by clipping the L2 norm of each layer weights tensor to 1.

4 Experiments

The experiments were performed on two benchmark datasets: Paris StreetView
[16] and CelebA faces [15]. For the CelebA faces dataset the aligned and cropped
variant which has faces aligned in the central position was used. In the prepro-
cessing step images from both datasets were cropped to be square shaped and
have a common size of 128 × 128 pixels.

4.1 Scenarios of Missingness

In order to analyze the performance of the inpainting model we focus on three
scenarios of missingness, i.e. on three probability distributions of the mask M .
These three scenarios can be taken as representatives of three qualitatively dif-
ferent situations of how the missing pixels might be distributed across the image.

Noise corresponds to the situation when each pixel of the mask M is sampled
independently on other pixels with a probability p of having value 0 which
corresponds to the portion of missingness. In this scenario, we choose three
different values of p to simulate various damage portions. The simplest case is
when 50% of the pixels are dropped. The more severe damages are represented
by 75% and 95%.
In the training phase, the values of p for each sample are generated randomly
with a uniform distribution in the interval [0.5, 0.95].

Single square in the center represents a demanding task with a large contin-
uous region missing in the image, as there are no hints left inside the area.
To test this scenario, we fixed M to represent a centered square of missing
pixels. One side of the missing square is as long as half of the side of the
original image, thus the missing portion is 25%.
In the training phase the square is centered but its side is a randomly (uni-
formly) chosen integer in the interval [�/2.5, �/1.6], where � is the side of the
original image.

Randomly located multiple squares is a compromise between the previ-
ous two types of region mask. There are multiple smaller squares uniformly
independently distributed across the image. The number of randomly located
squares is fixed to 5 and the squares have a fixed size of 31×31 pixels. Because
of the overlapping it yields the final missing portion approximately equal to
25%.
In the training phase the number of squares, their positions, and their sizes
are chosen randomly. To be precise, we generate 30 squares with lower left
corners uniformly distributed in the 2D interval [−2�, 3�]2 and with their sides
uniformly distributed in the interval [�/5, �/3]. The final mask for the sample
is then given by the intersection of those squares with the 2D interval [1, �]2.

582 D. Vašata et al.

During the training phase the model learns all these scenarios at once. This
means that each training sample randomly choses which scenario it belongs to
and then it generates the mask matrix as described above. In the evaluation
phase each of these scenarios is evaluated separately.

4.2 Implementation Details

We perform a global normalization on all channels of the images to set the
intensity values of the pixels in the range [0, 1]. The hyperparameters for the
experiment were empirically set as λf = 1, λg = 0.005, and λMAE = 1. The
training procedure was optimized using Adam optimizer with learning rate α =
0.00005. The mini-batch size was m = 32. The model for the Paris StreetView
dataset was trained in 2000 epochs and the model for the CelebA dataset in 200
epochs. This corresponds to a similar number of training steps and training time
for both datasets.

The source code of our experiments is available at Github repository1. We
used the TensorFlow library2 running on a nVidia Tesla V100-PCIE-32GB.
It took approximately 3 days to train each model. For the implementation of
biharmonic function inpainting we used the scikit-image3 library.

4.3 Results

The examples of the experimental results are shown in Figs. 2 and 3. Our model
performs well for both datasets in all scenarios of missingness. Moreover, in all
cases it visually outperforms the results of inpainting by biharmonic functions.
Interesting results can be observed in Fig. 3 in the single centered square scenario.
Here the inpainted face looks quite realistic but differs from the original image.
The person on the original image is looking to the left with eyes wide open
whereas the face generated by our model is looking to the center with less open
eyes. We may say that the inpainting result is satisfactory since one is not able
to determine this information from the non-missing part of the image.

As a quantitative evaluation the peak signal-to-noise ratio (PSNR) [22] and
the structural similarity index measure (SSIM) [23] were used. Both metrics are
common for image inpainting evaluation [5,12,18,25]. In Table 1 the results are
presented together with biharmonic function inpainting results in the same setup.
In all evaluation scenarios the WGAIN outperformed biharmonic inpainting.

To be able to compare the results to other state of the art methods, we used
the single square in the center scenario. The values of the PSNR and SSIM mea-
sures for PiiGAN, DMFN, and CE compared to our method are summarized in
Table 2. It shows that on the Paris StreetView dataset the WGAIN outperforms
CE and also the DMFN in SSIM with equal PSNR. On the CelebA faces dataset

1 https://github.com/vasatdan/wgain-inpaint.
2 https://www.tensorflow.org.
3 https://scikit-image.org/.

https://github.com/vasatdan/wgain-inpaint
https://www.tensorflow.org
https://scikit-image.org/

Image Inpainting Using WGAIN 583

Fig. 2. Demonstration of inpainting scenarios and results for Paris StreetView dataset.

Fig. 3. Demonstration of inpainting scenarios and results for CelebA dataset.

584 D. Vašata et al.

Table 1. Results on Paris StreetView and CelebA datasets.

Damage type Paris StreetView CelebA

WGAIN Biharmonic WGAIN Biharmonic

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Singlesquare 25% 25.00 0.88 21.12 0.85 25.96 0.92 17.94 0.83

Multisquare 25% 26.51 0.90 22.67 0.86 26.75 0.93 23.34 0.89

Noise 50% 31.48 0.96 30.11 0.95 34.00 0.98 33.37 0.98

75% 27.73 0.90 25.90 0.87 29.96 0.95 28.73 0.93

95% 22.72 0.74 21.13 0.67 23.86 0.83 22.52 0.79

in comparison to the DMFN our model has lower PSNR and higher SSIM. Both
WGAIN and DMFN, however, are outperformed by the PiiGAN for this dataset.

To interpret this comparison correctly one should note that the results of the
experiments presented for the other methods were often obtained with different
resolutions of images, for different target tasks, and some of them actually on
different datasets - instead of the CelebA dataset, the CelebA-HQ dataset col-
lected from CelebA and post-processed (for details see [14]) was used in both
[5,12]. Especially the different target tasks are of high importance. The pre-
sented results for the competitive models are obtained under the scenario where
the corresponding imputation method is trained on the same task where it is
evaluated. It means that the models are trained to impute the centered square
of fixed size only. On the other hand, our model is trained for all the scenarios
of missingness together and performs quite well on all of them. Hence, on one
specific subtask, it might be outperformed by a specialized model trained for
that subtask only.

Table 2. Comparison of inpainting methods on the single square in the center scenario
of missingness, where 25% of pixels are missing. The values of PSNR and SSIM are
taken from the papers cited in the table. Note that PiiGAN and DMFN used CelebA-
HQ dataset, and that DMFN used images of size 256 × 256.

Method CelebA dataset Paris StreetView dataset

PSNR SSIM PSNR SSIM

PiiGAN [5] 34.99 0.99 – –

DMFN [12] 26.50 0.89 25.00 0.86

CE [16] – – 18.58 –

WGAIN (ours) 25.96 0.92 25.00 0.88

Image Inpainting Using WGAIN 585

5 Conclusion

In this paper we present an image inpainting model based on Wasserstein Gener-
ative Adversarial Imputation Network where the generator network uses convo-
lutional building blocks and skip connections. The combination of convolutional
layers with different dilation rates enables each building block to focus on both
the global (large range) and the local (small range) structure of the input, and
skip connections help the model reproduce fine details of the output.

This yields a universal imputation model that is able to handle various sce-
narios of missingness with sufficient quality. We tested three scenarios given
by missing pixels at random, missing various smaller square regions, and one
missing square placed in the center of the image. The model was trained simul-
taneously for all of the scenarios. The performance was evaluated using peak
signal-to-noise ratio and structural similarity index on two real-world bench-
mark datasets, CelebA faces and Paris StreetView. The results were compared
to biharmonic imputation and to three other state-of-the-art methods. It turns
out that our WGAIN image inpainting model achieves high-quality inpainting
results which outperform the conventional inpainting by biharmonic functions
and is comparable to state-of-the-art method DMFN [12]. The superiority of
PiiGAN [5] on the CelebA dataset compared to our model is assumed to be
caused by focusing on only one scenario of missingness.

Acknowledgements. This research has been supported by SGS grant No.
SGS20/213/OHK3/3T/18, by GACR grant No. GA18-18080S, and by the Student
Summer Research Program 2020 of FIT CTU in Prague, Czech Republic.

References

1. Amrani, N., Serra-Sagristà, J., Peter, P., Weickert, J.: Diffusion-based inpainting
for coding remote-sensing data. IEEE Geosci. Remote Sens. Lett. 14(8), 1203–1207
(2017)

2. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint
interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8),
1200–1211 (2001)

3. Barnum, A., Jiao, J.: Adaptive biharmonic in-painting for sparse acquisition using
variance frames. Microsc. Microanal. 23(S1), 148–149 (2017). https://doi.org/10.
1017/S1431927617001428

4. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Pro-
ceedings of the 27th annual conference on Computer graphics and interactive tech-
niques, pp. 417–424 (2000)

5. Cai, W., Wei, Z.: PiiGAN: generative adversarial networks for pluralistic image
inpainting. IEEE Access 8, 48451–48463 (2020)

6. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compres-
sion. arXiv preprint arXiv:1401.4112 (2014)

7. Damelin, S.B., Hoang, N.S.: On surface completion and image inpainting by bihar-
monic functions: numerical aspects. Int. J. Math. Math. Sci. 2018, 1–8 (2018)

https://doi.org/10.1017/S1431927617001428
https://doi.org/10.1017/S1431927617001428
http://arxiv.org/abs/1401.4112

586 D. Vašata et al.

8. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In:
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 341–346 (2001)

9. Friedjungová, M., Vašata, D., Balatsko, M., Jǐrina, M.: Missing features recon-
struction using a Wasserstein generative adversarial imputation network. In:
Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12140, pp. 225–239.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50423-6 17

10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Informa-
tion Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014)

11. Hua, P., Liu, X., Liu, M., Dong, L., Hui, M., Zhao, Y.: Image inpainting using
Wasserstein generative adversarial network. In: Optics and Photonics for Infor-
mation Processing XII, vol. 10751, pp. 183–194. SPIE (2018). https://doi.org/10.
1117/12.2320212

12. Hui, Z., Li, J., Wang, X., Gao, X.: Image fine-grained inpainting. arXiv preprint
arXiv:2002.02609 (2020)

13. Jam, J., Kendrick, C., Drouard, V., Walker, K., Hsu, G.S., Yap, M.H.: Symmetric
skip connection Wasserstein GAN for high-resolution facial image inpainting. arXiv
preprint arXiv:2001.03725 (2020)

14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

15. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of International Conference on Computer Vision (ICCV) (2015)

16. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context
encoders: feature learning by inpainting. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE (2016). https://doi.org/10.1109/
cvpr.2016.278

17. Rubner, Y., Guibas, L.J., Tomasi, C.: The earth mover’s distance, multi-
dimensional scaling, and color-based image retrieval. In: Proceedings of the ARPA
Image Understanding Workshop, vol. 661, p. 668 (1997)

18. Shin, Y.G., Sagong, M.C., Yeo, Y.J., Kim, S.W., Ko, S.J.: Pepsi++: fast and
lightweight network for image inpainting. IEEE Trans. Neural Netw. Learn. Syst.
(2020)

19. Simakov, D., Caspi, Y., Shechtman, E., Irani, M.: Summarizing visual data using
bidirectional similarity. In: 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8. IEEE (2008)

20. Telea, A.: An image inpainting technique based on the fast marching method. J.
Graph. Tools 9(1), 23–34 (2004). https://doi.org/10.1080/10867651.2004.10487596

21. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008)
22. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? a new look at signal

fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)
23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:

from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

24. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR
abs/1511.07122 (2016)

25. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting
with contextual attention. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5505–5514 (2018)

26. Zheng, C., Cham, T.J., Cai, J.: Pluralistic image completion. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1438–1447
(2019)

https://doi.org/10.1007/978-3-030-50423-6_17
https://doi.org/10.1117/12.2320212
https://doi.org/10.1117/12.2320212
http://arxiv.org/abs/2002.02609
http://arxiv.org/abs/2001.03725
http://arxiv.org/abs/1710.10196
https://doi.org/10.1109/cvpr.2016.278
https://doi.org/10.1109/cvpr.2016.278
https://doi.org/10.1080/10867651.2004.10487596

COViT-GAN: Vision Transformer
for COVID-19 Detection in CT Scan
Images with Self-Attention GAN

for Data Augmentation

Ara Abigail E. Ambita(B) , Eujene Nikka V. Boquio(B) ,
and Prospero C. Naval Jr.(B)

Computer Vision and Machine Intelligence Group Department of Computer Science,
University of the Philippines Diliman, Quezon City, Philippines

{aeambita,evboquio,pcnaval}@up.edu.ph

Abstract. The Vision Transformer (ViT) is currently gaining pop-
ularity in computer vision circles due to its record-breaking perfor-
mance and faster training time achieved without relying on convolu-
tion operations found in CNN architectures. In this study, the Vision
Transformer is applied to the task of COVID-19 detection from com-
puted tomography (CT) scan images, specifically on the COVID-CT
and Sars-CoV-2 datasets. Using a model pretrained on the mid-sized
ImageNet-21k dataset, results show that even the smallest ViT variant
that uses small input patch sizes outperformed cutting-edge CNNs espe-
cially on the smaller COVID-CT dataset with only a few hundred train-
ing images. Furthermore, generation of synthetic images using a ResNet-
based Self-Attention Generative Adversarial Network (SAGAN-ResNet)
was employed as a data augmentation method to alleviate the problem
of limited data and was found to further improve accuracy by approxi-
mately 3% and 2% on the COVID-CT and Sars-CoV-2 datasets, respec-
tively. In addition to being more computationally efficient and scalable
than CNNs, ViT also provides representations that allow visualization
of areas that are semantically relevant for detection.

Keywords: GANs · Vision transformers · COVID-19

1 Introduction

Due to the recent and ongoing pandemic caused by the infectious Coronavirus
disease (COVID-19), there are numerous efforts to automate detection of this
highly infectious disease using computer vision techniques. Many of these stud-
ies focused on detection from chest x-ray images since chest x-ray COVID-19
datasets are more accessible [7,13,26]. Some studies also proposed detection
methods for computed tomography (CT) scan images [2,12,16]. These have also
been shown to be very useful for COVID-19 detection and can provide more
detailed information than x-ray images such as the shape, size, density of inter-
nal lung structures.
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 587–598, 2021.
https://doi.org/10.1007/978-3-030-86340-1_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_47&domain=pdf
http://orcid.org/0000-0001-6920-1896
http://orcid.org/0000-0003-2248-4328
http://orcid.org/0000-0001-7140-1707
https://doi.org/10.1007/978-3-030-86340-1_47

588 A. A. E. Ambita et al.

Moreover, most of the methods proposed for the automated detection of
the virus make use of the widely popular convolutional neural networks (CNN)
[7,9,11,16,25,26]. While it has been shown that CNNs are very powerful in
computer vision tasks and can obtain very accurate results, they require a large
amount of computational resources to train. Recently, a new method that does
not rely on convolution operations for computer vision tasks was proposed. This
method, called the Vision Transformer (ViT), was shown to achieve excellent
results compared to state-of-the-art CNNs especially when pre-trained on very
large datasets [3].

Based on the transformer architecture originally designed for NLP tasks,
the ViT is computationally efficient and scalable. They pre-trained on differ-
ent datasets such as the ImageNet-21k [1] and the JFT-300M [22] and then
fine-tuned the model on several benchmark tasks. It was shown to outperform
ResNets with the same computational budget [3,24]. Unlike in CNNs where only
the local features are present in the lowest layers, ViT employs the self-attention
mechanism, which integrates both global and local feature information across
the whole image even in the lowest layers consequently improving its general-
ization capabilities. Furthermore, using the attention weights in the ViT, it is
possible for us to visualize the areas that are semantically relevant for image
classification, which could be especially beneficial for examining closely these
areas in the image.

However, with the scarcity of medical datasets made available to researchers
for experimentation, not to mention the COVID-19 outbreak occurring relatively
recently and the shortage of experts for accurate data labeling, publicly available
COVID-19 CT-scan datasets are very limited in size. To address this, several
studies have also explored the use of GANs for data augmentation in chest x-
ray images [9,25] and CT-scan images [8,11] and observed improvements in the
detection of COVID-19.

Motivated by the mentioned studies, we employ the Vision Transformer for
COVID-19 detection in CT scan images and GANs for data augmentation. To
the best of our knowledge, this is the first study to apply ViT to this problem.
For data augmentation, we use a ResNet-based self-attention GAN, which we
refer to as the SAGAN-ResNet. Furthermore, we present how the ViT provides
visualization for the images by showing what parts of the input image the model
focuses its attention in the different layers.

2 Methodology

In this section, we describe our proposed method using Vision Transformer for
COVID-19 detection in CT-scan images coupled with SAGAN-ResNet for data
augmentation. Figure 1 shows the flowchart of the proposed method. To generate
synthetic images that will be combined with the original training sets for train-
ing the ViT, we use the ResNet-based SAGAN (SAGAN-ResNet). In addition,
we compare the classification performance with other common GAN architec-
tures, such as the Auxiliary Classifier GAN (ACGAN) [15], Balancing GAN

COViT-GAN: ViT for COVID-19 Detection in CT Scan Images 589

Fig. 1. General flowchart of COViT-GAN.

Table 1. GAN Hyperparameters

Parameter ACGAN BAGAN SAGAN SAGAN-ResNet

Epochs 600 100 1000 2000

Learning Rate 0.001 0.002 g: 1−4, d: /4−4 g: 1−4, d: 4−4

Batch Size 32 32 64 64

β (0.5,0.99) (0.5,0.99) (0,0.9) (0,0.9)

Img Size 64 64 128 128

(BAGAN) [14], and the original Self-Attention GAN (SAGAN) [27]. For the
image classification of the COVID CT-scan images, we implement the different
variants of the ViT: ViT-B 16, ViT-B 32, ViT-L 16, ViT-L 32, and ViT-H 14.
We also compare the performance of the ViT models with various CNN architec-
tures such as the ResNet-18, ResNet-50, ResNet-101, ResNet-152 [4], DenseNet-
121 [6], VGG-16 [19], EfficientNet (EN) [23], and the deeper EfficientCovidNet
(ECN) [18]. For all the ViT and CNN models, we implement transfer learning
by using the ImageNet-21k [1] pre-trained models.

2.1 GANs for Data Augmentation

GANs are known for its powerful image generation capabilities, which is ideal for
data augmentation as it provides very realistic and unseen image samples. We
propose SAGAN-ResNet which is based on the SAGAN proposed in [27]. It also
employs the self-attention mechanism, which helps model long-range dependen-
cies in the image and amplify relevant signals in the input images. SAGAN uses
spectral normalization on both the generator and the discriminator, resulting
in better conditioning with the two-time-scale-update rule (TTUR) providing a
more stable training [5].

In SAGAN-ResNet, both the discriminator and generator networks are based
on Residual Networks (ResNet) that employs skip connections [4]. By skipping
some layers, the network can build more layers that can deal with more complex
image patterns without sacrificing accuracy degradation caused by vanishing
gradients. We used an imbalanced 1:5 learning schedule rate for the generator
versus the discriminator that results in a more stable learning schedule. We use
the SAGAN-ResNet implementation provided in GitHub1. Table 1 shows the
hyperparameters used for the image generation process of the SAGAN-ResNet
and the three other GANs.
1 https://github.com/rosinality/sagan-pytorch.

https://github.com/rosinality/sagan-pytorch

590 A. A. E. Ambita et al.

2.2 Image Classification

Vision Transformer (ViT). ViT [3] uses a standard Transformer [24] applied
directly to image patches. The process, shown in Fig. 2, is as follows: the input
image is split into fixed-sized patches, which are then flattened and mapped to
one dimension with trainable linear projection to generate patch embeddings.
Then, a learnable embedding is prepended to the sequence of patch embeddings,
resulting in a 1D sequence of token embeddings. In order to retain positional
information, position embeddings are also added to the patch embeddings, which
are then fed to the transformer encoder as input. A classification head that is
implemented by a Multilayer Perceptron (MLP) is attached to the output of
the transformer encoder. COViT-GAN refers to the combination of the Vision
Transformer and SAGAN-ResNet as a data augmentation method applied to the
task of COVID-19 detection from CT scans.

Fig. 2. The vision transformer model. Image is from [3]

Training and Implementation Details. We train the different ViT2 model
variants on the two datasets for binary image classification. We use the follow-
ing baseline hyperparameters: batch size 32, learning rate of 0.03, and cosine
scheduler trained on 5000 epochs. The model that achieves the best validation
accuracy is used for testing. For the CNN models, the hyperparameters were
standardized across the experiments (Adam optimizer, cross-entropy loss func-
tion, learning rate of 0.001, batch size 32, and minimum epochs of 50).

To evaluate the performance of the ViT models and other CNN models
for comparison, we compute the accuracy (Acc), COVID-19 positive prediction
(+PC) or precision, COVID-19 sensitivity (SeC) or recall, and F1-score (F1).
All experiments were performed in Google Colab Notebooks using Pytorch.

3 Results and Discussion

Datasets. We use two publicly available datasets, the first one is the COVID-
CT[28] dataset3, which contains CT-scan images collected from several scientific
2 https://github.com/jeonsworld/ViT-pytorch.
3 https://github.com/UCSD-AI4H/COVID-CT.

https://github.com/jeonsworld/ViT-pytorch
https://github.com/UCSD-AI4H/COVID-CT

COViT-GAN: ViT for COVID-19 Detection in CT Scan Images 591

articles. We used a total of 746 images, 349 of which belong to 216 patients
diagnosed with COVID-19. We use the data split provided, with 425 training,
118 validation, and 203 test images.

