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Abstract. Toxicity in drug design is a very important step prior to
human or animal evaluation phases. Establishing drug toxicity involves
the modification or redesign of the drug into an analog to suppress or
reduce the toxicity. In this work, two different deep neural networks archi-
tectures and a proposed model to classify drug toxicity were evaluated.
Three datasets of molecular descriptors were build based on SMILES
from the Tox21 database and the AhR protein to test the accuracy pre-
diction of the models. All models were tested with different sets of hyper-
parameters. The proposed model showed higher accuracy and lower loss
compared to the other architectures. The number of descriptors played
a key roll in the accuracy of the proposed model along with the Adam
optimizer.
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1 Introduction

Drug development is performed through a series of complex processes. One of
the first steps is defining an enzyme as the drug target. Enzymes are proteins
that act as drug targets for diseases in the drug design. Then small molecules
are identified as active compounds that bind strongly with a protein target. The
active compounds are subjected to various experimental evaluations involving
cell line assays, animal assays, and human clinical trials [17]. In this regard,
during the last decade computational techniques have improved the drug devel-
opment. Among theses improvements, we can mention the prediction of syner-
gistic drug combinations to avoid drug resistance or increase treatment efficiency
and thus, reduce the drug dose to avoid toxicity [22]. Moreover, the use of large
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volume datasets have led drug research to apply complex calculations, where
graphical processing units (GPUs) are used for data processing. Therefore, mod-
ern drug development has entered the era of big data [18] and new techniques
are required. Nowadays, Deep Learning (DL) is a highly demanded technique to
promote drug development in the area of artificial intelligence [23].

Deep Learning is of great interest in the process of drug design, in particular
for toxicity prediction. Toxicity (or toxic action) is understood as the ability of
a substance to cause a harmful response or severe damage to the body functions
at cellular or molecular level, and in some cases death [14]. However, some active
compounds can present toxicity in high doses but be harmless and even beneficial
in small quantities, thus, failing in the latest phases of the development, even if
they have obtained satisfactory results in vivo assays [17,21].

In drug design, toxicity evaluation plays a key role for further phases or the
approval for human consumption. Nevertheless, the methods used to determine
toxicity are slow, tedious, and expensive, not to mention that some of them raise
ethical concerns due to the testing of the active compounds in animals [1,5]. For
these reasons, predicting toxicity through computational techniques is convenient
to accelerate the development of drugs and thus avoid the use of animals in the
process.

Encouraged by these reasons, we decided to apply a DL model to toxicity
prediction and contribute it to solve this type of problem. Our proposal uses a
binary classification model and a dataset with molecular descriptors as feature
elements of the AhR molecule from the Tox21 project [19]. The rest of this
paper is organized as follows: Sect. 2 includes the data description and the step
methods. Section 3 presents and analyzes the results, and finally, in Sect. 4 we
present the discussion and conclusions.

2 Data and Methods

Diverse approaches have been proposed for addressing the toxicity prediction
problem through machine learning strategies. For example, multiple heteroge-
neous neural network types and data representations of chemical compounds as
SMILE strings [8] have been introduced. Other approaches are shallow networks
via 2D features using PADEL descriptors [7] or Deep Neural Networks (DNN)
with static and dynamic features [12].

Deep Learning models can be train to learn and recognize molecular descrip-
tors that are active or toxic to a given type of chemical structures. Therefore,
to evaluate the toxicity of drugs and reduce tests, a binary classification model
was considered to predict if a drug is toxic or not. Figure 1 shows the proposed
pipeline. These steps are described in the following subsections.

2.1 Dataset Creation

Tox21 [4,9,20] is a collaboration program of the NIH’s NCATS and the National
Toxicology Program at the National Institute of Environmental Health Sciences,
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Fig. 1. Proposed method for toxicity prediction

the Environmental Protection Agency, and the Food and Drug Administration.
In 2014, the Tox21 members set a Machine Learning challenge to predict the
toxicity over 10,000 chemical compounds. Tox21 is divided in 12 assays giv-
ing priority to the toxicological evaluation of drugs. We select one assay to
predict the toxicity through a Deep Learning model. In the following we will
describe the steps to prepare the dataset to train the model. We selected the
Aryl hydrocarbon Receptor (AhR) as the target and proceeded to download the
list of drugs from the assay in SMILES format (https://tripod.nih.gov/tox21/
assays/). The simplified molecular input line entry specification or SMILES is
a specification in form of a line notation for describing the structure of a small
chemical molecule. It was introduced by Arthur Weininger and David Weininger
in the late 1980s. The list contains 8,170 drugs in total, and is divided into active
(toxic) or non active (non toxic) regarding the AhR target. Next, we calculate
molecular descriptors associated to the AhR target for each drug as shown in
Table 1. The molecular descriptors were calculated with Pybel [15].

