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Abstract. Forecasting the flow of rivers is essential for maintaining
social well-being since their waters provide water and energy resources
and cause serious tragedies such as floods and droughts. In this way, pre-
dicting long-term flow at measuring stations in a watershed with reason-
able accuracy contributes to solving a range of problems that affect soci-
ety and resource management. The present work proposes the MultiTask-
LSTM model that combines the recurring model of Deep Learning LSTM
with the transfer of learning MultiTask Learning, to predict and share
information acquired along the hydrographic basin of Paráıba do Sul
river. This method is robust for missing and noisy data, which are com-
mon problems in inflow time series. In the present work, we applied all
45 measurement stations’ series located along the Paráıba do Sul River
basin in the MultiTask-LSTM model for forecasting the set of these 45
series, combining each time series’s learning in a single model. To confirm
the MultiTask-LSTM model’s robustness, we compared its predictions’
results with the results obtained by the LSTM models applied to each
isolated series, given that the LSTM presents good time series forecast
results in the literature. In order to deal with missing data, we used tech-
niques to impute missing data across all series to predict the 45 series
of measurement stations alone with LSTM models. The experiments use
three different forms of missing data imputation: the series’ median, the
ARIMA method, and the average of the months’ days. We used these
same series with imputing data in the MultiTask-LSTM model to make
the comparison. This paper achieved better forecast results showing that
MultiTask-LSTM is a robust model to missing and noisy data.
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1 Introduction

The flow forecast is necessary due to the dependence and fixation of societies
around river basins throughout history. It is fundamental for the civilization
to maintain its essential activities, such as agriculture, livestock, basic sani-
tation, hydroelectric power generation, industry, and tourism. Keeping water
available implies developing techniques to identify and predict the behavior of
these basins. Besides, it is possible to avoid tragedies such as those resulting
from floods, droughts, rupture of dams, and disease vectors [14]. From a cur-
rent perspective of society, the improvement of these techniques is in line with
the water resources’ growth management and environmental preservation. It is
negatively impacted by the accelerated urban expansion, enabling sustainable
development and enabling decision-making and long-term risk planning compe-
tent bodies [10].

Historical records contained in time series of water phenomena are often
costly and difficult to measure, in addition to presenting noises and missing data,
which impairs the performance of forecasting these time series [6]. The case study
of this work, the river basin’s Paráıba do Sul, has 45 flow measurement stations
with many missing data in all stations resulting from the station shutdown or
the like activities. In addition to hydro-geomorphological modifications or even
failures in sensors that result in noise in the time series.

The hydro-geomorphological variables present in a basin present correlated
variations temporally and also spatially. That indicates possible events, such
as changes in the records measured by an upstream flow measurement station,
which influence the forecast of the downstream measurement station1. Therefore,
it is necessary to consider these phenomena to improve predictive capacity. For
example, if a dam is installed in a river basin region, the entire flow downstream
of that dam will be affected, so the time series forecasts of stations downstream
from the dam need to consider this phenomenon.

The flow time series is susceptible to exogenous and uncertain factors, such
as the measuring station’s maintenance, probably because of measurement fail-
ures in sensors, which require its shutdown. Also, the relationships present in
the time series distributed along the river basin, when not appropriately used,
constitute a reneged potential for forecasting and wasting resources spent on
flow measurements. Therefore, forecasting with robust methods for missing data
and noise inflow time series is necessary.

MultiTask Learning is an approach to inductive learning transfer that
increases generalization using information from related tasks. This is done by
learning in parallel using a shared representation which can help to improve
the learning of the others as defined in [4]. The MultiTask Learning method
can be resilient to missing and noisy data since it considers the temporal and
spatial relationships present in the river basin’s flow time series. As a result,

1 Downstream is the side where is directed the water flow and upstream is the part
where the river is born. So, the mouth or outfall of a river is the most downstream
point of this river, and the source is its most upstream point.
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missing data or noise that would impair the model’s performance has its nega-
tive effect diminished by the relationships present in the data, combining each
time series’s learning in a single model. The learning transfer method Multi-
Task Learning still captures information implicit in the relationships between
all flow time series along the river basin, providing better use of the available
data concerning the forecast models’ application separately in each measuring
station. The motivation of this work consists of combining these characteristics
of the transfer of learning MultiTask Learning with the LSTM model of recurrent
neural networks.