The Sars-CoV-2 [20] multi-class dataset4 contains 4173 CT scans for 210
patients from hospitals from Sao Paulo, Brazil who are healthy, infected with
Sars-CoV-2, and infected with other pulmonary diseases. We categorize the
images from healthy patients and patients with other non-COVID-19 diseases
under one class (noncovid). While this makes it much more difficult to classify, we
use this dataset for the main reason that it separates the images by patient, thus
ensuring that no data leaking will occur. We use a 70/10/20 train/validation/test
split of for a total of 2921 training, 417 validation, and 835 test images.

All input images have size 224× 224, obtained by resizing all training images
to 256× 256, then getting sample random crops of size 224× 224. To ensure that
all pixels range from 0 to 1, we also perform simple image normalization to help
the model converge during training.

Performance of ViT Model Variants. Figure 3 displays the performance of
different ViT models on COVID-CT and Sars-Cov-2 datasets trained with the
baseline hyperparameters. For COVID-CT, ViT-H 14 has the best accuracy of
84.24% but ViT-B 16 also shows great promise with good performance in terms
of the metrics, considering that it is the smallest model. Meanwhile, Sars-CoV-2
has achieved the best accuracy and sensitivity of 94.01% and 98.68% respectively
with just the ViT-B 16.

Fig. 3. Baseline performance of ViT model variants on COVID-CT and Sars-CoV-2
Datasets.

Performance of ViT with GANs. Figure 4 displays the accuracy of ViT
models with data augmentation using GANs. The models were trained with the
original training set combined with the generated synthetic images, samples of
which are displayed on Fig. 5. We added 1000 and 500 random images for each
class to the COVID-CT and Sars-CoV-2 training sets, respectively. The declining
accuracy is observed as the model’s input patch size is increasing.

4 https://www.kaggle.com/plameneduardo/a-covid-multiclass-dataset-of-ct-scans.

https://www.kaggle.com/plameneduardo/a-covid-multiclass-dataset-of-ct-scans

592 A. A. E. Ambita et al.

Fig. 4. Accuracy of ViT model variants with and without GAN on COVID-CT and
Sars-CoV-2 Datasets. The results enclosed in a box corresponds to the variant that
obtained the best accuracy for each dataset.

Fig. 5. Sample GAN-generated images. (a) Images from the original distribution, (b)
SAGAN, (c) BAGAN, (d) ACGAN, (e) SAGAN-ResNet

For the COVID-CT dataset, ViT-H 14 and ViT-L 32 did not improve with
any of the GAN models. ViT-L 16 only improved with SAGAN-ResNet. The
base models, ViT-B 16 and ViT-B 32, have both improved with SAGAN and
SAGAN-ResNet. These slight improvements demonstrate the potential of using
data augmentation with GANs, especially the GANs that employ the self-
attention mechanism. Overall, the best accuracy obtained is with ViT-B 16 with
SAGAN-ResNet. No model has improved with BAGAN. Nevertheless, it is still
important to note that the performance are still close to the performance with-
out the GAN. Meanwhile, on the Sars-CoV-2, we observed some performance
improvements with GAN for all the ViT models except ViT-L 16, wherein the
accuracy degraded with the addition of GAN-generated images. The best accu-
racy was also obtained with ViT-B 16 but with ACGAN.

Our findings in Sect. 3 show that ViT H14 is the best performing ViT variant
without GAN. However, when we incorporate the GAN, ViT B16 has produced
better results than that of ViT H14, with a resulting accuracy of 0.9529 and
0.9414, respectively. In fact, this result of ViT B16 (with GAN) is still better

COViT-GAN: ViT for COVID-19 Detection in CT Scan Images 593

than ViT H14 (without GAN) which has only produced an accuracy of 0.9401.
Due to these findings, we further fine-tune on COVID-CT and Sars-CoV-2 with
the ViT-B 16 model.

Fine-Tuning of Parameters. We perform hyperparameter tuning on the best
model (ViT-B 16) for each dataset (with and without GANs) by exploring sev-
eral values of the learning rate (0.001, 0.008, 0.01, 0.02, 0.03, 0.04), batch size
(16, 32, 64), number of augmented images per class (500, 1000), and atten-
tion dropout rate (0, 0.1, 0.2). Here, the attention dropout rate corresponds to
dropout regularization applied in the self-attention module. We do not show all
of the results obtained from the fine-tuning, but instead report the two best
performing models for each the two datasets in terms of accuracy in Table 2.

Table 2. Best COViT-GAN Models and Parameters. (LR, BS, #synthetic, DR, ADR)
refers to (learning rate, batch size, number of augmented synthetic images from GAN,
dropout rate, attention dropout rate). Values in bold are the best values for each
dataset.

Dataset COViT-GAN Model LR BS # Synthetic DR ADR Acc Sec + Pc F1

COVID-CT ViT B-16 + SAGAN-ResNet 0.01 16 1000 0.1 0.2 0.8719 0.8571 0.8911 0.8738

COVID-CT ViT B-16 + SAGAN-ResNet 0.01 32 1000 0.1 0.1 0.8473 0.8667 0.8426 0.8545

Sars-CoV-2 ViT B-16 + SAGAN-ResNet 0.04 32 500 0.1 0.0 0.9529 0.9868 0.9356 0.9605

Sars-CoV-2 ViT B-16 + SAGAN-ResNet 0.01 32 500 0.1 0.0 0.9541 0.9803 0.9430 0.9613

In Fig. 4, we can observe that ACGAN and SAGAN performed better than
SAGAN-ResNet but after performing hyperparameter tuning, we have found
the best results with SAGAN-ResNet, as shown in Table 2. We were able to
get the best values for learning rate (0.1 and 0.4) and batch sizes (16, 32) for
each of the datasets. For the COVID-CT dataset, the results seem to improve
when 1000 images per class were added to the original training set. Considering
the original training set only has 425 images, the best performance achieved by
our model (87.19% accuracy, 85.71% sensitivity, and 89.11% COVID-19 positive
precision) is impressive since the training data is comprised of about 82.5%
synthetic images generated by the SAGAN-ResNet. For the Sars-CoV-2 dataset,
we were able to get better performance when only 500 synthetic images per class
were added instead of 1000. This may be because the original train set already
has a lot of images (3021) and the addition of a lot more synthetic images could
not be beneficial. Another reason could be due to the fact that the noncovid class
contains both CT scans that are healthy cases or cases with other pulmonary
diseases, which makes it more difficult for the GAN. Nevertheless, the addition
of 500 images per class still gave better performance than when no synthetic
images were added.

In addition, when we increased the attention dropout rate, we observed
some performance improvements on the COVID-CT dataset. We believe this
is because the attention dropout regularization helped avoid overfitting in the

594 A. A. E. Ambita et al.

smaller dataset by not limiting its “attention” to a smaller amount of feature
cues from the patches of the input image.

Performance Comparison of ViT and CNN Models. We compare the
performance of the ViT model or the ViT B16 (without GAN), the fine-tuned
CoViT-GAN model obtained, and the other CNN models on the original datasets
in Table 3 using the base hyperparameters. We note that the COViT-GAN uses
the fine-tuned ViT B16 as a classifier and SAGAN-Resnet as a data augmenta-
tion technique.

Table 3. Performance Comparison of the best performing ViT, COViT-GAN model,
and other CNNs for the COVID-CT and Sars-CoV-2 datasets.

COVID-CT Sars-CoV-2

Architecture Acc Sec +Pc F1 Acc Sec +Pc F1

DenseNet-121 0.8226 0.8227 0.8252 0.8219 0.9248 0.9248 0.9324 0.9253

VGG-16 0.7537 0.7537 0.7537 0.7537 0.9299 0.9299 0.9299 0.9299

ResNet-152 0.7833 0.7881 0.7829 0.7833 0.9121 0.9229 0.9121 0.9127

ResNet-101 0.8030 0.8096 0.8012 0.8030 0.9567 0.9567 0.9573 0.9568

ResNet-18 0.7783 0.7782 0.7780 0.7783 0.9159 0.9159 0.9159 0.9159

ResNet-50 0.8177 0.8208 0.8169 0.8177 0.9580 0.9579 0.9580 0.9580

EN 0.8177 0.7810 0.8542 0.8159 0.9299 0.9452 0.9349 0.9400

ECN 0.7488 0.7048 0.7872 0.7437 0.9465 0.9846 0.9277 0.9553

ViT (w/o GAN) 0.8424 0.8476 0.8476 0.8476 0.9363 0.9781 0.9177 0.9469

COViT-GAN 0.8719 0.8571 0.8911 0.8738 0.9541 0.9803 0.9430 0.9613

For the smaller COVID-CT dataset, it can be seen that the ViT alone has out-
performed all of the CNNs in all the metrics despite the small size of the dataset
with only a few hundred training images and thus are more difficult to classify.
Moreover, with the addition of synthetic images using COViT-GAN, we can see
the improvements over all the metrics (almost 3% improvement in accuracy over
ViT). For the Sars-CoV-2 dataset, we obtained the best accuracy and positive
prediction with ResNet-50. However, we also note that the ViT model has com-
petitive performance to ResNet-50. The COViT-GAN is also very competitive,
outperforming all of the CNN models except the ResNet-50 and ResNet-101 in
some of the metrics. Furthermore, compared to the ViT model, all the metrics
are better for COViT-GAN, with more competitive results than the ResNet-50
(95.41% accuracy compared to 95.80%). With almost 2% accuracy improvement
compared to the best ViT without GAN, COViT-GAN demonstrates its effec-
tiveness on a larger yet still challenging dataset.

These observations are consistent with that of [3], wherein they observed that
when pretrained with a mid-sized dataset such as ImageNet, the performance
of the ViT is similar to ResNets. However, when pretrained on a much larger

COViT-GAN: ViT for COVID-19 Detection in CT Scan Images 595

dataset like the JFT-300M, we can see the full benefit of the ViT and COViT-
GAN models, especially the larger ones. We wish to emphasize that there is a
more significant performance improvement on the smaller dataset, despite only
using the smallest ViT variant. This shows that applying COViT-GAN to limited
datasets can be very advantageous.

Visualization of the Salient Parts in COVID CT Images. In this section,
we offer insights on how the model arrives at such predictions by investigating the
attention maps produced by the model. We used images from journals [10,17,21]
and websites that investigate the detection of COVID-19 in CT scan images
and tested it on ViT-B 16 trained on Sars-CoV-2. All the images are correctly
classified and the relevant portions of the image are appropriately highlighted
in the attention map as seen in Fig. 6 (a)–(b). We compared the radiological
features that are indicative of COVID in the original images pointed by the
arrows (first column) with the salient portions in its corresponding attention map
(third column). We can observe that the prominent blue areas in the attention
maps match the portions of the original image that are indicative of COVID-19.

Fig. 6. (a-b) contain covid and (c–d) noncovid images. In (a–b), the prominent blue
areas in the attention maps match the ground glass opacities, characterized by its white
lung appearance, in the original image indicating COVID-19. In column 2, heatmap is
applied on the attention before fusing with the input image but salient portions are
clearer in column 3 where it is applied after fusing attention with input image.

We also investigated the attention maps of normal chest CT images (c) in
Fig. 6. Based on our observations, the amount of blue areas that are prominent
on COVID-19 images are reduced. According to literature [17], the COVID-
19 indications are characterized by ground glass opacities which gives a white
lung appearance in CT images. Since these (c) are normal images, the ground
glass opacities are absent which explains why no large blue sections are present.

596 A. A. E. Ambita et al.

However, note that we do not claim these observations as clinically correct since
we did not consult with a radiologist. Although, these visualized results could
assist the radiologists on the analysis of the scans.

Attention Maps per Layer. In this section, we visualize how attention pro-
gresses across the different layers of the network (Fig. 7). Since ViT-B 16 has 12
attention heads, we only look at layers 1, 6, and 12 for simplicity on randomly
sampled images from Sars-CoV-2 (a–b) and other images with labeled indica-
tions of COVID-19 (c–d). As observed on the figure, the earlier layers have
saturated monotonous colors but the relevant parts of the image are already
slightly emphasized. As discussed in [27], the model is able to integrate the
global information in the image which is shown in the image where some heads
already attend to the image in the earlier layers. As the attention develops from
one layer to another, some elements are getting ignored while others are empha-
sized. As we can see, the more pixels that are ignored, the better the relevant
parts are isolated and highlighted. These observations are more pronounced in
images with labeled COVID-19 indications. Starting from layers 8, the ground
lung opacities are more emphasized in the attention maps.

Fig. 7. Visualization of attention flows from one layer to another. (a-b) noncovid images
from Sars-Cov-2, (c-d) covid image with labeled COVID-19 indications. As the layer
deepens, the better the relevant parts are isolated, as observed on the more emphasized
white lung appearances in COVID images (c-d).

4 Conclusions

We present COViT-GAN, a method that combines the Vision Transformer and
a ResNet-based Self-Attention GAN (SAGAN-ResNet) for data augmentation
for the detection of COVID-19 from CT scan images. We also confirm the capa-
bilities of the self-attention mechanism to capture global and local features.

COViT-GAN: ViT for COVID-19 Detection in CT Scan Images 597

With the use of pre-trained models on a mid-sized ImageNet dataset, we
showed that the ViT is competitive against high-performing CNNs, outperform-
ing these models when tested on the much smaller COVID-CT dataset. Since
the datasets we used are limited, we further improved our results by employ-
ing a ResNet-based GAN to generate synthetic images for data augmentation.
With the self-attention mechanism, the SAGAN-ResNet was able to produce
additional training images that helped improve the performance of ViT, with
about 3% and 2% accuracy improvements on the COVID-CT and Sars-CoV-2
datasets, respectively. With fine-tuning, our COViT-GAN was able to obtain a
classification accuracy of about 87.19% and 95.41%, respectively.

As a disclaimer, we emphasize that we do not intend to use GAN for the gen-
eration of realistic medical CT-scan images, but for the performance improve-
ment of ViT for COVID-19 detection. Visualizations generated could be used
to verify the effectiveness of the ViT by showing the areas of the image that
are semantically relevant for classification in each model layer. This visualiza-
tion feature might be essential for radiologists for the analysis of the CT scans.
In the future, we hope to further improve our results by evaluating the pro-
posed method in other datasets and modifying the architecture of transformers
or GANs.

References

1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

2. Do, C., Vu, L.: An approach for recognizing covid-19 cases using convolutional
neural networks applied to CT scan images. In: Applications of Digital Image
Processing XLIII, vol. 11510, p. 1151034. International Society for Optics and
Photonics (2020)

3. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

5. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local nash equilibrium. arXiv
preprint arXiv:1706.08500 (2017)

6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

7. Ismael, A.M., Şengür, A.: Deep learning approaches for covid-19 detection based
on chest x-ray images. Expert Syst. Appl. 164, 114054 (2020)

8. Jiang, Y., Chen, H., Loew, M., Ko, H.: Covid-19 CT image synthesis with a con-
ditional generative adversarial network. IEEE J. Biomed. Health Inf. (2020)

9. Khalifa, N.E.M., Taha, M.H.N., Hassanien, A.E., Elghamrawy, S.: Detection of
coronavirus (covid-19) associated pneumonia based on generative adversarial net-
works and a fine-tuned deep transfer learning model using chest x-ray dataset.
arXiv preprint arXiv:2004.01184 (2020)

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/2004.01184

598 A. A. E. Ambita et al.

10. Li, X., et al.: CT imaging changes of corona virus disease 2019(COVID-19): a
multi-center study in Southwest China. J. Transl. Med. 18(1), 154 (2020)

11. Loey, M., Manogaran, G., Khalifa, N.E.M.: A deep transfer learning model with
classical data augmentation and CGAN to detect COVID-19 from chest CT radio-
graphy digital images. Neural Comput. Appl. (2020)

12. Maghdid, H.S., Asaad, A.T., Ghafoor, K.Z., Sadiq, A.S., Khan, M.K.: Diagnosing
covid-19 pneumonia from x-ray and CT images using deep learning and transfer
learning algorithms. arXiv preprint arXiv:2004.00038 (2020)

13. Mahmud, T., Rahman, M.A., Fattah, S.A.: CovxNet: a multi-dilation convolutional
neural network for automatic covid-19 and other pneumonia detection from chest
x-ray images with transferable multi-receptive feature optimization. Comput. Biol.
Med. 122, 103869 (2020)

14. Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., Malossi, C.: BAGAN: data
augmentation with balancing GAN. arXiv preprint arXiv:1803.09655 (2018)

15. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
GANs. In: International Conference on Machine Learning, pp. 2642–2651. PMLR
(2017)

16. Polsinelli, M., Cinque, L., Placidi, G.: A light CNN for detecting covid-19 from CT
scans of the chest. arXiv preprint arXiv:2004.12837 (2020)

17. Shi, H., et al.: Radiological findings from 81 patients with COVID-19 pneumonia
in Wuhan, China: a descriptive study. Lancet Infect. Dis. 20(4), 425–434 (2020)

18. Silva, P., et al.: COVID-19 detection in CT images with deep learning: a voting-
based scheme and cross-datasets analysis. Inf. Med. Unlocked 20, 100427 (2020)

19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

20. Soares, E., Angelov, P., Biaso, S., Higa Froes, M., Kanda Abe, D.: SARS-CoV-
2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2
identification. preprint, Health Informatics, April 2020. https://doi.org/10.1101/
2020.04.24.20078584

21. Sultan, O.M., et al.: Pulmonary CT manifestations of COVID-19: changes within
2 weeks duration from presentation. Egyptian J. Radiol. Nuclear Med. 51(1), 105,
December 2020

22. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness
of data in deep learning era. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 843–852 (2017)

23. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946 (2019)

24. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762
(2017)

25. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.:
CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-
19 detection. IEEE Access 8, 91916–91923 (2020)

26. Wang, L., Wong, A.: Covid-net: a tailored deep convolutional neural network
design for detection of covid-19 cases from chest x-ray images. arXiv preprint
arXiv:2003.09871 (2020)

27. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adver-
sarial networks. In: International Conference on Machine Learning, pp. 7354–7363.
PMLR (2019)

28. Zhao, J., Zhang, Y., He, X., Xie, P.: Covid-CT-dataset: a CT scan dataset about
covid-19. arXiv preprint arXiv:2003.13865 (2020)

http://arxiv.org/abs/2004.00038
http://arxiv.org/abs/1803.09655
http://arxiv.org/abs/2004.12837
http://arxiv.org/abs/1409.1556
https://doi.org/10.1101/2020.04.24.20078584
https://doi.org/10.1101/2020.04.24.20078584
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2003.09871
http://arxiv.org/abs/2003.13865

PhonicsGAN: Synthesizing Graphical
Videos from Phonics Songs

Nuha Aldausari(B), Arcot Sowmya, Nadine Marcus, and Gelareh Mohammadi

University of New South Wales, Kensington, Australia
{n.aldausari,a.sowmya,nadinem,g.mohammadi}@unsw.edu.au

Abstract. Content creation is a growing field in Artificial Intelligence
(AI) that achieves promising results using generative models. With recent
advances in generative models such as Generative Adversarial Networks
(GAN), videos can be generated according to specific conditions or even
without any conditional settings. In this paper, we propose an end-to-end
model that generates videos according to audio signals using both tran-
script and music. We call our model phonicsGAN since it draws a graph-
ical alphabetic video and animate it given a phonics song. PhonicsGAN
is among the first attempts to create preliminary graphical videos which
can inspire and support graphical designers and educators to save time
and effort. Since available graphical datasets lack acoustic signals, a suit-
able candidate domain for our proposed application is the phonic videos
for children. PhonicsGAN deals with diverse videos in terms of content,
motion and soundtrack by employing Gated Recurrent Units (GRU) lay-
ers to encode the soundtrack. A Convolutional Neural Network (CNN)
is then used to generate a phonics video based on the encoded audio
signal and the provided label. The preliminary results are promising and
show improvements over LSTM and MoCoGAN which are state-of-the-
art frameworks in the video generation domain.

Keywords: Video synthesis · Generative Adversarial Network ·
Audio-to-video mapping

1 Introduction

In 2017, video consumption represents 70% of the internet traffic, and this num-
ber is expected to be increased by 4 folds by 2022 [6]. This trend is supported
by the increase in internet speed, which facilitates using videos in fields such as
education and marketing, in addition to entertainment. However, creating video
content is also more demanding than other forms of media in multiple aspects
such as time, cost, and skills. Thus, there have been increasing efforts that aim
at utilizing generative models to automate the process of generating videos. The
current applications of video generative models range from video predication,
video re-targeting, video synchronization, to reverse video captioning. Mean-
while, this paper aims at building a model that draws graphical videos according

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 599–610, 2021.
https://doi.org/10.1007/978-3-030-86340-1_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_48&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_48

600 N. Aldausari et al.

to audio signals. Audio signals are not descriptive in general cases and may lack
detailed description of a scene. Thus, it is not feasible to train a model on just
an audio signal to draw the content of the frames. However, we chose a domain
where the acoustic signals are effectively conveying the illustrated objects in the
videos. This domain is phonics songs videos. One application for phonicsGAN is
to help teachers in creating customized phonics videos based on children’s pref-
erences. They can also be used to inspire graphical designers by incorporating
different styles and format. In addition, the model can be a baseline for other
video generative models that trained on descriptive audio signals.

