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Abstract. In recent years, the use of tabular data has become a major
area of research and development. However, the number of tables struc-
tured in a machine-readable format is still limited. A major challenge
that is encountered when using tabular data is converting the table
information in a free-format document into a structured format. Unlike
markup languages such as HTML, XML, and JSON, free-format docu-
ments such as PDF, Word, Excel, and images generally have no tags or
separators. Therefore, the table structure should be recognized from the
positional information of the table elements. A major approach of table
structure recognition is to classify the relationship between each pair of
bounding boxes of the table elements. Recent works have achieved signif-
icant improvements by applying graph convolutional networks (GCNs)
to the graph structure of the bounding boxes. However, fully recognizing
a complex table structure is still a major challenge, owing to the pres-
ence of spanning cells. In this study, we propose a novel, simple image-
based approach to this relation classification task. Our model efficiently
exploits information such as the geometry of the table elements and ruled
lines through an image cropping strategy based on the pairs of bound-
ing boxes. We evaluate our approach on two real-world table datasets by
comparing four baselines including two state-of-the-art GCN approaches.
We observe that our approach significantly outperforms the baseline in
the exact matching ratio for tables by up to 6.7%.

Keywords: Table structure recognition · Image recognition · Relation
classification

1 Introduction

In recent years, table information retrieval has garnered substantial attention. In
several cases, table data describe, explain, or complement key statements in the
document; therefore, they can be utilized for various natural language processing
tasks, such as question answering systems [16,30,34], constructing or augmenting
a knowledge base [4,22,23], and fact-checking [1]. In particular, tables that are
contained in free-format documents such as PDF, Word, Excel, and images are
often critical for the above tasks, e.g., experimental data in papers; financial
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performance in financial reports; and statistics in public documents, invoices,
and ledgers.

However, the amount of table data available for machines is still limited; a
major reason for this is that extracting the tables and modifying them into a
machine-readable format is still a great challenge. This difficulty arises because
free-format documents do not have tags or separators for tables similar to
markup languages such as HTML, XML, and JSON; therefore, even after iden-
tifying the location of the table [6,9,24,25,29], it is necessary to structure it to
a machine-readable format.

Specifically, the main issue is parsing the table elements to the machine-
readable table format. Table elements can be extracted using a PDF content-
stream analyzer or an optical character reader. However, these tools only provide
a bounding box position for each table element. To obtain machine-readable table
data, it is essential to parse these bounding boxes into a structured table format.
This task is often known as table structure recognition, and is the main subject
of this study.

For table structure recognition, the following difficulties prevent a simple pre-
defined rule strategy: (1) the presence of spanning cells; (2) the width and height
of the bounding box must vary. For instance, an intuitive approach would be to
construct a parsing rule based on the relative positions of the bounding boxes;
i.e., if two or more bounding boxes are aligned on a single vertical line, these
boxes may belong to a single column. This rule-based approach sometimes works,
especially for a simple table. In practice, however, most tables have spanning
cells that belong to multiple columns or rows. Moreover, determining the box
alignment is difficult because of the different widths and heights of each bounding
box.

To overcome the above difficulties, recent studies have proposed deep neural
network-based approaches. An earlier attempt [24] employs fully convolutional
network (FCN) architecture [15] to detect the row and column regions. This app-
roach has also been adopted in recent works [27,28], which applied the object
detection framework. The advantage of this approach is that it can naturally
incorporate the table structure information, such as ruled lines or margins. How-
ever, one should take care of the mechanism through which the blank cells are
joined to construct the spanning cells [31,35], which is necessary for correctly
recognizing the hierarchical structure of the table. In this paper, we refer to this
approach as the detection-based approach.

Recently, relation classification approaches have been proposed in several
studies [2,14,18,21], wherein row and column recognition is considered as a rela-
tion classification task between a pair of bounding boxes. The advantage of this
method is that a joint operation is not required for constructing spanning cells.
Most studies on this approach utilize the graph structure of the table elements
and employ graph convolutional networks (GCNs) [13], which successfully recog-
nize multi-rows/columns using spanning cells. However, one major disadvantage
of this approach is the difficulty of feature engineering. For instance, it is difficult
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to fully utilize ruled line information using this approach. In this paper, we refer
to this approach as the graph-based approach.

