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Abstract. Insufficient sleep is a prominent problem in modern society
with several negative effects and risks. One of the most serious conse-
quences is traffic accidents caused by drowsy driving. Current solutions
are focused on detecting drowsiness, where individuals need to reach a
certain drowsiness level to receive an alarm, which may be too late to
react. In this context, it is relevant to develop a wearable system that
integrates the prediction of drowsiness and its prevention. By predicting
the drowsy state, the driver can be warned in advance while still alert. To
minimize further incidents, the reason why a state of drowsiness occurs
must be identified, caused by a sleep disorder or sleep deprivation. The
contribution of this work is to review the main scientific and commercial
solutions, and perform automatic sleep staging based on heart rate vari-
ability. Results show that, although promising, this approach requires a
larger dataset to consider a user-dependent scenario.

Keywords: Drowsiness prediction · Biometric data · Non-intrusive
system · Machine learning

1 Introduction

Driving is a highly complex activity that requires considerable perceptual, phys-
ical, and cognitive demands to be effective [1]. As the driver must remain aware
of the environment, active attention plays a crucial role in safe driving. It is esti-
mated by the World Health Organization that vehicle collisions cause approxi-
mately 1.35 million deaths worldwide and an even greater number of non-fatal
injuries each year [2]. One of the leading contributors to this public health prob-
lem is drowsy driving, which accounts for 10–30% of all road accidents, and is a
major cause of traffic fatalities [3].

Several factors can contribute to driver drowsiness. The most frequent causes
include sleep disorders and behavioral factors such as sleep deprivation or shift
work [4]. Long driving hours and time of day are also identified to increase
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accident risk [5]. Professional drivers are therefore more susceptible to crashes.
In a Portuguese study, more than 8 out of every 10 truck drivers reported to drive
while feeling sleepy [6]. In addition to the high levels of driving exposure, many
drivers work long hours, sometimes irregular and in conflict with natural circa-
dian rhythms [7]. As a result, a considerable sleep debt can be accumulated. The
working schedule also poses challenges in adopting a healthy lifestyle, including
a balanced diet and regular exercise [8]. They are identified as a high-risk group
for health conditions such as obesity and sleep apnea.

In order to reduce the chances of accidents, technology has a key role. Driving
monitoring and assistance systems have been progressively integrated into vehi-
cles to assist drivers for a safe and comfortable driving experience [9]. Several
commercial products are also available in the market, considering different mea-
surement methods [10]. However, most current approaches focus on the detection
of an impaired state of the driver rather than on its prediction [11]. Thus, it is
relevant to distinguish these two terms. The ideal goal should be to predict the
onset of drowsiness since, at the detection point, drowsy driving may already
have led to a potentially dangerous situation or even an accident [12].

These systems can be seen as a reactive approach to drowsiness events during
driving. However, a preventive one can also be considered when identifying their
underlying cause. Sleep deprivation has increased globally in today’s fast-paced
lifestyle, with sleep disorders reaching a substantial number of people [13]. In
particular, insomnia affects approximately 10–15% of the general adult popu-
lation [14], and obstructive sleep apnea 9–38% [15]. In this context, consumer
products such as wearable devices are becoming widely available, and can auto-
matically analyze sleep patterns. However, these new systems are rarely validated
against polysomnography, considered the gold-standard method to assess sleep,
to ensure their reliability and validity [16].

The proposed solution to increase road safety is to develop a wrist-worn
wearable device that can detect and predict drowsiness when the user is driving,
and continuously identify a potential chronic sleep deprivation or sleep disorder.
A flowchart of the system is shown in Fig. 1. Towards the final goal, this work uses
a public dataset for sleep staging based on heart rate variability (HRV) measured
from electrocardiogram (ECG) signals. The preliminary results obtained will
serve as a starting point for analyzing future wearable data.

Fig. 1. Representation of the proposed system.