GAN is one of few content creation models that synthesize realistic-looking
examples [9]. While generation of images using GAN is quite advanced, video gen-
eration is still at an early stage. The reason is that videos consist of multiple images
with temporal dynamics and it is essential to maintain the coherence between
frames when generating videos. Thus, video creation is more complex when com-
pared with image synthesis. In video GAN frameworks, random synthesized videos
can be generated from noise vectors in unconditional settings, whereas in condi-
tional settings, input signals such as texts, audios, videos or images are provided,
and videos are created based on the given condition. Generating videos according
to audio files has given rise to several applications. One such application is the con-
version of speech to a synchronized moving head [17,30,35]. Transforming a music
file to a video of a person playing a specific musical instrument [5,7] or to a video
of a person dancing to the music [2,8,14,20,27,33] is another application. A pre-
liminary application could use an audio signal to generate a video for non-human
artefacts such as fireworks or beach waves [16]. The music-to-dance applications
rely on key points or optical flow to facilitate maintenance of the coherence between
sound and motion in the generation process. In non-guided motion applications,
the dataset is homogeneous which means that the data samples are from the same
category, and in some datasets, target objects are centered around the same pix-
els in all samples. In this work, we build an application that synthesizes animated
videos fromadataset of videos collected fromYouTube.Ourmodel synthesizes ani-
mated letters videos based on phonics songs. Our proposed dataset has a variety
of objects, as illustrated in Fig. 1. Thus, training a GAN model on such a dataset
can be more challenging especially without key points.

A factor common to video synthesis models is that the models are trained on
photographed datasets such as Kinetics-600 [23], UCF-101 [24], Mug facial expres-
sion [3], Solo-Dancer [34], FaceForensics [21], and YouTube dancing videos [31].
However, there is relatively little work on graphical video datasets. A related work
that utilizes a graphical dataset is storyGAN [15]. However, StoryGAN cannot
be directly applied to our problem, namely song-to-video generation, due to some
substantial differences as follows; StoryGAN generates animated image sequences
that represent stories based on text descriptions, whereas our proposed work syn-
thesizes videos based on songs, which can be a more challenging task. This is
because a song creates a multimodal dataset that contains lyrics and music, and
music in turn can be divided into sub-elements such as beat, rhythm, melody, and
harmony. Besides, songs do not necessarily illustrate the scenes in detail, unlike
text descriptions. Another difference is that StoryGAN’s dataset, Pororo-SV, is

PhonicsGAN: Synthesizing Graphical Videos from Phonics Songs 601

Fig. 1. Eight samples from the collected dataset. For demonstration purpose, each clip
was sampled 5 Hz to produce 5 frames per second.

collected from a single anime series where all the clips contain a subset of the
same characters, objects and backgrounds [13]. The dataset in phonicsGAN, on
the other hand, was gathered from YouTube. Thus, data samples vary in styles,
motions, backgrounds, and objects. Therefore, song-to-video generation models
require additional attention to the music content as well as varieties in the scene
characters. This paper presents a preliminary model, phonicGAN, to tackle this
problem in the context of phonics song videos.

The main contributions of this paper are as follows. First, collecting a suitable
graphical dataset that has an adequate number of samples. The chosen domain
of the dataset is that of nursery rhyme videos on YouTube. Second, proposing a
framework, namely phonicsGAN, that generates animated videos content from
songs and captures the relationship between the music and the motion of videos.
PhonicsGAN utilizes GRU-blocks to model the changes in the audio signals
over time. The output of the GRU-based audio encoder is used to generate
the video frames that are evaluated by the image discriminator and the video
discriminator. Lastly, the resulting videos from the novel framework phonicsGAN
is compared against LSTM and MoCoGAN. Section 2 categorizes recent models
that are conditioned on audio signals. In Sect. 3, a description of phonicsGAN
is provided. Section 4 illustrates the generated videos and discuss the result.
Finally, the research paper is concluded in Sect. 5, with the provision of possible
applications.

2 Background

GAN is a generative deep neural network model introduced in 2014 which sur-
passed other generative models by producing high-quality images [12]. GAN
models are not limited to image synthesis, they can also produce videos.
Aldausari et al. [4] review the state-of-the-art GAN in the video realm and
categorise video GAN models based on the existence and type of the conditional
signals in detail. Motion Content GAN (MoCoGAN) [29] is one of uncondi-
tional models using N noise vectors to produce N frames. MoCoGAN traverse
the noise vectors first to generate the motion vectors to be combined with a
fixed content vector. Then, the combined representation is utilized to generate

602 N. Aldausari et al.

the video frames. MoCoGAN effective framework has been extended in multiple
architectures such as storyGAN [15]. The main difference between MoCoGAN
and the proposed framework is that our framework is based on two conditions:
one is changing according to a song and the other is a label based on the con-
tent. Audio-to-video deep learning models are another category of conditional
video synthesis that need to keep the coherence between frames and maintain
synchronization between motions and input audio signals. Following subsections
review the recent relevant audio-to-video generation studies.

2.1 Speech to Moving Face

Speech synchronization generative models deal differently with the audio sig-
nals. Vougioukas et al. [30] choose to input to the Facial Synthesizer model
the entire audio waveform file. In contrast, the Disentangled Audio-Visual Sys-
tem (DAVS) [35] disentangles the audios into subject-related information and
speech-related information while Mittal et al. [17] disentangle the audio signals
into content, emotion, and noise using Variational Autoencoder (VAE). These
models [17,30,35] were trained on datasets of talking persons and the data sam-
ples cropped to fit on the desired dataset template. In contrast, our dataset
was collected from YouTube, with objects scattered around the frames, which
makes the learning process more complex. Another difference is that the earlier
models [17,30,35] are conditioned on the first frame, which can be seen as a
prediction problem, while phonicsGAN synthesizes videos without conditioning
on the initial frame.

2.2 Music to Moving Body

Music-to-dance mapping has multiple applications such as virtual reality, games
and robotics. The moving body generative models in the literature can be divided
into four families: unsupervised, semi-supervised, weakly-supervised and self-
supervised.

Many approaches are based on self-supervised methods. An early attempt [27]
uses traditional Long Short-Term Memory (LSTM) based autoencoders. The
model first encodes the music signals, then a predictor is employed to produce
the pose features. More recent papers use adversarial learning. Lee et al. [14] pro-
posed a two-stage model where the first stage is to synthesize the basic dance
movements using VAE, then the second stage organizes the movements based on
the audio signals using GAN. Ren et al. [20] encode acoustic features using bidi-
rectional Gated Recurrent Unit (GRU). The poses are generated using a multi-
layered perceptron according to the hidden states of the music. Sun et al. [25]
also use RNN architecture not only to encode the music features but also to
decode the poses given the hidden states and the initial frame. Zhuang et al. [36]
borrow WaveNet [18], which is a generative adversarial model that was originally
introduced for speech generation, to synthesise dance movements.

Yalta et al. [33] provide weakly supervised signals to a deep RNN to help the
training process with fewer data samples and less effort. The weak labels reflect

PhonicsGAN: Synthesizing Graphical Videos from Phonics Songs 603

whether there are significant changes between consecutive audio frames to direct
the motion.

Another model [8] uses semi-supervised methods where in the first pre-
training stage, the model is trained on unlabelled data. The model in the
first stage encodes Mel Spectrogram representations and then decodes it into
Mel Spectrogram, melody and rhythm. The second stage uses the pre-trained
encoder and music embedding to generate the skeletons. Ahn et al. [2] also use
the first layers in the pre-trained music genre classifier to produce the music rep-
resentations. Then they use dilated convolution layers to generate the skeleton
sequences.

All the previous models [2,8,14,20,25,27,33,36] use the extracted pose
frames, since these skeletons are a way to emphasize motions. The correlation
between the acoustic features and the motions of the skeletons can be built eas-
ily in the training process. However, in phonicsGAN, it is difficult to extract
skeletons for the objects because there are multiple objects in a frame and the
objects are varied. Thus, phonicsGAN deals with a challenging problem, namely
generation of frames with motion in pixel space rather than in skeleton space.

2.3 Audio to Moving Object

While many methods for generating the moving body are based on key-points,
there are some datasets where it is difficult to detect key-points, such as sea
waves or fireworks. Qiu et al. [19] generate only one photographed image such
as sky, water, mountain or desert based on the sound of that scene. Their model
starts with an GRU structure to extract the features, then DCGAN [28] to
generate one image. Tsuchiya et al. [28] proposed a bidirectional LSTM sound
encoder that is followed by a GAN to generate videos of photographed scenes
such as fireworks and beach waves. The generator is U-net and there are two
discriminators for the image level and the video level. While the model [28] is
trained separately on each dataset that represents one object, phonicsGAN is
trained on a dataset with 26 categories, with each category containing multiple
sub-objects.

3 PhonicsGAN

3.1 Dataset Construction

The goal of this work is to construct a model that can draw graphical video
frames based on songs. The available datasets are either not graphical datasets,
or lack soundtracks or both. One potential domain is phonics songs with their
videos. This domain satisfies specific criteria which are graphics-based videos, a
synchronized soundtrack for each video, and a sufficient number of samples.

The videos were collected based on keywords from YouTube. Possible key-
words are “alphabets songs”, “letters song”, and “phonic songs”. Only videos
that have a segment that consists of a letter and an object that represents that

604 N. Aldausari et al.

letter are chosen. Examples of the selected video transcriptions could be “a is for
apple” or “q q q queen”, and Fig. 1 illustrates different examples of the dataset
samples. The chosen videos were downloaded with the corresponding English
captions where available and otherwise speech-to-text Google API [1] is used to
generate the transcripts. The videos were then trimmed based on the transcripts,
where each trimmed clip contains a letter and an object. The metadata for the
clips was saved in a JSON file. The saved information for a clip consists of the
name of the clip, the name of the main file, the category of the clip, the tran-
script, and the ID of the video in YouTube. The category of the clip refers to the
letter that is displayed in the clip frames. The total number of collected videos
from YouTube is 150 videos. After trimming the videos using the procedure
described, the total number of clips is 1176.

3.2 Problem Formalization

PhonicsGAN maps phonics songs and the target letters to frames while main-
taining the correlation between the changes in the audio signal and the changes
in the motion between the generated frames. PhonicsGAN is trained on a dataset
D = {(V1, A1, L1), (V2, A2, L2), (V3, A3, L3), . . . , (VM , AM , LM)}, where V i =
{v1, v2, v3, . . . , vN} is clip i containing a sequence of frames vj , j = 1, . . . , N .
The corresponding audio segment is Ai = {a1, a2, a3, . . . , aN}, where aj , j =
1, . . . , N . is the audio segment. It is important to note here that the video frame
vj is aligned with the audio features in aj , j = 1, . . . , N . The category of the clip
Li ⊆ S = {”A”, ”B”, ”C”, . . . , ”Z”} where |Li| = 1 and |S| = 26. The main aim
of this paper is to train phonicsGAN to generate a clip V ‘i = {v‘1, v‘2, v‘3,v‘N}
that conforms to the audio segment Ai = {a1, a2, a3, . . . , aN} and similar to the
ground truth clip Vi = {v1, v2, v3, . . . , vN}.

3.3 Model Architecture

The overall architecture of phonicsGAN is illustrated in Fig. 2. It can be divided
into three main components: audio encoder, generator, two-level discriminators.

Audio Encoder. The audio signal Ai = {a1, a2, a3, . . . , aN} is first converted to
a Mel Spectrogram because the latter can represent musical information effec-
tively [8,11,32]. The Mel spectrogram tensors are input into fully connected
layers to downscale the dimensions, then the encoded vectors are concatenated
with Gaussian noise vectors E = {e1, e2, e3, . . . , eN} to feed the GRU layer as
described in equation (1). Then another GRU layer receives the hidden states
from the lower layer with the labels as illustrated in equation (2).

ot = GRU((at, et), ot−1) (1)

st = GRU((L, ot), st−1) (2)

PhonicsGAN: Synthesizing Graphical Videos from Phonics Songs 605

Fig. 2. PhonicsGAN: it consists of two encoders and two-level discriminators

In equation (1), (at, et) represents a concatenated vector that consists of a noise
vector et and an audio segment at at time step t, while ot−1 is the hidden state
from the previous state. In equation (2), the label of the clip L is concatenated
with ot, which is the hidden state of the lower layer. The vector st−1 is accumu-
lated from the previous GRU cells.

Video and Image Generators. The video generator can sequentially map
the encoded audio vectors to a set of frames. It consists of a deep convolutional
neural network to upscale the audio vectors to video frames. The image gen-
erator follows the same architecture as the video generator. However, instead
of receiving multiple encoding vectors based on the desired length of the video
frames, the generator receives one encoding audio vector to generate one frame.

Video and Image Discriminators. The image discriminator judges the static
generated images from the image generator. The image discriminator is trained
to distinguish between a real image i from a fake one i‘. The video discrimina-
tor extends the task of the image discriminator to judge not only the realism
of the generated frames, but also their motion. While the video discriminator
criticizes both the content and motion in the generated frames, the importance
of the image discriminator lies in its facilitating the adversarial training conver-
gence [29]. Both discriminators are implemented as CNN networks.

Training. The overall loss function L for phonicsGAN is:

minGmaxDL = LImageGAN + LV ideoGAN + Lreconstruction (3)

The terms LImageGAN , LV ideoGAN are the adversarial loss functions for Image
GAN and Video GAN, and their defined equations are (4) and (5) respectively.

LImageGAN (D,G) = Ei∼pi
[logD(i|c)] + Ei‘∼pi‘ [log(1 − D(G(i‘|c))] (4)

606 N. Aldausari et al.

Fig. 3. Generated videos from phonicsGAN and the real frames. The lyrics for the top
sample is “o o o orange” and for the bottom sample is “j is for joy”.

LV ideoGAN (D,G) = Ev∼pv
[logD(v|c)] + Ev‘∼pv‘ [log(1 − D(G(v‘|c))] (5)

In equation (4) and (5), i and v are the real images and videos in the datasets,
while i’ and v’ are the synthesized images and videos. Both Image GAN and
Video GAN are conditional GANs [16] where c is the condition added to the
model. The condition in the image and video generators are the audio signal
and the category of the clip or image that are added at different stages. The
reconstruction loss Lreconstruction is the L1 loss between the generated frames
and real frames.

3.4 Implementation

We used PyTorch to implement the model. The length of the generated videos
is 15 frames due to our computational power limitations. However, in theory it
can be set to any video length. The video frames are resized to 64× 64. The
frames are sampled 5 Hz by timestamp (equivalent to a step size of 200 msec).
The corresponding audio segment of the 15-frame video clip is converted to log
Mel Spectrogram, then the overall Mel Spectrogram is divided into 64× 64 audio
segments, and two consecutive segments have 17 × 64 pixels overlap. Because the
dataset contains categorical data, each letter is assigned to an integer value, i.e.
1 is for letter A, 2 is for letter B and so on. One-Hot Encoding is used to encode
the letter labels using 26 bits (one per each letter). In the training phase, a batch
size of 10, and Adam optimizer with learning rate 0.0002 are applied.

4 Results and Discussion

PhonicsGAN is able to generate videos that have the same content as the ground
truth videos but with a different style. For example, in Fig. 3, the song of the
first example is transcribed as “o is for orange” and the generated frames has the
same letter “o” and “orange” as in the training frames but with a style similar to
other training samples. In addition, we notice that phonicsGAN can successfully

PhonicsGAN: Synthesizing Graphical Videos from Phonics Songs 607

Fig. 4. The generated videos reflect different motion styles such as bending, changing
colour, and appearing/disappearing (left to right).

generate different motion styles such as moving around the image, appearing,
fading, swivelling and changing colour, as illustrated in Fig. 4.

One strategy to evaluate the proposed model is to compare it with main-
stream models. As in works [14,25], the outputs of our model are compared with
generated videos from baseline models such as LSTM and MoCoGAN. MoCo-
GAN [29] is first input a number of noise vectors that represent the changes in
the motion to a GRU layer. Then, the result is concatenated with a fixed vector
that acts as content. Thus, the generated frames of a video have the same con-
tent with different motion in each frame. We use the original implementation of
MoCoGAN while replacing the motion vectors by audio vectors and the content
vector by labels, we called this model Audio MoCoGAN. In addition, as in Lee
et al. [14], we compared our results with LSTM’s outputs that generates frames
based on the audio signal and label. However, we did not present the generated
samples from LSTM because of poor generated frames. Figure 5 illustrates the
generated frames from Audio MoCoGAN and phonicsGAN.

Inception Score (IS) [22] is a quantitative measure that evaluates whether the
images is correctly classified and whether each class has equal proportion in the
generated samples. The main drawback of IS is that it only evaluates the distribu-
tion of the generated samples. In contrast, Fréchet Inception Distance (FID) [10]
can be used in GAN to compute the distance between two distributions, in this
instance the real and fake distributions. The IS and FID score depends heavily
on the number of samples. Fewer samples may yield an inconsistent IS and FID
score. A pre-trained Inception-v3 [26] is used to extract the spatial-temporal fea-
tures to calculate FID and IS. We used 75 samples (due to memory limitation,
we could not test it with larger number of samples) based on randomly selected
songs. The averaged scores of 5 trials and their standard deviation are reported
in Table 1. The quality of the generated images using PhonicsGAN surpasses
MoCoGAN and LSTM as shown by the IS and FID score, as a lower FID score
indicated closer distributions, and higher IS means better quality and diversity.
However, since IS is based on ImageNet embeddings which is different than our
dataset’s representation, the overall IS scores are low. LSTM shows the lowest
results as it lacks having discriminator network and adversarial loss proven to
enhance the generated result. In addition, our model employs three layers to
encode the conditional signals and reserve the changes of the signal over time
while in Audio MoCoGAN the encoding procedure is done through one layer.
Simple concatenation between encoded audio features and the label in Audio
MoCoGAN cannot convey the importance of the encoded features at each time

608 N. Aldausari et al.

Fig. 5. The generated videos using Audio MoCoGAN (left column) and PhonicsGAN
(right column) conditioned on labels from T (top) and N (bottom).

Table 1. The average IS and FID scores for LSTM, MoCoGAN, and PhonicsGAN at
the standard deviations.

IS FID

LSTM 0.0005 (± 0.00006) 146.0 (± 2.0)

MoCoGAN 0.0005 (± 0.00000) 62.2 (± 0.4)

PhonicsGAN 0.0008 (± 0.00002) 46.0 (± 0.2)

step. Even though the IS and FID score is comparable with human evaluation,
the need for subjective evaluation is still necessary since individuals are more
sensitive to undesired motions and artifacts, and that will be addressed in our
future works.

One limitation of the proposed model is that the generated frames do not
illustrate the correct object that is in the song, and sometimes the correct object
is generated but not clear. One reason for this problem is the lack of a sufficient
number of samples of each object in the dataset. The proposed dataset has 26
letters, and each letter has 18 objects on average. The average number of samples
for each object is 3 samples. Besides, each object might be represented differently.
For example, for “p is for purple”, the object might appear as a paintbrush while
in another video as a purple rectangle. We believe enriching the framework by
conditioning on the first frame, the category of the object, or t lyric of the songs
can help to address the issue with not having clear objects in the synthesized
examples which we plan to address in the future extension of this work.

5 Conclusion

Generative models imitate multiple tasks in different domains. In the video
realm, these models automate time-consuming processes such as generating
videos, editing videos, changing the style of videos and predicting future frames.
This research aims to contribute to synthesizing videos based on songs. The
literature provides audio-to-video mapping models that rely on pose extrac-
tor models, initial frames or pre-processing steps. However, phonicsGAN is an
end-to-end model that generates videos that vary in style, motion and objects

PhonicsGAN: Synthesizing Graphical Videos from Phonics Songs 609

according to multimodal data input such as songs. In addition, the empha-
sis of previous studies is the training of generative models on photographed
datasets while phonicsGAN is trained on a graphical dataset. Several techniques
are integrated in developing phonicsGAN, including using GRU layers to repre-
sent changes in the music signal and map it to changes in the motion. Adoption
of two-level discriminators facilitates maintaining the coherence and realism in
the generated frames. The proposed GAN was evaluated with IS and FID met-
rics and compared with LSTM and MoCoGAN. This work can be a first step
towards song-to-graphical content systems where scenes are created based on
musical composition.

Acknowledgments. The first author is supported by a scholarship from Princess
Nourah bint Abdulrahman University, KSA.

