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Abstract. This work presents an application of different deep learn-
ing related paradigms to the diagnosis of multiple chest pathologies.
Within the article, the application of a well-known deep Convolutional
Neural Network (DenseNet) is used and fine-tuned for different chest
X-Ray medical diagnosis tasks. Different image augmentation methods
are applied over the training images to improve the performance of the
resulting model as well as the incorporation of an explainability layer
to highlight zones of the X-Ray picture supporting the diagnosis. The
model is finally deployed in a web server, which can be used to upload
X-Ray images and get a real-time analysis.

The proposal demonstrates the possibilities of deep transfer learn-
ing and convolutional neural networks in the field of medicine,
enabling fast and reliable diagnosis. The code is made publicly avail-
able (https://github.com/carloslago/IntelligentXray - for the model
training, https://github.com/carloslago/IntelligentXray Server - for the
server demo).

Keywords: X-Ray diagnosis · Deep learning · Convolutional neural
networks · Model interpretability · Transfer learning · Image
classification

1 Introduction

Artificial Intelligence is poised to play an increasingly prominent role in medicine
and healthcare due to advances in computing power, learning algorithms, and the
availability of large datasets sourced from medical records and wearable health
monitors [2]. In recent literature, deep learning shows promising results in medi-
cal specialities such as radiology [15], cancer detection [5], detection of referable
diabetic retinopathy, age-related macular degeneration and glaucoma [19], and
cardiology, in a wide range of problems involving cardiovascular diseases, per-
forming diagnosis, predictions and helping in interventions [3].

In this article, we investigate the application of deep learning models for mul-
tiple chest pathology diagnoses with the objective of designing a fast and reliable
method for diagnosing various pathologies by analyzing X-Ray images. For the
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task, we employ, tune, and train a deep learning model using Tensorflow [1],
as well as evaluate it on various medical state-of-the-art benchmarks through
transfer learning. The used base model, DenseNet [11], is a state-of-the-art deep
Convolutional Neural Network (CNN) that employs an innovative strategy to
ensure maximum information flow between all the layers of the network. In the
model, each layer is connected to all the others within a dense block, as a conse-
quence, all layers can get feature maps from preceding ones. The resulting model
is shown to be compact and have a low probability of overfitting [11]. Through
this work, DenseNet is adapted to be evaluated in different benchmarks from
the medical domain. A post-process training step based on image augmenta-
tion is also incorporated in order to increase its accuracy. Our contribution is
two-fold. We first adapt DenseNet for chest X-Ray effective diagnosis and then
the addition of the explainability layer. The evaluation of the new model is per-
formed on X-Ray classification benchmarks, including (i) pneumonia detection
task; (ii) detection of different pathologies which can be evaluated by doctors;
(iii) a Covid-ChestXray detection dataset; which consists of an open dataset of
chest X-Ray images of patients who are positive (or suspected) of COVID-19 or
other viral and bacterial pneumonia.

This article is structured as follows. Section 2 presents the data used for build-
ing and evaluating models, in this case, three different medical image databases.
Section 3 introduces the original model, as well as the modification proposed.
Section 4 presents the inclusion of the explainability layer to the model, in order
to make it capable of explaining its diagnoses. Section 5 analyses results obtained.
Finally, Sect. 6 presents conclusions and future works.

Fig. 1. (Top) Three examples from the pneumonia detection task [14]. (Bottom left)
An example image from CheXpert interpretation task [12]. (Bottom right) An example
from the Covid-ChestXray benchmark [6].
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2 Data Description

This section describes the datasets and benchmarks used to fine-tune, train and
evaluate the model. We also describe the preprocessing performed on the original
data. The evaluation of the model is carried out in three different fields of the
area of X-Ray diagnosis:

(i) Chest X-Ray Images (Pneumonia), an open dataset of chest X-Ray images
of patients and their pneumonia diagnosis [14].

(ii) CheXpert, a large dataset of chest X-Rays for automated interpretation,
featuring uncertainty labels and radiologist-labeled reference standard
evaluation sets [12].

(iii) Covid-ChestXray-Dataset, an open dataset of chest X-Ray images of
patients who are positive (or suspected) of COVID-19 or other viral and
bacterial pneumonias [6].

