
TabAug: Data Driven Augmentation
for Enhanced Table Structure Recognition

Umar Khan1(B), Sohaib Zahid1, Muhammad Asad Ali1, Adnan Ul-Hasan1,
and Faisal Shafait1,2

1 Deep Learning Laboratory, National Center of Artificial Intelligence,
Islamabad, Pakistan

{umar.khan1,sohaib.zahid,muhammad.asadali,adnan.ulhassan,
faisal.shafait}@seecs.edu.pk

2 School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST), Islamabad, Pakistan

Abstract. Table Structure Recognition is an essential part of end-to-
end tabular data extraction in document images. The recent success
of deep learning model architectures in computer vision remains to be
non-reflective in table structure recognition, largely because extensive
datasets for this domain are still unavailable while annotating new data
is expensive and time-consuming. Traditionally, in computer vision, these
challenges are addressed by standard augmentation techniques that are
based on image transformations like color jittering and random crop-
ping. As demonstrated by our experiments, these techniques are not
effective for the task of table structure recognition. In this paper, we
propose TabAug, a re-imagined Data Augmentation technique that pro-
duces structural changes in table images through replication and deletion
of rows and columns. It also consists of a data-driven probabilistic model
that allows control over the augmentation process. To demonstrate the
efficacy of our approach, we perform experimentation on ICDAR 2013
dataset where our approach shows consistent improvements in all aspects
of the evaluation metrics, with cell-level correct detections improving
from 92.16% to 96.11% over the baseline.

Keywords: Table Structure Recognition · Table augmentation · Data
augmentation · Table data extraction · Probabilistic model ·
Data-driven model · Table segmentation · Deep learning

1 Introduction

Document structure analysis and parsing are some of the most crucial parts
of document image processing for digitization and information extraction. One

U. Khan and S. Zahid—These authors have contributed equally.

c© Springer Nature Switzerland AG 2021
J. Lladós et al. (Eds.): ICDAR 2021, LNCS 12822, pp. 585–601, 2021.
https://doi.org/10.1007/978-3-030-86331-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86331-9_38&domain=pdf
https://doi.org/10.1007/978-3-030-86331-9_38

586 U. Khan et al.

of the most important components of documents is tables. Tables are a struc-
tured way of representing data allowing for visual and logical grouping of data
in a highly comprehensible manner. Tables in documents are frequently used
to present key information such as financial records, receipts, and data forms.
Extracting this information can be vital and beneficial to most businesses around
the world. However, tabular data extraction can be a challenging task as more
often this data is found as scanned document images that contain no structural
or content metadata.

Tabular data extraction consists of three major tasks, Table Detection, Table
Structure Recognition, and Semantic Understanding. Table detection is the task
of locating tables in a given document, while table structure recognition aims
towards the segmentation of tables into rows and columns for layout understand-
ing. Semantic understanding involves the assignment of information such as row
or column header (e.g., Unit price, Stock value, etc.) to a particular cell. Our
focus in this work is the table structure recognition part, where the aim is to
extract rows and columns in a given table image.

In practice, Convolutional Neural Network (CNN) is used as an effective tool
for extracting meaningful features from visual information. Given that scanned
document images contain only visual information, CNNs become increasingly
important for Table Detection and Table Structure Recognition alike. State-of-
the-art CNNs are efficient at extracting visual features from data; however, they
can be highly data demanding in nature. This precondition of CNNs coupled
with the unavailability of large Table Structure Recognition datasets presents
a challenging problem as annotating large datasets can be both expensive and
time-consuming. It is, therefore, crucial to focus on methods for improving the
data-efficiency of deep learning models to achieve better results for Table Struc-
ture Recognition on smaller datasets.

Augmentation techniques are widely used to improve the data efficiency in
Deep Neural networks. It is the practice of adding slight realistic changes to
the original data to increase the diversity of the training data. This concept
helps model regularize and avoid over-fitting in small datasets. There are several
image transformation techniques such as scaling, rotating, smearing, etc. that are
widely used in Computer Vision to augment data. For the purposes of compari-
son, we choose to apply Random cropping, (first employed in AlexNet [14]) and
Color Jitter (used in re-implementation of ResNet [9] by Facebook AI Research)
as the standard augmentation. Please refer to the bottom row of Fig. 2 for exam-
ple of these transformations on ICDAR 2013 dataset. However, as shown by our
experimentation in Sect. 4, they are not effective for table structure recognition
as they do not alter the structure of a table but instead produce unrepresentative
data, which results in a decreased performance.