References

1. https://cloud.google.com/speech-to-text
2. Ahn, H., Kim, J., et al.: Generative autoregressive networks for 3D dancing move

synthesis from music. IEEE Robot. Autom. Lett. 5(2), 3500–3507 (2020)
3. Aifanti, N., Papachristou, C., et al.: The mug facial expression database. In: 11th

International Workshop on Image Analysis for Multimedia Interactive Services
WIAMIS 2010, pp. 1–4. IEEE (2010)

4. Aldausari, N., Sowmya, A., et al.: Video generative adversarial networks: a review.
arXiv preprint arXiv:2011.02250 (2020)

5. Chen, L., Srivastava, S., et al.: Deep cross-modal audio-visual generation. In: Pro-
ceedings of the on Thematic Workshops of ACM Multimedia 2017, pp. 349–357.
ACM (2017)

6. CISCO: VNI complete forecast highlights. Report shorturl.at/tDGV2
7. Duan, B., Wang, W., et al.: Cascade attention guided residue learning gan for

cross-modal translation. arXiv preprint arXiv:1907.01826 (2019)
8. Duan, Y., Shi, T., et al.: Semi-supervised learning for in-game expert-level music-

to-dance translation. arXiv preprint arXiv:2009.12763 (2020)
9. Goodfellow, I., Pouget-Abadie, J., et al.: Generative adversarial nets. In: Advances

in Neural Information Processing Systems, pp. 2672–2680 (2014)
10. Heusel, M., Ramsauer, H., et al.: GANs trained by a two time-scale update rule

converge to a local nash equilibrium. In: Advances in Neural Information Process-
ing Systems, pp. 6626–6637 (2017)

11. Kaneko, T., Takaki, S., et al.: Generative adversarial network-based postfilter for
STFT spectrograms. In: Interspeech, pp. 3389–3393

12. Karras, T., Aila, T., et al.: Progressive growing of GANs for improved quality,
stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

13. Kim, K.M., Heo, M.O., et al.: Deepstory: video story QA by deep embedded mem-
ory networks. arXiv preprint arXiv:1707.00836 (2017)

14. Lee, H.Y., Yang, X., et al.: Dancing to music. arXiv preprint arXiv:1911.02001
(2019)

15. Li, Y., Gan, Z., et al.: StoryGAN: a sequential conditional GAN for story visu-
alization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6329–6338 (2019)

https://cloud.google.com/speech-to-text
http://arxiv.org/abs/2011.02250
http://shorturl.at/tDGV2
http://arxiv.org/abs/1907.01826
http://arxiv.org/abs/2009.12763
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1707.00836
http://arxiv.org/abs/1911.02001

610 N. Aldausari et al.

16. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

17. Mittal, G., Wang, B.: Animating face using disentangled audio representations. In:
The IEEE Winter Conference on Applications of Computer Vision, pp. 3290–3298
(2019)

18. van den Oord, A., Dieleman, S., Zen, H., et al.: WaveNet: a generative model for
raw audio. arXiv preprint arXiv:1609.03499 (2016)

19. Qiu, Y., Kataoka, H.: Image generation associated with music data. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pp. 2510–2513 (2018)

20. Ren, X., Li, H., et al.: Self-supervised dance video synthesis conditioned on music.
In: Proceedings of the 28th ACM International Conference on Multimedia, pp.
46–54 (2020)

21. Rössler, A., Cozzolino, D., et al.: FaceForensics: a large-scale video dataset for
forgery detection in human faces. arXiv preprint arXiv:1803.09179 (2018)

22. Salimans, T., Goodfellow, I., et al.: Improved techniques for training GANs. arXiv
preprint arXiv:1606.03498 (2016)

23. Schuldt, C., Laptev, I., et al.: Recognizing human actions: a local SVM approach.
In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR
2004, vol. 3, pp. 32–36. IEEE (2004)

24. Soomro, K., Zamir, A.R., et al.: UCF101: a dataset of 101 human actions classes
from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

25. Sun, G., Wong, Y., et al.: DeepDance: music-to-dance motion choreography with
adversarial learning. IEEE Trans. Multimed. 23, 497–509 (2020)

26. Szegedy, C., Liu, W., et al.: Going deeper with convolutions. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

27. Tang, T., Jia, J., et al.: Dance with melody: an LSTM-autoencoder approach to
music-oriented dance synthesis. In: Proceedings of the 26th ACM International
Conference on Multimedia, pp. 1598–1606 (2018)

28. Tsuchiya, Y., Itazuri, T., et al.: Generating video from single image and sound. In:
CVPR Workshops, pp. 17–20 (2019)

29. Tulyakov, S., Liu, M.Y., et al.: MoCoGAN: decomposing motion and content for
video generation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1526–1535 (2017)

30. Vougioukas, K., Petridis, S., et al.: End-to-end speech-driven facial animation with
temporal GANs. arXiv preprint arXiv:1805.09313 (2018)

31. Wang, T.C., Liu, M.Y., et al.: Video-to-video synthesis. arXiv preprint
arXiv:1808.06601 (2018)

32. Wang, Y., Skerry-Ryan, R., et al.: Tacotron: towards end-to-end speech synthesis.
arXiv preprint arXiv:1703.10135 (2017)

33. Yalta, N., Watanabe, S., et al.: Weakly-supervised deep recurrent neural networks
for basic dance step generation. In: 2019 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE (2019)

34. Yang, Z., Zhu, W., et al.: TransMoMo: invariance-driven unsupervised video motion
retargeting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5306–5315 (2020)

35. Zhou, H., Liu, Y., et al.: Talking face generation by adversarially disentangled
audio-visual representation. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 9299–9306 (2019)

36. Zhuang, W., Wang, C., et al.: Music2dance: music-driven dance generation using
Wavenet. arXiv preprint arXiv:2002.03761 (2020)

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1803.09179
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1805.09313
http://arxiv.org/abs/1808.06601
http://arxiv.org/abs/1703.10135
http://arxiv.org/abs/2002.03761

A Progressive Image Inpainting
Algorithm with a Mask Auto-update

Branch

Liang Nie1, Wenxin Yu1(B), Xuewen Zhang1, Siyuan Li1, Ning Jiang1,
and Zhiqiang Zhang2

1 Southwest University of Science and Technology,
Mianyang, Sichuan, China
yuwenxin@swust.edu.cn

2 Hosei University, Koganei, Tokyo, Japan

Abstract. Recently, learning-based image inpainting methods have
made inspiring progress with squared or irregular holes. The generative
adversarial networks (GANs) have been able to produce visually realistic
and semantically correct results. However, most existing methods generate
the results by one stage. They may have a slight advantage in computa-
tion time, but more information is lost during the inpainting process. Due
to the lack of sufficient context information, these inpainting approaches
cannot inpaint large holes in natural images very well. This paper proposes
a progressive image inpainting algorithm for solving the above problem.
This algorithm synthesizes different image components in a parallel man-
ner within one stage. Moreover, this paper design a branch, which trans-
mits the image features to the generative model iteratively. In each itera-
tion, we adopt a mask auto-updating mechanism to shrink the boundary
of a hole. Finally, the generative component can shrink the large corrupted
regions in natural images and yield promising inpainting results.

Keywords: Progressive image inpainting · Generative adversarial
networks · Multi-column convolutional

1 Introduction

Image inpainting (also named image completion) targets using the known infor-
mation of the images and a specific algorithm to reconstruct missing areas in
corrupted images. This technique is used in various applications such as object
removal, error concealment, image denoising, etc. A significant inpainted result
should exhibit consistency in both structure and texture between the inferential
pixels and the known area. Hence, it is still challenging for a computer to recover
the details coherent with the human eyes’ visual experience.

There were various solutions for the inpainting task that have been pro-
posed in nearly two decades. One is traditional diffusion-based methods. They

L. Nie, W. Yu—These authors have contributed equally to this work.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 611–622, 2021.
https://doi.org/10.1007/978-3-030-86340-1_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_49&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_49

612 L. Nie et al.

can utilize the high smoothness assumption of images to reconstruct missing
regions from the known areas. This kind of approach is not suitable for recov-
ering large corrupted regions as they cannot synthesize semantic content. The
others are patches-based approaches. They complete images by copying patches
from known areas. As the high consumption of calculation, they may not suit
for inpainting high-resolution images. In short, the above two kinds of methods
cannot generative pleasantly visible results.

Recently, due to the development of deep learning techniques such as con-
volutional neural networks (CNN) and generative adversarial networks (GAN).
The semantic image inpainting work has caught the eye of the researchers again.
Such as a Context Encoder is proposed by Pathak et al. [8]. This work aims at
reconstructing the semantic information in a large proportion of missing regions.
It uses an encoder-decoder pipeline with an adversarial loss and a pixel-wise loss
to fill the hole in the pictures. A convolutional neural network’s robust feature
learning capability gained remarkable results in restoring corrupted images even
when the missing holes are quite large. Furthermore, on account of an adversar-
ial training strategy, the generated regions are often visually more realistic than
those generated using diffusion-based approaches and example-based methods.
Soon after this work, Yang et al. [13], Yeh et al. [14], and Iizuka et al. [2] extended
this strategy to other semantic inpainting scenarios and achieved good results.

Despite significant progress made by these learning-based approaches in recent
years, most of them are one-stage inpainting methods. So there are two problems;
one is lacking constraints for the hole center. Because the damaged areas become
large and the distances between known and unknown pixels increase, these cor-
relations are weakened. This problem leads to difficultly fill in large continuous
holes. Another one is that the hole center cannot obtain sufficient valid context for
generating visually pleasing results. Hence, the center area will use some invalid
information for inpainting. Finally, the networks generate semantically ambiguous
results. This paper adopts a scheme that progressively is to inpaint from the hole
boundary to the center to tackle these issues (see Fig. 1). Our method is analogous

Fig. 1. Given an image with a large missing region to inpaint, the exterior subregion
(marked with the red rectangle) is undoubtedly much more accessible than to inpaint
the interior subregion (marked with the green rectangle). (Color figure online)

A Progressive Image Inpainting Algorithm with a Mask Auto-update Branch 613

to how humans solve puzzles (i.e., first solve the more accessible parts and then
use the results as additional information to solve complex parts). This paper
uses the implicit diversified Markov random field (ID-MRF) term to strengthen
the central part’s constraint and a multi-column convolution structure to extract
image features in various scales. Finally, this paper came up with a mask auto-
update branch in the test phase, which is our main contribution to solving the
above problems.

2 Related Work

2.1 Image Inpainting

Recently, the learning-based approaches have attracted interest in researchers
again. Iizuka et al. [2] introduced an extra discriminator to ensure local image
coherency and used Poisson blending to refine the image, which achieved more
detailed and sharper results. Yan et al. [12] and Yu et al. [15] devised feature shift
and contextual attention operations, respectively, to allow the model to borrow
feature patches from distant areas of the image. Liu et al. [4] and Yu et al. [16]
devised particular convolutional layers to enable the network to reconstruct on
irregularly masked images. In the aspect of feature extraction, wang et al. [10]
proposed a multi-column convolutional neural network, it has three branches
to capture image features in a different level. The multi-column structure can
decompose the image into components with different receptive fields and feature
resolution. However, as they try to recover the whole target with inadequate
constraints, these methods fail to address the semantic ambiguity.

2.2 Progressive Inpainting

Progressive image inpainting has recently been investigated. Li et al. [3] added
the gradually reconstructed boundary map as an additional training target to
assist the inpainting process of U-net. Zhang et al. [17] used a cascade generator
to fill in the image progressively. Guo et al. [1] used a single-stage feed-forward
network to draw the image of the original size directly. Xiong et al. [11] and Naz-
eri et al. [6] completed the contour of the images step by step to ensure structural
consistency. Oh et al. [7] used an onion-peel scheme that progressively embed-
ded video data using content from reference frames, allowing precise content
borrowing.

These approaches attempted to add structural constraints for inpainting mis-
sions, but they still lack information for restoring deeper pixels in holes. Fur-
thermore, as these methods do not use recurrent designs and render redundant
models, computational costs make these methods less practical. And these meth-
ods trained an excellent model with a progressive repair strategy in the training
stage. However, in the application stage, the model still cannot capture enough
context information. Hence, this paper design a recurrent method with a mask
auto-update branch in the test stage. So, the trained generator can acquire more
boundary information by mask shrinkage in the iterative process and finally com-
plete a remarkable result.

614 L. Nie et al.

3 Our Method

3.1 Network Structure

Fig. 2. The network with a mask auto-update branch

Suppose we have an original image X from a training dataset. And then, it
is degraded by a mask M (1 for the known areas, 0 for the missing areas) named
Y (contain the valid and invalid pixels). The aim is to reconstruct the invalid
regions with valid pixels. Meanwhile, the completion images Ŷ are required
semantically reasonable and visually realistic. In order to achieve this goal,
this paper improve the Generative Multi-column Convolutional Neural Network
(GMCNN) [10] and propose a new progressive repair method. The network struc-
ture is shown in Fig. 2. It consists of three sub-networks and a mask auto-update
branch: a generator to produce results, global and local discriminators for adver-
sarial training, and a pretrained VGG network [9] to calculate ID-MRF loss. In
the testing phase, only the generator network and the branch are used.

There are n(here n = 3) parallel encoder-decoder branches to extract features
in different levels from input X with mask M. And then follow a shared decoder
module to transform in-depth features into natural image space. The diverse
branches have various receptive fields to capture different levels of information.
These encoder-decoder branches are trained in a data-driven manner to generate
a better feature. These features are then up-sampled (bilinearly) to the origi-
nal resolution and are concatenated into feature map F. The network further
transform features F into image space via a shared decoding module with two
convolutional layers.

By minimizing the difference between Ŷ and Y with a local and a global
discriminator, the encoder-decoder branches can capture the more appropriate

A Progressive Image Inpainting Algorithm with a Mask Auto-update Branch 615

feature for inpainting. The pretrained VGG network plays the role of the ID-
MRF loss calculator to strengthen the center hole constraint in a picture. It is
helpful for the encoder-decoder network to select suitable patches for inpainting.
Finally, when the model converges, this paper uses the mask auto-update module
to fill in the missing area’s boundary gradually. This process mainly offers more
context supply for generators to achieve the results we desire.

3.2 ID-MRF Regularization

For semantic structure matching, the scheme takes MRF-like regularization,
which is calculated by the pretrained VGG network only in the training phase.
To calculate ID-MRF loss here is not to directly use cosine similarity measure.
Instead, adopt a relative distance measure [5] to model the relation between local
features and target feature sets. It can inpaint subtle details, as shown in Fig. 3.

Fig. 3. Using different similarity measures to search the nearest neighbors. (a) Inpaint-
ing results using cosine similarity. (b) Inpainting results using the relative similarity.

The left picture shows that directly use cosine similarity measure to calculate
ID-MRF loss. It can be easily observed that the holes are quickly filled with a
patch around them due to the background’s smooth texture. It results in a blurry
hole area that does not produce a sharp texture. Based on the relative position
similarity strategy, the image on the right shows that it can select similar patches
to fill in the missing areas. For example, according to the calculation, the figure’s
white area will be filled with different patches around it instead of one.

Let Ŷg be the generated content for the missing regions, ŶL
g and YL are

the features generated by the Lth feature layer of a pretrained deep model. For
neural patches v and s extracted from ŶL

g and YL respectively, the relative
similarity from v to s is defined as

RS(v, s) = exp
((

μ(v, s)
maxr∈ρv(YL) μ(v, r) + ε

)
/h

)
(1)

616 L. Nie et al.

where μ(., .) is the cosine similarity. r ∈ ρv
(
YL

)
means r belongs to YL exclud-

ing v. ε and h are two positive constants. For details, please refer to the ID-MRF
loss of GMCNN [10].

The method proposed in this paper can offer more candidates for inpainting
the hole areas. Since ID-MRF regularization can prevent the missing area from
being quickly filled by a similar patch, the incremental repair strategy proposed
in this paper can provide more accurate information selection for reconstructing.

3.3 Spatial Variant Reconstruction Loss

Pixel-wise reconstruction loss is important for inpainting [15]. The network
design the confidence-driven reconstruction loss to impose constraints based on
spatial position. And we use a Gaussian filter g to convolve M to create a loss
weight mask Mw as

Mi
w =

(
g ∗ M

i
)

� M (2)

where g is with size 64 × 64 and its standard deviation is 40. M
i

= 1 − M +
Mi−1

w and M0
w = 0. � is the Hadamard product operator. The final reconstruc-

tion loss is
Lc = ‖(Y − G([X,M]; θ)) � Mw‖1 (3)

where G([X,M]; θ) is the output of the generative model G, and θ denotes learn-
able parameters. This loss function exploits spatial locations and their relative
order by considering confidence in both known and unknown pixels. It results
in the effect of gradually shifting learning focus from filling the border to the
center and smoothing the learning curve.

3.4 Mask Auto-update Module

The confidence-driven reconstruction loss makes unknown pixels close to the
filling boundary are more strongly constrained than those away from it. The
above work mainly solves the optimization problem of the network in the training
process. Therefore, this method can get a more reasonable generation model in
image reconstruction. And in the test phase, the generator uses the learned
distribution to repair the hole areas. It can inference the appropriate location
where the hole may most like to borrow. However, the location may also be in
unknown regions. So, the generator has to choose the second-best solution to fill
the corresponding missing area.

On account of this problem, this paper proposed the mask auto-update mod-
ule using in the test stage for progressive inpainting (shown in Fig. 4). In the
test phase, the model can make a rough prediction (the prediction result for the
first time) of the broken image Ŷ based on the learned distribution. Meanwhile,
the mask update branch will reduce the mask’s coverage area through image
erosion technology. Then, add the shrank mask to the complete result. Hence,
there is a residual of the boundary between known and unknown areas(the resid-
ual is shown in Fig. 5). It helps the generator achieve semantically richer results.

A Progressive Image Inpainting Algorithm with a Mask Auto-update Branch 617

Fig. 4. The set of pictures shows a process of mask-updating though our mask shrink
module. (a) The raw mask have not passed the module. (b) The mask have passed the
module three times. (c) The mask have passed the module five times.

Finally, we combine the residual with raw input as a new input transmitting to
the generator again. This residual image will provide the generator with more
context, allowing it always to fill the hole with the optimal solution patch. By
iterating the above process, we can finally get the result we desire in a progressive
way.

Fig. 5. Here are the generated content in the hole areas and the residual with a three-
times shrunk mask. (a) the generated content. (b) the residual context from (a). Which
can offer the generator more information of the hole boundary.

4 Experiments

4.1 Training Procedure

First, we scaled and cropped the original dataset to get the data samples of
128×128. These samples are then enhanced by flipping and other operations. The
mask is also generated randomly. The samples are then fed into the inpainting
network along with the mask. These pictures damaged by the mask are repaired

618 L. Nie et al.

by encoding and decoding through the generator. The completed results and the
real images are fed into the discriminator. Through adversarial learning strategy,
the generator and discriminator are iteratively optimized until the model con-
verges. Subsequently, the model’s initial inpainting results and the initial masks
are fed into the mask auto-update branch.

In this branch, the initial mask is shrunk by an edge etc.hing operation.
The cutdown mask is then combined with the original repair result to get a new
damaged image. The new one has a smaller damage area than the initial damage
image. Therefore, when put it into the model for inference, the model can obtain
more practical information to generate better predict results. By iterating the
above steps, the final inpainting results are obtained.

4.2 Quantitative Evaluation

Table 1. Quantitative results on three testing datasets.

Method Pairs street view Places2 CelebA-HQ

PSNR PSNR PSNR

CA [15] 23.78 20.03 23.98

GMCNN [10] 24.65 20.16 25.70

Ours 24.77 20.33 25.92

In the Quantitative Evaluation, the peak signal-to-noise ratio (PSNR) score is
used to evaluate the different methods’ repair results. This paper evaluates our
method on three datasets of Paris street view, Places2, and CelebA-HQ. CA and
GMCNN also executed on the same conditions for reference and completeness.
The comparison results are shown in Table 1. The method presented in this
paper is superior to other methods in PSNR. The progressive inpainting strategy
based on automatic update of the mask has excellent advantages for detailed
information repair, and the results can verify the effectiveness of this method
in Figs. 6 and 7. The results in Table 1 show that the enhancement of the face
dataset by this method is the largest among the three datasets. Because in
the face data set, the face structure is much simpler than that of the building.
The gradual repair strategy can make the transition smoother. However, other
methods ignore the edge filling information which can help repair the center of
the missing area. Moreover, in the experiment, by adding a mask auto-update
branch, there is little effect on the time elapsed.

4.3 Qualitative Evaluation

This paper added the mask auto-update module to GMCNN and the test results
as shown in Figs. 6 and 7. When the mask is not updated by the module auto-
matically, most one-stage repair methods (such as GMCNN) will produce fuzzy

A Progressive Image Inpainting Algorithm with a Mask Auto-update Branch 619

image repair results because the missing area is large and the hole center cannot
get enough sufficient context information.

Fig. 6. Visual comparisons on Paris street view. (a) Input image with mask. (b)
Inpainting results of GMCNN. (c) Our inpainting results. (d) Ground truth image.

Figure 6 are the inpainting results of the Paris street view. Column (b) are
the results of GMCCN, and column (c) represents the results of this paper. In
the first row, (b) has apparent artifacts in the red box that make the picture
seemingly unrealistic. In contrast, (c) has more nature content, smoother line,
and no artifacts. Hence, (c) making up a more realistic image. In the second row,
(c) shows a more great texture in the center of the mask, making the result closer
to the original appearance. In the third row, (b) shows that the method failed to
restore the whole region, with a severe artifact in the mask area. The picture is
too smooth, especially with only a blur in the center of the mask. However, (c)

620 L. Nie et al.

Fig. 7. Visual comparisons on CelebA. (a) Input image with mask. (b) Inpainting
results of GMCNN. (c) Our inpainting results. (d) Ground truth image. (Color figure
online)

performs better in the face of such complex conditions, and (c) can reconstruct
more structural information based on successfully restoring the image. In a few
rare cases, (c) although produce the same failure results show in the last row.
Comparing the middle of the two missing areas, one can observe that (c) still
managed to generate some lines (gaps between the bricks), but (b) only have a
patch.

