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Abstract. The identification of graphic symbols and interconnections
is a primary task in the digitization of symbolic engineering diagram
images like circuit diagrams. Recent approaches propose the use of Con-
volutional Neural Networks to the identification of symbols in engineering
diagrams. Although recall and precision from CNN based object recog-
nition algorithms are high, false negatives result in some input symbols
being missed or misclassified. The missed symbols induce errors in the
circuit level features of the extracted circuit, which can be identified
using graph level analysis. In this work, a custom annotated printed cir-
cuit image set, which is made publicly available in conjunction with the
source code of the experiments of this paper, is used to fine-tune a Faster
RCNN network to recognise component symbols and blob detection to
identify inter-connections between symbols to generate a graph represen-
tation of the extracted circuit components. The graph structure is then
analysed using graph convolutional neural networks and node degree
comparison to identify graph anomalies potentially resulting from false
negatives from the object recognition module. Anomaly predictions are
then used to identify image regions with potential missed symbols, which
are subject to image transforms and re-input to the Faster RCNN, which
results in a significant improvement in component recall, which increases
to 91% on the test set. The general tools used by the analysis pipeline
can also be applied to other Engineering Diagrams with the availability
of similar datasets.

Keywords: Graph convolutional network · Circuit diagram · Graph
refinement

1 Introduction

Graph-based symbolic engineering drawings (like circuit diagrams or piping and
instrumentation diagrams) use graphical symbols and line segments to represent
the components of technical facilities or devices as well as their interconnections.
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In addition, these images can contain texts to provide further information about
individual components. The digitization of such images implies the extraction
of these information - components, interconnections and texts to extract a com-
plete graph description of the digitized source document. An early attempt for
such an extraction is described in [20]. Symbols connected through lines or mul-
tiple segments are a feature of many engineering diagrams such as mechanical
engineering diagrams and Piping and Instrumentation Diagrams (P&IDs).

In this paper, The GraphFix framework1 is proposed as an approach to digi-
tize circuit diagrams, but is envisioned to be applicable to other similar document
types with the help of suitable datasets. GraphFix is a multi-stage information
extraction framework to identify different types of information in an engineering
document. First of all, a Faster RCNN [15] is trained to identify component sym-
bols, which form the node of the extracted graph. Based on that, blob detection
is used to predict the connections (wiring) between the components, which make
up the graph’s edges.

The resulting graph structure is amenable to the application of graph refine-
ment and error detection algorithms. There are two main types of errors in the
component proposal list: false positives - component proposals in regions of the
diagram, which do not have any identifiable symbol and false negatives - which
can either result from a symbol in the input image being misclassified or not
recognised as a symbol region, the latter type are referred to as Unmarked False
Negatives (UFNs) in this work and result in graph anomalies, which can be
detected with the help of Graph Convolutional Networks (GCNs) or with node
degree comparison.

An attempt is also made to refine symbol labels in the component list gener-
ated by the Faster RCNN, using graph level features and symbol characteristics
such as position and size. Some methods achieve up to 60% recall@1, but the
refinement does not help achieve any improvement in the overall recall of the
framework when these predictions are combined with the Faster RCNN results.
However, using graph anomalies, UFNs can be detected, which results in an
improvement in recall@1 of up to 2–4%.

This paper is further structured as follows: Sect. 2 describes related work in
digitization of engineering diagrams (EDs) and circuit diagrams in particular.
This section also briefly introduces topics on graph refinement and other con-
cepts touched upon in this work. Section 3 provides information on the printed
circuit ED dataset used to train and test GraphFix as well as the different data
augmentation techniques used to improve the object recognition module’s per-
formance. The different processing steps required by GraphFix are explained
under Methodology 4 and a review of the overall performance and of the differ-
ent refinement and error detection techniques is presented in the Results Sect. 5.
In conclusion, Sect. 6 summarises the salient contributions of this work as well
limitations of the framework, which can be addressed in future research.

