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Abstract. Inspired by the classic Sauvola local image thresholding app-
roach, we systematically study it from the deep neural network (DNN)
perspective and propose a new solution called SauvolaNet for degraded
document binarization (DDB). It is composed of three explainable mod-
ules, namely, Multi-Window Sauvola (MWS), Pixelwise Window Atten-
tion (PWA), and Adaptive Sauolva Threshold (AST). The MWS mod-
ule honestly reflects the classic Sauvola but with trainable parameters
and multi-window settings. The PWA module estimates the preferred
window sizes for each pixel location. The AST module further consoli-
dates the outputs from MWS and PWA and predicts the final adaptive
threshold for each pixel location. As a result, SauvolaNet becomes end-
to-end trainable and significantly reduces the number of required network
parameters to 40K – it is only 1% of MobileNetV2. In the meantime, it
achieves the State-of-The-Art (SoTA) performance for the DDB task –
SauvolaNet is at least comparable to, if not better than, SoTA bina-
rization solutions in our extensive studies on the 13 public document
binarization datasets. Our source code is available at https://github.
com/Leedeng/SauvolaNet.
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1 Introduction

Document binarization typically refers to the process of taking a gray-scale
image and converting it to black-and-white. Formally, it seeks a decision func-
tion fbinarize(·) for a document image D of width W and height H, such that the
resulting image B̂ of the same size only contains binary values while the overall
document readability is at least maintained if not enhanced.

B̂ = fbinarize(D) (1)
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Document binarization plays a crucial role in many document analysis and recog-
nition tasks. It is the prerequisite for many low-level tasks like connected compo-
nent analysis, maximally stable extremal regions, and high-level tasks like text
line detection, word spotting, and optical character recognition (OCR).

Instead of directly constructing the decision function fbinarize(·), classic bina-
rization algorithms [17,28] typically first construct an auxiliary function g(·) to
estimate the required thresholds T as follows.

T = gclassic(D) (2)

In global thresholding approaches [17], this threshold T is a scalar, i.e. all
pixel locations use the same threshold value. In contrast, this threshold T is
a tensor with different values for different pixel locations in local thresholding
approache [28]. Regardless of global or local thresholding, the actual binarization
decision function can be written as

B̂classic = fclassic(D) = th(D,T) = th(D, gclassic(D)) (3)

where th(x, y) is the simple thresholding function and the binary state for a pixel
located at i-th row and j-th column is determined as in Eq. (4).

B̂classic[i, j] = th(D[i, j], T [i, j]) =

{
+1, ifD[i, j] ≥ T [i, j]
−1, otherwise

(4)

Classic binarization algorithms are very efficient in general because of using
simple heuristics like intensity histogram [17] and local contrast histogram [31].
The speed of classic binarization algorithms typical of the millisecond level,
even on a mediocre CPU. However, simple heuristics also means that they are
sensitive to potential variations [31] (image noise, illumination, bleed-through,
paper materials, etc. ), especially when the relied heuristics fail to hold. In order
to improve the binarization robustness, data-driven approaches like [33] learn
the decision function fbinarize(·) from data rather than heuristics. However, these
approaches typically achieve better robustness by using much more complicated
features, and thus work relatively slow in practice, e.g. on the second level [33].

Like in many computer vision and image processing fields, the deep learning-
based approaches outperform the classic approaches by a large margin in
degraded document binarization tasks. The state-of-the-art (SoTA) binariza-
tion approaches are now all based on deep neural networks (DNN) [22,27]. Most
of SoTA document binarization approaches [2,19,32] treat the degraded bina-
rization task as a binary semantic segmentation task (namely, foreground and
background classes) or a sequence-to-sequence learning task [1], both of which
can effectively learn fbinarize(·) as a DNN from data.

Recent efforts [2,5,9,19,30,32,34] focus more on improving robustness and
generalizability. In particular, the SAE approach [2] suggests estimating the pixel
memberships not from a DNN’s raw output but the DNN’s activation map,
and thus generalizes well even for out-of-domain samples with a weak activa-
tion map. The MRAtt approach [19] further improves the attention mechanism
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Fig. 1. Comparisons of the SoTA DNN-based methods on the DIBCO 2011 dataset
(average resolution 574×1104). The SauvolaNet is of 1% of MobileNetV2’s parameter
size, while attaining superior performance in terms of both speed and F-Measure.

in multi-resolution analysis and enhances the DNN’s robustness to font sizes.
DSN [32] apply multi-scale architecture to predict foreground pixel at multi-
features levels. The DeepOtsu method [9] learns a DNN that iteratively enhances
a degraded image to a uniform image and then binarized via the classic Otsu
approach. Finally, generative adversarial networks (GAN) based approaches like
cGANs [34] and DD-GAN [5] rely on the adversarial training to improve the
model’s robustness against local noises by penalizing those problematic local
pixel locations that the discriminator uses in differentiating real and fake results.

