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Abstract. Most online handwriting recognition systems require the use
of specific writing surfaces to extract positional data. In this paper
we present a online handwriting recognition system for word recogni-
tion which is based on inertial measurement units (IMUs) for digitizing
text written on paper. This is obtained by means of a sensor-equipped
pen that provides acceleration, angular velocity, and magnetic forces
streamed via Bluetooth. Our model combines convolutional and bidirec-
tional LSTM networks, and is trained with the Connectionist Temporal
Classification loss that allows the interpretation of raw sensor data into
words without the need of sequence segmentation. We use a dataset of
words collected using multiple sensor-enhanced pens and evaluate our
model on distinct test sets of seen and unseen words achieving a charac-
ter error rate of 17.97% and 17.08%, respectively, without the use of a
dictionary or language model.

Keywords: Online handwriting recognition · Digital pen · Inertial
measurement unit · Time-series data

1 Introduction

The field of handwriting recognition has been studied for decades, increasing
in popularity with the advancements of technology. This increase in popularity
is due to the substantial number of people using handheld digital devices that
provide access to such technologies, and the desire of people to save and share
digital copies of written documents. The aim of a handwriting recognition system
is to allow users to write without constraints, then digitize what was written for
a multitude of uses.

Handwriting recognition (HWR) is widely known to be separated into two
distinct types, offline and online recognition [37,38]. For offline recognition, a
static scanned image of the written text is given as input to the system. Offline
recognition, also known as optical character recognition (OCR), is the more
common recognition technique used in a wide range of applications for reading
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specific details on documents, such as in healthcare and legal industry [42],
banking [36], and postal services [43]. Online handwriting recognition (OHWR),
alternatively, requires input data in the form of time series and includes the use
of an additional time dimension within the data to be digitized. This results in a
dynamic spatio-temporal signal that characterizes the shape and speed of writing
[25]. OHWR systems are deployed in applications on tablets and mobile phones
for users to digitize text using stylus pens or finger inputs on touch screens. Such
systems use precise positions of the writing tip. However, one drawback that can
be perceived is the need for a positional tracking system, whether it be a mobile
touch screen, or any other pen tracking application. The need for such a tracking
system restrains the user from writing on any surface and limits the usability of
the system as well as the capability of the writer [13].

Another approach to applying OHWR is the use of inertial measurement
units (IMUs) as, or integrated within, a writing tool. These tools provide move-
ment data, such as accelerometer or gyroscope signals, which can be used for
classification and recognition tasks. The major disadvantage of IMU sensors is
that they are prone to error accumulation over time which, if not corrected, can
lead to significant errors in the data recordings. Furthermore, IMU sensors gen-
erate noisy output signals, which is further intensified when touching a surface
due to surface friction, which successively leads to lower performance at the task
required due to deficient input data quality. However, when coupled with the
correct models, IMUs produce beneficial data from which precise information
can be extracted, such as the specific movements of a pen during handwriting.
Moreover, IMUs are sourceless, self-contained and require no additional tools
for data collection and extraction, and hence, a major advantage of IMU-based
recognition systems is that no specific writing surface is required and systems
rely only on the signals collected from the sensors.

In this paper, we discuss further the latter approach and introduce an OHWR
system that uses sensor data recordings from pen movements to recognize writ-
ing on regular paper. We present an end-to-end system that processes sensor
recordings in the form of time series data, and outputs the interpreted digi-
tal text on a tablet. Our system surpasses previous sensor-based pen systems
in recognition rates, and is the first IMU-based pen recognizer that recognizes
complete words and is not restricted to single character or digit recognition on
paper. We use, as a digitizer, a regular ballpoint pen integrated with multiple
sensors, and designed with a soft grip, that allows the user to write on a plain
paper surface without constraints.