1 https://github.com/msyed-unikl/GraphFix.

https://github.com/msyed-unikl/GraphFix
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2 Related Work

Digitization of document types such as electric circuits, floor plans and P&IDs
share many common features. [12] lists the identification of symbols, intercon-
nections and text and some of main challenges in the digitization of engineering
diagrams such as circuit diagrams. Circuit diagrams can utilize different stan-
dards and conventions to represent symbols for circuit components, resulting
in difficulty in producing a well defined dataset, which captures variations in
symbol style, pose and scale [12]. Initial attempts to identify symbols in circuit
components such as [2] extract graphical primitives such as lines and circles from
images and apply rule based templates to identify component symbols. [11] pro-
poses a system to identify symbols in hand drawn engineering diagrams based
on subgraph isomorphism by representing symbols and drawings as relational
graphs using which the system could also learn to identify new symbols.

More recent approaches such as [13] extract graphical features from hand
drawn circuits and inputs them to a neural network for symbol recognition.
Other notable attempts utilizing machine learning based approaches as opposed
to rule matching include [1], which proposes a probabilistic-SVM classifier using
Histogram of Oriented Gradients (HOG) and Radon Transform features and [4],
which used geometric analysis to analyse vertical, horizontal and circuit space
features to identify symbols in electric and electronic symbols. Direct compar-
isons of the effectiveness of the different methods is not possible as these systems
are trained on different (and often private) datasets with varying sets of symbols
despite the availability of a standard dataset for electrical circuits [18].

Alternate approaches to symbol detection using Convolutional Neural Net-
works (CNNs) were proposed by [6] and more recent attempts in this direction
include [17] that combines deep learning based Faster RCNN [15] and semantic
segmentation with other statistical methods for such as morphology and compo-
nent filtration for the vectorization of floor plans. [14] employs a VGG-19 based
Fully Convolutional Neural Network to identify symbols in P&ID diagrams. [22]
uses a Region based Convolutional Network (RCNN) to generate region propos-
als for ‘symbols’ and ‘dummy’ regions in P&ID images. [21] also proposes the use
of RCNNs for the identification of symbols in P&ID images. GraphFix follows a
similar approach by training a Faster RCNN module to train electric component
symbols in the custom printed circuit ED dataset.

Multiple computer vision based approaches have also been applied task of
identifying connections between symbols in EDs. [4] applies a Depth First Search
by considering darkened pixels as nodes and introducing edges between nodes for
adjacent pixels. [14] applies Hough Lines Transform to identify pipelines between
symbols in P&IDs. GraphFix uses blob detection to identify connections between
identified component symbols. Blobs are regions in an image, which differ from
their surroundings in terms of image features such as the pixel colour [19]. Blob
detection can be carried out with a number of algorithms such as Laplacian of
Gaussian (LoG) or Difference of Gaussian (DoG) [19].

Symbol extraction as well as connection identification from ED images are
associated with potential errors such as misclassification (for symbol extraction
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only), false negatives and false positives. Some works have attempted to use
graph or network level features to identify errors in the extraction process. The
use of graph based rules to modify graph structures extracted from P&ID dia-
grams is proposed in [3]. [14] creates a forest structure with the extracted com-
ponents and uses properties of P&ID diagrams to detect false positive pipelines
identified by the Hough Transform algorithm.

[5] applies morphological operations to the shape-graph space of a tree of
connected components extracted from maps to filter out components not cor-
responding to expected layers. In [16], graph features are used to detect node
labels for regions in floorplan images by converting floorplans to Region Adja-
cency Graphs and using Zernike moments as node attributes. Graph Neural
Networks and Edge Networks proposed in [16] achieve up to 100% accuracy
on ILIPso dataset [8] in predicting node labels. Experiments attempting to pre-
dict node labels (component symbols) using graph or regional features in this
work (Graph Refinement) showed limited success and have much lower accu-
racy compared to the Faster RCNN module. The GraphFix pipeline achieves its
improvement over the Faster RCNN’s recall by identifying regions in the circuit
image with symbols that have been missed by the Faster RCNN module and this
is done by identifying anomalies in the graph extracted from the circuit images
using node degree comparison and Graph Convolutional Networks (GCNs).

GCNs provide a semi supervised graph based approach to predict node labels
[9]. The Fourier basis on a graph is defined as the eigenvalues of the graph
Laplasian, which is defined as D − A − where D is the diagonal degree matrix
(diagonal elements are the degrees of the nodes and other elements are 0) and
A is the adjacency matrix for the Graph [10].