To overcome these challenges, we propose a novel method of data augmen-
tation based on two key operations of Replication and Deletion on rows and
columns, illustrated in Fig. 1 and sample images of these illustrated operations
can be seen in Fig. 2. We also introduce a data-driven probabilistic model for
generating parameters that control the outlook of the augmented data. The aug-

TabAug: Data Driven Augmentation 587

(a) Column
Replication

(b) Column
Deletion

(c) Row Replication

(d) Row Deletion

Fig. 1. Visual depiction of proposed augmentation operations

mented variations generated by this technique better represent the real-world
variation in tables. Please refer to Sect. 3 for further details about our method-
ology.

Our experiments on ICDAR 2013 dataset demonstrate that our proposed
augmentation technique yields a higher data efficiency and out-performs both
the non-augmented and standard image augmentation approaches. Please refer
to Sect. 4 for further details on experimental evaluation.

These results set a strong foundation for more future work in this direction.
To facilitate this, we have decided to make our implementation of structural
data augmentation named TabAug and associated experimentation code open-
source1. We have also developed the existing code to be fairly simple to plug
into various existing models with support for T-Truth annotation format [20]
with no training overhead.

The rest of paper is structured into following sections. Section 2, outlines
literature review of relevant works in the domain of table structure recognition
and tabular data extraction in general. In Sect. 3 we present our methodology
and implementation of the proposed augmentation technique. In Sect. 4 we report
on our experiments and comparative results. Finally, in Sect. 5 we conclude our
research with future direction for our work.

2 Related Work

Tabular data extraction is an old and recognized problem with solutions matur-
ing from over past 20 years. Starting with one of the earliest works in table detec-
tion in text files using heuristics was done by [24] in 1996 followed by Pyreddy
et al. [15] in 1997. The following years saw a novel heuristic-based approach of
detecting tables in document images from Keinenger et al. [11,12] and [13] form-
ing a combined table plotting and recognition system named TRECS. Zanibbi
et al. [25] presented a comprehensive survey paper that focused on table recogni-
tion literature writing down extensive observations on various aspects of popular
1 https://github.com/sohaib023/splerge-tab-aug.

https://github.com/sohaib023/splerge-tab-aug

588 U. Khan et al.

methods available at the time. A novel approach of detecting tables from ruling
lines was presented by Basilios et al. [6]. In 2010 Shahab et al. [20] presented
comprehensive and rigorous evaluation metrics for table detection and structure
recognition. Significant work was done by Shafait et al. [19] in developing table
detection algorithm for multiple layouts, they also introduced more meaningful
performance metrics for table detection.

Use of data-driven approaches in table detection started from Chen et al. [3]
in 2011 where SVMs were used for table detection in handwritten documents
with noise and artifacts. In 2013 Kasar et al. [10] also made use of SVMs for
table region detection by classifying ruling lines. The following year Anukriti et
al. [2] used Conditional Random Fields (CRFs) with encoded foreground block
characteristics and the contextual information as features for learning layouts
and labeling table and non-table regions in documents.

From 2015 onward, Deep Learning models have been used extensively for
solving the detection and recognition problem. [1,8,18] and [22] made use
of Faster R-CNN [17] with their own take on handcrafted features and pre-
processing methodologies. These methods were successful in producing state-
of-the-art results for table detection but failed to produce significant results in
Structure Recognition. Schreiber et al. [18] mentions the unnatural approach of
detecting rows and columns through Faster R-CNN [17] and instead proposes
fine-grained image segmentation through FCN-X’s architecture by Shelhamer et
al. [21], however, their proposed technique heavily relies upon image stretching
for expanding background pixels as a pre-processing methodology.

