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Abstract. Sustainable agricultural production requires a controlled
usage of water, nutrients, and minerals from the environment. Different
strategies of plant irrigation are being studied to control the quantity
and quality balance of the fruits. Regarding efficient irrigation, partic-
ularly in deficit irrigation strategies, it is essential to act according to
water stress status in the plant. For example, in the vine, to improve
the quality of the grapes, the plants are deprived of water until they
reach particular water stress before re-watered in specified phenologi-
cal stages. The water status inside the plant is estimated by measuring
either the Leaf Potential during the Predawn or soil water potential,
along with the root zones. Measuring soil water potential has the advan-
tage of being independent of diurnal atmospheric variations. However,
this method has many logistic problems, making it very hard to apply
along all the yard, especially the big ones. In this study, the Predawn
Leaf Water Potential (PLWP) is daily predicted by Machine Learning
models using data such as grapes variety, soil characteristics, irrigation
schedules, and meteorological data. The benefits of these techniques are
the reduction of the manual work of measuring PLWP and the capacity
to implement those models on a larger scale by predicting PLWP up to
7 days which should enhance the ability to optimize the irrigation plan
while the quantity and quality of the crop are under control.

Keywords: Precision agriculture · Leaf Water Potential · Machine
Learning

1 Introduction

The best procedure for determining irrigation needs is to measure the crop evap-
otranspiration (Et), i.e., the amount of transpired water in the plant or its esti-
mation. Several methods can be applied to estimate the Et but the most pop-
ular international method is described in FAO-56 Penman-Monteith (FAO-56)
[14,17–19]. It calculates evapotranspiration reference ETo, the Crop Coefficient
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(Kc) and Water Stress Coefficient (Ks) when the plant culture diverges from
its hydric comfort or it is subjected to deficit irrigation, as described in Eq. 1.

ET = ETo×Kc×Ks (1)

Ks returns information about the water status inside the plant. This value
is hard to calculate because it needs information about root morphology and
soil surrounding the roots. To solve this difficulty, different methods to measure
plant water status are being used nowadays [2]. The pressure chamber technique
is considered the most accurate procedure available for plant water stress moni-
torization [6]. However, this technique requires manual work with a large pressure
chamber. So, the implementation of this method on a large scale requires a large
number of workers, each one equipped with a pressure chamber, which raises the
financial cost of the technique. In vine, changes in water status have a direct
effect on grape composition and quality. There is a growing interest in apply-
ing deficit irrigation strategies to reach a predetermined water stress level on
the crop [7]. Therefore, this study aims to develop a stand-alone working model
using Machine Learning techniques to predict the water stress inside the plant.

Section 2 presents the state of the art and related work in the same area;
Sect. 3 shows a summary of the data, discussing the problem the client was
facing and the experiments to predict Predawn Leaf Water Potential (PLWP);
Sect. 4 explains the experiment; Sect. 5 shows the results of our models and the
discussion about it; Sect. 6 concludes our work and describes future directions.

2 Background Concept

Knowing water status response is essential to obtain a balance between the qual-
ity of grapes and the yield [4]. Several indicators can be used to estimate this
response. However, Leaf Water Potential (LWP) measured with a pressure cham-
ber is a widely used indicator with an acceptable performance [8]. These measures
can be taken along the day, but implementing it at predawn was favored as it
is considered to represent soil water status more accurately since it minimizes
the influence of environmental conditions, as shown in Fig. 1 and demonstrated
in [5,20]. However, adverse environmental conditions can affect leaf stomatal
opening, which leads to gaps between PLWP and Soil Water Potential(SWP)
[3]. Figure 1 shows that Water Potential always has a negative value, where val-
ues closer to 0 Megapascal (MPa) indicate hydric comfort, while lower values
represent water stress. According to [21], in Fig. 2, after bud burst phenological
stage, it is not recommended to put the plant in water stress so it won’t affect
the bud growth. After Bloom, until Veraison, several restrictions of water can
reduce the number of grapes. Between Veraison to Harvest, the water potential
has a significant impact on grape size. A controlled reduction of grape size is
related to the quality goal of the product. Therefore, it is essential to identify the
periods when the crop is less sensitive and define the level of DI to be applied
[25].
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Fig. 1. Daily changes in the water
potential (Represented as ψ) in the
soil, leaf and root under normal
conditions.

