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Abstract. The minimum-time competitive run is reconsidered in the paper. The
problem is formulated and solved in optimal control (calculus of variations). A
non-classical method of Miele is applied – the method of extremization of line
integrals by Green’s theorem. This method gives necessary and sufficient condi-
tions of optimality. Two models of the energy conversions in competitor’s body
are considered: the model of Keller and the model of Bonnans and Aftalion. It is
shown that the optimal race may be broken into three phases: acceleration, cruise
(along so-called singular arc), and final slowing down. The fundamental finding
is that the optimal cruising velocity is constant for Keller’s model but it decreases
for Bonnans and Aftalion’s model.
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1 Introduction

The paper is devoted to investigation of optimal strategies during competitive running
applying optimal control (calculus of variations). A pioneering mathematical work is
that of Keller [1, 2]. He applied calculus of variations. From his investigations it follows
that the distance to be covered may be broken into three sections:

1) initial acceleration where competitor uses his maximal abilities,
2) cruise with constant velocity in the middle part of the distance along so-called

singular arc,
3) negative kick at the end, where the runner’s velocity decreases.

For distances not longer than 291 m, where the energy reserves are not depleted,
only the first section appears. On the other hand, observations of pacing strategies show
that for 400 m and 800 m running events the races are always won by people who run
the first half of the race faster than the second half. It is not true for shorter races, or for
longer, where the second half of the race is faster. The constant-speed pacing strategy is
observed for races of a mile or longer [3].

The questions may arise: 1) is the pacing strategy optimal during real races? or
2) are the models of running used in optimal control suitable for the process under
consideration?
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The models base on two ordinary differential equations. The first one derives from
Newton’s second law of motion. This equation is generally accepted. Different models
of resistive force are used: a linear function of velocity or proportional to the square
velocity. The second differential equation describes the energy conversions in runner’s
body and this is the area where different models may be employed. A progress has been
made in this area the last years. Bonnans and Aftalion [4] propose more realistic model
that relies on the assumption of variable oxygen uptake comparing with Keller’s model
of constant oxygen uptake. Aftalion [5] found the optimal solution for such a model
along so-called singular arc where the optimal cruising velocity decreases with the time.
The applied reasoning is very sophisticated, however. In this paper, the same problem for
Bonnans andAftalion’smodel is reconsidered using themethodofMiele [6] – themethod
of extremization of line integrals by Green’s theorem. The method gives a solution in
the energy-velocity plane, it gives necessary and sufficient conditions of optimality
including singular arcs of linear type, and it gives a clear graphical interpretation. It
is easy to consider the inequality constraints imposed on the state variables and that
may generate problems in the classical approach. The difficulty with application of the
method is such that not always it is possible to perform the problem in the form required
by the theory – as a line integral of two variables.

2 Mathematical Models

Many authors have considered the problem of constant velocity in sports events. Keller
[1, 2] using calculus of variations proves that the runner’s velocity is constant during
distance running in the middle part of the race (cruise), omitting the starting phase and
the finish. Maroński [7] shows that the optimal velocity is constant for cycling even if
the slope angle of the trace varies with the distance. Such finding is not true for the race
with variable wind heading. In the paper of Maroński and Samoraj [8] it is shown that
for Keller’s model of running, but for variable slope of the trace, the optimal velocity
is constant during the cruise. As it is mentioned above, such results do not agree with
observations of real events [3]. Bonnans and Aftalion [4] propose an improved model of
metabolism where the oxygen uptake is not constant as in Keller’s model, but it depends
on the energy reserves staying at competitor’s disposal. The current paper bases on this
model.

Consider Keller’s model of running. The racer is modelled as a particle of the mass
m – his mass centre. The competitor moves on a linear horizontal track. The vertical
displacements of his mass centre resulting from the cyclic nature of the stride pattern
and the displacement at the start are omitted.

The first equation relies on Newton’s second law (Fig. 1)

dv

dt
= f (t) − v

τ
, (1)

where all quantities refer to the unit mass of the runner, v(t) is the instantaneous runner’s
velocity, f(t) is the variable propulsive force (a control variable in optimal control), and
v/τ is the resistive force linearly depending on the velocity v (τ is a constant coefficient).
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The second equation describes the energy conversions in the competitor’s body

de

dt
= σ − f v , (2)

where: e is the available energy per unit mass, σ is a constant energy flow rate (energy
equivalent per unit mass of VȮ2), f v is the actual mechanical power per unit mass used
by the athlete to overcome the inertia and the resistance of motion.

