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Bŕıgida Teixeira1,2(B), Tiago Pinto1,2, Pedro Faria1,2, and Zita Vale2

1 GECAD - Research Group on Intelligent Engineering and Computing for Advanced
Innovation and Development, Porto, Portugal

2 Institute of Engineering, Polytechnic of Porto (ISEP/IPP), Porto, Portugal
{bccta,tcp,pnf,zav}@isep.ipp.pt

Abstract. The increasing penetration of renewable energy sources and
the need to adjust to the future demand requires adopting measures to
improve energy resources management, especially in buildings. In this
context, PV generation forecast has an essential role in the energy man-
agement entities by preventing problems related to intermittent weather
conditions and allowing participation in incentive programs to reduce
energy consumption. This paper proposes an automatic model for the
day-ahead PV generation forecast, combining several forecasting algo-
rithms with the expected weather conditions. To this end, this model
communicates with a SCADA system, which is responsible for the cyber-
physical energy management of an actual building.
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1 Introduction

Currently, sustainability is one of the biggest challenges in the energy sector. In
an environment where the use of electronic devices and the internet is increas-
ingly significant in the daily routine, studies show that the demand will more
than double in the coming years, conducting to the need to produce more energy
[4]. European Commission also says that the energy consumed in buildings cor-
responds to 40% of the total energy demand [2].

In order to deal with current and future demand requirements and consider-
ing the urgency of significantly reducing the environmental impact of fossil fuels,
there is an investment in the penetration of renewable energy sources worldwide
through the creation of new technologies, models, and legislation [3]. However,
the intermittency of energy sources based on weather conditions raises several
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challenges due to their uncertainty to satisfy the demand. In this way, forecasting
has an essential role in providing energy management systems with information
to better use energy, allowing them to take full advantage of renewable energy
sources while decreasing cost and waste of energy.

This paper presents an automatic PV generation forecast model for Anony-
mous building energy management. The proposed methodology aims to improve
the solar forecast results, supported by different data models and four forecast
methods, namely Neural Artificial Networks (ANN), Support Vector Machines
(SVM), Random Forest, and ARIMA. It is connected to a SCADA system, which
ensures the cyber-physical energy management of the building. The Forecasting
process executes in five main phases: data selection and transformation, creation
of data models, model hyperparameters, forecast, and evaluation.

2 SCADA System

In order to monitor and manage GECAD research group energy resources, this
section presents the implemented SCADA system [1] in Building N facilities
located in Porto, Portugal. This building has twelve offices, a meeting room, a
server room, two laboratories, two toilets, a kitchen, and three corridors. These
rooms are equipped with several sensors and energy meters, which communicate
with Programmable Logic Controllers (PLCs) connected to a central PLC to
monitor and control the building. The communications are via TCP/IP protocol.
The visualization and control of these resources are available from a touch panel
installed in the hall or an internal web page. The sensors collect real-time data of
the building’s environment, allowing the observation of several indicators, such
as external temperature, internal temperature, brightness, humidity, CO2 levels,
air quality, generation, and consumption.

The building has three-phase meters, which allows to analysis separately the
consumption by type of resource. Phase 1 allows monitoring the loads in the area
where the energy meter is installed; phase 2 observes the consumption of the air
conditioning systems; phase 3 reads the consumption of the lights. Besides, this
building has a PV system with a maximum 7.5 KW capacity installed on the
rooftop. The energy generated by the PV satisfies part of the energy demand,
and if there is a surplus of energy, it is injected into the network.

Furthermore, GECAD also has access to the Institute of Engineering of Poly-
technic of Porto meteorological station (meteo@isep)1, which enables to access
real-time weather information (i.e., feel temperature, real temperature, wind
speed, radiation, atmospheric pressure, humidity, and rain), and consult fore-
casts for the next three days.

3 Solar Forecasting Model

In building energy management and smart grids, having information on the
estimated consumption and generation is essential for the optimization of energy
1 meteo@isep - https://meteo.isep.ipp.pt/gauges.

https://meteo.isep.ipp.pt/gauges


178 B. Teixeira et al.

resources, taking advantage of grid incentives to reduce electricity consumption,
namely by participating in demand response programs. However, the weather
conditions variation represents a significant challenge in forecasting renewable
energy since they can harm the results, especially when the frequency is less
than an hour. For example, the passage of a cloud causes a decrease in radiation,
originating an error that will have more impact in a 15-min time interval forecast
than a 1-h frequency.