In more recent works from Qasim et al. [16] and Tensmeyer et al. [23] on
table structure recognition, we see a more stable and natural approach towards
the formulation of problem. Qasim et al. [16] made use of Graph Neural Net-
works for generating cell adjacency matrix for all existing OCR detected words
and Tensmeyer et al. [23] formulating the problem of structure recognition as a
combination of row, column splits and cell mergings for defining the structure
of a table. Qasim et al. [16] mentions that lack of large datasets has been a
major hindrance for Deep Learning methods in table structure recognition and
makes use of synthetic data to show the effectiveness of their network. However,
synthetic data generated randomly is limited in capturing the visual and general
characteristics of the target dataset, due to which the model fails to perform on
the target dataset despite the optimal results on the synthetic data. Similarly for
the split model from Tensmeyer et al. [23], even though more data-efficient than
Qasim et al. [16] GNN model, makes use of large proprietary dataset to train the
network for an effective model to be tested on ICDAR 2013. Our experiments of
training and testing of split model from Tensmeyer et al. [23] on ICDAR 2013
dataset reveals sub-optimal results than the network potential due to the lack
of diverse and large training dataset.

With newer deep learning algorithms, we are seeing a trend of increase in
performance on larger datasets; however, their results translate to sub-optimal
results on smaller datasets thus limiting their potential use cases. Tradition-
ally in computer vision, these problems are addressed with image transforma-

TabAug: Data Driven Augmentation 589

tion based data augmentation techniques defined as standard data augmenta-
tion for increasing data diversity in training data. Albeit successful in natural
images, standard augmentation hold an insignificant and unstable impact on
table images. In this paper, we propose a new re-imagined Tabular Data Aug-
mentation inspired from [4] and [7] by replicating and removing table structure
elements (rows and columns) to form augmented tables all while maintaining
their visual artifacts, we have also introduced a data-driven probabilistic model
(similar to [5]) for decision parameters of our method of Tabular Data Augmen-
tation.

3 Methodology

We adopt an elementary approach of structural data augmentation for table
structure recognition. We consider cells to be the building block of a table, that
is, a table is defined as a combination of cells. Therefore, it should theoretically
be possible to achieve a large number of combinations given a small number
of cells. However, combining different cells into a table poses many limitations
with regards to compatibility. First, widths and heights of cells can vary greatly,
and thus combining them without due deliberation can lead to unnatural tables.
Second, cells tend to inherit their formatting and styling from their adjacent
cells. In a fully randomized collection of cells, one cell might have left-justified
text while the next might have right-justified text, making for a confusing and
unnatural table.

To overcome these limitations, we redefine a table to be a combination of
rows and columns rather than cells. This helps keep intact the co-relation of
cell styling within a row and column. To further simplify the problem, we limit
these combinations to randomization of rows and columns within the same table.
Thus, we can generate a randomized permutation of the rows and columns within
a table to obtain a structurally augmented version of the table. This augmen-
tation technique is then combined with a data-driven probabilistic sampler for
maximizing its effectiveness.

3.1 Augmentation Operations

To achieve randomization of rows and columns, we define four basic operations
that we can apply to each table:

– Row deletion
– Column deletion
– Row replication
– Column replication

These operations are depicted visually in Fig. 1 for better understanding. These
are the core atomic operations that we utilize during our augmentation pipeline.
They can be applied sequentially in random orders on a table to achieve increas-
ingly varying versions of the same table.

590 U. Khan et al.

(a) Original

(b) (c)

(d) (e)

Fig. 2. Sub-figure 2a contains an original table sample from ICDAR 2013 dataset. Sub-
figures 2b and 2c show variations of the table generated by TabAug. Sub-figures 2d
and 2e show the results of image transformation based augmentations.

3.2 Augmentation Sub-operations

Each of the proposed augmentation operations consists of several sub-operations,
which are further explained below. For simplicity, we will only consider Column
deletion and replication, as Row deletion and replication can be directly inferred
from it.

Source Selection: Before doing any replication or removal, we need to select
a column on which we may apply the operation. We randomly select an index c
in the range of {1 .. C − 1}, where C is the total number of columns in a given
table. We purposefully leave out the 0 − th index as the first column can have
row headers (similarly column headers in the case of row selection), which should
be retained in its location to maintain a natural table.

