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Abstract. Morphological development has shown its efficiency in improving
learning and adaptation to the environment in natural organisms from infancy to
adulthood. In the case of robot learning, this is not so clear. The results of a series of
experiments that have been carried out in previous work have allowed us to extract,
from an analytical perspective, some notions about how and under what condi-
tions morphological development may influence learning. In this paper, we want
to adopt an engineering or synthesis perspective and test whether these notions can
be used to construct a successful morphological development strategy for a diffi-
cult task: learning bipedal locomotion. In particular, we have addressed learning
to walk in a 14 degrees of freedom NAO type robot and have designed a morpho-
logical development strategy to this end. The results obtained have allowed us to
validate the relevance of the assumptions made for the design and implementation
of a morphological development strategy.
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1 Introduction

Humans and animals undergo morphological development processes from infancy to
adulthood that have been shown to facilitate learning [1, 2]. Some of the developmental
principles observed in nature have been applied to different robot morphologies, with
the main goal of improving their learning abilities. The implementation of these princi-
ples has led to different results, showing that the development of the morphology while
learning can be positive [3—-6], irrelevant [7, 8] or even detrimental [8, 9] for the learn-
ing process. Although the mechanisms through which morphological development may
influence learning are still not very well understood, there are several studies that provide
some indications on why and how learning may be influenced by morphological devel-
opment. For example, Bongard and Buckingham [5, 10] relate task complexity to the
influence of morphological development, indicating that morphological development
does not provide any advantage for a simple problem. In another study [9], Bongard
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also presents instances where morphological development is detrimental for learning,
due to the abrupt changes in the controller that occur during the development phase in
that particular experiment. Also, Ivanchenko and Jacobs [8] show how morphological
development may be beneficial for learning if a suitable development sequence is fol-
lowed. They show how an inadequate sequence may even produce results that are worse
than those of learning without morphological development. The relevance of finding not
only a morphological development strategy that is suitable for the particular problem
being addressed, but also the necessity of finding its adequate developmental sequence
is pointed out by Vujovic et al. [6]. In their article, they find that a suitable developmental
sequence may improve learning while an unsuitable one is irrelevant in their case.

With the aim of complementing the insights gained by those authors, Naya-Varela
et al. [11, 12] have carried out a series of experiments analyzing the performance of
different morphological development strategies over different morphologies. Firstly, on
a study that analyzes the performance of morphological development based on growth
and on the variation of the Range of Motion (ROM) of the limbs [11], they find that
growth-based morphological development improves performance in a quadruped mor-
phology, while ROM is irrelevant. They hypothesize that the success of the growth
strategy is motivated by two main reasons: (1) Starting the learning process with an
initially smaller morphology lowers the center of gravity, thus increasing the initial sta-
bility of the morphology and allowing it to maintain an upright position without falling
for more behaviors than in the adult and larger morphology. (2) This increment in the
stability increases the exploratory behavior at the beginning of learning, avoiding the
stagnation of solutions in local optima as it is observed for the no-development case
(learning directly using the adult morphology). Regarding the ROM strategy, they argue
that its lack of effectiveness for learning in their case is motivated by the intrinsic charac-
teristics of the strategy and its incorrect alignment with the morphology of the quadruped.
Based on these results, they study the influence of the growth strategy in two additional
morphologies: a hexapod and an octopod [12]. In this study, they find that the influence
of growth decreases with the number of limbs of the morphology, being relevant for the
quadruped and irrelevant for the hexapod and octopod. The authors hypothesize that this
decrease in the relevance of growth is due to the reduction of the task complexity with
the number of limbs: as the number of limbs increase, the stability of the morphology
increases, thus the problem becomes easier to learn.

The results and conclusions obtained in all of these studies, as formalized in [13],
can be condensed into a series of insights or hypotheses that a problem and a morphol-
ogy must fulfill to be susceptible of being influenced by morphological development.
Section 2 describes them in detail. In fact, these insights can also lead to a series of
considerations that should be taken into account and steps that should be followed in
order to appropriately design morphological development processes.

