Chapter 2 ®)
Theoretical Background of Thermal Shex
Transient Measurements

Gabor Farkas, Andras Poppe, and Marta Rencz

In this chapter we collected the most important background knowledge that is
needed to understand thermal transient measurements.

Speaking about measurements, we need to remember that a measurement is
always accompanied by an inherent modeling step. Measuring the size of an object
and claiming its length, width, and height is equivalent to replacing it with a model,
which is a single (rectangular) block, and describing this model by these three
quantitative parameters.

In thermal analysis the modeling of the system is much more challenging. All the
physical quantities that play a role in thermal measurements must be precisely
defined to avoid ambiguity.

2.1 Temperature and Heat Transfer

Temperature is the manifestation of the thermal energy of a finite size object.
Thermal energy is the internal energy associated with the stochastic movement of
particles in the object. These particles can be molecules in a fluid or gas, crystal
lattice atoms in solids, or electrons in an electrically conductive material.

Heat is the internal energy, which is transferred between two or more finite size
objects by various mechanisms at the level of particles (atoms and molecules). Heat
transfer can be accompanied but does not need to involve transfer of matter.
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The quantity of energy transferred as heat can be measured by its effect on the
states of interacting bodies. Such effects can include the amount of matter partici-
pating in a phase change (e.g., amount of ice melted) or the change in temperature of
a body dedicated to measuring the amount of transferred energy (temperature sensor,
thermometer).

Power is the rate per unit time at which energy is applied externally on the
system, or transferred between portions of the system.

Heat flux is the intensity of the transfer of energy per unit area per unit of time,
that is, the power applied or forced through a unit of area.

The conventional symbol used to represent the temperature is 7; the amount of
heat transferred is denoted by Q. The SI unit of temperature is kelvin (K) or
centigrade (°C); the unit of heat (also known as thermal energy) is joule (J, Ws).

In this work power is denoted by P and heat flux by ¢. The SI unit of power is
watt (W); the unit of heat flux is watt per square meter (W/mz).

The primary mechanism of thermal energy transfer in electronic systems, as they
are mostly solids, is conduction, at direct contact of objects, within molecular
dimensions. The transfer occurs by the stochastic motion of particles, which can
be “electrons” and “phonons” where the latter is the quantized lattice vibration.

Convection is a heat transfer mechanism in which one body heats another over
macroscopic distances, through an intermediate circulating medium that carries
energy from a boundary of one to a boundary of the other. The heat transfer on the
surface of respective solid bodies towards the medium occurs by conduction.

In the related discipline of physics, in fluid mechanics, all media such as fluids or
gases, aerosols, etc. are denoted as a generalized “fluid.” Convection always
involves the motion of matter. The internal energy of the medium is influenced not
only by the stochastic motion of particles; it can be changed directly by thermody-
namic work, by mechanisms that act macroscopically on the system, for example, by
the motion of a piston.

Radiation is a heat transfer mechanism that occurs between separated or even
remote bodies by means of electromagnetic waves. Accordingly, it requires no
medium,; it transfers heat over transparent matter or vacuum. All solid bodies emit
radiation because of the stochastic motion of charged particles; this radiation grows
in a “temperature to the fourth” manner.

The direction of heat transfer is always from the hotter to the cooler matter
portions, as long as the temperature difference exists between them.

The heat transfer in solids is governed by local thermal properties: thermal
conductivity and specific heat. These thermal parameters are temperature dependent
in the semiconductor and package materials, which are most frequently used in
electronics. However, the change of these parameters in the temperature range of the
typical use is rather flat. This means that in many practical cases, the material
parameters can be considered temperature independent, which simplifies the calcu-
lations, allowing in many cases the use of linear relationships.

Several thermal interface materials, such as thermal pastes and sheets, are aniso-
tropic; they perform differently in different directions. Still, their orientation does not
change during their operation.
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In some thermal interface materials also phase change can occur at higher
temperatures. Phase change accumulates or releases a large amount of heat, for
example, phase change mechanisms enable intensive heat transfer in heat pipes.

2.2 Thermal Equilibrium, Steady State, and Thermal
Transients

According to definition, two physical systems are in thermal equilibrium if there is
no net flow of thermal energy between them when they are connected by a path
permeable to heat. Extending this definition to different portions of a system, we
consider a system being in thermal equilibrium when all parts of the system are at the
same temperature. When one of the “systems” is the outer world, then the equilib-
rium is reached at the temperature of the ambient.

Steady state means that the temperature in different portions of the system does
not change with time. Nonequilibrium states can be steady states if there is a source
of energy to maintain the nonequilibrium condition. Without the source of energy,
the system would settle into an equilibrium state after a certain time.

Thermal transient is a process through which the system or its portions transit
from one temperature to another temperature.

In a heating process, the system moves from a lower temperature state to a higher
one, and in a cooling process, the system starts from a higher and arrives at a lower
temperature state.

Heating transients are always the result of adding energy to the system. This
energy surplus is often applied on thermal systems as a time-dependent P(f) power
profile at one or more entry points, “driving points” over a time interval.

In electronic systems the energy that heats the system is in most cases the
introduced electrical energy.

In cooling processes the energy leaves the system in the form of dissipation, that
is, in the form of heat. Cooling can be a relaxation after revoking all power from the
entry points for a prolonged time, or returning to a lower energy state at diminished
power level.

The word “dissipation”" is used in a loose interpretation in the technical literature.

If the energy entry occurs at an area which is small compared to the size of the
system, then that location is frequently called junction. The term means in thermal
engineering a spot, which is considered to be isothermal and emitting homogeneous
heat flux.

This name is inherited from power electronics where the heat source is in many
cases a thin “dissipating,” more precisely heat-generating layer near the upper

"n its original grammatical sense, “to dissipate” means to scatter, to throw away, to dispose of
something.
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surface of a semiconductor device. In many active power devices, this layer is in fact
a pn junction, an area where semiconductors of different types join each other.

Proper distinction between different interpretations of this term will be made case
by case in the subsequent chapters.

The development of the temperature change in time is highly influenced by the
internal geometry and material properties of the system. Consequently, a systematic
analysis of the transient process can yield relevant information on the structural
composition of the system.

In the characterization of systems, those special transients play an eminent role
where the system transits from one steady state to another steady state. Such
“finished” transients yield the most complete information on the internal structure
of the system. The structural details are determined with the best resolution in the
vicinity of the power entry. From shorter transients where the steady state is not yet
reached in all parts of the system, only limited information can be gained on the
entire system structure.

2.3 Thermal Processes and Their Modeling in Electronic
Systems

In electronic systems the most relevant heat sources are semiconductor devices;
therefore, their junction temperature is a critical parameter influencing the reliability
and the lifetime of the system.

The power generated in these devices can be calculated from the voltage and
current values at their pins. These values change in time in a complex way and are
determined by the electric characteristics of the devices, which are highly nonlinear,
and temperature dependent. Typical device characteristics and their temperature
dependence are discussed in detail in Chap. 6.