In this study, we adopt a novel and simple image-based relation classifica-
tion approach for the table structure recognition task. Our idea is to employ
an edge-based rectangle region formed by each pair of nodes as the input to a
relation classifier. This rectangle contains essential information for the classifi-
cation: the relative position, ruled lines, and the geometry of bounding boxes.
Moreover, enlarging this edge-based region incorporates the global patterns of
the table, which significantly improves the model accuracy. We stress that our
approach has the advantages of both detection- and graph-based approaches,
and succeeds in considerably reducing the complex design of pre-defined rules or
feature engineering. Another advantage of our approach is that the data can be
augmented through label-invariant operations. We propose novel label-invariant
data augmentation techniques for the edge-based region, and demonstrate that
they make significant contributions, especially when training with small amounts
of data. In summary, our contributions are as follows.

– We propose a novel edge-based cropping strategy for table structure recogni-
tion.

– We introduce an edge region-based convolutional neural network (ER-CNN)
that efficiently encodes the edge-based cropped images and positional infor-
mation of the bounding boxes.

– We propose efficient data augmentation techniques for the edge-based cropped
images.

We evaluate our approach on two real-world table datasets consisting of PDF
and handwritten scanned images. We compare our approach with four base-
lines, including two state-of-the-art graph-based approaches. We observe that
our approach significantly outperforms the baselines in the exact matching ratio
for tables.

The remainder of this article is organized as follows. In Sect. 2, we briefly
review related works. In Sect. 3, we define the problem that is the focus of this
study. In Sect. 4, we introduce the motivation of our approach through obser-
vation. In Sect. 5, we describe our approach. We then present our experimental
results in Sect. 6; finally, we provide a conclusion in Sect. 7.

2 Related Works

For table structure recognition, similar to the development of the table detection
task [6,9,24,25,29], recent studies adopted a deep learning approach rather than
pre-defined rules or heuristics [11,26,32] for structuring more complex tables.
Several studies use the semantic segmentation or object detection methods to
detect the columns and rows of a table [24,27,28]. The difference in our approach
is that, while the approaches in previous studies are based on row and column
detection, we adopt the relation classification approach and employ the edge-
based cropping strategy for the classification.



Image-Based Relation Classification for Table Structure Recognition 635

Recently, other approaches based on relation classification have been pro-
posed [2,14,18,21]. In this approach, the table structure is recognized via the
relationship between each cell. Most works for this approach utilize the graph
structure of the table elements, considering each bounding box as nodes. In [14],
the graph structure is constructed using the k-nearest neighbor (k-NN) algo-
rithm, and features for the classification are constructed via GCN [13]. In [2], a
multi-head attention mechanism is incorporated. In this study, both the node and
edge features are convoluted via GCN, thereby exchanging their feature propa-
gation. [21] also convolutes the edge feature via GCN architecture. Meanwhile,
[18] adopts GravNet [17] and DGCNN [33] for graph convolution. A significant
difference in our approach is that, while the previous studies mainly utilize the
positional information of the table element for their input feature, we incorporate
information about the ruled lines and geometry of bounding boxes by adopting
CNN-based architecture and an edge-based region cropping strategy.

Our approach also relates to object detection and categorization, such as R-
CNN [8], Fast R-CNN [7], and Faster R-CNN [20] in that the cropped image can
be considered as a proposed object, and the relation classification corresponds
to the categorization. The difference is that we determine the cropping region
through the combination of the nodes, and utilize both the image and position
for the model input to stress the geometry of the component.

3 Problem Setting

In our problem setting, we define dataset D as a set of n tables: D ≡
{T 1, . . . , Tn}, where each table T t consists of a table image It, set of bounding
boxes Bt and set of relations Rt:1

T t ≡ {It,Bt,Rt} . (1)

The table image It has an image with Ht × W t pixels and C channels, i.e.,

It ∈ [0, 1]H
t×W t×C . (2)

In this study, we assume that table images are preprocessed into gray-scaled or
binarized pictures with a single channel; that is, C = 1. Meanwhile, Bt is a set
of bounding boxes for each table element, i.e.,

Bt ≡ {bt1, bt2, . . . , btmt} , (3)

where mt denotes the number of bounding boxes contained in table T t. b repre-
sents a bounding box that is defined as follows:

bti ≡ (xt
li, y

t
ti, x

t
ri, y

t
bi) . (4)

