®

Check for
updates

Bayesian Hyperparameter Optimization of Deep
Neural Network Algorithms Based on Ant
Colony Optimization

Sinda Jlassi', Imen Jdey!"*® and Hela Ltifi!

1 Faculty of Sciences and Techniques of Sidi Bouzid, University of Kairouan, Kairouan, Tunisia
Jlassi.Sinda@fstsbz.u-kairouan.tn, {imen.jdey,
hela.ltifi}@fstsbz.rnu.tn
2 REsearch Groups in Intelligent Machines, University of Sfax, National School of Engineers
(ENIS), BP 1173, 3038 Sfax, Tunisia

Abstract. Within this paper we proposed a new method named BayesACO, to
improve the convolutional neural network based on neural architecture search
with hyperparameters optimization. Atits essence BayesACO in first side uses Ant
Colony Optimization (ACO) to generate the best neural architecture. In other side,
it uses bayesian hyperparameters optimization to select the best hyperparameters.
We applied this method on Mnist and FashionMnist datasets. Our proposed method
proven competitive results with other methods of convolutional neural network
optimization.

Keywords: Convolutional neural network - Neural architecture search -
Hyperparameters optimization - Ant colony optimization - Bayesian
hyperparameters optimization

1 Introduction

Deep learning is a new area of machine learning research which was introduced
with the aim of bringing machine learning closer to its main goal artificial intelli-
gence. These are algorithms inspired by the structure and functioning of the brain they
can learn several levels of representation [28-30].

The performance of many deep learning methods is highly sensitive to many deci-
sions including choosing the right neural structures, training procedures and methods
of hyperparameters optimization; in order to get the desired result. This is a prob-
lem whether for new users or even experts. Therefore, Automated Machine Learning
(AutoML) can improve performance while saving a lot time and money. AutoML fields
aims to make these decisions in data-driven, objective and automated manner. The most
helpful and remarkable method of AutoML is the Neural Architecture Search (NAS)
method [9].

We choose one of the latest NAS method that uses the ant colony optimization
algorithm to design its structure with minimal weights [7]. Where the general concept

© Springer Nature Switzerland AG 2021
J. Lladés et al. (Eds.): ICDAR 2021, LNCS 12823, pp. 585-594, 2021.
https://doi.org/10.1007/978-3-030-86334-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86334-0_38&domain=pdf
https://doi.org/10.1007/978-3-030-86334-0_38

586 S. Jlassi et al.

of ant colony optimization algorithms, inspired by original ant demeanor [17], is a
combination of prerequisites about a promising solution structure with basic in-formation
about the priori obtained network structure [4]. It is branched into several types, which
are of interest to us in this study, namely Ant Colony System (ACS), where a group of
ant team up to explore good solutions for treatment providers, using an indirect form of
pheromone mediated communication deposited at the edges of the travelling salesman
problem (TSP) diagram while building solutions [8].

The hyperparameters optimization has a significant impact on the performance of the
neural network. Many technologies have been applied successfully. The most common
ones are grid search, random search, and Bayesian optimization [2]. Grid search, searches
all possibilities. So, it takes a lot of time devoted to the search of hyperparameters.
Whereas, random search is based on Grid search, with the aim of creating a network of
excessive parameter values, to randomly choose a combination of them. Therefore, this
process automatically takes a long time, so it cannot converge with global optimum or
guarantee a stable and competitive result. These two methods need all the possible values
for each parameter. On the other hand, Bayesian optimization just needs the order of
values. The Bayesian optimization is looking for a global optimum with minimal stages
[12].

In this work, we are interested in modeling a new optimization process for a con-
volutional neural network model. To verify the feasibility of our work we compared it
with others previous methods of optimization, such as Deepswarm [7], Udeas [2], and
LDWPSO [3].

The remainder of the paper is organized as follows: Sect. 2 presents the study back-
ground concerning the deep learning, the ant colony optimization and the bayesian
hyperparameter optimization; Sect. 3 introduces our proposed method; Sect. 4 provides
an evaluation of our method; Sect. 5 concludes the paper and explores possible future
directions.