Data for the Pneumonia detection benchmark dataset (i) is publicly available
from a Kaggle competition1, including 5863 X-Ray images associated with two
different resulting categories (Pneumonia in 25% of the cases and Normal in
the remaining 75%). Automated chest X-Ray sources (ii) have been extracted
from CheXpert database2. CheXpert is a dataset provided by Stanford ML
Group, with over 224,316 samples with both frontal and lateral X-Rays col-
lected from tests performed between October 2002 and July 2017 at Stanford
Hospital. Images are labeled to differentiate 14 different diagnoses: no conclud-
ing pathology, presence of support devices, and a list of 12 different possible
pathologies. The distribution of the classes is outlined in Fig. 2. Chest radiog-
raphy is one of the most common imaging examinations performed overall, and
it is critical for screening, diagnosis, and management of many life-threatening
diseases. Automated chest radiography explainability is capable of providing a
substantial benefit for radiologists. This research aims to advance the state-of-
the-art development and evaluation of medical artificial intelligence applications.
Finally, Covid-ChestXray-Dataset sources (iii) can be found at GitHub3. It con-
tains around 100 X-Ray samples with suspected COVID-19. Data has been col-
lected from public sources as well as through indirect collection from hospitals
and physicians during the previous year. This task aims to differentiate between
no pathology, pneumonia, and COVID-19 cases. Examples of X-Ray images used
in the experimentation are presented in Fig. 1.

2.1 Data Preprocessing

To prepare the data for training, we first re-scaled all the input image sizes to
224 × 224 pixels, since not all the images from all the sources have the same
resolution. In addition, image augmentation techniques increase the training set

1 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.
2 https://stanfordmlgroup.github.io/competitions/chexpert/.
3 https://github.com/ieee8023/covid-chestxray-dataset.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://stanfordmlgroup.github.io/competitions/chexpert/
https://github.com/ieee8023/covid-chestxray-dataset
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Fig. 2. CheXpert classes distribution [12]

size to avoid overfitting [22]. The CheXpert dataset contains four possible labels,
empty when the pathology was not considered (they are considered negative),
zero, denoting the pathology is not present, one when the pathology is detected,
and a value (−1) denoting that it is unclear if the pathology exists or not. For
modeling, all the cases with empty or zero values are considered negative cases.
In the case of unclear values, different approaches are applied depending on the
pathology, according to the best results showed in [12] when using the U-zeros
or U-ones method. Train, validation, and test splits are shown in Table 1 for all
the different cases. Both the Pneumonia and the CheXpert cases have a split of
80/10/10, while the COVID-19 case has a split of 60/15/25, as there is less data
available.

Fig. 3. DenseNet architecture overview. (Figure from [10]).
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Table 1. Data balance in training and testing splits

Case Pathologies Train and validation Test

Positive Negative Positive Negative

Pneumonia Pneumonia 0.63 0.37 0.74 0.26

COVID-19 Pneumonia 0.31 0.69 0.34 0.66

COVID-19 0.29 0.71 0.33 0.67

CheXpert Cardiomegaly 0.64 0.36 0.47 0.53

Edema 0.48 0.52 0.29 0.71

Consolidation 0.21 0.79 0.25 0.75

Atelectasis 0.63 0.37 0.59 0.41

Pleural Effusion 0.53 0.47 0.38 0.62

3 Model Construction

CNNs have become the dominant Machine Learning approach for visual object
recognition in recent years [10]. They perform convolution instead of matrix
multiplication in contrast to fully connected neural networks. As a consequence,
the number of weights is decreased resulting in a less complex network that is
easier to train [21]. Furthermore, images can be directly imported into the input
layer of the network avoiding the feature extraction procedure widely used in
more traditional machine learning applications. It should be noted that CNNs
are the first truly successful deep learning architectures due to the inherent
hierarchical structure of the inner layers [10,17].

Deep CNNs can represent functions with high complexity decision boundaries
as the number of neurons in each layer or the number of layers is increased. Given
enough labeled training instances and suitable models, Deep CNN approaches
can help establish complex mapping functions for operation convenience [17].