Both ordinary differential Eqs. (1) and (2) should be supplemented by the initial
conditions at the start to the race:

v(0) = 0 , e(0) = e0 . (3)

Fig. 1. The particle model of the competitor of themassm. The forces exerted on his body per unit
mass are: f – propulsive force (control variable), v/τ – resistive force. Furthermore: v - velocity
of the runner, τ - constant coefficient, x is the actual covered distance, symbols A and B stand for
initial and final points.

The hydraulic analogy of the energy flow model is given in Fig. 2. There are two
containers representing different types of human energy. The upper vessel on the left
contains a fluid representing an aerobic energy. The aerobic energy container is of infinite
capacity. The fluid flows through the pipe to the lower container with a constant flow rate
σ (energy equivalent per unit mass of VȮ2). The energy flow rate does not depend on
the fluid levels in both containers. The lower vessel contains the fluid representing the
anaerobic energy e0 at the beginning. Symbol e(t) denotes the energy per unit mass at a
given instant of time. Bonnans and Aftalion [4] identify the energy e(t) as an anaerobic
energy. It is equal to anaerobic energy at the beginning of the process. It is a mixture
of both energies (aerobic and anaerobic) later; therefore it is regarded as the available
energy in this paper. The difference (e0 – e(t)) may be regarded as the accumulated
oxygen deficit (AOD). There is another pipe at the bottom of the lower container. The
energy flow rate (f v) may be regulated by a tap and adjusted to the actual conditions.
The algorithm of regulation is not known at that moment and it should be found. Further
details of the hydraulic analogy of the energy flow one can find in Bonnans and Aftalion
[4].

From the point of view of optimal control Eqs. (1) and (2) are the state equations, v
and e are the state variables, f is the control variable. Two inequality constraints should
be satisfied. The first one:

0 ≤ f (t) ≤ fmax , (4)

where f max is the maximal propulsive force per unit mass depending on the abilities of
the runner, and the second one:

e(t) ≥ 0 , (5)
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Fig. 2. Keller’s model of the power balance. Symbol e(t) - energy per unit mass, e0 – initial
energy, σ energy flow rate from the aerobic container to the anaerobic one, here σ = const., f v
– power per unit mass, f – propulsive force per unit mass (control variable), v – velocity.

which means that the reserves of energy per unit mass cannot be negative during the
race – the lower container may be filled with or empty.

The distance D to be covered is given, therefore:

D =
T∫

0

v dt , (6)

where: T is the time of the event.
The problem may be formulated in the following manner. The runner should vary

his speed v(t) during the race over a given distance D to minimize the time of the
event T

T =
T∫

0

dt . (7)

The state Eqs. (1) and (2), the initial conditions (3), the inequality constraints (4), (5)
and the isoperimetric constraint (6) should be satisfied. Aftalion considers an equivalent
formulation of the problem: maximization of the distance D for the given time T of the
event [5].

Now, consider another model of the energy flow in competitor’s body [5] that is
given in Fig. 3.

Here the fluid representing the energy per unit mass e(t) is contained in communi-
cating vessels. The left vessel contains the aerobic energy of infinite capacity. The right
vessel contains the anaerobic energy at the beginning e0. A pipe of finite diameter con-
nects both vessels; therefore the fluid flow rate σ(e) is limited and depending on the fluid
level in the right container. This pipe is placed at the bottom of the right container. At
the beginning of the process the fluid level is the same in both containers (the competitor
is rested) – the fluid does not flow through the bottom pipe, σ = 0. If the right vessel
is empty the fluid flows with maximal intensity σ from left container to the right one.
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Fig. 3. Aftalion’s model of the power balance. Symbol e(t) - energy per unit mass, e0 – initial
energy, σ (e) energy flow rate from the aerobic container to the anaerobic one, here σ depends on
the fluid levels in both containers, f v – power per unit mass, f – propulsive force per unit mass
(control variable), v – velocity.

The model assumes that σ (e) is a linear function of the energy per unit mass e and it is
proportional to the accumulated oxygen deficit AOD = e0-e:

σ(e) = σ

(
1 − e

e0

)
, (8)

where σ is the maximal value of σ . Now, Eq. (2) describing the energy conversions takes
the form:

de

dt
= σ(e) − f v . (9)

Here, the constant σ fromKeller’smodel is replaced by the function σ(e) given byEq. (8).
Further details of the model and the problem formulation are the same.

3 Method

3.1 Method of Miele

Themethod ofMiele [6] was developed in the study of trajectories of high-speed aircraft
and missiles, which could not be handled by conventional methods of performance
analysis at the beginning of sixties. Here, a particular class of variational problems is
considered, where the functional form to be extremized and the possible isoperimetric
constraint are linear in the derivative of the unknown function y(x).