2 Study Background

2.1 Deep Learning

Deep learning supports computer models composed of different processing layers to
explore representations of data with different advanced levels these technics have
dramatically afflicted the technical level of various domains [28, 29].

A deep neural network, within deep learning, includes many categories, including
convolutional neural networks. So convolutional refers to a computation, and it is a spe-
cialized type of linear operation. They are simply neural networks that use convolution
rather than repeating the general matrix in at least one of their layers. Its first appearance
was in the 1990s, when models were developed to recognize handwritten numbers and
were of high performance [18]. Even CNN structures have seen increased development,
with ImageNet’s challenge error rate dropping below 4%. When developing AlexNet
researchers from 8 layers to 152 layers [19]. CNN has also excelled in other computer
vision tasks, such as human action recognition [20], object localization [21, 22], pedes-
trian detection [23], and face recognition [24]. CNN subsequently demonstrated that it
was effective in natural language and speech processing, and achieved excellent results
in stratification [25], sentence modeling [26], and speech recognition [27].

Bayesian Hyperparameter Optimization 587

2.2 Ant Colony Optimization

The algorithm to improve the ant colony mainly aims to find the path closest to the target
[8]. By secreting the so-called pheromone, in order to leave a trace of the following
ants, and according to the nature of the ants, it follows the smell of the most recent
and most pheromone in terms of quantity, which means the ant that took the shortest
path towards the target. The choice is between each node and another with the rule of
choosing a pseudo random procedure (based on probability). The environment altered
in two various modes, one to update the local track, when the other to update the global
track as shown in Fig. 1. The amounts of pheromone are updated in the edges, where
ants move between the contract, with the aim of building a new solution. Automatically
all ants apply updating pheromone offline. Global Trail Update comes when all nodes
complete through the shortest path by updating the edges that have the best ingenuity
on their way [4].

| Initialize parameters

%{ Select an ant I

N2

Move ant to randomly selected
node

Vi

| Calculate the cost I

V%

| Update local pheromone trail |

YES

Get best model from above
ierations

L

Update global pheromone

Is last
iteration?

Get best model

Fig. 1. Ant colony optimization steps

588 S. Jlassi et al.

The contact weights are adjusted according to the number of ants, so different com-
binations of contact weight values are determined. For an independent Ant Colony
Optimization (ACO) training application and ACO-BP hybrid training for forward neu-
ral networks training for categorization of patterns [10]. Through the global research of
the ant colony, weights and bias of artificial neural network (ANN) and deep neural net-
work (DNN) models were modified to achieve optimum performance in the prediction
of capital cost [1]. ACO is used to form an ant clan that uses pheromone information
to collectively search for the best neurological structure [7]. Is also used for recurrent
neural network to develop the structure [11].

2.3 Bayesian Hyperparameter Optimization

We can say that the bayesian hyperparameters optimization algorithm is repeated t — 1
times [12]. Within this loop, it will increase the acquisition function and then update the
pre-distribution. With each cycle, the pre-distribution is constantly updated, and based
on the new setting, the dot at whom the acquisition function is incremented and collected
to the training data set is organize. The entire process is duplicated until the maximum
number of duplicates is reached or the difference between the current value and the
optimum value obtained so far is less than a predetermined threshold [12]. Using bayesian
optimization to control data, compare models for an ideal network [13]. Gaussian Process
Model (GP) is an algorithm for integrating learning performance. Its performance is
affected by some options like kernel type and handling super parameters. The advance is
that, the algorithms take into account the variable cost of learning algorithm experiments,
which can benefit from multiple cores of parallel experiments [14]. Where the only
available standards are artificial test functions that do not represent practical applications.
To alleviate this problem, a library of standards was introduced from the pre-eminent
application to improve hyperparameters [15]. In [16], the authors define a new kernel
for conditional parameter distances that clearly includes information about the relevant
parameters in a particular structure, to link the collected performance data for different
architectures. In the case of searching for structures that have parameters of different
values. For example, we might want to research neural network architectures with an
unknown number of layers.