The literature presents promising results in several applications. Jin and Sun
[7] showed that multi-task learning (MTL) has the potential to improve general-
ization by transferring information in training signals of extra tasks. Ye and Dai
[15] developed a multi-task learning algorithm, called the MultiTL-KELM, for
multi-step-ahead time series prediction. MultiTL-KELM regards predictions of
different horizons as different tasks. Knowledge from one task can benefit others,
enabling it to explore the relatedness among horizons. Zhao and collaborators
[17] introduced a multi-task learning framework that combines the tasks of self-
supervised learning and scene classification. The proposed multi-task learning
framework empowers a deep neural network to learn more discriminative fea-
tures without increasing the parameters. The experimental results show that
the proposed method can improve the accuracy of remote sensing scene classifi-
cation. Cao et al. [3] proposed a deep learning model based on LSTM for time
series prediction in wireless communication, employing multi-task learning to
improve prediction accuracy. Through experiments on several real datasets, the
authors showed that the proposed model is effective, and it outperforms other
prediction methods.

The prediction of flow time series is widely used for the planning and man-
agement of water resources, as evidenced by the work in [13]. This paper presents
the classic models such as ARIMA and Linear Regression, which are unable to
capture the non-stationarity and non-linearity of the hydrological time series.
This study also points to the growth of attention given to data-driven models
such as neural networks that progress in predicting non-linear time series, cap-
turing water time series’s complexity. Aghelpour and Varshavian, [1] compare
two stochastic and three artificial intelligence (AI) models in modeling and pre-
dicting the daily flow of a river. The results showed that the accuracy of AI
models was higher than stochastic ones, and the Group Method of Data Han-
dling (GMDH) and Multilayer Perceptron (MLP) produced the best validation
performance among the AI models.

In comparison to several hydrological models, deep learning has made sig-
nificant advances in methodologies and practical applications in recent years,
which have greatly expanded the number and type of problems that neural net-
works can solve. One of the five most popular deep learning architectures is the
long short-term memory (LSTM) network, which is widely applied for predicting
time series [11]. LSTM is a specific recurrent neural network architecture that
can learn long-term temporal dependencies and be robust to noise. This feature
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makes it efficient in water resource forecasting problems as explored in the works
at [9], which showed the LSTM model as an alternative to complex models. Such
models can include prior knowledge about inflows’ behavior and the study at [16]
which showed LSTM ’s ability to predict water depth for long-term irrigation,
thereby contributing to water management for irrigation. However, both works
clarify the need for a considerable amount of data for LSTM to present satisfac-
tory results.

The Paráıba do Sul River basin is of great importance for Brazilian economic
development and supplies 32 million people [8]. This basin has 45 measurement
stations whose captured time series have missing and noisy data, so forecast-
ing this basin’s flow is difficult. The work on [2] showed the efficiency of the
LSTM model for the flow forecast in the Paráıba do Sul River basin compared
to other classic models such as ARIMA and also pointed out the importance of
the long flow forecast in this basin. This work used a subset of 4 of the 45 flow
measurement stations on the Paráıba do Sul River.

To applying a Machine Learning technique to forecast time series, it is com-
mon to optimize an error measure by training a single forecast model of the
desired time series. However, it is sometimes necessary to explore latent infor-
mation from related series to improve forecasting performance, resulting in a
learning paradigm known as Multi-Task Learning (MTL). According to Dorado-
Moreno et al. [5] the high computational capacity of deep neural networks (DNN)
can be combined with the improved generalization performance of MTL, design-
ing independent output layers for each series and including a shared representa-
tion for them. The work of Shireen and collaborators [12] showed that models
using MTL could capture information from several time-series simultaneously,
with robustness to missing data and noise, making inferences about all historical
data and their relationships within the scope photovoltaic panels.

This work proposes a robust forecasting model for missing and noisy data
to make long-term flow predictions from information present in the time series
of measuring stations located along a hydrographic basin. We have used the
time series of measuring stations located along the Paráıba do Sul river basin
as a case study for this work. The proposed model combines Deep Learning
techniques, such as LSTM, with the transfer of learning MultiTask Learning -
MTL, to take advantage of the implicit relationships between the time series of
each measurement station, making the model robust to missing and noisy data
to improve forecast performance.

2 Materials and Methods

2.1 Study Area and Data

The set of series used in this work consists of daily records collected, from 1935
to 2016, at 45 flow measurement stations along the Paráıba do Sul River basin,
provided by the National Water Agency (ANA)2. Some measurement stations

2 www.ana.gov.br.

https://www.ana.gov.br


Multitask Learning for Predicting Natural Flows at Paraiba do Sul River 167

present missing or noisy data in their collected historical series, as can be seen
in Fig. 1. The missing data in the series come from failures of sensors present in
the measuring station or similar problems, which resulted in their shutdown for
maintenance. In red are non missing data from a measurement station.

Fig. 1. Streamflow time series with missing data.

Fig. 2. Percentage of missing data per measurement station.

Missing data and noise are the problem for the time series’ prediction since
noise imply errors in learning the time series’s behavior. On the other hand,
missing data inhibits the model from understanding what happened when the
data was unwilling. They, therefore, affect the continuity of the model forecast.