The remainder of this paper is organized as follows: in Sect. 2 a comprehensive
analysis of the literature is made; Sect. 3 describes the methodology used for sleep
staging, with the results presented in Sect. 4; Sect. 5 provides the conclusions to
the work developed, and future directions.
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2 Related Work

2.1 Measurement of Driver Drowsiness

Several techniques to estimate driver drowsiness have been proposed in the lit-
erature. According to the source of information, these methods can be classified
into the following measures: subjective, behavioral, vehicle-based and physiolog-
ical [17]. A hybrid approach that combines several methods can also be used.

Subjective measures include self-assessment and observer ratings [18]. The
driver’s personal estimation is evaluated through scales such as the commonly
used Karolinska sleepiness scale (KSS) [19], represented by a nine-point scale
that ranges from “extremely alert” to “very sleepy” as shown in Fig. 2. During an
experiment, the considered questionnaire is presented to the subject repeatedly,
with either a time interval or certain conditions. In terms of observer ratings,
experts or trained individuals observe the driver in real-time or by watching video
recordings, with scales that focus on behavioral changes. As these measures are
not practical to be applied in real driving conditions, they are mainly used as
ground truth for drowsiness detection systems.

Fig. 2. Karolinska sleepiness scale (KSS).

Alternatively, behavioral measures use a camera and image processing tech-
niques to monitor the driver. These methods evaluate mainly three parameters:
facial expression, eye movements and head position. Vehicle-based systems assess
driving performance, with features such as steering wheel movement and devia-
tion of lane position. The last category involves using physiological signals, that
include the following [10]:

– Brain activity: captured by electroencephalography (EEG);
– Ocular activity: measured by electrooculography (EOG);
– Muscle tone: recorded using electromyography (EMG);
– Cardiac activity: monitored through electrocardiography (ECG) and photo-

plethysmography (PPG) signals.
– Skin conductance: measured by electrodermal activity (EDA);

All of the different methods present some limitations [11,20]. Behavioral mea-
sures can be affected by the environment and driving conditions, such as changes
in lighting and the use of glasses. Vehicle-based systems are highly dependent
upon road geometry, and are often not effective in conditions with substantial
variation. Finally, physiological methods involve the intrusive nature of sensors.
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Nevertheless, this kind of data is considered reliable and accurate to measure
the driver’s functional state. It starts to change in the early stages of drowsiness
and is, therefore, more suitable to provide an alert on time. Thus, non-invasive
monitoring strategies for recording signals are required.

Over the years, the usage of wearables has been gradually growing. Accord-
ing to the International Data Corporation, global shipments of wearable devices
reached 444.7 million units in 2020, which marks a 28.4% increase compared to
the previous year [21]. In this market, prevails particularly the trend of fitness
tracking and health monitoring with wrist-worn devices, such as smartwatches
and fitness trackers [18]. The wide user acceptance is associated with advantages
such as low cost, comfort, and continuous recording of several physiological sig-
nals. These can be considered suitable for the task of detecting driver drowsiness,
and will be further assessed in the following sections.

2.2 Drowsiness Detection

The use of wrist-worn wearable devices for driver drowsiness detection has been
explored by previous work. Table 1 summarizes existing studies, comparing the
methodology adopted in terms of measures, algorithms and evaluation.

Table 1. Summary of research on driver drowsiness detection with measures collected
from a wrist-wearable device. MVT–movement with accelerometer and gyroscope sen-
sors; TMP–temperature; C–classes; Acc–accuracy; N–participants; SVM–support vec-
tor machine; CNN–convolutional neural network; KNN–k-nearest neighbors; and DS–
decision stump. (*) detects drowsiness, stress and fatigue.

Measures

Ref. MVT PPG EDA TMP Segments Labeling Model C Validation Acc. N

[22] x 1 min + 1 s Video: KSS (1 min) SVM 5 70/30 split 98.15% 20

[23] x x x x 10 s + 8 s Video: 1–5 scale (5 min) SVM 4 (*)
5-fold CV 98.3%

28
LOSO CV 68.3%

[24] x 2 min Video (1 min) CNN 2 10-fold CV 64% 6

[25] x 2 min + 2 s KSS (5 min) KNN 2 10-fold CV 99.9% 30

[18]