Furthermore, in case if spanning cells exist in the selected column, we must
ensure that no partial/broken cells are copied.

spanmin = min({cellsStart Column
r c ∀r ∈ {0..R − 1}}) (1)

spanmax = max({cellsEnd Column
r c ∀r ∈ {0..R − 1}}) (2)

For the selected column c, the values of spanmin and spanmax are calcu-
lated using Eqs. 1 and 2. These values provide us with column indices for a self
contained convex block (as depicted in Fig. 3a and 3b). In case if even after per-
forming the above steps the selected block is non-convex (as depicted in Fig. 3c)

TabAug: Data Driven Augmentation 591

we abort the operation and return the table unaltered. Otherwise our selec-
tion is defined by cmax = spanmax and cmin = spanmin which is used by next
sub-operations.

(a) Non-convex column
selection.

(b) Expansion of selection
to retrieve convex block.

(c) Example where expan-
sion fails to retrieve con-
vex block.

Fig. 3. A non-convex selection 3a cannot be replicated or deleted and hence it is
expanded so as to make it convex 3b. Sub-figure 3c represents the case where expansion
also results in a non-convex selection.

Target Location Selection (only for Replication): This sub-operation is
similar to the previous one with few modifications. We select an index d in the
range of {1 .. C} randomly, where C is the total number of columns in a given
table. The target location for column replication will be at the start of d-th
column. So we purposefully leave out the 0 − th index as we do not want to
move the first column. Furthermore, if d = C then the target location is after
the last column at the end of the image. We perform a check to see if the target
location d is intersecting with a spanning cell. If so, placing a column at that
location will cause the existing spanning cell to split apart, and hence we change
d according to the equations below:

d =

⎧
⎪⎨

⎪⎩

spanmin, if abs(d − spanmin) <= abs(d − spanmax)
and spanmin �= 0

spanmax + 1, otherwise
(3)

where spanmin and spanmax are calculated using Eqs. 1 and 2 by setting c = d.
Similar to the previous sub-operation, if after the correction of d it intersects

with a spanning cell we abort the operation and return the table unaltered.

Execution: To execute the operation, whether deletion or replication, we need
to alter both the table image and the ground-truth of the table, the specifics of
which vary between the two operations. Following values are required in both
operations:

xmin = columns[cmin].x1 , xmax = columns[cmax].x2 , w = xmax − xmin

where x1 denotes starting x-coordinate of a column and x2 denotes the ending
x-coordinate of a column.

592 U. Khan et al.

Fig. 4. An example of an augmentation search tree. Each of the nodes Nij is obtained
by applying an augmentation operation to its parent node, where the root of the tree
is the original table Ti.

Deletion: Firstly, we remove the columns with indices in the range (cmin, cmax)
from the ground-truth, including all the contained cells and span information.
For the columns and cells having indices greater than cmax, we subtract w from
their x-coordinates, to move them to the left.

For the image, we cut out the image from xmin to xmax and then move left
the image pixels to the right side of xmax by w.

Replication: Firstly, we calculate the x-coordinate of the target location where
the replicated column is to be placed.

xdst = columns[d].x1 (4)

Then we copy the columns with indices in the range (cmin, cmax) from the ground-
truth, including all the contained cells and span information. For the copied
columns and cells we offset their x-coordinates by xdst−xmin, so as to move it to
the target location. Further, the columns and cells having indices greater than
d, we add w to their x-coordinates, to move them to the right, clearing up space
for the replicated column.

For the image, we move the image pixels to the right of xdst by w, so as to
clear up space for crop of the replicated columns. Then we copy the image pixels
from xmin to xmax and move them by xdst −xmin, so as to move it to destination
location xdst.

3.3 Augmentation Pipeline

Having defined the augmentation operations, an effective pipeline must be estab-
lished that can utilize the proposed operations for training a model, therefore
we propose a pipeline in the following.

Augmentation Tree Exploration: Before training a model, we pre-compute
a sample set Ni of augmented versions of a given table Ti. Each member of Ni

TabAug: Data Driven Augmentation 593

Fig. 5. A grid enumerating all of the possible table categories. Each table is assigned
one of these categories based on its number of rows and columns

is considered to be a node (represented as Nij), which is achievable by applying
a series of augmentation operations (edges in the tree). An example of such a
partial tree is shown in Fig. 4. By applying this tree search, we can extract a
controlled sample set of all achievable augmented tables of a given root table
Ti. To avoid inundation of samples, we apply pruning to the tree search to keep
the number within a reasonable limit. First, only the nodes having tree depth
greater than 5 and less than 10 are kept as a part of this sample set. Further,
the maximum search width for each depth level is also restricted for pruning
purposes. For depth = 1, maximum search width is 8, for depth = 2, it is 4, for
depth = {3..5} it is 2, and finally for depth = {6..10} it is 1. Furthermore, out
of the obtained sample set, any node is ignored that has a pixel height or width
greater than 1.5 times the original table Ti, to ensure unnaturally large tables
are not used for training.