Fig. 2. The optimum PLWP range dur-
ing different phenological stages. Green
- Optimum; Yellow - unfavorable; Red -
harmful [21]. (Color figure online)

Yang et al. [26] forecasted daily 7-day-ahead reference crop evapotranspira-
tion (ETo) using the Penman-Monteith (PM) modeled public weather forecasts
(including daily maximum and minimum temperatures, weather types, and wind
scales, for six stations located in a wide range of climate zones of China were
collected). Pelosi et al. [27] evaluate the performances of probabilistic daily ETo
forecasts with lead times up to 5 days and a spatial resolution of 7 km, com-
puted by using COSMO-LEPS outputs (provided by the European Consortium
for small–scale modeling, COSMO). Brillante et al. [28] monitored weekly for
three years leaf the water potentials Grapevines (Vitis vinifera L. cv Chardon-
nay) located in eight experimental plots (Burgundy, France). The water stress
experienced by grapevine was modeled as a function of meteorological data (min-
imum and maximum temperature and rainfall, obtained from an on-site weather
station) and soil characteristics (soil texture, gravel content, and slope) by a gra-
dient boosting machine. The developed models reached outstanding prediction
performance, comparable to the measurement accuracy.

The FAO-56 method [14] is being used for a long time to compute the crop
water requirements and irrigation requirements based on soil, climate, and crop
data. Recently, with the increasing availability of high-resolution Normalized Dif-
ference Vegetation Index (NDVI) time series, several authors are coupling the
FAO-56 method with NDVI images [24,29]. For instance, the SAMIR (SAtel-
lite Monitoring of IRrigation) tool [24] is based on the coupling of the FAO-56
dual crop coefficient model with time series of high-resolution NDVI imagery
(Normalized Difference Vegetation Index) and can be used to compute spatially
distributed estimates of ET and crop water budget at the regional scale. In [29]
the SAMIR tool was used to estimate regional crop water consumption. In this
work, the author explores time series images taken by the SPOT satellite, a
commercial high-resolution optical imaging Earth observation satellite system
operating from space. The target was to predict the actual basal crop coefficient
(Kcb) and the vegetation fraction cover (fc).
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3 Materials and Methods

3.1 Experimental Field

Experiments are carried out using data collected, between 2014 and 2016,
from Herdade do Esporão SA. regarding vineyard located in 38◦23′55.0′′N
7◦32′47.3′′W, in the Alentejo region of Portugal with a total area of 452.865
ha. The vineyard is divided into 163 fields called (Talhão), according to different
soil types, grape varieties (Casta), and strategy of irrigation and fertilization.
Esporão vineyard is humid mesothermal with dry, hot summer (Csa, Koppen
classification), with a mean annual temperature of 16.5 ◦C, mean yearly rainfall
of 569 mm.

Usually, PLWP measures are collected using mature leaves located in the
middle third of the plant using the pressure chamber method of Scholander [1].
In order to minimize the bias, each recorded measure is calculated by taking the
average of 6 different samples picked from 6 neighbor plants in the same field.
This process faces logistic difficulties such as the need for daily manual work done
before dawn around 4:00 am to 6:00 am. The number of workers equipped with
a Scholander chamber increases linearly with the area of the yard and number
of measures.

EnviroScan capacitance sensor is a complete and stand-alone continuous soil
moisture monitoring system. The system consists of a network of probes sup-
porting an array of sensors that monitor changes in soil moisture, which could
be installed at various depths [9]. In the current study, the yard has nine sensors
distributed strategically, i.e., each set of homogeneous zones according to the
soil type, altitude, and irrigation system has one sensor.

3.2 Data Visualization and Summarization

The first task was to normalize the data due to different timescales used in
the recording process. Some of them were recorded every 15 min like humidity
sensors; others were recorded daily like PLWP, while the rest have only one read-
ing per year as grape variety (Casta) and soil characteristics. The inconsistent
information collected from annual variables, i.e., Casta, Regime, Soil, Age, CC
(Maximum moisture that the soil supports), CE (Minimum moisture that the
soil needs before the plants start dying), TAW (Total Available Water), and
vigor or the incoherent readings and missing humidity values are detected (see
Table 1). PLWP readings recorded after the harvest date were removed because
both showed irregular behavior, and there was no interest in collecting or calcu-
lating PLWP that late.
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3.3 Problem Definition and Feature Engineering

The original idea is trying to predict PLWP for the next seven days. While 62.8%
of PLWP reading was unknown, the first step was filling the unknown values,
and then the predicted values can be passed as input variables to the future
prediction models.