x 5 min + 2 s Video: 1–6 scale (5 min)
KNN

2
10-fold CV 92.1%

30
DS LOSO CV 73.4%

To record driver state, studies are conducted in simulated environments. The
scoring is obtained with subjective metrics, whose levels are typically grouped
to a reduced number of classes. The collected signals are divided mainly using a
sliding window strategy and the model performance is evaluated with different
forms of cross-validation (CV). Because physiological signals within persons can
differ to a great extent, tests that consider the split among subjects are crucial
to evaluate the ability to generalize for new users.
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The majority of studies use PPG sensors to derive HRV features. This analy-
sis refers to the variation in time between successive heart beats, called inter-beat
intervals (IBIs), and represents a non-invasive measure of the autonomic nervous
system [26]. Another commonly used description for IBIs is RR intervals, which
is the time between two R-peaks of the QRS complex on the ECG. HRV can
be described in 24 h, short-term (∼5 min), and ultra-short-term (<5 min) mea-
surement periods, using time-domain, frequency-domain, and non-linear param-
eters [27]. Time-domain indices measure the amount of HRV that was observed.
Frequency-domain values estimate the distribution of absolute or relative power
into component bands. Finally, non-linear metrics quantify the unpredictabil-
ity and complexity of the time series. Although multi-lead ECG devices are
established as the gold standard for computing HRV, wearable devices based on
single-lead ECG and PPG are considered a viable and popular alternative. The
main drawback is that this type of sensing is more affected by motion artefacts,
pressure disturbances and skin pigmentation [28]. Nevertheless, noise and arti-
fact reduction techniques can be used to improve signal quality. An overview
of the typical methodology of HRV analysis for drowsiness detection systems is
presented next, in Fig. 3.

Fig. 3. Overview of the typical methodology used for drowsiness detection, when per-
forming heart rate variability (HRV) analysis on photoplethysmogram (PPG) signals
collected from wrist-worn wearable devices.

Results show that high accuracies can be achieved, but the employed datasets
can introduce some conditioning factors. In HRV recordings, important subject
variables that can affect measurements include age, sex, and health status [27].
Moreover, the association between measured signals and driver alertness is often
performed at unknown circadian phase and wake duration [10]. The influence
of inter-driver variance is reflected in lower values of accuracy, which indicates
challenges that still need to be investigated to develop a robust, yet comfortable
and cost-effective commercial drowsiness warning system. In this context, market
products based on physiological signals present low progress compared to driving
and driver behavioral technologies [10]. Apart from research, a wrist-wearable
device is not yet available at the moment.
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2.3 Drowsiness Prediction

For the task of predicting driver drowsiness, current research is still limited as
there are no studies that consider wearable devices.

In [11], two independent models were developed using neural networks. Every
minute, a detection model identifies the level of drowsiness, and a prediction
model indicates the time required to reach a certain level of drowsiness (1.5 on a
0–4 scale). For that, physiological, behavioral, and vehicle-based indicators were
investigated. The best performance was obtained with behavioral measures and
additional information, namely, driving time and participant data. These models
were able to detect and predict drowsiness with a mean square error of 0.22 and
4.18 min, respectively. However, inter-individual variability was only considered
in [29]. To find a compromise between generalized and individual models, adap-
tive learning was used. The improvement in performance was significant from
the first 3 min up to 15 min of input data, reaching about 40% in detection and
80% in prediction. Nevertheless, intra-individual variability was not addressed,
that is, how regularly this adaptation would be necessary.

In order to predict the drowsy state, the time remaining until a target level is
reached was used. However, other studies consider different approaches. In [30],
logistic regression models were built to detect micro-sleep with 93% accuracy,
considering the individual driver factor and eyelid measures. It was possible to
achieve a specificity of 98% and sensitivity of 67%, and there were no significant
changes in performance when using different time intervals relative to the events
(from 1 min to 10 min). In [31], an accelerated failure time model was developed
to estimate the driving time before the onset of drowsiness. For that, environ-
mental and demographic factors were used, such as time of day, temperature,
travel speed, driving experience, age, and sleep habits. The proposed model pro-
vides an understanding of how driver drowsiness is influenced by these factors
and could be used in real-time drowsy warning systems.