This paper proposes a methodology to forecast the day-ahead PV genera-
tion, with a 15-min time interval, which corresponds to a total of 96 periods.
The model is implemented in Python, and it contains four different artificial
intelligence techniques to forecast PV generation, namely ANN, SVM, and Ran-
dom Forests from scikit-learn library, and ARIMA from pmdarima library. The
model’s architecture is based on five phases. The selection of these techniques is
based on previous works presented in the current literature.

The first phase is related to selecting and preparing the necessary historical
data for the learning process of forecasting algorithms. This data is imported
from SCADA’s database and consists of the last 20 days of PV generation. Rain,
radiation, and outside temperature are imported from the meteo@isep API as
additional features for the learning process. After this, cleaning data occurs by
detecting and replacing missing data, incorrect data, and outliers. The strategy
for replacing corrupt or inaccurate data consists of an estimation based on the
average between the last recorded value and the next.

The second phase is the generation of data models (or scenarios). For this
purpose, the historical PV generation is used as a basis of the data model. Next,
it will be added new information to this dataset, according the combination of
several data transformations. The use of different data models helps to identify
which type of information helps the most in the algorithms’ training process.
This are the considered transformations:

– Separation of the timestamp into the four columns (month, day, hour and
minute);

– Insert a new column with the distance between the entry and the first value
of forecast t(0). For example, if the forecast starts at 00:00h, the train entry
that corresponds to the previous period 23:45 h t(−1) will have the value of
−1, 23:30 h t(−2) will have the value of −2, and so on. This strategy helps
the algorithm to identify how old the entry is compared to the forecast;

– Insert three new columns with the values of the three periods of the previous
day, at the same time t(−96), t(−97), t(−98);

– Insert five new columns with the values of the five periods of the previous
day, at the same time t(−96), t(−97), t(−98), t(−99), t(−100);

– Insert seven new columns with the values of the seven periods of the previ-
ous day, at the same time t(−96), t(−97), t(−98), t(−99), t(−100), t(−101),
t(−102);

– Exclusion of night time periods, from 23:00 h to 05:00 h of the next day;
– Insert three new columns with the information of additional features (radia-

tion, rain, and outside temperature).
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Then, the data is split, where 80% is for training the model and 20% is for
testing, following the normalization process.

The third phase is the tuning of the hyperparameters and training of the
forecasting algorithms. For each algorithm, several configurations of the hyper-
parameters are tested to identify which one achieves more precise results. In the
case of ANN, different solvers, activation functions, layers, and the number of
nodes are tested. For the SVM, different kernels and gammas are tested. For
the random forest, the studied parameters are the number of estimators and
the criterions. In Arima, since it is a timeseries algorithm, its configuration is
adjusted to the data frequency. Each hyperparameters setup is combined with
all generated models to train the forecast algorithms.

The fourth phase is forecast execution. Once a week, this process runs in
parallel with the previous phase, as the parameters are tested together with
the forecast. In the remaining days, it is used only the algorithm that had the
best performance in the training process. Instead of historical data, to perform
the forecast, the algorithms require the forecast of additional features for the
next day, obtained through access to the meteo@isep platform. This data is
transformed according to the model with the best results (if used).

The fifth phase is the evaluation phase. The scenario that presented the best
results is selected, namely the forecasting algorithm, the hyperparameters, and
the model that most improved the learning process. The results obtained by
combining these three factors are evaluated by calculating several error metrics:
Minimum Error (MinE), Maximum Error (MaxE), Mean Absolute Error (MAE)
(Eq. 1), Mean Absolute Percentage Error (MAPE) (Eq. 2), Root Mean Squared
Error (RMSE) (Eq. 3) and Root Mean Squared Percentage Error (RMSPE)
(Eq. 4). The scenario with the lowest MAPE value is selected.
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where n is the number of error entries, At is the real value and Ft is the
forecasted value, for the PV generation at period t.

