
Algorithmic Problems in the Symbolic
Approach to the Verification of

Automatically Synthesized Cryptosystems

Hai Lin1 , Christopher Lynch1 , Andrew M. Marshall2(B) ,
Catherine A. Meadows3, Paliath Narendran4, Veena Ravishankar2(B) ,

and Brandon Rozek2

1 Clarkson University, Potsdam, NY, USA
2 University of Mary Washington, Fredericksburg, VA, USA

{amarsha2,vravisha}@umw.edu
3 Naval Research Laboratory, Washington, DC, USA

4 University at Albany–SUNY, Albany, NY, USA

Abstract. Automated methods can be used to generate cryptosystems
by combining the primitives in an arbitrary fashion, to weed out insecure
cryptosystems, and to prove the security of those that survive. In this
paper, we study several algorithmic problems arising from the verifica-
tion of automatically synthesized cryptosystems built from block ciphers,
in a theory that includes ACUN . One of these is static equivalence to
an algorithm that produces a sequence of random terms. The other is
invertibility, the problem of determining whether, given an automatically
synthesized cryptosystem, built from block ciphers, and the ability to
compute inverses, is it always possible to compute the original plaintext
from the ciphertext? We show that static equivalence to random in this
theory is undecidable in general. In addition, we identify a reasonable
special case for which there is a decidable condition implying security,
along with an algorithm for verifying it. For invertibility, we identify a
reasonable class of cryptosystems for which invertibility is equivalent to
a simple syntactic condition that can be easily verified.

Keywords: Cryptographic modes of operation · Symbolic reasoning ·
Equational theories · Unification

1 Introduction

In this paper we address symbolic analysis problems that arise from the auto-
matic generation and verification of cryptosystems. In this approach one starts
with a class of cryptosystems that use a fixed set of functions to combine a fixed
set of primitives. Automated methods can be used to generate cryptosystems by

This work was funded by ONR Code 311. The work of Lin, Lynch, Marshall, Narendran,
Ravishankar, and Rozek, was funded via NRL grant number N00173-19-1-G012.

c© Springer Nature Switzerland AG 2021
B. Konev and G. Reger (Eds.): FroCoS 2021, LNAI 12941, pp. 253–270, 2021.
https://doi.org/10.1007/978-3-030-86205-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86205-3_14&domain=pdf
http://orcid.org/0000-0001-8658-9634
http://orcid.org/0000-0003-1141-0665
http://orcid.org/0000-0002-0522-8384
http://orcid.org/0000-0003-3498-4039
http://orcid.org/0000-0002-4537-559X
https://doi.org/10.1007/978-3-030-86205-3_14

254 H. Lin et al.

combining the primitives in an arbitrary fashion, to weeding out insecure cryp-
tosystems, and proving the security of those that survive. Symbolic techniques
have proved particularly helpful in this process, because they give a compact
representation of cryptosystems that is amenable to automated analysis.

In this paper we apply a technique we are developing for the synthesis and
analysis of cryptographic modes of operation. Basic encryption algorithms such
as AES are generally block ciphers that map λ-bit blocks to λ-bit blocks. A
mode of operation combines multiple computations of block cipher encryption to
encrypt longer messages securely. We model this block cipher approach by defin-
ing a protocol modeling the interaction between an adversary and an encryptor.
In this model the adversary sends plaintext blocks, which the encryptor then
processes according to some pre-determined method, e.g., the method of a par-
ticular cipher. When there are multiple actions that the encryptor can take, the
choice is made by the adversary. The encrypted blocks are then sent back to
the adversary based on some schedule, e.g. as soon as possible, or only after all
the plaintext has been received. It is shown in [6,12], that both the processing
method and the schedule are relevant to the security of the cryptosystem.

We consider two symbolic properties. The first is static equivalence [2],
between a protocol in which a plaintext-adaptive adversary interacts with a real
encryptor, and one in which it interacts with a random encryptor that sends ran-
domly generated blocks. A plaintext-adaptive adversary is one that uses cipher-
text it has received previously from an encryptor to construct new plaintext.
Static equivalence between two symbolically defined protocols, roughly speak-
ing, requires that, for any trace of one protocol, there is a trace of the other
protocol such that any adversarial-computable equation satisfied by the first
trace is satisfied by the other, and vice versa. Static equivalence to random may
be thought of as the symbolic analog of IND$-CPA security [12], which requires
that the cipher text received by the adversary be indistinguishable from a string
of random bits.

The second symbolic property, invertibility, requires that a principal able to
compute f (the block encryption function) and its inverse be able to retrieve
plaintext from ciphertext.

Given one of the above symbolic properties, we can divide the questions we
ask about it into two classes. In the first case, given a description of a class of
ciphertexts, one can ask whether or not any member has that property. In the
second, given a cryptosystem, one can ask whether all ciphertexts produced by
that cryptosystem have that property. In this paper we focus on the second,
more general, property.

Both questions about static equivalence to random are known to be undecid-
able for arbitrary convergent term rewriting systems [1,3]. In [8] Lin and Lynch
present an algorithm that can be used to answer the first type of question for the
class of cryptosystems discussed in this paper. In this paper we devote ourselves
to the second type of question: given a mode, whether or not every possible
sequence of ciphertext produced by it satisfies static equivalence to random. In
Sect. 5.1 we show that this problem is undecidable for cryptographic modes of

Algorithmic Problems in the Symbolic Approach to the Verification 255

operation in general. Then, in Sect. 5.2 we give a class of cryptosystems for which
there is a decidable property implying static equivalence to random, and we give
an algorithm for deciding that property.

The rest of the paper is organized as follows. Section 2 provides the necessary
background material. Section 3 defines MOO⊕-programs, which we use for sym-
bolic specification of modes of encryption using the ⊕ (xor) function. In Sect. 4
we identify a simple syntactically checkable condition for a class of recursively
defined modes of encryption, which we show is equivalent to every ciphertext
produced by the mode being invertible. Section 5 considers the decision prob-
lems described above. Finally, Sect. 6 concludes the paper and describes some
open problems.

1.1 Implementation

We are currently developing a new tool designed to manipulate and analyze
Cryptographic Modes of Operation. The goal of this new tool is broad, to develop
not only a usable analysis tool for a broad family of cryptographic algorithms but
to also develop the underlying libraries which could be used in further analysis
or in other symbolic analysis tools (https://symcollab.github.io/CryptoSolve/).
As part of that tool, several of the algorithms developed in this paper have been
implemented. More details of each implementation are given below as appropri-
ate.