Table 1. Data summarization, where DOY- Day of the year; PLWP- Predawn Leaf
Water Potential Measures (MPa); Hum.- Humidity Measures at 4 am. In the original
dataset we had three variables, for different depths (20, 60 and 100 cm); Age- Age of
the plant; W1- Amount of water irrigated on the previous day (mm); ETo- Evapo-
transpiration on the last day (mm); CC- Maximum moisture that the soil supports;
CE- Minimum moisture that the soil needs before the plants start dying; TAW- Total
Available Water.

Min 1stQ Median Mean 3rdQ Max Missing values%

DOY 126 166 197 196.4 228 261 0%

PLWP −0.98 −0.43 −0.32 −0.34 −0.22 −0.06 62.8%

Hum. 12.23 12.54 12.65 12.64 12.73 13.34 0.9%

Age 2 8 11 11.8 13 42 10.3%

W1 0 0 0 3.34 0 23.27 0%

ETo 1.6 5.6 6.2 6.131 6.9 8.6 0%

CC 0.26 0.28 0.31 0.31 0.33 0.39 1.6%

CE 0.11 0.15 0.16 0.16 0.18 0.23 1.6%

TAW 113.4 136.6 150.5 149.2 162.2 183.7 1.6%

There are several strategies to deal with unknown values. The simplest ways
are either to delete the whole records with unknown values or to fill them
with given statistics such as the average or the median for quantitative val-
ues. On the other hand, there are more complex strategies that normally lead to
more accuracy; however, it requires more computing costs [16]. The five different
Machine Learning methods from different regression families were applied to fill
all the unknown values of PLWP that are Multivariate Linear Regression (MLR),
Multivariate Adaptive Regression Splines (MARS), Support Vector Regression
(SVR), Classification and Regression Trees (CART), and Random Forest (RF).
The experiments were developed in R computing environment1 by using e1071
package [10] for SVR, rpart [11] for regression trees, earth [12] for MARS and
RandomForest [13] for RandomForest. The SVR, MARS, and RandomForest are
tuned using the function inside the respective package. The MLR and rpart are
used with the standard hyper-parameters. The 10-fold cross-validation is used
as a resampling method to evaluate each method by random partitioning. Each
subset is used to evaluate the induced model, which has been trained using the

1 https://www.r-project.org/about.html.
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remaining nine subsets. This method was applied to data available from 2014.
The performance measure is Root Mean Squared Error (RMSE), according to
Eq. 2.

RMSE =
√

1
n

∑n
t=1 Error2t (2)

Where “Error” is the difference between the predicted value of PLWP by
model and the measured value of PWLP. The variable n is the number of sam-
ples. In a general sense, soil stores water; therefore, the water on the soil should
be a continuous variable, so the variable “HWater” was created according to
Eq. 3. Besides, the balance (BAL) variable was derived from the ideal balance of
water inside the plant. Equation 4 shows the difference between irrigation and
evapotranspiration.

HWater =
∑3

i=1
1
i ×Humidityt−i ×Wt−i∑3

i=1
1
i

(3)

BAL = Wt−1 − ETot−1 (4)

4 Experiments

4.1 Fill the Gaps

Variables Selection. The best variables were chosen using the rfcv function
from randomForest package to perform a 10-fold cross-validation over the data
from year 2014 with all the variables. Afterward, a cut point was chosen to select
the most important variables to avoid overfitting and complexity of the system
without compromising the accuracy.