Graph convolutions can be defined on the Fourier basis, but such an approach
is prohibitively expensive for large graphs as the calculation of eigenvector matrix
is O(N2) where N is the number of nodes in the graph. Localised spectral filters
to make spectral convolutions computationally feasible were proposed in [7]. [7]
also put forward the use of a truncated expansion of Chebyshev polynomials as
an approximation of the eigendecomposition of the Laplasian. [9] further develops
this model to propose a GCN model which can be represented by

Z = D̃− 1
2 ÃD̃− 1

2 XΘ

In this equation from [9], D̃ = ΣijÃij . Where Ã = A + IN . A represents the
adjacency matrix for the graph and X ε RN×C is the input signal (with C real
input parameters for N nodes). Θ ε RC×F , where F is the number of filter maps.
The GCN layer is 1-localized convolution and multiple GCN layers can also be
stacked, which approximates higher level localization convolutions [9].

3 Printed Circuit ED Dataset

Computer Aided Design (CAD) software used to generate circuit diagrams can
use different symbols and standards to represent symbols. A dataset used to train
an object detection module to identify various types of symbols for component
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types should consist of diagrams from various sources, to capture component
symbols differing in style, pose, and other visual features and characteristics.
Hand drawn circuits are not included in the ground truth to avoid extreme
heterogeneity2.

The ground truth needed to run training, validation and testing for the Faster
RCNN module and the graph algorithms is generated by scraping an online
source3 for circuit diagram images, which are converted to a standard image
format. Component symbols in these images are then manually annotated4 to
mark symbols in the image with the corresponding component labels. Certain
conventions and rules are necessary in order to maintain consistency in the use of
labels for components across multiple diagram standards. Some of the important
labelling conventions are:

– Circuit components are labeled such that there are no overlapping compo-
nents.

– Wires are not annotated. However, wire crossings and overlaps are labelled
as symbols

– Simple variations in symbol style, line colour and spatial orientation are tol-
erated and grouped under the same label. However, when a different symbol
type is used constantly with a qualified component symbol (such as a ‘ground’
and ‘digital ground’), separate label categories are created

– If a composite component (consisting of multiple smaller components) is
repeatedly encountered, then the composite symbol is treated as a label cat-
egory. For example, a rectifier bridge is labelled as one rectifier bridge as
opposed to four diodes

Ground truth graphs for the electric circuits, component regions or bounding
boxes from the manually annotated symbol list are input to blob detection to
identify interconnections. The resulting graphs carrying symbols and connecting
edges then comprise the ground truth for graph based methods.

In total, the ground truth consists of 218 annotated printed circuit EDs.
These are divided into 182 images for training, 18 diagrams for validation at the
time of training and 18 images are set aside for testing the framework. 85 symbol
categories have been identified and the dataset has 8697 annotations. For each
image in the training set, 8 variants are generated by randomly applying image
transforms such as scaling, horizontal flipping, colour inversion and Gaussian
noise (Fig. 1).

4 Methodology

GraphFix proposes a modular extraction of information from diagram images
and their refinement. After image pre-processing (such as format conversion),
the Faster RCNN object recognition module identifies component symbols in
2 https://github.com/msyed-unikl/printerd-circuit-ED-dataset.
3 discovercircuits.com.
4 LabelImg - https://github.com/tzutalin/labelImg.

https://github.com/msyed-unikl/printerd-circuit-ED-dataset
http://discovercircuits.com/
https://github.com/tzutalin/labelImg
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Fig. 1. Circuit digitization workflow proposed by GraphFix.

the image and their locations. This information is then used to identify connec-
tions between components using blob detection. The graph generated with the
extracted symbols and connections can be subject to graph refinement, where
graph anomalies are detected and used to identify component symbols missed by
the object recognition module. Finally, select regions of the diagram are subject
to image augmentation (cropping and scaling) and input again to the Faster
RCNN module to identify these missing symbols.

4.1 Symbol Recognition

The classification head of a pre-trained (COCO Dataset) Faster RCNN module
with a ResNet 50 backbone5 is replaced with a new head to classify component
symbols and the model is retrained (or fine-tuned) on the training dataset.

Object proposals from the Faster RCNN consist of bounding box, label and
confidence scores. Multiple proposals with different confidence scores can be gen-
erated for the same component symbol. GraphFix merges overlapping bounding
boxes to create a ‘prediction cluster’ with labels sorted by the confidence score.
The list of prediction clusters are then compared with components in the ground
truth to generate precision and recall metrics for the symbol detection task.