2 Preliminaries

2.1 Terms and Substitutions

Given a first-order signature Σ, a countable set of variables N bound by ν, and a
countable set of variables X (s.t. X ∩N = ∅), the set of terms constructed in the
normal recursive manner from X, N , and Σ, is denoted by T (Σ,N ∪X). The set
of free variables in a term t is denoted by fv(t) and the set of bound variables in t
is denoted by fn(t). A term t is ground if fv(t) = ∅. In this paper, we follow the
convention of the applied pi calculus [2] and use variables bound by ν to stand
for randomly chosen bitstrings. For any position p in a term t (including the
root position ε), t(p) denotes the symbol at position p, t|p denotes the subterm
of t at position p, and t[u]p denotes the term t in which t|p is replaced by u.
The size of a term t is denoted by |t| and defined in the usual [2] way as follows:
|f(t1, . . . , tn)| = 1 +

∑n
i=1 |ti| if f is a n-ary function symbol with n ≥ 1, |c| = 1

if c ∈ N , and |x| = 0 if x ∈ X.
A substitution σ is an endomorphism of T (Σ,N ∪X) mapping free variables

to terms, with only finitely many variables not mapped to themselves, denoted
by σ = {x1 �→ t1, . . . , xm �→ tm}. Application of a substitution σ to a term
t is written tσ. Given two substitutions θ and σ, the composition σ ◦ θ is the
substitution denoted here by θσ and defined such that x(θσ) = (xθ)σ for any
x ∈ X. The domain of σ is Dom(σ) = {x ∈ X | xσ �= x}. The range of σ

https://symcollab.github.io/CryptoSolve/

256 H. Lin et al.

is Ran(σ) = {xσ | x ∈ Dom(σ)}. When θ and σ are two substitutions with
disjoint domains and only ground terms in their ranges, then θσ = θ ∪ σ. Given
a substitution σ and a finite set of free variables V ⊆ X, the restriction of σ to
V is the substitution denoted by σ|V such that xσ|V = xσ for any x ∈ V and
xσ|V = x for any x ∈ X\V .

2.2 Equational Theories

Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equa-
tional theory =E is the congruence closure of E under the law of substitutivity.
For any Σ-term t, the equivalence class of t with respect to =E is denoted by [t]E .
Since Σ∩N = ∅, the Σ-equalities in E do not contain any bound variables in N .
A theory E is trivial if x =E y, for two distinct variables x and y. In this paper,
all the considered theories are assumed non-trivial.

The Xor Equational Theory. In this paper we will primarily be concerned
with the equational theory of Xor, E⊕. This theory can be represented as a
combination of a rewrite system, R⊕, and an associative and commutative equa-
tional theory, AC. E⊕ = R⊕∪AC: R⊕ = {x⊕x → 0, x⊕0 → x}, AC = AC(⊕),
over the signature, Σ⊕ = {⊕, f, 0}. We will often use MOO⊕-term to denote a
term over Σ⊕.

A rewrite rule � → r is applied to a term t by finding a subterm s of t and a
match σ of l and s, i.e., a unifier of l and s that leaves s unchanged, and then
replacing s with rσ. We say that a term is in normal form if no rewrite rule can
be applied. We note that any term in the E⊕ theory is reducible via a finite set
of rewrite rules to a normal form term that is unique up to AC equivalence. If S
is finite and S ⊂ TE⊕(Σ⊕, N ∪ X), and t ∈ TE⊕(Σ⊕, N ∪ X) we say that S ⊕ t
if t can be derived by ⊕ summing elements of S. In the remainder of this paper,
we assume that all E⊕ terms mentioned are in normal form, unless explicitly
noted otherwise.

3 Modes of Operation

Most symmetric key ciphers are block ciphers that encrypt only fixed-length
plaintext. In order to encrypt plaintexts longer than that fixed length, the
encryptor divides it into a sequence of fixed-length blocks and then encrypts it
using a cryptographic mode of operation. This is a sequence of recursively defined
functions on plaintext blocks of fixed length so that each function returns a block
of cipher text. To give an example, we demonstrate cipher block chaining (CBC)
in Fig. 1, where the block C0 returned by the encryptor is a random initializa-
tion vector iv, and block Ci = EK(mi ⊕ Ci−1) for i > 0, where EK is the block
encryption method with key K.

We will be using part of the symbolic framework developed for the applied
π-calculus [2]. In this calculus, messages exchanged in a protocol are defined
over a term algebra TE(Σ,N ∪ X), where X is a set of free variables, and N

Algorithmic Problems in the Symbolic Approach to the Verification 257

m1

Ek

C1

m2

Ek

C2

m3

Ek

C3

m4

Ek

C4

m5

Ek

C5iv

M

C

Fig. 1. An example of a cryptographic mode of operation: cipher block chaining

is a set of variables bound by the quantifier ν, standing for randomly chosen
bitstrings. Protocols are defined using processes that describe communication
between principals. A sequence of messages produced by a protocol is described
using frames. A frame is a substitution φ from a set of free variables x1, . . . , xk,
to TE(Σ,N ∪ X), i.e., xiφ describes the i’th message sent in the frame. We may
also denote a frame φ as νR.[t1, . . . , tk], where ti = xiφ and R is set of bound
variables in Ran(φ).

Static equivalence in the applied π-calculus is used to describe the case in
which the adversary cannot distinguish between two frames. Since all the adver-
sary can do is combine terms via function symbols and check for equality, static
equivalence is defined in terms of those actions. In our case, we have to generalize
the definition slightly because, in the applied pi calculus it is assumed that the
adversary can apply any function symbol in Σ, while in our case the adversary
cannot compute f .

Definition 1. Let Ξ ⊆ Σ. We say that two closed frames φ and ψ with range
TE(Σ,N) are Ξ-statically equivalent, if Dom(φ) = Dom(ψ) and, for all terms
M and N in TE(Ξ,N)that share no bound variables, Mφ =E Nφ if and only if
Mψ =E Nψ. We say that two closed processes (that is, two processes that pro-
duce only closed frames) are Ξ-statically equivalent if any closed frame produced
by one is Ξ-statically equivalent to some frame produced by the other.