As one may notice, both classic and deep binarization approaches have pros
and cons: 1) the classic binarization approaches are extremely fast, while the
DNN solutions are not; 2) the DNN solutions can be end-to-end trainable, while
the classic approaches can not. In this paper, we propose a novel document
binarization solution called SauvolaNet – it is an end-to-end trainable DNN
solution but analogous to a multi-window Sauvola algorithm. More precisely,
we re-implement the Sauvola idea as an algorithmic DNN layer, which helps
SauvolaNet attain highly effective feature representations at an extremely low
cost – only two Sauvola parameters are needed. We also introduce an atten-
tion mechanism to automatically estimate the required Sauvola window sizes
for each pixel location and thus could effectively and efficiently estimate the
Sauvola threshold. In this way, the SauvolaNet significantly reduces the total
number of DNN parameters to 40K, only 1% of the MobileNetV2, while attaining
comparable performance of SoTA on public DIBCO datasets. Figure 1 gives the
high-level comparisons of the proposed SauvolaNet to the SoTA DNN solutions.
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The rest of the paper is organized as follows: Sect. 2 briefly reviews the clas-
sic Sauvola method and its variants; Sect. 3 proposes the SauvolaNet solution
for degraded document binarization; Sect. 4 presents Sauvola ablation studies
results and comparisons to SoTA methods; and we conclude the paper in Sect. 5.

2 Related Sauvola Approaches

The Sauvola binarization algorithm [28] is widely used in main stream image and
document processing libraries and systems like OpenCV1 and Scikit-Image2. As
aforementioned, it constructs the binarization decision function (3) via the aux-
iliary threshold estimation function gSauvola, which has three hyper-parameters,
namely, 1) w: the square window size (typically an odd positive integer [4]) for
computing local intensity statistics; 2) k: the user estimated level of document
degradation; and 3) r: the dynamic range of input image’s intensity variation.

TSauvola = gSauvola|θ(D). (5)

where θ = {w, k, r} indicates the used hyper-parameters. Each local threshold
is computed w.r.t. the 1st- and 2nd-order intensity statistics as shown in Eq. (6),

TSauvola|θ[i, j] = μ[i, j] ·
(

1 + k ·
(

σ[i, j]
r

− 1
))

(6)

where μ[i, j] and σ[i, j] respectively indicate the mean and standard deviation
of intensity values within the local window as follows.

μ[i, j] =
�w/2�∑

δi=−�w/2�

�w/2�∑
δj=−�w/2�

D[i + δi, j + δj ]
w2

(7)

σ2[i, j] =
�w/2�∑

δi=−�w/2�

�w/2�∑
δj=−�w/2�

(D[i + δi, j + δj ] − μ[i, j])2

w2
(8)

It is well known that heuristic binarization methods with hyper-parameters
could rarely achieve their upper-bound performance unless the method hyper-
parameters are individually tuned for each input document image [12], and this
is also the main pain point of Sauvola approach.

Many efforts have been made to mitigate this pain point. For example, [14]
introduces a multi-grid Sauvola variant that analyzes multiple scales in the
recursive way; [13] proposes a hyper-parameter free multi-scale binarization solu-
tion called Sauvola MS [2] by combining Sauvola results of a fixed set of window
sizes, each with its own empirical k and r values; [8] improves the classic Sauvola
by using contrast information obtained from pre-processing to refine Sauvola ’s
binarization; [12] estimates the required window size w in Sauvola by using the
stroke width transform matrix. Table 1 compares these approaches with the pro-
posed SauvolaNet , and it is clear that only SauvolaNet is end-to-end trainable.
1 https://docs.opencv.org/4.5.1/.
2 https://scikit-image.org/.

https://docs.opencv.org/4.5.1/
https://scikit-image.org/
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Table 1. Comparisons of various Sauvola document binarization approaches.

