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Abstract. Optical Music Recognition workflows currently involve sev-
eral steps to retrieve information from music documents, focusing on
image analysis and symbol recognition. However, despite many efforts,
there is little research on how to bring these recognition results to prac-
tice, as there is still one step that has not been properly discussed: the
encoding into standard music formats and its integration within OMR
workflows to produce practical results that end-users could benefit from.
In this paper, we approach this topic and propose options for complet-
ing OMR, eventually exporting the score image into a standard digi-
tal format. Specifically, we discuss the possibility of attaching Machine
Translation systems to the recognition pipeline to perform the encod-
ing step. After discussing the most appropriate systems for the process
and proposing two options for the translation, we evaluate its perfor-
mance in contrast to a direct-encoding pipeline. Our results confirm that
the proposed addition to the pipeline establishes itself as a feasible and
interesting solution for complete OMR processes, especially when limited
training data is available, which represents a common scenario in music
heritage.

Keywords: Optical Music Recognition - Graphics recognition -
Machine translation

1 Introduction

Music represents a valuable component of our cultural heritage. Most music
has been preserved in printed or handwritten music notation documents. In
addition to the efforts to correctly maintain the documents that inherently get
damaged over time, huge efforts are being done to digitize them. The same
way Optical Character Recognition (OCR) and Handwritten Text Recognition
(HTR) are successfully being applied to extract the content from text images,
Optical Music Recognition (OMR) systems are applied to encode the music
content that appears in score sheets [6].
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Specifically, OMR, joins the knowledge from areas like computer vision,
machine learning and digital musicology to perform the recognition and the
digitising of music scores. Despite of being sometimes addressed as “OCR. for
music” [3], its two-dimensional nature, along with many ubiquitous contextual
dependencies among symbols, differentiates OMR from other document recogni-
tion areas, such as OCR and HTR [5]. To illustrate this, we could use a simple
example: A note is identified, graphically speaking, at a specific position in the
staff. However, its interpretation could change depending on multiple factors,
such as the clef position, the accidentals that may be present nearby, the key
signature, or just a bar line cancelling previous alterations. Indeed, there is also
a required temporal interpretation that does not depend on that specific position
in the staff, but on the shape of the note (as each glyph represents a different
duration of the note during interpretation).

Most of the existing OMR literature is framed within a multi-stage workflow,
with steps involving image pre-processing—including staff-line detection and
removal [10]—symbol classification [20] and notation assembly [19]. Advances
in Deep Learning (DL) lead the image processing steps to be replaced with
neural approaches such as Convolutional Neural Networks (CNN). But more
importantly, DL brought alternatives to these traditional multi-stage workflows.
On the one hand, we have the segmentation-based approach, where the complex
multi-stage symbol isolation workflows have been replaced for region-based CNN
that directly recognize symbols in a music staff [21,29]. On the other hand, there
are end-to-end approaches. Specifically, we find solutions based on Convolutional
Recurrent Neural Networks (CRNN) that come in varying configurations: the
so-called Sequence to Sequence (Seg2Seq) architecture [2] ones, and also those
trained using the Connectionist Temporal Classification (CTC) loss function [8].

Typically, these DL-based approaches cover all the processes that involve the
transcription of an input image, which is usually a music staff, into a sequence
that represents the recognized glyphs and positions of the symbols in the given
score. Even obtaining such descriptive sequences, these results cannot be used
by an end-user or reproduced in a music tool or visualizer, as there exists the
need to recover music semantics as well. This last step to achieve an actual
digital score is the so-called encoding process, where the graphical recognition
outputs, without specific musical meaning, are converted into a standard seman-
tic encoding. Unfortunately, this step is hardly addressed in the DL-based OMR
literature, due to the focus the community has given to the challenges of the
previous steps require.

In this paper, we research how to complete the OMR, process, starting from
a music-staff image as an input and producing a semantic standard encoding
sequence as output. As a novelty, we introduce the use of Machine Translation
to perform this last step of parsing a purely visual representation extracted from
a graphic recognition process and exporting it in a standard musical encoding
document.