This research is based on the well-known DenseNet model [25], which is
a popular architecture making use of deep CNNs. The main contribution of
DenseNet relies upon that it connects all layers in the network directly with
each other, and in that each layer also benefits from feature maps from all
previous layers [10]. A visual representation of DenseNet is provided in Fig. 3.
In this sense, DenseNet provides shortcut connections through the network that
lead to deep implicit supervision, which is denoted in the state-of-the-art as
a simple strategy to ensure maximum information flow between layers. This
architecture has been used in a wide variety of benchmarks yielding state-of-the-
art results as it produces consistent improvements in the accuracy, by increasing
the complexity of layers, without showing signs for overfitting [25].

3.1 Fine-Tunning over DenseNet

Originally, DenseNet was trained for object recognition benchmark tasks as
CIFAR-10, CIFAR-100, The Street View House Numbers (SVHN) Dataset or
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Fig. 4. DenseNet model architecture used for experiments (i) and (ii).

ImageNet. These benchmarks are composed of a big number of training instances
for each one of the classes to predict [8,16,18]. The need for alteration of the
original model raises when adapting it to environments where the number of
training samples is low, as is the case of medical diagnosis based on an image.
In order to accommodate the DenseNet network into the medical domain and
reuse the latent knowledge condensed in its layers, the final layers of the net-
work are updated to perform classification in the medical domain by retraining
only these final layers. Transfer Learning is a great tool for fixing the lack of
data problem widely extended in deep learning, which usually employs methods
that need more data than traditional machine learning approaches. Transferring
the knowledge from the source domain where the network has been trained to
another is a common practice in deep learning [23]. Moreover, thanks to the
transfer of knowledge, the amount of time it is required to learn a new task is
decreased notably, and the final performance that can be achieved is potentially
higher than without the transfer of knowledge [24]. All of our DenseNet model
variants have been trained with transfer learning for DenseNet121, the only
difference between each architecture is the regularization techniques that are
implemented. As shown in Fig. 3, DenseNet includes several convolution layers
(referred to as transition layers) and dense blocks in an iterative way, connect-
ing all layers in the network directly with each other, with each layer receiving
feature maps from all the previous layers [10].

The architectures of the base DenseNet models are showed in Figs. 4 and 5.
The final Dense layer from the mentioned figures is the part that we fine-tune
for experimentation. It should be noted that L2 regularization is being used on
the GlobalAveragePooling2D layer, with a rate of 0.001, which is essential to
avoid over-fitting in the network. This difference among architectures was found
to produce better results in laboratory experimentation due to the lower sizes
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Fig. 5. DenseNet model architecture used for experiment (iii).

of the dataset. For both the first and second evaluation benchmarks, regarding
the Pneumonia detection and the CheXpert identification, the same type of
regularization techniques have been used. For training both models the following
image augmentation techniques have been used: horizontal flip, zoom range both
in and out in with a maximum value (zoomrange) of 0.2, ZCA whitening, to
obtain decorrelated features, and rotation within a range (rotrange) of −5a and
5◦. Furthermore, given the lower number of samples in the COVID-19 case,
additional data augmentation was included: Height and width shift range, both
with a range (shiftrange) of 0.2, moving the image up to that percent vertically or
horizontally, shear range (shearrange) of 0.2, rotation range of 5◦ and, brightness
modification, ranging from 0.8 to 1.2. In addition, lateral images are being used
for training the model too, which is used in this research as a form of image
augmentation, which gives to the model a different viewpoint of a particular
sample. Regarding the COVID-19 case, which also contains sample instances
from Pneumonia and Covid cases, the network is slightly different as it uses
dropout, which was observed useful not to over-train the model as several neuron
units are randomly disconnected at training [9]. The specific model for this third
experiment is shown in Fig. 5. It should be noted that for this case more image
augmentation techniques are being used: horizontal flips, zoom range, rotation
range, height and width shift range, shear range, and brightness range.
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4 Explainability Layer

As a final step, an explainability layer is added on top of the adapted DenseNet
to make the model self-explainable. Developing the explainability of a machine
learning model is essential to understand the decision process behind the predic-
tions of a model, analyzing if it makes sense or not, and facilitate human trust
in the final decisions. It can also help to gain some insights and confidence in the
model, often seen as a black-box tool, by observing clearly how it performs under
given circumstances. Adding interpretability to models is a key towards trans-
forming an untrustworthy model into a trustworthy one [20]. Local Interpretable
Model-agnostic Explanations (LIME) [20] is used to provide explainability to the
final model. LIME is an algorithm able to explain the predictions of a regres-
sor or classifier by approximating its result with an interpretable model. LIME
provides local explanations of predictions of a model by fitting an explanation
model locally around the data point of which classification is to be explained.
LIME supports generating model explanations for text and image classifiers. The
layer implements the function in Eq. 1.

