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Abstract. Due to climate change, buildings can consume 30% more
energy by 2040, with energy performance being the critical element for
achieving sustainable development in the civil construction sector. One
way to solve this evaluation problem is by applying Machine Learning
Methods that can assist specialists in civil construction in analyzing sce-
narios even in the initial phase of the project. The present work evalu-
ates the application of the Elastic Net, Extreme Learning Machine, and
Extreme Gradient Boosting models for the prediction of heating and
cooling loads in residential buildings. The database used has 768 sam-
ples, with eight geometric input variables and two thermal output vari-
ables. Differential Evolution optimization algorithm was applied to select
method parameters to find the sets of hyperparameters that reinforce
the predictive capabilities of the models. The comparisons of the results
occurred using the metrics MAE, MAPE, RMSE, and R2. The results
showed that the Extreme Gradient Boosting method obtained a better
performance among the tested methods than the literature, presenting
the lowest values for the error metrics and significant differences in the
statistical tests. Thus, combining Differential Evolution and Extreme
Gradient Boosting methods, thermal loads can be predicted, assisting
projects that aim at energy savings and sustainability

Keywords: Energy efficiency · Heating and cooling loads · Extreme
Gradient Boosting · Load forecast

1 Introduction

The increase in population and the growing use of new technologies have resulted
in the emergence of greater energy demands, leading to a rise in consumption
of around 30% by 2040 [1]. In Brazil, only in the residential sector, it is esti-
mated that the possession of air conditioning by families has more than doubled
between 2005 and 2017, arousing interest in strategies aimed at reducing energy
consumption coupled with the maintenance of environmental comfort [2]. In this
context, energy savings are increasingly necessary to reduce their generation’s
environmental and social impacts.
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The energy performance of buildings is highlighted as a key element for
achieving sustainable development since it can reduce about 20% of greenhouse
gas emissions and 20% of primary energy savings [3]. In commercial buildings,
due to the negative influence that an uncomfortable environment causes on users’
performance, the search for thermal comfort associated with low energy con-
sumption has resulted in an increase in research in this field [4]. The continued
use of electronic equipment and the high density of people in offices increase the
challenge of maintaining these thermally comfortable environments.

To obtain the best performance of construction, three factors must be consid-
ered: architectural design, heating, cooling systems, and occupation. The archi-
tectural project is developed iteratively, with a team that reviews all aspects of
the building and rethinks about decisions related to architecture. With a highly
optimized project in hand, specialists in civil construction can reduce cooling
and heating systems’ capacity and minimize the need for this set of services.

However, despite the architectural design being an essential aspect of the
building’s performance, determining materials and configurations that optimize
consumption and comfort in the structure is not easy. Considerations about the
location, ventilation strategies, lighting, and materials to be used, increase the
complexity of designing an energy-efficient project.

In this scenario, studies that consider computer simulations of models that
deal with buildings’ consumption are becoming more and more present. Several
approaches are proposed for computational models of buildings, such as:

– The use of neural networks and support vector machines to predict the use
of electricity in home heating systems [5];

– The generation of a database through residence parametrization to use
machine learning algorithms to forecast heating and cooling loads [6];

– The application of genetic algorithms to minimize energy consumption and
discomfort hours in a typical Italian residence simulated in different climatic
zones [7].

The literature presents a diversity of works that carried out the modeling and
simulation of different scenarios with various architectural types. However, the
alternatives are often tested one by one, separately, and the results refer to com-
parisons between generated outputs. This process requires numerous tests and
considerable execution time, turning to analyze many variables simultaneously,
unviable. Thus, the combination of optimization methods and intelligent algo-
rithms has shown promise [8]. The integration of these methods can improve the
predictions related to the energy market, helping service providers understand
different consumers’ and users’ demands to save energy by knowing their usage
habits. Predicting the building’s behavior based on design parameters can assist
in decision-making by specialists, so manual and operationally costly analysis is
unnecessary.