Categorization of Tables and Their Nodes: As a pre-processing step, both
the tables and their nodes are mapped into categories based on their number of
rows and columns. The mapping table is of size 5× 4 as depicted in Fig. 5. An
example of such a mapping is that a node with 4 rows and 5 columns will be
assigned to B2 category. Further, if the number of columns in Nij are greater
than 10, it is still assigned category {A − E}4. Similarly, if the number of rows
in Nij are greater than 14, it is assigned category E{1 − 4}.

After the completion of this step each Ti and Nij will have a category associ-
ated with it which is referenced as T cat

i and N cat
ij respectively. It must be noted

that the decision of category boundaries is purely empirical.

Probability Based Selection: For each table Ti we construct a probability
distribution Pi using which Ti’s nodes will be sampled during training. Firstly,

594 U. Khan et al.

a global frequency distribution of the tables over table categories is generated,
giving us FG a 5 × 4 matrix. Further, for each table Ti, a frequency distribution
of all Nij over the table categories is generated, giving us Fi, which is another
5 × 4 matrix. Lastly, we generate another 5 × 4 matrix gaussi which is a 2-D
Gaussian centered around T cat

i . The spread of this Gaussian distribution allows
control over the diversity of the nodes Nij that are sampled during training.
These 3 matrices are multiplied to obtain Pi = Gaussi ∗ FG ∗ Fi.

During training, a random table category is selected using Pi as the proba-
bility distribution. Once the category is selected, one node is randomly sampled
from all the nodes of Ti having the selected category. This selected node is passed
for training.

4 Experiments and Results

To evaluate the efficacy of our proposed augmentation methodology, we train
the Split model proposed by [23] on ICDAR 2013 dataset. We train the model
using three different methodologies:

1. Non-Augmented: Images fed for training without any modification.
2. Standard: Basic image transformations, such as, hue saturation and bright-

ness jitter in combination with image cropping.
3. TabAug: Our proposed augmentation methodology.

The dataset has a total of 128 pages and 156 tables, which is divided into
train, test and validation splits with a proportion of 0.72 : 0.2 : 0.08 respectively.
We train the model with 4 different percentages of the training set, that is, 25%,
50%, 75% and 100%. It must be noted that this is a ratio of the total training
set utilized while training and not a ratio of training samples divided by total
samples. Further, we repeat each experiment 3 times to get a better estimate of
the average results and their deviation.

For training, we use a batch size of 1, and a learning rate of 0.00075. After
every 15 epoch, we decay the learning rate by a factor of 0.8. Lastly, we train the
models for a total of 27, 500 iterations, which we empirically found to be enough
for convergence of the model.

4.1 Ground Truth

For ICDAR 2013 dataset, ground-truths are provided as bounding boxes of cells,
along with their starting and ending row/column indices. This ground-truth
format was converted to T-Truth format [20], however, the resulting row and
column separators were not aligned with the ruling lines of the table, hence, we
re-annotated the dataset using T-Truth to align the separators and then cross-
checked it to ensure that the annotations were coherent. The models are trained
and tested on this re-annotated dataset, however, as they have been manually
cross-checked, the evaluation is applicable to original annotations as well.

TabAug: Data Driven Augmentation 595

During the re-annotation phase, we upgraded the T-Truth annotation tool to
fix several bugs and make it user-friendly. The upgraded version has been made
publicly available2.

While T-Truth annotation format is used for the augmentation process, Split
model [23] requires pixel-wise annotations. To generate such ground-truth, the
separators of T-Truth annotations are expanded to the nearest words (hori-
zontally in the case of column ground-truth, and vertically in the case of row
ground-truth).

4.2 Performance Measures

We chose the evaluation metrics proposed by Shahab et al. [20] primarily for
two reasons. First, these metrics are comprehensive, painting a complete picture
of a model’s performance. Second, these are general-purpose metrics and can be
applied to any type of segment such as rows, columns, and cells.