Figure 2 shows the number of records missing in the series of flow measure-
ment stations along the basin, whether due to shutdown, maintenance, or defects
present in the measurement stations in some period. The series’ median, the
ARIMA method, and the average of the months’ days were some data imputa-
tions techniques to treat the missing data in these work’s series. Simultaneously,



168 G. Dias Abreu et al.

the MTL-LSTM model, which combines two robust techniques for dealing with
noisy data, MultiTask Learning and LSTM, was used to deal with noises. As the
imputing values’ process in the missing data creates noises, the learning charac-
teristics were from the correlation of the imputed time series in the MTL-LSTM
model.

2.2 Streamflow Estimation Model

The experiments were carried out with the historical series’ set of 45 flow mea-
surement stations distributed along the Paráıba do Sul river basin to compare
the forecast made by the MTL-LSTM models with the LSTM models trained
with each isolated series.

As shown in Fig. 3, the E time series are provided as input to the model.
They are divided into rolling windows of size j and steps of size 1. Each step
of these time series is concatenated with the E measuring station, forming a E
rows matrix and j columns and a y vector with size E. These data are then
provided to the LSTM, which learns to predict the time series’s future behavior.

Fig. 3. MultiTask-LSTM model

The experiments were retrieved in the Google Colab3 environment with
12 GB of RAM in GPUs using the Keras4, NumPy5 and Tensorflow libraries6 in
Python. All results were chosen about the average of 30 runs. The MAPE metric
was chosen to compare the results, defined by the Eq. 1:

MAPE =
100%
n

n∑

t=1

| At − Ft

At
| (1)

3 colab.research.google.com.
4 keras.io.
5 numpy.org.
6 www.tensorflow.org.

https://www.colab.research.google.com
https://www.keras.io
https://www.numpy.org
https://www.tensorflow.org
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where At is the historical time series value in time t, Ft is the value predicted in
time t, and n is the size of the time series.

The LSTM applied in the MTL-LSTM model had hyper-parameters as sug-
gested by Campos et al. [2]. These hyperparameters were used to build a single-
task learning LSTM (STL-LSTM) to separately model each time series collected
on the 45 measurement stations.

The MTL-LSTM model uses 14-day windows as in the work of Campos et
al. [2], with 45 reference stations and is written as:

Q1,t+14 = F (Q1,t, Q1,t−1, · · · , Q1,t−13)
Q2,t+14 = F (Q2,t, Q2,t−1, · · · , Q2,t−13)

...
Qk,t+14 = F (Qk,t, Qk,t−1, · · · , Qk,t−13)

...
Q45,t+14 = F (Q45,t, Q45,t−1, · · · , Q45,t−13)

where Qk,t+14 is the streamflow at station k predicted 14 d ahead.
We trained the model using a training set with the first 75% data of the

time series, and the 10% of the followed data in the validation set to verify the
hyperparameters, and the last 15% of data for the test set. Each experiment was
performed 30 times, from which we calculated the average of the MAPE metric
to assess the final performance of the model.

3 Computational Experiments

Figure 4 shows us that the MTL-LSTM model performs considerably better than
the LSTM model when the median metric was applied in the imputation of
missing data in the times series presented to the models, except for the station
58218000. The results evidence the MTL-LSTM model’s capacity to learn hydro-
geomorphological relations in the basin, ignoring the noise added by a constant
median imputation.

When ARIMA or Mean of days per month are applied to impute missing val-
ues as in the Figs. 5 and 6, MTL-LSTM performs considerable better than LSTM
in all measurement stations. This behavior shows the robustness of the MTL-
LSTM model to learn series relations in the basin when data is more accurate
with two imputation methods that preserve the seasonality and variability of
the time series. This behavior indicates that MTL-LSTM would perform better
than LSTM with no missing data.
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The Table 1 summarizes the results found in the experiments. We can observe
that the MultiTask-LSTM model obtains averaged percentage errors around
half of the errors achieved with the individual LSTM models. Note that while
the LSTM models achieved percentage errors above 40%, the MultiTask-LSTM
model achieved MAPEs below 22%. As shown in Fig. 7, the MultiTask-LSTM
has the advantage of having your training time faster as it places all flow mea-
surement stations in the same model. On the other hand, the model containing
only LSTM is considerably slower to train each time series separately.

Fig. 4. MultiTask-LSTM and LSTM comparison with median missing data imputation
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Fig. 5. MultiTask-LSTM and LSTM comparison with ARIMA missing data imputation
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Fig. 6. MultiTask-LSTM and LSTM comparison with mean of days per month missing
data imputation

Fig. 7. Time comparison between MultiTask-LSTM and LSTM



Multitask Learning for Predicting Natural Flows at Paraiba do Sul River 173

Table 1. MAPE’s mean for each streamflow measurement station by imputation
method and model.