In many cases an electronic equipment operates in a relatively narrow tempera-
ture range, such as 0 °C—120 °C in laboratories, which is 273 K-393 K on the
absolute temperature scale. In this range the temperature dependence of the thermal
conductivity and specific heat of the used materials is usually negligible. In a system
composed of materials of temperature-independent thermal properties, the flow of
thermal energy is proportional to the temperature differences; the actual absolute
temperature level has only minor influence.

For this reason, as long as the heat propagation takes the form of heat conduction
and convection, the thermal behavior of electronic systems composed of semicon-
ductor chips, their packages, and cooling mounts can be well described with the
mathematical apparatus of the theory of linear systems. The linear approach can be
used only with severe limitations in the case of systems with phase change materials,
or systems, which operate at elevated temperatures where radiation from the outer
surfaces becomes significant in the heat removal process.
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Fig. 2.1 Cross-sectional view of three-dimensional conductive heat transfer in solid material.
Isotherms and heat-flow trajectories calculated in a thermal simulator are shown

The investigation of transient processes needs appropriate models of the thermal
systems. These models can be of continuous or distributed nature, based on the
differential equations governing the heat conduction in solids and the convection in
gases and fluids. Such detailed, continuous models are usually analyzed numerically
by finite element or finite difference software tools.

For analyzing all heat transfer mechanisms defined above, computational fluid
dynamics (CFD) solvers, such as [56], offer a tool to simulate the conjugate heat and
mass transfer.

The software tools display the simulation results in various forms. Trajectories
demonstrate how the heat spreads in conductive regions and how the “fluid” flows in
convective ones; isothermal surfaces denote where the temperature is equal at a
certain time moment. It has to be noted that the geometric boundaries of physical
objects and interface layers, which are often planar and rectangular in a real system,
rarely coincide with isothermal surfaces, and the shape of the latter dynamically
changes during a transient process.

Figure 2.1 visualizes the conductive heat transfer in a solid body. The different
colors correspond to the temperature in the material, isothermal surfaces follow each
other with an equidistant temperature difference, and the trajectories of the heat
spreading are represented by curved arrows that are perpendicular to the isothermal
surfaces.

The reference above to “finite element” or “finite difference” tools indicates that
even the analytic equations that describe continuous (distributed) systems must be
converted to their numerical counterparts, that is, a continuous system description
must be discretized. This means that the continuously distributed material is lumped
into small pieces for being analyzed by numerical methods in a computer. A net of
adjoining lumps generated in the discretizing process of the model is often called a
mesh. The lumps convey energy into each other in case of conduction and convey
energy and matter into each other in case of convection. The abstract representation
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of the mesh that constitutes the numerical model of the distributed system is a set of
nodes and links between the nodes. The graph of these nodes and links is called a
network in the world of electrical engineering. This way, many techniques used in
network theory are borrowed for the analysis of heat conduction problems in solids.

2.3.1 Equivalent Linear Models

The supposed linearity in the thermal domain implies that when increasing the power
levels in the system, the temperature grows nearly proportionally. This assumption
does not apply to cases with considerable nonlinear effects, e.g., systems with
turbulent flow or significant radiation, or cases where the thermal conductivity of
semiconductors exhibits strong temperature dependence, but these phenomena are
usually negligible in the temperature range specified above.

This book investigates time-invariant thermal systems, in which the geometrical
structure and material properties do not vary in time. Certain thermal interface types
such as pastes tend to change their thickness during use, especially when pressure
and power are applied on them the first time; successive transients yield slightly
different results. Similarly, adhesives change their composition at initial curing or at
their first use. Such effects are discussed in [63].

The effects of wear and degradation may cause significant alteration in the shape
and thermal properties of some system components. These effects are treated in
depth in the literature; some aspects that are closely related to the concept of thermal
transient testing are discussed in Sect. 7.4. Still, the initial changes in system
composition or later degradation can be observed rarely in the time span of a single
transient; it is appropriate to use the time-invariant approach.

Linear time-invariant (LTI) systems can be analyzed in both continuous and
discretized approaches. The discretization of a continuous body through a rectangu-
lar mesh is illustrated in Fig. 2.2.
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Fig. 2.2 Resistor-capacitor (RC) network model of a real physical structure
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Taking the primary effect that is heat conduction, we experience a blend of two
energy exchange mechanisms, heat propagation through an elementary portion of
material and internal energy growth due to heat flow into that portion. The two
mechanisms occur simultaneously in all system portions located anywhere in space
and at any moment of time.

For simplicity, let us analyze first the two mechanisms separately. The energy
storage and the temperature change can be formulated in an integral form on larger
system regions and in a differential form for elementary portions.

In a larger region which contains no heat sources, the O thermal energy grows in
time as a result of ¢ heat flux flowing through all segments of its A surface. The heat
flux integrated over the surface yields the P power applied on the region.

A changing P(t) power causes a Q(f) growth of energy in the V volume and
m mass of the region. This energy growth manifests as 7(r) temperature elevation.
The proportionality between thermal energy change and temperature change is
expressed as Cy, thermal capacitance.

Figure 2.1 demonstrates a case when an internal domain contains a heat source.
Again, the P power can be interpreted as the sum of all heat trajectories, which
intersect the A surface of a region enclosed by an isothermal boundary. The power is
of the same P value on each A surface of isothermal shells containing the same heat
source.

A temperature difference between two surface segments of a larger region
induces a heat flow from the hotter towards the cooler one. Keeping this difference
for a prolonged time steady state is reached; the heat flow stabilizes. The sum of all
heat flux trajectories in a cross section of the region is now a steady P q,s power, and
each slice along the heat flow injects this power into the next region. The propor-
tionality between the power and the temperature difference is expressed as the Ry,
thermal resistance.

The detailed temperature distribution and its change in time can be explored
considering elementary portions. Suppose the elementary portion is cut out of the
material between isothermal surfaces; it is of a small surface along which the
thickness is of constant dx infinitesimal value.

Some parts in assemblies of power electronics correspond to a sandwich-like
structure, in which all heat flows in a dedicated x direction. If uniform power is
applied on a layer of such a laminate, a homogeneous heat flux will flow through all
different material layers. In the following, the surface over which a homogeneous
flux flows will be uniformly denoted by A, whether an elementary section or a whole
laminate layer is considered, because the related equations are of the same format.

Figure 2.3 illustrates how the difference of the heat flux entering and leaving an
elementary portion increases the thermal energy in it. The flux difference causes dQ
energy growth and d7T temperature growth in a dt time instant:

AP = (i, — Pou) -A=dQ/dt= —c, -m-dT/dt (2.1)
In (2.1) ¢, denotes the specific heat of the material, and m is the mass of the

section. The @, flux is forwarded into the next portion of matter, which behaves
again in the same way.
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It is easy to measure the geometric size of an actual structural element, in this case
the A surface and dx length. On the other hand, determining the mass of a segment of
the structure is rarely feasible. For this reason it is more practical to introduce another
material property, the ¢y volumetric specific heat, also called volumetric thermal
capacitance into (2.1):

AP=dQ/dt= —cy -V -dT/dt (2.2)

V = dx - A is the volume of the slice; cy = ¢ - p, and p is the material density.
Investigating the heat flow through the portion (Fig. 2.4), we find that in the
continuous approach, it obeys the differential form of Fourier’s law:

= —4-VT (2.3)

where @y, is the heat flux across the section boundary, A is the thermal conductivity
in that section of material and VT is the gradient (spatial derivative) of the
temperature.”