The present work aims to propose a combined method of machine learn-
ing and evolutionary algorithms to predict thermal loads (heating and cooling
loads) in civil construction. The maximization of the regression methods’ pre-
dictive performance is sought by optimizing hyperparameters of the Elastic-Net
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Regression (NET), Extreme Learning Machine (ELM), and Extreme Gradient
Boosting (XGB) techniques.

2 Methods

2.1 Dataset

The dataset used in this paper can be found in [9]. The dataset is composed by
eight input variables and two output variables. The input variables are: relative
compactness (RC), surface area, wall area, roof area, overall height, orientation,
glazing area and glazing area distribution. The output variables are the heating
loadings (HL) and cooling loadings (CL). Heating/cooling loads refer to the
amount of thermal energy that would need to be added/removed from a space
to keep the temperature in an acceptable range. To generate different building
shapes, eighteen such elements were used according to Fig. 1(A). A subset of
twelve shapes with distinct RC values was selected for the simulations as can be
seen in Fig. 1(B).

Fig. 1. A: Generation of shapes based on eighteen cubical elements [9]. B: Examples of
building shapes [10]. C: Generic definition of building areas, where OH is the Overall
Height, RA is the Roof Area, WA is the Wall Area and FA is the Floor Area. Adapted
from [11].

2.2 Machine Learning Methods

Elastic Net Regression. The Elastic Net technique is an extension of the
LASSO method, robust to correlations between the predictors [12]. Elastic Net
uses a mix of L1 (LASSO) and L2 (Ridge) penalties and can be formulated as:

β̂(enet) =
(

1 +
λ2

n

){
arg min

β
‖y − Xβ‖22 + λ2 ‖β‖22 + λ1 ‖β‖1

}
(1)
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By setting α = λ2/(λ1 + λ2), the estimator is equivalent to minimizing:

β̂(enet2) = arg min
β

‖y − Xβ‖22 , subject to Pα(β) = (1−α) ‖β‖1+α ‖β‖22 ≤ s for some s (2)

where Pα(β) is the penalty Elastic Net [13]. The method is simplified to a Ridge
regression when α = 1 and to a LASSO regression when α = 0. The L1 penalty,
part of the NET method, makes the automatic selection of variables. In contrast,
the L2 part encourages the grouped selection and stabilizes the solution paths
about random sampling, thus improving the forecast. By inducing a grouping
effect during the selection of variables, the method can select groups of correlated
characteristics when the groups are not known in advance.

Extreme Learning Machine. Extreme Learning Machine (ELM) [14] is a
feedforward artificial neural network, which has a single hidden layer. Compared
with the Artificial Neural Network, the Support Vector Machine and other tradi-
tional prediction models, the ELM model retains the advantages of fast learning,
good ability to generalize and convenience in terms of modeling. In ELMs there
are three levels of randomness [15]: (i) fully connected, hidden node parameters
are randomly generated; (ii) the connection can be randomly generated, not all
input nodes are connected to a particular hidden node; (iii) a hidden node itself
can be a subnetwork formed by several nodes resulting in learning local features;

The output function of ELM used in this paper is given by

ŷ(x) =
∑L

i=1 βiG (α, γ,wi, bi, c,x)
=

∑L
i=1 βiG (αMLP(wi, bi,x) + γ(1 − α)RBF(x, c))

(3)

where ŷ is the ELM prediction associated to the input vector x, wi is the weight
vector of the i-th hidden node,bi are the biases of the neurons in the hidden
layer, βi are output weights, c is the vector of centers.MLP and RBF are the
input activation functions, respectively, while α is a user-defined that multiplies
MLP(·) and RBF(·) terms. G(·) is the nonlinear output activation function and
L is the number of neurons in the hidden layer. The output activation functions
G (α,wi, bi, c,x) with the hidden nodes weights (w, b) are presented in Table 1.

Table 1. ELM activation functions.