The rest of the paper is structured as follows: Sect. 2 summarizes available
OHWR systems, distinguishing between positional-based and IMU-based sys-
tems. Section 3 presents the digitizer used in our system and explains the data
acquisition process. Section 4 describes our end-to-end neural network architec-
ture and describes the model training process, the hyperparameters used, and
the data splitting. Section 5 reports the results and discusses the results obtained
on distinct test sets. Section 6 outlines the future work to be implemented in our
system.
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2 Related Work

HWR has been a topic of interest in research for many years. Reviews about
recognition systems [25,37] present pre-processing techniques, extracted features,
in addition to different recognition models such as segment-and-decode methods
and end-to-end recognition systems. In our work, we focus on the difference in the
type of data used rather than methods of recognition. We briefly describe some
previously developed recognition systems while distinguishing between systems
using positional data and ones using IMU data.

2.1 Positional-Data Based Systems

Basic OHWR systems were presented by [6,48] in the late 1990s using Hidden
Markov Model (HMMs) and Artificial Neural Networks (ANNs) that model the
spatial structure of handwriting. A system developed using a multi-state time
delay neural network was presented in [21] using a dictionary of 5000 words with
pen position and pen-up/pen-down data. Models in which both an image of the
text along with pen tracking data were used to develop a Japanese handwriting
recognition system [22]. Different language specific systems were implemented
to apply recognition systems for different writing styles, such as Arabic [45] and
Chinese [28].

The availability of public datasets considerably increased research in this
field. The UNIPEN dataset [18] is a collection of characters with recorded pen
trajectory information including coordinate data with pen-up/down features,
which was used to implement a character recognition model using time delay
[19] and Convolutional [33] neural networks. An Arabic recognition system [4]
applied HMMs using the SUSTOLAH dataset [34].

The IAM-ONDB dataset [30] is considered the most popular dataset in the
OHWR domain. It includes pen trajectories of sentences written on a smart
whiteboard with an infrared device mounted on the corner of the board to
track the position of writers’ pens, in addition to image data of written text
from a collection of 86,272 word instances. [30] also introduced a HMM-based
model with segmented data reaching up to about 66% recognition rate. This
rate increased to 74% and consecutively to 79% when recurrent neural networks
(RNNs) and bi-directional Long Short-Term Memory-Networks (BLSTMs) were
implemented with non-segmented data [16,32]. An unconstrained recognition
system was introduced in [15] with the integration of External Grammar mod-
els, achieving a word error rate (WER) of 35.5% using HMMs and 20.4% using
BLSTMs. The combination of diverse classifiers led to a word level accuracy of
86.16% [31].

A multi-language system [24], supporting up to 22 different scripts for touch
enabled devices, was based on several components: character model, segmen-
tation model, and feature weights. The model was trained and evaluated on
different public and internal datasets, leading with error rates as low as 0.8%
to 5.1% on different UNIPEN test sets, also achieving a character error rate
(CER) and WER of 4.3% and 10.4%, respectively, on the IAM-ONDB dataset.



292 M. Wehbi et al.

The model results improved with the introduction of Bézier Curves, an end-to-
end BLSTMs architecture, and language specific models with CER and WER of
2.5% and 6.5%, respectively [8].

The above metioned systems describe different methods for data pre-
processing, feature extraction, and classification models, achieving different
results for OHWR, while using input of either raw coordinate strokes or features
extracted from these strokes. These systems were designed for position-based
data that was extracted using specially designed hardware writing surfaces or
touch screens and thus still pose a limitation if a system for digitzing paper-
writing is required.

2.2 IMU-data Based Systems

The use of IMU data for HWR has been presented in different forms through-
out the past years. Accelerometer-based digital pens for handwritten digit and
gesture trajectory were developed in [23,46] with an accuracy of 98% & 84.8%
over the ten digits, respectively. A 26 uppercase alphabet recognition system was
developed using an inertial pen with a KNN classifier with 82% accuracy [41].
Pentelligence [40] combined the use of writing sounds with pen-tip motion from
a digital pen equipped with microphones and IMU sensors for digit recognition
reaching an accuracy of 98.33% for a single writer.

More recent studies used the Digipen [27] for the recognition of lowercase
Latin alphabet characters. A recognition rate of 52% was achieved using LSTMs.
The Digipen [47] was also used for the classification of uppercase and lowercase
Latin alphabet characters separately, with a different dataset than what was
used in [27]. A 1-Dimensional Convolutional Neural Network (1D-CNN) model
achieved an accuracy of 86.97%.

