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Abstract. The critical node detection problem describes a class of
graph problems that involves identifying sets of nodes that influence a
given graph metric. One variant of this problem is to find the nodes that
- when removed from the graph - maximize the number of connected
components in the remaining graph. This is an example of a practical
problem with multiple real-world applications in epidemic control, immu-
nization strategies, social networks, biology, etc. This paper proposes the
use of a simple GA to identify the set of the critical nodes of the problem
without designing special problem specific variation operators. Problem
specific information is used only in the fitness function and the constraint
handling technique. We show that this simple approach performs as well
as state-of-art methods.
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1 Introduction

Nodes in a network can have different importance with respect to different net-
work measures and behavior. Finding these nodes, called critical nodes, is an
essential computational task. Critical nodes can be approached also from the
general node deletion problem [14], which is a large class of problem composed
of several problems, such as the vertex separator problem, the minimum vertex
cover problem, the critical node detection problem, etc. Recently, the critical
node detection problem (CDNP) gained attention due to its large applicabil-
ity. A very important class of the critical node detection problem is to identify
the set of nodes of a maximal size to remove from the graph in order to maxi-
mize the number of connected components. Applications of this problem can be
found in epidemic control and immunization strategies, social networks, biology,
telecommunications, etc.
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In general, the critical node detection problem consists in finding a set of
nodes in a given graph G = (V, E), which deleted maximally degrades the graph
according to a given measure 0. CDNP is a central problem in network analysis
with applications in several research fields, such as biology [2], network vulnera-
bility [6], social network analysis [3], etc. Regarding the measure o several studies
focus on network centrality measures, such as betweenness centrality, closeness
centrality, page rank [11,16].

Although several variants of the CDNP exist, only a few of them deal with
computational methods for the variant consisting of removing k nodes in order
to maximize the number of remaining components. The main goal of this paper
is to approach this problem using a genetic algorithm with minimal problem
specific adaptations. The choice of a genetic algorithm came first due to the
natural binary encoding of an individual, but this is not the only reason we
made it: we believe that it is important to explore different methods and paths
and not constrain ourselves to assuming that one method may not work on a
certain problem because it has not been tested on it. This is also related to the
choice of operators: if there is not need for specific operators that use domain
knowledge, we should not use them and keep the approach as general and as
flexible as possible.

The rest of the paper is organized as follows: the next section presents the
problem and reviews some existing approaches. The third section describes the
proposed genetic algorithm. In the fourth section numerical experiments consid-
ering synthetic and real world networks are used to compare our results with
the existing ones. The articles ends with conclusions and further work.

2 Related Work

Many variants of the critical node detection problem are studied in the literature,
among which we mention: minimizing the pairwise connectivity by deleting k
nodes (this variant is the most studied in the literature), minimizing the largest
component size by deleting k£ nodes, bound the pairwise connectivity to a given
threshold by deleting the minimal set of nodes, etc. A recent survey of the
problem can be found in [13].

There are several ways to classify the critical node detection problem
(CNDP). In [21] the two types variant is adopted: CNDP type 1 problems aim
to minimize the network connectivity maintaining the number of removed nodes
under a given threshold and CNDP type 2 problems in which the goal is to min-
imize the number of nodes that are removed such that the network connectivity
reaches a given threshold. The type of connectivity measure used depends on the
envisaged application, effect or the type of network. Applications are multiple
as the CNDP is related to network sustainability and vulnerability [21]. Many
practical approaches are devised for wireless sensor networks [7,8,18].

In [21] an exact algorithm for the problem considering the largest connected
component is proposed. The k-vertex cut problem, consisting in finding the min-
imum weight subset whose removal disconnects the graph in at least & compo-
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nents is studied in [9]. Component-Cardinality-Constrained Critical Node Prob-
lem (3C-CNP) is approached in [12]. A bi-objective design is presented in [25].
As far as the type of networks, weighted networks are studied for example in [5]
and directed graphs in [19].