# Name Activation function G

1 Identity G(x) = x

2 ReLU G(x) = max (0, xi; i = 1, · · · , D)

3 Swish G(x) = x/(1 + exp(−x))

4 Gaussian G(x) = exp(−x2)

5 Multiquadric G(x) =
√
x2 + b2

6 Inverse multiquadric G(x) = 1/(x2 + b2)1/2
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The parameters (w, b) are randomly generated (normally distributed with
zero mean and standard deviation equals to one), and weights βi of the output
layer are determined analytically, while MLP and RBF are written as

MLP(wi, bi,x) =
D∑

k=1

wikxk + bi and RBF(x, c) =
D∑

j=1

xj − cij

ri
(4)

where D is the number of input features, the centers cij are taken uniformly from
the bounding hyperrectangle of the input variables and r = max (||x − c||)/√

2D.
The output weight vector [β1, ..., βL] can be determined by minimizing the

approximation error [15]
min

βββ∈RL
‖Hβββ − y‖ (5)

where y is the output data vector, H is the hidden layer output matrix

H =

⎡
⎢⎣

G1 (α, γ,w1, b1, c,x1) · · · GL (α, γ,wL, bL, c,x1)
...

. . .
...

G1 (α, γ,w1, b1, c,xN ) · · · GL (α, γ,wL, bL, c,xN )

⎤
⎥⎦ and y =

⎡
⎢⎣

y1
...

yN

⎤
⎥⎦ (6)

is the output data vector with N the number of data points. The optimal solution
is given by

βββ = (HTH)−1HTy = H†y (7)

where H† is the pseudoinverse of H.

Gradient Boosting Machines. In several problems the goal is, using a train-
ing set {(xi, yi)}N

i=1 with N samples, to find an approximation f̂(x) to a function
f(x) that minimizes the expected value of the loss function

L(y, f̂(x)) =
N∑
i

[yi − f̂(xi)]2. (8)

GB approximates f by an additive expansion of the form f̂ =∑M
m=1 βmh(x, am) where the functions h(x, a) are h(x, am) is an K-node regres-

sion tree and the parameters {β, a} are jointly fit to the training data in a forward
stage wise manner [16]. At each iteration m, a regression tree partitions the vari-
able space into disjoint regions {Rkm}K

k=1 at the mth iteration. A constant γjm

is assigned to each such region and the predictive rule is x ∈ Rjm ⇒ f(x) = γjm.
Using the indicator notation, the output of h for input x can be written as

h(x, {Rkm}K
k=1) =

K∑
k=1

γkmI(x ∈ Rkm), I(·) = 1 if x ∈ Rkm else 0 (9)

with parameters {Rkm, γkm}, k = 1, 2, . . . , J, m = 1, . . . , M , where γkm is the
value predicted in the region Rkm.
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As the model (9) predicts a constant value in each region Rkm, the solution
reduces to

γkm = arg min
γ

∑
xi∈Rkm

L(yi, fm−1(xi) + γ), γ constant. (10)

The current approximation fm−1(x) is then updated following the rule

f̂m(x) = f̂m−1(x) + λ

K∑
k=1

γkmI(x ∈ Rkm) (11)

where parameter 0 < λ ≤ 1 is called the learning rate.
A substantial improvement in Gradient Boosting’s accuracy can be achieved

when at each iteration of the algorithm the base learner is fitted on a subsample
of the training set drawn at random without replacement. Subsample size is
some constant fraction of the size of the training set. Smaller values of subsample
introduce randomness into the algorithm and help prevent overfitting [17]. The
algorithm also becomes faster, because regression trees have to be fit to smaller
datasets at each iteration.

The XGB method follows the same principles as the GB, with some dif-
ferences in details of the modeling that perform more accurate approximations
using the second-order derivative of the loss function (in the case of the logistic
function), L1, and L2 regularization and parallel computing. XGB is the most
regularized form of GB, using regularization similar to those of the Elastic Net
method, which improve the generalization capabilities of the model. It presents
better computational performance due to being able to perform faster train-
ing that can be distributed through different cores [18]. Uses improved data
structures for better utilization of the processor’s cache memory, which makes
it faster.