For example, consider Σ⊕, and Ξ = {⊕, 0}. Then φ = νr1.r2.r3[r1, r2, r3]
is Ξ-statically equivalent to φ = νs1.s2.s3[s1, s2, s2 ⊕ s3]. However it is not Ξ-
statically equivalent to φ′ = νs1.s2[s1, s2, s1 ⊕ s2], because in ψ′ the third term
is the exclusive-or of the first two, but the same does not hold for φ. Similarly, φ
is {⊕, 0}-equivalent to ρ = νu1.u2[u1, u2, f(u1 ⊕ u2)], but it is not Σ⊕-statically
equivalent to ρ.

Note that, for the purpose of proving or disproving static equivalence, it is
enough to identify processes with the sets of frames they produce. Thus, for
cryptographic modes of operation that use exclusive-or, we define a MOO⊕-
process as the set of closed frames that describe all possible interactions between
an adversary and an encryptor in a given mode of operation.

258 H. Lin et al.

In order to prove {⊕, 0}-static equivalence to random, we consider frames in
which each block of plaintext submitted by the adversary is denoted by a fresh
free variable. We call such a frame a symbolic history. A mode is modeled as
a MOO⊕-program, which describes the set of all possible symbolic histories of
interaction between an adversary and an encryptor in the symbolic interaction.
Each such history is a frame whose image lies in TE⊕(Σ⊕, N ∪ X) where f
stands for EK (i.e., a block encryption function EK(m) with fixed key K). This
frame gives in order the plaintext and ciphertext blocks exchanged between
the adversary and the encryptor, where the plaintext blocks are represented
by free variables. For example, the following symbolic history describes the use
of the CBC mode of encryption to encrypt a two-block message: νr[r, x1, f(r ⊕
x1), x2, f(x2⊕f(r⊕x1))]. Each xi models a plaintext block sent by the adversary,
and all others are terms sent by the encryptor. We also note that a symbolic
history can represent the interleaving of several sessions between the adversary
and an encryptor, in which a session represents the interaction between the
adversary and the encryptor necessary to encrypt a single message.

The set of symbolic histories that can be produced by a mode does not by
itself give us a complete description of the closed frames that can be produced
by it. For that we need to specify what closed substitutions the adversary can
make. For this, we need the following definition:

Definition 2. Let H be a symbolic history, and let x be a free variable sent by
the adversary in H, i.e. H = H1, x,H2 where x does not appear in any term in
H1.

1. We define KNH,x to be the set of terms in H (including free variables sent by
the adversary) sent before the adversary sent x, i.e. KNH,x = {t | t ∈ H1}.

2. We say that x >H t if KNH,x �⊕ t.
3. We say that a substitution σ on the free variables of H is computable, if for

each free variable x, xσ = tσ such that t <H x.

The restriction to computable substitutions captures the fact that, since the
adversary cannot predict the output of f on a given input, or the choice of a
random string generated by the encryptor, it can only use such outputs that
it has already seen when constructing its substitutions. Note that we do not
include bound variables the adversary has generated itself. Although these can
be represented in the applied π calculus, they turn out not to be necessary to
proving security (See Lemma 1).

Example 1. Consider the CBC mode of encryption illustrated in Fig. 1. The
initial cipher block is the iv, C0 �→ r where r is a random nonce, and the
second cipher block is the term C1 �→ f(x1 ⊕ C0). So at this point, the symbolic
history, H, contains just two blocks, C0 and C1, and KHH,x is {r, f(x1 ⊕ C0)}.
Continuing, the next block is added to H, C2 �→ f(x2 ⊕f(x1 ⊕C0)). We are able
to unify C1 and C2 with the computable substitution σ = {x1 �→ C0, x2 �→ f(0)}.
Notice that the adversary has seen C0 before x1, thus C0 <H x1 and by using
this mapping can compute f(0) before seeing x2.

Algorithmic Problems in the Symbolic Approach to the Verification 259

We now formally define a property, symbolic security, and show that it is
equivalent to {⊕, 0}-statically equivalent to random. Symbolic security is the
property we will be proving in this paper.

Definition 3. We say that a mode is symbolically secure if, for any symbolic
history H, and any computable closed substitution σ on the free variables of H,
there is no subset S of the set of ciphertext blocks returned by the encryptor such
that

∑
t∈S ⊕t =⊕ 0.

Lemma 1. A mode is symbolically secure if and only if it is {⊕, 0}-statically
equivalent to random.

Proof (Sketch). Consider a mode Mreal. Let φ : y1, . . . yk → TE⊕(Σ,N∪X). be a
symbolic history from Mreal. Let P -Dom(φ) be the set of variables in Dom(φ)
mapped to variables standing for plaintext blocks, and let C-Dom(φ) be the set
of variables in Dom(φ) mapped to terms standing for ciphertext blocks. Let ψ
be such that Dom(ψ) = Dom(φ) and yiψ is a fresh bound variable if yi ∈ C-
Dom(φ), and a fresh free variable if yi ∈ P -Dom(φ). We define Mran to be the
mode whose symbolic histories consist of all such ψ. Thus Mran is a mode in
which the encryptor always returns fresh random strings.

We note that, for any computable frame σφ from Mreal there is a computable
frame σψ from Mran constructed as above, and any computable frame from Mran

can be obtained this way. It is clear from the definitions that if σφ and σψ are
{⊕, 0}-statically equivalent then σφ is symbolically secure. We now show that
for any such σφ and σψ that, if σφ is symbolically secure then σφ and σψ are
{⊕, 0}-statically equivalent. For that, it is enough to show that, if M and N are
the exclusive-or of elements of (Dom(φ), then 1) Mσφ =Σ⊕ Nσφ if and only
if 2) Mσψ =Σ⊕ Nσψ. We note that 2) is true if and only if each ciphertext
terms appears an even number of times as a summand of Mσψ ⊕ Nσψ, and
since by hypothesis, the ciphertext terms returned by Mreal satisfy no nontrivial
⊕ equation, the same conditions apply to 1).

We now consider the case in which the adversary may include bound vari-
ables, generated by itself, as summands of the plaintext. In the applied π calculus
this is done by prepending to the frame the sequence of bound variables gener-
ated by the adversary. It is then straightforward to reduce this to the computable
case with no adversary-generated bound variables. ��

Given a cryptographic mode of operation, we can define several instances of
the security problem, based on combination of different factors. These include
the schedule (e.g. are ciphertext blocks returned by the encryptor only after all
plaintext blocks are received (messagewise schedule), or as soon as the encryptor
can compute them (blockwise schedule)), and the bounds on session length and
number of sessions. We will use the following modes of operation as examples.