ξ(x) = g ∈ G argminx L (f, g, πx) + Ω(g), (1)

where the fidelity function L is a measure of how unfaithful an explanation g, an
element in the set of possible interpretation models G, in approximating f , the
probability of x belonging to a class in the locality defined by the proximity mea-
sure πx. The Ω(g) term is a measure of complexity of the explanation of g ∈ G.
For the explanation to ensure interpretability and local fidelity, it is necessary
to minimize L (f, g, πx) and have a Ω(g) low enough so it is interpretable by
humans. SP-LIME is a method that selects a set of instances with explanations
that are representative to address the problem of trusting the model. To under-
stand how the classifier works, it is necessary to explain different instances rather
than just provide an explanation of a single prediction. This method selects some
explanations that are insightful and diverse to represent the whole model.

5 Experimentation and Results

This section presents results of the experimentation for each of the studied bench-
mark tests. For all cases, the performance of the model is evaluated in terms of
Accuracy (Eq. 2), AUC (Eq. 3)4 and micro and macro F1 scores (Eqs. 4 and 5
respectively).

Accuracy =
TrueNegatives + TruePositive

All samples
(2)

AUC(f) =

∑
t0∈D0

∑
t1∈D1 1 [f (t0) < f (t1)]
|D0| · |D1| (3)

4 1 [f (t0) < f (t1)] returns 1 if f (t0) < f (t1) and otherwise 0, D1 is the set of positive
examples and D0 of negatives.
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Table 2. Pneumonia benchmark experimentation results.

Case Accuracy AUC Macro-F1 Micro-F1

Training set 94.5% 0.99 0.96 0.96

Test set 93.75% 0.99 0.96 0.96

Table 3. CheXpert benchmark experimentation results.

Case Accuracy AUC Macro-F1 Micro-F1

Training set 88% 0.93 0.88 0.9

Test set 83% 0.88 0.74 0.78

Table 4. Detailed CheXpert benchmark experimentation results.

Case Accuracy AUC Macro-F1 Micro-F1

Cardiomegaly 74.3% 0.74 0.74 0.74

Edema 82.64% 0.78 0.78 0.83

Consolidation 77.78% 0.65 0.66 0.78

Atelectasis 70.83% 0.68 0.68 0.71

Pleural Effusion 82.41% 0.83 0.82 0.82

Table 5. COVID-19 benchmark experimentation results.

Case Accuracy AUC Macro-F1 Micro-F1

Training set 92% 0.98 0.92 0.93

Test set 94% 0.98 0.94 0.94

F1micro = 2 × recallmicro × precisionmicro

recallmicro + precisionmicro
(4)

F1macro =
∑

classes

F1 of class

number of classes
(5)

For the calculation of micro F1, the precision and recall values are obtained
with Eqs. 6 and 7, as well as for the calculation of macro F1 (Eq. 5). The calcu-
lation per class of the F1 values is done as presented in Eq. 8.

precisionmicro =
∑

classes TP of class
∑

classes TP of class + FP of class
(6)

recallmicro =
∑

classes TP of class
∑

classes TP of class + FN of class
(7)



Deep Transfer Learning for Interpretable Chest X-Ray Diagnosis 533

F1 =
2 × precision × recall

precision + recall
(8)