Equation (2.3) expresses that ¢ is a vector and the heat flows towards the cooler
portions of a body.

’In the literature the thermal conductivity is denoted by k or A. In this book we use ; we reserve
k for denoting the Boltzmann constant. The heat flux is often denoted as g, but in this book ¢ is used
for the elementary charge.
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In a dx infinitesimal slice of A surface, (2.3) takes the form:
P=qy A= —A1-A-dT/dx. (2.4)

It can be observed in the figures and in the related equations that the dT quantity
denotes in (2.4) a spatial temperature difference and in (2.1) a temporal difference. In
(2.1) AP is a difference in space, the power difference between the two surfaces
where the heat flow enters and leaves.

In electronics the heat dissipation is localized to the small volumes described as
“junction” above. In other regions, the energy growth in a slice is the result of the
trapped heat flux. Hence, the previous considerations can be combined into the
classical heat equation, which is expressed in one dimension as

dT A\ 4T d’T
E‘(E)'W‘“’W' 23)

The thermal diffusivity a, defined as @ = A/cy, is the measure of thermal inertia.
In a material of high thermal diffusivity, heat moves rapidly; the substance conducts
heat quickly relative to its volumetric heat capacity.

Discretizing the structure into small lumps of homogeneous material condenses
(2.4) into thermal resistances. A lump has now dx length along the heat flow and
A surface perpendicular to it; and a temperature drop of T, — T, occurs between its
a and b isothermal faces (Fig. 2.4). Now (2.4) takes the form:

1 dx 1 dx
Td_Tb:PRth:P<E X), Rth:<z X) (26)

In the discretized representation, the two faces of the section are connected by an
Ry, thermal resistance.

Similarly, in a material lump exposed to continuous ¢ heat flux over A area
resulting in AP power difference between the entry and the exit, the energy change in
a short dt = t, — t; time interval is from (2.1)

dQ=AP -dt=Cy, - (Tz*Tl), (27)
where T| = T(t,) is the temperature of the material at #; time and 7, = 7(#,) is the
temperature of the material at #, time.

Cy, is the thermal capacitance of the slice:

Ch=c-m=c-p-dx-A, Cup=cy-V=cy- dx-A. (2.8)

In the discretized model of a complete system as represented in Fig. 2.2, also the
topology in which the Ry, and Cy, constituents are connected is to be defined.
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Temperature is a quantity, which is measured related to a reference value. When it
is expressed, for example, in centigrade, then the temperature is related to the
reference level of the internal energy of melting ice. In (2.6) the T, and T}, temper-
atures are measured with respect to the reference level, and so are 77 and 7, in (2.7).
Still, because of the linear approach, regardless of which reference level was chosen,
it disappears from the equations when the temperatures are subtracted.

In thermal transient measurements, it is generally assumed that the near environ-
ment of the measurement arrangement such as the air temperature in the laboratory
or the temperature of the circulated coolant in a cold plate device does not change
during the measurement time. Similarly, CFD simulation always aims at analyzing a
limited part of the universe only; the external world is often represented as a constant
temperature on the system boundary. This constant temperature attributed to the near
environment is called ambient temperature or ambient in short, usually denoted by
Ta (or T,yyp) in the literature. The ambient is the thermal counterpart of the electrical
ground (zero reference potential, datum reference in other engineering disciplines).

The electrical networks are extremely abstract; a lump with its “volume” and
“faces” appears as a node in the graph of a circuit scheme. The reference level in
electronics is named “ground” and is represented by a L sign.

Thus, as already shown in Fig. 2.2, the Cy, thermal capacitance appears between
the node representing the material portion and the ambient. The Ry, thermal resis-
tance connects two such nodes; the reference towards the ground disappears.

Equations (2.3)—(2.8) are of the same format as the descriptive differential
equations of electronics, replacing the P power by the [ electrical current, the
T temperature by the U electrical potential, and the AT temperature difference by
the V electrical voltage.” The thermal resistances and capacitances correspond to
their electric counterparts of similar name.

In an electrical network, the current flows through the net of resistances and
capacitances and causes a voltage drop (potential difference) between the nodes of
the circuit. The current is measured in amperes and the voltage in volts; resistances
and capacitances are measured in ohms (V/A) and farads (As/V), respectively.

In the thermal network, heat, that is power, flows through the net of thermal
resistances and capacitances and causes a temperature drop between the nodes of the
network. The power is measured in watts and the temperature in kelvins (K) or
centigrade (°C); thermal resistances and capacitances are measured in K/W and
Ws/K (J/K), respectively.

In network theory those networks in which excitation (powering) occurs at a
single specific point can be characterized by their thermal impedance. This concept
denoted as Z, combines the effects of the Cy, thermal capacitance and Ry, thermal
resistance into a single metric. Briefly, the thermal impedance represents both the
temporal and spatial changes of temperature in a heat conduction path, that is, the

3The work of Joseph Fourier, The Analytical Theory of Heat, published in 1822 inspired Georg
Simon Ohm to formulate his law in 1827. For a long time, the heat spreading and the change of
temperature, both known for many thousand years, helped to understand the newly introduced
concepts of voltage and current through their analogy.
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thermal impedance is the ratio of the dynamically changing temperature and the
dynamically changing power. There are multiple, equivalent representations of the
thermal impedance.* These representations will be introduced step by step through-
out the different subsections of this chapter. We start the discussion with the network
model representations of the thermal impedance.

The theory makes a distinction between self-impedances and transfer imped-
ances. Self-impedances express the response of the linear system at the location
where the excitation occurs, simply saying at the driving point. Transfer impedances
describe the system response at a different location often referred to as monitoring or
(thermal) test point.

The network theory states that arbitrary complex RC network in which the
excitation occurs between the single driving point and the ground behaves in the
same way as a reduced set of thermal resistances and capacitances arranged in one of
the configurations shown in Fig. 2.5. This corresponds to a thermal network model
of a single powered junction and an isothermal ambient.

It is important to note that the internal nodes in these models generally cannot be
associated with the monitoring points of a complex RC network.

The chain of RC stages style (top of Fig. 2.5) is called Foster representation, and
the ladder of RC stages style (bottom of the figure) is called Cauer representation,
named after the inventors who introduced these canonic circuit topologies into linear
filter synthesis. The conversion between the two models is a standard procedure in
network theory (summarized in Annex C of the JEDEC JESD 51-14 standard [40]).
An example of the conversion is presented in GNU Octave (MATLAB) code below.