Related work End-to-end

trainable?

Sauvola Params. #Used scales Without

w k r Preproc? Postproc?

Sauvola [28] ✗ User specified Single ✓ ✓

[14] ✗ Auto User specified Auto Multiple ✗ ✗

[13] ✗ Fixed multiple ✓ ✓

[8] ✗ Fixed Single ✗ ✗

[12] ✗ Auto Fixed Fixed Multiple ✗ ✓

SauvolaNet ✓ Auto Learned Learned Multiple ✓ ✓

3 The SauvolaNet Solution

Figure 2 describes the proposed SauvolaNet solution. It learns an auxiliary
threshold estimation function from data by using a dual-branch design with
three main modules, namely Multi-Window Sauvola (MWS), Pixelwise Window
Attention (PWA), and Adaptive Sauvola Threshold (AST).

Fig. 2. The overview of SauvolaNet solution and its trainable modules. gSauvola
and gSauvolaNet indicate the customized Sauvola layer and SauvolaNet , respec-
tively; Conv2D and AtrousConv2D indicate the traditional atrous (w/ dilation rate
2) convolution layers, respectively; each Conv2D/AtrousConv2D are denoted of format
filters@ksize×ksize and followed by InstanceNorm and ReLU layers; the last Conv2D
in window attention uses the Softmax activation (denoted w/ borders ); and Pixelwise
Thresholding indicates the binarization process (4).

Specifically, the MWS module takes a gray-scale input image D and leverages
on the Sauvola to compute the local thresholds for different window sizes. The
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PSA module also takes D as the input but estimates the attentive window sizes
for each pixel location. The AST module predicts the final threshold for each
pixel location T by fusing the thresholds of different window sizes from MWS
using the attentive weights from PWA. As a result, the proposed SauvolaNet
is analogous to a multi-window Sauvola , and models an auxiliary threshold
estimation function gSauvolaNet between the input D and the output T as follows,

T = gSauvolaNet(D) (9)

Unlike in the classic Sauvola ’s threshold estimation function (5), SauvolaNet is
end-to-end trainable and doesn’t require any hyper-parameter. Similar to Eq. (3),
the binarization decision function fSauvolaNet used in testing as shown below

B̂ = fSauvolaNet(D) = th(D,T) = th(D, gSauvolaNet(D)) (10)

and the extra thresholding process (i.e. (4)) is denoted as the Pixelwise Thresh-
olding (PT) in Fig. 2. Details about these modules are discussed in later sections.

3.1 Multi-window Sauvola

The MWS module can be considered as a re-implementation of the classic multi-
window Sauvola analysis in the DNN context. More precisely, we first introduce
a new DNN layer called Sauvola (denoted as gSauvola(·) in the function form),
which has the Sauvola window size as input argument and Sauvola ’s hyper-
parameter s and r as trainable parameters. To enable multi-window analysis, we
use a set of Sauvola layers, each corresponding to one window size in (11).The
selection of window are verified in Sect. 4.2.

W = {w |w ∈ [7, 15, 23, 31, 39, 47, 55, 63]} (11)

Figure 3 visualizes all intermediate outputs of SauvolaNet , and Fig. 3-(b*) show
predicted Sauvola thresholds based on these window sizes, and Fig. 3-(c*) further
binarize the input image using corresponding thresholds. These results again
confirm that satisfactory binarization performance can be achieved by Sauvola
when the appropriate window size is used.

It is worthy to emphasize that Sauvola threshold computing window-wise
mean and the standard deviation (see (6)) is very time-consuming when using the
traditional DNN layers (e.g. , AveragePooling2D), especially for a big window
size (e.g. , 31 or above). Fortunately, we implement our Sauvola layer by using
integral image solution [29] to reduce the computational complexity to O(1).

3.2 Pixelwise Window Attention

As mentioned in many works [12,13], one disadvantage when using Sauvola
algorithm is the tuning of hyper-parameters. Among all three hyperparameters,
namely, the window size w, the degradation level k, and the input deviation r, w
is the most important. Existing works typically decompose an input image into
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Fig. 3. Intermediate results of SauvolaNet . Please note: 1) window attention (e) visual-
izes the most preferred window size of A for each pixel locations (i.e. argmax (A, axis =
−1)), and the 8 used colors correspond to those put before (b*); 2) binarized images
(c*) are not used in SauvolaNet but for visualization only; and 3) gSauvola(·) and th(·, ·)
indicates the Sauvola layer and the pixelwise thresholding function (4), respectively.
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non-overlapping regions [13,18] or grids [14] and apply each a different window
size. However, existing solutions are not suitable for DNN implementation for
two reasons: 1) non-overlapping decomposition is not a differentiable operation;
and 2) processing regions/grids of different sizes are hard to parallelize.