1 Note that our approach does not require additional information such as text or
captions in the table.
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We let each bounding box be described as a rectangle with a four-dimensional
vector (xl, yt, xr, yb), where (xl, yt) and (xr, yb), respectively, represents the top-
left and bottom-right position of the bounding box. Coordinate x/y increases
from left/top to right/bottom; x and y satisfy 0 ≤ xl < xr < W and
0 ≤ yt < yb < H, respectively. We also refer to (xci, yci) as the coordinate
of the center of bi. In practice, bounding boxes may be split, merged, or miss-
ing owing to incomplete identification.2 Although such misidentification can be
mitigated by improving the box identification tool, improvements of the tool are
beyond the scope of this paper. Therefore, in our problem setting, we assume
that the bounding boxes are ideally provided; that is, b ∈ B has a one-to-one
correspondence with the table element. Finally, Rt represents a set of relations
between pairs of boxes, which is determined by a set of triplets:

Rt ≡ {(bti, b
t
j , y

t
ij) | bti, btj ∈ Bt, ytij ∈ L} , (5)

where L represents a set of relation labels: L = {irrelevant, row, column}. Subse-
quently, by analogy from the graph representation, we may refer to the bounding
boxes as nodes and relations between boxes as edges. Moreover, we may omit
the table index t if it is clear from the context.

The relation classification approaches for the table structure recognition are
used to predict yij for bi and bj under a given table image I and a set of bounding
boxes B.

4 Observations

To clarify the motivation of our approach, we provide an overview of the relation-
ship between nodes, edges, ruled lines, and other neighbor nodes, using concrete
examples.

Figure 1 shows examples of the geometry of nodes in a table. The figure
shows that the relationship between the two blue boxes differs depending on the
geometry of the other nodes and the ruled lines, even if the relative positions
of the two nodes are the same. From the upper examples in Fig. 1, most rela-
tionships can be inferred by observing the inner area of the two nodes. In (1),
we can infer that a column relationship between the two blue nodes is allowed,
whereas this is inappropriate in (2) because of the presence of the intermediate
cell. Meanwhile, (3), (4), and (5) show the effect of the ruled lines: (3) allows for
2 More specifically, the noise related to the identification of boxes can be classified into

the following six types: box size, misalignment of box positions, mis-joining between
boxes, unnecessary division of boxes, missing boxes, and presence of extra boxes.
We expect that our data augmentation in Sect. 5.3 improves robustness against the
first two cases. The rest of the cases, on the other hand, cannot be straightforwardly
dealt with by the relation classification approach, and the accuracy is degraded by
the noise. While we expect that the noise can be suppressed by state-of-the-art box
identification tool, we also expect that it is possible to extend our approach to an
end-to-end framework [19] to address them, which we see as an interesting future
work.
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(1) (2) (3) (4) (5)

(6) (7)

Fig. 1. Relationships between column relations and table elements. The boxes repre-
sent the bounding boxes in the table, and the two blue boxes correspond to the nodes
of interest. The red lines represent the column relationships, while the thick black lines
represent the table rule lines. Here, we omit the row relationships. (Color figure online)

column relationships between blue nodes, whereas (4) does not. Similarly, the
combination of these ruled lines shown in (5) cuts off the column relationship
between the two blue nodes.

Meanwhile, there are examples where the outer geometry influences the rela-
tionship, as shown in the lower examples in Fig. 1. In these examples, if we focus
only on the inner area (orange rectangle), there could be a column relationship
between the two blue nodes. However, once we increase the size of the region,
such a relationship is found to be inappropriate because of the relationship with
the other nodes. This observation suggests that the model should incorporate a
proper range of peripheral information.

In the previous relation classification approaches, these geometrical patterns
were not efficiently incorporated. This is because constructing a node or edge
feature that incorporates these geometrical patterns requires hard feature engi-
neering. Meanwhile, the image near the pair of nodes, we call it the edge region,
naturally contains such information, which is efficiently extracted by a CNN
architecture without complex feature engineering. Motivated by these observa-
tions, we propose a novel image-based relation classification approach, which is
discussed in the subsequent section.3

5 Description of Our Approach

Our approach consists of two modules: the preprocessor, which extracts the
information of the edge region, and the ER-CNN, which is employed as the
classification model. An overview of our approach is shown in Fig. 2.
3 We note that because our approach adopt CNN architecture, the inference speed

is slower than that of the graph-based approaches. However, we believe that the
table structure recognition does not necessarily require as high an inference speed as
object detection tasks that are intended for applications such as automated driving.
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Fig. 2. Illustration of our approach.