With grid search, training parameters such as the optimiser algorithm, train-
ing batch size and learning rate can be adjusted to maximise recall@1 on the
validation set (see Table 1).

4.2 Connection Identification

After component symbols and their locations are identified, connections between
components can be extracted using blob detection and some simple and intuitive
5 https://pytorch.org/vision/stable/models.html#object-detection-instance-

segmentation-and-person-keypoint-detection.

https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection
https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection
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computer vision related operations. First, all component regions are blanked out
by merging them into the background. After this, the image is converted to
grayscale, colours are inverted and a threshold is applied to remove noise. A blob
detection algorithm is then applied to identify unique blobs and a bounding box
is identified for each blob.

The corners of these bounding boxes are checked for proximity to two or
more symbol components and blobs in proximity of two or three symbols are
shortlisted. In case the blob bounding box is in proximity to two symbols, then
a connection between the symbols (a graph edge between the symbol nodes) is
identified. If three symbols are in proximity to the blob bounding box, two of
the three symbols are shortlisted such that the area of the rectangle between the
two symbol ‘touch points’ is the maximum (Fig. 2).

(a) (b) (c)

Fig. 2. a. Section of circuit for connection identification b. After symbol removal,
thresholding and colour inversion c. Identification of blobs with vertices in vicinity
of component symbols (discovercircuits.com).

There are some drawbacks to this technique such as:
– Component symbols must be erased before blob detection is applied. This

is easily achieved with the ground truth as symbols are identified manually.
However, for testing, the Faster RCNN object proposals can completely miss
symbols (UFNs). This results in missing connections linked to these symbols
and also, ‘overshot’ connections, which is noticed when symbols such as wire
crossings or junctions are missed. In the latter case, the symbol is misidentified
as a part of a wire connection in the image and incorrect connections can be
added to the graph.

– The proposed method also misses complicated wire representations which
loop around a component symbol.

Despite these drawbacks, the method identifies connections with a high pre-
cision and recall. However, these parameters cannot be quantitatively measured
with the current printed circuit ED dataset as it does not list connections
between symbols and hence the algorithms’s output is suitable for manual assess-
ment. Blob detection can also be used to identify text annotations and on circuit
images in the printed circuit ED dataset, it performs on par with the EAST deep
learning based text recognition algorithm [23]. However, the application of OCR
systems to image regions with text results in inaccurate character and symbol
recognition and thus not considered for graph refinement.

http://discovercircuits.com/
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4.3 Anomaly Detection

Most errors seen in the output of the block detection based connection iden-
tification stem from symbols missed by the Faster RCNN module. Identifying
these Unmarked False Negatives (UFNs) can lead to the correction of a num-
ber of such errors. These false negatives do not have any corresponding node in
the extracted electric graph as no object proposals corresponding to the ground
truth object exist in the Faster RCNN output (in contrast there are also other
false negatives in the ground truth, which have overlapping object predictions
with incorrect labels). When blob detection is carried out on output from the
Faster RCNN, connections between UFNs and nodes connected to UFNs in the
ground truth will be missed or misidentified by the blob detection. These nodes
connected to the UFNs in the ground truth are present in the Faster RCNN
output (ignoring the possibility of two UFNs connected to one another) and
are termed anomalies. Two methods - node degree comparisons and GCNs are
applied to the task of identifying anomalies (Fig. 3).

(a) (b)

Fig. 3. a. Sample graph generated from symbol and connection identification steps
(discovercircuits.com). b. Unmarked False Negative (UFN) Identification Process with
Image Augmentation.

4.4 Training Set for Anomaly Detection

To train models to identify anomalies, training set images are input to the Faster
RCNN model and blob detection to generate graphs for the circuits. The anoma-
lies in these graphs can be identified by comparing them with the ground truth
and identifying nodes connected to UFNs. For Faster RCNN trained on the basic
dataset up to 5% of nodes in ground truth are UFNs and 8% of nodes in the
Anomaly Detection training set are anomalies. This results in under-sampling
of anomaly nodes, which has to be handled while training models.

http://discovercircuits.com/
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4.5 Anomaly Detection Techniques

Node Degree Comparison. Using the Anomaly Detection training set, two
discreet probability distributions of the observed degree for each symbol type
can be calculated. The first distribution is for instances where the symbol is
encountered as an anomaly and the second distribution is for symbol instances
that do not occur as anomalies.