The central idea of BO is to optimize the hyperparameters of the neural network. In
this work, we suggest an improvement, that we called BayesACO.

3 Proposed Algorithm

The parameters embedded in our model are internal to the neural network, assessed
automatically or learned from learning samples. Therefore, hyperparameters, which are
external parameters determined by the neural network, have a great influence on the
accuracy of the neural network, hence it is hard to detect these values. Our algorithm
takes place in two phases as shown in Fig. 2:

o Initial phase: Neural architecture searches with ANT COLONY OPTIMIZATION to
obtain the best weight that form the convolutional neural network structure which
improves the weight of the CNN model in order to get optimal performance.

Initialize parameters

Bayesian Hyperparameter Optimization

9‘ Select an ant
\L %’ Get best model
Move ant to randomly selected
node \I/
\/ %{ Select hyperparamaters
l Calculate the cost I8
v l Training / evaluate |
I Update local pheromone trail I \I/
I Update the model |

Is last
iteration?

YES

Get best model from above
ierations

L |

Update global pheromone ‘

Get final best model

Is last
iteration?

Fig. 2. BayesACO workflow

e Second phase: Using Bayesian Hyperparameters Optimization enables the optimiza-
tion of certain number of hyperparameters. Thus, we can find better hyperparameters
in less period of time because they are reflected on the best set of hyperparameters to
an evaluation based on the former experiences.

3.1 Bayesian Hyperparameter Optimization

Throughout this phase, we are going to apply the Bayesian Hyperparameters Optimiza-
tion. To begin first, we have to specify which function is to be optimized. Then we start
with selecting the hyperparameters of the model in a random way. Afterwards, we train
the model by evaluating and updating it until it gets the best performance. This stage
is repeated with certain number of iterations which is specified by the user in a manner
that each iteration depends on the previous one.

590 S. Jlassi et al.

4 Application

Along this section, we will deal with hyperparameter and parameter optimization. Eval-
uating hyperparameters and model structure in CNN to get the best performance as
possible is performed on the Mnist and FashionMnist datasets.

Table 1 shows the optimization parameters of our methodology. The number of filters
in the convolution Node is optimized between 32 and 128, and the kernel size between
1 and 5 the learning rate of Dropout Node is between 0.1 and 0.3 the “stride” of Pooling
Node between 2 and 3, and the type which max or average the size of Dense Node can
be 64 or 128, and their activation function is ReLU or Sigmoid validation split between
0.0 and 0.3, batch size which 32, 64 or 128 and epochs number which 5, 10 or 20.

Table 1. Optimization parameters of BayeACO.

Parameter Optimization value
filter_count {32, 64, 128}
kernel_size {1,3,5}

rate {0.1,0.3}
pool_type {max, average}
stride {2, 3}
output_size {64, 128}
activation {ReLU, Sigmoid}
validation split | {0.1, 0.3}

batch size {32, 64, 128}
epochs {5, 10, 20}

The main parameters of BayesACO use for optimization with mnist. The ant count
is 16 and the maximum number of depths is 10. The epochs number is 15, the batch size
equals 64, and the learning rate is equal to 0.1.

The first model that we present in Fig. 3 is composed of two convolutional layers
and two fully connected layers and one max pooling, dropout and flatten layer.

8284 28284 28°28%64 M1 12544 64 10
-
» . 1 ° °
r) P 2 e e
Input Image : [B R a
{28,281) . - R . 3
t : "
0
kernel size: 5,5 kernel size: 5, 5 pool size: 2,2

Fig. 3. The best architecture discovered with Mnist

Bayesian Hyperparameter Optimization 591

From Fig. 4 The accuracy of training and testing increases with the number of epochs,
this reflects that with each epoch the model learns more information. If the precision is
reduced then we will need more information to teach our model and therefore we must
increase the number of epochs and vice versa. Likewise, the learning and validation error
decreases with the number of epochs. We also notice that the total misclassified images
are 57 images, an error rate of 0.57% and the total well classified images is 9943 an
accuracy rate of 99.43%.