Figure 7 shows the two methods’ repair results on the Celeba dataset, reflect-
ing the phenomenon similar to the Paris street view dataset results. Columns (b)
and (c) represent GMCNN and the inpainting method in this paper, respectively.
In the red box in the first row, column (b), a prominent black artifact appears
between the woman’s eyebrows and hair. Nevertheless, in the same position, the
result of (c) is accurate and credible. In the second row, the contours of the man’s

A Progressive Image Inpainting Algorithm with a Mask Auto-update Branch 621

face (column (b)) are distorted to make him look like a monster. By contrast,
(c) can get a more realistic, smooth, and natural facial contour. In the last two
lines, the results of (b) are a complete failure. The reconstruction results of (c),
though not particularly satisfactory, are still much better than that of (b). At
least (c) produces the correct semantic information.

The above examples have two things in common. The first one is that the
method proposed in this paper can achieve better results in terms of texture
and structure. The second point is that, whether or not the method successfully
restores the image in the central area of the mask, the method produces better
results in terms of detail. Because the automatic update branch of the mask is
used to carry out progressive image restoration, the center of the mask region
can get more information step by step, which is the advantage of this method.

5 Conclusion

By analyzing the image repair results of GMCNN, we can find unreasonable
pixels obviously in the inpainting area. Because during the testing phase, the
generator’s talents are still limited by insufficient information. Although the
generator learns an excellent image information distribution with reasonable
constraints, the location of the best similar patches that the generator surmised
may distribute in the missing region, especially when the missing region was too
large. Furthermore, the generator had to borrow other similar patches from the
known region to finish the inpainting work. That is why it results in semantic
conflicts.

The paper proposes a progressive repair module with an automatic mask
update mechanism used in the model testing phase to solve this problem. We
capture the inpainting content from the generator by our module. Then, we
utilize the module shrinking the raw mask by an erosion operation. Finally, we
combine the updated mask with the generated content to get a residual image
of the boundary of hole areas and transmit the residual image to the generator
again with the initial input image. The new input can provide more information
for the generator. Hence, we can achieve more remarkable inpainting results at
the semantic level.

Because the mask-updating rules are simple, the generator will still borrow
a small fraction of the wrong pixels for inpainting. Hence, our next step can
be to optimize the mask update rules. The application of the progressive repair
method in the testing stage has a promising prospect.

Acknowledgment. This research is supported by Sichuan Science and Technology
Program (No. 2020YFS0307, No. 2020YFG0430, No. 2019YFS0146), Mianyang Science
and Technology Program (No. 2020YFZJ016).

References

1. Guo, Z., Chen, Z., Yu, T., Chen, J., Liu, S.: Progressive image inpainting with
full-resolution residual network. In: Proceedings of the 27th ACM International
Conference on Multimedia, pp. 2496–2504 (2019)

622 L. Nie et al.

2. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image com-
pletion. ACM Trans. Graph. 36(4), 107:1–107:14 (2017)

3. Li, J., He, F., Zhang, L., Du, B., Tao, D.: Progressive reconstruction of visual
structure for image inpainting. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5962–5971 (2019)

4. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpaint-
ing for irregular holes using partial convolutions. In: Proceedings of the European
Conference on Computer Vision (ECCV), pp. 85–100 (2018)

5. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image trans-
formation with non-aligned data. In: European Conference on Computer Vision
(2018)

6. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: Struc-
ture guided image inpainting using edge prediction. In: 2019 IEEE/CVF Interna-
tional Conference on Computer Vision Workshops, ICCV Workshops 2019, Seoul,
Korea (South), 27–28 October 2019, pp. 3265–3274. IEEE (2019)

7. Oh, S.W., Lee, S., Lee, J.Y., Kim, S.J.: Onion-peel networks for deep video com-
pletion. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4403–4412 (2019)

8. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context
encoders: feature learning by inpainting. IEEE (2016)

9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2015)

10. Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-
column convolutional neural networks. In: NeurIPS (2018)

11. Xiong, W., et al.: Foreground-aware image inpainting. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5840–
5848 (2019)

12. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-Net: image inpainting via deep
feature rearrangement. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 1–17 (2018)

13. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image
inpainting using multi-scale neural patch synthesis. IEEE (2017)

14. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Do, M.N.: Semantic image inpaint-
ing with deep generative models. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017)

15. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting
with contextual attention. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, 18–22 June 2018, pp. 5505–
5514. IEEE Computer Society (2018)

16. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting
with gated convolution. In: 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp.
4470–4479. IEEE (2019)

17. Zhang, H., Hu, Z., Luo, C., Zuo, W., Wang, M.: Semantic image inpainting with
progressive generative networks. In: Proceedings of the 26th ACM International
Conference on Multimedia, pp. 1939–1947 (2018)

Hybrid Generative Models
for Two-Dimensional Datasets

Hoda Shajari(B), Jaemoon Lee, Sanjay Ranka, and Anand Rangarajan

University of Florida, Gainesville, FL 32611-6120, USA
{shajaris,j.lee1,sranka,anandr}@ufl.edu

Abstract. Two-dimensional array-based datasets are pervasive in a vari-
ety of domains. Current approaches for generative modeling have typi-
cally been limited to conventional image datasets and performed in the
pixel domain which does not explicitly capture the correlation between
pixels. Additionally, these approaches do not extend to scientific and other
applications where each element value is continuous and is not limited to
a fixed range. In this paper, we propose a novel approach for generating
two-dimensional datasets by moving the computations to the space of rep-
resentation bases and show its usefulness for two different datasets, one
from imaging and another from scientific computing. The proposed app-
roach is general and can be applied to any dataset, representation basis,
or generative model. We provide a comprehensive performance compari-
son of various combinations of generative models and representation basis
spaces. We also propose a new evaluation metric which captures the defi-
ciency of generating images in pixel space.

Keywords: Generative models · Image representation bases ·
Normalizing flows · Independent component analysis · Generative
adversarial networks

1 Introduction

The high volume and unique requirements of scientific image datasets neces-
sitate the development of novel approaches for data modeling. The bedrock
assumption of all modeling methodologies is the existence of spatiotemporal
homogeneities in the data which can be exploited. However, in contrast to two-
dimensional image modeling, scientific data are underpinned by unusual geome-
tries and topologies. This “exotic setting” has to be leveraged and addressed
by machine learning methods in their quest to find homogeneities which in turn
can be efficiently exploited using representation bases. Additionally, unlike image
datasets where pixel values are discrete and within a certain range, the elements
of scientific datasets are continuous and can vary for each data point. In this
paper, we propose a novel approach for modeling the probability distribution
of two-dimensional datasets while developing a new measure for evaluating the
models. The proposed approach can be applied to image and scientific datasets,
with elements that are either discrete or continuous valued. Generative models
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 623–636, 2021.
https://doi.org/10.1007/978-3-030-86340-1_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_50&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_50

624 H. Shajari et al.

in machine learning have drawn significant attention with many applications in
different fields, including, but not limited to, computer vision, and physics-based
simulations for scientific datasets. The importance of generative modeling and
approximating data distributions stems from the fact that unlabeled data are
relatively abundant compared to labeled data, and this has applications in den-
sity estimation, outlier detection, and reinforcement learning. Deep generative
modeling also has emerged during the bloom of deep learning and takes advan-
tage of advances in computational power [16,18]. However, these models have
not leveraged classical methods of data representation. These models usually
learn the probability distribution of the images directly in pixel space, which is
costly and inefficient while ignoring 50 years of image representation bases used
in the compression literature. Furthermore, learning the distribution of the data
in pixel space does not leverage the correlation information among pixels.

Representation basis techniques aim to transform data in such a way that
useful aspects of data, for example statistical properties, are captured in the
transformed space. Principal Component Analysis (PCA), Independent Com-
ponent Analysis (ICA), and tensor decompositions using the higher order SVD
(which we henceforth encapsulate as the Tucker decomposition for the sake of
convenience) are among the widely used methods in this area. The other utility
of representation bases is dimensionality reduction, which can be considered as a
kind of lossy compression, i.e., it is possible to represent the data with a subset
of coefficients with desired accuracy. Therefore, dimensionality reduction also
brings a compression aspect into our approach.

We propose an approach to integrate image representation basis techniques
in generative image modeling and perform a comparison among three generative
models—generative adversarial networks (GANs), normalizing flows (NFs), and
Gaussian mixture modeling (GMM)—and analyze their performance. The results
suggest that this is a promising direction to pursue for efficient two-dimensional
dataset generative modeling, in particular for applications where resources are
scarce and speed of training matters. We summarize the contributions of our work
below:

– We propose an approach for two-dimensional datasets which exploits rep-
resentation bases to capture the correlation among elements explicitly and
therefore makes the generation process fast and efficient. This approach is
general and can be applied to image and scientific datasets where the under-
lying data are respectively discrete with a fixed range and continuous with a
free range.

– We propose a new quantitative metric to compare the performance of our
approach for different choices of generative models and representation bases.
This metric seems to capture the quality of the learned probability distribu-
tion better than conventional metrics, especially for scientific data.

The rest of the paper is outlined as follows. In Sect. 2, we cover previous work
on generative models utilizing representation bases or compression concepts. In
Sect. 3, we provide an overview of representation basis approaches used in this

Hybrid Generative Models 625

work. In Sect. 4, our methodology for hybrid generative modeling is outlined.
Implementation details and experiments are discussed in Sect. 5. Section 6 con-
cludes the paper.

2 Previous Work

Learning the probability distribution of datasets is a long-standing problem, and
generative models in machine learning constitute an important class of models
with a rich literature. The Gaussian mixture model (GMM) is one of the impor-
tant and classical models for generative modeling [21] while deep generative
models rely on multilayer perceptrons (with deep architectures) for learning the
data distribution.

Despite the importance of image representation bases and their abundant
application in the compression literature, there are very few approaches which
learn image probability distributions by marrying image representation bases
(thereby moving away from pixel space) and deep learning-based generative mod-
els. Our proposed work therefore bridges the gap between image representation
and deep learning-based image generation. As we will demonstrate in Sect. 4, our
approach combines parametric and nonparametric modules where the paramet-
ric component is based on representation bases, while the nonparametric module
is based on machine learning methods.

Generative Latent Optimization (GLO) [3] was proposed as a deep genera-
tive model which learns a deep CNN generator to map latent vectors to data
by a Laplacian pyramid loss function while forcing latent representations to lie
on a unit sphere. In this model, however, it is not possible for the generator
to randomly sample from a known distribution. Implicit Maximum Likelihood
Estimation (IMLE) [20] uses a non-adversarial approach for discovering the map-
ping between two densities. In this model, latent variables are mapped into image
space via a generator and for each training image, the nearest generated image
is found such that the �2 distance between the image and mapping is minimized
and the generator is repeatedly optimized via a nearest neighbor-based loss.
IMLE optimization is costly and the generated images are typically blurry. The
work in [12] proposed the idea of combining GLO and IMLE to learn a map-
ping for projecting images into a spherical latent space and learning a network
for mapping sampled points from latent space to pixel image space in a non-
adversarial fashion. Generative Latent Flow [25] learns the latent space of data
via an autoencoder and then maps the distribution of latent variables to i.i.d.
noise distributions. In the wavelet domain, SWAGAN [8] proposed a wavelet-
based progressive GAN for image generation which improves visual quality by
enforcing a frequency-aware latent representation. Our proposed method is dif-
ferent from the aforementioned approaches because it can be incorporated into
any generative model and therefore allows for sampling from a known distri-
bution whenever necessary. Furthermore, it has a parametric module and when
used within a GAN architecture, it is trained via an adversarial loss.

At the intersection of compression and deep generative models, Agustsson
et al. [2] proposed a framework based on GANs for generating images at lower

626 H. Shajari et al.

bitrates. The model learns an encoder which includes a quantization module
which is trained in combination with a multiscale discriminator. Kang et al. [16]
proposed a framework for generating JPEG images via GANs. They proposed
a generator with different layers for chroma sampling and residual blocks. Our
approach is also different from these approaches because image compression
concepts are directly used in the form of representation bases (like Tucker etc.)
coupled with dimensionality reduction.

The Tucker decomposition [23], PCA [15], and ICA [14] are among the widely-
used approaches which linearly transform data into a new space where data can
be presented in a more structured way and more efficiently represented. Dimen-
sionality reduction is an important byproduct of representation bases. Choosing
a subset of coefficients corresponding to the representation can result in data
compression and has been extensively used in the literature. As discussed ear-
lier, our use of these methods is for the purpose of converting from the original
data to a new space that captures the correlation between elements as well as pro-
viding an efficient representation for further processing. Therein lies the novelty
of our work. As far as we know, this is the first work that conducts a compre-
hensive comparison at the intersection of generative models and representation
bases while leveraging recent advances in adversarial learning.

3 Representation Bases

Finding a proper representation of random multivariate data is a key to many
domains [14]. Linear transformations have specifically been of interest due to
their conceptual and computational simplicity. The following techniques have
been used in our work:

1. Principal Component Analysis (PCA): PCA linearly transforms the
data by discovering orthogonal projections of high variance. Given a set of
vectors {xi}N

i=1, xi ∈ R
D, a correlation matrix is computed as C = ΣN

i=1xix
T
i ,

which has the following eigen decomposition: C = EΛET = EΛ
1
2 Λ

1
2T ET =

EΛ
1
2 (EΛ

1
2)T , where Λ is a diagonal matrix of eigenvalues, and their corre-

sponding eigenvectors constitute the columns of E. Dimensionality reduction
is performed by projecting data onto eigenvectors corresponding to the first
d maximum eigenvalues, which captures the maximum variance and is scaled
with corresponding eigenvalues, i.e., yi = Fxi, where F is the top-left block
of (EΛ

1
2)T with dimension D × d. Data reconstruction is performed via the

operation of F−1 on the obtained coefficients.
2. Independent Component Analysis (ICA): ICA attempts to decompose

multivariate data into maximally independent non-Gaussian components.
Such a representation seems to be able to capture the essential structure
of the data and provide a suitable representation which can be taken advan-
tage of in neural networks [14]. FastICA, used here, introduced a different
measure for maximizing the non-Gaussianity of rotated components [13].

3. Tucker Decomposition: The Tucker decomposition decomposes a tensor T
of order N into a core tensor with the same order and N unitary matrices.

Hybrid Generative Models 627

It is viewed as a higher order singular value decomposition (HOSVD). If we
consider an image dataset as a tensor T ∈ R

d1×d2×d3 of order 3, its Tucker
decomposition is T = T ×1 U (1) ×2 U (2) ×3 U (3), where T ∈ R

d1×d2×d3 is the
core tensor which, as a lower rank approximation of T , gives a representation
basis for it. Unitary or factor matrices are two-dimensional matrices which
help in projecting T into bases T . The Tucker decomposition is widely used
in compression by considering a subset of coefficients which carry most of
the information in the dataset and eliminating lower rank coefficients, which
typically has no adverse affect on tensor reconstruction.

We also utilize the Discrete Wavelet Transform (DWT) as a representation
basis for a “held out” model. We use the DWT to set up a probabilistic model
which can act as a basis for comparison for all generative approaches. The DWT
offers a suitable and general basis for image representation which captures both
frequency and location information. Therefore, it is highly viable as a bench-
mark model. We calculated DWT coefficients of datasets with a symmetric and
biorthogonal 1.3 scaling function. We trained a Gaussian mixture model on all
DWT coefficients (DWT-GMM) except the block of high frequency coefficients.
The DWT-GMM is used as a benchmark for all generative models and is not
used as a separate generative approach (but we plan to explore this possibility
in future work).

4 Methodology

Our two stage approach comprising representation basis projection and deep
learning is applicable to general 2D datasets. Below, we set up a cross-product of
approaches wherein representation bases are paired with deep generative models.
While we have elected not to explore variational autoencoders (VAEs) in the
present work, this can be easily accommodated in the future.

1. Data Projection: We begin by projecting images and two-dimensional datasets
into a representation basis space introduced in the previous section. Depend-
ing on the nature of the dataset, generative model, or representation basis
approach, data preprocessing steps and some model customization are
required to improve the results. In Sect. 5, we explain the preprocessing steps
or model specifications adopted for the datasets used in this study.

2. Generative Modeling: Generative models are applied to learn the distribution
of a subset of transformed coefficients obtained via one of the dimensional-
ity reduction procedures detailed in Sect. 3. This is an efficient use of the
compression aspect of the representation basis which makes the generative
process fast and efficient. This way, the focus of generative modeling shifts
from learning the distribution of data in pixel space to that of the distribution
of coefficients in a more informative and structured space.

The generative models used in this work for structured image generation are
GANs, NFs, and GMMs. The reason for this choice of models is the different
approaches they take towards learning the data distribution. These models are
briefly outlined below. For detailed explanation of generative models and their
variants, please see [9,19].

628 H. Shajari et al.

GANs are deep generative models which have shown promising results in gen-
erating high-resolution images [9]. GANs are composed of two building blocks:
generator (G) and discriminator (D) networks which are trained in an adversar-
ial fashion to defeat each other. A GAN is formulated as a minimax zero-sum
game in which the generator and discriminator try to optimize the value function
V from their own perspective:

min
G

max
D

V (G,D) = Ey∼py [log D(y)] + Ez∼pz [log(1 − D(G(z)))], (1)

where pz is a predefined prior for the input noise variable z, and py is the true
distribution of the data. Despite their impressive results on learning complex
data distributions and generating natural-looking images, GANs cannot perform
inference and evaluation of the probability density of new images and datasets—
especially important in the domain of scientific datasets.

NFs were proposed as a generative model based on random variable trans-
formations to approximate a tractable probability distribution such that sam-
pling and inference is exact and efficient [22]. The basic idea of NFs is to trans-
form a simple probability distribution (typically Gaussian) into a complex one
via learning a sequence of invertible and differentiable mappings (bijectors).
This is the generative direction. Applying a chain of mappings (bijectors) fk,
k = 1, 2, . . . ,K on the random variable z0 ∼ p0(z0) results in a random variable
zK = fK ◦ fK−1 ◦ . . . ◦ f1(z0) with probability distribution pK :

pK(zK) = p0(z0)
K∏

k=0

∣∣∣∣det
∂fk

∂zk−1

∣∣∣∣
−1

. (2)

In order for these transformations to be practical, determinants of their Jaco-
bians should be easy to compute. Some of the suggested approaches are RealNVP
[7], Glow [17], and FFJORD [10]. To implement NFs, we used the probability
library of TensorFlow [1] and its distributions module. Bijectors were also trained
by the FFJORD module in TensorFlow.

The GMM is a parametric method for probability density function estimation.
The density function is represented as a weighted sum of Gaussian components
[21]. The Gaussian mixture model represents data as normally distributed sub-
populations with a hidden, unknown digital membership. The density of X is
formulated as a weighted sum of K Gaussian distribution N(μk, Σk) as follows:

p(x|π, μ,Σ) =
K∑

k=1

πkN(x;μk, Σk); with
K∑

k=1

πk = 1. (3)

The parameters of the GMM model are estimated by maximum likelihood estima-
tion (MLE). Typically, an iterative Expectation-Maximization (EM) algorithm [6]
is applied which turns out to be reasonably efficient for this MLE problem.

Hybrid Generative Models 629

5 Experimental Results

In this section, we detail the experimental evaluation of the two-step process
described in the previous section on two different datasets, one from image pro-
cessing and the other from scientific computing. To compare the performance of
generative models in representation bases, we executed a set of experiments on
the cross product of models and representation bases for these datasets.

With most image datasets, the pixel intensities range from 0 to 255 and are
frequently normalized to a different range like [0, 1] for training. Unlike image
datasets, scientific datasets are not visually meaningful to human perception.
Hence, measures like FID [11] developed for image quality of GANs based on
the Inception v3 model are not immediately applicable to scientific datasets like
XGC, where each two-dimensional slice has a different range, so there is no
unified range in this dataset like there is in typical image datasets. Based on
this observation, we propose a likelihood-based metric that we believe will be
more suitable for this and other similar scientific datasets.

Datasets. We experimented with two datasets: Fashion MNIST [24] and XGC
[5]. Fashion MNIST is a standard, curated and widely used dataset consisting
of ten classes of clothing items. XGC consists of 16 planes corresponding to a
doughnut’s cross-sections. Each plane consists of 12, 458 nodes with each node
representing a histogram of perpendicular and parallel velocities of photons at
specific checkpoints (please see Fig. 1). The histograms are not necessarily nor-
malized. The velocity histogram of one of these nodes is depicted on the left in
Fig. 1. The goal is to derive a generative model to simulate the two-dimensional
velocity histograms of particles which are represented as images in a compressed
and efficient way.

Fig. 1. Depiction of a node in the XGC dataset (left). The x and y axes of the
histogram represent the perpendicular and parallel velocities of photons, respectively.
Samples from dataset (right).

630 H. Shajari et al.

Preprocessing. Slightly differing approaches were taken for the two datasets
for projection to the PCA/ICA basis. Since the ICA bases generate an uncon-
strained range of pixel values, for the Fashion dataset, we first project the image
intensities from a discrete range of [0, 255] to the continuous range [0, 1] and then
project these intensity values to a wider range using an inverse sigmoid function
y(x) = log x

β(1−x) , where β is a gradient slope factor. PCA/ICA is then applied
to this new range of values. Since the inverse sigmoid is not defined at 0 and
1, we map all intensities to the interval [ε, 1 − ε] for some value of ε and then
apply the inverse sigmoid before applying PCA and ICA. In our experiments, ε
is set to 0.001. The inverse sigmoid is used because the last nonlinear activation
function in the generator of the GAN architecture for this dataset is sigmoidal,
and therefore, we can match the intensities to the training data.