These two distributions for a symbol type are represented as P(Dn = dn|
An = True) and P(Dn = dn|An = False), which are the probabilities that the
degree D of the node n is an observed natural number dn given An is True
indicating the node n is anomalous or False, which denotes that node n is not
an anomaly.

These distributions are then used to predict if node occurrences in the test
set graphs are anomalies.

An is True if

P (Dn = dn|An = True) > P (Dn = dn|An = False)

Using Bayes Theorem, an alternate can also be suggested where instead of
using P(Dn = dn|An = True) and P(Dn = dn|An = False), P(An = True|
Dn = dn) and P(An = False|Dn = dn) can be estimated with prior probabili-
ties P(An = True) and P (An = False) and the condition becomes:

An is True if

P (Dn = dn|An = True) · P (An = True) > P (Dn = dn|An = False) · P (An = False)

In practice, P(An = True) is usually very small (less than 0.1) and therefore
anomaly detection with Bayesian priors have an extremely low recall.

Fig. 4. A two layer GCN network to detect anomalies in circuits. In a three layer GCN,
the output of the second layer (768 out channels) is input to a second ReLU activation
and then input to a third GCN layer followed by a softmax function

GCNs: The anomaly training dataset can also be used to train a GCN based
network to identify anomalies in test set graph outputs from the Faster RCNN
and blob detection. In addition to anomalies in the Faster RCNN output in the
training set, nodes are artificially dropped in the training set graphs, to generate
additional anomalies. All neighbours previously connected to a dropped node
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can be marked as anomalies. Multiple variants of each training set circuit graph
are generated and nodes are dropped randomly. The data is then used to train
GCN networks to identify anomaly nodes. Multiple architectures are trained by
varying the training parameters such as number of GCN layers, probability of
a node being dropped and the number of variants for each electric graph to
maximise recall for anomaly detection (Fig. 4).

The performance of the two anomaly detection methods is presented in the
Results section.

4.6 Detection of False Negatives

After identification of anomalies in the Faster RCNN output in electric graphs,
GraphFix proceeds to use this information to identify the UFNs causing the
anomalies by using the following observations:

– Anomalies are connected to the UFN in the ground truth, so a UFN is
expected to be in the proximity of anomalies in most cases

– There should be a connection between an anomaly and new object proposals
for UFNs. This is useful in dropping false positive UFN proposals

– A UFN can be connected to one or more anomalies in the ground truth - this
assumption allows for the clustering of anomalies in close proximity

Some further assumptions are made to cluster anomalies and to identify
suitable search areas in which UFNs may potentially be located:

– Distances between components in the circuit are distributed normally with
mean avg distance and standard deviation std dev - then the distance between
the anomaly and a UFN can be represented in these terms

– avg distance and std dev can also be used to identify anomaly clusters -
since anomalies in a cluster should be connected to the same UFN. Graph-
Fix uses a heuristics based method to cluster anomalies by first defining
Dc = αc ∗ avg distance + βc ∗ std dev. With αc and βc set based
on experimentation. Each node is assigned to a unique cluster initially. Two
clusters are aggregated if the minimum distance between nodes of the two
clusters is below Dc. The previous step is repeated till no more clusters can
be aggregated. If an anomaly cluster has more than one nodes, the UFN is
expected to be located ‘near the center’ of these anomaly nodes

An anomaly cluster with a single node can result from a UFN positioned
either above or below or to the left or right of the anomaly. Hence a square search
area with side Sc = 2 ∗ Dp where Dp = αp ∗ avg distance + βp ∗ std dev
with αp and βp values set using trial and error is assigned to such single node
clusters. Clusters with two anomalies result in a rectangular search area which
is centered at the centroid of the two anomaly components and both the length
and breadth of the rectangle are set to Sc.
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For clusters with more than two anomalies, the search area is chosen as the
minimum rectangle that covers all the anomalies in the cluster - assuming that
the anomalies are resulting from one UFN surrounded by the anomalies.