5.1 Preprocessor

Edge-Based Cropping Region. The key idea of our approach is to employ
a node pair-based image cropping strategy. Based on the observations in the
previous section, we use a cropped table image with a rectangle formed by a pair
of nodes as a primitive feature for the relation classification. More concretely,
if node pairs have bounding boxes at (xri, yti, xli, ybi) and (xrj , ytj , xlj , ybj), we
define the inner region of the bounding boxes as follows:

beij ≡ (min(xli, xlj),min(yti, ytj),max(xri, xrj),max(ybi, ybj)) . (6)

This region encompasses information about the inner state between two nodes.
Another important aspect for relation classification is the outer status near

the node pair. To incorporate this global information, we scale the width and
height of the inner region beij . The edge-based cropping region is determined as
follows:

b′e
ij = (min(xli, xlj) − rwij ,min(yti, ytj) − rhij ,

max(xri, xrj) + rwij ,max(ybi, ybj) + rhij) . (7)

Here, wij and hij denote the width and height of beij , respectively, and r is a
hyperparameter that defines the scale of the cropping region and we adopt r = 1
in this paper. If the cropping region extends outside the image, we fill in the
overflow with a blank value. We cut out the rectangular region b′e

ij of the original
table image I, which we define as Ieij , and use for crafting an input image for
ER-CNN.
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Crafting the Input Image of the Model. We construct the input of ER-CNN
by splitting the cropped image Ieij into three channels: the channels of bounding
boxes i and j, the channel of the other bounding boxes, and the channel of the
other pixels, containing the noise and ruled information of the image. In the
channels for the boxes, the rectangles of the boxes are filled with a constant,
and the remaining area is filled with a blank value. This channel splitting helps
the model to correctly recognize the table components. Finally, we resize this
channel-split image to a 64 × 64 square shape for the input of ER-CNN.

Box Position Extraction. In addition to the cropped image, we utilize the
positional information of the bounding boxes. The sizes of the bounding boxes
can vary considerably depending on the lengths and styles of the original table
elements. Therefore, the pixel area occupied by a bounding box can be sometimes
extremely small after the cropping and resizing procedure. In such a case, the
geometry of the table element cannot be extracted properly from the image
alone. To cope with this problem, we explicitly input the box position into the
model. Specifically, we use the box centers of bi and bj normalized by the size of
b′e
ij : {ci, cj}, where

ci ≡
(
xci − x′

lij

w′
ij

,
yci − y′

tij

h′
ij

)
. (8)

Here, w′
ij and h′

ij denote the width and height of b′e
ij , respectively, and x′

lij/y
′
tij

is left/top position of b′e
ij .

5.2 Model

As described in Fig. 2, the ER-CNN consists of two encoders: an image encoder
and a position encoder. The outputs of these encoders are concatenated, and
then, passed through a final classification layer that outputs the label probability.
For the backbone architecture of the image encoder, we adopt a small pre-trained
residual neural network (ResNet) model (with 18 layers) [10]. The encoded vector
is obtained via the first block layer output of the ResNet (with 64 channels) and
subsequent two FC layers with batch normalization and rectified linear unit
(ReLU) activation. Notably, one can easily exchange this module with a larger
and more complex architecture. As demonstrated in the results section, our
approach performs well, even with this shallow architecture.

For the position encoder, the input is a set of box positions defined by Eq. (8).
Each two-dimensional coordinate is first embedded into a d-dimensional hidden
space Rd via transformation f : li = f(ci). Thereafter, the encoded position
vector lp is obtained by inputting the concatenation of li, lj into function g:
lp = h(li ⊕ lj). For the transformation functions f and g, we adopted a two-FC
layer with ReLU activation. Similarly, we set up the final classification layer
using two FC layers with batch normalization, ReLU activation, and a softmax
function. We set the size of all hidden layers to 64 and d = 64.
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5.3 Data Augmentation

An advantage of the image-based approach is that the amount of data can be
augmented through label-invariant operations. Unlike typical image classifica-
tion tasks, however, the geometry or presence of bounding boxes and ruled lines
significantly affects the relation label; therefore, commonly used data augmenta-
tion, such as random crop, random erasing [36] or cutout [3], are likely to generate
noisy samples.