The rest of the paper is organized as follows: in Sect. 2 we discuss why we app-
roach the OMR encoding step with Machine Translation techniques, instead of



Optical Music Recognition via Transcription and Translation 663

hand-crafted rule-based heuristic approaches. In Sect. 3, we describe the specific
implemented systems used to perform our experiments. In Sect. 4, we explain our
experimentation environment for the sake of replicability; in Sect.5 we present
and discuss the obtained results regarding the comparison between different
alternatives; and, we conclude our work in Sect. 6.

2 Machine Translation for Encoding in Optical Music
Recognition

We discuss in this section how to approach the encoding step of an OMR system,
as it is an issue that has not been fully solved in previous works. We remind the
reader that the encoding step consists of the production of a symbolic music
notation format from the symbol recognition phase in the previous OMR step,
which typically works at the image level. This means eventually producing a
score encoded in a standard digital format from a collection of musical glyphs
located in a two-dimensional space. From now on, we will denote the output from
the graphical process as agnostic encoding; while the music standard format is
referred to as semantic encoding. These terms are becoming common in OMR
literature [7,22].

A usual approach in most commercial systems to convert from agnostic
encoding to semantic encoding is laying the task on a rule-based translation
system. This has been proved to be a challenging task in complex scores [5,13].
This approach also has significant issues in both extrapolability for different
notation types, and scalability terms, as it requires the redesign of the rules or
systems when the source and/or the target encoding vary. This scalability issue
also appears when moving into more complex music domains, such as polyphonic
scores, where the task of designing rules which adapt to these documents may
become unfeasible. As we can observe, this is hardly maintainable when com-
plexity both on the document type and the notations scale. This situation leaves
us to look for more sophisticated models in the Machine Translation community.

One simple approach could be to apply Statistical Machine Translation
(SMT) techniques [16], which are data-driven approaches for Machine Trans-
lation where several independent models are combined to produce both a trans-
lation unit and a language model to convert a source language sequence into a
target language one. These combinations allow SMT to provide balanced pre-
dictions in accuracy and fluency, as they implement mechanisms to deal with
translation issues such as word reordering. Another benefit they bring is that,
currently, there exist standard and well-known toolkits to perform SMT, such as
Moses [17]. However, during preliminary experimentation with these techniques
[26], we observed that, despite offering interesting results with few labeled data,
they do not produce flexible models where the input can have structural errors.
This is a significant drawback in our case, as we cannot expect the graphical
recognition step of the OMR pipeline to be completely accurate. In addition to
this issue, SMT techniques also require an additional feature engineering process
for both the source and the target languages, as we are dealing with data-driven
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models which might not get their best results by just inputting raw sequences.
This preprocessing requirement implies an additional workload that may become
unfeasible if the considered encodings got extended.

For all the above, we decided to implement Neural Machine Translation
(NMT). As other knowledge areas, the Machine Translation community has
also moved towards DL techniques to perform automatic translation between
languages. These neural models typically need more training data than SMT.
However, they produce models that have proven to be more robust in the musi-
cal context [26], one aspect that we discuss further below. Another benefit of
integrating these systems into the OMR pipeline is that they share technological
features with the previously performed steps, so it is possible to easily produce a
complete system that includes both the recognition steps and the translation one,
which can be packaged to be served in practical applications. Therefore, given
the advantages that this approach offers, we propose to tackle the encoding step
via Machine Translation techniques, specifically with NMT.

2.1 Target Encoding Format

One relevant goal of this work is to showcase a suitable music notation format to
be used as the target semantic encoding of the NMT process. We have analyzed
which format is more beneficial in terms of exportability and later compatibility
with musicology tools, which are the target destinations of our pipeline outputs.

The first options that may be considered are the most extended semantic
encodings in music information retrieval and musicology contexts: MEI [14] and
MusicXML [11], which represent music score components and metadata in XML
languages. These can be understood as analogous markup-based encoding lan-
guages such as TEI [4] in the text recognition context. Despite being compre-
hensive formats, these semantic representations have a significant drawback in a
Machine Translation context: they are highly verbose. This means that the target
language would require a huge number of tokens for even small music excerpts,
thereby making the automatic encoding task unnecessarily complicated.

Previous works on this area have proposed alternatives to tackle this issue
[25], such as using Humdrum **kern [15]. This is a robust and widely-used
semantic encoding for many musicological projects. Its benefits for our purpose
lie in a simple vocabulary, a sequential-based format, and in its compatibility
with dedicated musicology software like Verovio Humdrum Viewer [28], which
brings the possibility of automatically converting into other formats.