After finalizing search areas, two alternate methods are tested to identify
UFNs within the selected regions:

– By default, Faster RCNN outputs proposals with a confidence score greater
than 0.05, the threshold for Faster RCNN object proposals is lowered to 0.01
and the object proposals with confidence scores between 0.05 and 0.01 are
stored in a separate list. This list can be searched for object proposals in the
search areas

– Search areas can be cropped and subject to image transform such as stretch-
ing. The transformed image is input to the Faster RCNN module to identify
object proposals. The new proposals have to be converted back to the coor-
dinates of the original circuit image

Experiments on the printed circuit ED dataset show that image augmentation
yields better results than lowering the Faster RCNN confidence score and was
selected for further processing. Proposals identified using image augmentation
are compared with the original output of the Faster RCNN to identify and delete
repeats corresponding to components already identified. Finally, blob detection
is carried out to identify connections between anomaly nodes and the new object
proposals. Any new object proposals not connected to anomalies are dropped as
false positives to arrive at the final list of extracted components.

(a) (b)

Fig. 5. a. Correctly identified anomalies (red borders with red fill) and false neg-
ative anomalies (red borders with yellow fill) b. Search areas (green dashed bor-
ders) and detected Unmarked False Negatives UFNs (green fill) on a sample circuit
(discovercircuits.com). (Color figure online)

http://discovercircuits.com/
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4.7 Graph Refinement

Representing electric circuits as graphs with components as nodes and intercon-
nections as edges allows the possibility to apply graph refinement techniques
to the extracted information. Graph refinement can be applied for a number
of tasks in graphs such as (i) Error Detection (identify wrong node labels or
erroneous connections) (ii) Identification of missing edges

For graphs generated from engineering diagrams, the detection of incorrectly
labeled nodes is of special interest, as this can potentially improve symbol recall.
Two techniques (symbol location and size based prediction, and GCNs) to iden-
tify node labels using graph and image features have been presented here. The
methods are trained on ground truth graph data and tested on the graphs gen-
erated using Faster RCNN output on test set diagrams.

Symbol Location and Size Based Prediction. Circuit diagrams utilise cer-
tain conventions such as the placement of voltage sources at the top and repre-
senting ground connections at the bottom of diagrams. In addition, the dimen-
sions of a symbol bounding box are a good indicator of the label type. This
information is normalised for components in images and is used to train a neural
network to predict the symbol labels. The trained neural network is then used
to predict node labels based on the same information from the Faster RCNN
output on the test set.

Graph Convolutional Networks. Both the node embeddings and symbol
location and size based label prediction methods do not make use of all graph
features available, therefore, a 2 layer GCN is trained to predict the label of a
node taking the graph adjacency matrix and node data as input. Two versions
of the GCN are tested, in one version, symbol position and size data is included
as node data. In a second version, Faster RCNN prediction scores for the labels
are also appended to the node data.

5 Results

Extraction results for the GraphFix framework are presented under four sections
- results from fine-tuning the Faster RCNN module with different approaches,
anomaly detection and the improvement in extraction after anomaly detection
an finally, the results from other graph refinement techniques. The precision@1
and recall@1 metrics are used to quantify the performance on symbol detection
and anomaly detection tasks.

5.1 Fine-Tuning of Faster RCNN

The Faster RCNN object detection module provides a good baseline for sym-
bol extraction task. Data augmentation and parameter optimization also help
improve the performance even further and a recall@1 of 89.47% is achieved
with a combination of these techniques (see Table 1).
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Table 1. Results of faster RCNN training on test set

Model Dataset Precision Recall F-Measure Max Recall

Faster RCNN Basic 83.82% 83.16% 83.49% 85.44%

Faster RCNN Augmented 86.91% 87.37% 87.14% 89.47%

5.2 Anomaly Detection

To compare node degree and GCN based anomaly detection, Recall@1 and Pre-
cision@1 metrics are calculated by comparing the list of anomaly nodes in the
anomaly dataset with the list of anomalies predicted for the two methods for
the test set (see Table 2).

These metrics vary from one GCN training to another, therefore the results
for the model with the best recall in 3 training attempts are reproduced below.
Additionally, the number of variants for a model is decided by increasing the
number till no further improvement in recall is observed. In contrast, these met-
rics remain constant for the node degree comparison model unless the underlying
Faster RCNN model is retrained (Table 3).