The varImpPlot function from randomForest R package [13] has been used
to know the variable importance, as it is shown in Fig. 3. DOY was the most
important feature. According to the plant life cycle, the behavior of PLWP could
differ during phenological stages. It can explain the importance of DOY since
the dates of phenological stages were not available. Humidity in different depths
also seems to be important, representing the absolute quantity of water in the
soil. Since PLWP is a measure that represents the water inside the plant, the
importance of this variable to the model makes sense. Other variables that seem
to be important are Casta, Age, and W1. These are the variables that distin-
guish between plant characteristics and irrigation strategies. The ETo considers
weather information to calculate the amount of water lost by the plant and seems
to have some importance. The CE, CC, TAW, and Soil variables are correlated,
and all of them are describing the soil characteristics. We can conclude that
the soil type is important to predict PLWP, which is further supported since
the available water is different for different types of soil [22]. According to this
way of calculating variable importance, vigor and regime seem to be the least
important variables.
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Fig. 3. Variable importance measures by varImpPlot function

Methodologies. The objective was to build a stand-alone working model to
fill the gaps of PWLP for the previous agricultural cycles. This model will be
used to train the prediction models on the one hand and also will be used to fill
the gaps of the following agricultural cycles whenever needed.

Figure 4 shows the proposed cascading (CAS) technique to train a model for
the prediction of PLWP and then predicted PLWP would be used as a variable
for the prediction of the next day PLWP. To be able to do that, the algorithm
was split into two different tasks: (1) fill the missing data, and (2) build model
2. So, instead of ignoring all the daily data with no values of PLWP, these values
are predicted using model 1 afterward. These predictions are used as a variable
to model 2. The big modification on the model 2 are the values of PLWP for
the previous 3 days (Ti represents ˆPLWP t−i; t is the current day and i the
number of previous days) that are from model 1 and the respective modification
of PLWP between two days (Ci = ˆPLWP t−i − ˆPLWP (t−1)−i).

4.2 Seven Days Prediction

Like filling the gaps models, the random forest was chosen to train seven models
to predict PLWP for the next seven days, one model per day.

Variables Selection. The available variables were ETo, Field data, Irrigation,
and PLWP of the previous seven days.

The variable Mean7DaysCurrent was the most critical variable in all the
seven models, which means the predicted value of a day is highly dependent on
the weighted average of the seven days before that day, giving higher weights for
closer days. Also, irrigation variables like Waterxxx (the average of the irrigation
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Fig. 4. Proposed cascading algorithm

of the three days before that day), EToWx (the difference between ETo and
irrigation for the day x) and Balxxx (the average of the difference between ETo
and irrigation of the three days before that day), were good candidates with
moderate importance in predicting the following days.

Methodologies. The value of PLWP always depends on DOY, as mentioned
in Sect. 4.1. We had split the experiment into two parts and compared the per-
formance. (1) Creating one model for all phenological stages. (2) Creating three
models (one model per phenological stage).

5 Results and Discussion

5.1 Algorithms Comparison and Variable Importance

Five different algorithms were used to choose the model that fits better with
the year 2014. It was concluded that Support Vector Regression (SVR) with
RMSE of 0.0812 and Random Forest with RMSE of 0.0791 obtained the best
results, followed by MARS, RPart, and MLR with RMSE of 0.101, 0.105, and
0.110, respectively. Random Forest usually receives a good performance, and the
induced models are of straightforward interpretation. Besides, we don’t need to
worry about tuning a large set of parameters that increase the computational
costs [15]. Therefore, the random forest has been chosen as the best of the
five algorithms tested for the current study while passing only two parameters
importance is true and nTrees is 2000 trees for filling gaps model and 600 trees
for each of the seven days models.

While HWater and BAL are calculated based on the amount of irrigation,
it seems that there could be a chance to use them in understanding and control
the performance of PLWP. The right panel depicts the previous values PLWP
has of high significance, especially the previous day (T1). Moreover, the changes
(C1 and C2) seem to have some importance.
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5.2 Models Validation

Specialists from Herdade do Esporão agreed that an absolute error up to 0.2
Megapascal (MPa) is acceptable. An interesting observation is that all the algo-
rithms seem to have very similar results, and all of them seem to have more
accurate results when the measured values are higher than −0.7 MPa. At the
same time, values smaller than −0.7 MPa are being predicted with values higher
than their actual values. This situation can be explained by the limit between
healthy and non-healthy plant behavior, supporting the idea of changing the
plant behavior when the plant starts dying. Contrarily, PLWP above −0.2 MPa,
the plant doesn’t feel any limitation in water uptake [23], and it can be observed
that our prediction is weak in this range.