For all the above, we selected **kern as our target semantic encoding lan-
guage. An example of the convenience of this format over other XML-based ones,
like MEI, is shown in Fig. 1.

3 Methodology

We define a complete-pipeline OMR, as a process that eventually exports the
written notation in a standard digital format. Our methodology assumes an



Optical Music Recognition via Transcription and Translation 665

f &
e = T

[am L
NY

o

(a) Example music excerpt

. <music>  <body> J <mdiv> J <score> J
<scoreDef xml:id="scoredef-0000000430793170" key.sig="2s" meter.sym="common">
<scoreDef xml:id="scoredef-0000000430793170" key.sig="2s" meter.sym="common">
<staffGrp xml:id="staffgrp-0000000321535565">
<staffGrp xml:id="staffgrp-0000000321535565">
<staffDef xml:id="staffdef-0000000979385103" clef.shape="G"
clef.line="2" n="1" lines="5" />
</staffGrp>  </scoreDef> ) <section xml:id="section-0000002102168953"> I
<measure xml:id="measure-0000000817881159" right="single">
<staff xml:id="staff-0000000752632627" n="1">
<layer xml:id="layer-0000001525105800" n="1">
<note xml:id="note-0000000088370008" dur="2" oct="5" pname="d" tie="i" />
<beam xml:id="beam-0000000838622227">
<note xml:id="note-0000001323524379" dur="16" oct="5" pname="d" tie="t" />
<note xml:id="note-0000000788593928" dur="16" oct="5" pname="e" />
<note xml:id="note-0000001776562259" dur="16" oct="5" pname="d" />
<note xml:id="note-0000000069259125" dur="16" oct="5" pname="c" />
</beam> ...
(b) MEI representation of the music excerpt (’«)’ represents the end-of-line character.)

x*kskern o *clefG2 J *k[f#c#] o *met(C) J2dd[  16dd]  16ee J 16dd  16cc#
(c) **kern representation of the music excerpt (’<)’ represents the end-of-line character.)

Fig. 1. Example of MEI and **kern representations of a simple music excerpt, show-
casing the different verbosity between formats.

initial pre-process to divide a full-page score into a sequence of staves, much in
the same way as HTR typically assumes a previous text-line segmentation [27].
This is not a strong assumption as there exist specific layout analysis algorithms
for OMR that decompose the image into staves [24].

Our OMR pipeline is divided here into a two-step procedure that first recovers
the graphical information and then performs a proper encoding. Formally, let X
be the input image space of single-staff sections, and X, and X'; be denoted as the
alphabet of agnostic symbols and the alphabet of semantic symbols, respectively.
Then, the OMR system becomes a graphical recognition f, : X — X, followed
by a translation process fi : X, — Xs. An overview of the methodology is
illustrated in Fig. 2.

Additionally, a direct encoding approach f; : X — X will be proposed as
a baseline for our experimentation, in order to demonstrate the benefits of the
two-step strategy.
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clef.G:L2, accidental.sharp:L5, digit.3:L4, digit.4:L2,
note.eighth_up:S0, verticalLine:Ll, note.quarter_up:L2,
note.quarter _up:L2, dot:S2, note.eighth_up:S2,
verticalLine:Ll, note.quarter_up:L2,
note.quarter_up:Sl, note.quarter_up:s0,

verticalline:Ll, note.quarter_up:S2,

note.quarter_up:S2, dot:S2, note.eighth_down:L3,
verticalline:Ll, note.quarter_up:S2,

note.quarter_up:L2, note.quarter_down:L3

DIRECT ENCODING
PIPELINE
AGNOSTIC ENCODING

MACHINE
TRANSLATION

**skern *clefG2 *k[f#] *M3\4 8d/;
= 4g/; 4.9/; 8a/; = Ag/; 4f#[; ad/[;=
4af; 4.0/; 8b\; = 4af; 4g/; 4b\;

SEMANTIC ENCODING

Fig. 2. Overview of the procedures proposed for complete OMR, receiving a staff-
section image as input and predicting a semantic music encoding sequence as output.