Alternatively, we adopt the widely-accepted attention mechanism to remove
the dependency on the user-specified window sizes. Specifically, the proposed
PWA module is a sub-network that takes an input document image D and pre-
dicts the pixel-wise attention on all predefined window sizes. It conceptually
follows the multi-grid method introduced by DeepLabv3 [3] while using a fixed
dilation rate at 2. Also, we use the InstanceNormalization instead of the com-
mon BatchNormalization to mitigate the overfitting risk caused by a small
training dataset. The detailed network architecture is shown in Fig. 2.

Sample result of PWA can be found in Fig. 3-(e). As one can see, the proposed
PWA successfully predicts different window sizes for different pixels. More pre-
cisely, it prefers w = 39 (see Fig. 3-(b5)) and w = 15 (see Fig. 3-(b2)) for back-
ground and foreground pixels, respectively; and uses very large window sizes,
e.g. , w = 63 (i.e.Fig. 3-(b8)) for those pixels on text borders.

3.3 Adaptive Sauvola Threshold

As one can see from Fig. 2, the MWS outputs a Sauvola tensor S of size H ×
W × N , where N is the number of used window sizes (and we use N = 8, see
Eq. (11)), the PWA outputs an attention tensor A of the same size as S and the
attention sum for all window sizes on each pixel location is always 1, namely,

N∑
k=1

A[i, j, k] = 1, ∀1 ≤ i ≤ H, 1 ≤ j ≤ W. (12)

The AST applies the window attention tensor A to the window-wise initial
Sauvola threshold tensor S and compute the pixel-wise threshold T as below

T [i, j] =
N∑

k=1

A[i, j, k] · S[i, j, k] (13)

Fig. 3-(g) shows the adaptive threshold T when using the sample input Fig. 3-(a).
By comparing the corresponding binarized result (i.e.Fig. 3-(h)) with those of
single window’s results (i.e.Fig. 3-(c*)), one can easily verify that the adaptive
threshold T outperforms any individual threshold result in S.

3.4 Training, Inference, and Discussions

In order to train SauvolaNet , we normalize the input D to the range of (0, 1)
(by dividing 255 for uint8 image), and employ a modified hinge loss, namely
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loss[i, j] = max(1 − α · (D[i, j] − T [i, j]) · B[i, j], 0) (14)

where B is the corresponding binarization ground truth map with binary values
−1 (foreground) and +1 (background); T is SauvolaNet ’s predicted thresholds
as shown in Eq. (9); and α is a parameter to empirically control the margin of
decision boundary and only those pixels close to the decision boundary will be
used in gradient back-propagation. Throughout the paper, we always use α = 16.

We implement SauvolaNet in the TensorFlow framework. The used training
patch size is 256×256, and the data augmentations are random crop and random
flip. The training batch size is set to 32, and we use Adam optimizer with the initial
learning rate of 1e−3. During inference, we use fSauvolaNet instead of gSauvolaNet
as shown in Fig. 2-(a). It only differs from the training in terms of one extra
the thresholding step (4) to compare SauvolaNet predicted thresholds with the
original input to obtain the final binarized output.

Unlike in most DNNs, each module in SauvolaNet is explainable: the MWS
module leverages the Sauvola algorithm to reduce the number of required net-
work parameters significantly, and the PWA module employs the attention idea
to get rid of the Sauvola ’s disadvantage of window size selection, and finally
two branches are fused in the AST module to predict the pixel-wise threshold.
Sample results in Fig. 3 further confirm that these modules work as expected.