We introduce two novel label-invariant data augmentation techniques for our
approach: randomly changing the size of the bounding boxes and adding noise
near the box. The former is based on the intuition that the size of the box
can vary depending on the size of the characters of the table element, whereas
the relationship is mostly independent of the character size. The latter incorpo-
rates noise that often occurs near the box, owing to the mismatch between the
characters and bounding box. Specifically, we create the augmented images Ĩeij
table-by-table according to the process in Sect. 5.1, using the randomly rescaled
bounding boxes and the table image. More precisely, we first fill the original
box areas with a blank value, and then place the rescaled bounding boxes. We
added one augmented data per sample for our model’s training set. A new set
of augmented data was generated for each training iteration

5.4 Scalability

We finally mention the scalability of our approach. If prediction is done for all
combinations of boxes, O(m2) computations are required in each table, which is
difficult to perform for large tables. However, this computational complexity can
be reduced by the fact that distant boxes are mostly irrelevant pairs. Specifically,
we reduce the number of candidate pairs of boxes by using a k-NN method based
on the location of the boxes [2]. This reduces the computational complexity to
O(km), making it practically feasible. Besides, we expect that it is possible to
reduce the number of actual CNN computation using techniques similar to Fast
R-CNN [7], which is an interesting future work.

6 Experiments

In this section, we first review the datasets and introduce evaluation metrics.
Next, we introduce the baselines and experimental details. Finally, we present
the results under the three experimental settings.

6.1 Dataset

We used two real table datasets: SciTSR [2], comprising typed PDF images, and
ICDAR2019 [5], comprising of handwritten scanned images.

The SciTSR dataset comprises 15,000 PDF format tables, containing bound-
ing boxes, relationships, and table images for each table. The average number of
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nodes in one table is approximately 40. Because we found that some of the table
relationships were missing in the bounding box in the lower-left corner, we fixed
the generation code. In addition, some tables in the dataset were out of the PDF
area, which were removed by imposing a simple threshold to the maximum and
minimum positions of the bounding box. After filtering, 11,134 training tables
and 2,801 test tables were obtained. In the test dataset, a list of complex table
IDs is provided (635 tables after the preprocessing above), and we also report
the performance on this list as the complex test set.

The ICDAR2019 dataset comprises 850 (600 for training and 250 for test)
scanned table images with handwritten entries. The ground truth of the table
area and table structure is provided in XML format. We constructed the relations
by parsing these XML files. To reduce the overlap between the boxes and ruled
lines, we reduced the size of the bounding box by 50%. In addition, because the
images had various background colors, we gray-scaled and binarized the images
using threshold values of 80 percent quantile for each table image. Sometimes
one scanned image contained multiple tables; these tables were split using XML
tags. In the test set, we found that images with ID numbers greater than 10,000
had significantly different properties than the other training and test data: not
handwritten, captured images, approximately one-tenth the size of the images.
Most models did not perform well against this test set; therefore, we decided to
separately evaluate them as in-domain and out-of-domain test set. After prepro-
cessing, we obtained 677 tables for training, 190 tables for the in-domain, and
145 for the out-of-domain test set.4 The average number of nodes per table was
approximately 300.

6.2 Evaluation Metrics

We adopted macro-averaged precision, recall, and F1 scores as metrics for our
experiment. These metrics tend to achieve a high score in the relation classifica-
tion of table structures. For instance, one misclassification for each table yields
a F1 score of approximately 0.99. However, such misclassification, even at a rate
of one per table, seriously degrades the performance of subsequent natural lan-
guage processing tasks. Therefore, we employed an additional metric, the exact
match. This metric yields 1 if the predicted rows or columns match the ground
truth perfectly in each table. In our experiment, we measured the average ratio
of the exact match for rows, columns, and tables (i.e., 1 if both rows and columns
yield perfect matches).

6.3 Baselines

We compared our model performance with the following four baselines.

4 We removed one XML data that contained zero-width bounding boxes.
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Rule Base. A simple, but strong baseline, for constructing the table rows and
columns using a pre-defined rule. Here, we adopted the following extraction
algorithm based on the overlaps of the pairs of bounding boxes.