Consider a functional linear in the derivative y′:

J =
B∫

A

[
φ(x, y) + y′ ψ(x, y)

]
dx =

B∫

A

[
φ(x, y) dx + ψ(x, y) dy

]
(10)

that is minimized. Symbols ϕ and ψ denote known functions of two arguments (x,y).
Symbols A and B stand for initial and final points. Assume that the process under con-
sideration is represented by a curve joining points A and B in the (x,y)-plane (Fig. 4).
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We assume that all solutions are within or along the border of the admissible domain
represented by a region limited by a closed curve ε(x,y) = 0, and the points A and B also
belong to this curve. Now, we can determine the difference in values of the integral (10)
for two arbitrarily taken curves AQB and APB.

�J = JAQB − JAPB =
∫

AQB

(φ dx + ψ dy) −
∫

APB

(φ dx + ψ dy) =
∮

AQBPA

(φ dx + ψ dy)

(11)

Fig. 4. The admissible domain is an area within the closed curve ε(x,y) = 0. Curves AQB and
APB represent different admissible strategies.

Employing Green’s theorem we can transform the cyclic integral (11) into a surface
integral:

�J =
¨

α

ω(x, y) dx dy (12)

where α represents a region limited by these two curves and ω is so-called fundamental
function. It takes the form:

ω(x, y) = ∂ψ

∂x
− ∂φ

∂y
(13)

Three cases are possible:

a) Fundamental function ω is identically equal to zero. That means ΔJ = 0, and the
functional is independent of the curve in the (x,y)-plane – the process is irrespective
of the strategy.

b) Fundamental function ω has the same sign, for example ω > 0. For such the caseΔJ
> 0 or JAQB > JAPB. It means that every curve to the left gives smaller value of the
functional. In the limit the minimizing curve belongs to the border of the admissible
domain.

c) Fundamental function ω changes its sign. It means that there is a curve along which
ω = 0 that divides admissible domain into two subregions, where ω > 0 and ω <
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0 respectively. The optimal path contains subarcs along the border of admissible
domain and along the curve ω = 0. This last subarc refers to the singular arc in
calculus of variations (Fig. 5).

Fig. 5. The fundamental function ω changes its sign. The optimal solution contains two subarcs
along the border of admissible domain AN,MB and the subarc within the admissible domain NM,
where ω(x,y) = 0. The functional is minimized along the curve ANMB.

A modification of the previous problem occurs when the integral to be extremized
(10) must satisfy also the linear isoperimetric constraint:

J =
B∫

A

[
φ1(x, y) + y′ ψ1(x, y)

]
dx = C , (14)

where: ϕ1 and ψ1 denote known functions and C is a given constant. Now, the function
ω must be replaced by the augmented function ω∗ of the form:

ω∗ (x, y, λ) = ∂ψ∗

∂x
− ∂φ∗

∂y
, (15)

where

φ∗ = φ + λ φ1 , ψ∗ = ψ + λ ψ1 . (16)

The equation ω = 0 of the simple problem must be replaced by the equation for
augmented function ω∗ = 0. The equation for the isoperimetric problem represents a
family of curves – one curve for each value of Lagrange’s multiplier λ. The particular
value of λ is to be determined from the given isoperimetric constraint (14).

3.2 Solution

Keller [1, 2] applies the classical methods of calculus of variations for the problem solu-
tion. Aftalion [5] uses the classical approach of optimal control applying Pontryagin’s
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maximum principle with Hamiltonian linear in the control function – here the propul-
sive force f (t). Aftalion’s reasoning is very sophisticated. Maroński [10], for Keller’s
model of running, uses non-classical method of Miele. This method gives necessary and
sufficient conditions of optimality including singular arcs of linear type. It gives clear
graphical interpretation. This method is not popular because the problem under investi-
gation should be reduced to the form required by the method of Miele. For Aftalion’s
model of running it is possible, however. The detailed description of the method is out
of the scope of this paper. The details one can find in Maroński [9], pp. 24–29.