– Cipher Block Chaining (CBC) : The ith plain text is a ground MOO⊕-term
pi. The initial cipher block, the iv, is modeled by a bound variable, r. The ith

block of cipher text, Ci, is modeled by the term f(Ci−1 ⊕ pi). This is secure
in the messagewise schedule, but not in the blockwise.

260 H. Lin et al.

– Cipher Feedback (CFB) : The ith plain text is modeled by a ground MOO⊕
term pi. The initial cipher block, the iv, is modeled by a bound variable, r.
The ith cipher block, Ci, is modeled by the term f(Ci−1) ⊕ pi. This is secure
under both schedules.

– Similarly, Propagating Cipher Block Chaining (PCBC): C1 = f(p1 ⊕ IV),
Ci = f(pi ⊕ pi−1 ⊕ Ci−1). This is secure under the messagewise schedule but
not under the blockwise schedule.

4 The Invertibility Problem

A natural requirement of any cryptographic algorithm is that it be invertible;
that is, one can find the original plaintext using the ciphertext and decryption
key. While this property would normally be “built-in” to a mode of operation, it
is not guaranteed to exist for all possible modes that can be automatically gener-
ated, even if these modes have other desirable properties such as symbolic secu-
rity. Therefore in the automatically generated setting, we will need methods for
checking if the invertibility property holds for any particular MOO⊕-program.
This leads to two different questions.

– The first is, given a set S of MOO⊕-terms with subterms designated as plain
text, can we tell if S is invertible? This bounded version of the problem follows
from the Abadi and Cortier’s [1] results on the decidability of deducability in
various equational theories and

– The second is: given a MOO⊕-program, can we tell if an arbitrary cipher
block is invertible? We explore this un-bounded version of the problem in
this section.

Let C = {C0, C1, . . . , Cn} represent the ciphertext blocks, Ci, produced by
the encryptor in the MOO⊕-program. We instantiate the variables represent-
ing plaintext in C to bound variables pi. Let P = {p0, p1, . . . , pn} be the set
representing the plaintext messages during a run of the MOO⊕-program. We
introduce a new symbol, f−1, where f is the symbolic encryption function, i.e.,
f = enc(,K), for some key K, and let f−1 model decryption, f−1 = dec(,K),
s.t. f−1(f(M)) = M . Then E−1 = E⊕ ∪ {f−1(f(x)) = x}.

Lemma 2. Let t be a closed term over f,⊕, 0 and let c ∈ fn(t). Let S be a set
of terms consisting of t and every bound variable in t other than c. Then c can
be deduced from S if and only if c appears exactly once in t.

Proof. We first prove the “if” part. If |t| = 1, then t = c. Assume c is deducible
for terms whose size is k or less. When size |t| = k + 1, the term either contains
an ⊕ or f at the root, i.e., either t = f(t′) for some t′, or t = t1 ⊕ t2
for some t1, t2 where t1 ⊕ t2 cannot be further simplified. When t = f(t′), we
remove the f symbol by applying f−1. Then |t′| = k, and t′ contains c. By the
induction hypothesis c can be deduced for terms up to size k, i.e., from set S.
When t = t1⊕t2, without loss of generality we can assume that c appears exactly

Algorithmic Problems in the Symbolic Approach to the Verification 261

once in t1, thus t2 is known. The size of t1 ≤ k and by induction hypothesis c
can be derived from t1. The “only if” part follows from the fact that given a
known term t1 ⊕ t2, neither t1 nor t2 can be deduced from it unless one of t1 or
t2 ∈ S. ��
Definition 4. Consider recursive definitions which satisfy the following restric-
tions:

1. The base case, C0, is the initial random nonce and the only nonce, i.e., a
bound variable that is computed by the encryptor.

2. Ci contains the ith plaintext pi, represented by a bound variable.
3. pi appears only once in Ci.

Directly from Lemma 2 and Definition 4 we obtain the following.

Theorem 1. Cryptosystems defined using Definition 4 are invertible, i.e., for
all i ≥ 0, pi can be deduced from {C0, . . . , Ci}.

4.1 Implementation

Invertibility has been implemented via an algorithm based on Theorem 1. The
algorithm is restricted to the set of MOO⊕-programs of Definition 4. The benefit
of this algorithm is that it doesn’t require the production of actual MOO⊕-terms,
but can be applied directly to the recursive definition of the cryptosystem.

5 Decision Problems for Symbolic Security

In this section we prove results concerning decidability of symbolic security. For
this we concentrate on modes of operation in which ciphertext blocks are of the
form x⊕G, where x is a free variable, and G contains no free variables. For such
a mode, proving symbolic security reduces to proving that there is no symbolic
history H containing a sequence x1⊕G1, . . . , xk⊕Gk such that

∑k
i=1 ⊕Gi =E⊕ 0.

It is interesting to note that the problem is undecidable even when Gi contains
no free variables, which means deciding it only requires checking for equality,
not performing unification. Indeed, not only is the problem undecidable, but it
is undecidable even when we bound some of the parameters, e.g. the number or
length of sessions. We use an approach similar to that of Küsters and Truderung
in [7], in which the security of recursive protocols defined in a term algebra that
is a superset of ours is shown to be undecidable.

5.1 Undecidable Decision Problems for Block Ciphers

Due to space we consider just one type of decision problem here, those with
sessions of an arbitrary or unbounded length but for which the number of sessions
is bounded. That is, we do not assume a bound on the length of the interaction
between the adversary and encryptor. However, we do assume a finite bound on

262 H. Lin et al.

the number of possible interleaved sessions the adversary may create. In fact,
since a single session is sufficient to obtain the undecidability results we will just
consider that case.

There are then two sub-cases of these unbounded length but bounded num-
ber of sessions problems. The cases are based on whether the MOO⊕-program
is modeled by a non-deterministic function or a deterministic function. In this
section we examine the non-deterministic case, where a session may have non-
deterministic choice points, and the adversary chooses which path is taken. The
second, deterministic case, and several additional related problems can be proven
in a similar manner.

Definition 5. Let α be a string a0a1 . . . am and let C be a block.
Then, F (α

⊕
C) = f(a0 ⊕ f(a1 ⊕ . . . f(am ⊕ C) . . .)).