4 Experimental Results

4.1 Dataset and Metrics

In total, 13 document binarization datasets are used in experiments, and they are
{(H-)DIBCO 2009 [7] (10), 2010 [23] (10), 2011 [20] (16), 2012 [24] (14), 2013 [25]
(16), 2014 [16] (10), 2016 [26] (10), 2017 [27] (20), 2018 [21] (10); PHIDB [15]
(15), Bickely-diary dataset [6] (7), Synchromedia Multispectral dataset [10] (31),
and Monk Cuper Set [9] (25)}. The braced numbers after each dataset indicates
its sample size, and detailed partitions for training and testing will be specified
in each study. For evaluation, we adopt the DIBCO metrics [16,20,21,24–27]
namely, F-Measure (FM), psedudo F-Measure (Fps), Distance Reciprocal Dis-
tortion metric (DRD) and Peak Signal-to-Noise Ratio (PSNR).

4.2 Ablation Studies

To simplify discussion, let θ be the set of parameter settings related to a studied
Sauvola approach f . Unless otherwise noted, we always repeat a study about
f and θ on all datasets in the leave-one-out manner. More precisely, each score
reported in ablation studies is obtained as follows

score(θ, f) =
1

‖D‖
∑
x∈X

⎧⎨
⎩

∑
(D,B)∈x

m(B̂x
θ ,B)

‖x‖

⎫⎬
⎭ (15)

where m(·) indicates a binarization metric, e.g.FM; and B̂x
θ = fX−x

θ (D) indicates
the predicted binarized result for a given image D using the solution fX−x

θ that is
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trained on dataset X − x using the setting θ. More precisely, the inner summation
of Eq. (15) represents the average score for the model fX−x

θ over all testing
samples in x, and that the outer summation of Eq. (15) further aggregates all
leave-one-out average scores, and thus leaves the resulting score only dependent
on the used method f with setting θ.

Table 2. Trainable v.s. non-trainable Sauvola .

WinSize w Train? Converged value Binarization scores

k r k r FM(%) ↑ Fps (%) ↑ PSNR(db) ↑ DRD ↓
OpenCV parameter configuration

11 ✗ ✗ 0.50 0.50 50.09 59.95 13.44 13.73

✗ ✓ 0.50 0.23 ± 0.003 77.31 81.25 15.86 8.17

✓ ✗ 0.20 ± 0.005 0.50 77.92 85.44 15.99 8.09

✓ ✓ 0.25 ± 0.024 0.24 ± 0.004 80.47 85.49 16.05 8.01

Pythreshold parameter configuration

15 ✗ ✗ 0.35 0.50 67.37 76.83 14.84 9.96

✗ ✓ 0.35 0.26 ± 0.004 79.23 84.01 15.72 8.71

✓ ✗ 0.22 ± 0.011 0.50 79.87 86.31 15.84 8.17

✓ ✓ 0.29 ± 0.027 0.28 ± 0.009 81.40 86.41 16.35 7.50

Scikit-image parameter configuration

15 ✗ ✗ 0.20 0.50 77.23 85.15 15.55 8.92

✗ ✓ 0.20 0.25 ± 0.003 79.51 85.34 15.67 8.43

✓ ✗ 0.22 ± 0.008 0.50 79.94 86.37 15.92 8.10

✓ ✓ 0.29 ± 0.023 0.28 ± 0.007 81.46 86.47 16.38 7.46

Does Sauvola With Learnable Parameters Work Better? Before dis-
cussing SauvolaNet , one must-answer question is whether or not re-implement
the classic Sauvola algorithm as an algorithmic DNN layer is the right choice, or
equivalently, whether or not Sauvola hyper-parameters learned from data could
generalize better in practice. If not, we should leverage on existing heuristic
Sauvola parameter settings and use them in SauvolaNet as non-trainable.

To answer the question, we start from one set of Sauvola hyper-parameters,
i.e. θ = {w, k, r}, and evaluate the corresponding performance of single window
Sauvola , i.e. gSauvola|θ under four different conditions, namely, 1) non-trainable
k and r; 2) non-trainable k but trainable r; 3) trainable k but non-trainable
r; and 4) trainable k and r. We further repeat the same experiments for three
well-known Sauvola hyper-parameter settings OpenCV (see footnote 1) (w = 11,
k = 0.5, r = 0.5), Scikit-Image (see footnote 2) (w = 15, k = 0.2, r = 0.5) and
Pythreshold3 (w = 15, k = 0.35, r = 0.5).

