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Abstract. We propose new methods for in-domain and cross-domain
Named Entity Recognition (NER) on historical data for Dutch and
French. For the cross-domain case, we address domain shift by integrating
unsupervised in-domain data via contextualized string embeddings; and
OCR errors by injecting synthetic OCR errors into the source domain
and address data centric domain adaptation. We propose a general app-
roach to imitate OCR errors in arbitrary input data. Our cross-domain
as well as our in-domain results outperform several strong baselines and
establish state-of-the-art results. We publish preprocessed versions of the
French and Dutch Europeana NER corpora.
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1 Introduction

Neural networks achieve good NER accuracy on high-resource domains such as
modern news text or Twitter [2,4]. But on historical text, NER often performs
poorly. This is due to several challenges: i) Domain shift: Entities in historical
texts can be different from contemporary entities, this makes it difficult for
modern taggers to work with historical data. ii) OCR errors: historical texts –
usually digitized by OCR – contain systematic errors not found in non-OCR text
[14]. In addition these errors can change the surface form of entities. iii) Lack of
annotation: Some historical text is now available in digitized form, but without
labels, and methods are required for beneficial use of such data [16].

In this paper, we address data centric domain adaptation for NER tagging
on historical French and Dutch data. Following Ramponi and Plank [20], data
centric approaches do not adapt the model but the training data in order to
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improve generalization across domains. We address both in-domain and cross-
domain NER. In the cross-domain setup, we use supervised contemporary data
and integrate unsupervised historical data via contextualized embeddings. We
introduce artificial OCR errors into supervised modern data and find a way
to perturb corpora in a general and robust way – independent of language or
linguistic properties.

In the cross-domain setup as well as in-domain, our system outperforms neu-
ral and statistical state-of-the-art methods, achieving 69.3% F1 for French and
63.4% for Dutch. With the in-domain setup, we achieve 77.9% for French and
84.2% for Dutch. If we only consider named entities that contain OCR errors,
our domain-adapted cross-domain tagger even performs better (83.5% French/
46.2% Dutch) than in-domain training (77.1% French/ 43.8% Dutch). Our main
contributions are:

• Release of the preprocessed French and Dutch NER corpora1;
• Developing synOCR to mimic historical data while exploiting the annotation

of modern data;
• Training historical embeddings on a large amount of unlabeled historical data;
• Ensembling a NER system that establishes SOTA results for both languages

and scenarios.

2 Methods

2.1 Architecture

We use the Flair NLP framework [1]. Flair taggers achieve SOTA results on
various benchmarks and are well suited for NER. Secondly, there are powerful
Flair embeddings. They are trained without explicit notion of words and model
words as character sequences depending on their context. These two properties
contribute to making atypical entities - even those with distorted surface - eas-
ier to recognize. In all our experiments, word embeddings are generated by a
character-level RNN and passed to a word-level bidirectional LSTM with a CRF
as the final layer. Depending on the experiment, we concatenate (�) additional
embeddings and refer to that as ensembling process.

2.2 Noise Methods

Since digitizing by OCR introduces a lot of noise into the data, we recreate some
of those phenomena in the modern corpora that we use for training. Our goal
is to increase the similarity of historical (OCR’d) and modern (clean) data. An
example drawn from the dutch training corpora can be found in Fig. 1. Words
that are different from the original text are indicated in bold font.

Generation of Synthetic OCR (synOCR) Errors. This method processes
every sentence by assigning a randomly selected font and a font size between 6
1 https://github.com/stefan-it/historic-domain-adaptation-icdar

https://github.com/stefan-it/historic-domain-adaptation-icdar
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and 11 pt. Batches of 150 sentences are printed to PDF documents and then
converted to PNG images. The images are perturbed using imgaug2 with the
following steps: (i) rotation, (ii) Gaussian blur and (iii) white or black pixel
dropout. The resulting image is recognized using tesseract version 0.2.6.3. We
re-align the recognized sentences with the clean annotated corpus to transfer
the NER tags. For the alignment between original and degraded text we select
a window of the bitext and calculate a character-based alignment cost. We then
use the Wagner-Fisher algorithm [27] to obtain the best alignment path through
the window and the lowest possible cost. If the cost is below a threshold, we
shift the window to the mid-point of the discovered path. Otherwise, we iter-
atively increase the window size and re-align, until the threshold criterion is
met. This procedure allows us to find an alignment with reasonable time and
space resources, without risking to lose the optimal path in low-quality areas.
Finally this results in an OCR-error enhanced annotated corpus with a range
of recognition quality, from perfectly recognized to fully illegible. We refer to
OCR-corrupted data as synOCR’d data.