We will use the following method for constructing ciphertext blocks. The con-
struction encodes possible solutions to the Post Correspondence Problem (PCP).

Definition 6. Let PCP = (α0
β0

), (α1
β1

), . . . , (αn

βn
). Let L = j0, j1, . . . , jk be a

sequence of integers such that 0 ≤ ji ≤ n, and let Li = [jk−i, . . . , jk]. (Thus,
L0 = [jk] and Lk = L.) For k ≥ i > 0 let Ei,Li

= [f(ri ⊕ Ci,Li,1) ⊕ xi,1, f(ri ⊕
Ci,Li,2) ⊕ xi,2], 0 ≤ j ≤ n, Ci,Li,1 = F (αji

⊕
Ci−1,Li−1,1), and Ci,Li,2 =

F (βji

⊕
Ci−1,Li−1,2). Where each ri is a fresh bound variable, and C0,L0,1 =

F (αj0

⊕
0), C0,L0,2 = F (βj0

⊕
0).

Essentially, the definition encodes any sequence of PCP blocks. Each Ei,Li

contains two strings. The first string encodes a sequence of α strings, from the
tops of the PCP blocks, and the second string encodes a sequence of β strings,
from the bottoms of the PCP blocks. Thus, any solution to the PCP problem
can be encoded into a sequence of mode of encryption style cipher blocks (see
Example 2).

Based on the non-deterministic system of Definition 6 we can define the
following MOO⊕-program, which produces two equal cipherblocks which sum
to zero iff the adversary finds a solution to the PCP.

Definition 7. Denote the following MOO⊕-program as PCPNDMOO1 .
The program works as follows:

– The adversary non-deterministically picks a possible solution to the PCP,
[L = j0, j1, j2, . . . , jk].

– At the adversary’s ith turn, it sends index jk−i of the solution to the encryp-
tor, as well as two plaintext blocks, xi,1 and xi,2.

– At ith step the encryptor’s ith turn encodes a pair of ciphertext blocks Ei,Li
=

[f(ri ⊕ Ci,Li,1) ⊕ xi,1, f(ri ⊕ Ci,Li,2) ⊕ xi,2], according to Definition 6 and
returns the pair to the adversary.

– After receiving each Ei,Li
, the adversary sums f(ri ⊕ Ci,Li,1) ⊕ xi,1 with xi,1

and f(ri ⊕ Ci,Li,2) ⊕ xi,2 with xi,2 to obtain the blocks f(ri ⊕ Ci,Li,1) and
f(ri ⊕ Ci,Li,2).

Algorithmic Problems in the Symbolic Approach to the Verification 263

– The program stops if f(ri ⊕ Ci,Li,1) = f(ri ⊕ Ci,Li,2) or the adversary stops
sending input to the encryptor.

Example 2. Consider the following PCP:

tile 1
︷ ︸︸ ︷(

ba

baa

)

,

tile 2
︷ ︸︸ ︷(

ab

ba

)

,

tile 3
︷ ︸︸ ︷(aaa

aa

)

One solution to this problem is [1, 3]. Let’s trace a run of the MOO⊕-program
PCPNDMOO1 where the adversary guesses the solution [1, 3]. In the first step
the adversary sends 3 to the encryptor and receives: E0,[3] = [f(r0 ⊕ C0,[3]1) ⊕
x0,1, f(r0 ⊕ C0,[3],2) ⊕ x0,2], C0,[3],1 = F (α3

⊕
0) = (f(a ⊕ f(a ⊕ f(a ⊕ 0)))),

C0,[3],2 = F (β3

⊕
0) = f(a ⊕ f(a ⊕ 0)).

At the second step the adversary sends a 1 to the encryptor and receives
the following in return. E1,[1,3] = [f(r1 ⊕ C1,[1,3],1) ⊕ x1,1, f(r1, C1,[1,3],2) ⊕
x1,2], C1,[1,3],2 = F (α1

⊕
C0,[3],1) = f(b ⊕ f(a ⊕ C0,[3],1)), C1,[1,3],2 =

F (β1

⊕
C0,[3],2) = f(b ⊕ f(a ⊕ f(a ⊕ C0,[3],2))).

Notice that now after step 2 the adversary has two ciphertext blocks, C1,[1,3],1

and C1,[1,3].2, which are equal and therefore their sum will be equal to zero.
C1,[1,3],1 = f(b ⊕ f(a ⊕ f(a ⊕ f(a ⊕ f(a ⊕ 0))))), C1,[1,3],2 = f(b ⊕ f(a ⊕ f(a ⊕
f(a ⊕ f(a ⊕ 0))))).

Lemma 3. A given PCP problem has a solution if and only if there is a sequence
L of indices of that problem such that the MOO⊕-program PCPNDMOO1 is
symbolically secure.

Proof (Sketch). Since each block returned by the encryptor is the sum of an
f-rooted term and a free variable, symbolic security is violated if and only if two
of these f-rooted terms are unified. Assume that two such terms are found to
be equal. Due to the random ri at each step the only blocks that are possibly
equal are blocks from the same step, Ci,Li1 and Ci,Li,2. If these blocks are equal
then there is a solution to the PCP. Conversely, suppose that [i1, i2, . . . , im] is
a solution to the PCP. Notice that during the mth step that the blocks Cm,[],1

and Cm,[],2 will fully encode this solution. ��
Directly from Lemma 3 we obtain the following.

Theorem 2. Assume M is an arbitrary non-deterministic MOO⊕-program.
The problem of determining if M , executing with a bounded number of sessions
and unbounded session lengths, is symbolically secure is undecidable.

Several additional undecidability results can be proven using a similar reduc-
tion. These cases include deterministic unbounded session length, both determin-
istic and non-deterministic unbounded number of sessions with bounded session
length.

264 H. Lin et al.

5.2 An Algorithm for Checking Symbolic Security

While the question of symbolic security of modes of operation is undecidable
in general, this section explores a sufficient condition for symbolic security, and
gives an algorithm for checking symbolic security of modes of operation.