2.3 Model Selection Based on Differential Evolution

Setting the parameters of an estimator is usually a difficult task. Often, these
parameters are defined empirically, by testing different settings by hand. An
alternative is the use of population-based evolutionary algorithms, such as Differ-
ential Evolution (DE) [19]. DE is one of the most efficient evolutionary algorithms
(EAs) [20]. The basic strategy of DE consists in applying weighted and stochastic
vector operations between the candidate solutions set [21]. Given a population
of NP vectors {θi|i = 1, 2, . . . , NP}, at each iteration J (J = 1, 2, ..., Jmax) of
the DE, the following operations will be performed on such vectors:

1. Mutation: For each vector θi, a mutant vector vi is generated according to

vi = θr1 + F(θr2 − θr3) (12)

where r1, r2 and r3 ∈ {1, 2, . . . , NP} are randomly chosen indexes, mutually
different and different from i, and F ∈ (0, 2) is a user-defined parameter.



Automatic Evolutionary Settings of Machine Learning Methods 189

2. Crossover: In this step, the D-dimensional trial vector μi will be generated
by a stochastic operation given by

μi,j =
{

vi,j , if rand(j) ≤ CR or j = rand(i)
θi,j , if rand(j) > CR and j �= rand(i) (13)

where j = 1, 2, ...,D, vi,j is the value of j-th variable of vector vi produced
by Eq. (12), rand(j) is the j-th random value in the range [0, 1], rand(i) ∈
{1, 2, ...,D} is a random integer value produced for each solution and CR is
a user-defined parameter in the range [0, 1].

3. Selection: If vector μi is better than θi, then θi will be replaced by μi in the
set (population). Otherwise, the old value θi will be maintained.

DE was applied here to find the best hyperparameters for NET, ELM, and
XGB models for predict thermal loads in buildings. Each candidate solution θi
encodes an estimator. Each vector θi is composed by 2 variables to NET (D = 2),
4 variables to ELM (D = 4), and 6 variables to XGB (D = 6), that correspond to
the total of parameters to be adjusted (Table 2). Considering the DE approach,
the goal is to find a candidate solution so that the method generates computed
outputs that match the outputs of the training data.

Table 2. Hyperparameters sets used in model selection step.

NET ELM XGB

Parameters Sets Parameters Sets Parameters Sets

l1 ratio [0,1] n hidden 1, 2, 3, . . . , 500 learning rate [0,1]

alpha [0.1,1] rbf width [0.01, 10] n estimators 10, 11, 12, . . . , 900

max iter 1000 activation func identity, relu,

swish, gaussian,

multiquadric,

inv multiquadric

colsample bytree [0,1]

tol 0.0001 alpha [0, 1] min child weight 1, 2, 3, . . . , 10

normalize false subsample [0,1]

max depth 1, 2, 3, . . . , 30

objective squared error

3 Computational Experiments

In this section, we present the results obtained for the regressions models
described in Sect. 2. We ran each experiment 30 times using 10-fold cross-
validation with shuffled data generated by different random seeds. The K-fold
validation reduces the variation in estimating the model’s performance for dif-
ferent data samples. Because of this, the performance becomes less sensitive to
the partitioning of the data.

The experiments were conducted in Python language (3.5 version) and using
scikit-learn framework [22] and XGBoost library [18]. The experiments were
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conducted on computers with the following specifications: Intel (R) Xeon (R)
E5620 CPU (8 cores of 2.40 GHz and 2 MB cache memory), 8 GB RAM, and
Linux Ubuntu 14.04 LTS operating system. In order to evaluate the predictive
performance of each model we have used the evaluation metrics shown in Table 3.

Table 3. Performance metrics: ŷi is the estimated target output, yi is the corresponding
target output, N is the number of samples, p is the number of model parameters, and
ȳ is the mean of the vector [y1, ..., yN ].