2.2 Data Processing

Due to the difference in range values between molecular descriptors, we prepro-
cessed the data to ensure a better learning of the features. Data normalization is
a recurring technique in Machine Learning for preprocessing data. This type of
technique normalizes the data in a range between 0 and 1 for each column. The
standard deviation help to avoid differences in values or information loss. For this
work, we employed the Normalizer function from the Scikit-learn library [16].

2.3 Proposed Model Architecture

We tried three hyperparameter configurations and architectures designs, as
shown in Table 2. We also set a different number of molecular descriptors for
the input data (i.e., 4, 8 and 15). All models were run for 64 epochs and with a
batch size of 128. We used the Adam [10] and SGD [3] optimizers for the exper-
iments. And we run the training with 10%, 20% and 50% dropout in different
models, as is also shown in Table 2.

Having the results of the experiments, we decided to set the proposed model
as follows: the input layer as fully connected, 10 nodes in the first hidden layer
with sigmoid activation function, and with a dropout at 10%; the second hidden

https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
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Table 1. Molecular descriptors.

Id descriptor Molecular descriptor Description Data type

1 atoms Number of atoms Discrete

2 bonds Number of bonds Discrete

3 HBD Number of Hydrogen Bond Donors Discrete

4 HBA1 Number of Hydrogen Bond Acceptors 1 Discrete

5 HBA2 Number of Hydrogen Bond Acceptors 2 Discrete

6 nF Number of Fluorine Atoms Discrete

7 logP Octanol/Water Partition Coefficient Continuous

8 MW Molecular Weight Filter Continuous

9 tbonds Number of triple bonds Discrete

10 MR Molar Refractivity Continuous

11 abonds Number of aromatic bonds Discrete

12 sbonds Number of single bonds Discrete

13 dbonds Number of double bonds Discrete

14 rotors Rotatable bonds filter Discrete

15 MP Melting point Continuous

layer with 10 nodes and the RELU activation function, because this avoids gradi-
ent fading and saturation. RELU is a rectified function which means that a node
will be only activated if the input is above a threshold. Therefore, it rectifies the
input values between 0 and 1 regardless of whether they are positive or negative
values. The output layer was set to one node to make a binary prediction with
sigmoid activation function. We use the Adam [10] optimizer and the Binary
Cross-Entropy as loss function. The proposed model is shown in Fig. 2.

3 Experiments and Results

This section presents the experiments used to evaluate the performance of the
proposed model. We performed a comparison between the models shown in
Table 2 by running the toxicity classification models in a local machine with
the following characteristics: 1 node with Intel Core i7 processors at 4.3 Ghz,
8 GB of DDR4 memory, SATA III SSD at 1 TB at 6 GB/, a GPU GEFORCE
GTX 1660Ti at 1770 Mhz and 6 GB DDR6. The operating system was Lin-
uxMint version 19.7. Additionally, we applied several libraries such as Pybel [15]
for molecular descriptors, Scikit-learn [16] and Pandas [13] for data preprocessing
and for creating the input data set. First, the metrics used in the experiments are
explained in the following Sect. 3.1. Next, in Sect. 3.2 we will show the scenarios
of the experiments. Finally, in Sect. 3.3 we will present the results obtained.
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Fig. 2. Binary model architecture

3.1 Metrics

Having two classes denoted as positive and negative causes a binary classification
problem. To measure the performance of the trained models, we used the Recall,
Precision, and F-1 scores [2,6]. Then,

– Precision. It is the number of correctly classified positive examples divided
by the total number that are classified positive. That is,

P =
TP

TP + FP
,

where TP is the number of true positives, FP the number of false positives,
and P precision.

– Recall. Measures the number of how many of the actual positives (true posi-
tives and false negatives) were predicted correctly as positives (true positives),

R =
TP

TP + FN
,

where FN is the number of false negatives and R is the recall.
– F-1 is an harmonic measure that combines precision (P) and recall (R) as

shown in

F-1 = 2
P ·R
P + R
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F-1 is 1 when there is no FP, and FN and 0 when there is no TP. F-1 is
particularly useful when the number of positive and negative classes are sub-
stantially different or imbalanced in the data.