Let M be any mode of operation. Let H be a symbolic history of M , which
can be an interleaving of multiple sessions, each of which is used to encrypt
a single message of some plaintext blocks. M is defined inductively as Cp,i =
tind,Cp,0 = t0. We call Cp,i a ciphertext variable, and use it to denote the ith

ciphertext block from the pth session. We call xp,i a plaintext variable, and use it
to denote the ith plaintext block from the pth session. If we unfold Cp,i, we get
tind. We assume that tind is a MOO⊕-term of the form f(t1)⊕ . . .⊕f(tm)⊕xp,i.
We use top-f -terms(Cp,i) to denote {f(t1), . . . , f(tm)}. Each f(tj) (1 ≤ j ≤ m)
is called an f-rooted summand of Cp,i. We define sizef (Cp,i) to be the number
of f -rooted summands of Cp,i.

Let t1 and t2 be two MOO⊕-terms. If t1σ =⊕ t2σ, then we say that t1 and
t2 are ⊕-unifiable under σ, or {t1

?= t2} is ⊕-unifiable under σ. Let Γ be a set
of equations. If each equation in Γ is ⊕-unifiable under σ, then we say that Γ is
⊕-unifiable under σ.

Example 3. We use MCBC to denote Cipher Feedback Mode, where
Cp,i = f(Cp,i−1) ⊕ xp,i, Cp,0 = rp

(1) Here is a possible symbolic history of MCBC :
H = [r1, r2, x1,1, f(r1) ⊕ x1,1, x2,1, f(r2) ⊕ x2,1, x1,2, f(f(r1) ⊕ x1,1) ⊕ x1,2].
(2) Here is a computable substitution on H:
σ = {x1,1 �→ 0, x2,1 �→ f(r1), x1,2 �→ f(r1) ⊕ r2}.
Hσ = [r1, r2, 0, f(r1), f(r1), f(r2) ⊕ f(r1), f(r1) ⊕ r2, f(f(r1)) ⊕ f(r1) ⊕ r2].

Note that, in the above example, there are no ciphertext blocks in Hσ such
that they sum to 0. Here is the intuition. Let S be the set of all f -rooted sum-
mands of MOO⊕-terms in H. So S = {f(r1), f(r2), f(f(r1) ⊕ x1,1)}. No two
MOO⊕-terms in S are unifiable under any computable substitution of H. We
formalize this observation using the following Definition 8.

Definition 8. Let M be a mode of operation. Consider any symbolic history H
of M . Let Cp,i and Cq,j be any two ciphertext blocks in H. M satisfies the unique-
ness property if for any two distinct MOO⊕-terms t1, t2 ∈ top-f-terms(Cp,i) ∪
top-f-terms(Cp,j), there does not exist any computable substitution σ of H s.t.
t1σ =⊕ t2σ.

The following lemma states that the uniqueness property implies symbolic
security.

Lemma 4. Let M be any mode of operation. If M satisfies the uniqueness prop-
erty, then M is symbolically secure.

Proof. Let M be a mode of operation. Consider any symbolic history H of M
and any computable substitution σ. Let S : Cp1,i1 , . . . ,Cpm,im be a subsequence

Algorithmic Problems in the Symbolic Approach to the Verification 265

of H. By the uniqueness property,
∑m

k=1 ⊕Cpk,ikσ = top-f -terms(Cpm,im)σ ⊕ t
for some t. ��

Let M be a mode of operation, H be any symbolic history of M . The following
Definition 9 defines the notion of a crucial pair of H. Intuitively, a crucial pair
is the earliest unifiable pair of f -rooted MOO⊕-terms in H. In order to show
that M satisfies the uniqueness property, we show that M does not admit any
symbolic history, where a crucial pair exists.

Γ ∪ {f(t) ?= 0}
Γ

Elimf

Γ ∪ {Cp,m ⊕ Cq,n
?= 0}

Γ
ElimC

where i = j implies m = n.

Γ ∪ {Cp,m ⊕ f(t) ?= 0}
Γ

Occurs check

where Cp,m is a subterm of t.

Γ ∪ {f(t1) ⊕ . . . ⊕ f(tn)
?= 0}

Γ ∪ {tk ⊕ t1
?= 0} ∪ . . . {tk ⊕ tk−1

?= 0} ∪ {tk ⊕ tk+1
?= 0} ∪ . . . ∪ {tk ⊕ tn

?= 0}
Pickf

where k is chosen nondeterministically between 1 and n.

Γ ∪ {Cp,m ⊕ f(t1) ⊕ . . . ⊕ f(tn)
?= 0}

Γ ∪ {tu
?= t1} ∪ . . . {tu

?= tn}
PickC

where (1) f(tu) is an f -rooted summand of Cp,m. (2) sizef (Cp,m) ≤ n. (3) Cp,m ∈ C V ar(tm)∪
C V ar(tm).

Γ ∪ {Cp,m ⊕ f(t1) ⊕ . . . ⊕ f(tn)
?= 0}

Γ
Pickfail

where sizef (Cp,m) > n.

Fig. 2. Inference system Ii,j,tm,tm′

Definition 9. Let M be a mode of operation, H be any symbolic history of M .

(1) Suppose that t1 is an f-rooted summand of Cp,i, t2 is an f-rooted summand
of Cq,j.
– If Cp,i appears no later than Cq,j in H, then t1 � t2.
– If Cp,i appears earlier than Cq,j in H, then t1 ≺ t2.

(2) t1 and t2 are a crucial pair of H w.r.t (i, j, σ) if
– There exist some Cp,i and Cq,j in H s.t. t1 is an f-rooted summand of

Cp,i, t2 is an f-rooted summand of Cq,j.
– σ is a computable substitution of H, and t1σ =⊕ t2σ.

266 H. Lin et al.

– If t′1 ≺ t1 and t′2 � t2, or t′1 � t1 and t′2 ≺ t2, then for any computable
substitution σ of H, t′1σ �=⊕ t′2σ.

In order to show that no crucial pair exists in a symbolic history H, we take
any two ciphertext blocks Cp,i and Cq,j in H. We then consider two different
f -rooted summands tm and tm′ of Cp,i and Cq,j . We assume that tm and tm′

are a crucial pair of H, and try to derive a contradiction using the inference rules
in Ii,j,tm,tm′ (Fig. 2), starting from an initial set of equations {tm ⊕ tm′ ?= 0}.
Note that Ii,j,tm,tm′ is parameterized by i, j, tm and tm′, which are referred to

by ElimC and PickC . We use Ik
i,j,tm,tm′({tm ⊕ tm′ ?= 0}) to represent the set

of equations that we get after the kth inference step. We use Ii,j,tm,tm′({tm ⊕
tm′ ?= 0}) to represent the final result. We maintain the following invariant: If
we get a set of equations Γ at any step, and tm and tm′ are unifiable under
some computable substitution, then at least one of the equations in Γ must
hold. Intuitively, each equation in Γ represents a possibility that tm and tm′

are unifiable under a computable substitution, and Γ represents the set of all
possibilities. Our goal is to derive a contradiction, which is to make Γ empty.