In these studies, physiological measures were mainly collected in an intrusive
manner, i.e., using electrodes. Therefore, a relevant direction is to investigate if
similar results can be obtained in a simple and non-invasive way.

2.4 Sleep Staging

Sleep staging is essential to assess sleep and diagnose sleep disorders. This pro-
cess involves segmenting a sleep period into 30 s epochs and assigning a sleep
stage to each epoch [32]. According to the American Academy of Sleep Medicine
(AASM) manual, sleep is divided into five stages: wake (W), rapid eye movement
(REM), and three levels of non-REM (NREM) corresponding to N1, N2, and
N3. Traditionally, sleep staging is performed by experts based on visual inspec-
tion of polysomnographic (PSG) recordings, which include multiple physiolog-
ical parameters. Although it remains the gold standard for clinical assessment
of sleep, PSG has some drawbacks: the scoring procedure is expensive, time-
consuming, and prone to human errors [33]. Therefore, alternative methods and
algorithms capable of accurately estimating sleep stages are needed.
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To assess long-term sleep, actigraphy can be a useful tool [34]. This technique
relies on a wrist-worn device that infers wake and sleep states by measuring move-
ment through an accelerometer. Although it has some advantages, the cost and
requirement of specialized technicians are among the main factors leading to the
consideration of consumer wearables. These devices use multi-sensor data acqui-
sition, and are not limited to binary sleep classification. Despite their widespread
use, validation studies show that they tend to underestimate sleep disruptions
and overestimate sleep efficiency, i.e., prioritize sensitivity to specificity [35]. In
particular, these measures ranged from 95–97% and 39–62%, respectively, in four
commercial solutions analyzed [36]. It is important to note that the algorithms
implemented in these self-tracking devices are not public, and raw sensor data is
not accessible for external use. As a result, although promising for understand-
ing of sleep health, their application in sleep research and clinical sleep medicine
is still limited [34]. Some recent studies are summarized in Table 2, considering
different scoring resolutions.

Table 2. Summary of research of sleep staging with measures collected from a
wrist-wearable device. Classification is divided in two-stages (wake/sleep), three-stages
(wake/NREM/REM), four-stages (wake/light sleep(N1+N2)/deep sleep(N3)/REM),
and five-stages (wake/N1/N2/N3/REM). Results are presented in a accuracy/kappa
format. N–participants; LDA–Linear Discriminant Analysis; BLSTM–Bidirectional
Long Short-Term Memory; ANN–Artificial Neural Network.

Measures

Ref. MVT PPG Model Validation 2-stage 3-stage 4-stage 5-stage N

[37] x x LDA 2 datasets 91.5%/0.55 72.9%/0.46 59.3%/0.42 - 101+51

[38] x x LDA LOSO CV - - 69%/0.52 - 60

[39] x x BLSTM LOSO CV - - - 67.7% 39

[40] x BLSTM 4-fold CV - - - 74.7%/0.63 292+60

[36] x x ANN 2 datasets 80%/0.53 68.6%/0.4 - - 31+188

[41] x SVM LOSO CV - 73%/0.43 60%/0.38 54%/0.35 18

[42] x x LDA LOSO CV - 85%/0.67 77%/0.58 - 50

Despite the differences among studies, classifiers achieve a lower performance
when the number of classes increase. A sequential model that considers the tem-
poral dependencies of sleep is trained in [39] and [40]. These type of algorithms
have also recently shown good results when the HRV analysis is performed using
single-lead ECG data [43]. The influence of factors like demographics and envi-
ronmental conditions on the signals recorded by the worn devices, and thus their
capability in accurately staging sleep, should not be underestimated [34]. Except
in [40], datasets are limited to healthy adults, without additional validation for
other age groups or sleep disorders.
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3 Methodology

For the sleep staging task based on HRV from ECG signals, the public dataset
“EEG/EOG/EMG data from a cross sectional study on psychophysiological
insomnia and normal sleep subjects” [44] was used. The data consists in record-
ings of 8h from 22 subjects, aged between 18 and 63 years. Table 3 shows the
epoch distribution of the normal subjects by sleep stage. For the experiments,
this data is classified into Wake, REM, and NREM (grouping N1, N2 and N3).
Data processing was performed with the Python programming language, and
scikit-learn and pyhrv [45] libraries.