Generation of Synthetic Corruptions. This method is applied to our mod-
ern corpora, again to introduce noise as we find it in historical data. Similar to
[21], we randomly corrupt 20% of all words by (i) inserting a character or (ii)
removing a character or (iii) transposing two characters. Therefore, we use the
standard alphabet of French/Dutch. We re-align the corrupted tokens with the
clean annotated tokens while maintaining the sentence boundaries to transfer
the NER tags. Since the corruption method does not break the word boundaries
we can simply map each corrupted word to the original one and retrieve the
corresponding NER tag. We refer to synthetically corrupted data as corrupted
data.

Fig. 1. Example from the dutch train set. Text in its original, the synOCR’d and the
corrupted form.

2 https://github.com/aleju/imgaug
3 https://github.com/tesseract-ocr/

https://github.com/aleju/imgaug
https://github.com/tesseract-ocr/
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2.3 Embeddings

We experiment with various common embeddings and integrate them in our
neural system. Some of them are available in the community and some others
we did train on data described in Sect. 3.1.

Flair Embeddings. [3] present contextual string embeddings which can be
extracted from a neural language model. Flair embeddings use the internal
states of a trained character language model at token boundaries. They are con-
textualized because a word can have different embeddings depending on its con-
text. These embeddings are also less sensitive to misspellings and rare words and
can be learned on unlabeled corpora. We also use multilingual Flair embeddings.
They were trained on a mix of corpora from different domains (Web, Wikipedia,
Subtitles, News) and languages.

Historical Embeddings. We train Flair embeddings on large unlabeled his-
torical corpora from a comparable time period (see Sect. 3.1) and refer to them
as historical embeddings.

BERT Embeddings. Since BERT embeddings [9] produce state-of-the-art
results for a wide range of NLP tasks, we also experiment with multilingual
BERT embeddings4. BERT embeddings are subword embeddings based on a
bidirectional transformer architecture and can model the context of a word. For
NER on CoNLL-03 [25], BERT embeddings do not perform as well as on other
tasks [9] and we want to examine if this observation holds for a cross-domain
scenario with different data.

FastText Embeddings. We do also use FastText embeddings [6] which are
widely used in NLP. They can be efficiently trained and address character-
level phenomena. Subwords are used to represent the target word (as a sum
of all its subword embeddings). We use pre-trained FastText embeddings for
French/Dutch5.

Character-Level Embeddings. Due to the OCR errors out-of-vocabulary
problems occur. Lample et al. [15] create character embeddings, passing all char-
acters in a sentence to a bidirectional LSTM. To obtain word representations, the
forward and backward representations of all the characters of the word from this
LSTM are concatenated. Having the character embedding, every single words
vector can be formed even if it is out-of-vocabulary. Therefore, we do also com-
pute these embeddings for our experiments.

3 Experiments

In the cross-domain setup, we train on modern data (clean or synOCR’d) and
test on historical data (OCR’d). In the in-domain setup, we train and test on a
set of historical data (OCR’d). We do use different combinations of embeddings
and also use our noise methods in the experiments.
4 We use the cased variant from https://huggingface.co/bert-base-multilingual-cased
5 https://fasttext.cc/docs/en/crawl-vectors.html

https://huggingface.co/bert-base-multilingual-cased
https://fasttext.cc/docs/en/crawl-vectors.html
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3.1 Data

We use different data sources for our experiments from which some are openly
available and some historical data come from an in-house project. For an
overview of different properties (domain, labeling, size, language) see Table 1.

Annotated Historical Data. Our annotated historical data comes from the
Europeana Newspapers collection6, which contains historical news articles in 12
languages published between 1618 and 1990. Parts of the German, Dutch and
French data were manually annotated with NER tags in IO/IOB format for PER
(person), LOC (location), ORG (organization) by Neudecker [17]. Each NER
corpus contains 100 scanned pages (with OCR accuracy over 80%), amounting
to 207K tokens for French and 182K tokens for Dutch.

We preprocess the data as follows. We perform sentence splitting, filter out
metadata, re-tokenize punctuation and convert all annotations to IOB1 format.
We split the data 80/10/10 into train/dev/test. We will make this preprocessed
version available in CoNLL format.

Annotated Modern Data. For the French cross-domain experiments, we use
the French WikiNER corpus [18]. WikiNER is tagged in IOB format with an
additional MISC (miscellaneous) category; we convert the tags to our Europeana
format. For better comparability we downsample (sentence-wise) the corpus from
3.5M to 525K tokens. Therefore, entire sentences were sampled uniformly at
random without replacement. For Dutch, we use the CoNLL-02 corpus [24],
which consists of four editions of the Belgian Dutch newspaper “De Morgen”
from the year 2000. The data comprises 309K tokens and is annotated for PER,
ORG, LOC and MISC. We convert the tags to our Europeana format.