The Elimf rule allows us to remove the possibility that an f -rooted MOO⊕-
term is 0. The ElimC rule allows us to remove the possibility that we somehow
find an earlier pair of unifiable terms. Unification of Cp,m with a MOO⊕-term
strictly containing it is impossible by the Occurs check rule. If the xor of some
f -rooted terms is 0, the Pickf rule nondeterministically picks one of them and
list all the possibilities that it can cancel with some other f -rooted MOO⊕-
term. If the number of f -rooted summands of Cp,m is greater than the number
of f -rooted terms in an equation, the Pickfail rule applies. The PickC rule first
unfolds Cp,m, then picks an f -rooted summand of Cp,m and cancels it with some
f -rooted term. Note that the PickC rule rules out the possibility that two f -
rooted summands of Cp,m can cancel with each other. In order to apply the
PickC rule, Cp,m must be a ciphertext variable of either tm or tm′. We need
this condition for termination.

Algorithm 1. Checking Symbolic Security of Modes of Operation
Input: a recursive description of some mode of operation M .

Γ = top-f -terms(Cp,i) ∪ top-f -terms(Cq,j)
for each pair of distinct terms tm and tm′ in Γ do

if Ii,j,tm,tm′({tm ⊕ tm′ ?
= 0}) �= ∅ then

return “unknown”
end if

end for
return “secure”

Definition 10. Given a MOO⊕-term t, C V ar(t) denotes the set of ciphertext
variables occurring in t. More formally,

Algorithmic Problems in the Symbolic Approach to the Verification 267

(1) C V ar(Cp,i) = {Cp,i}, if Cp,i is a ciphertext variable. (2) C V ar(xp,i) =
∅, if xp,i is a plaintext variable. (3) C V ar(f(t)) = C V ar(t). (4) C V ar(t1 ⊕
t2) = C V ar(t1) ∪ C V ar(t2).

The following Lemma 5 describes an important invariant of Ii,j,tm,tm′ , which
implies the soundness of Algorithm 1.

Lemma 5. Let M be a mode of operation, H be any symbolic history of M .
Suppose that tm and tm′ are a crucial pair of H w.r.t. (i, j, σ). For all k, if
Ik

i,j,tm,tm′({tm ⊕ tm′ ?= 0}) = Γ , at least one equation in Γ must be ⊕-unifiable
under σ.

Proof (Sketch). We prove this lemma by induction on k. When k = 0, the lemma
holds trivially. Assume that the lemma holds when k = l − 1. We want to show
that the lemma also holds when k = l. Consider the lth inference step.

If Elimf , ElimC , Occurs check or Pickfail is used, an impossible case is

removed. For example, if ElimC is used, {Cp,m ⊕ Cq,n
?= 0} is impossible, since

it contradicts with the assumption that tm and tm′ are a crucial pair of H w.r.t.
(i, j, σ). If Pickf or PickC is used, we nondeterministically guess an f -rooted
term and list all the possibilities that it can cancel with some other term. ��
Theorem 3 (Soundness). For any mode of operation M , if Algorithm 1
returns “secure”, then M is symbolically secure.

Proof. Given a mode of operation M , if Algorithm 1 returns “secure”, then for
each pair of distinct terms tm and tm′ in top-f -terms(Cp,i)∪ top-f -terms(Cq,j),

Ii,j,tm,tm′({tm ⊕ tm′ ?= 0}) = ∅. By Lemma 5, no pair of terms tm and tm′

are a crucial pair of H. This means that the uniqueness property holds for M .
Therefore, by Lemma 4, M is symbolically secure. ��

To prove termination of Algorithm 1, we define the following relations: ≺E

and �E are partial order relations on equations, ≺S is a partial order on sets of
equations.

Definition 11. Let eq be an equation of the form t1 ⊕ . . . ⊕ tm
?= 0, where each

ti (1 ≤ i ≤ m) is either f-rooted or a bound variable. Let eq′ be an equation of
the form t′1 ⊕ . . . ⊕ t′n

?= 0, where each t′i (1 ≤ i ≤ n) is either f-rooted or a
bound variable. We say that eq ≺E eq′ if for all 1 ≤ i ≤ m, there exists j such
that ti is a strict subterm of t′j. We say that eq �E eq′ if eq ≺E eq′ or eq is the
same as eq′.

Let Γ = {eq1, . . . , eqm}, Γ ′ = {eq′
1, . . . , eq

′
n}. We say that Γ ≺S Γ ′ if for all

1 ≤ i ≤ m, there exists j such that eqi �E eq′
j, and at least one of the following

conditions is true: (1) |Γ | < |Γ ′|. (2) There exists i, j, s.t. eqi ≺E eq′
j.

Let Γ be a set of equations, let t and t′ be two MOO⊕-terms. We define the
following set. C V art,t′(Γ) is the set of ciphertext variables that must occur in
Γ , and also occur in either t or t′.

C V art,t′(Γ) = {Cu,v | Cu,v ∈ C V ar(t) ∪ C V ar(t′),Cu,v occurs in Γ}.

268 H. Lin et al.

Theorem 4 (Termination). For any mode of operation M , Algorithm 1
always terminates.

Proof. We show that for each tm and tm′, Ii,j,tm,tm′ always terminates. Consider
some inference step. Suppose that we apply Ii,j,tm,tm′ to Γ and get Γ ′. There
are 2 cases to consider.

Case 1: If PickC is used, |C V artm,tm′(Γ ′)| < |C V artm,tm′(Γ)|.
Case 2: If Elimf , ElimC , Occurs check, P ickf or Pickfail is used,

then |C V artm,tm′(Γ ′)| = |C V artm,tm′(Γ)| and Γ ′ ≺S Γ .
So either |C V artm,tm′(Γ ′)| < |C V artm,tm′(Γ)|, or |C V artm,tm′(Γ ′)| =

|C V art,t′(Γ)| and Γ ′ ≺S Γ . For each tm and tm′, Ii,j,tm,tm′ always terminates.
Therefore, Algorithm 1 always terminates. ��

Here is an example of checking symbolic security using Algorithm 1.