“In the theory of linear systems, impedances are interpreted in a stricter sense in the frequency
(f, ® = 2nf) domain which is connected to the time domain through the Fourier transform or
in the complex frequency (s = jw) domain which is connected to the time domain through
the Laplace transform.
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Example 2.1: The Foster-Cauer Transformation

A simple MATLAB code which carries out the Foster-Cauer conversion is as
follows:

Foster to Cauer transformation
function [Rc Cc] = foster2cauer (Rf, Cf)
$calculate Z= p/gq polynomial
n = length (Rf);

p = RE(1);
g = [CE(1)*RE(1) 1];
for k= 2:1: n
pn= [0 p] + REf(k)*q + [CEf(k)*RE(k).*p 0];
gn= [0 g] + [Cf(k)*Rf(k).*q O];
p = pn;
q = an;
end
% calculate Cauer form
for k= 1:1:n
Cc(k) = g(l)/p(1);
g= (g - Cc(k)*[p 0]);
a(l)=[1;
Re (k)= p(1)/q(1l);
p = (p - Rc(k)*q);
p(l)=[1;
end
end

Running the MATLAB code for the values in Fig. 2.21, one gets on the output:

[Rc Cc] = foster2cauer([114], [100e-6 10e-3 100e-3])
Rc=1.02201.18703.7909;
Cc=0.000098912 0.009159927 0.095994437

and

[Rc Cc] = foster2cauer([1 18], [100e-6 10e-3 100e-3])
Rc=1.02201.1886 7.7894;
Cc=0.000098912 0.009159713 0.093316320
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2.3.2 Energy Balance and Stability

The simplest thermal model of a system consists of a single thermal resistance and a
single thermal capacitance. This simplest model, shown in Fig. 2.6, consists of just
two thermal nodes, the junction where power is applied and the ambient. The whole
heat removal apparatus of the modeled system can be cumulated into a single and
constant Ry,ja junction to ambient thermal resistance. The energy storage is
represented by a single Cy, thermal capacitance.

The driving force of the heating and cooling processes is the thermal imbalance.
Suppose there is a steady Py, power generated in the system and fed into the
“junction” node, which is at T)(f) junction temperature at ¢ time. The temperature
is always measured from a reference point; attributing any constant value to it in this
simple model would not change the validity of the descriptive equations. In this
section and in some further ones, we shall attribute T,,,;, = O temperature to the
ambient in many cases, in order not to drag a constant value through all equations.
This, of course, does not put any limitation to the validity of the equations.

We can state that before applying the Py, power, the system is in a “low-power”
thermal equilibrium, the energy stored in the system is zero, and so is the temperature
of the 7) point. Applying P, power in the first instant elevates the internal thermal
energy, Pgen = Pgiore initially.

The continuous flow of Py, into the thermal capacitance increases the Qgred
thermal energy; thus, the T temperature elevates on Cy,. We can recognize that Py
is the difference of Pge, and Pyjss. Still, Py, is constant, and the heat loss towards the
ambient can be calculated as Pg;ss = T3/Rya at any time.

Solving the appropriate differential equations, we find that 7; grows
exponentially:

Ty(t) = Pgen - Ruua - (1—e77), (2.9)

where 7 = Ryya - Cip 1S the characteristic time constant of the model.

Thus, during the transient process, the proportion of the heat loss through the
junction to ambient thermal resistance grows, and the share towards the thermal
capacitance diminishes.

Fig. 2.6 Simple thermal T,
model of a single RC stage
driven by an external source. Pgen Piss

Generated Py, and |:> |:> RhJA
dissipated Pgs, power %
indicated, their difference Pgen ﬂpstore
Pslore elevates the Qslored CthStore

thermal energy -

Tamb
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Integrating the heat flow (which is the power) over time the energy stored in and
dissipated from the components can be also calculated. The integral of exponential
functions until ¢ time is straightforward, and the actual values can be directly derived
from the electrical analogs.

The stored internal energy is Qgored = 72 Cin - T/, the applied energy is
Oin = Pgen - t, and the dissipated energy is Qin — Ogiored> applying the principle of
conservation of energy. The principle corresponds to the Kirchhoff current law at the
junction node in the interpretation of network theory.

Example 2.2: A Simple Thermal Model of a Device in Its Environment

When a thermal system is built for transient testing, it can be divided into a
“device under test” (DUT) part and a thermal environment, a test bench. In this
example the model of the DUT is simplified to two thermal resistances and two
thermal capacitances, and the thermal environment is represented by a single
thermal Ry, and a Cy, (Fig. 2.7).

DUT Cooling mount

Thermal resistances in K/W
Thermal capacitances in Ws/K

Fig. 2.7 Simple thermal model: a power device represented by two thermal RC stages, and
its thermal environment, simplified to a single RC stage. Component values of network
elements are assigned for further calculations

The temperature of the entry point (driving point) is denoted as Tj; the
temperature of the separation point is denoted as 7.

It should be emphasized that this highly simplified model resembles only
superficially a realistic device with an exposed cooling surface, which is
typically denoted as “case.” The calculated temperature of such a separation
point is related only loosely to an actual complex temperature distribution on
the case of a physical device.

As the use of “dissipation” is often ambiguous, let us denote below the Pge,
generated power by P;, and the Pg;gs dissipated power, the heat loss by Py

(continued)
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Example 2.2 (continued)

In steady state the thermal capacitances do not influence the heat flow. The
system can be characterized by a total Ryjs junction to ambient thermal
resistance, Rpyja = RI + R2 + R3.

Steady state of the device is reached when P;;, = Py, and so the T4 steady
state junction temperature is

Tyss = Pin - Rinja- (2.10)

In the case when 77 was below T, when Py, was applied, P;, > P, and
heating occurs until steady state is reached. In the opposite case, Ty > T, then
P;, < Py and a cooling process governs the system towards steady state.

In some cases, the heating process may end in a steady state where the 7; device
temperature is above the absolute maximum ratings of the semiconductor. This
thermal condition is called thermal overload.

Thermal overload results either in longtime degradation or in a sudden break-
down of the device; consequently it has to be avoided in normal device operation.
This overload, however, can be intentional for reliability/lifetime testing purposes.
By systematic reliability tests and analysis of the degradation mechanisms, the
thermally influenced safe operating area (SOA) of devices can be established. A
more detailed treatment of SOA definition is given in Chap. 6.

So far only such cases have been considered in which the input power is stable
during the transient, and the heat removal can be characterized by a constant Ry
junction to ambient thermal resistance in steady state. In Chap. 6 we examine the
transients of devices which are normally operated at constant current during the test,
and their electrical characteristics have positive thermal coefficient, PTC. This latter
term means that their voltage grows with elevating temperature at constant current
bias, resulting in an increase of their own, internal power generation.

In addition, also the temperature coefficient of the thermal conductivity can be
positive in crucial portions of the thermal environment, in the heat-conducting path.
This can result in growing junction to ambient thermal resistance at higher
temperatures.

Either one of these effects or the coincidence of them can cause thermal instabil-
ity; due to a positive feedback loop, the temperature keeps growing in the powered
state, which also elevates the power. When this situation finishes only at extreme
temperature causing fatal damage of the device, then we speak about thermal
runaway.