In the evaluation metrics proposed by Shahab et al. [20], first the ground
truth segments and the predicted segments are numbered. A correspondence
matrix of shape n x m is created where n is the number of ground truth segments
while m is the number of predicted segments. Each entry [i, j] in the matrix
stores the number of pixels that are intersecting between the given ground-
truth segment Gi and predicted segment Sj , that is |Gi ∩ Sj |. Further, the sum
of i-th row in the correspondence matrix gives the total number of pixels in
ground-truth segment Gi and the sum of j-th column gives the total number of
pixels in predicted segment Sj . Once this correspondence matrix is generated,
we define the following evaluation metrics using the threshold value of T = 0.1
(consequently 1 − T = 0.9):

1. Correct Detections: The total number of ground-truth segments that have
a one-to-one mapping with a predicted segment and a major overlap. Con-
cretely, a given ground-truth segment Gi is considered to be a correct detec-
tion if it has a major overlap with a predicted segment Sj and Sj does not
have a significant overlap with any other ground-truth segment (Gk;∀k �= i).
That is: |Gi ∩ Sj |

Gi
> 1 − T and

|Gk ∩ Sj |
Gk

< T ;∀k �= i

2. Over-Segmentations: The total number of ground-truth segments that
have a significant overlap with more than one predicted segment. That is,
a ground-truth segment Gi is over-segmented if:

T <
|Gi ∩ Sj |

Gi
< 1 − T and T <

|Gi ∩ Sk|
Gi

< 1 − T where; k �= j

3. Under-Segmentations: Total number of predicted segments that have a
significant overlap with more than one ground-truth segments. That is, a

2 https://github.com/sohaib023/T-Truth.

https://github.com/sohaib023/T-Truth

596 U. Khan et al.

Fig. 6. Sample outputs of all three approaches for a comparative analysis. Each row
provides a separate test sample. The red boxes highlight the image region that is dis-
played for visualization of ground-truth and the predictions. Ground-truth is displayed
as blue lines while predictions are displayed as green lines. (Color figure online)

predicted segment Sj is under-segmented if:

T <
|Gi ∩ Sj |

Gi
< 1 − T and T <

|Gk ∩ Sj |
Gk

< 1 − T where; k �= i

TabAug: Data Driven Augmentation 597

Table 1. Results of evaluating the trained models on 20% of ICDAR 2013 dataset
reserved for testing.

Non-augmented Standard TabAug

Row Correct (%) 96.44 ± 1.13 97.86 ± 0.80 97.86 ± 0.35

Over-segmented (%) 2.64 ± 0.54 1.71 ± 0.46 1.71 ± 0.35

Under-segmented (%) 0.71 ± 0.56 0.21 ± 0.18 0.21 ± 0.18

Column Correct (%) 92.12 ± 1.11 86.38 ± 1.54 94.44 ± 0.25

Over-segmented (%) 4.84 ± 0.76 5.20 ± 1.11 3.77 ± 0.76

Under-segmented (%) 1.43 ± 0.25 3.95 ± 1.01 0.90 ± 0.25

Cell Correct (%) 92.16 ± 3.84 82.12 ± 6.76 96.11 ± 1.61

Over-segmented (%) 1.58 ± 0.25 1.13 ± 0.28 1.02 ± 0.37

Under-segmented (%) 3.37 ± 1.99 6.90 ± 2.21 1.46 ± 0.72

All of these evaluation metrics are normalized by division with the total number
of ground-truth segments, which are presented as percentages in the results. We
intentionally leave out the Partial Detections, Missed Segments, and False Pos-
itive Detections from our evaluation metrics, as due to the problem formulation
of Split Model [23] they always evaluate to zero.

4.3 Results and Analysis

We evaluate all the trained models on a consistent 20% test split of ICDAR
2013 dataset. An evaluation of the performance measures described in Sect. 4.2
is provided in Table 1. Our proposed approach outperforms all other approaches
in all performance measures for each of the Cell, Row, and Column recognition.
Further, the models trained with the proposed approach show less standard devi-
ation in the evaluation metrics, which is indicative of more stability in training.
Moreover, as depicted in Table 2 and Fig. 7 our proposed approach consistently
shows improvements across a range of training dataset sizes.