Metric Expression

R2 1 −
∑N−1

i=0 (yi−ŷi)
2

∑N−1
i=0 (yi−ȳ)2

RMSE
√

1
N

∑N−1
i=0 (yi − ŷi)2

MAPE 100 × 1
N

∑N−1
i=0

|yi−ŷi|
|yi|

MAE 1
N

∑N−1
i=0 |yi − ŷi|

Figure 2 illustrates the values of the four statistical measures averaged in 30
runs for the predicted heating loads and cooling loads. In each bar, the vertical
black line indicates the standard deviation. In the MAE, RMSE, and MAPE
metrics, the lower values indicate better performance, and for the coefficient R2,
the best models should present their value closer to 1. By observing the metrics,
it is possible to verify that the XGB method achieved better results, both for
heating and cooling loads. The ELM method’s heating loads obtained values
slightly close to those achieved by the XGB in the metrics MAE, RMSE, and R2.
For all the metrics presented, it is possible to notice a common behavior among
the three tested methods, which is the best average performance in predicting
heating loads.

Table 4. Parameter distribution - heating loads.

Model Hyperparameters Min. Median Max. Average DP

NET alpha 0.114 0.189 0.193 0.186 0.014

ELM n hidden 190.000 259.500 314.000 254.867 38.684

rbf width 0.010 0.021 0.067 0.028 0.018

alpha 0 0.001 0.534 0.129 0.163

XGB learning rate 0.043 0.159 0.422 0.183 0.100

n estimators 259.000 720.500 879.000 654.633 204.629

colsample bytree 0.630 0.719 0.867 0.728 0.065

subsample 0.915 0.976 0.999 0.928 0.022

Table 4 shows the distributions of some hyperparameters of the methods
tested over the 30 runs to predict heating loads. For NET, alpha values were
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Fig. 2. Barplots for the statistical measures (averaged over 30 runs) for HL and CL. The
performance metrics are Mean Absolute Error (MAE), Coefficient of Determination
(R2), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).

distributed in the interval [0.114, 0.193] with mean 0.186, standard deviation
0.014, and median 0.189, and l1 ratio=1 was selected in 29 out of 30 runs.

For the ELM method, it is possible to notice that the parameter alpha varied
in the range [0; 0.53] while the parameter rbf width, despite having a larger
range of possibilities ([0.01, 10]) varied only between the values [0.010, 0.067],
indicating that the interval used in the optimization algorithm can be reduced
and thus consequently decrease the search space. The number of neurons in the
hidden layer of ELM varied between 190 and 314, with an average of 254.87 and
a median of 259.5. The most frequent activation function was gaussian, being
selected in 20 out of 30 executions.

In the case of the XGB method, the hyperparameter colsample bytree pre-
sented values in the range [0.630, 0.867], with a mean of 0.728 and a median of
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Table 5. Parameter distribution - cooling loads.

Model Hyperparameters Min. Median Max. Mean DP

NET alpha 0.124 0.128 0.134 0.128 0.002

ELM n hidden 304.00 365.500 410.00 360.967 25.026

rbf width 0.064 0.182 9.996 1.378 2.884

alpha 0.001 0.122 0.941 0.293 0.337

XGB learning rate 0.150 0.439 0.978 0.463 0.261

n estimators 189.000 829.500 894.000 769.933 161.142

colsample bytree 0.382 0.452 0.604 0.475 0.069

subsample 0.812 0.956 0.995 0.945 0.046

0.719 for heating loads. The learning rate had its values distributed between
[0.043, 0.422], mean 0.183 and median 0.159, while the subsample had values
very close to 1, with a distribution between [0.915, 0.999], mean 0.968 and median
0.976. The n estimators, which has a range of variation [10] obtained an aver-
age of 654.633 and a median of 720.500. For the parameter min child weight
the value 1 was selected in 29 out of 30 executions and for the max depth the
value 7 was more frequent, being selected in 16 out of 30 executions.

Table 5 shows the distribution of some hyperparameters of the methods tested
over the 30 runs to predict cooling loads. For the NET method, l1 ratio = 1
it was chosen by the optimization algorithm in the 30 executions, while for
the parameter alpha the assigned values were distributed in the interval [0.124,
0.134] with a mean of 0.128 and a median of 0.128, indicating that values close to
0.128 improve the predictive performance of the NET method for cooling loads.