The effects of thermal instability and thermal runaway are treated in Sect. 6.1 for
diodes and in Sect. 6.2 for MOS devices.


https://doi.org/10.1007/978-3-030-86174-2_6
https://doi.org/10.1007/978-3-030-86174-2_6
https://doi.org/10.1007/978-3-030-86174-2_6#Sec1
https://doi.org/10.1007/978-3-030-86174-2_6#Sec10

22 G. Farkas et al.
2.3.3 Heating and Cooling Curves

With the help of the theory of linear systems, there is no need to restrict the
waveform of an actual power change. For any of them, the corresponding temper-
ature change and the relevant system descriptors can be derived easily. Further on in
this book, however, we put special emphasis on those specific power profiles, which
have an eminent role in thermal testing, namely, heating and cooling at constant
applied power for prolonged time, or applied in a periodic manner.

The time domain response of a linear system to an arbitrary excitation can be
calculated if some specific descriptive functions of the system are known. These are
the g(7) Green function, the response to a Dirac-0 excitation (approximated by a very
short pulse of known energy), and the a() response function to unit step excitation.

In case of an actual thermal transient measurement, in response to a P(f) input
power excitation of some waveform, the system will react with a 7(¢) temperature
response. For example, in the typical case when a constant power is applied to a
previously unpowered system (step function like excitation), a monotonous temper-
ature elevation can be observed until a new, “hot” steady state is reached.

Figure 2.8 shows the temperature elevation in a distributed thermal system,
composed of a MOSFET device in a common package, mounted on a cold plate.
This example will be used in further sections in this chapter to demonstrate how
structural information of the assembly can be extracted from a simple thermal
transient and how the information can be best visualized.

To a single short pulse of At length and P, “height” in power, the system will
react with a
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Fig. 2.8 Temperature change of a heated power device (MOSFET) on a water-cooled cold plate
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To(t) = At - Py - g(t) (2.11)

response. Any continuous P(f) power profile can be sliced into a sequence of short
At - P, pulses. Linearity allows superposing the responses of the system, shifted in
time as the pulses follow each other. Let us denote this series of pulses as At - P(f)
where for the different ¢; time instances Py, = P(t;). With 7 = (Ar—0), the series of
the discrete P, pulses will become a continuous P(#) function. With this, according
to the superposition principle, the 7(f) temperature change can be written as

() = / Y o(t) P(t— ) (2.12)

— 00

that is referred to as a convolution integral. Introducing the shorthand notation & for
convolution, the above relation is written shortly as 7(¢) = P(f) ® g(f). The formula
in (2.12) expresses that at time ¢, the short pulse left behind by time 7 is only present
with weight g(¢) in the current temperature value.

There are strict conditions formulated for g and P in the theory of linear systems.
These can be also expressed in ordinary terms. The P(f) excitation has started at a
certain time; the system was unpowered before that time. The retracting P(f) function
in (2.12) was zero before the start time; this can be reflected by changing the lower
limit of integration in the formula from —oo to 0.

The convolution operation, 7(f) = P(f) ® g(¢), also defines the components of
the instrumentation needed for a transient measurement. A powering unit has
to produce a P(f) power profile during the measurement time. It is applied on
the device under test, which is characterized by its g(¢) descriptive function. A
data acquisition unit has to record the 7(f) temperature response. (As g(f)
embodies the relationship between the dynamic change of the temperature
and the power, it can be considered as one possible theoretical representation
of the thermal impedance.)

An obvious consequence of the above is that transient testing provides a
direct means for system identification; the P(f) excitation and the 7(¢) response
are known, in such a way the g(#) system descriptor can be calculated:

g =Tt 'P(r), (2.13)

where @' denotes the deconvolution operation.

As in most cases no analytic solution exists for convolution and deconvolution,
the results of these can be calculated by numerical methods only. Generic
implementations of these operators are available in software libraries, MATLAB
codes, etc. The numerical algorithms for deconvolution require much sophistication
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Fig. 2.9 Cooling of a power device (MOSFET) on a water-cooled cold plate, after heating is
switched off in an abrupt, stepwise manner

and need careful considerations as advised in [58]. These considerations are typically
overlooked in generic tools.

The linear approach implies that symmetric power profiles result in symmetric
temperature changes. As a special case, heating and cooling processes are symmet-
ric, if the previously mentioned nonlinearities do not apply.

The transient temperature change as illustrated in Fig. 2.8 or in Fig. 2.9 has a huge
information content related to the structural details of the system, which is tested; but
this information is not expressed in an obvious and apparent manner. The interpre-
tation is much more evident in other equivalent representations highlighting one or
other aspect of use. We can call these representations the “views” of a thermal
transient.

In order to demonstrate the creation and use of the views, we shall present real
transient measurements on real devices in actual thermal environments in the
subsequent chapters. However, in some cases we found it more efficient to show
the results in simulation experiments because it is easier to recognize the essence of a
methodology in simplified structures. Moreover, these experiments can be easily
repeated by the reader of this book.

Some simulated experiments will use the popular LTSpice analog simulator
program [57] for analyzing both thermal and electronic properties of experimental
arrangements. In these simulations the thermal equivalent of the electrical current is
the heat flux (“flow quantity”), while the voltage carries the temperature values
(“across quantity”).
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Example 2.3: A Simple Circuit Model of a Thermal System with Three
Time Constants

A simple behavioral model of a thermal system is shown in Fig. 2.10,
corresponding to the equivalent Foster network. In an electrical equivalent,
the same current would flow through all stages in series; the voltage at the T}
driving point can be constructed as the sum of the voltage drops on the
individual stages.

The thermal equivalent circuit in Fig. 2.10 has three time constants.

Running an LTSpice simulation with the circuit model, the “PULSE”
directive forces P;, = 10 W input power at ¢ = 0 time on the junction point.
The simulation yields the 7; junction temperature transient response shown in
Fig. 2.11.

We can observe three characteristic bumps in the curve; the reason of this
will be discussed with more details in the next section.

Tj R1 R2 R3
| S| | S| | S|
. | 1 1 4
Pin
| = | | = ]
Ci C2 C3
11 Il 11
|l 1] |1
100p 10m 100m
PULSE(010 1u 1u 1u 100 100) .tran 0 10 0 100u

Fig. 2.10 Foster-type behavioral model of a simulated thermal system with three charac-
teristic time constants (z; = 100 ps, 7, = 10 ms, 73 = 400 ms)
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Fig. 2.11 Transient result from the LTSpice simulation defined in Fig. 2.10
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Real thermal systems are sometimes simplified to similar circuits of three stages
as a basic model. The first bump is interpreted as the heating of the chip with the die
attach layer as obstacle in the heat spreading, the second bump corresponds to the
heating of a package base with a thermal interface layer as bottleneck in the
spreading, and the third one represents the characteristic heating of the cooling
mount or the test environment. In the subsequent subsections, we shall present a
more mature descriptive apparatus.