The standard augmentation approach manages to improve upon the eval-
uation metrics for Row, however, happens to be deficient in Cell and Column
evaluations. This is explained by the fact that Row segmentation, especially in
ICDAR 2013 dataset, is an easier task with less visual variability and complexity.
Hence, it can be learned mostly based on white-spaces, for which image trans-
formations provide an ample amount of augmentation. Column segmentation
contains many complex scenarios and requires learning of more abstract and
structural features, for which image transformations turn out to be insufficient.

We have further shown a comparison of the predictions generated by the
models trained on each of the three approaches in Fig. 6. In Fig. 6a, we see the
case where both standard augmentation and TabAug approaches successfully
segment the rows, however, the non-augmented approach under-segments a row

598 U. Khan et al.

(a) Rows (b) Columns

(c) Cells (d) Legend

Fig. 7. Models were trained on a varying percentage of the total training dataset and
then evaluated on a consistent 20% test split. The graphs show the progression of
correct detection with an increase in training data for all three approaches.

in the header region. Conversely, in Fig. 6b, we see a case of over-segmentation
by the non-augmented approach. In Fig. 6c, non-augmented and standard aug-
mentation approaches fail to recognize the boundaries of the columns correctly,
due to the white-spaces that exist between the protruding words of the header.
However, TabAug robustly recognizes the boundaries of the column and predicts
a single column separator. In Fig. 6d, we see a scenario where the TabAug app-
roach fails, as it confuses vertically consistent breaks in the text as a column
breakage. Regardless, we see that it still does a decent job at making logically
sound column segmentations as compared to segmentations from the other two
approaches. Figure 6e depicts another sample that is correctly segmented by
TabAug, however causes significant confusion in column segmentation for the
other two approaches. Finally, in Fig. 6g the first column is over-segmented by
all of the approaches, as the column header has no overlap with its content below.
This demonstrates a hard sample that requires a higher cognitive understanding
for correct prediction.

TabAug: Data Driven Augmentation 599

Table 2. Correct detection percentages achieved by models trained on different per-
centages of the training dataset evaluated on a consistent 20% test split of ICDAR
2013 dataset.

Training data used Correct detections (%)

Non-augmented Standard TabAug

Row 25% 94.59 ± 0.27 96.15 ± 0.52 96.37 ± 0.70

50% 94.52 ± 1.40 95.02 ± 1.41 97.15 ± 0.44

75% 95.37 ± 1.19 94.73 ± 3.38 97.79 ± 0.66

100% 96.44 ± 1.13 97.86 ± 0.80 97.86 ± 0.35

Column 25% 80.46 ± 4.08 78.67 ± 2.92 84.05 ± 2.65

50% 89.96 ± 1.34 83.34 ± 1.91 94.80 ± 1.27

75% 89.79 ± 2.88 84.41 ± 3.80 94.98 ± 1.26

100% 92.12 ± 1.11 86.38 ± 1.54 94.44 ± 0.25

Cell 25% 76.07 ± 2.56 73.76 ± 2.08 81.84 ± 3.68

50% 82.92 ± 2.17 68.99 ± 3.50 93.73 ± 2.81

75% 84.17 ± 3.51 76.45 ± 2.55 95.14 ± 3.01

100% 92.16 ± 3.84 82.12 ± 6.76 96.11 ± 1.61

5 Conclusion

In this paper, we presented TabAug, a novel augmentation technique capable
of producing structural changes in a table through replication and deletion of
rows and columns. A data-driven probabilistic model is used in conjunction with
the augmentation technique to control the augmentation process. Following the
promising results of Split-model [23] trained on the publicly available ICDAR
2013 dataset using TabAug, we believe our work provides a strong foundation for
numerous future extensions. In future, we plan to explore ideas for cross-table
augmentation through statistical layout matching.

Acknowledgement. This work has been partially funded by the Higher Education
Commission of Pakistan’s grant for National Center of Artificial Intelligence (NCAI).