In [1] the two types of CNDP problems are studied in three versions, among
which also kMaxComp, the problem of removing a set of maximum k nodes to
maximize the number of connected components in the remaining graph. This is
one of the less studied CNDP variants, proven to be NP-hard [24]. In [24] a Mixed
Integer linear programming approach is presented, [27] present a general integer
programming framework. For a special class of graphs (trees and series-parallel
graphs) a dynamic programming approach is presented [23]. In [1] a genetic
algorithm is designed to solve the problem. The proposed genetic algorithm
incorporates in the fitness function a penalization of solutions that are too close
to the best solutions, combines a greedy strategy with variation operators and
employs a local search mechanism at the end in order to refine solutions.

In this paper we focus on the problem C DN P3| denoted here as kMaxComp,
introduced in [23,24]. The CDN P2 is by itself an interesting problem to be
studied, with many possible applications. It has received less attention because
it does not impose any conditions on the connected components. The problem
consists in removing a maximum of k& nodes such as the number of remaining
components to be maximal. Formally, if S denotes the set of the deleted nodes,
and H(G[V '\ S]) denotes the set of the maximal component of graph G without
the set of nodes S, the optimization problem consists in

maz|H(G[V \ S])|,such that |S| < k, (1)

where |A| denotes the cardinality of set A.

3 Maximum Components GA (MaxC-GA)

The goal of this work is to solve the kMaxComyp problem by using a minimum
number of problem specific information during the search. Because we search for
a set of nodes from a network out of which some will be included in the critical
set S and some not, a binary encoding of an individual of length N = |V|
is natural, making a genetic algorithm the first choice in trying to approach
this problem. We call this algorithm Maximum Components GA. MaxC-GA
is outlined in Algorithm 1. MaxC-GA is a simple approach for the CDNP3a
problem, that combines a standard GA with a constraint method based on the
marginal contribution of a node to the fitness of an individual, concept borrowed
from game theory, where such marginal contributions are used to evaluate the
contribution of a player to the value of a coalition when computing the Shapley
value [22].

Encoding. An individual has length N equal to the number of nodes in the
network. The value 1 on position 4 indicates that node i is included in S.
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Algorithm 1. MaxC-GA outline

Initialize population P of size psize at random.

for a number of generations do
P = Select psize individuals for variation;
Offsping= variation operators on P;
Correct and Evaluate Offspring;
P = offspring;

end for

Variation Operators. Two point crossover and flip-bit mutation are used.

Selection. Tournament selection is used for selection for recombination and
mutation.

Fitness Function. The fitness of an individual is computed as the number of
connected components the removal of its nodes with value 1 yields. Thus, if
individual = encodes the critical set S, then the fitness f(z) of x is computed as

f(@) = TH(G[V \ Sa])- (2)

Constraint Handling. In order to ensure that the size of the corresponding set S
does not exceed k, before evaluation each individual is constrained to have only k
nodes with value 1 by removing the nodes with the lowest marginal contribution
to the fitness of the individuals from S. The marginal contribution of a node to
the fitness of the individual is computed as the difference between the fitness
of the individual and the fitness of the individual with the node removed from
its corresponding set S of critical nodes. For a node i with value 1 in individual
x with corresponding critical set S, the marginal contribution of node i to the
fitness of x denoted by u;(x) is:

ui(2) = f(z) = [R(GIV\{S \ {i}}])],
where f(z) is the fitness defined in Eq. (2).

Parameters. MaxC-GA is a standard GA, and uses typical GA parameters: max-
imum number of generations, crossover and mutation probabilities, probability
to mutate a bit, and tournament size. The effect of these parameters on the
search results of a GA has been widely documented [15].

4 Numerical Experiments

The behavior of MaxC-GA is illustrated by using several benchmarks and com-
paring results with best known found in the literature for this problem.
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Table 1. Synthetic benchmark test graphs and basic properties.

Graph ||V] ||E| |k [{d) |p la

BA1000|1000| 999 75]1.998 0.002 | 6.045
ER466 | 466 | 700 80|3.004 0.006 | 5.973
FF500 500 | 828|110 3.312|0.007 | 6.026
WS500 | 500 | 1496 | 125 |5.984 | 0.012 | 5.304

Benchmarks. A set of synthetic benchmarks' was proposed in [26]. The bench-
mark set contains four different type of graphs: Barabdsi-Albert (BA), Erdds-
Rényi (ER), Forest-fire (FF), Watts—Strogatz (WS) graphs. BA graphs are scale
free networks, ER graphs are random networks, FF graphs simulate how fire
spreads through a forest, WS graphs are small world graphs with a dense struc-
ture.