At the time of the development of these systems, no public dataset for this
task was available for a concrete evaluation of different systems. The On-HW
dataset [35] was the first published IMU-based dataset and consisted of record-
ings of the complete Latin alphabet characters. It was released with baseline
methods having an accuracy of 64.13% for the classification of 52 classes. These
results were based on the writer-independent scenarios described in the papers
(when available), since a writer-dependent model is not a feasible model when
developing an OHWR system for general use.

For word level recognition, wearable technologies were implemented as
approaches for HWR using IMUs. Airwriting is a tracked motion of continu-
ous sensor stream, in which writing is of a single continuous stroke. It suffers
from no surface friction and allows writing in free space. A digital glove equipped
with accelerometers and gyroscopes for airwriting was designed in [5], achiveing a
WER of 11% using an HMM model following the segment-and-decode approach,
evaluated on nine users writing 366 words using a language model consisting of
60000 words. A CNN-RNN approach for in-air HWR [12] achieved a word recog-
nition rate (WRR) 97.88% using BLSTMs. Similar work was presented in [11]
with a recognition rate of 97.74% using an encoder-decoder model. More recent
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Fig. 1. The Digipen sensor placement

work presented a wearable ring for on-surface HWR [29] which provided accel-
eration and the angular velocity data from the finger resulting in 1.05% CER
and 7.28% WER on a dataset of 643 words collected by a single writer.

Differently from positional-based systems or wearable systems, IMU-based
digital pen systems are still limited to single digit or character recognition, with
a solution for word recognition not demonstrated yet. This is due to the fact
that writing on a paper surface introduces a considerable amount of noise in the
data which makes the learning of a recognition model challenging. Furthermore
the evaluation of such systems has been conducted on very different setups and
on limited data. Here we propose a system that aims at filling the gap between
pen-based systems and other approaches. We show that our IMU-based pen
recognizer is practical for word recognition, and achieves significant improved
results in comparison to previous pen devices.

3 Data Acquisition and Description

In this section, we introduce the pen used as a digitzer and the data collection
process, and describe the data that was used to train our model. We base our
system on a set of digital pens of the same model to ensure that our work is
not biased towards one single instance of the device. The pen model used in our
system is the STABILO Digipen which was used in [27,35,47]. The selection of
this digitizer was based on the two main factors:

• Suitability: The Digipen is a ballpoint pen that can be used to write on paper
like any regular pen. It is equipped with five different sensors, a combined
accelerometer and gyroscope module at one side of the pen close to the pen
tip, another single accelerometer module close to the other end of the pen, a
magnetometer module, in addition to a force sensor at the tip of the pen that
provides data about when the tip touches a surface, displayed in Fig. 1. This
tool also includes a Bluetooth module that allows the transmission of collected
sensor data to other devices in real-time. Accordingly, a trained recognition
model can be integrated within a mobile app and can be used without the
need for any further equipment but a mobile device. The Digipen streams
sensor data via Bluetooth Low Energy with a sampling frequency 100 Hz.
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Detailed information about the pen dimensions, sensor modules and ranges
can be found in [2,35].

• Availability: The Digipen was not specifically designed for our work, and is
available in a line of products. This implies that the system we developed is
not for a single use case study, but can be further extended for different use
case scenarios when required. Additionally, the availability of the pen allows
the collection of data in a parallel manner which can accelerate a study that
uses this tool.

3.1 Data Collection Application

To collect the ground truth labels of the data, the Digipen is provided with
a Devkit [1] guide for the development of a mobile application for interaction
with the pen. The application provides two files with similar timestamps of the
recording session that can be used to extract data samples in the form of training
data with the relative labels. A sample is defined as a complete word recording
that consists of a series of timesteps.

3.2 Data Recording

Recording sessions were conducted in parallel using 16 different Digipens, with
each session taking up to 45 min of recording time. A set of 500 words was used
to collect the main set of data used for the system. Single words were displayed
on the screen of a tablet, the users were asked to write the word on paper, in
their own handwriting style, using the Digipen.