Example 4. Let M be Cipher Feedback Mode, where: Cp,i = f(Cp,i−1) ⊕ xp,i,
Cp,0 = rp. According to Algorithm 1, Γ = {f(Cp,i−1), f(Cq,j−1)}. Apply the

inference system I
i,j,f(Cp,i−1),f(Cq,j−1)

to {f(Cp,i−1) ⊕ f(Cq,j−1)
?= 0}.

{f(Cp,i−1) ⊕ f(Cq,j−1)
?= 0}

{Cp,i−1 ⊕ Cq,j−1
?= 0}

Pickf
{Cp,i−1 ⊕ Cq,j−1

?= 0}
∅ ElimC

Algorithm 1 returns “secure”.

5.3 Implementation

The CryptoSolve tool can check for symbolic-security in several ways. The first,
and most exhaustive, is via the P -unification approach [8]. In this approach,
cipher blocks of the MOO-program under consideration are generated and the
appropriate P -unification is used to check security (see [11]). The difficulty with
this approach is that it can be time consuming in practice, due to the need
to continually generate, then check new cipher blocks. However, the algorithm
specified in Sect. 5.2 doesn’t require the explicit generation of cipher blocks, but
only requires us to compare. This approach is not complete but works for many
cases. Thus, we are implementing it as a first pass symbolic security check.

6 Conclusions

We have investigated two algorithmic problems arising from the symbolic analy-
sis of cryptographic modes of operation built using block ciphers and exclusive-
or: symbolic security and invertibility. We have given algorithmic results for both.
We also believe that we have learned something from treating the problems sep-
arately from each other. For example, one might ask if the restrictions imposed
by invertibility might narrow the class of cryptosystems to ones for which IND$-
security is decidable. Our results on undecidability of symbolic show that they

Algorithmic Problems in the Symbolic Approach to the Verification 269

do not, because our embedding of the Post Correspondence Problem all produce
invertible cryptosystems.

There are many ways these results can be extended. We can, as mentioned in
the introduction, investigate algorithms for deciding combinations of properties.
We can investigate larger classes of modes that use additional primitives and
functions, such as hash functions, field operations, concatenation, block ciphers
with tweaks, and the successor function, the latter two of which have already
been studied in [5,9] for the messagewise schedule. In addition, we can investigate
other classes of modes built using the same or similar primitives, e.g. hash func-
tions (studied in [10]), hash-based signatures, garbled circuits (studied in [4]),
and message authentication codes (studied in [5]). We also intend to determine
what other cryptosystems or classes of cryptosystems are amenable to symbolic
analyses and study them if feasible.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoret. Comput. Sci. 367(1–2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2001, pp. 104–115. ACM, New York (2001).
https://doi.org/10.1145/360204.360213

3. Borgström, J.: Static equivalence is harder than knowledge. In: Baeten, J.C.M.,
Phillips, I.C.C. (eds.) Proceedings of the 12th Workshop on Expressiveness on
Concurrency, EXPRESS 2005, San Francisco, CA, USA, 27 August 2005, pp. 45–
57. Electronic Notes in Theoretical Computer Science, Elsevier (2005). https://
doi.org/10.1016/j.entcs.2006.05.006

4. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 416–445. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 15

5. Hoang, V.T., Katz, J., Malozemoff, A.J.: Automated analysis and synthesis of
authenticated encryption schemes. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 84–95. Association
for Computing Machinery, New York (2015). https://doi.org/10.1145/2810103.
2813636

6. Joux, A., Martinet, G., Valette, F.: Blockwise-adaptive attackers revisiting the
(in)security of some provably secure encryption modes: CBC, GEM, IACBC. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45708-9 2

7. Küsters, R., Truderung, T.: On the automatic analysis of recursive security proto-
cols with XOR. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp.
646–657. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-
3 55

8. Lin, H., Lynch, C.: Local XOR unification: definitions, algorithms and application
to cryptography. IACR Cryptol. ePrint Arch. 2020, 929 (2020). https://eprint.iacr.
org/2020/929

9. Malozemoff, A.J., Katz, J., Green, M.D.: Automated analysis and synthesis of
block-cipher modes of operation. In: 2014 IEEE 27th Conference on Computer
Security Foundations Symposium (CSF), pp. 140–152. IEEE (2014)

https://doi.org/10.1145/360204.360213
https://doi.org/10.1016/j.entcs.2006.05.006
https://doi.org/10.1016/j.entcs.2006.05.006
https://doi.org/10.1007/978-3-662-53015-3_15
https://doi.org/10.1145/2810103.2813636
https://doi.org/10.1145/2810103.2813636
https://doi.org/10.1007/3-540-45708-9_2
https://doi.org/10.1007/978-3-540-70918-3_55
https://doi.org/10.1007/978-3-540-70918-3_55
https://eprint.iacr.org/2020/929
https://eprint.iacr.org/2020/929

270 H. Lin et al.

10. McQuoid, I., Swope, T., Rosulek, M.: Characterizing collision and second-preimage
resistance in Linicrypt. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol.
11891, pp. 451–470. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 18

11. Meadows, C.A.: Symbolic and computational reasoning about cryptographic modes
of operation. IACR Cryptol. ePrint Arch. 2020, 794 (2020). https://eprint.iacr.org/
2020/794

12. Rogaway, P.: Nonce-based symmetric encryption. In: 11th International Workshop
on Fast Software Encryption, FSE 2004, Delhi, India, 5–7 February 2004, Revised
Papers, pp. 348–359 (2004). https://doi.org/10.1007/978-3-540-25937-4 22

https://doi.org/10.1007/978-3-030-36030-6_18
https://doi.org/10.1007/978-3-030-36030-6_18
https://eprint.iacr.org/2020/794
https://eprint.iacr.org/2020/794
https://doi.org/10.1007/978-3-540-25937-4_22

	Algorithmic Problems in the Symbolic Approach to the Verification of Automatically Synthesized Cryptosystems
	1 Introduction
	1.1 Implementation

	2 Preliminaries
	2.1 Terms and Substitutions
	2.2 Equational Theories

	3 Modes of Operation
	4 The Invertibility Problem
	4.1 Implementation

	5 Decision Problems for Symbolic Security
	5.1 Undecidable Decision Problems for Block Ciphers
	5.2 An Algorithm for Checking Symbolic Security
	5.3 Implementation

	6 Conclusions
	References