The objective of this paper is to provide some experimental results on the application
of the insights mentioned in the previous paragraph. To this end, we have addressed a
problem that has been classified as quite difficult in the literature: Learning to walk on
two legs, with the aim of designing an appropriate morphological development sequence
to make learning the task easier and more efficient.
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Although there are numerous examples of bipedal legged robots in the literature [ 14—
16], learning to walk in bipedal robots is still a complex task. In fact, most walkers are
programmed to walk, they do not learn to walk. There are few examples that study how to
learn to walk in bipedal robots from a developmental perspective. In this line, Lungarella
and Berthouze [17, 18] analyze the influence of morphological development by freezing
and freeing Degrees of Freedom (DOF) of a bipedal robot sustained by a harness attached
to its shoulders. More recently, two articles address the problem of learning to walk in
bipedal robots using a growth based morphological development strategy [19, 20]. On the
one hand, Hardman et al. [19] compared the performance obtained utilizing an annealing
optimization algorithm of learning with and without morphological changes. They show
how their selected morphological development strategy outperforms learning without
it. These results are presented for two different morphological changes, for the case of
developing the length of the foot and for the case of increasing the mass and inertia
of the body of the robot. Furthermore, they also found that their methodology reduces
the number of catastrophic failures, considering as catastrophic failures behaviors in
which the robot falls or collides with its own body. On the other hand, Zhu et al. [20]
show how a suitable constraint of the morphology in a bipedal robot that learns to walk
by a genetic algorithm allows it to improve on the learning performance of the system
without any constraint. However, they also pointed out the necessity of a suitable match-
up between the task and the selected restrictions, because they also report worse results
when different ones are applied.

Summarizing, morphological development has been studied by analyzing different
developmental strategies and comparing them to the no-development case. In addition, it
has been shown that the morphological development process needs to be carefully chosen
as it could lead to completely inadequate results. Based on these results, different authors
have extracted some basic knowledge and hypotheses about when it could make sense to
apply morphological development. However, to the best of our knowledge, we have not
found any work that addresses the opposite problem: Given a morphology and a task,
find an appropriate morphological developmental process that makes learning easier.

Thus, this paper presents a first experiment to design or synthesize a morphological
developmental process, and we show that it is possible to improve the learning abilities
of a selected morphology taking inspiration from the morphological changes that happen
in nature. The paper is structured as follows: In Sect. 2, we describe the requirements
for designing an application case for morphological development in bipeds. Section 3 is
devoted to present the experimental setup we will be using during this experiment. The
results of the application case of morphological development, followed by a discussion,
are presented in Sect. 4. Finally, we provide some conclusions and future lines of work
in Sect. 5.

2 Designing a Morphological Development Strategy

This section is devoted to presenting the design process of a morphological development
strategy to improve the learning performance of a bipedal robot [21]. To provide a guide
of the aspects that should be taken into account in order to design a morphological
development sequence for a particular problem, we have resorted to previous work in
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the literature. In particular, Naya-Varela et al. [ 13], after a thorough analysis of the fitness
landscapes obtained for several morphological development processes, have suggested
a series of general considerations that should be followed. As a summary, they have
indicated that:

e As other authors have already mentioned before, the learning problem must be com-
plex enough to justify morphological development. Otherwise, it may not have any
impact during the learning phase.

e Learning with the initial morphology must be simpler than learning with the final
morphology. This simplifies the problem at the early stages of development, allowing
us to gradually increase the complexity of the learning task through the different
developmental stages. Thus, the maximum complexity of the problem will be achieved
with the final morphology.

e It is necessary to have an adequate synergy between the morphology, the control
system, and the selected developmental strategy. Especially, the development of the
morphology must be in accordance with the capacity of the controller to adapt to the
morphological changes.

e To avoid misleading learning, we consider that optimal solutions must be available
from the beginning of the learning process. Reducing the solution search space could
imply that an optimal solution would not be available until the final morphology is
reached, limiting the capability of the learning algorithm to find optimal solutions and
allowing for deceptive paths.

Of course, these are general principles that are mostly related to the evolution of the
sequence of fitness landscapes defined by the sequence of morphological changes when
viewing the learning strategy as an optimization process. Consequently, they need to be
translated into specific features that we want to see in our bipedal robot learning to walk.
These features are:

e Problem complexity: In order to have a complex enough problem for learning, we
have selected the task of bipedal walking. Learning to walk is a complex task due to
the intrinsic difficulties associated with the instability and dynamics [22]. Concretely,
we have selected the task of learning to walk in a NAO robot.

e Learning simplification: With the aim to start learning with an initially simpler mor-
phology than the final one, we have selected growth as a morphological development
strategy. The reason is that we consider that learning with a lower center of gravity
may simplify learning, thanks to an increase in the stability of the morphology.

e Morphology, control system, and development synergy: To maintain a synergy
between morphology, control system, and developmental strategy we have selected
a progressive and continuous developmental stage, avoiding abrupt changes in the
controller or morphology that may distort the relationship between them.

e Availability of solutions: A growth based developmental strategy does not imply
any limitation or constraint in the movement of the motor system. Thus, with this
developmental strategy, the space of possible solutions is invariant from the initial
morphology to the final one.
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NAO model with the upper leg and lower leg modified to allow growing.