1. Select bi ∈ B, which is located at the left/top most position.
2. Select bj , which is located at the left/top position most in B\{bi}.
3. If bi and bj do not overlap on the vertical/horizontal-axis and overlap on the

horizontal/vertical-axis above a threshold length, we set yij = row/column,
otherwise yij = irrelevant.

4. If yij = irrelevant, then remove bj and go back to 2.
5. If bj that satisfies yij �= irrelevant is found or all bj is searched, then we assign

yij′ = irrelevant to all the remaining bj′ , and restart this algorithm from 1
replacing B with B\{bi}.

In our experiments, we set the threshold value in the step 3 as 50% of the smaller
height/width of bi and bj . Because this rule accurately identifies the row/column
relationship between two distant nodes, the algorithm achieves high prediction
accuracy, although it cannot structure a spanning-cell relationship.

MLP. Multi-layer perceptron (MLP) is a class of a feed-forward network con-
sisting of input, output, and hidden layers. In this experiment, we constructed
a module with three hidden layers and ReLU activations. As the input, we fed
a concatenation of the pair of node features. We will describe the node feature
adopted in the experiment in Sect. 6.4.

GraphTSR. [2] incorporates node and edge features for the input of the graph
neural network. The author adopts a multi-head attention layer for the graph
convolution. Both node and edge features are constructed based on the positions
and sizes of the nodes. We adopted the same architecture and features for our
experiment.

Ties. [18] shows variations in the architecture of the graph convolution mech-
anism for node features. From the results of the study, we adopted the
DGCNN [33] module, where the node graph structure is dynamically constructed
by the hidden features of the nodes. We set the number of the vertex neighbors
for the DGCNN to 10. The image information was also used for the node fea-
ture by convolving the table image and sampling the CNN feature at the node
position. In addition, the authors employed an edge sampling strategy to reduce
the memory complexity. In our experiment, we sampled a constant number of
negative samples (i.e., irrelevant edges) for each node. We set the number of the
negative samplings for each node to 10.5

5 Ties also incorporates the textual information into the node features. In our exper-
iment, we do not use the textual information.
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Table 1. Performances on SciTSR dataset.P , R, and F1 are precision, recall and F1
scores respectively. The numbers in parentheses represent standard deviations.

Row [%] Column [%] Exact match [%]

1 − P 1 −R 1 − F1 1 − P 1 −R 1 − F1 Row Column Table

Full test set

Rule 0.64(0.00) 1.17(0.00) 1.03(0.00) 1.40(0.00) 3.09(0.00) 2.40(0.00) 86.4(0.0) 73.4(0.0) 70.8(0.0)

MLP 9.13(0.83) 12.96(0.51) 13.27(0.34) 1.38(0.06) 2.74(0.12) 2.26(0.11) 21.2(1.1) 68.9(0.6) 18.9(1.1)

GraphTSR 0.87(0.07) 1.52(0.03) 1.33(0.02) 2.12(0.08) 1.79(0.15) 2.12(0.07) 79.0(0.3) 69.0(0.7) 64.8(0.5)

Ties 0.86(0.20) 0.93(0.11) 0.99(0.04) 1.20(0.22) 0.49(0.02) 0.89(0.12) 83.3(0.9) 82.7(2.1) 76.9(2.2)

ER-CNN 0.64(0.02) 0.27(0.04) 0.49(0.02) 0.80(0.03) 0.42(0.05) 0.64(0.01) 89.2(0.3) 87.0(0.3) 83.6(0.2)

Complex test set

Rule 1.06(0.00) 5.13(0.00) 3.54(0.00) 3.57(0.00) 13.07(0.00) 8.94(0.00) 61.7(0.0) 11.7(0.0) 0.5(0.0)

MLP 12.54(1.17) 10.20(0.20) 12.95(0.65) 1.81(0.03) 7.86(0.24) 5.26(0.16) 9.7(0.9) 26.4(1.3) 4.6(0.5)

GraphTSR 1.32(0.21) 3.36(0.35) 2.52(0.17) 3.49(0.32) 4.94(0.23) 4.54(0.20) 50.2(1.5) 29.2(1.2) 23.6(0.6)

Ties 1.52(0.43) 1.20(0.20) 1.43(0.21) 2.30(0.53) 1.54(0.13) 2.02(0.22) 70.4(1.5) 60.4(5.0) 52.1(4.6)

ER-CNN 0.95(0.04) 0.90(0.13) 0.98(0.06) 1.41(0.07) 1.28(0.21) 1.40(0.07) 79.8(0.3) 71.3(1.3) 63.1(2.1)

Table 2. Performances on ICDAR2019 dataset.