Pneumonia detection task results can be seen in Table 2 and the COVID-
19 case results are shown in Table 5. We can see that the network has good
performance on balanced datasets, proved by the macro and micro F1 results.
CheXpert benchmark results can be seen in Table 3, with the results for the
most important pathologies in detail in Table 4. Concerning CheXpert, it is much
more complex, having 14 different observations and unknown labels. Moreover,
only a small subset of the data has been used, as the objective is to prove the
efficiency of this type of network but not get the best possible result. The F1 score
only takes into account Cardiomegaly, Edema, Consolidation, Atelectasis, and
Pleural Effusion, due to the unbalanced samples in the dataset. Model evaluation
in benchmarks (i) and (iii) yields an accuracy of over 90%, with AUC scores
of 0.98+, and lower results for the benchmark (ii), with accuracies over 83%
and AUC scores of 0.9. These results are in line with other neural network
approaches applied to chest X-Ray benchmarks. For instance, Çallı et al. in [4]
report a total of 9 neural network systems trained and validated in the COVID-
19 infection benchmark. Their results indicate that the mean accuracy of these
systems is 0.902 with a standard deviation of 0.044. Our experimentation results
also confirm that transfer learning can successfully be applied for rapid chest X-
Ray diagnosis and help expert radiologists with a system that offers immediate
assistance, as supported by [4].

5.1 Evaluating Model Explainability

With the addition of an explainability layer on top of it, the model can explain its
behavior, by highlighting the areas of the image that support its diagnosis. The
addition of this explanatory layer is the first step towards increasing human con-
fidence in health-related artificial intelligence applications, as the model can self-
explain its decisions to gain trust in human-computer interactions. We now show
model explanations for each one of the benchmark datasets in which we evalu-
ate our model. First, we show a sample instance from the pneumonia detection
dataset (Fig. 6) The figure represents a pneumonia detectable by the airspace
consolidation that can be seen on the right lower zone . The model correctly
outlines the area affected by pneumonia. For the CheXpert benchmark dataset,
the case shown in Fig. 7 has been diagnosed with cardiomegaly . Cardiomegaly
is present when the heart is enlarged, as can be easily seen on the frontal X-Ray
from Fig. 7. In this scenario, the network successfully performs a correct pre-
diction of the area. Finally, we show an example for the COVID-19 benchmark
dataset in Fig. 8 which has been diagnosed with airspace opacities . The model
explanations show that the network is focusing on the relevant areas related to
these opacities.



534 C. Lago et al.

Frontal X-Ray Lateral X-Ray

Fig. 6. Pneumonia detection samples including model explanation.

Frontal X-Ray Lateral X-Ray

Fig. 7. CheXpert samples diagnosed with cardiomegaly including model explanation.

Frontal X-Ray Frontal X-Ray

Fig. 8. COVID-19 samples diagnosed with COVID-19 including model explanation.

5.2 Demo

In addition to the development of the models, we build a web prototype where
the CheXpert model is deployed. This web prototype enables uploading personal
X-Ray images to get a diagnose in less than one second and model explanations
in less than ten seconds. Figure 9 shows the web application for performing
the predictions and how the results are presented. As shown in the image, it
is possible to upload both the frontal and lateral X-Ray or just one for the
prediction, the table on the right displays the prediction of the model for each
of the pathologies along with its confidence in the prediction.
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Fig. 9. Web demo

6 Conclusion and Future Work

This research demonstrates how deep learning and CNNs can be useful in the
field of medicine, enabling fast and reliable support for diagnosis. For diseases like
cancer, where early diagnoses could save millions of lives, they also enable a more
accurate and early diagnosis, with models such as [13] achieving an accuracy
of more than 90%. Furthermore, the addition of the explainability layer is an
important step towards improving trust in model predictions, which is one of
the main concerns for public usage. We consider the addition of this explanatory
layer as the first step towards increasing human confidence in health-related
artificial intelligence applications, as the model can self-explain its decisions.

Although polymerase chain reaction (RT-PCR) is the preferred way to detect
COVID-19, the costs and response time involved in the process have resulted in
a growth of rapid infection detection techniques, most of them based on chest
X-Ray diagnosis [7]. The primary advantage of the automatic analysis of chest
X-Rays through deep learning is that the technique is capable of accelerating
the time required for the analysis. It should be noted that this study is just an
experiment to showcase the capabilities of deep convolutional neural networks in
the field of radiology, but shouldn’t be considered as a way to replace a radiolo-
gist checkup. For future lines, it will be interesting to mix the current datasets
used in the project with other existing datasets, enabling the detection of more
pathologies and fixing the unbalance problems. More complex architectures could
be tested in a bigger sample to improve performance.

Acknowledgments. This work has been supported by The LOGISTAR project,
which has received funding from the European Union’s Horizon 2020 research and
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