ARIMA imputation Mean imputation Median imputation

Stations (gauges) LSTM MultiTask-LSTM LSTM MultiTask-LSTM LSTM MultiTask-LSTM

58030000 27.67 12.91 28.31 13.25 28.04 13.64

58040000 36.90 20.44 38.25 19.01 36.72 18.71

58060000 5.03 4.87 5.08 4.92 5.04 4.67

58099000 28.87 12.48 28.56 12.75 28.65 12.43

58183000 33.03 17.46 34.11 16.23 33.01 16.26

58204000 20.42 12.58 27.70 14.41 19.77 12.83

58218000 11.71 10.49 27.71 11.85 10.70 11.66

58220000 19.61 13.06 20.22 12.56 19.44 12.91

58235100 23.70 13.54 26.23 13.28 22.89 13.09

58270000 21.30 14.16 22.22 13.71 21.23 13.22

58300000 16.99 10.19 21.90 10.46 15.65 10.03

58305001 25.85 11.65 26.15 11.76 25.80 12.08

58380001 33.53 16.29 33.81 15.63 33.56 15.60

58405000 18.66 12.25 18.84 11.38 21.23 12.32

58420000 17.70 11.69 18.10 10.97 17.80 11.70

58425000 19.01 12.75 19.75 12.56 19.09 12.24

58434000 8.48 6.14 8.85 6.14 8.48 6.35

58440000 16.84 10.37 17.41 11.06 16.86 10.91

58470000 20.31 10.50 20.45 12.22 20.45 10.40

58500000 35.10 15.74 35.79 15.41 35.24 15.45

58520000 24.18 14.39 24.95 14.53 24.26 14.23

58525000 18.39 8.17 19.32 9.13 18.33 8.16

58542000 13.27 7.72 13.26 7.40 13.25 7.83

58560000 25.30 17.58 25.85 16.42 25.38 17.25

58630002 26.27 13.07 26.56 12.82 26.23 12.49

58645000 19.35 11.60 20.17 11.74 19.40 11.04

58648001 9.23 8.67 14.27 8.20 10.73 9.86

58658000 17.61 14.57 19.22 13.74 17.56 13.02

58670002 15.29 11.58 16.61 12.77 14.84 10.85

58710000 27.51 14.65 28.81 14.38 26.16 14.64

58730001 23.15 12.69 23.74 13.49 25.37 13.65

58755000 26.90 15.94 27.61 16.09 26.92 15.41

58765001 28.78 14.68 30.62 14.56 28.93 15.14

58770000 24.99 13.65 26.46 14.06 24.53 15.24

58795000 32.11 13.73 33.19 13.29 32.50 13.45

58857000 21.70 12.67 22.11 12.47 21.62 12.21

58874000 25.99 13.90 26.48 13.57 25.86 13.75

58880001 37.45 16.27 37.59 15.75 37.78 14.73

58910000 39.96 17.59 40.88 17.12 40.07 18.41

58916000 34.03 16.38 35.11 16.85 33.98 16.63

58920000 28.03 14.31 28.63 13.63 27.95 15.06

58930000 18.59 10.46 18.93 9.36 18.58 9.91

58940000 26.32 12.89 27.66 12.34 26.27 12.19

58960000 38.23 16.54 38.84 15.55 38.10 16.57

58974000 26.63 12.53 27.54 12.35 24.38 11.28
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4 Conclusion

Flow forecasting in the river basin is an essential issue for well-being and social
development. To ensure adequate environmental, social and economic conditions,
the study of models that provide the improvement of long-term flow forecast-
ing is necessary, especially in time series with a lot of missing data, noise, and
hydrogeomorphological changes such as flow time series.

Using the MultiTask Learning technique together with the Deep Learning
model, LSTM, allows absorbing the information present in the data of all the
time series of the measuring stations of a basin. In other words, it reuses the
knowledge learned in a time series of a measuring station in the learning of the
other series of that basin. The Paráıba do Sul River Basin, located in Brazil,
was used as a case study for this work. However, the model can be applied to
forecasting other basins where multiple flow measurement stations collect data,
especially if these measuring stations have time series with noise or missing data.

The study used three missing data imputation techniques to verify robustness
against noisy data of the MTL-LSTM model. As can be seen in Figs. 4, 5 and
6 the MTL-LSTM model achieved considerably better percentage errors in all
missing data imputation scenarios. The LSTM models were applied in long-term
forecasts in each series of flow measurement stations located along the Paráıba
do Sul river basin. The MTL-LSTM model also presented a shorter training time
when compared to the LSTM models, as seen in Fig. 7.

The learning transfer approach present in the MTL-LSTM model allowed
the improvement of long-term forecasts. Results from all measuring stations in
the hydrographic basin demonstrated the robustness of the data imputation
procedure, maintaining a stable performance with the different imputations.
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