Table 2 summarizes the performance scores for single-window Sauvola with
different parameter settings. Each row is about one score(θ, fSauvola), and the
3 https://github.com/manuelaguadomtz/pythreshold/blob/master/pythreshold/.

https://github.com/manuelaguadomtz/pythreshold/blob/master/pythreshold/
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three mega rows represent the three initial θ settings. As one can see, three
prominent trends are: 1) the heuristic Sauvola hyper-parameters (i.e. the non-
trainable k and r setting) from the three open-sourced libraries don’t work well
for DIBCO-like dataset; 2) allowing trainable k or r leads to better performance,
and allowing both trainable gives even better performance; 3) the converged
values of trainable k and r are different for different window sizes. We therefore
use trainable k and r for each window size in the Sauvola layer (see Sec. 3.1).

Does Multiple-Window Help? Though it seems that having multiple window
sizes for Sauvola analysis is beneficial, it is still unclear that 1) how effective it
is comparing to a single-window Sauvola , and 2) what window sizes should be
used. We, therefore, conduct ablation studies to answer both questions.

More precisely, we first conduct the leave-one-out experiments for the single-
window Sauvola algorithms for different window sizes with trainable k and r.
The resulting score(w, fSauvola) are presented in the upper-half of Table 3. Com-
paring to the best heuristic Sauvola performance attained by Scikit-Image in
Table 2, these results again confirm that Sauvola with trainable k and r works
much better. Furthermore, it is clear that fSauvola with different window sizes
(except for w = 7) attain similar scores, possibly because there is no single
dominant font size in the 13 public datasets.

Table 3. Ablation study on Sauvola window sizes

WinSize Binarization scores

7 15 23 31 39 47 55 63 FM (%) ↑ Fps (%) ↑ PSNR (db) ↑ DRD ↓
Single-window Sauvola

✓ 77.62 79.60 15.36 9.76

✓ 81.47 86.51 16.41 7.47

✓ 82.51 87.29 16.43 7.70

✓ 82.41 57.09 16.39 7.82

✓ 82.23 86.90 16.34 7.93

✓ 82.10 86.68 16.30 8.11

✓ 82.01 86.54 16.28 8.17

✓ 81.92 86.42 16.25 8.25

Multi-window Sauvola

✓ ✓ 81.55 84.41 17.09 6.62

✓ ✓ ✓ 82.88 85.29 17.32 6.41

✓ ✓ ✓ ✓ 84.71 87.34 17.72 6.04

✓ ✓ ✓ ✓ ✓ 87.83 90.70 18.47 5.30

✓ ✓ ✓ ✓ ✓ ✓ 89.87 92.31 18.87 4.13

✓ ✓ ✓ ✓ ✓ ✓ ✓ 91.36 95.55 19.09 3.73

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 91.42 95.67 19.15 3.67
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Finally, we conduct the ablation studies of using multiple window
sizes in SauvolaNet in the incremental way, and report the resulting
score(W, fSauvolaNet)s in the lower-half of Table 3. It is now clear that 1) multi-
window does help in SauvolaNet ; and 2) the more window sizes, the better
performance scores. As a result, we use all eight window sizes in SauvolaNet
(see Eq. (11)).

4.3 Comparisons to Classic and SoTA Binarization Approaches

It is worthy to emphasize that different works [2,9,11,13,19,34] use different pro-
tocols for document binarization evaluation. In this section, we mainly follow the
evaluation protocol used in [9], and its dataset partitions are: 1) training: (H)-
DIBCO 2009 [7], 2010 [23], 2012 [24]; Bickely-diary dataset [6]; and Synchrome-
dia Multispectral dataset [10], and for testing: (H)-DIBCO 2011 [20], 2014 [16],
and 2016 [26]. We train all approaches using the same evaluation protocol for
fairly comparison. As a result, we focus on those recent and open-sourced DNN
based methods, and they are SAE [2], DeepOtsu [9], cGANs [34] and MRAtt [19].
In addition, heuristic document binarization approaches Otsu [17], Sauvola [28]
and Howe [11] are also included. Finally, Sauvola MS [13], a classic multi-window
Sauvola solution is evaluated to better gauge the performance improvement from
the heuristic multi-window analysis to the proposed learnable analysis.

Table 4. Comparison of SauvolaNet and SoTA approaches DIBCO 2011.