The dataset included recordings from 61 participants who volunteered to
contribute to our study, with some participants contributing less than the 500
required words due to time constraints. The number of samples collected was
27961 word samples.

In addition to the main dataset, a separate dataset (unseen words set) was
recorded from two other individuals. This recording consisted of random words
selected from a set of 98463 words, different from the main set, serving as a
second test set, with the purpose of testing the results of the system on unseen
words. The final count of this set was 1006 sample recordings. Figure 2 shows
histograms of the data count of both datasets with respect to the lengths of the
samples and labels separately.

3.3 Data Preparation

Data recording is subject to faults during the process. To ensure that our model
was trained on valid data, all hovering data before and at the end of each sin-
gle sample recording was trimmed out. This was achieved by removing the data
associated with force sensor readings below a pre-specified threshold at the begin-
ning and the end of a recording. From the first time this threshold was exceeded
within that recording, all data was kept even when the force reading temporarily
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Fig. 2. A histogram displaying the number of samples in relation with (left) length
of samples and (right) length of labels, in both (above) the main set and (below) the
second test set.

fell below that threshold. The threshold was determined experimentally through
monitoring the highest force sensor values while hovering with the pen. Addi-
tionally, samples which appeared too short or long to be correct recordings were
considered as faulty recordings and removed from the dataset. The data was
then normalized per sample using the z-score normalization in order to input
data features of a similar scale into the model. No further preprocessing or fea-
ture extraction was applied.

4 End-to-End Models

The architectures described in this section were inspired by research aimed
at developing end-to-end recognition models in handwriting [8,16] and speech
recognition [10]. The use of Recurrent Neural Networks (RNNs), distinctively,
Long Short-Term Memory networks (LSTMs), is common in the applications of
handwriting and speech recognition due to the ability to transcribe data into
sequences of characters or words while preserving sequential information. Bidi-
rectional RNNs (BRNNs) make use of both past and future contextual infor-
mation at every position of the input sequence in order to calculate the output
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sequences, and Bidirectional LSTMs (BLSTMs) have shown to achieve the best
recognition results in the context of phoneme recognition when compared to
other neural networks [17].

The models presented in this paper take input multivariate time series data
samples of different lengths, comprised of 13 channels, representing the tri-axial
measurements of the three IMU sensors and the magnetometer, in addition to the
force sensor. In this section we evaluate different model architectures, describe
the data splitting and the training process using raw sensor data.

4.1 Model Architectures

In the context of handwriting recognition using positional data, a model con-
sisting of BLSTM layers proved sufficient to achieve the best recognition rates
with the use of extracted feature vectors [16], or resampled raw stroke data [8],
while CNN models obtained the best character classification accuracy in systems
using raw sensor data with the Digipen [35,47].

Following recent studies, we included the CNN model in our study. The
model included four 1D-Convolutional layers, consisting of 1024, 512, 256, 128
feature maps, consecutively, with kernel sizes of 5, 3, 3, 3, respectively, and a
fully connected layer of 100 units.

In contrast to positional data, in our case the input sequences are long due
to a high sampling rate. Downsampling is not a viable option with IMU data
because it leads to the loss of critical information [7]. Therefore, in addition
to the CNN model, we implemented a CLDNN model (including Convolutional,
LSTMs, and fully connected layers), which is typically used in speech recognition
[10], where data samples are of high sampling rates and BLSTM models lead
to latency constraints. The Convolutional layers reduce the dimensionality of
the input features, which reduces the temporal variations within the LSTMs,
which are then fed into the Dense layers where the features are tranformed
into a space that makes that output easier to classify [39]. Hence, a CLDNN
model allows to avoid latency constraints and slow training and prediction times
which occur with BLSTM models. The model consisted of three Convolutional
layers, followed by two BLSTM layers and a single fully connected layer. The
Convolutional layers comprised of 512, 256, 128 feature maps with kernel sizes
of 5, 3, 3, respectively. The BLSTM layers were of 64 units each, and the fully
connected layer included 100 units. A grid search was implemented to determine
the optimal hyperparameters setup.