Unlabeled Historical Data. For historical French, we use “Le Temps”, a jour-
nal published between 1861 and 1942 (initially under a different name), a similar
time period as the Europeana Newspapers. The corpus contains 977M tokens and
is available from the National Library of France.7 For historical Dutch, we use
data from an in-house OCR project. The data is from the 19th century and
it consists of 444M tokens. We use the unlabeled historical data to pre-train
historical embeddings (see Sect. 2.3).

3.2 Baselines

We experiment with three baselines. (i) The Java implementation8 of the Stan-
ford NER tagger [12]. (ii) A version of Stanford NER published by Neudecker
[17]9 that was trained on Europeana. In contrast to our system they trained
6 http://www.europeana-newspapers.eu/
7 https://www.bnf.fr/fr
8 https://nlp.stanford.edu/software/CRF-NER.html
9 https://lab.kb.nl/dataset/europeana-newspapers-ner

http://www.europeana-newspapers.eu/
https://www.bnf.fr/fr
https://nlp.stanford.edu/software/CRF-NER.html
https://lab.kb.nl/dataset/europeana-newspapers-ner
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Table 1. Number of tokens per dataset in our experiments.

Domain Data Labeled Size

French Historical Europeana NER + 207K

Modern WikiNER + 525K

Historical “Le Temps” − 977M

Dutch Historical Europeana NER + 182K

Modern CoNLL-02 + 309K

historical in-house OCR − 444M

theirs on the entire amount of the labeled Europeana corpora with 4-fold cross
validation. (iii) NN base. The neural network (see Sect. 2.1) with FastText, char-
acter and multilingual Flair embeddings, as recommended in Akbik et al. [1].
For French, we also list the result reported by Çavdar [8]. Since we do not have
access to their implementation and could not confirm that their data splits con-
form to ours, we could not compute the combined F1 score or test for significance.

Table 2. Results (F1 scores on French/Dutch Europeana test set) of training on Euro-
peana French/Dutch training set. Hist. Embs. are historical embeddings. Scores marked
with * are significantly lower than NN base � hist. Es.

French models Overall PER ORG LOC

Çavdar 0.68 0.37 0.68

Stanford NER tagger 0.662* 0.569* 0.335* 0.753*

Stanford Neudecker 0.750* 0.750* 0.505 0.826*

NN base 0.741* 0.703* 0.320* 0.813*

NN base � hist. Embs 0.779 0.759 0.498 0.832

Dutch models Overall PER ORG LOC

Stanford NER tagger 0.696* 0.640* 0.333* 0.794*

Stanford Neudecker 0.623* 0.700* 0.253* 0.702*

NN base 0.818* 0.809* 0.442* 0.871*

NN base � hist. Embs 0.842 0.833 0.480 0.891

4 Results and Discussion

We evaluate our systems using the CoNLL-2000 evaluation script10, with F1

score. To check statistical significance we use randomized testing [28] and results
are considered significant if p < 0.05.
10 https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt

https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
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4.1 In-domain Setup

For both languages we achieve the best results with NN base � historical embed-
dings. With this setup we can produce F1 scores of around 80% for both lan-
guages, which outperforms all three baselines in the overall performance signifi-
cantly. The results are presented in Table 2. For French, the overall F1 score as
well as the F1 for LOC and ORG is best with NN base � historical embeddings.
For ORG the pre-trained tagger of Neudecker [17] works best, which could be
due to the gazetteer information they included and of course due to the fact that
they train with the entire Europeana data. We hypothesize that the category
with the most structural changes over time is ORG. In the military or ecclesias-
tical context in particular, there are a number of names that no longer exist (in
this form). For Dutch we observe the best overall performance with NN base �
historical embeddings except for all entity types.

4.2 Cross-Domain Setup

As shown in Table 3, NN base performs better than the statistical Stanford NER
baseline, which is in line with the observations for the in-domain training. We
experimented with concatenating BERT embeddings to NN base. For both lan-
guages this increases the performance (Table 3, NN base � BERT). The usage
of the historical embeddings is also very beneficial for both languages. We can
achieve our best results by using BERT for Dutch and by using historical embed-
dings for French. We conclude that the usage of modern pre-trained language
models is crucial for the performance of NER taggers.