3.2 Scenarios

As we mentioned in the previous Sect. 2.1, we calculated molecular descriptors
to train the models. Pybel is limited to 15 molecular descriptors. Therefore,
we calculated the maximum of 15 molecular descriptors, then we tried with a
different set of molecular descriptors. After a statistical analysis of the molecular
descriptors (not shown here), we made three datasets with the following number
of descriptors: 4, 8 and 15. All models use standard deviation as normalization,
and the 10 k-fold cross-validation.

Table 2. Model configuration.

Model Layers Optimization

M1 1st: RELU - input
2nd: RELU 6 nodes
3rd: Sigmoid– output

Adam

M2 1st: input
2nd: Simoid 10 nodes
3rd: RELU 10 nodes
4th: Sigmoid– output

Dropout: 10% 1st hidden layer

M3 1st: RELU – input
2nd: RELU 16 nodes
3rd: RELU 6 nodes
4th: RELU 64 nodes
5th: sigmoidal– output

SGD

Dropout:
20% input layer
50% 4th layer

For each of the three datasets we used three different models (Table 2). We
must highlight that the datasets were heavily unbalanced where the toxic sam-
ples were the lower class with 950 samples against 7,219 non toxic samples for
the AhR receptor. To overcome this, we applied the under-sampling technique
provided by the imblearn library [11].

We train the three models with the balanced training set in order to observe
the performance according the settings of the hyperparameters. To validate and
see if the models generalize well, we wanted to see if any of the models were able
to adapt properly to unseen data and classify samples correctly. We used the
k-fold cross-validation technique with 10 splits with the Scikit-learn library. We
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filtered the descriptors to keep only the highest correlated ones to improve the
performance of the models.

3.3 Results

The metrics from the three models are shown in Table 3. Model 2 (M2) shows a
high F-1 score of 0.89 using the 15 molecular descriptors while model 1 (M1) is
the second best (F-1 of 0.88) also using the 15 molecular descriptors. Finally, in
model 3 (M3) the F-1 score is 0.84. Evidently, when using 15 molecular descrip-
tors the performance is better for all three models. It is also interesting that M2
and M1 showed a very close F1 score with 8 molecular descriptors. Finally, we
can say that M3 performs lower than models M2 and M1. Additionally, we run
a Support Vector Machine (SVM) and a Gaussian Naive Bayes (GaussianNB)
algorithm from the Scikit-learn library in order to compare traditional ML meth-
ods against the three proposed models. Table 3 summarizes that both methods
reach a F-1 score of 0.86 with 15 molecular descriptors while M2 has a F-1
score 0.86 with 8 molecular descriptors. It is clear that M2 with 15 molecular
descriptors overpasses classical ML approaches. Although the idea of keeping
only the descriptors with the highest correlation was supposed to improve the
performance of the models (4 and 8 molecular descriptors), the results show that
using all the descriptors provides better results in the F-1 score.

Table 3. Metrics for the five models.

Model Desc Precision Recall F-1

M1 4 0.961 0.776 0.859

8 0.941 0.806 0.867

15 0.913 0.854 0.881

M2 4 0.958 0.744 0.837

8 0.948 0.788 0.860

15 0.947 0.839 0.890

M3 4 0.833 0.737 0.781

8 0.907 0.764 0.828

15 0.907 0.791 0.844

SVM 4 0.943 0.755 0.838

8 0.948 0.782 0.856

15 0.938 0.798 0.862

GaussianNB 4 0.773 0.823 0.796

8 0.832 0.843 0.837

15 0.881 0.851 0.865
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4 Conclusions

This paper presents a strategy to develop a binary classifier for toxicity prediction
in the drug design pipeline. The dataset from the AhR Tox21 assay was used
to calculate molecular descriptors, and it was used as input data to train a
set of Machine Learning models. On one side, the experiments showed that the
proposed model (M2) achieves promising results shown in the F-1 score when
using 15 molecular descriptors and multiple hidden layers with the RELU and
sigmoid activation functions. On the other side, M2 performs better than classical
ML algorithms as shown in Table 3. In conclusion, the results show that more
than 15 molecular descriptors could improve the F1-score for the SVM and the
Gaussian Naive Bayes algorithm, and therefore the F1-score from M2.
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