In both described models, Batch Normalization [20] and Max Pooling (of size
2) were applied after each Convolutional layer. The Relu activation was used in
the Convolutional and the fully connected layers, while Tanh was used in the
BLSTM layers. Random dropout [44] with a dropout rate of 0.3 was applied
after each layer to prevent overfitting and improve robustness of the system.

Similarly to the current developed systems in the field, we relied in our model
on the Connectionist Temporal Classification (CTC) loss [14] with a Softmax
output layer which provides an implicit segmentation of the data. The CTC is
an RNN loss function that enables labeling whole sequences at once. It uses the
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Table 1. Number of samples in each set per fold (word samples).

Sets Folds

1 2 3 4 5

Training 18452 18655 17588 17579 17598

Validation 4614 4664 4397 4395 4400

Test 4895 4642 5976 5987 5963

network to provide direct mapping from an input sequence to an output label
without the need of segmenting the data. It introduces a ‘blank’ character that
is used to find the best alignment of characters that best interprets the input.

4.2 Model Training

We split the main dataset into five folds, distributed into 49 users in the train-
ing set and 12 users in the test set, and train our model on the different folds
separately. No writer appears in both sets to consider a writer-independent recog-
nition task. The training data for each fold was divided into an 80/20 (train-
ing/validation) split. The unseen words dataset was used to test the effectiveness
of the models for unseen word data. Table 1 shows the different training, valida-
tion, and seen test sets, per each fold, not including any unseen words data.

For the implementation of our models, we used Keras/Tensorflow(v1) python
libraries [3,9], which include standard functions required for our work. The mod-
els were trained using a batch size of 64 samples and optimized with the Adam
Optimizer [26] with a starting learning rate of 10−2. A learning rate scheduler
was implemented to monitor the validation loss and decrease the learning rate
with a patience of 10 epochs and a factor of 0.8. We trained the models until the
validation loss showed no decrease for 20 iterations after the minimum learning
rate of 10−4 was reached, and saved the best model determined by the lowest
validation loss during training. Finally, the evaluation of our model required the
decoding of the CTC output into a word interpretation for which we used the
Tensorflow standard CTC decoder function with a greedy search that returns
the most likely output token sequence without the use of a dictionary.

5 Evaluation and Discussion

Table 2 presents the average results obtained. In terms of word recognition, the
CNN model achieved the higher error rate of 35.9% and 31.65% average CER
for seen and unseen words, respectively, which implies that the even though a
CNN model achieved good results in character recognition [35,47], it was not
sufficient for the CTC to find the best character alignment within a word sam-
ple. The higher recognition rates were achieved by the CLDNN model, with
an average of 17.97% and 17.10% CER. The models recognized unseen words
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Table 2. Average error rates with respect to model properties.

Models Seen words
Avg. % CER

UnSeen Words
Avg. % CER

Avg.
epochs

Trainable
parameters

Seconds per
epoch

CNN 35.90 (± 2.01) 31.65 (± 1.07) 153 2,154,957 53

CLDNN 17.97 (± 1.98) 17.10 (± 1.68) 236 743,373 102

without distinction from seen words, since the CTC learns to identify individual
characters within the data. Additionally, having users in two distinct test sets
different from users in the training sets provided a user-independent recognition
model.

Considering the different models in regard with the model complexity and time
performance, Table 2 shows the training time with respect to the trainable param-
eters of each model, in addition to the training iterations required to converge to
the best performance. The CNN model consisted of a larger number of training
parameters, however required lower training and prediction times. The CLDNN
model achieved the better complexity to performance ratio with a significantly
better recognition rate yet a longer training time relative to the CNN.