We generated synthetic corruptions for the WikiNER/CoNLL corpus. This
could not outperform NN base for both languages. The training on synOCR’d
WikiNER/CoNLL gives slightly worse results than NN base too. The corruption
of the training data without the usage of any embeddings seems to harm per-
formance drastically, what is in line with the observation of Hamdi et al. [13].
It is striking that the training on corrupted/synOCR’d Dutch gives especially
bad results for PER compared to French. A look at the Dutch test set shows
that many entities are abbreviated first names (e.g. in A J van Roozendal) and
are often misrecognized what leads to a performance decrease. For French the
combination of NN base and historical embeddings, trained on corrupted data or
on synOCR’d (NN ensemble corrupted/ NN ensemble synOCR’d) gives the best
results and outperforms all other systems. For Dutch NN ensemble corrupted and
NN ensemble synOCR give slightly worse results than NN base � BERT and
NN base � historical embeddings, but performs better than the tagger trained
on synOCR’d or corrupted data only (Table 3, NN ensemble).

Ablation Study. We analyze our results and examine the composition of NN
ensemble synOCR more closely (since the results for NN ensemble corrupted are
very similar we perform the analysis for NN ensemble synOCR as a representative
for both NN ensemble).
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The ablation study (see Table 4) shows that NN ensemble benefits from dif-
ferent information in combination. For French NN ensemble gives the best results
only for PER. The overall performance increases if we do not use character level
embeddings. There is a big performance loss if we omit the historical embed-
dings. If we do not train on synOCR’d data the performance decreases. For
Dutch we can observe these facts even more clearly. If we do not train on syn-
OCR’d data the F1 score even increases. If omitting the historical embeddings
we loose performance as well.

Table 3. Results of training on WikiNER/CoNLL corpus. Scores marked with * are
significantly lower than NN ensemble.

French models Overall PER ORG LOC

Çavdar 0.48 0.11 0.56

Stanford NER tagger 0.536* 0.451* 0.059* 0.618*

NN base 0.646* 0.636* 0.096* 0.721*

NN base � BERT 0.660 0.639* 0.163 0.725*

NN base � hist. Embs. 0.672 0.661* 0.015* 0.748

Corrupted WikiNER 0.627* 0.635* 0.085* 0.710*

synOCR’d WikiNER 0.619* 0.590* 0.078 0.710

NN ensemble corrupted 0.693 0.624 0.063 0.783

NN ensemble synOCR 0.684 0.710 0.111 0.744

Dutch models Overall PER ORG LOC

Stanford NER tagger 0.371* 0.217* 0.083* 0.564*

NN base 0.567* 0.493* 0.085* 0.700*

NN base � BERT 0.634 0.572 0.250 0.771

NN base � hist. Embs. 0.632 0.568 0.084 0.738*

Corrupted CoNLL 0.535* 0.376* 0.155* 0.717*

synOCR’d CoNLL 0.521* 0.327* 0.061* 0.721*

NN ensemble corrupted 0.606* 0.439* 0.158 0.799

NN ensemble synOCR 0.614 0.481 0.157 0.775

To find out why our implementation of the assumption – synOCR increases
the similarity of the data and improves results – does not have the expected
effect, we analyze the test sets. It shows, that only 10% of the French and
6% of the Dutch entities contain OCR errors. Therefore the wrong predictions
are mostly not due to the OCR errors, but due to the inherent difficulty of
recognizing entities cross-domain. This also explains why synthetic noisyfication
does not consistently improve the system. In addition there are some illegible
lines in the synOCR’d corpora consisting of dashes and metasymbols, what is
not similar to real OCR errors.
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Table 4. Ablation study. Results of training on the clean and the synOCR’d
WikiNER/CoNLL corpus.

French models Overall PER ORG LOC

NN ensemble synOCR 0.684 0.710 0.011 0.744

- char 0.693 0.681 0.078 0.758

- word 0.686 0.664 0.080 0.756

- hist. Embs. 0.619 0.590 0.078 0.710

- synOCR’d data 0.672 0.661 0.015 0.748

Dutch models Overall PER ORG LOC

NN ensemble synOCR 0.614 0.382 0.157 0.775

- char 0.600 0.404 0.119 0.780

- word 0.584 0.430 0.102 0.745

- hist. Embs. 0.521 0.327 0.061 0.721

- synOCR’d data 0.632 0.568 0.084 0.738

Fig. 2. Example sentence from the French test set.

To verify our assumption we also compare the different systems only on the
entities with OCR errors. Here NN ensemble outperforms both of the cross-
domain baselines (Table 5, Stanford NER tagger, NN base cross-domain). Com-
pared to the French results Dutch is a lot worse. A look at the entities shows
that in the Dutch test set there are many hyphenated words where both word
parts are labeled. However, if looking at the parts of the word individually, a
clear assignment to an entity type cannot be made, which leads to difficulties
with tagging. Though it is plausible that NN ensemble can capture specific phe-
nomena in the historical data better, since the difference between the domains is
reduced by the synthetic noisyfication and the historical embeddings. The exam-
ple in Fig. 2 drawn from the test set shows, that NN ensemble can handle noisy
entities well in contrast to e.g. the Stanford NER tagger. Thus in a scenario with
many OCR errors the NN ensemble performs well.