model accuracy model loss
1000 —vnn/—v‘\/— 01751 — yain
test test
0995 — 0150
09%0 0125
. 0985
3 0100
5 0980 2
-]
¥ = 0075
0975
0970 .
0965 0025
0960 0000
00 25 50 75 100 15 150 1S 00 25 S0 75 100 15 150 1S
epoch epoch

Fig. 4. Accuracy and Error for mnist model Fashion-MNIST dataset

The initial parameters of BayesACO use for optimization with fashionmnist. The
ant count is 16 and the maximum number of depth is 15. The epochs number is 20, the
batch size equals 64, and the learning rate is equal to 0.1.

The second model that we present in Fig. 5 is composed of three layers of convolution
and two layers of averagepooling and a dropout and fully connected layer.

W6 W el MULNE 1MN56 77286 14

. :. f)
" 0 n | s
m (. u : !

Input Image ! ") .

{28/2811)] : ol :
" D t e
] b
kernel size: 5,5 kernelsize: 5,5 poolsize:2,2 kernel size: 5,5 pool size: 2,2

Fig. 5. The best architecture discovered with FashionMnist

Beyond this, we compare the differences between the results of our final method
and other methods of improving the convolutional neural network such as Deepswarm,
Udeas and LDWPSO.

592 S. Jlassi et al.

The variations in results of the algorithms obviously indicate the effectiveness of our
proposed methodology in term of cost which has been defined as the value of the test
accuracy as it is clarified in the Table 2.

Table 2. Results of optimization methods.

Method Accuracy

Mnist | FashionMnist
Lenet5 99% 81.6%
Resnet18 99.2% | 92.1%
XgBoost 95.8% | 89.8%

Deepswarm [7] |99.22% | 93.4%
LDWPSO [3] 98.95% | —
uDeas [2] 99.1% -
BayesACO 99.43% | 93.8%

We can conclude that our result with the mnsit database is 3.63% higher compared
to the xgboost architecture, and higher by 0.48 with the ldwpso optimization method
and with the fashionmnsit database the precision obtained is 12.4% higher compared to
the lenet5 architecture, and higher by 8.71% with the bayesian optimization method.

5 Conclusion

In this paper, we are interested in integrating the bayesian optimization of hyperparam-
eters in the stages of an existing neural architecture search. This system was developed
to optimize the convolutional neural network.

The combination of the hyperparameters optimization with the neural architecture
search allows reducing human intervention because the process of extracting the network
will become fully automated. Thus, we gain time and give us more accurate results.

As perspectives, we think it is important to run the proposed method on other
databases. To evaluate the method in terms of time compared to other competing meth-
ods, and to develop this approach using more advanced techniques than those which
already exist to obtain better results.

References

1. Zhang, H., et al.: Developing a novel artificial intelligence model to estimate the capital cost
of mining projects using deep neural network-based ant colony optimization algorithm. Res.
Policy 66, 101604 (2020)

2. Yoo, Y.J.: Hyperparameter optimization of deep neural network using univariate dynamic
encoding algorithm for searches. Knowl.-Based Syst. 178, 74-83 (2019)

10.

11.

12.

13.

14.

18.

19.

20.

21.

22.

Bayesian Hyperparameter Optimization 593

. Serizawa, T., Fujita, H.: Optimization of convolutional neural network using the linearly

decreasing weight particle swarm optimization. arXiv:2001.05670 (2020)

. Katiyar, S., Ibraheem, N., Ansari, A.Q.: Ant colony optimization: a tutorial review. In: National

Conference on Advances in Power and Control, pp. 99-110 (2015)

. Wu,J.,Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparameter optimization

for machine learning models based on bayesian optimization. J. Electr. Sci. Technol. 17(1),
26-40 (2019)

. Andonie, R.: Hyperparameter optimization in learning systems. J. Membr. Comput., 1-13

(2019)