2.3.4 Z, Curves

Examining Figs. 2.8 and 2.9 that present temperature transients measured on a real
packaged MOSFET device, we can observe their “bumpy” nature.

These bumps are even more expressed in the simulated transient curve shown in
Fig. 2.11 where the “system” has just three discrete time constants.

Engineering experience has proved that the structural information of the device
under test and its thermal environment is encoded into the position and size of the
bumps. In realistic measurements one can attribute the temperature change in the
millisecond range to heat propagation in the die and through the die attach, in the
second range to the cooling mount, in the minute range to heating of the circulated
water, etc. This plot, however, characterizes the heat-conducting path only at the
given powering.

The thermal conductivity and specific heat of the device components and of the
measurement environment show only minor change in the typical temperature range
of use. This implies that shifting the base plate temperature, we obtain similar
recorded curves, and altering the applied power, we obtain again similar, propor-
tionally magnified records.

Normalizing the temperature change with the applied power, we obtain the Z,
curves (Fig. 2.12). Sometimes the Zy, curve is referred to as the thermal impedance
curve.”

At this point it has to be noted that it is common in the engineering practice that
quantities which change over many orders of magnitude like time or thermal
capacitance are plotted along logarithmic axes. Still the axes are labeled with the
values of the quantity in the original, linear scale. In accordance with the customary
representation, we refer to these quantities as 7(f), Cy(Ry,), although the plot
corresponds to T(log ?), log Cyn(Ry), and so on. This also applies to the Zy, chart in
Fig. 2.12 and all subsequent similar ones.

Zy, curves are always monotonically increasing due to their definition, because a
heating curve (Fig. 2.8) is normalized with a positive and a cooling curve (Fig. 2.9) is

SIn electronics the impedance is primarily defined in the frequency domain, not in the time domain
as a step response function.
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Z,, [K/W]
7

|— 3stageFoster
6 -

10°  10* 0.001 0.01 0.1 1 10 t[s]
Fig. 2.12 Temperature change normalized by the applied power: the Z, curve of the thermal
system introduced in Fig. 2.10

normalized with its negative power step. The result is nearly the same Z, curve in the
two cases.

As a fairly accurate temperature transient for any power step can be produced if
we multiply the Zy, curves by the actual power applied, this curve is used frequently
for the characterization of the thermal behavior.

This concept of proportionality to power (i.e., linearity) is not fully accurate when
measuring realistic systems. The actual shape of a cooling or heating curve depends
on the temperature dependence of the material parameters as well. A more dominant
factor is that at increased power level and at higher temperature elevation, the
cooling mechanisms (turbulent convection, radiation) become more intensive; con-
sequently the real temperature change is lower than the one extrapolated from the
multiplied Zy, curve. As such, using Z, for temperature estimation, let us remain on
the safe side.

A deeper analysis of nonlinear effects is given in [64].

2.4 System Properties Calculated from the Thermal
Transient

2.4.1 Time Constant Spectra

In a both theoretically and practically important case, a constant P, power is turned
on and kept on the tested system for a prolonged time.



28 G. Farkas et al.

Fig. 2.13 Time response of
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For unit step powering which is zero before switching on and unit value after-
wards, based on the theory of linear systems, (2.12) will be of the form of

a(t) /Otg(x) - ldx. (2.14)

This means that the a(f) unit step response is the integral of the g(f) Green
function. Producing a power step in reality is much easier than generating extremely
short high energy pulses. Instead of directly measuring it, the g(¢) function can be
derived from the measured step response. Eq. (2.14) implies that

g(t) = d Zt(t) : (2.15)

The unit step response function, for which the traditional notation in linear system
theory is a(?), is exactly the function that is called the Z,(f) normalized temperature
transient curve in thermal engineering practice, presented earlier. In this book we use
both notations.

When a constant P,,, power is switched on at zero time, a single RC stage in
Fig. 2.10 produces an exponential growth after switching on the power, adding a
T(H) = Poy Ry - (1 — e ) temperature term to the response of the entire series of the
RC stages (Fig. 2.13). In the analogous electronic circuit, a steplike current is
switched on, and exponential voltage growth is observed at the node driven by the
current source.

The Ry, magnitude denotes the thermal resistance of an elementary stage;
T = Ry, - Cy, is the time constant where Cy, is its thermal capacitance. Adding up
the temperature drops of each subsequent stage in the series model, at the input
(in this case at the junction), we get a sum of exponential functions:

T(t):pon.znjzeml,-<1_e*f/ff>. (2.16)

i=1
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Fig. 2.14 Time constants in a lumped element system (a) and in a distributed parameter system (b)

Normalizing the 7(¢) temperature response with the P,, power, we obtain the
Zy(t) thermal impedance:

Zn(t)=a(1) = ];)E)? = zn:Rm,. (1 —e1m) (2.17)

i=1

that is nothing else than the a(f) unit step response function, introduced earlier.

Different material slices have different characteristic thermal parameters; the
resulting different Ry, magnitudes and 7; time constants make the 7(f) curve
“bumpy,” as seen in Figs. 2.8 and 2.11. The bumps are originated from the
individual time constants (Fig. 2.14a) of the system.

The system can be fully characterized by a proper number of 7; and Ry,, pairs; the
sum in (2.16) restores the exact waveform of the temperature at the driving point. As
the equation indicates, the dimension of magnitudes is K/W (kelvin/watt), and the
dimension of the time constants is second.

If the thermal system is subdivided into a large number of thin slices, we reach a
continuous model of elementary sections, forwarding energy into each other as
indicated in (2.2) and (2.3). The sum formulae in (2.16) and (2.17) take the form
of an integral:

T(f) = Poy - /O OOR,(T) (1 —e %)dr. (2.18)

Zo(t) =a(t) = T _ /0 “R(1) - (1— e Hyar. (2.19)

Pon

We can easily realize that these relationships resemble the form of the convolu-
tion integral shown by Eq. (2.12).
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Equation (2.18) corresponds to a measurement scheme again, in a similar but
not equivalent way as it was found in (2.12) before. After the test equipment
applies a Py constant power on the system under test at zero time, a measured
T(r) temperature response is recorded. The R (7) time constant spectrum is now
the characteristic system descriptor. As stated above for the discrete z; and Ry,
pairs, also the integral in (2.18) can be used for restoring the temperature
waveform.

Although the Egs. (2.18) and (2.19) seem to operate on continuous functions, the
numerical procedures to obtain them produce discretized results. The primary
parameter for the procedure is the intended Az time constant step.

Selecting small At results in a high number of RC pairs in the discretized R(7)
time constant spectrum. The corresponding Foster-type network models properly the
dynamic thermal behavior of the measured heat-flow path, seen from the 7y driving
point (Fig. 2.15). The Ry, magnitude element in the chain is composed as the product
of the R.(z;) spectrum value and the width of the z; time constant slice.

The Cy,, thermal capacitances can be calculated from the 7; =Ry, - Cy,
relationship.