4 Case Study

This section presents a practical case study in order to demonstrate the proposed
model. This case study aims to forecast the PV generation for 21 April 2020 and
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analyze the behavior of the different forecast methods. In this way, the selected
historical dataset is from 01 April 2020 to 20 April 2020, and it is composed by
PV generation, radiation, rain, and outside temperature. Table 1 presents the
best results obtained for the April 21 2020 forecast.

Table 1. Top 10 best results for solar forecast

Study Model MinE MaxE MAE MSE RMSE MAPE RMSPE Feat. Alg.

1 1308 30 0.0000 0.3099 0.0333 0.0048 0.0694 0.1868 0.3453 True ann

2 2718 56 0.0000 0.2293 0.0290 0.0035 0.0590 0.1893 0.3500 True ann

3 1391 31 0.0000 0.3114 0.0321 0.0048 0.0690 0.1909 0.353 True ann

4 1254 29 0.0000 0.3251 0.0336 0.0056 0.0746 0.1935 0.3607 True ann

5 1385 31 0.0004 0.2578 0.0307 0.0038 0.0614 0.2006 0.3624 True ann

6 1315 30 0.0000 0.3607 0.0392 0.0067 0.0820 0.2008 0.3641 True ann

7 1411 32 0.0000 0.3637 0.0378 0.0064 0.0800 0.2050 0.3714 True ann

8 1389 31 0.0001 0.3422 0.0347 0.0055 0.0740 0.2059 0.3621 True ann

9 1252 29 0.0000 0.3436 0.0360 0.0060 0.0776 0.2062 0.3786 True ann

10 1393 31 0.0000 0.3664 0.0389 0.0068 0.0825 0.2073 0.3726 True ann

Regarding the table above, it is possible to observe that the best results
were obtained using the ANN method (indicated in the Alg. column), using the
additional features (indicated in the Feat. column). The other algorithms had
a worse performance and are below the tenth position. SVM presents the best
results after the ANN, in the 31st position. This variation uses the transforma-
tions of the timestamp division, count of the distance from the entries to the
initial instant of the forecast, and uses the data from the periods t(−96), t(−97)
and t(−98) of the previous day. In this case, the MAPE value is 18.68%. It is
also possible to see that this model appears more than once (studies/scenarios
1308 and 1315). The difference between them relies on the used hyperparameters
to configure the forecasting algorithm. Study 1308 uses the ‘adam’ solver, the
activation function ‘relu’, and three layers with 100, 50 and 25 nodes. Study 1315
uses the ‘lbfgs’ solver, ‘logistic’ activation function three layers with two nodes
each (2, 2, 2), as parameters. The results of study 1308 can be seen in Fig. 1.

The graph in Fig. 1 shows that in the days before the forecast, the values
of PV generation were higher than those that occurred on the forecast day
(represented by the green line). However, the forecast line (shown in red) can
detect the current weather changes and adjust to the actual values, analyzing
the forecast of the additional features. Model 5, which corresponds to the same
study but does not include features, has a MAPE value of 35.59%, representing
an increase in the error of 16.91%.

Moreover, another critical factor that influences the error is the forecast of
values near sunrise or sunset, where the sensitivity of the error is higher than in
other periods. In other words, when the real value is 0, if the forecast value is
greater than 0, the error is calculated with a large penalty. This penalty can be
greater than 100% if the forecasted value is much higher or much lower than the
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Fig. 1. Solar forecast results. (Color figure online)

real value, punishing the analysis of the model’s error. In this specific case, the
adjustment of these cases was made to consider a 100% error. However, the most
appropriate solution in the future will be to use more suitable metrics to deal
with these situations, as is the case of Mean Absolute Scaled Error (MASE).

5 Conclusions

This paper proposes an automatic PV generation forecasting model for building
energy management. Thus, the model performs the forecast for the next day,
with a 15-min interval, having at its disposal four different forecasting methods:
ANN, SVM, Random Forest, and ARIMA. The one with the best results is
selected after an exhaustive study of the intersection of the several forecasting
methods, their hyperparameters, and data models that include features that help
in the learning process. A case study was presented of the application of this
model by using data collected in a real building. The results show that the model
achieves promising results despite the intermittency of the weather.

As future work, it is suggested to use the error metric MASE for a more
precise analyzes. Furthermore, a longer period of history may also be included,
and other dataset transformations may be considered.
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