In addition to the average CER, Fig. 3 reports the average Levenshtein Dis-
tance per label length for both test sets using the CLDNN model. This shows
the minimum number of character edits, including insertions, deletions and sub-
stitutions, required to change a predicted word into the ground truth label. This
means that the prediction of our model was on average divergent by 0.98 and
1.66 character edits for the average length 5.59 and 9.72 characters for the seen
and unseen test sets, respectively. A detailed analysis of the errors showed that
an average of 68% of the predicted words were missing characters, which is due
to cursive writing. 26% of the prediction were of a substitution nature, which
occurs between characters that look similar in both uppercase and lowercase,
such as ‘P-p’, ‘K-k’, and ‘S-s’, while 6% only included more characters than the
relative ground truth, which occurs with multiple stroke characters.

The model used in our system followed the common used model in HWR
systems, both offline and online, which is a stack of Convolutional or Recurrent
layers trained with the CTC loss, and achieved an overall recognition rate similar
to previous position-based models that did not make use of languages models
[16]. However, this result is not directly comparable with previous systems, since
these systems were trained on different data types, with sentence data, while
our dataset consists of word data. Additionally, the state-of-the-art models in
positional-based systems make use of complex language models. Moreover, the
public IAM-OnDB dataset includes a higher number of classes in comparison to
our dataset. Nonetheless, the presented results suggest that our system is on an
adjacent level in terms of recognition rates without the use of a dictionary.

Our system did not show the same level of recognition rates in comparison
with the wearable systems described, which were trained on different datasets
using distinct hardware. These systems followed the segment-and-decode app-
roach with separate system-specific extracted features from uni-stroke data. Such
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Table 3. IMU-based pen recognizers with respective data type and performance,
including the results of the presented CLDNN model. Digipen represents the pen used
in this work.

Data type Recognition type Accuracy (%)

[23] Acc 10 Digits 84.8

[46] Acc 10 Digits 98

[40] Acc, Gyr, Sound 10 Digit 98.33

[27] Digipen 26 Characters 52

[41] Acc, Gyr, Mag 26 Characters 82

[47] Digipen 26 Characters 86.97

[35] Digipen 52 Characters 64.13

Ours Digipen Words 82.92 (CRR)

Fig. 3. A bar graph displaying the average Levenshtein Distance per label length for
the seen and unseen test sets evaluated using the CLDNN model.

systems provided air-writing capability, which does not fit for our paper-writing
recognizer. The wearable ring presented in [29] was designed for on-surface writ-
ing, however, the system was developed and evaluated for a single specific writer.
Also, writing with finger does not present the same efficiency in comparison with
pen writing.

Considering paper-writing recognition using sensor-equipped pens, our sys-
tem achieved significant results in comparison to previously developed systems.
Even though some previous systems used different hardware, our system, to the
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best knowledge of the authors, is the first IMU-based pen system that enables
word recognition. Table 3 shows a summary of the described sensor-equipped
pens in Sect. 2. Moreover, our model achieved an improved character recogni-
tion rate (CRR) by 18.79% for the 52 Latin alphabet characters relatively to
previous systems using the same hardware.

6 Conclusion and Future Work

In this paper, we presented a system that applies OHWR by writing on normal
paper using an IMU-enhanced ballpoint pen. We described the data collection
tools and process in detail, and provided a complete system setup. We trained
CNN and CLDNN end-to-end models that take normalized raw sensor data as
input, and output word interpretations using the CTC loss with a greedy search
decoder. The models were trained and evaluated using a five-fold cross-validation
method, with test users being different from the users in the training set. We
also evaluated the models on a separate test set to evaluate the efficiency of
our system for unseen words. The presented CLDNN model showed the best
performance without distinction between seen and unseen words.

Our system showed significant improvements in comparison with previously
presented character recognition systems using digital pens. With the results pre-
sented in this work, we showed that sensor-enhanced pens are efficient and yield
promising results in the OHWR field in which digitizing writing on paper is
required. Accordingly, to further improve the applications of OHWR using dig-
ital pens, the dataset used in this work is planned to be published for use in
the scientific community. Future work following this will include complete sen-
tence recognition, in addition to including digits and punctuation marks. Finally,
the end-to-end model we presented requires minimal preprocessing, and mainly
depends on the data, and thus to increase the robustness of a language recog-
nizer, we plan to pair our model with a distinct dictionary or language model
specific to the language to be recognized.
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