For the XGC dataset, the values are normalized numbers of particles in sim-
ulation which have a specific perpendicular and parallel velocity at a checkpoint.
These values are normalized by the mean and standard deviation of each image
separately (essentially a per image Z score). Because each image has a different
range, it impacts the choice of architecture and activation function in generative
models.

Generative Models Architecture. Figure 3 depicts the architecture of a
GAN for the XGC dataset. We used upsampling (conv2DTranspose) layers in
the generator with a linear activation function in the last layer to allow for the
range of generated images to be chosen freely for each image. This way, the gen-
erator is constrained to learn coefficients such that, after image reconstruction
(via the transformation matrix), the values follow an acceptable range that is
similar to the training set. The GAN architecture for Fashion is very similar to
XGC, except for the number of filters and the use of sigmoidal activation instead
of linear activation at the last layer of the generator.

The advantage of representation bases and dimensionality reduction is more
tangible in NFs because these models are computationally expensive: when
input/output dimensions are increased, the number of training parameters grows
rapidly. We considered four layer of bijectors and 50 additional nodes in the hid-
den layers of bijectors.

Dimensionality Reduction. Our goal is to learn the distribution of a subset of
coefficients as an efficient approach to data generation. The number of top eigen-
values and corresponding eigenvectors for each dataset was determined based on
the �2 distance between the training dataset and reconstructed images. For Fash-
ion MNIST, more coefficients were needed to meet a certain error threshold: 324
and 400 coefficients were chosen respectively for XGC and Fashion datasets. We
compare the performance of generative models in learning the distribution of a
subset of coefficients for each method via different measures. We observed that
for XGC, PCA, and ICA have similar performance across the board. For Fashion
however, ICA had better performance than PCA, and therefore, we only focused
on the performance of ICA-GAN for this dataset.

Hybrid Generative Models 631

Fig. 2. Fashion generated images via ICA-GAN (left) and pixel-GAN (right) at epoch
10 (upper row) and epoch 50 (lower row). Image samples are randomly drawn and not
cherry-picked. ICA-GAN generates plausible images close to the dataset from early
iterations, with much fewer artifacts in terms of shape and texture. Pixel-GAN takes
many more iterations to converge, with some images having artifacts.

Conv2DTrans
84@9*9

Conv2DTrans
84@18*18

Conv2D
1@18*18

Reshape
Input
Noise

Basis
matrix

1024*324

FC
layer Matrix

Multiplication
Reshape
to Image

32*32

Conv2D
64@16*16

Conv2D
64@8*8

 Input Image
32*32

Output

FC
layer

Flatten

Output

Fig. 3. The GAN architecture for the XGC
dataset; generator upper row and discrimi-
nator lower row. A subset of representation
bases is chosen.

Metrics. Many qualitative and
quantitative measures have been pro-
posed to evaluate generated images
and learned probability distributions
of generative models [4]. We con-
sider two conventional and widely-
used quantitative metrics—Frechet
inception distance (FID) and average
log-likelihood (entropy) of samples in
kernel density estimation (KDE) [9]
for evaluating the learned distribu-
tions and generated samples from dif-
ferent models. FID was proposed as a

632 H. Shajari et al.

statistical metric to measure the similarity between two distributions. First, by
running the Inception v3 net on real and generated images, high level features
(pool3 layer) are extracted as an embedding for images, and then a separate mul-
tivariate Gaussian distribution is fitted to real and generated embeddings. FID
does not seem to be a suitable metric for evaluating scientific dataset genera-
tion. The features extracted from a deep learning network trained on real images
which are perceptually meaningful to human vision are not necessarily appropri-
ate for scientific data (where perceptual quality is not used). Furthermore, FID
only provides a single scalar measure for the entire dataset and does not take the
actual likelihood of the training set or generated images into account. For these
reasons, we resort to metrics based on probability distributions and the likeli-
hood of generated samples with respect to a reference model. KDE directly fits
a probability density model to the generated images. We calculated the average
of the negative log-likelihood (NLL) i.e. entropy of images sampled from learned
distributions with respect to this reference density model (Table 1). However,
as mentioned above, it is much more efficient to learn probability distributions
in the space of a representation basis than in pixel space. These considerations
affect our choice as described below. As mentioned in Sect. 3, we consider a refer-
ence model which is essentially a GMM on DWT coefficients. This model serves
as a benchmark and is not used for generation or sampling. The number of coef-
ficients used is 3 × 256 and 3 × 324 coefficients for Fashion and XGC datasets,
respectively. To assess the learned density distributions via different models, we
use the average of NLL values of sampled images from learned distributions via
GANs, GMM, and NFs in the DWT-GMM space—essentially the DWT entropy.
Furthermore, we compute the �1 distance between the density curves obtained
via KDE of the NLL values of generated images in the DWT-GMM model (see
Figs. 4 and 5). Essentially, this distance is computed between the density curve
of each model and the density curve of the real dataset on the interval that
contains most of its density volume.

Results and Discussion. Experimental results for different combinations of
modeling and generative bases are provided in Table 1 for the two datasets.
These results show that ICA-GANs preserve the statistical properties of each
dataset despite higher FID scores compared to equivalent pixel-GANs. The very
high entropy of pixel-GAN for the XGC dataset shows that the learned distribu-
tion of data via pixel-GAN is far from the true distribution despite generating
images which are visually similar to the training set. This indicates that gen-
erating a scientific dataset in pixel space may not be a reasonable approach.
ICA-GAN (at epoch 50) had the best performance on the Fashion dataset which
is a curated dataset with images being approximately registered within classes.
Note that we cannot expect scientific data to be pre-registered. The better per-
formance of the pixel-GAN on Fashion compared to XGC is partly because
of the unified range of pixel intensities for Fashion allowing for the use of a
single sigmoid activation function which confines the generated pixel values
within [0, 1]. Overall, the results also show that GMMs with a representation

Hybrid Generative Models 633

Table 1. Image generative models using representation bases with dimensionality
reduction (324 and 400 coefficients: PCA, ICA, Tucker for XGC and Fashion datasets
respectively). Numbers 10 and 50 in the 4th column denote the learned distribution at
that epoch number. Metrics: DWT and KDE entropies (DWT-E and KDE-E respec-
tively), FID and the �1 distance (scaled by 10−2). For all metrics, lower is better.

Dataset Model Loss Target Dist. DWT-E KDE-E FID �1

XGC GAN ADV ICA −2, 239 −82 5.6 4.0

PCA −2, 261 −76 5.6 4.0

Tucker 25, 745 −33 13.9 5.0

Pixel 311, 895 207 2.8 5.0

NF MLE ICA 3, 241 477 6.0 4.8

Tucker 1, 682 1, 105 26 -

GMM MLE ICA −1, 096 39 5.5 4.3

Tucker −2, 474 −455 2.4 3.0

Fashion GAN ADV ICA 10 −2, 451 −453 4.9 2.7

ICA 50 −2, 550 −450 2.2 2.2

Pixel 10 −1, 576 −307 5.0 3.5

Pixel 50 −1, 841 −346 1.3 2.6

Tucker −1, 146 −333 2.2 4.4

NF MLE ICA −1, 078 −329 2.9 8.9

GMM MLE ICA −1, 033 −361 2.3 5.7

Tucker −2, 660 −480 21 2.6

basis (after preprocessing) are powerful generative models for two dimensional
datasets, regardless of whether the data arise from standard imagery or from
scientific simulation.

Figure 2 shows that with a reasonable and simple architecture of GANs for
learning the distribution of ICA coefficients of the Fashion dataset, it is possible
to generate plausible looking images which are mostly texture and shape artifact-
free from early iterations. Furthermore, Fig. 4 (and the �1 distance in Table 1)
also indicate that the generated images by ICA-GAN has the closest entropy to
the Fashion dataset in both DWT-GMM and KDE benchmark models among
deep generative models and representation bases. The pixel-GAN on the other
hand does not produce close-to-dataset images until later iterations (with an
identical discriminator) while many of the images have artifacts in terms of shape
and texture. From Fig. 5, it might seem that the GMM has a better performance
compared to the ICA-GAN for XGC data. However, it is important to note that
less than 2

3 of the ICA-GMM samples fall in the negative range of NLL while
ICA-GAN shows a more homogeneous behaviour and hence lower entropy.

634 H. Shajari et al.

Fig. 4. Fashion negative log-likelihood (NLL) density distributions in the DWT-GMM
benchmark model. For better demonstration, only samples with negative NLL are
plotted (data density concentration). ICA-GAN samples depict NLL values near NLL
of Fashion dataset.

Fig. 5. XGC negative log-likelihood (NLL) density distributions in the DWT-GMM
benchmark model. ICA-GMM seems to have better NLLs (lower entropy) however,
GANs perform better on average since ICA-GMM has only part of samples (7K out of
12K) in negative range.

6 Conclusions

We proposed a framework for fast and efficient image generation that combines
a representation basis approach with deep generative modeling. Our rationale
was that learning a basis for data which preserves the statistical structure and
correlation among image pixels can be a useful preprocessing step for the develop-
ment of generative models. Furthermore, representation bases can be deployed
for data compression during generation which is a boon for computationally
intensive generative modeling frameworks. Immediate future work will focus on
using over-complete dictionaries and coefficient compression within generative
modeling.

Acknowledgments. This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Advanced Scientific Computing Research, Scientific Dis-
covery through Advanced Computing (SciDAC) program under Award Number DE-
SC0021320.

Hybrid Generative Models 635

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

2. Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Gool, L.V.: Generative
adversarial networks for extreme learned image compression. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 221–231 (2019)

3. Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space
of generative networks. arXiv preprint arXiv:1707.05776 (2017)

4. Borji, A.: Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst.
179, 41–65 (2019)

5. Cole, M.D., et al.: Verification of the global gyrokinetic stellarator code XGC-S for
linear ion temperature gradient driven modes. Phys. Plasmas 26(8), 082501 (2019)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–22 (1977)

7. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv
preprint arXiv:1605.08803 (2016)

8. Gal, R., Cohen, D., Bermano, A., Cohen-Or, D.: SWAGAN: a style-based wavelet-
driven generative model. arXiv preprint arXiv:2102.06108 (2021)

9. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv:1406.2661 (2014)
10. Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.:

FFJORD: free-form continuous dynamics for scalable reversible generative models.
arXiv:1810.01367 (2018)

11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
arXiv preprint arXiv:1706.08500 (2017)

12. Hoshen, Y., Li, K., Malik, J.: Non-adversarial image synthesis with generative
latent nearest neighbors. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 5811–5819 (2019)

13. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component
analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

14. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applica-
tions. Neural Netw. 13(4–5), 411–430 (2000)

15. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent devel-
opments. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202
(2016)

16. Kang, B., Tripathi, S., Nguyen, T.Q.: Generating images in compressed domain
using generative adversarial networks. IEEE Access 8, 180977–180991 (2020)

17. Kingma, D.P., Dhariwal, P.: GLOW: generative flow with invertible 1 × 1 convo-
lutions. arXiv preprint arXiv:1807.03039 (2018)

18. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114
(2013)

19. Kobyzev, I., Prince, S., Brubaker, M.: Normalizing flows: an introduction and
review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

20. Li, K., Malik, J.: Implicit maximum likelihood estimation. arXiv:1809.09087 (2018)
21. Reynolds, D.A.: Gaussian mixture models. Encycl. Biometrics 741, 659–663 (2009)
22. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Inter-

national Conference on Machine Learning, pp. 1530–1538. PMLR (2015)

http://arxiv.org/abs/1707.05776
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/2102.06108
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1810.01367
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1807.03039
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1809.09087

636 H. Shajari et al.

23. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966)

24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

25. Xiao, Z., Yan, Q., Amit, Y.: Generative latent flow. arXiv preprint
arXiv:1905.10485 (2019)

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1905.10485

Towards Compressing Efficient
Generative Adversarial Networks
for Image Translation via Pruning

and Distilling

Luqi Gong, Chao Li(B), Hailong Hong, Hui Zhu, Tangwen Qian,
and Yongjun Xu

Institute of Computing Technology, Chinese Academy of Science, Beijing, China
{gongluqi,lichao,honghailong,zhuhui,qiantangwen,xyj}@ict.ac.cn

Abstract. Deploying GANs (Generative Adversarial Networks) for
Image Translation tasks on edge devices is plagued with the constraints of
storage and computation. Compared to some methods like neural archi-
tecture search (NAS), filter pruning is an effective DNN (Deep Neural
Network) compressing method. It can compressing DNNs in a short time.
The filter importance is measured by the filter norm, the filters with low
norm are pruned. As for image classification, the filter with larger norm
has larger influence on the final classification scores. However, as illus-
trated in Fig. 4, the filter with large norm don’t always have a big impact
on the quality of generated images for GANs. Based on the observation
that the filter close to the filters’ center in the same convolution layer
can be represented by others in [8], we develop a distance-based pruning
criterion. We prune the filters which are close to the filters’ center in
a convolution layer. KD (Knowledge distillation) trains the compressed
model and improves its performance. The most common KD method
ignores the transformation information across the feature maps, which is
important for GANs. We take them as additional knowledge and transfer
it from the uncompressed GAN to the pruned GAN. Our experiments on
CycleGan, Pix2pix, and GauGan achieved excellent performance. With-
out losing image quality, we obtain 51.68× and 36.20× compression on
parameters and MACs (Multiply-Accumulate Operations) respectively
on CycleGan. Our code (We will open source within one week after the
paper being received) will be made available at github.

Keywords: GAN Compression · Pruning · Knowledge distillation

1 Introduction

In recent years, GANs (Generative Adversarial Networks) [6] are frequently pre-
scribed for image generation, image translation, text generation and style trans-
fer. With the development of GANs for image translation tasks, their parameters
and MACs become very large. However, some applications require interaction
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12892, pp. 637–647, 2021.
https://doi.org/10.1007/978-3-030-86340-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86340-1_51&domain=pdf
https://doi.org/10.1007/978-3-030-86340-1_51

638 L. Gong et al.

with humans and demand low-latency on-device performance for better user
experience. Edge devices (VR headsets, mobile phones, tablets, etc.) are tightly
constrained by hardware resources. Deploying the GANs for image translation
tasks on edge devices is limited by the device memory and inference speed. As an
example, the frequently-used CycleGan [22] has 11.37M parameters and 56.83G
MACs, making it difficult to deploy directly on edge devices.

With the observation that DNNs have a large parameter redundancy, model
compression methods have been widely studied to reduce the number of param-
eters and MACs in neural networks. The most frequently used methods include
human-designed, neural architecture search (NAS) [4], pruning [7–9,13], and KD
(knowledge distillation) [15,17,18], etc. The above methods mainly compress the
model for image classification and object detection. However, the network archi-
tecture and principle of GANs are different from classical CNN models. As for
GAN compression, the human-designed method can not get rid of a large num-
ber of attempts. NAS consumes large computational complexity due to the huge
search space. However, the pruning method compresses model quickly with a
small amount of manual intervention.

Filter norm is mostly taken as the criterion for CNN model pruning meth-
ods known as the norm-based criterion. For the classification task, neurons with
larger activation contribute more to the final classification scores. This assump-
tion is not suitable for GANs because the GAN’s output is image instead of
classification score. Figure 4(b) verifies that the filter norm can’t represent the
filter importance for GANs. Existing CNN model pruning methods fine-tune the
model by conventional training to improve the model performance. This only
improve part of the compressed model’s performance, which is still far from
the uncompressed model. With the difficulty in restoring the performance of
compressed model to the uncompressed by direct training, KD is proved to be
an effective fine-tuning method for GAN in [14,19]. [14,19] transfer the uncom-
pressed GAN’s knowledge to the compressed GAN. This way is also performance
limited as they simply make the compressed GAN to mimic the feature maps
of the uncompressed GAN. However, mimicking the generated features of the
uncompressed GAN is only a hard constraint in these works. How the output
images are generated layer by layer from the input is very important implicit
information for GANs. These works ignore transferring this kind of transforma-
tion information.

To address the problems mentioned above, we introduce a general GAN com-
pression framework consisting of distance-based filter pruning and KD guided by
transformation information across feature maps in different layers. In our GAN
pruning method, we calculate the filter center in a convolutional or deconvolu-
tional layer. Then the filters whose distance to the filter center less than the thresh-
old are removed. The rest of the filters can achieve the same feature extraction
effect as all the filters because the removed filters are deemed to be represented by
other filters. Our pruning method is used for compressing a small GAN architec-
ture. After that, the KD is applied to fine-tuning the pruned GAN. We regard the
transformation information across the feature maps as the knowledge and transfer

Towards Compressing Efficient Generative Adversarial Networks 639

it from the uncompressed GAN to the compressed GAN. This kind of knowledge
can guide compressed GAN to learn how to generate feature maps and output
images layer by layer.

In summary, the contributions of our paper are summarized as follows:

– Pruning: We propose a filter distance-based pruning method for compressing
efficient GANs. It can correctly measure the importance of the convolutional
and deconolutional filters in GANs.

– Distillation: In order to restore the quality of the images generated from
the GANs after pruning, the feature maps and their transformation informa-
tion are transferred from the original GAN to the pruned GAN. We run the
Pruning-Distillation process iteratively.

– We evaluate our proposed method on three image translation models trained
on four benchmark datasets. We got 51.68× and 36.20× compression on
parameters and MACs respectively without performance dropping for Cycle-
Gan. We compressed the Pix2pix parameters by 22.31×, MACs by 12.46× at
most. The GauGan got 16.49× parameter compression from 93.0M to 5.64M,
meanwhile, the MACs were dropped from 281G to 25.63G with a slight per-
formance decrease.

The rest of the paper is organized as follow. In Sect. 2, we introduce related
methods of GAN compressing, including stacking human-designed modules,
pruning, neural architecture search, and knowledge distillation. Then our pro-
posed method are detailed in Sect. 3. We conduct comparative experiments and
perform extensive analysis of experimental results in Sect. 4. Finally, we conclude
our paper in Sect. 5.

2 Related Work

Generally, existing methods compress a meticulous model architecture with
high performance by stacking human-designed CNN modules, pruning the over-
parameterized network, or neural architecture search. After that, they promote
the compressed network’s performance by training or KD.

Stacking Human-Designed Modules. ShuffleNet [21], SqueezeNet [11], and
MobileNet [10] compress the model by using the efficient modules designed man-
ually. They stack the well-designed modules to get an efficient CNN network
easily in this way. But they need to design the whole architecture including the
number of layer and filter.

Pruning. Pruning methods remove the redundant connections or convolution
filters. As for connection pruning, it leads to sparse networks. This needs specific
hardware or acceleration library for deployment. Filter pruning methods are
widely used in compressing meticulous CNN model. The most common criterion
to calculate the filter importance is the filter norm. [20] compresses GANs by

640 L. Gong et al.

pruning filters with low filter norm. This criterion is effective for the classical
CNN model because neurons with larger activation contribute more to the final
classification scores. However, GANs have different kind of modules such as the
deconvolutional layer. They are used for image generation whose outputs are
images instead of classification scores.

Neural Architecture Search. NAS has been applied to design networks that
are on par or outperform hand-designed architectures. Methods for NAS can be
categorized according to the search space, search strategy, and performance esti-
mation strategy used. [19] compresses GANs by developing a co-evolutionary
approach. Generators for two image domains are encoded as two populations
and synergistically optimized for investigating the most important convolution
filters iteratively, obtaining portable architectures of satisfactory performance.
However, this method is designed for specific GANs. GANs compressed by this
method generate images with a poor performance. With the increase of compres-
sion ratio, the metric (FID) drops severely. [5,14] introduce neural architecture
search (NAS) to GAN compression, and transfer knowledge of multiple inter-
mediate representations from the original model to its compressed model. The
large search space leads to big computing resource consumption which is hard
to use in industry.

KD (Knowledge Distillation). KD is used to improve the performance of
compressed model. It extracts the feature maps or outputs and transfers them
from the uncompressed model to the compressed model, aligning them two by
loss function. This method is proven to be effective for GAN compression in
[1,2,5,20], but the insufficiency of knowledge makes the compressed GAN diffi-
cult to restore the performance to the uncompressed model. They simply trans-
fer feature maps from the predesigned student GAN to the teacher GAN. Their
success also depends on the appropriate design of student network architectures.
[1,2] require us to design the compressed GAN’s architecture including the num-
ber of layer and filter manually. However, setting a GAN architecture with an
accurate model capacity is difficult in a trial-and-error fashion.

3 Method

Our method consists of convolution kernel pruning and KD illustrated in Fig. 1.
For one step, we prune the GAN model according to a certain step compression
ratio which means the pruning ratio for this step. Then KD is applied to the
pruned GAN. We run the Pruning-KD step iteratively until the accumulated
pruning ratio reaches the target pruning ratio or KD can’t restore the perfor-
mance of the pruned GAN.

3.1 Notations

Formally, we introduce symbols and notations in this subsection. We assume
that a GAN network has L layers. Input and output channels are represented

Towards Compressing Efficient Generative Adversarial Networks 641

as Ni and Ni+1 respectively for the ith convolutional or deconvolutional layer.
Wi,j ∈ R

Ni×K×K , i ∈ [1, L], j ∈ [1, Ni+1] represents the jth filter of the ith layer,
where K is the kernel size. We regard F i ∈ R

Ni+1×w×h as the output feature
maps of the ith layer, where w and h are the width and height, respectively. f
and fstep are the target and step compression ratio, respectively. G and G

′ are
the generators for uncompressed GAN and compressed GAN. Their outputs are
G(x) and G′(x).