Row [%] Column [%] Exact match [%]

1 − P 1 −R 1 − F1 1 − P 1 −R 1 − F1 Row Column Table

In-domain test set

Rule 1.16(0.00) 3.06(0.00) 2.14(0.00) 0.08(0.00) 0.85(0.00) 0.47(0.00) 44.2(0.0) 59.5(0.0) 41.1(0.0)

MLP 0.28(0.04) 1.32(0.07) 0.84(0.04) 0.10(0.02) 0.05(0.00) 0.08(0.01) 50.5(1.1) 74.0(2.5) 49.8(2.2)

GraphTSR 0.26(0.11) 1.85(0.04) 1.10(0.07) 0.08(0.03) 0.04(0.00) 0.06(0.01) 47.9(1.9) 78.2(2.2) 47.0(1.1)

Ties 1.23(0.13) 9.07(0.26) 6.44(0.26) 0.66(0.07) 0.23(0.07) 0.45(0.06) 26.5(1.1) 65.1(1.3) 24.7(1.8)

ER-CNN 0.36(0.11) 1.32(0.11) 0.87(0.10) 0.05(0.04) 0.20(0.09) 0.13(0.03) 56.8(0.0) 78.2(1.1) 56.5(0.6)

Out-of-domain test set

Rule 2.81(0.00) 9.02(0.00) 6.40(0.00) 12.66(0.00) 25.93(0.00) 20.20(0.00) 37.9(0.0) 8.3(0.0) 6.2(0.0)

MLP 43.24(4.50) 92.16(1.03) 87.75(1.60) 46.83(4.92) 91.62(1.36) 86.77(1.95) 1.4(0.0) 0.0(0.0) 0.0(0.0)

GraphTSR 70.21(24.10) 95.28(3.35) 93.24(5.36) 53.14(32.10) 89.72(13.25) 85.32(17.68) 1.4(0.0) 0.5(0.8) 0.0(0.0)

Ties 6.52(2.27) 13.13(2.87) 10.48(2.80) 9.23(3.03) 9.52(2.03) 9.71(1.55) 17.7(6.3) 23.0(8.2) 10.6(3.9)

ER-CNN 2.76(0.91) 26.45(9.50) 18.22(7.00) 3.26(1.19) 11.99(0.16) 8.29(0.50) 15.2(7.2) 26.0(3.3) 10.6(3.4)

Table 3. Ablation study on the SciTSR dataset.

Row [%] Column [%] Exact match [%]

1 − P 1 −R 1 − F1 1 − P 1 −R 1 − F1 Row Column Table

-DA 0.68(0.02) 0.32(0.04) 0.54(0.01) 0.89(0.09) 0.41(0.08) 0.67(0.02) 88.6(0.2) 86.3(0.2) 82.7(0.3)

r = 0 0.71(0.02) 0.40(0.03) 0.60(0.01) 1.13(0.03) 0.58(0.02) 0.90(0.02) 87.7(0.5) 82.6(0.3) 78.7(0.6)

r = 0.5 0.70(0.01) 0.26(0.00) 0.52(0.01) 0.85(0.04) 0.47(0.01) 0.69(0.02) 88.9(0.4) 85.2(0.3) 82.0(0.7)

r = 1 0.64(0.02) 0.27(0.04) 0.49(0.02) 0.80(0.03) 0.42(0.05) 0.64(0.01) 89.2(0.3) 87.0(0.3) 83.6(0.2)

r = 2 0.59(0.04) 0.36(0.05) 0.50(0.01) 0.83(0.06) 0.42(0.04) 0.65(0.03) 88.3(0.5) 86.5(0.6) 82.4(0.5)

6.4 Experimental Details

We split the training dataset in a ratio of 3:1; the former was used for training and
the latter for validation. The training was terminated by referring to the average
F1 score of the rows and columns of the validation data. We adopted the cross-
entropy loss, and minimized it using the Adam optimizer [12]. For GraphTSR,
and Ties, we referred to the official code, and modified or reconstructed them
for our experiments, retaining their original architectures.
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To construct a set of relations R including y = irrelevant, we adopted a
conventional negative sampling method: For each node i, we constructed a set of
node pairs by pairing i to k-NN nodes. We assigned a row, column, or irrelevant
label to each node pair by referring to the ground truth. For all baselines, we
set the number of nearest neighbor nodes k = 20 for training and validation,
and k = 50 for testing except for GraphTSR. For GraphTSR, we found that the
same k for training and prediction yielded a higher performance, and hence we
adopted k = 20 for prediction.