Real physical objects, which are to be tested as thermal systems, obey mechanical
constraints. The heat propagates from a very thin active layer through tiny semicon-
ductor chips, which are mounted into larger packages and modules. These devices
are mounted on larger heat sinks, located in enclosures. Accordingly, thermal time
constants of an actual electronic system may range from microseconds (thermal
transient within the chip) to hours (temperature elevation of a cooling mount). For
this reason are transient curves plotted in this chapter in logarithmic time scale;
otherwise, the tiny details of early times could have been lost.

Similarly, thermal transient testers record the transients in a logarithmic time scale
in order to store the transient results in a manageable amount of data. It is reasonable

R.(t) RG)

T

_)‘ At
R, =R.(t;)-At

C

1

w =T/ Ry

Fig. 2.15 Discretized time constant spectrum with equidistant Az time constant steps and the
equivalent Foster chain
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to process these data sets in logarithmically equidistant time increments, which
correspond to a constant ratio of increments in linear time.

Introducing the z = In (¢) transformation for the time and the { = In (7) transfor-
mation for the time constants has a further advantage; it offers an easy transition
between the convolution-style system descriptor in (2.12) and (2.13) and the “sum of
exponentials” style system descriptor in (2.19).

The R, time constant spectrum® defined on a logarithmic time scale can be
obtained, indeed, in a convolution-type relationship with the first derivative of the
unit step response. That is, the

2 zn(z=1(1) = La(x) =R (2) ® wi() (2.20)

relationship holds where w, is a fixed function: w, (z) = exp [z — exp (2)]. (See
further details in [58, 59].)

Equation (2.20) tells that from the unit step response of a (thermal) system, its
time constant spectrum can be extracted by deconvolution as follows:

Re(z) = L?Za(Z)} ®~ 'w,(2). (2.21)

At this point we have to emphasize that formulating (2.19) and transforming it in
some steps to (2.21) is not aimless equation crunching; it is the essence of testing and
system identification. Eq. (2.19) corresponds to the scheme of thermal testing; the
thermal tester applies P, on the tested system and records the 7(f) temperature
response. Eq. (2.21) depicts a systematic process, which yields an R system
descriptor, fully characterizing the thermal behavior of the system.

Ry is calculated from the a(z = In (7)) system response and a fixed auxiliary w,
function.

The deep mathematical background of the calculus and the fundamental concepts
related to the time constant spectra of distributed RC systems are provided in [58—60].

The systematic use of the deconvolution which starts from the measured transient
and results in the time constant spectrum calculated by (2.21) is the broadly used
network identification by deconvolution, shortly the NID method.

The disadvantage of the Foster type of network model is that, although it is a
mathematically correct model of the transient behavior, it cannot be used for
building an equivalent of the real, physical thermal structure, because it contains
node-to-node capacitances.

In the fundamental heat transfer equation (Eq. (2.7)), the T and T, temperatures
are measured from the ambient; a Cy, thermal capacitance exists between a point
representing the material portion and the ambient as underscored by (2.1).

%1n contrast to the previous R; notation, with the index in the R, function, we indicate that this is the
version of the time constant spectrum that represents the time constant distribution on the logarith-
mic time scale.
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Accordingly, the real thermal capacitances are always connected to the ground, since
the stored thermal energy, which they represent, is proportional to the temperature
elevation of one node with respect to the reference, and not to the temperature
difference of two nodes as would be suggested by the Foster model. For this reason,
the calculated Foster model has to be transformed into a Cauer model with a standard
mathematical transformation, as outlined in [58, 61], and Annex C in the
standard [40].

In order to facilitate understanding, let us examine the above-discussed functions
of an artificial system.

Example 2.4: The Characteristic Functions of a Known System

A simple thermal system and its step response were presented in Fig. 2.10 and
in Fig. 2.12. As the system is an artificial one with exactly three time constants,
we can also produce the signal constituents with an appropriate simulation.
The circuit and its separated subcircuits are shown in Fig. 2.16.

.tran 0 10 0 100u

Fig. 2.16 Equivalent circuitry in LTSpice for producing the 7; temperature of the simulated
system and for directly providing the three constituents of the resulting curve

(continued)
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Example 2.4 (continued)

In Fig. 2.17 we present the simulated Zy, curve of Fig. 2.12 again, with the
three bumps corresponding to the time constants and magnitudes, and also the
constituting three exponential curves as Expl, (R1 = 1 K/W, 71 = 100 ps);
Exp2, (R2 =1 K/W, 72 = 10 ms); and Exp3: (R3 = 4 K/W 73 = 400 ms).

It can be observed that the Foster representation gives some information on
the nature of the Z, curve, the time constants correspond to some extent to the
position of the bump, while the magnitude refers to the curvature at that location.

Z,, [K/W]
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4
3
2
1
0
10°  10* 0.001 0.01 0.1 1 10 t[s]

Fig. 2.17 Z, curve with the three exponential components shown

If we calculate back the time constants from the simulated thermal transient
curve with the NID method; we obtain the time constant spectrum shown in

Fig. 2.18.
10" 0.01 0.4
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Fig. 2.18 Time constant spectra acquired by the NID method in the three-element lumped
element system
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Fig. 2.19 Time constant spectrum of a real distributed parameter system (MOSFET on cold plate)
calculated from the measured transient of Fig. 2.8

Real systems have many time constants forming a quasi-continuous time constant
spectrum. When discrete time constants of an artificial system are calculated in an
iterative realization of the deconvolution, they appear as peaks in the time constant
spectrum, smashed a bit around a center point, due to different inherent limitations of
any numerical process. The resolution of the results obtained by the NID method is
also limited by the noise inherently present in the signals. Even in simulated curves
(that can be extremely accurate), there is always a quantization noise present. Note
however that despite limitations of the resolution, the locations of the maxima of the
time constant spectrum such as the ones shown in Fig. 2.18 are exactly at the same
time constant values as calculated directly from the element values of the Foster-type
network model presented in Fig. 2.16. A deeper insight into the fundamental
limitations in the resolution of the restored time constant spectra is provided in [58].

Applying the NID method on the transient measurement result of Fig. 2.8, the
time constant spectrum of Fig. 2.19 was obtained.

The real distributed system (MOSFET on cold plate) consists of many elementary
portions of matter forwarding and storing energy. The result of discretization can be
observed in the plot; the time scale was split into 75 equidistant d¢ slices in logarithmic
time. Further reading on generating time constant spectra and verifying their correctness
is available in [174, 175].
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2.4.2 The Structure Functions

Discrete time constants or a time constant spectrum can be produced from a
measured 7(f) curve with the process presented so far. Still, the equivalent Foster
circuit is a behavioral model” only.

In reality however, a slight change at a material layer in an actual physical object
distorts many time constants in the chain. A physically sound approach can be based
on the equivalent Cauer model of the system where we have a chain of RC stages
with nodal capacitances, as illustrated in Fig. 2.20. In many cases elements of such a
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Fig. 2.20 Structure function: the graphic representation of the thermal RC equivalent of the system

"The behavioral nature of the Foster model can be endorsed by several arguments. As defined in
Sect. 3.1, a thermal capacitance component in the network model of a thermal system represents the
heat storage capability of a material region, lumped into a node of the network model. It describes
the temporal changes of the temperature of that node with respect to the ambient; hence, it is referred
as nodal capacitance. Accordingly, in an RC network model of a thermal system, it is represented
by a thermal capacitance between a node of the model and the thermal reference point (ambient).
Since the Foster-type models consist of parallel RC stages between adjacent nodes, neither the
thermal resistances nor the thermal capacitances in it can be associated directly to the physical
structure of the heat-flow path.