Table 3. Distribution of segments by sleep stage. Stages N3 and N4 were merged into
stage N3 according to the AASM manual.

Condition Wake REM N1 N2 N3+N4 Total

Normal (11) 1272 (12%) 708 (7%) 3749 (36%) 2286 (22%) 2379+26 (23%) 10420

The ECG signal was initially synchronized in time with PSG results, and the
segments classified as movement were removed. For HRV analysis, the signal was
divided into segments of 1.5 min, 2.5 min, 3.5 min, and 4.5 min, centered in each
30 s interval, with the goal of evaluating the impact of segment length in perfor-
mance. After extracting the RR interval time series, segments were processed in
time, frequency, and non-linear domains, obtaining a total of 34 features. The
approach considered applies two types of validation, namely, stratified 10-fold
CV and LOSO-CV. In each iteration, training data was first normalized at each
attribute, to a mean of zero and standard deviation of one. Then, after select-
ing the best subset of features using the Pearson’s correlation coefficient with a
threshold of 0.9, data was over-sampled with the SVM-Smote technique. Finally,
performance measures were calculated as the average of all iterations, in partic-
ular the accuracy and sensitivity of each class. Figure 4 illustrates the process
described. The four classification algorithms tested were support vector machine
(SVM), linear discriminant analysis (LDA), k-nearest neighbors (KNN) with 15
neighbors, and random forest (RF) with a maximum depth of 20. The remaining
parameters were set to the default values.

Fig. 4. Methodology adopted for sleep staging.
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4 Results

The results of sleep classification are presented in Table 4. In the first validation
test (10-fold CV), it is possible to observe that, except for the LDA algorithm,
a larger segment dimension increases the accuracy. Using a 4.5 min window, RF
obtained the best performance with a sensibility to Wake, REM, and NREM of
81%, 71%, and 93%, respectively. Regarding the subject-dependent test (LOSO-
CV), this approach proved not sufficient to deal with individual variability. In
the same setting, RF decreases the sensitivity of REM to 18%. This problem can
be justified by a significant difference in class distribution between subjects. In
particular, the REM stage ranges from 1 to 118 instances, and Wake from 7 to
331 instances. Therefore, to evaluate this type of scenario, a more comprehensive
dataset is required.

Table 4. Results of the classification of 3 classes (accuracy and standard deviation),
with different algorithms and window length.

10-fold CV

Model 1.5 min 2.5 min 3.5 min 4.5 min

SVM 0.75 (0.01) 0.77 (0.01) 0.79 (0.01) 0.79 (0.01)

LDA 0.74 (0.01) 0.72 (0.01) 0.71 (0.01) 0.7 (0.01)

KNN 0.69 (0.02) 0.7 (0.02) 0.72 (0.01) 0.73 (0.01)

RF 0.84 (0.01) 0.87 (0.0) 0.89 (0.01) 0.9 (0.01)

LOSO-CV

Model 1.5 min 2.5 min 3.5 min 4.5 min

SVM 0.69 (0.1) 0.67 (0.17) 0.68 (0.18) 0.67 (0.19)

LDA 0.63 (0.07) 0.58 (0.26) 0.6 (0.21) 0.57 (0.24)

KNN 0.63 (0.09) 0.56 (0.14) 0.56 (0.13) 0.55 (0.14)

RF 0.74 (0.12) 0.75 (0.12) 0.75 (0.14) 0.76 (0.14)

5 Conclusion

The impact of drowsy driving is of recognized severity. This work reviews current
solutions to address this problem, with a focus on wrist-wearable devices, which
allow continuous long-term monitoring of multiple signals. In this context, a sys-
tem that can detect, predict, and prevent driver drowsiness is proposed. Towards
the final solution, sleep staging was performed with HRV analysis on ECG sig-
nals, using traditional machine learning algorithms.

Results show that a broader dataset is essential to improve the performance
on subject-dependent tests. Future work will explore deep learning architectures,
and the inclusion of new signals.
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