The minimum-time running problem for Aftalion’s model [5] may be reduced to a
line integral as it follows. Equations (1) and (2) may be expressed using x, the actual
covered distance, instead of the time t, using the definition of the velocity:

v = dx

dt
. (17)

Now, the state equations take the forms:

dv

dx
= f (x)

v
− 1

τ
, (18)

de

dx
= σ(e)

v
− f (x) . (19)

The isoperimetric constraint – the distance to be covered – is of the form:

D =
B∫

A

dx , (20)

and the time of the run to be minimized:

T =
B∫

A

1

v
dx , (21)

where: A, B are the initial and final points.
Now, we can find the propulsive force f(x) from Eq. (19) and put it into Eq. (18),

then

dv

dx
= σ(e)

v2
− 1

v

de

dx
− 1

τ
. (22)

The differentials appearing in the integrals Eqs. (20) and (21) are as follows:

dx = τ v

a(e, v)
de + v2 τ

a(e, v)
dv , (23)

dx

v
= τ

a(e, v)
de + v τ

a(e, v)
dv , (24)
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where:

a(e, v) = σ(e) τ − v2 �= 0 . (25)

The isoperimetric constraint (20) and the time to be minimized (21) may be performed
as line integrals

D =
B∫

A

dx =
B∫

A

φ1(e, v) de + ψ1(e, v) dv , (26)

where

φ1 = v τ

a(e, v)
, ψ1 = v2 τ

a(e, v)
, (27)

and

T =
B∫

A

dx

v
=

B∫

A

φ(e, v) de + ψ(e, v) dv , (28)

where

φ = τ

a(e, v)
, ψ = v τ

a(e, v)
. (29)

According to the method of Miele [6], the augmented functions φ∗ and ψ∗ take the
forms:

φ∗ = φ + λ φ1 = τ

a(e, v)
(1 + λ v) , (30)

ψ∗ = ψ + λ ψ1 = v τ

a(e, v)
(1 + λ v) , (31)

where: λ is constant Lagrange’s multiplier.
The augmented fundamental function is of the form

ω∗(e, v, λ) = ∂ψ∗

∂e
− ∂φ∗

∂v
= 1

a2(e, v)

[
− τ v (1 + λ v)

(
τ

dσ

de
+ 2

)
− λ τ

(
σ(e) τ − v2

)]
.

(32)

Expression (32), after equating to zero, yields the optimal solution along so-called
singular arc

τ
dσ

de
(1 + λ v) + λ σ(e) τ

v
+ λ v + 2 = 0 . (33)

It is an algebraic equation depending on the functions of the covered distance x: e(x),
v(x), and constants. If there is a subarc, where

σ(e) = σ = const. , (34)



Is Optimal Velocity Constant During Running? 119

then dσ/de = 0 and the equation of the singular arc is an algebraic equation of a
simpler form

λ v2 + 2 v + λ σ τ = 0 . (35)

The parameters λ, σ , τ are constant therefore from Eq. (35) it follows that along such
arc v= vcruise = const., and this result is significantly consistent with the results of Keller
[1,2] and Maroński [10].

FromMiele’smethod it follows, that the admissible domain is bordered by the curves
obtained from integration of Eqs. (1) and (2) for f (t) = f max on the right, the equality
e(t) = 0 on the left, and the equality (25), a(e,v) = 0, from the bottom (cf. Figs. 6 and
7). The distance of the race may be broken into three phases:

1. The early phase of the race (acceleration), where the competitor moves using his
maximal propulsive force, f(t) = f max . The velocity rapidly increases. For the dis-
tances short enough only such a phase occurs (sprints) – the energy reserves are
not depleted. In the (e,v)-plane this phase represents the arc along the border of
admissible domain joining the initial point A and the singular arc.

2. The middle phase of the race (cruise). Here the competitor moves employing his
partial propulsive force, 0 < f(t) < f max. His velocity moderately varies with the
time or even it is constant. In the (e,v)-plane this phase corresponds to the arc within
the admissible domain. The arc extends from the border where f(t) = f max , to the
border where e(t) = 0. This section corresponds to the singular arc in calculus of
variations or optimal control.

3. The finish with decreasing velocity (negative kick). The border of the admissible
domain is reached. Here the energy from the anaerobic container is depleted, e(t) =
0. The energy is supplemented by the flow from aerobic container, but the intensity
of the flow is relatively low. The propulsive force f(t) follows from Eqs. (2) or (9),
f = σ(e)/v. The energy flow rate σ(e) is too small to sustain the cruising velocity.
The final point B may be reached along this curve.

Originally, the method of Miele was worked out for the given final point B (given
final velocity vB). This difficulty may be overcame in the manner described in the book
of Maroński [9], where the problem with unspecified final velocity is considered as a
sequence of the problems with fixed final velocity and minimizing the time of the event
with respect to vB.