We used the following 16 node features for MLP and Ties: box positions,
box centers, box width, and box height, along with these features normalized by
the table size. The box center normalized by the table size was also used for the
k-NN box search. For GraphTSR, the features are standardized, and the edge
feature is used. We adopted the same features as the original codes.

Each approach was run three times and the average values are reported.

6.5 Performances on the Full Data

First, we tested the performance of the model when trained on all training data
samples. Tables 1 and 2 summarize the results.6 For SciTSR dataset, we observe
that our method significantly outperforms the baselines for most of the metrics.7

In ICDAR2019 dataset, the images are distorted and noisy, which is difficult
for image-based approach. Nevertheless, our approach achieves a competitive
performance with the baselines on the F1 scores and significantly outperforms
on the exact matching ratio for rows and tables. We expect this accuracy to
improve further with more sophisticated image preprocessing.

6.6 Ablation Studies

Next, we present the results of the ablation studies of our model on the SciTSR
dataset. In this experiment, we tested the model performance by ablating the
data augmentation (-DA) and changing scaling parameter r in the range of
(0, 0.5, 1, 2). The results are summarized in Table 3. Interestingly, even r = 0,
which only contains information on the inner part, yields a competitive accuracy
with the baselines, indicating the importance of the internal states of the node
pairs. In contrast, the best accuracy was obtained at r = 1, and the accuracy
decreased for larger r values. This is because, when the cropped area is exces-
sively large, important information on the inner part is missing owing to the
resizing procedure.

6 We note that the benchmark micro-F1 scores [2] of ER-CNN were 0.993, 0.990, and
0.984, for SciTSR full test set, SciTSR complex test set, and ICDAR2019 full test
set, respectively, although a direct comparison may be inappropriate due to the
difference in preprocessing.

7 We checked that the p-values of the F1 scores in SciTSR dataset were less than or
close to 0.05. In addition, we performed two additional runs for GraphTSR, Ties,
and ER-CNN and confirmed p-values < 0.05 for the F1 scores in SciTSR dataset.
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Fig. 3. Performances on the small data. The shaded regions represent the standard
deviation. F1 in the left panel represents the average of the row and column F1 scores.

6.7 Performances on the Small Data

Finally, we present the model performance under a small data setting. Doc-
uments often contain sensitive information, and crowdsourcing is not always
available. In such a situation, it is desirable to achieve practical accuracy with
a small number of annotations. Assuming a sample size that is sufficiently small
to be annotated without crowdsourcing, we sampled 5, 10, 15, 20, 30, 50 and
100 tables for training and 10 tables for validation from the SciTSR training
dataset. The performance was evaluated on the same test dataset used in the
full data experiment.

The results are presented in Fig. 3. In graph-based approaches (Ties and
GraphTSR), the model cannot be trained well with such a small training dataset,
and the performances are below that of the rule-based baseline. In contrast, our
method significantly outperforms the graph-based approaches and is competitive
with the rule-based baseline, even without data augmentation. With data aug-
mentation, the performance increases further; even with five samples, the exact
matching ratio is greater than 60% and with 30 samples, it is above 70%.

7 Conclusion and Discussion

In this study, we proposed a novel image-based approach for the table structure
recognition task. Our model efficiently exploits information on geometry of the
table elements and table ruled lines through edge-based cropped images. We
evaluated our approach on two real-world table datasets, consisting of typed
PDFs and handwritten scanned images, in comparison with four baselines. We
have observed that our approach significantly outperforms the baselines in the
exact matching ratio for tables. In addition, our experiments have confirmed
that our approach works well with small amounts of data. We finally note that
our approach can be easily combined with the graph convolutional architecture
by exchanging the position encoder with a GCN architecture, which may help
to improve robustness against noisy and distorted images.
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