Thus, to improve NAO’s learning performance thanks to growth, a series of different
design characteristics have been implemented: (1) To allow the NAO robot to grow, we
have modified its legs allowing their extension. Although morphological development
could involve more and different parts of the NAO (like the body or arms), as a first
approximation, we have decided to apply it only to the legs. We consider that modifica-
tions of the length of the legs provide the highest impact in terms of the stability of the
robot (Fig. 1); (2) Symmetric growth. We have considered a symmetric growth of the
upper leg and the lower leg. This preserves the initial stability as well as the center of
gravity as close as possible to the initial position in the xy-plane (bearing in mind that
as the morphology grows, it will move upwards along the z-axis), avoiding the possible
static and dynamic imbalances that may arise if one part of the leg grows more than the
other; (3) Progressive growth. With the aim of avoiding drastic changes in the morphol-
ogy and control system, a progressive and linear growth sequence has been selected,
rather than an abrupt one; (4) Reduction of the maximum ROM available. Finally, we
have reduced the maximum available ROM of each joint given by the documentation of
the NAO in order to reduce the search space.

3 Experimental Setup

To test the application of the morphological development strategy presented in the pre-
vious section, we have created the following experimental setup. As indicated before,
we will make use of a NAO platform as the base robotic structure. For convenience, the
NAO will be simulated using the CoppeliaSim simulator [23] and the PyRep extension
[24]. To apply morphological development based on growth as indicated above, a series
of modifications to the legs and feet of the NAO model in CoppeliaSim have been made
with the objective of allowing leg growth and increasing stability:

e The upper part of the legs was changed to two links joined by a prismatic joint. Each
link is 8 x 8 x 7.2 cm and has a mass of 458.7 g. The prismatic joint has a maximum
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force of 50 N. The maximum extension of the prismatic joint is 3.5 cm. This group
of two links and the prismatic joint, will be considered as a unique link that is able to
grow.

e The lower part of the legs was also changed to two links joined by a prismatic joint.
The upper link is 8 x 8 x 3 cm and has a mass of 192 g and the lower link is 9 x 8
x 3 cm and a mass of 215.8 g. Both links are equal but present different orientations.
The prismatic joint has a maximum force of 50 N. The maximum extension of the
prismatic joint is 3.5 cm. Again, this group will be considered as a single link that can
grow.

e The size of the feet has also changed from the original NAO foot size, increasing it
up to 16 x 8.5 x 1.5 cm in dimension and 204 g in weight.

e The different leg parts, as well as the feet, have been modified to represent, in a
simplified manner, the same dimensions as the original NAO. The mass and inertia of
the legs and feet are automatically adjusted by the simulator.

The controller of the robot is a neural network whose weights and structure are learnt
using NEAT [25], specifically the MultiNEAT implementation [26]. It has 3 inputs plus
one bias and 14 outputs, each controlling the actuation of one joint. The inputs are
sinusoidal functions of amplitude 2.0 rad and frequency 1.0 rad/s. The phase offsets of
the sinusoidal inputs are 0, 3.0 and 5.0 rad respectively.

A series of learning experiments using NEAT have been run over different imple-
mentations of the robot and environment using the CoppeliaSim simulator with the
ODE physical engine [27] in the CESGA [28] computer cluster. Each NEAT learning
run evolves a population of 150 individuals and is trained for 300 generations. A total
of 40 independent runs have been carried out for each experiment with the objective of
gathering relevant statistical data. Each individual is tested for 5 s with a simulation time
step of 50 ms and a physics engine time step of 5 ms.