4 Results

An example of the minimum-time run for constant σ over the distanceD = 400 m using
the method of Miele is given in Maroński [10]. Originally this problem solved Keller [1,
2] using the classical methods of calculus of variations. The data for computations were
adjusted to the results at that time and they are: e0 = 2409.25 m2/s2, f max= 12.2 m/s2,
τ = 0.892 s, σ = 41.61 m2/s3. The track is inclined to the horizontal and the inclination
angle is 20. The admissible domain is given in Fig. 6 (undashed area). The optimal path
consists of the subarcs: the acceleration with f (t)= f max on the right, the cruise with
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constant velocity in the middle, and the negative kick at the end. The details one can find
in Maroński [9].

Fig. 6. The admissible domain (undashed area) for Keller’s model of metabolism (σ = const.),
the 400 m run and the slope angle of the track 20 . The velocity is constant along the singular arc
(in the middle).

The second example employs Aftalion’s model of metabolism [5], where the energy
flow rate from the aerobic container to the anaerobic one is not constant, but it depends
on the energy according to Eq. (8). The data for computations are as follows (cf [5, 11]):
e0= 2409 m2/s2, f max= 9 m/s2, τ = 0.89 s, σ= 22 m2/s3. The track is horizontal. Here
also the maximum propulsive force f(t) = f max is developed at the early phase of the
race (acceleration). The optimal velocity slightly decreases along the singular arc then.
The finish is with decreasing velocity along the subarc, where e(t) = 0. The difference,
comparing with Keller’s model, is along the singular arc, where the cruising velocity
is not constant. There is the family of singular arcs for different values of Lagrange’s
multiplier in Fig. 7. The singular arc for λ = −0.19 s/m is on the outside of the admissible
domain – it is not active. The singular arc for λ = −0.23 s/m does not reach the left

Fig. 7. The admissible domain (undashed area) for Aftalion’s model of metabolism (σ = σ (e)),
and the run over different distances represented by different values of constant Lagrange’s
multiplier λ. Here the velocity slightly decreases along the singular arc (in the middle).
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border of the admissible domain, e(t) = 0. It cuts the bottom border of the admissible
domain, where a(e,v) = 0. The method of Miele disappoints for such the case.

5 Discussion

The minimum-time competitive run is reconsidered in the paper. Such a problem may
be formulated and solved in optimal control (calculus of variations). The question for-
mulated at the beginning is this: What is the runner’s optimal velocity profile along
the distance minimizing the time of the event? Another question may be put: Is such
a section of the race where the optimal velocity is constant? Such a problem solved
Keller [1, 2]. He employs relatively simple model of motion basing on Newton’s second
law and an equation of the power balance. In his model the energy flow rate from the
aerobic container to the anaerobic one is assumed to be constant. The result of Keller’s
considerations is that the race may be broken into three phases:

– acceleration,
– cruise with constant competitor’s velocity,
– and final slowing down.

Such the result does not fit well the results observed during real events. Aftalion [5]
reconsidered the problem improving the model of the power balance in the competitor’s
body. Her model assumes that the energy flow rate between the aerobic container and the
anaerobic one is not further constant, but it depends on the energy level in the anaerobic
vessel (cf. Eq. (8)). For the problem solution she applies classical Pontryagin’smaximum
principle with the Hamiltonian linear in the control function – here the propulsive force
f(t). Such an approach is very sophisticated and it gives only necessary conditions of
optimality. In the present paper the non-classicalmethod ofMiele is applied – themethod
of extremization of line integrals by Green’s theorem. This method gives necessary and
sufficient conditions of optimality and it gives a simple graphical interpretation. The
difficulty is that not all problemsmay be performed in the form required by this method –
as a line integral of two variables. It was the reason that the minimum-time problem
for running over variable slope trace was solved using a numerical method - direct
Chebyshev’s pseudospectral method [8]. For Keller’s and Aftalion’s models of running
such transformation is possible, however. In this paper it is proved that the optimal
path consists of three sections: acceleration, cruise and final slowing down. The optimal
cruising velocity is not constant, as inKeller’smodel – it slightly decreases. The equation
of the singular arc is an algebraic Eq. (33) and not an ordinary differential equation (cf.
[5], Eq. (17)). The qualitative result is the same – the optimal velocity decreases along
the singular arc (during the cruise). The answer for the question put in the title of the
paper is: the optimal cruising velocity may be constant or decreasing. It depends on the
model of the power balance used, and not on the distance to be covered. According to
Reardon [3], it seems that the model used by Aftalion [5] is better for middle distance
running comparing with Keller’s model.
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7. Maroński, R.: On optimal velocity during cycling. J. Biomech. 27, 205–213 (1994)
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