In the case of ELM, the values for rbf width were distributed in the range
[0.064, 9.996], with an average of 1.378 and a median of 0.182. The values of
alpha were distributed in [0.001, 0.941], with an average of 0.293 and a median
of 0.122, covering most of the range of possibilities [0, 1]. In the XGB method,
the parameter colsample bytree presented distribution in the interval [0.382,
0.604], with a mean of 0.475 and a median of 0.452. The subsample had distribu-
tion in the range [0.812, 0.995], with a mean of 0.475 and a median of 0.452, while
the learning rate was distributed in the range [0.150, 0.978], with a mean of
0.463 and a median of 0.439. The n estimators showed a distribution concen-
trated in values close to the upper limit used by the evolutionary algorithm, with
values in the range [189.000, 894.000], with an average of 769.933 and a median of
829.500. For min child weight the value 2 presented a higher frequency, being
returned in 17 out of 30 executions, while for max depth the frequencies were
distributed in the interval [6], with the highest frequency occurring at value 7 in
6 out of 30 runs.
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Table 6. Comparison between the results obtained from the best model of this study.

(a) Heating Loads

Reference MAE (kW) RMSE (kW) MAPE (%) R2

[9] 0.510 – 2.180 –

[23] 0.340 0.460 – 1.000

[10] 0.236 0.346 – 0.999

[24] 0.380 – 0.430 –

[11] 0.315 0.223 1.350 0.998

[25] 0.262 0.404 1.395 0.998

[26] 0.224 0.341 1.114 0.999

[27] 0.175 0.265 0.913 0.999

DE+NET 2.202 3.178 10.157 0.901

DE+ELM 0.329 0.329 1.573 0.998

DE+XGB 0.150 0.243 0.753 0.999

(b) Cooling Loads

Reference MAE (kW) RMSE (kW) MAPE (%) R2

[9] 1.420 – 4.620 –

[23] 0.680 0.970 – 0.990

[10] 0.890 1.566 – 0.986

[24] 0.970 – 3.400 –

[11] 0.565 0.837 2.342 0.991

[25] 0.486 0.763 1.924 0.994

[26] 0.491 0.722 1.973 0.994

[27] 0.307 0.461 1.197 0.998

DE+NET 2.384 3.387 9.416 0.873

DE+ELM 0.861 1.222 3.434 0.986

DE+XGB 0.231 0.327 0.983 0.999

Table 6 present the statistical measures for the best models (along 30 runs)
found in this paper. To provide a comparison with other models in the literature,
we also show the results collected from other studies that used the same dataset
employed in this paper. Reference [9] implemented random forests, while [23]
developed multivariate adaptive regression splines and gaussian processes were
used in [25]. Reference [10] implemented a linear combination of two or more
machine learning models. The results presented [24] were obtained by genetic
programming, an automated learning of computer programs using a process
inspired by biological evolution. The results in [11] were obtained using Random
Forests and Multilayer Perceptron Neural Networks. Reference [26] implemented
Gradient Boosting Machines and [27] used Extreme Gradient Boosting. As can
be seen in Table 6 for the heating loads, DE+XGB obtained competitive results.
For cooling loads, DE+XGB model reaches the best average performance for all
statistical measures reflecting its ability to learn highly nonlinear relationships
from data.

4 Conclusion

This paper evaluated the prediction of heating and cooling loads in buildings.
For it, NET, ELM, and XGB models were used, coupled to the Differential Evo-
lution algorithm to optimize the hyperparameters of the models. The use of
the evolutionary algorithm in conjunction with the machine learning methods
showed satisfactory results compared to the data in the literature. The XGB
model achieved the best results for all the metrics tested, considering the three
models tested in HL and CL. In addition, it obtained competitive results with
recent works in the literature for heating loads and better performance in all
metrics when approaching cooling loads. As future work, for the XGB model,
which presented a better overall performance, it is proposed to apply dimension-
ality reduction methods to analyze the importance of each of the input variables,
making it possible to improve the computational performance. Also, we purpose
to test the DE + ELM method with a greater number of iterations for optimiza-
tion to analyze the convergence of the method and check if it is possible to find
lower error values.



194 G. G. Tavares et al.

References
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