3.1 Graphical Recognition

The graphical recognition step f, takes an input image and produces a sequence
of agnostic symbols. Given an input staff-section image x € X, f, seeks for the
sequence § such that

§ = argmax P(s | x). (1)
seXx

To implement this step, we consider the state-of-the-art model OMR, which
consists of a CRNN model trained with a CTC loss function. We follow the
configuration specified in [6].

The convolutional block learns relevant features of the image and the recur-
rent block interprets them as a sequence of frames. The model eventually com-
putes the probability of each symbol appearing in each input frame. To approx-
imate § of Eq. 1, we resort to a greedy decoding algorithm that takes the most
likely symbol per frame, concatenates consecutive frames with the same symbol,
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and then removes the ‘blank’ symbol introduced to train the model with the
CTC loss function [12].

3.2 Translation Process

The graphical recognition produces a discrete sequence of agnostic symbols,
where just the shape and the position within the staff are encoded (graphical
features). As discussed above, this is insufficient to retrieve meaningful music
information, so we need an additional step to obtain a semantic output.

Given a sequence of agnostic symbols, s € X% the translation step f; can be
expressed as seeking the sequence t, such that

t = arg {Iel%i*ip(t | s). (2)

We compute this probability by means of NMT. Given the novelty of this
approach in the context of OMR, we consider two alternatives, whose effective-
ness will be analyzed empirically.

The first approach is a Seq2Seq model with Attention mechanisms, hereafter
referred to as Seq2Seq- Attn. This model is an encoder-decoder approach based on
Recurrent Neural Networks (RNN), where the first part (the encoder) creates an
embedding representation of the input sequence, usually known as the context
vector, and the decoder produces, from this context vector and the previously
predicted tokens, the next token of the translated sequence. Specifically, we
resort to an advanced strategy which implements attention mechanisms: the
“Global Attention” approach, proposed by Luong et al. [18], where the previously
mentioned context vector is regulated by an attention matrix, whose scoring
regulators are given by the scalar product between the encoder and the decoder
outputs.

The second considered model is the Transformer [30], that currently repre-
sents the backbone of state-of-the-art NMT. This model implements an encoder-
decoder architecture, such as the previously described system, that replaces all
the recurrent layers by attention-based ones, which are referred to in the lit-
erature as the multi-headed attention units. These units are not only able to
compute faster the training process (as they are easily parallelizable) but have
also proven to obtain better quality context vectors and translation decodings,
which allows them to learn relevant grammatical and semantic information from
the input sequences themselves.

In both cases, the specific configuration is set as done in our previous work
[26], where good results for processing music encoding formats were attained.

3.3 Direct Encoding

A direct encoding performs a function fy : X — Y. Formally, given an input
staff-section image = € X, it seeks for a sequence t such that

t = argmax P(t | z) (3)
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As far as we know, there is no single-step complete OMR system in the
literature. In our case, we decided to implement the CRNN-CTC model used for
image recognition (Sect.3.1), but modifying the output alphabet to be that of
the semantic output.

This implementation establishes a good comparison baseline, as it is the
easiest and simplest model to implement and reduces the number of steps to
one.

4 Experimental Setup

In this section, we present our experimental environment to evaluate the OMR
pipelines. We detail the corpora used to perform and the evaluation process
considered to obtain the results presented in Sect. 5.

4.1 Corpora

Two corpora of music score images, with varying features in printing style, have
been used to assess and discuss the performance of the different pipelines.

The first considered corpus is the “Printed Images of Music Staves” (PrIMuS)
dataset; specifically, the camera-based version [7]. It consists of 87,678 music
incipits’ from the RISM collection [1]. They consist of music scores in com-
mon western modern notation, rendered with Verovio [23] and extended with
synthetic distortions to simulate the imperfections that may be introduced by
taking pictures of sheet music in a real scenario, such as blurring, low-quality
resolutions, and rotations.

The second considered corpus is a collection of four groups of handwrit-
ten score sheets of popular Spanish songs taken from the ‘Fondo de Misica
Tradicional IMF-CSIC’ (FMT),? that is a large set of popular songs manually
transcribed by musicologists between 1944 and 1960.

The characterization of these corpora can be found in Table 1, while represen-
tative examples are shown in Fig. 3 and Fig. 4 for PrIMuS and FMT, respectively,
along with agnostic and semantic annotations.