As the controller is obtained using NEAT, the learning strategy is based on a neu-
roevolutionary process, where the fitness depends on the distance travelled by the head
of the robot in a straight line and whether or not the robot falls during learning. If the
NAO does not fall, the fitness value is the distance traveled in a straight line in meters.
However, if the NAO falls the simulation is stopped and we consider as the fitness value
the distance traveled 16-simulation time steps before the moment the NAO fell. In this
sense, we consider that the NAO falls when its head is below 0.3 m. We have selected
16-time steps because 16-time steps before falling, the NAO is still in a stable position.

In order to evaluate the developmental strategy that was designed, we have performed
two different types of experiments:

e Reference Experiment. This experiment is run with a fixed morphology (the same
as the final morphology for the rest of the experiments) from the beginning to the end.
The robot starts at generation 0 with the maximum length of the legs and the neuro-
evolutionary algorithm seeks a neural network-based controller to achieve maximum
displacement.

e Growth Design Experiments. The robot morphology starts with the shorter version of
the legs. That is, at the beginning of learning, the prismatic joints are fully contracted,
their extension is 0 cm. The length of the upper legs is 14.334 cm and the length of the
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lower leg is 11 cm. The leg length is grown linearly for a number of generations until
the upper leg reaches 17.0834 cm of length and the lower length reaches 14.5 cm.
This growth takes place in a set number of generations for each experiment. That is,
the final morphology is reached at generation 40, 60, 80, 100 and 120, depending on
the experiment.

This permits identifying the best growth ratio for the selected morphology and control
system and evaluating the relevance of the growth rate with regards to performance.

4 Results and Discussion

The results of the morphological development process designed for the NAO robot can
be observed in Fig. 2 and Fig. 3. Figure 2 displays the results obtained after the learning
process through neuroevolution in the case of no development and in the design case
of growth up to generation 120, as it is the one which results in the highest median.
It displays the median of the best fitness obtained for the 40 independent runs at each
generation for each configuration. The shaded areas in the graph represent the areas
between percentiles 75 and 25 for each case. Figure 3 displays the statistical results at
the end of the learning process for the different growth rates and the no development case.
Each boxplot represents the median and the 75 and 25 quartiles in the last generation
for 40 independent runs of each of the different types of experiments. The whiskers are
extended to 1.5 of the interquartile range (IQR). Single points represent values that are
out of the IQR. All developmental samples are compared to the no-development case.
The statistical analysis has been carried out using the two-tailed Mann-Whitney U test.
We want to test whether the performance of the different design cases is similar or not to
the reference case. We consider a p-value of 0.05 as the significance value for accepting
or rejecting the null hypothesis. All the p-values have been adjusted using the Bonferroni
[29] correction. The results show that the design case based on the morphological learning
sequence we have designed offers better results than learning without morphological
development. Only the growth up to generation 40 case (p-value of 0.37133) does not
offer better results than the reference case, while the less representative results, growth up
to generation 60 and growth up to generation 100, have a p-value of 0.04128 and 0.02037
respectively, both under the reference value of 0.05. Furthermore, two cases have offered
notable improvement concerning the no-development case. These are the growth up to
generation 80 (p-value of 0.00189) and growth up to generation 120 (0.0021).
Analyzing Fig. 2 and Fig. 3 it can be observed that:

e In the morphological development case, there is a noisy behavior in the curve repre-
senting the median of the fitness value during the developmental period. It is motivated
by the adaptation of the controller to the morphological changes that happen during
development. This means that the best solution in a specific generation may not be
the optimal solution in the next generation due to the variations in the morphology.
This is not observed in the curve that represents the median of the no-development
experiment. In this case, the fitness value progresses gradually without oscillations as
the morphology does not change.
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Fig. 2. Results obtained after 40 independent executions for the selected design process, consid-
ering different growth speeds and the case without morphological development. For the sake of
clarity, we only show the comparative results of the learning process for the case of no develop-
ment (black) and the design case of growing until generation 120 (blue), which presented the best
results.
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Fig. 3. Statistical representation of the performance obtained from the 40 independent experi-
ments at the end of the neuroevolutionary process. The statistical values of the Man-Whitney test
adjusted by the Bonferroni correction have been replaced by asterisks in order to makes the figures
clear. “Growth up to generation” is abbreviated by a G.

e The selected morphological development strategy improves the learning ability of the
algorithm not only at the end of the optimization process, but from the beginning it
already surpasses the performance of the no development case.

e In Fig. 3, it can be observed how the median of the fitness value increases as the
growth speed decreases (Table 1). Although this increment is small in absolute values,
it clearly shows a tendency. That is, the selected design strategy allows to improve
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Table 1. Median fitness for each growth ratio and the no-development case at the end of the
experiment

Growth ratio Median fitness (m)
No-development | 0.48292
40 0.85894
60 0.87915
80 0.89766
100 0.92716
120 1.06742

the learning capacity of the NAO, but the control system needs time to adapt to the
changes in the morphology. Especially relevant is the comparison between the fitness
value of the no-development case and the growth up to generation 120 case. This last
one, more than doubles the fitness value of the no-development case.