Accepting a 0.2 MPa error, we can conclude that all the methods have around
98% of the predictions inside this range, except persistence. i.e. 98% of the pre-
dicted values have absolute error less than 0.2 MPa. Moreover, when we decrease
the maximum acceptable error to 0.1 MPa, we got around 80% of accuracy.

5.3 Error Analysis

Fill the Gaps. This result shows that it exists a slight asymmetry in our
predictions. In each day, it was collected more than one measure of PLWP. Thus
it is possible to calculate RMSE/day. Also, it shows that cascading Random
Forest has better results for all the scenarios, and all trials have beat the dummy
persistence algorithm.

Predict Seven Days. To check the performance of the models, we have tested
two different approaches. a) create one model per phenological stage, b) create
only one model which covers the whole year. Then, Root Mean Square Error has
been calculated as a validation metric. Also, the holdout methodology has been
used as a validation technique. The idea was to keep the phenological stages
consistent within a single year and across different years.

Tables 2 shows Root Mean Square Error when a single model was created for
the whole year. It is understood that the accuracy of the models was decreasing
while we tried to predict farther days. But at the same time, it was not reducing
dramatically, and in the worst case to predict the 7th day, the Root Mean Square
Error is higher than the error of predicting the current day by only 15%.

On the other side, Table 3 shows Root Mean Square Error when three models
per year were created representing the three phenological stages. The results
show a more extensive range of errors resulting from having different phenological
stages in different years, especially in the transition from a stage to the following.
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Table 2. Root Mean Square Error considering one model for all phenological stages

Train 2014+2015 Train 2014+2016 Train 2015+2016

Test 2016 Test 2015 Test 2014

T+1 0.084 0.086 0.084

T+2 0.083 0.087 0.084

T+3 0.083 0.088 0.084

T+4 0.085 0.089 0.085

T+5 0.086 0.091 0.087

T+6 0.087 0.092 0.088

T+7 0.089 0.092 0.089

Table 3. Root Mean Square Error considering 3 models (one model per stage)

Train 2014+2015 Train 2014+2016 Train 2015+2016

Test 2016 Test 2015 Test 2014

T+1 0.068 0.108 0.138 0.082 0.098 0.103 0.080 0.093 0.098

T+2 0.067 0.106 0.146 0.082 0.097 0.105 0.079 0.090 0.098

T+3 0.068 0.107 0.149 0.083 0.098 0.108 0.078 0.091 0.104

T+4 0.069 0.112 0.156 0.084 0.099 0.111 0.080 0.093 0.106

T+5 0.070 0.113 0.154 0.085 0.102 0.117 0.081 0.095 0.116

T+6 0.071 0.114 0.165 0.085 0.104 0.121 0.080 0.096 0.121

T+7 0.073 0.120 0.172 0.086 0.103 0.122 0.081 0.095 0.128

6 Conclusion and Future Work

In this project, several models were developed to predict PLWP at a specific
time in the vineyard, from the flowering phenological stage until the maturation
stage. An easy to collect information like grape varieties and soil type, moisture,
and meteorological information was considered. The results showed the possibil-
ity to predict PLWP instead of physical examination that consumes time and
money. Specialists from Herdade do Esporão S.A. defined the maximum accept-
able error rate to be 0.2 MPa, so at this point, we conclude that the objective was
accomplished by having around 98% of the predictions with error rates less than
0.2 MPa. Regarding different strategies, it seems that the cascading approach
brings a slight improvement, so considering computational cost versus benefit
does not seem to worth it.

Also, we have been able to forecast PLWP for the following seven days with
an accuracy lower than predicting the current point of time by only 15%, which
is considered an original work that should be followed by future enhancement.
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6.1 Future Work

While the results look promising, we believe it could be even enhanced using more
information regarding plagues, stomatal opening, root morphology, phenological
stages, and NDVI (Normalized Difference Vegetation Index) information. Also,
evolved models could improve themselves over time and include data from other
vineyards to generalize these models.

As future work, we could focus on optimizing irrigation plans using our fore-
casting models once time and quantity of irrigation water are considered impor-
tant decision variables.
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UIDB/50014/2020.
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