. Byla, E., Pang, W.: DeepSwarm: optimising convolutional neural networks using swarm

intelligence. In: Zhaojie, J., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds.) Advances in
Computational Intelligence Systems: Contributions Presented at the 19th UK Workshop on
Computational Intelligence, Portsmouth, UK, 4-6 September, 2019, pp. 119-130. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-29933-0_10

. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the

traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53-66 (1997)

. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning. TSSCML,

Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

Mavrovouniotis, M., Yang, S.: Training neural networks with ant colony optimization
algorithms for pattern classification. Soft Comput. 19(6), 1511-1522 (2014)

Desell, T., Clachar, S., Higgins, J., Wild, B.: Evolving deep recurrent neural networks using
ant colony optimization. In: Ochoa, G., Chicano, F. (eds.) Evolutionary Computation in Com-
binatorial Optimization, pp. 86-98. Springer International Publishing, Cham (2015). https://
doi.org/10.1007/978-3-319-16468-7_8

Zhang, X., Chen, X., Yao, L., Ge, C., Dong, M.: Deep neural network hyperparameter
optimization with orthogonal array tuning. In: Advances in Neural Information Processing,
Vancouver, BC, Canada, pp. 287-295 (2019)

MacKay, D.J.C.: Probable networks and plausible predictions—a review of practical Bayesian
methods for supervised neural networks. Netw. Comput. Neural Syst. 6(3), 469-505 (1995)
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning
algorithms. In: Advances in Neural Information Processing Systems, Lake Tahoe, Nevada,
pp- 2951-2959 (2012)

. Eggensperger, K., et al.: Towards an empirical foundation for assessing Bayesian optimization

of hyperparameters. In: NIPS Workshop on Bayesian Optimization in Theory and Practice,
10 December 2013

. Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.A.: Raiders of the lost archi-

tecture: Kernels for Bayesian optimization in conditional parameter spaces. arXiv:1409.4011
(2014)

. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag.

1(4), 28-39 (2006)

Lecun, Y., Bottou, L., Bengio, Y., Haffnern, P.: Gradient-based learning applied to document
recognition. In: Proceedings of the IEEE (1998)

He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European
Conference on Computer Vision (2016)

Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for automatic human
action recognition. US Patent 8,345,984 (2013)

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level
performance on imagenet classification. In: Proceedings of the IEEE (2015)

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with
region proposal networks. Adv. Neural Inf. (2015)

http://arxiv.org/abs/2001.05670
https://doi.org/10.1007/978-3-030-29933-0_10
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-319-16468-7_8
http://arxiv.org/abs/1409.4011

594

23.

24.

25.
26.

27.

28.

29.

30.

S. Jlassi et al.

Angelova, A., Krizhevsky, A., Vanhoucke, V., Ogale, A., Ferguson, D.: Real-time pedestrian
detection with deep network cascades (2015)

Schroff, E., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition
and clustering. In: Proceedings of the IEEE (2015)

Kim, Y.: Convolutional neural networks for sentence classification. arXiv:1408.5882. (2014)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling
sentences. arXiv preprint (2014)

Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., Yu, D.: IEEE/ACM
Transactions on Audio, Speech, and Language Processing (2014)

Bengio, Y.: Learning deep architectures for Al. Found. Trends Mach. Learn. 2(1), 1-127
(2009)

Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Signal Process.
7(3-4), 197-387 (2014)

Jdey, L., Bouhlel, M.S., Dhibi, M.: Comparative study of two decisional fusion techniques:
dempester Shafer theory and fuzzy integral theory in radar target recognition. Fuzzy Sets
Syst. 241, 68-76 (2014)

http://arxiv.org/abs/1408.5882

	Bayesian Hyperparameter Optimization of Deep Neural Network Algorithms Based on Ant Colony Optimization
	1 Introduction
	2 Study Background
	2.1 Deep Learning
	2.2 Ant Colony Optimization
	2.3 Bayesian Hyperparameter Optimization

	3 Proposed Algorithm
	3.1 Bayesian Hyperparameter Optimization

	4 Application
	5 Conclusion
	References