Dataset Methods FM (%) ↑ Fps (%) ↑ PSNR (db) ↑ DRD ↓
DIBCO 2011 Otsu [17] 82.10 84.80 15.70 9.00

Howe [11] 91.70 92.00 19.30 3.40

MRAtt [19] 93.16 95.23 19.78 2.20

DeepOtsu [9] 93.40 95.80 19.90 1.90

SAE [2] 92.77 95.68 19.55 2.52

DSN [32] 93.30 96.40 20.10 2.00

cGANs [34] 93.81 95.26 20.30 1.82

Sauvola [28] 82.10 87.70 15.60 8.50

Sauvola MS [13] 79.70 81.78 14.91 11.67

SauvolaNet 94.32 96.40 20.55 1.97

Table 4, 5 and 6 reports the average performance scores of the four evalua-
tion metrics for all images in each testing dataset. When comparing the three
Sauvola based approaches, namely, Sauvola, Sauvola MS, and SauvolaNet , one
may easily notice that the heuristic multi-window solution Sauvola MS does not
necessarily outperform the classic Sauvola. However, the SauvolaNet , again a
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Table 5. Comparison of SauvolaNet and SoTA approaches in H-DIBCO 2014.

Dataset Methods FM (%) ↑ Fps (%) ↑ PSNR (db) ↑ DRD ↓
H-DIBCO 2014 Otsu [17] 91.70 95.70 18.70 2.70

Howe [11] 96.50 97.40 22.20 1.10

MRAtt [19] 94.90 95.98 21.09 1.85

DeepOtsu [9] 95.90 97.20 22.10 0.90

SAE [2] 95.81 96.78 21.26 1.00

DSN [32] 96.70 97.60 23.20 0.70

DD-GAN [5] 96.27 97.66 22.60 1.27

cGANs [34] 96.41 97.55 22.12 1.07

Sauvola [28] 84.70 87.80 17.80 2.60

Sauvola MS [13] 85.83 86.83 17.81 4.88

SauvolaNet 97.83 98.74 24.13 0.65

Table 6. Comparison of SauvolaNet and SoTA approaches DIBCO 2016.

Dataset Methods FM (%) ↑ Fps (%) ↑ PSNR (db) ↑ DRD ↓
DIBCO 2016 Otsu [17] 86.60 89.90 17.80 5.60

Howe [11] 87.50 82.30 18.10 5.40

MRAtt [19] 91.68 94.71 19.59 2.93

DeepOtsu [9] 91.40 94.30 19.60 2.90

SAE [2] 90.72 92.62 18.79 3.28

DSN [32] 90.10 83.60 19.00 3.50

DD-GAN [5] 89.98 85.23 18.83 3.61

cGANs [34] 91.66 94.58 19.64 2.82

Sauvola [28] 84.60 88.40 17.10 6.30

Sauvola MS [13] 79.84 81.61 14.76 11.50

SauvolaNet 90.25 95.26 18.97 3.51

multi-window solution but with all trainable weights, clearly beat both by large
margins for all four evaluation metrics. Moreover, the proposed SauvolaNet
solution outperforms the rest of the classic and SoTA DNN approaches in DIBCO
2011. And SauvolaNet is comparable to the SoTA solutions in H-DIBCO 2014
and DIBCO 2016. Sample results are shown in Fig. 4. More importantly, the
SauvolaNet is super lightweight and only contains 40K parameters. It is much
smaller and runs much faster than other DNN solutions as shown in Fig. 1.
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Fig. 4. Qualitative comparison of SauvolaNet with SoTA document binarization
approaches. Problematic binarization regions are denoted in red boxes , and the FM
score for each binarization result is also included below a result. (Color figure online)

5 Conclusion

In this paper, we systematically studied the classic Sauvola document bina-
rization algorithm from the deep learning perspective and proposed a multi-
window Sauvola solution called SauvolaNet . Our ablation studies showed that
the Sauvola algorithm with learnable parameters from data significantly outper-
forms various heuristic parameter settings (see Table 2). Furthermore, we pro-
posed the SauvolaNet solution, a Sauvola -based DNN with all trainable param-
eters. The experimental result confirmed that this end-to-end solution attains
consistently better binarization performance than non-trainable ones, and that
the multi-window Sauvola idea works even better in the DNN context with the
help of attention (see Table 3). Finally, we compared the proposed SauvolaNet
with the SoTA methods on three public document binarization datasets. The
result showed that SauvolaNet has achieved or surpassed the SoTA performance
while using a significantly fewer number of parameters (1% of MobileNetV2) and
running at least 5x faster than SoTA DNN-based approaches.
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