5 Related Work

There is some research on using natural language processing for improving OCR
for historical documents [5,26] and also on NER for historical documents [11]. In
the latter - a shared task for Named Entity Processing in historical documents -
Ehrmann et al. find that OCR noise drastically harms systems performance. Like
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Table 5. Results on entities with OCR errors in the French/Dutch test set. Scores
marked with * are significantly lower than NN ensemble.

Models French Dutch

Stanford NER tagger 0.661* 0.207*

NN base in-domain 0.771 0.438

NN base cross-domain 0.783 0.200*

NN ensemble synOCR 0.835 0.462

us several participants (e.g. [7,23]) also use language models that were trained on
historical data to boost the performance of NER taggers. Schweter and Baiter
[22] explore NER for historical German data in a cross-domain setting. Like
us, they train a language model on unannotated in-domain data and integrate
it into a NER tagger. In addition to the above mentioned work, we employ
“OCR noisyfication” (Sect. 2.2) and examine the influence of different pretrained
embeddings systematically. Çavdar [8] addresses NER and relation extraction
on the French Europeana Newspaper corpus. Ehrmann et al. [10] investigate
the performance of NER systems on Swiss historical Newspapers and show that
historical texts are a great challenge compared to contemporary texts. They
find that the LOC class entities causes the most difficulties in the recognition of
named entities. The recent work of Hamdi et al. [13] investigates the impact of
OCR errors on NER. To do so, they also perturb modern corpora synthetically
with different degrees of error rates. They experiment with Spanish, Dutch and
English. Like us they perturb the Dutch CoNLL corpus and train NER taggers
on that data. Unlike us they do also train on a subset of the perturbed corpus.
We test on a subset of the Dutch Europeana corpus. Hamdi et al. [13] show
that neural taggers perform better compared to other taggers like the Stanford
NER tagger and they also prove that performance decreases drastically if the
OCR error rate increases. Piktus et al. [19] learn misspelling-oblivious FastText
embeddings from synthetic misspellings generated by an error model for part-
of-speech tagging. We use a similar corruption method, but we also use synOCR
and historical embeddings for NER.

6 Conclusion

We proposed new methods for in-domain and cross-domain Named Entity Recog-
nition (NER) on historical data and addressed data centric domain adaptation.
For the cross-domain case, we handle domain shift by integrating non-annotated
historical data via contextualized string embeddings; and OCR errors by inject-
ing synthetic OCR errors into the modern data. This allowed us to get good
results when labeled historical data is not available and the historical data is
noisy. For training on contemporary corpora and testing on historical corpora
we achieve new state-of-the-art results of 69.3% on French and 63.4% on Dutch.
For the in-domain case we obtain state-of-the-art results of 77.9% for French and
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84.2% for Dutch. There is an increasing demand for advancing the digitization of
the world’s cultural heritage. High quality digitized historical data, with reliable
meta information, will facilitate convenient access and search capabilities, and
allow for extensive analysis, for example of historical linguistic or social phe-
nomena. Since named entity recognition is one of the most fundamental labeling
tasks, it would be desirable that advances in this area translate to other labeling
tasks in processing of historical data as well.

Acknowledgement. This work was funded by the European Research Council (ERC
#740516).

A Appendix

Detailed Information About Experiments and Data
The computing infrastructure we use for all our experiments is one GeForce GTX
1080Ti GPU with an average runtime of 12 h per experiment. For the French
and Dutch baseline model NN base we count 15,895,683 parameters each. For
the French NN ensemble model there are 88,264,777 parameters and 96,895,161
parameters for the Dutch NN ensemble.

The Europeana Newspaper Corpus is split 80/10/10 into train/dev/test
(Table 6). The downsampled French WikiNER corpus is split 70/15/15 into
train/dev/test and the Dutch CoNLL-02 corpus is already split in its original
version. The downloadable version of the data can be found here: https://github.
com/stefan-it/historic-domain-adaptation-icdar.

Table 6. Number of tokens for each datasplit.

Dataset Train dev Test

French Europeana 167,723 18,841 20,346

Dutch Europeana 147,822 16,391 18,218

French WikiNER 411,687 88,410 88,509

Dutch ConNLL-02 202,930 68,994 37,761
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