3.2 Filter Distance-Based Pruning Method

Fig. 1. The whole pipeline
of our method. f means the
target compression ratio

Fig. 2. The filter distance-based pruning
method for compressing GANs

As showed in [14,20], some filters are redundant due to their representation
ability can be achieved by other filters. Thus these filters can be pruned. After
pruning, the rest filters can play the same role and get the same performance in
feature extraction as all filters remained.

As illustrated in Fig. 2, We take one pruning step as an example. We calculate
the filter center W∗

i for the filters Wi = [Wi,1,Wi,2, ...,W i,Ni+1
] in the ith

layer, i.e.,
W∗

i = arg minx∈RNi×K×K

∑

j∈[1,Ni+1]

||x − Wi,j ||2. (1)

The distances between the filters Wi and their center W∗
i are used to measure

the importance of filters. They are calculated as d = [d1, d2, ..., dNi+1] where

dj = ||Wi,j − W∗
i ||22. (2)

Top(d, N) is a function that can get the top N values in d. It returns an ordered
decreasing list whose length is N . This operation can evaluate and sort the
filter importance. We note the last value in d as the threshold th by Eq. 3. The

642 L. Gong et al.

Fig. 3. Our KD loss consists of three parts: regular KD loss, paired learning KD loss,
novel KD loss guided by the transformation information

threshold’s index is N − 1. For one step, we set N = (1 − fstep) × Ni+1. This
achieves pruning the filters in the ratio of fstep.

th = Top(d, N)[N − 1]. (3)

Finally, we remove the filters in the ith layer whose distance to the center W∗
i

is less than the threshold th. The pruned generator for this pruning step are
parameterized with the remaining filters W ′

i = [W ′
i,1,W ′

i,2, ...,W ′
i,fs t e p ×Ni+1

].
We replace the original convolutional filters Wi with the pruned convolutional
filters W ′

i ∈ R
fstep·Ni×K×K . The filters and their parameters are pruned to the

ratio (1 − fstep) of the original.
We run the pruning step some times until the cumulative compression ratio

reaches the target compression ratio f .

3.3 Fine-Tune Compressed GAN via KD

As illustrated in Fig. 3, we introduce transformation information into KD loss as
the additional supervised information. The transformation information can be
defined by the relationship between two intermediate feature maps. The inter-
mediate feature maps are from two different layers in GAN. This kind of rela-
tionship can be represented as the inner product of these two vectors’ directions.
The vectors are flatten from the feature maps of two different layers.

For a GAN framework, assuming F i ∈ R
Ni+1×w×h and F j ∈ R

Nj+1×w×h are
the feature maps for the ith and jth layer, respectively, where Ni+1 and Nj+1

are the number of output channels for the ith and jth layer, and Ni+1 = Nj+1.
F i,m,n ∈ R

Ni+1 and F j,m,n ∈ R
Nj+1 are the (·,m, n) entries of F i and F j .

Then, the transformation information matrix M ∈ R
Ni+1×Nj+1 is calculated by

M =
w∑

m=1

h∑

n=1

F i,m,n × FT
j,m,n

w × h
. (4)

Towards Compressing Efficient Generative Adversarial Networks 643

For a GAN compression task, we can assume that there are N transformation
information matrices denoted as MT

i , i ∈ [1, N], which are generated by the
uncompressed GAN, and N transformation information matrices denoted as
MS

i , i ∈ [1, N], which are generated by the compressed GAN. For each pair of
matrices between the teacher and student GANs (MT

i ,MS
i), i ∈ [1, N] with the

same spatial size, we align them by the l2 norm where

LT =
N∑

i=1

||MT
i − MS

i ||22. (5)

We also consider the loss of KD proposed in [14] as LF . In the same way, we
transfer the information of the feature maps FT

j , j ∈ [1,M] in the uncompressed
GAN to the feature maps FS

j , j ∈ [1,M] in the compressed GAN by

LF =
M∑

j=1

||FS
j − FT

j ||22. (6)

Paired image translation task consists of examples {xi, yi}Ni=1, where the cor-
respondence between xi and yi exists. Unpaired doesn’t have this kind of cor-
respondence. For the unpaired image translation task, we can view the uncom-
pressed generator’s output G(x) as ground-truth and train our compressed gen-
erator G′ with an objective Lrec. For the paired setting, we train our compressed
generator G

′ with ground-truth y. This objective is formalized as:

Lrec =

{
Ex,y||G(x) − y||22 if paried GANs,
Ex||G(x) − G′(x)||22 if unpaired GANs.

(7)

The final loss is a multi-objective loss as showed in Eq. 8 where α1, α2, α3 are
the coefficients, LGAN is the original loss for adversarial training.

L = LT + α1LF + α2Lrec + α3LGAN . (8)

4 Experiments

4.1 Experimental Settings

Models. CycleGan [22] is an unpaired Image-to-Image translation model. It
transforms the image from a source domain to a target domain. Pix2Pix [12] is
used for supervising Image-to-Image translation. U-Net is the backbone of its
generator which can better retain the pixel-level detail at different resolutions.
GauGan [16] proposed a spatially-adaptive normalization method which can
better protect semantic details.

Datasets. Cityscapes has 5000 images of driving scenes in 50 cities. Horse ←→
Zebra collects 1187 horse images and 1474 zebra images from ImageNet. Edges
−→ Shoes consists of 50025 images from UTZappos. Map ←→ Aerial has 2194
images downloaded from the Google map.

644 L. Gong et al.

Experimental Evaluation Metrics. Frechet Inception Distance (FID) [3]
uses the 2048-dimensional activations from the Inception intermediate layer.
Then it models the activations from the real and generated images using the
multivariate Gaussian distribution with mean μ and covariance σ. These statis-
tics are then used for calculating the FID. The Lower FID is better.

Implementation Details. We first train a generator from scratch, then we
prune it with the step compression ratio 5% and fine-tune it by our KD method.
We carry out the pruning-distillation step above iteratively until the performance
of the compressed GAN can’t restore to the uncompressed GAN or the total
compression ratio reaches the pre-set target compression ratio. For the Pix2pix
and CycleGan, we use 0.0002 as the learning rate through the training procedure.
The batch size is 1 for Cityscapes, Map ←→ Aerial, and Horse ←→ Zebra as well
as 4 for Edges −→ Shoes, 16 for GauGan. We adopt the Adam optimizer, keeping
the learning rate constant before it linearly decays from the initial learning rate
to 0. We set constant epoch as 100 while decay epoch is 100, 200, 300, or 400
depending on different datasets. Epoch set for compression is the same as from-
scratch training. We use the generator with the best evaluation performance
during training. We adjust α1, α2, α3 to ensure the three loss items are in the
same order of magnitude.

4.2 Detailed Compression Results

Table 1. Experiment results on Pix2pix,GauGan, CycleGan

Model Dataset Method Parameters MACs mAP/FID

Pix2pix cityscaps Original 11.38M 56.80G 35.62

Li et al. [14] 0.71M(16.02×) 5.66G(10.04×) 29.27

Ours 0.58M(19.62×) 3.69G(15.4×) 35.03

edges→shoes Original 11.38M 56.8G 24.18

Li et al. [14] 0.70M(16.25×) 4.81G(11.81×) 26.60

Ours 0.51M(22.31×) 4.56G(12.46×) 25.96

map→arial photo Original 11.38M 56.8G 47.76

Li et al. [14] 0.75M(15.17×) 4.68G(12.14×) 48.02

Ours 0.51M(22.31×) 4.56G(12.46×) 47.32

GauGan cityscaps Original 93.00M 281.00G 58.89

Li et al. [14] 20.40M(4.56×) 31.72G(8.86×) 56.75

Ours 5.64M(16.49×) 25.63G(10.96×) 54.40

CycleGan horse→zebra Original 11.37M 56.83G 61.53

Shu et al. [19] – 13.40G(4.24×) 96.15

Fu et al. [5] 0.98M(11.60×) 6.39G(8.89×) 83.60

Li et al. [14] 0.34M(33.44×) 2.67G(21.28×) 64.95

Ours 0.22M(51.68×) 1.57G(36.20×) 60.49

Towards Compressing Efficient Generative Adversarial Networks 645

As shown in the Table 1, our method obtained better model performance and
compression ratio.

For CycleGan compressed on horse −→ zebra dataset, we achieved 51.68×
compression on parameters and 36.20× compression on MACs. It is worth men-
tioning that, different from other methods [14,19], our method compressed the
CycleGan without FID decreases.

For Pix2pix, we conducted experiments on three datasets. The mAP in
Cityscapes drops only 0.1 with a compression ratio of 19.62×. For Map ←→
Aerial and Edges −→ Shoes, we compress their model size by 22.31×, MACs by
12.46×.

GauGan is hard to be compressed in [14] which compressed it 4.56×. We
compressed it 16.49× from 93.00M to 5.64M on parameters, 11× from 281.00G
to 25.63G on MACs with small FID decrease.

4.3 Ablation Study

Table 2. Ablation Study For KD: Train, KD, and Ours mean fine-tuning the com-
pressed GAN by normal training, the method in [14], and our KD method, respectively.

Model Datast FID

Train KD Ours

CycleGan horse→zebra 67.721 63.5 60.488

Pix2pix edges→shoes 27.37 27.46 25.96

The Effectiveness of Our Pruning Method. As illustrated in Fig. 4(b), we
calculate the distances between some filters in GAN’s certain layer and their filter
center, we remove each of them. Then the normal training is applied to them as a
fine-tuning process. Experiments show if we remove the filter with a large distance
to the filter center, the GAN’s performance is difficult to restore to the original
GAN. This is because the filters far away from the filter center can’t be represented
by other filters. Such filters should not be removed. The Fig. 4(a) shows that the
FID after pruning and fine-tuning is not clearly affected by the L1 norm of the
filters, which indicates the norm-based pruning method is not suitable for GANs.

The Advantage of our KD Method. Table 2 shows that if we fine-tune the gen-
erator after pruning with the normal training method, the generator can’t recov-
ery to the original uncompressed performance. When we apply the KD method in
[14], it can get a better generator while our KD method achieves the best results.

Influence of Step Compression Ratio in Our Experiment Setting. We
set the step compression ratio to 3%, 5%, 7%, and 10% showed in Table 3. The
FID fluctuation along with the different step compression ratio is less than 3,
which means the performance of pruning is not sensitive to this parameter.

646 L. Gong et al.

(a) L1 norm Pruning Criterion (b) Our pruning Criterion

Fig. 4. The effectiveness of our pruning method

Table 3. Influence of step compression ratio

Step compression ratio 3% 5% 7% 10%

FID 60.20 60.49 62.87 60.45

5 Conclusion

In our work, we propose a general GAN compression framework. We apply a
filter distance-based pruning method to design a small GAN architecture and
use the KD method guided by transformation information across the feature
maps to improve its image generation ability. Experimental results on different
datasets and models showed that our method compresses GANs to a smaller size
than other methods with minimal model performance dropping.

References

1. Aguinaldo, A., Chiang, P.Y., Gain, A., Patil, A., Pearson, K., Feizi, S.: Compressing
GANs using knowledge distillation. arXiv preprint arXiv:1902.00159 (2019)

2. Chen, H., et al.: Distilling portable generative adversarial networks for image trans-
lation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 3585–3592, April 2020. https://doi.org/10.1609/aaai.v34i04.5765

3. Dowson, D., Landau, B.: The fréchet distance between multivariate normal distri-
butions. J. Multivar. Anal. 12(3), 450–455 (1982)

4. Enzo, L.-A., Eduardo, L., Vasty, Z., Claudia, R., John, M.: Neural architecture
search with reinforcement learning. Intelligence of the Total Environment (2019)

5. Fu, Y., Chen, W., Wang, H., Li, H., Lin, Y., Wang, Z.: AutoGAN-distiller: search-
ing to compress generative adversarial networks. In: International Conference on
Machine Learning, pp. 3292–3303. PMLR (2020)

6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

7. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

http://arxiv.org/abs/1902.00159
https://doi.org/10.1609/aaai.v34i04.5765

Towards Compressing Efficient Generative Adversarial Networks 647

8. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)

9. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural net-
works. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1389–1397 (2017)

10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications (2017)

11. Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5mb model
size (2016)

12. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5967–5976 (2017). https://doi.org/10.1109/
CVPR.2017.632

13. Lee, N., Ajanthan, T., Torr, P.: Snip: single-shot network pruning based on connec-
tion sensitivity. In: International Conference on Learning Representations (2019)

14. Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.Y., Han, S.: Gan compression: efficient
architectures for interactive conditional GANs. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5284–5294 (2020)

15. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh,
H.: Improved knowledge distillation via teacher assistant. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 34, pp. 5191–5198 (2020)

16. Park, T., Liu, M., Wang, T., Zhu, J.: Semantic image synthesis with spatially-
adaptive normalization. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2332–2341 (2019). https://doi.org/10.1109/
CVPR.2019.00244

17. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Bengio, Y.: FitNets: hints for
thin deep nets. In: ICLR (2015)

18. Sau, B., Balasubramanian, V.: Deep model compression: Distilling knowledge from
noisy teachers (2016)

19. Shu, H., et al.: Co-evolutionary compression for unpaired image translation. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 3235–
3244 (2019)

20. Wang, H., Gui, S., Yang, H., Liu, J., Wang, Z.: GAN slimming: all-in-one GAN
compression by a unified optimization framework. In: Vedaldi, A., Bischof, H.,
Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 54–73. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58548-8 4

21. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

22. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.
2017.244

https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2019.00244
https://doi.org/10.1109/CVPR.2019.00244
https://doi.org/10.1007/978-3-030-58548-8_4
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244

Author Index

Abawi, Fares 409
Ahmad, Adeel 472
Ahrens, Kyra 409
Aldausari, Nuha 599
Ambita, Ara Abigail E. 587
Arsalan, Muhammad 500

Bacaicoa-Barber, Daniel 332
Badue, Claudine 28
Banerjee, Shilpak 260
Benavides-Prado, Diana 397
Bennis, Achraf 185
Biswas, Koushik 260
Boquio, Eujene Nikka V. 587
Bouneffa, Mourad 472
Bourguin, Grégory 472
Butz, Martin V. 525
Byttner, Wolf 133

Cai, Bin 53
Cai, Hongmin 307
Cai, Yu 92
Caillon, Paul 222
Cao, Lihong 118
Cerisara, Christophe 222
Chan, Philip K. 319
Chang, Hao-Yuan 170
Chen, Junliang 3
Chen, Wenjie 118
Chen, Xiaowen 145
Chen, Zheng 537
Chen, Zhiyi 421
Chmurski, Mateusz 500
Cid-Sueiro, Jesús 332
Correia-Silva, Jacson R. 28
Crick, Christopher 447

Dan, Tingting 307
de Moraes, Jairo Lucas 28
de Oliveira Neto, Jorcy 28
De Souza, Alberto F. 28
Ding, Yinzhang 92

Fabi, Sarah 525
Feldager, Cilie W. 435
Feng, Zunlei 80
Friedjungová, Magda 235, 575

Goel, Anmol 157
Gong, Luqi 637
Goyal, Nidhi 157
Gripon, Vincent 487

Halama, Tomáš 575
Han, Ya-nan 347
Han, Yi 372
Hansen, Lars Kai 435
Harmeling, Stefan 295
Hauberg, Søren 435
Hoffmann, Tobias 295
Hong, Hailong 637
Hu, Yuqing 487
Huang, Yuan 15

Issakov, Vadim 500

Jia, Jingyun 319
Jiang, Ning 611
Jin, Peiquan 512
Jodelet, Quentin 385

Kalra, Jushaan Singh 157
Karunasekera, Shanika 372
Kimura, Masanari 275
Kong, Dehui 67
Kordík, Pavel 235
Kovalenko, Alexander 235
Krumnack, Ulf 133
Kumar, Sandeep 260
Kumaraguru, Ponnurangam 157

Lamberti, Fabrizio 40
Leckie, Christopher 372
Lee, Jaemoon 623
Lei, Jie 80
Lewandowski, Arnaud 472

650 Author Index

Li, Chao 637
Li, Dongxiao 92
Li, Jinghua 67
Li, Siyuan 611
Li, Tong 80
Li, Xuanfu 92
Li, Yueqin 209
Liang, Ronghua 80
Lim, Nengli 209
Lin, Tong 421
Liu, Baodi 551
Liu, Caixia 67
Liu, Changsheng 15
Liu, Jian-wei 347
Liu, Weifeng 551
Liu, Xin 385
Liu, Zhao 80
Lu, Jianzhuang 145
Lu, Weizeng 3
Lu, Xiaoping 551
Luo, Xiong-lin 347

Manigrasso, Francesco 40
Marcus, Nadine 599
Marzban, Reza 447
Mauro, Gianfranco 500
Miro, Filomeno Davide 40
Mohammadi, Gelareh 599
Morra, Lia 40
Mouysset, Sandrine 185
Mu, Yadong 15
Murakawa, Masahiro 287
Murata, Tsuyoshi 385
Mutschler, Maximus 459

Naval Jr., Prospero C. 587
Nie, Liang 611

Oliveira-Santos, Thiago 28
Otte, Sebastian 525

Paixão, Thiago M. 28
Pandey, Ashish Kumar 260
Pateux, Stéphane 487
Peng, Xuyang 551
Perello-Nieto, Miquel 332
Perrin-Gilbert, Nicolas 197
Pierrot, Thomas 197

Qian, Tangwen 637

Ran, Shuang 118
Rangarajan, Anand 623
Ranka, Sanjay 623
Richter, Mats L. 133
Rong, Wentao 307

Sachdeva, Niharika 157
Sang, Jun 53
Sang, Nong 53
Santos-Rodríguez, Raúl 332
Schallner, Ludwig 133
Serrurier, Mathieu 185
Shajari, Hoda 623
Shen, Linlin 3
Shenk, Justin 133
Shi, Ying 53
Sigaud, Olivier 197
Sowmya, Arcot 599
Swain, Akshya 397

Tan, HuoBin 248
Tan, Jinghan 53
Tang, Xiaotian 92
Tao, Guihua 307

Uelwer, Tobias 295

Vašata, Daniel 575

Wan, Shouhong 512
Wang, Kang L. 170
Wang, Shaofan 67
Wang, Tian 118
Wang, Xin 512
Wang, Xin-Tan 347
Wang, YongGuang 248
Wang, Zhi 106, 359
Wanigasekara, Chathura 397
Weng, Wanlin 307
Wermter, Stefan 409
Wiedenroth, Anna 133
Wu, Xin 359
Wu, Yu 359
Wu, Zhongyuan 53

Xiao, Bing-biao 347
Xie, Hongyang 92
Xu, Juan 80
Xu, Yongjun 637

Author Index 651

Yamaguchi, Takumi 287
Yao, ShuZhen 248
Yin, Baocai 67
Yu, Wenxin 611
Yu, Xiaoming 15

Zell, Andreas 459
Zhang, Bin 307
Zhang, Kai 551
Zhang, Kaifeng 563
Zhang, Ming 92
Zhang, Wenjie 106

Zhang, Xuewen 611
Zhang, Yan 359
Zhang, Yunchen 537
Zhang, Zhiqiang 611
Zhao, Jian 359
Zhao, Yuekai 145
Zheng, Zhuolin 92
Zhou, Yicong 551
Zhu, Hui 637
Zou, Zeyu 80
Zubert, Mariusz 500

	Preface
	Organization
	Contents – Part II
	Computer Vision and Object Detection
	Selective Multi-scale Learning for Object Detection
	1 Introduction
	2 Related Work
	3 Selective Multi-scale Learning
	3.1 Network Architecture

	4 Experiments
	4.1 Dataset and Evaluation Metrics
	4.2 Implementation Details
	4.3 Ablation Study
	4.4 Application in Pyramid Architectures
	4.5 Application in Two-Stage Detectors
	4.6 Comparisons with Mainstream Methods

	5 Conclusions
	References

	DRENet: Giving Full Scope to Detection and Regression-Based Estimation for Video Crowd Counting
	1 Introduction
	2 Related Works
	3 Crowd Counting by DRENet
	3.1 Problem Formulation
	3.2 Network Architecture

	4 Experimental Results
	4.1 The Mall Dataset
	4.2 The UCSD Dataset

	5 The FDST Dataset
	5.1 Effects of Different Components in the DRENet

	6 Conclusion
	References

	Sisfrutos Papaya: A Dataset for Detection and Classification of Diseases in Papaya
	1 Introduction
	2 Related Works
	3 The Sisfrutos Papaya DataSet
	3.1 Image Acquisition
	3.2 Specification of Images and Annotations

	4 Methodology
	4.1 Detection Model
	4.2 Sub Dataset
	4.3 Hardware Specification

	5 Results and Discussion
	6 Conclusion and Future Works
	References

	Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture
	1 Introduction
	2 Related Work
	3 The Faster-LTN Architecture
	3.1 Faster R-CNN
	3.2 Logic Tensor Network
	3.3 LTN for Object Detection
	3.4 Faster-LTN

	4 Experiments
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion and Future Works
	References

	GC-MRNet: Gated Cascade Multi-stage Regression Network for Crowd Counting
	1 Introduction
	2 Related Work
	2.1 Detection-Based Approaches
	2.2 Counts Regression-Based Approaches
	2.3 Density Map-Based Approaches