Table 1 presents some basic measures of the benchmarks used for numerical
experiments here: number of nodes (|V), number of edges (| E|), average degree
({d)), density of the graph (p), and average path length (I¢). In a similar manner,
real networks are described in Table 2 with a reference added for each network.

Table 2. Real-world graphs and basic properties.

Graph [VIIE|] |k [{d) |p la Ref.
Bovine 121| 190| 3|3.140|0.026 | 2.861 | [20]
Circuit 252| 39925 3.167|0.012 | 5.806 | [17]
EColi 328 | 456 15|2.780|0.008 | 4.834 | [28]
HumanDis | 516118852 |4.605 | 0.008 | 6.509 | [10]
TrainsRome | 255 | 27226 |2.133|0.008 | 43.496 | [4]

Parameter Settings. Several parameter setting are tested: population size set to
25 and 50, maximum number of generations 500, crossover probability 0, 0.5,
0.8, and 1, and mutation rate 0, 0.01, 0.02, 0.03, 0.04, and 0.05.

Results and Discussion. MaxC-GA is compared with three algorithms described
in [1]: two greedy algorithms, the first one, G; based on node deletion from the
candidate critical node set, and the second one, G2, based on the node addition
to the candidate critical node set and a genetic algorithm from an evolutionary
algorithm framework using greedy rules (denoted by GA). The genetic algo-
rithm uses a specific fitness function that combines the number of connected
components determined by the interval with previous search information, prob-
lem specific variation operators and a specific designed local search technique.

! downloaded from http://individual.utoronto.ca/mventresca/cnd.html, last accessed
05.09.2020.
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Table 3. Maximum fitness values for the tested problems. The average over 10 runs is
presented for MaxC-GA.

avg best fitness avg best fitness

avg best fitness

Fig. 1. Search evolution of MaxC-GA for the benchmarks,

¥ X 8 ¥ 8
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Since the problem has been less addressed, we only have one approach based
on GAs to compare with, and those results represent only one run. Results pre-
sented in the paper are preliminary and promising, supporting the idea that this
approach may be extended for larger data sets.

As results presented in [1] include only the maximum number of connected
components in one run, therefore statistical comparisons with results reported
there are not possible. Table 3 includes these results as well best results reported
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Fig. 2. Box plots presenting results reported by MaxC-GA for the nine benchmarks
and different parameter values.
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by MaxC-GA. Results reported by MaxC-GA using different parameter settings
are illustrated in Fig. 2. Furthermore, Fig. 1 illustrates the evolution of the search
of MaxC-GA (average best solutions over 10 runs). We find that the evolution
is steady, faster for a larger population size, and that MaxC-GA is capable
to find and maintain the optimal solution. Because the behavior of MaxC-GA
under different parameter settings is typical for that of a GA, with respect to
convergence we have presented only graphs showing that it is capable to detect
and maintain the optimal solution during one run. In all other ways it behaves
as expected: a larger population size leads to an earlier convergence at a higher
computational cost and a small population will eventually converge.

The effect of various parameter settings presented in Fig.2 as boxplots of
the ratio of maximum fitness values reported in 10 runs for each parameter
setting and best known result for the benchmark (in order to keep all values
between 0 and 1). We find that the algorithm is robust with respect to variation
of parameters, with the notable exception that mutation plays an important
role in the search, as setting the mutation rate to 0 significantly decreases the
performance of the algorithm.

5 Conclusions

The critical node detection problem is approached with MaxC-GA, a simple
genetic algorithm that uses a node fitness based on marginal contributions for
constraint handling. Numerical results show that this approach is as effective as
other, more complex, using more problems specific information.

These results may also be used to advocate for the use of minimal prob-
lem specific information in designing new evolutionary algorithms for real-world
applications. Overusing specific problem information decreases the adaptability
of the presented method, as practitioners will rarely try to adapt an existing
algorithm presented in literature to a slightly different problem, mainly because
the stochastic nature of these approaches does not guarantee direct portability
to a different problem.
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