Table 2. Anomaly detection using node degree based methods

Anomaly detection method Precision@1 Recall@1 F-Measure

Node degree 30.60% 58.95% 40.29%

Table 3. Best results for anomaly detection using GCNs

GCN Node Drop % Variants Precision@1 Recall@1 F-Measure

2 layer GCN 20.00% 8 53.49% 27.38% 36.22%

2 layer GCN 25.00% 8 52.00% 30.95% 38.80%

2 layer GCN 33.33% 6 49.02% 30.86% 37.88%

2 layer GCN 50.00% 6 41.82% 27.38% 33.09%

3 layer GCN 25.00% 10 45.90% 33.33% 38.62%

3 layer GCN 30.00% 8 46.03% 34.52% 39.46%

3 layer GCN 33.33% 6 42.42% 33.33% 37.33%

3 layer GCN 40.00% 4 42.42% 33.33% 37.33%

GCN based anomaly detection offers higher precision than the node degree
comparison, but the node degree method delivers higher recall. Additionally,
some observations can be made about the low F-measure for both models:

– Errors from previous processing steps i.e. Faster RCNN and blob detection
for connection detection result in errors both in the training and test datasets
for anomaly detection
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– The node degree comparison model outputs many false positives, which cor-
respond to issues resulting in the graph structure due to problems other than
UFNs such as false positives in Faster RCNN output, incorrect output from
blob detection as well as use of infrequent circuit symbols or wire configura-
tions

– Improvements in GCN precision and recall with data augmentation (node
drops in variants) leads to the hypothesis that the method can achieve better
results with additional training data

Since anomaly detection is carried out to detect UFNs, node degree comparison
is chosen for further experiments because of its higher recall. This is because,
more search areas increase the chances of detecting UFNs.

5.3 Improving Faster RCNN Recall Using Anomaly Detection

Using anomaly predictions from node degree comparison, a fixed image trans-
formation (scaling by a factor of 1.15) is applied to search areas to identify new
object proposals. New proposals overlapping with existing components or with-
out connections to anomalies are dropped and precision@1 and recall@1 metrics
for the expanded component list are calculated (see Fig. 5).

The anomaly detection method is applied to multiple Faster RCNN models
to observe the consistency in the improvement of results (see Table 4).

Table 4. Improved symbol recall with UFN & anomaly detection

Model Dataset Faster RCNN results Results after
anomaly detection

Precision Recall F-Meas Precision Recall F-Meas

Faster RCNN I Basic 83.82% 83.16% 83.49% 75.09% 86.84% 80.54%

Faster RCNN II Augmented 85.79% 87.37% 86.57% 79.67% 89.34% 84.23%

Faster RCNN III Augmented 85.60% 89.21% 87.37% 80.93% 91.05% 85.69%

Anomaly detection based identification of UFNs results in a consistent
increase improvement in the recall metrics. A slight drawback is the drop in
precision, which is largely a result of rectangular corners and segments of wires
being identified as wire connections after image augmentation. Simple domain
specific rules can eliminate many of these wrong proposals. However, this is not
implemented to keep the proposed framework general.

5.4 Graph Refinement

For graph refinement techniques, two parameters are tested - recall@1 for the
refinement method itself and the recall of a combined model which adds confi-
dence scores of the refinement method and the Faster RCNN model trained on
the basic dataset (see Table 5).
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Table 5. Recall for graph based label prediction methods. Recall for Faster RCNN
model - 83.55%

Refinement method Recall Recall combined with
Faster RCNN

Neural network with component
position and size

58.95% 80.39%

2 layer GCN 41.05% 81.47%

2 layer GCN with Faster RCNN
confidence scores

80.06% 81.84%

6 Conclusion

GraphFix successfully demonstrates the use of graph level features to improve
symbol and connection identification in circuit diagrams images. The graph level
abstraction of the proposed enhancement techniques allows for the framework
to be applied to other symbolic engineering document types such as P&IDs,
subject to availability of suitable datasets, providing further scope for research
in this topic, additionally, the framework potentially supports symbol extraction
approaches other than Faster RCNN, which provide symbol class and position
information as well as other connection identification methods.

Although GraphFix achieves a high recall on the tested dataset, multiple
improvements such as identifying connection leads for components, improving
the OCR recognition and identifying improvements to the graph refinement stage
can improve the accuracy of the digitization and increase the practical utility
of the extraction. Additionally, graph level features can also be extracted from
available electronic versions of engineering diagrams (such as circuit netlists),
providing for a more ground truth for the graph based refinement models.
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