Analyzing these results in more detail and relating them to our initial design condi-
tions about how to design a specific morphological development strategy based on the
insights extracted from the literature, we can say that:

e Learning to walk for the NAO robot is a complex task. This assumption is supported
by the high number of falls encountered at the first evaluation of the individuals.
Considering the fitness value of all of the individuals in the first generation, we obtain
a total of 44 individuals whose value is over 0, which is only a 0.733% of the total
number of individuals (150 individuals in each independent run, with 40 independent
runs makes a total of 6000 individuals).

e The rapid increment of the fitness performance during the first generations supports
our hypothesis that starting the learning process with a smaller morphology than
the final one may help to improve learning efficiency. This rapid increment may be
motivated by the fact that an initial smaller morphology increases the stability of
the NAO, compared to a final large one. This increment in the stability may help to
find initial behaviors that allow the NAO to start walking and avoid falls. Behaviors
that could be rejected in the adult morphology. Thus, the number of optimal behaviors
increases as well as the exploration capacity of the learning algorithm. This hypothesis
is supported by Fig. 2, where the fitness value of the growth experiments improves on
the fitness achieved by the non-developmental case from the beginning of learning.
This shows that robots with shorter legs are able to walk further than robots with
longer legs (final morphology).

e Furthermore, we consider that our selected design condition of progressive and gradual
development is supported by the results of Fig. 3. On the one hand, the medians with
the highest fitness are obtained in those experiments with slower speeds. That is, in
those cases with more gradual development. On the other hand, only growth up to
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generation 40 has not improved learning, being this growth ratio the one that caused
the most abrupt changes in the morphology.

e [t seems that the assumption of a symmetrical development in both parts of the legs
(in the upper leg and in the lower leg) based on the idea of maximizing stability
was also a good choice. However, we do not know if this is the optimal solution
and further experimentation analyzing the influence of an asymmetric development
strategy would be interesting.

Finally, it is important to mention that during the evaluation time, the morphology of
the robot is fixed. What helps to improve learning to walk in the adult morphology is the
sequence of developmental stages the morphology follows from the initial morphology
to the final one. This is different from cases where the morphology changes during the
evaluation time to increase their adaptation to the environmental conditions, without
considering initial or final stages of development, such as in Ahmad et al. [30].

5 Conclusion and Future Work

This paper deals with the design of a morphological development strategy with the aim
of improving the learning ability of a bipedal robot when learning to walk. The design of
the morphological development process was based on design considerations extracted
from previous studies and analyses in the field, that can be summarized as: (1) The task
must be complex enough to warrant morphological development; (2) Start learning with
a morphology that makes the task simpler. In our experiment, this means a more stable
initial morphology; (3) Progressive and gradual development. To avoid abrupt changes in
the control-morphology relationship we have selected a developmental strategy based on
the linear growth of the legs; (4) Finally, we have selected a morphological development
strategy that does not omit optimal solutions during the developmental phase, to avoid the
learning algorithm getting stuck in suboptimal behaviors while the morphology grows.

The results of applying this morphological development process support the design
decisions we have made as morphological development clearly improves the learning
performance in the majority of the cases considered. In fact, in the best cases, it doubles
the performance of no development. However, much work is needed to provide robust
engineering indications about the design considerations we have made. In this sense,
further analysis and research about them and their implications should be carried out.
For example, it would be interesting to produce a design implementation with slower
growth rates than those presented in this paper in order to verify whether the relationship
between growth ratio and fitness is consistent or not. Furthermore, it would also be
interesting to see whether an asymmetrical growth of the legs could improve the results.
Finally, to conclusively state that the selected design considerations are suitable tools
for improving morphological development-based learning in general, further research
should be carried out using different algorithms and morphologies.
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