4.2 Evaluation Process

One issue that one may find when performing OMR experiments is to correctly
evaluate the performance of a proposed model, as music notation has specific
features to take into account. However, OMR does not have a standard evalua-
tion protocol [6]. In our case, it seems convenient to use text-related metrics to
approach the accuracy of the predictions. Despite not considering specific music
features, in practical terms, we are dealing with text sequences.

! Short sequence of notes, typically the first ones, used for identifying a melody or
musical work.
2 https:/ /musicatradicional.eu.
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Table 1. Details of the considered corpora.

PrIMuS |FMT
Engraving Printed | Handwritten
Size of the corpus (staves) 87,678 872
Agnostic vocabulary size (|X,]) 862 266
Semantic vocabulary size (|Xs|) 1,421 206
Running symbols (agnostic) 2,520,245 | 18,329
Running symbols (semantic) 2,425,355 | 18,616

669

(a) Staff-section image.

clef.G-L2, accidental.sharp-L5, accidental.sharp-S3, accidental.sharp-S5,
accidental.sharp-L4, digit.2-L4, digit.4-L2, note.quarter-L3, note.eighth-S2,
dot-S2, note.sixteenth-L2, barline-L1

(b) Agnostic encoding of the first bar.

xkskern  xclefG2 J xk[f#c#g#d#] *M2/4 J 4b ) 8.a J 16ghy J =
(¢) Semantic encoding of the first bar (')’ represents the end-of-line token).

Fig. 3. Selected example from PrIMuS: Incipit RISM ID no. 000102547, Incipit 1.1.1
Peace troubled soul whose plaintive moan. Anonymous.
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(a) Staff-section image.

clef.G:L2, accidental.flat:L3, ---, note.beamedRight2_up-S2,
note.beamedBoth2 up-L3, note.beamedLeft2 up-S2, ---
(b) First tokens of the agnostic encoding.

*xskern J *clefG2 o *k[] J 4b- J --- 24al J 24b J 24aJ ---
(c) First tokens of the semantic encoding.

Fig. 4. Selected example from FMT (Cancién de Trilla) [9]
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For the above, we measured the performance of the proposed models with the
Sequence Error Rate (SER). Let H be the predicted sequence and R the reference
one, this metric computes the edit distance between H and R and divides it by
the length (in tokens) of R. We chose this metric as it both represents accurately
the performance of the model in recognition tasks and correlates with the effort
a user would have to invest to manually correct the results.

To obtain a more robust approximation of the generalization error, we follow
a b-fold cross-validation process, where the resultant SER is the average of the
produced test error within the five data partitions.

5 Results

The experimentation results are given in Table 2, comparing the proposed two-
step approach with a direct encoding, that acts as a baseline. We also report
the intermediate results of the former, to provide more insights. In the case of
the translation process, the intermediate results show the SER obtained starting
from a ground-truth agnostic sequence.

Concerning the intermediate results, it can be observed that the graphical
recognition step performs well on the printed dataset and gets much worse results
in the handwritten one, as might be expected in terms of their training set size
and complexity. In the translation task, the tendency is similar but this time we
observe a more reasonable SER in both cases. The Transformer is the best only-
translation option when there is enough training data, while the Seq2Seq-Attn
results better in the case of limited training data. As discussed next, this fact
does not extrapolate to the complete pipeline.

If we analyse the complete pipeline, the results obtained using the combina-
tion of CRNN and NMT models outperform the direct encoding approach, both
in the PrIMuS and the FMT dataset. The difference is especially significant in the
handwritten small-sized corpus FMT, where the SER of the CRNN+Seq2Seq-
Attn outperforms the direct encoding approach by a wide margin (around 20%
of SER). One interesting fact from these results is that the NMT models can deal
reasonably well with the inconsistencies introduced during the graphics recogni-
tion, as we observe that the final SER figures are much more correlated to the
graphical recognition than to the translation process.

Furthermore, it is interesting to note that the Transformer is the most NMT
accurate model when translating from ground-truth data. However, if we pay
attention to the complete pipeline, it does not produce a model as robust
to inconsistencies as the Seq2Seq-Attn model does. This scenario, in practi-
cal terms, is the most frequent in OMR, where the graphical recognition step
tends to make mistakes. Therefore, the Seq2Seq-Attn approach is, as far as our
results generalize, the most suitable alternative for the translation process in the
two-step pipeline.
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Table 2. Average SER (%) over the test set. The table shows the error amount pro-
duced in the recognition and encoding steps (as they have been trained separately) and
the final error done by the complete pipeline, which receives an image as input and
a semantic sequence as output. We highlighted in bold typeface the results that show
better performance in the complete pipeline.