	3 Our Approach
	3.1 Architecture of GC-MRNet
	3.2 Backbone Network
	3.3 Gated Cascade Module
	3.4 Loss Function

	4 Implementation Details
	4.1 Ground Truth Density Map
	4.2 Training Details
	4.3 Evaluation Metrics

	5 Experiments
	5.1 Datasets
	5.2 Ablation Study on ShanghaiTech Part A
	5.3 Comparisons with State-of-the-Art

	6 Conclusion
	References

	Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View
	1 Introduction
	2 Related Work
	2.1 Single-View 3D Completion
	2.2 3D Shape Representation

	3 Proposed Method
	3.1 Overview
	3.2 Network Architecture
	3.3 Loss Functions

	4 Experimental Results and Analysis
	4.1 Comparisons with Existing Methods
	4.2 Ablation Study

	5 Conclusion
	References

	Facial Expression Recognition by Expression-Specific Representation Swapping
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Paired Face Images
	3.2 Facial Representation Learning
	3.3 Expression-Specific Representation Swapping
	3.4 Auxiliary Face Comparison Block
	3.5 Complete Algorithm

	4 Experiments
	4.1 Datasets and Setting
	4.2 Results
	4.3 Ablation Study

	5 Conclusion
	References

	Iterative Error Removal for Time-of-Flight Depth Imaging
	1 Introduction
	2 Method
	2.1 Formulating for ToF Depth Imaging
	2.2 Input and Output Defining
	2.3 Proposed Iterative CNN

	3 Datasets
	3.1 Synthetic Dataset
	3.2 Real-World Dataset

	4 Experiments
	4.1 Error Removal
	4.2 Compared to State-of-the-Art Methods

	5 Conclusion and Future Work
	References

	Blurred Image Recognition: A Joint Motion Deblurring and Classification Loss-Aware Approach
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Works
	2.1 Image Classification
	2.2 Single Image Motion Deblurring

	3 Methods
	3.1 Task Formulation
	3.2 Recognition Loss
	3.3 Joint Training Framework
	3.4 Parameterized Shortcut Connection

	4 Experiments
	4.1 Dataset
	4.2 Baselines and Ablation Groups
	4.3 Implementation
	4.4 Experimental Results

	5 Conclusion
	References

	Learning How to Zoom In: Weakly Supervised ROI-Based-DAM for Fine-Grained Visual Classification
	1 Introduction
	2 Related Work
	2.1 Fine-Grained Visual Classification
	2.2 Data Augmentation

	3 Methodology
	3.1 Saliency Map Generation
	3.2 Template ROI Localization
	3.3 Selective Sampling
	3.4 Multi-scale ROI-based Cropping
	3.5 Testing Strategy Based on ROI-Based-DAM

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Numerical Results
	4.4 Ablation Study
	4.5 Qualitative Results

	5 Conclusion
	References

	Convolutional Neural Networks and Kernel Methods
	(Input) Size Matters for CNN Classifiers
	1 Introduction
	2 Background
	2.1 Fully Convolutional Networks
	2.2 Probe Classifiers, Saturation and Tail Patterns
	2.3 Receptive Field Size
	2.4 Methodology

	3 Experiments
	3.1 Image Size Affects Model Performance Even with No Additional Detail
	3.2 Input Size Affects the Inference Process of the CNN
	3.3 The Role of the Size of Discriminatory Features in the Relation of Model and Input Resolution
	3.4 The Role of the Receptive Field in Relation to the Object Size
	3.5 The Role of Residual Connections

	4 Implications on Neural Architecture Design
	5 Conclusion
	References

	Accelerating Depthwise Separable Convolutions with Vector Processor
	1 Introduction
	2 Related Work
	3 Algorithm Mapping
	3.1 Architecture of Vector Processor
	3.2 Data Distribution and Optimization on Multi-core DSP
	3.3 Depthwise Convolution Mapping on Single-Core DSP
	3.4 Pointwise Convolution Mapping on Single-Core DSP

	4 Experiments and Evaluation
	4.1 Performance Analysis of Depthwise Convolution
	4.2 Performance Analysis of Pointwise Convolution
	4.3 Overall Performance Evaluation

	5 Conclusion
	References

	KCNet: Kernel-Based Canonicalization Network for Entities in Recruitment Domain
	1 Introduction
	2 Related Works
	3 Kernel-Based Canonicalization Network (KCNet)
	3.1 Problem Definition
	3.2 Network Architecture

	4 Datasets
	4.1 Dataset Description
	4.2 Side Information Collection

	5 Experimental Setup
	6 Results and Discussion
	7 Conclusion
	References

	Deep Unitary Convolutional Neural Networks
	1 Introduction
	1.1 Problem Statement
	1.2 Proposed Solution
	1.3 Literature Review

	2 Unitary Neural Networks with Lie Algebra
	2.1 Square Unitary Weight Matrices
	2.2 Unitary Weight Matrices of Any Shapes and Dimensions

	3 Experiments
	3.1 Network Architecture
	3.2 Dataset
	3.3 Training Details
	3.4 Caching of the Unitary Weights

	4 Results and Discussion
	5 Conclusion
	References

	Deep Learning and Optimization I
	DPWTE: A Deep Learning Approach to Survival Analysis Using a Parsimonious Mixture of Weibull Distributions
	1 Introduction
	2 Related Work
	3 Background
	3.1 Survival Analysis
	3.2 Mixture Weibull Distributions Estimation

	4 Deep Parsimonious Weibull Time-to-Event Model
	4.1 Description
	4.2 Sparse Weibull Mixture Layer
	4.3 Post-Training Steps: Selection of Weibull Distributions to Combine for Time-to-Event Modeling
	4.4 Loss Function

	5 Experiments on Real-World Datasets
	5.1 Description of the Real-World Datasets
	5.2 Experimental Setting
	5.3 Results
	5.4 Censoring Threshold Sensitivity Experiment

	6 Conclusion
	References

	First-Order and Second-Order Variants of the Gradient Descent in a Unified Framework
	1 Introduction
	2 Problem Statement and Notations
	3 Vanilla, Classical Gauss-Newton and Natural Gradient Descent
	3.1 Vanilla Gradient Descent
	3.2 Classical Gauss-Newton
	3.3 Natural Gradient

	4 Gradient Covariance Matrix, Newton's Method and Generalized Gauss-Newton
	4.1 Gradient Covariance Matrix
	4.2 Newton's Method
	4.3 Generalized Gauss-Newton

	5 Summary and Conclusion
	References

	Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search
	1 Introduction
	2 Preliminaries
	2.1 Monte-Carlo Tree Search
	2.2 Bayesian Optimization with a Gaussian Process Prior

	3 Methods
	3.1 Monotone MCTS
	3.2 Softmax MCTS

	4 Experiments
	4.1 Monotone MCTS and Softmax MCTS

	5 Discussion and Future Work
	References

	Growing Neural Networks Achieve Flatter Minima
	1 Introduction
	2 Related Work
	3 Model Description
	3.1 Notations
	3.2 Model Presentation

	4 Experimental Results
	4.1 Experiments with Small Models
	4.2 Growing RoBERTa's Classification Head

	5 Discussion
	6 Conclusion and Future Work
	References

	Dynamic Neural Diversification: Path to Computationally Sustainable Neural Networks
	1 Introduction
	2 Our Approach
	3 Experiments
	4 Results and Discussion
	4.1 Evolving Diversity and Symmetry Breaking
	4.2 Negative Correlation Learning
	4.3 Pairwise Cosine Similarity Diversification
	4.4 Reaching Linear Complexity
	4.5 Iterative Diversified Weight Initialization

	5 Conclusion
	References

	Curved SDE-Net Leads to Better Generalization for Uncertainty Estimates of DNNs
	1 Introduction
	2 Describing Ensembled SDE-Net by Bezier Curve
	2.1 Connection Curves: Bezier Curve
	2.2 Definition of SDE-Net

	3 Methods
	3.1 The Objective Function of CSDE-Net
	3.2 Algorithm of CSDE-Net Model

	4 Experiments
	4.1 Datasets
	4.2 Parameter Setting
	4.3 Quantitative Analysis of ID Dataset
	4.4 Bezier Curve Finding Experiment
	4.5 Quantitative Analysis of ID Dataset with Missing Rate

	5 Discussion and Further Work
	References

	EIS - Efficient and Trainable Activation Functions for Better Accuracy and Performance
	1 Introduction
	2 Related Works
	3 EIS-1, EIS-2, and EIS-3
	4 Experiments with EIS-1, EIS-2, and EIS-3
	4.1 Image Classification:
	4.2 Object Detection
	4.3 Semantic Segmentation
	4.4 Machine Translation
	4.5 Computational Time Comparison

	5 Conclusion
	References

	Deep Learning and Optimization II
	Why Mixup Improves the Model Performance
	1 Introduction
	2 Related Works
	2.1 Mixup Variants

	3 Notations and Preliminaries
	4 Complexity Reduction of Linear Classifiers with Mixup
	5 Complexity Reduction of Neural Networks with Mixup
	6 The Optimal Parameters of Mixup
	7 Geometric Perspective of Mixup Training: Parameter Space Smoothing
	8 Conclusion and Discussion
	References

	Mixup Gamblers: Learning to Abstain with Auto-Calibrated Reward for Mixed Samples
	1 Introduction
	2 Related Work
	2.1 Selective Classification
	2.2 Softmax Response
	2.3 Deep Gamblers
	2.4 Mixup Augmentation

	3 Proposed Method
	3.1 Calibrating the Rejection Reward Utilizing Mixup Augmentation
	3.2 CNN Feature Mixup

	4 Experiments
	5 Conclusion
	References

	Non-iterative Phase Retrieval with Cascaded Neural Networks
	1 Introduction
	1.1 The Phase Contains the Relevant Information
	1.2 Non-iterative Phase Retrieval
	1.3 Contributions
	1.4 Related Work

	2 Proposed Method
	2.1 Loss Functions
	2.2 Training

	3 Experimental Evaluation
	3.1 Datasets
	3.2 Experimental Setup
	3.3 Metrics
	3.4 Results
	3.5 Intermediate Prediction at Full-Scale
	3.6 Ablation Study

	4 Conclusion and Future Work
	References

	Incorporating Discrete Wavelet Transformation Decomposition Convolution into Deep Network to Achieve Light Training
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Discrete Wavelet Transformation Decomposition Convolution
	4.1 Feature Map DWT Decomposition
	4.2 Subbands Differential Fusion

	5 Experiments
	5.1 Datasets and Experiment Setting
	5.2 PlainNet
	5.3 DWTNet
	5.4 Experimental Results

	6 Conclusion
	References

	MMF: A Loss Extension for Feature Learning in Open Set Recognition
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Learning Objectives
	3.2 Training with MMF and Open Set Recognition

	4 Experimental Evaluation
	4.1 Network Architectures and Evaluation Criteria
	4.2 Experimental Results
	4.3 Analysis

	5 Conclusion
	References

	On the Selection of Loss Functions Under Known Weak Label Models
	1 Introduction
	2 Formulation
	2.1 Notation
	2.2 Learning from Weak Labels
	2.3 Proper Losses

	3 Linear Transformations of Losses
	3.1 Characterization of Convex Weak Losses
	3.2 Lower-Bounded Losses

	4 Optimizing the Selection of the Weak Loss
	4.1 Optimizing Virtual Labels
	4.2 Optimizing Convexity-Preserving Virtual Labels

	5 Experiments
	6 Conclusions
	References

	Distributed and Continual Learning
	Bilevel Online Deep Learning in Non-stationary Environment
	1 Introduction
	2 Bilevel Online Deep Learning (BODL)
	2.1 Online Ensemble Classifier
	2.2 Bilevel Online Deep Learning

	3 Experiments
	3.1 1Experiment Setup
	3.2 Datasets
	3.3 Experimental Results

	4 Related Works
	5 Conclusion and Future Work
	References

	A Blockchain Based Decentralized Gradient Aggregation Design for Federated Learning
	1 Introduction
	2 Background
	2.1 Studies on Federated Learning
	2.2 Enforcement by Smart Contract Platform - Blockchain

	3 System Design and Workflow
	3.1 Terms and Entities
	3.2 System Workflow

	4 Aggregation Algorithm with Random Enforcement
	5 Evaluation
	5.1 Experiment Setup
	5.2 Baselines and Metrics
	5.3 Results

	6 Conclusion
	References

	Continual Learning for Fake News Detection from Social Media
	1 Introduction
	2 Background: Fake News Detection Algorithms and Datasets
	3 Problem Description
	3.1 Propagation Patterns for Fake News Detection

	4 Dealing with Degraded Performance on New Data
	4.1 Incremental Training Reverses the Model Performance
	4.2 Continual Learning Restores Balanced Performance
	4.3 Optimise the Sampling Process to Further Minimise Performance Drop

	5 Conclusions and Future Work
	References

	Balanced Softmax Cross-Entropy for Incremental Learning
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Incremental Learning Baseline
	3.2 Balanced Softmax Cross-Entropy
	3.3 Meta Balanced Softmax Cross-Entropy

	4 Experiments
	4.1 Experimental Setups
	4.2 Comparison Results
	4.3 Ablation Study

	5 Conclusion
	References

	Generalised Controller Design Using Continual Learning
	1 Introduction
	2 Existing Research
	3 Methodology
	3.1 Methods
	3.2 Metrics to Characterise Catastrophic Forgetting

	4 Experiments and Results
	4.1 Overall Performance
	4.2 Performance per Task
	4.3 Characterisation of Catastrophic Forgetting

	5 Conclusions
	References

	DRILL: Dynamic Representations for Imbalanced Lifelong Learning
	1 Introduction
	2 Related Work
	2.1 Continual Learning
	2.2 Meta-Learning
	2.3 Growing Memory and Self-organization

	3 Methods
	3.1 Task Formulation
	3.2 Progressive Imbalancing
	3.3 Episode Generation
	3.4 DRILL
	3.5 Self-supervised Sampling

	4 Experiments
	4.1 Benchmark Datasets
	4.2 Baselines
	4.3 Implementation Details

	5 Results
	5.1 Imbalanced Lifelong Text Classification
	5.2 Knowledge Integration Mechanisms
	5.3 Self-organized Networks in NLP

	6 Conclusion and Future Work
	References

	Principal Gradient Direction and Confidence Reservoir Sampling for Continual Learning
	1 Introduction
	2 Methods
	2.1 Setup
	2.2 Proximal Gradient Framework
	2.3 Principal Gradient Direction
	2.4 Confidence Reservoir Sampling

	3 Experiments
	3.1 Datasets and Architectures
	3.2 Metrics
	3.3 Ablation Study
	3.4 Performance of ER-PC

	4 Conclusion
	References

	Explainable Methods
	Spontaneous Symmetry Breaking in Data Visualization
	1 Motivation
	2 Symmetries, Graphs, and Persistent Homology
	3 Experiments
	3.1 t-Distributed Stochastic Neighborhood Embedding (t-SNE)
	3.2 TriMap
	3.3 Kernel Principal Component Analysis (kPCA)
	3.4 Gaussian Process Latent Variable Model (GPLVM)
	3.5 Summary of Experiments

	4 Related Works
	5 Discussion
	5.1 Empirical Findings
	5.2 Faithful Representations
	5.3 Concluding Remarks

	References

	Deep NLP Explainer: Using Prediction Slope to Explain NLP Models
	1 Introduction
	2 Related Work
	3 Technical Description
	3.1 Dataset Introduction and Preprocessing
	3.2 Overview of the Latest Importance Rate (Activation Maximization)
	3.3 Introduction of Prediction Slope
	3.4 Extracting Word Importance Rate from the Prediction Slope
	3.5 Comparing Importance Rates

	4 Experimental Results
	4.1 Comparing Importance Rates on the IMDb Dataset
	4.2 Comparing Importance Rates on the Stack Overflow Dataset
	4.3 Analysis of the Result

	5 Conclusion
	References

	Empirically Explaining SGD from a Line Search Perspective
	1 Introduction
	2 Related Work
	3 The Empirical Method
	4 On the Similarity of the Shape of Full-Batch Losses Along Lines
	5 On the Behavior of Line Search Approaches on the Full-Batch Loss
	6 On the Influence of the Batch Size on Update Steps
	7 Discussion and Outlook
	8 Appendix
	References

	Towards Ontologically Explainable Classifiers
	1 Introduction
	2 Explainability
	2.1 Post-hoc Model Explanation
	2.2 Explainablity, Semantics and Ontologies
	2.3 Positioning

	3 Ontological Explainability Approach
	3.1 Illustration Domain: Pizzas
	3.2 Problems of a Non-ontological Approach
	3.3 Proposed Approach

	4 Ontological Classifier
	4.1 DL Module: Semantic Segmentation
	4.2 Ontological Module: OntoClassifier
	4.3 Results

	5 Conclusion
	References

	Few-shot Learning
	Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 Feature Extraction
	3.3 Feature Preprocessing
	3.4 MAP

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Comparison with State-of-the-Art Methods
	4.4 Other Experiments

	5 Conclusion
	References

	One-Shot Meta-learning for Radar-Based Gesture Sequences Recognition
	1 Introduction
	2 FMCW Radar Processing
	2.1 Radar Sensor
	2.2 Time-Range Preprocessing

	3 Meta-learning Based Network
	3.1 Models and Training Procedure
	3.2 Meta-dataset and Tasks Definition

	4 Experimental Results
	4.1 Models Performance

	5 Conclusion
	References

	Few-Shot Learning with Random Erasing and Task-Relevant Feature Transforming
	1 Introduction
	2 Related Work
	2.1 Optimization-Based Methods
	2.2 Metric Learning-Based Methods

	3 Methodology
	3.1 Problem Statement
	3.2 Random Erasing Network (RENet)
	3.3 Task-Relevant Feature Transforming (TRFT)
	3.4 RE-TRFT: Integration of RENet and TRFT

	4 Performance Evaluation
	4.1 Implementation Details
	4.2 Comparison with State-of-the-Arts
	4.3 Ablation Study

	5 Conclusion
	References

	Fostering Compositionality in Latent, Generative Encodings to Solve the Omniglot Challenge
	1 Introduction
	2 Method
	2.1 Model and one-shot Inference Mechanism
	2.2 Dataset

	3 Results
	3.1 Experiment 1
	3.2 Experiment 2

	4 Conclusion
	References

	Better Few-Shot Text Classification with Pre-trained Language Model
	1 Introduction
	2 Related Work
	2.1 Language Models
	2.2 Traditional Few-Shot Learning
	2.3 Few-Shot Learning Based on Pre-trained LM

	3 Methodology
	3.1 Text Classification
	3.2 Few-Shot Classification

	4 Problem Setup
	4.1 Datasets
	4.2 Evaluation Protocol

	5 Experiments
	5.1 Analysis of Text Classification
	5.2 Analysis of Few-Shot Learning
	5.3 Visualization of Attention

	6 Conclusion
	References

	Generative Adversarial Networks
	Leveraging GANs via Non-local Features
	1 Introduction
	2 Related Work
	2.1 Generative Adversarial Networks
	2.2 Graph Convolutional Networks
	2.3 Attention Mechanism

	3 Graph Convolutional Architecture
	4 Experiments
	5 Conclusion
	References

	On Mode Collapse in Generative Adversarial Networks
	1 Introduction
	2 Related Work
	3 Reasons for Mode Collapse in GANs
	4 Our Method
	5 Evaluation Metrics
	6 Experiments
	6.1 Ablation Study
	6.2 SoTA Comparison

	7 Conclusions
	References

	Image Inpainting Using Wasserstein Generative Adversarial Imputation Network
	1 Introduction
	2 Related Work
	3 Wasserstein Generative Imputation Network
	3.1 Training
	3.2 Architecture of Networks

	4 Experiments
	4.1 Scenarios of Missingness
	4.2 Implementation Details
	4.3 Results

	5 Conclusion
	References

	COViT-GAN: Vision Transformer for COVID-19 Detection in CT Scan Images with Self-Attention GAN for Data Augmentation
	1 Introduction
	2 Methodology
	2.1 GANs for Data Augmentation
	2.2 Image Classification

	3 Results and Discussion
	4 Conclusions
	References

	PhonicsGAN: Synthesizing Graphical Videos from Phonics Songs
	1 Introduction
	2 Background
	2.1 Speech to Moving Face
	2.2 Music to Moving Body
	2.3 Audio to Moving Object

	3 PhonicsGAN
	3.1 Dataset Construction
	3.2 Problem Formalization
	3.3 Model Architecture
	3.4 Implementation

	4 Results and Discussion
	5 Conclusion
	References

	A Progressive Image Inpainting Algorithm with a Mask Auto-update Branch
	1 Introduction
	2 Related Work
	2.1 Image Inpainting
	2.2 Progressive Inpainting

	3 Our Method
	3.1 Network Structure
	3.2 ID-MRF Regularization
	3.3 Spatial Variant Reconstruction Loss
	3.4 Mask Auto-update Module

	4 Experiments
	4.1 Training Procedure
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluation

	5 Conclusion
	References

	Hybrid Generative Models for Two-Dimensional Datasets
	1 Introduction
	2 Previous Work
	3 Representation Bases
	4 Methodology
	5 Experimental Results
	6 Conclusions
	References

	Towards Compressing Efficient Generative Adversarial Networks for Image Translation via Pruning and Distilling
	1 Introduction
	2 Related Work
	3 Method
	3.1 Notations
	3.2 Filter Distance-Based Pruning Method
	3.3 Fine-Tune Compressed GAN via KD

	4 Experiments
	4.1 Experimental Settings
	4.2 Detailed Compression Results
	4.3 Ablation Study

	5 Conclusion
	References

	Author Index