References

1. Arif, S., Shafait, F.: Table detection in document images using foreground and
background features. Digital Image Comput. Tech. Appl. 2018, 1–8 (2018)

2. Bansal, A., Harit, G., Dutta Roy, S.: Table extraction from document images using
fixed point model. In: ICVGIP 2014: Proceedings of the 2014 Indian Conference
on Computer Vision Graphics and Image Processing, pp. 1–8 (2014)

3. Chen, J., Lopresti, D.: Table detection in noisy off-line handwritten documents.
In: 2011 International Conference on Document Analysis and Recognition, Beijing,
China, pp. 399–403 (2011)

600 U. Khan et al.

4. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis
for instance detection. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 1310–1319 (2017)

5. Fang, H., Sun, J., Wang, R., Gou, M., Li, Y., Lu, C.: InstaBoost: boosting instance
segmentation via probability map guided copy-pasting. In: 2019 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pp. 682–691 (2019)

6. Gatos, B., Danatsas, D., Pratikakis, I., Perantonis, S.J.: Automatic table detection
in document images. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR
2005. LNCS, vol. 3686, pp. 609–618. Springer, Heidelberg (2005). https://doi.org/
10.1007/11551188 67

7. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for
instance segmentation. ArXiv (2020)

8. Gilani, A., Qasim, S.R., Malik, I., Shafait, F.: Table detection using deep learning.
In: 14th International Conference on Document Analysis and Recognition, pp.
771–776 (2017)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

10. Kasar, T., Barlas, P., Adam, S., Chatelain, C., Paquet, T.: Learning to detect
tables in scanned document images using line information. In: Twelfth Interna-
tional Conference on Document Analysis and Recognition, pp. 1185–1189 (2013)

11. Kieninger, T., Dengel, A.: A paper-to-HTML table converting system. In: Proceed-
ings of Document Analysis Systems, pp. 356–365 (1998)

12. Kieninger, T., Dengel, A.: Table recognition and labeling using intrinsic layout
features. In: International Conference on Advances in Pattern Recognition, pp.
307–316 (1999)

13. Kieninger, T., Dengel, A.: Applying the T-Recs table recognition system to the
business letter domain. In: International Conference on Document Analysis and
Recognition, p. 0518 (2001)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25 (2012)

15. Pyreddy, P., Croft, W.B.: TINTI: a system for retrieval in text tables TITLE2:
Technical report, University of Massachusetts, USA (1997)

16. Qasim, S.R., Mahmood, H., Shafait, F.: Rethinking table recognition using graph
neural networks. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR), pp. 142–147 (2019)

17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39, 1137–1149 (2015)

18. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: DeepDeSRT: deep learning
for detection and structure recognition of tables in document images. In: Four-
teenth International Conference on Document Analysis and Recognition, vol. 1,
pp. 1162–1167 (2017)

19. Shafait, F., Smith, R.: Table detection in heterogeneous documents. In: Proceedings
of the 9th IAPR International Workshop on Document Analysis Systems, pp. 65–
72. Document analysis systems (2010)

20. Shahab, A., Shafait, F., Kieninger, T., Dengel, A.: An open approach towards
the benchmarking of table structure recognition systems. In: Document Analysis
Systems, pp. 113–120 (2010)

https://doi.org/10.1007/11551188_67
https://doi.org/10.1007/11551188_67

TabAug: Data Driven Augmentation 601

21. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

22. Siddiqui, S., Malik, M., Agne, S., Dengel, A., Ahmed, S.: DeCNT: deep deformable
CNN for table detection. IEEE Access 6, 74151–74161 (2018)

23. Tensmeyer, C., Morariu, V.I., Price, B., Cohen, S., Martinez, T.: Deep splitting
and merging for table structure decomposition. In: 2019 International Conference
on Document Analysis and Recognition (ICDAR), pp. 114–121 (2019)

24. Tupaj, S., Shi, Z., Chang, D.H.: Extracting tabular information from text files. In:
EECS Department, Tufts University (1996)

25. Zanibbi, R., Blostein, D., Cordy, J.: A survey of table recognition. IJDAR 7, 1–16
(2004)

	TabAug: Data Driven Augmentation for Enhanced Table Structure Recognition
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Augmentation Operations
	3.2 Augmentation Sub-operations
	3.3 Augmentation Pipeline

	4 Experiments and Results
	4.1 Ground Truth
	4.2 Performance Measures
	4.3 Results and Analysis

	5 Conclusion
	References