 PriMuS | FMT
Intermediate results
Graphical recognition (CRNN) 3.52 34.88
Translation process w/ Seq2Seq-Attn | 2.04 9.53
Translation process w/ Transformer |0.53 15.43
Complete pipeline
CRNN + Seq2Seq-Attn 4.28 36.76
CRNN + Transformer 6.35 38.88
CRNN Direct encoding (baseline) 4.66 52.24

Despite the aforementioned evidence, some doubts may appear referring to
the error fluctuation between the presented pipelines, as we observe a dras-
tic change in the performance between the two datasets. To further analyze
the situation, we repeated the same experimentation in reduced versions of the
PrIMUS dataset, where we try to find an intermediate point between FMT and
PrIMuS complexities. This resulted in three new corpora with 10, 000, 5,000 and
1,000 samples, (the FMT corpus has nearly 900 samples). The obtained results
are graphically shown in Fig.5. It can be observed that the tendency described
from the original PrIMUS results, where the CRNN+Transformer performed the
worst, is maintained until dropping to 5,000 samples, where the direct approach
is then outperformed by it. In all cases, however, the CRNN+Seq2Seq-Attn is
postulated as the best option by different margins, depending on the complexity
of the dataset.

This new experiment summarized the behaviour of all alternatives. On the
one hand, a direct encoding pipeline—which acted as baseline—depends highly
on the amount of training data, attaining competitive results in such case. On
the other hand, the two-step process, especially when using the Seq2Seq-Attn as
translation mechanisms, clearly stands for the best option when training data is
limited, also reaching the best performance when the training set is of sufficient
size.
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Fig. 5. Graphic bar plot comparison of the average SER produced by the proposed
pipelines with the different corpora, which consists in the initially proposed datasets
and two reductions on PrIMUS size in order to establish intermediate points between
the handwritten and the printed corpus. The Baseline results refer to the Direct Encod-
ing Encoding approach described in other sections.

6 Conclusions

We studied in this paper the development of complete OMR pipelines, which
receive a music staff image as input and produce a standard music encoding
sequence as output. We discussed how to approach this task by proposing a
two-step pipeline based on a state-of-the-art image recognition model in OMR
combined with NMT solutions for the encoding step. We also included a direct
encoding pipeline that outputs directly the final encoding from the image. To
evaluate these approaches, we experimented in two corpora of varying character-
istics. After the experimentation, we observed different aspects about how these
approaches perform over different corpora, where we obtained a relevant idea
that outlines this work: the two-step pipeline with NMT is a good option when
the target corpus to digitize does not have enough labeled data for learning the
inherent complexity of the OMR, which is, in fact, an interest aim of this paper.

From a practical perspective, specifically in the case of early music heritage,
it is common to find scenarios where manual data labeling is required in order
to constitute a corpus before using OMR tools. As we saw in our experimen-
tation, the OMR, processes that include NMT models to perform the encoding
step behave reasonably well in this case. This feature involves a great practical



Optical Music Recognition via Transcription and Translation 673

advantage for these scenarios, as there is no need to label a vast amount of data
to start using this tool. However, the two-step pipeline also has a considerable
drawback: the corpus has to be labeled in two encoding languages (agnostic
and semantic) in order to make it work. Despite this issue, there are possible
ways of mitigation because the translation process does not depend on a specific
manuscript; therefore, just one pretrained translation model, relieving the effort
of manually creating the semantic annotation.

Despite the advances presented in this paper, we consider that further
research is required to maximize the benefits this approach might bring, as
this paper only proves that it is a feasible option for cases where the corpus
does not provide enough data. This future research may focus on different topics
such as improving the robustness to input inconsistencies of the NMT models
(especially the Transformer) with data augmentation, the modelling of cohesive
vocabularies to obtain more profit from the encoding models, or the study on
how to integrate these systems to produce a single-step OMR pipeline with a
dual training process.
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