Equation (2.16) represents the Foster model in a mathematical formula. One can sum up the
constituents in any order; the way in which sequence the individual stages are placed into the chain
does not affect the overall temperature response at the junction. Based on the simple principle of
mechanics that the junction is the tiniest “part” in the heat-conducting path and then smaller
constituents are always mounted on larger ones, during the Foster-Cauer conversion, the stages
are processed in growing order of 7; = Ry, - Cyp, thermal time constants.
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model can be attributed the different portions of the heat-flow path structure;
changing the order of two RC stages in a Cauer model results in a different 7(¢)
junction temperature response. That is, a Cauer-type network model is not only
another behavioral model of a thermal system, but it is also characteristic to the
thermal system like a signature. Based on the so-called frequency domain calculus
of the linear RC networks, there are standard procedures for the Foster < Cauer
model transformations (see, e.g., Annex C of [40]).

Thus, a direct synthesis method for transforming the measured junction temper-
ature transients into a compact model of the physical structure of a complex 3D
thermal system is provided by accomplishing the deconvolution process, then
discretizing the obtained thermal time constant spectrum and converting it into a
Foster-type network model, and completing the Foster — Cauer transformation in a
sequence. An early formulation of the concept was given in [137] for analogous
mechanical problems, a modified method is presented in [136].

The obtained compact thermal model is a direct, physical representation of heat-
flow path sections in which the heat spreading occurs in a true one-dimensional (1D)
manner. Moreover, in cases where the spreading pattern can be expressed as a simple
function of a single space coordinate, introduced as essentially 1D spreading in Sect.
2.5, the physical structure can be identified in a similar way. In all cases, regardless
of the 1D, essentially 1D or complex 3D nature of the actual heat-spreading pattern,
the Cauer-type models and their further representations are the unique thermal
signatures of the physical structure of a semiconductor device package.

The first equivalent representation of a Cauer-type RC ladder model describing
the heat-flow path is a graph, called structure function (shown in Fig. 2.20).

The quantities shown on the axes in the figure are the cumulative thermal
resistance, defined as

Riz = Ru (2.22)

and the cumulative thermal capacitance

Cinz = ZCthi (2.23)

In other words, starting from the driving point (the junction), we cumulate (sum)
the partial thermal resistance and thermal capacitance values for of all subsequent
heat-flow path sections. If we interpret the cumulative thermal capacitance as
function of the cumulative thermal resistance, we obtain the structure function
sometimes called cumulative structure function, often abbreviated as SF:

SF = Cch (R[hz) (224)



2 Theoretical Background of Thermal Transient Measurements 37

The structure function is an excellent graphical tool to visualize the heat-
conducting path. In accordance with the ladder of the figure, this chart sums up
the thermal resistances, starting from the heat source (junction) along the x-axis and
the thermal capacitances along the y-axis.

In low gradient sections of the structure function, a small volume, representing
small thermal capacitance, causes large change in the thermal resistance. These
regions have either low thermal conductivity or small cross-sectional area,
or both. Steep sections in the function correspond to material regions of either
high thermal conductivity or large cross-sectional area, or both. Sudden breaks of
the slope belong to material or geometry changes.

Thus, thermal resistance and capacitance values, geometrical dimensions, heat
transfer coefficients, and material parameters can be directly read on structure
functions.

It is sometimes easier to identify the interface between the sections using the
derivative of the cumulative curve: the differential structure function. Here peaks
correspond to regions of high thermal conductivity like the chip or a heat sink, and
valleys show regions of low thermal conductivity like die attach or air. Interface
surfaces are represented as inflexion points between peaks and valleys.

From (2.6) and (2.8), we can say:

1
A A

dCus

DSF =
dRys

—eydx-a-( )71:cv~/1-A2 (2.25)

The differential structure function (frequently abbreviated as DSF) yields infor-
mation on the cross-sectional area along the heat conduction path. Further reading
on producing structure functions and verifying their correctness is available in [176,
177].

In order to show how structural changes are represented in a structure function,
we analyze below a simple artificial thermal model used in Example 2.3.

Example 2.5: The Structure Function of a Model Network

In order to demonstrate the easy usability of the structure functions, let us
consider the following, still artificial example. In Fig. 2.21 we present two
Cauer-type RC networks. The upper one is the converted Cauer-style version
of Fig. 2.10. It can be observed that the thermal resistance and capacitance
values slightly differ from the ones in the original Foster network, but based on
the linear network theory, they produce equivalent thermal response. In other
words, they have identical driving point impedance.

For making the example more plausible, we divided the three stages into
two portions again: we assigned two stages to the device model; the third
represents the test bench.

(continued)
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Example 2.5 (continued)

Identification of structural elements in a system can be best facilitated with
intentional material or geometry changes at relevant structural interfaces.

DUT Cooling mount
| Tc_wet

.tran 0 10 0 100u
Step

R2a R3a

I

|

l

- ’ c2 : | e (

1] oo 9.16m | | |96m |

| | l

PULSE(0 2 1u 1u 1u 100 100) = == == == == == == o= o= = - = = = =
Tc_dry

Rinsert R3b

Step

Cc5

9.16m

Fig. 2.21 The circuit scheme of Fig. 2.10 converted to Cauer equivalent. Two stages
represent the device model; the third is the model of the test bench. Different thermal
interface material quality is considered in the difference of the thermal resistance towards
the ambient

To demonstrate this, the circuit scheme was altered to express the effect of
different thermal interface materials between the device under test (DUT) and
the test bench or cooling mount part. The different material quality was
modeled by changing the 3.791 K/W thermal resistance towards the ambient
to approximately 8 K/W in the second circuit.

The model of Example 2.5 resembles the concept of the broadly used JEDEC
JESD 51-14 thermal measurement standard [40], also called the transient dual
interface method (TDIM), developed for the testing of devices with an exposed
cooling surface, such as packages with a cooling tab or modules with a baseplate.
This separates the device under test from the cooling environment based on two
thermal transient measurements, once on a cold plate without applied thermal paste
(“dry” boundary) and then with appropriate wetting with a high-quality thermal
paste material (“wet” boundary). This latter scheme corresponds to the actual
intended mounting of power devices.

The inserted 4.2 K/W thermal resistance for the “dry” case can be interpreted as
the thin air gap between the device and the cooling mount on a dry surface.

In the simulation example, 2 W power step was applied at = 0 to the TjW and
TjD input points. The simulated thermal transient curves are shown in Fig. 2.22.
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Fig. 2.22 Simulated temperature response of the two system variants at 2 W applied power
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Fig. 2.23 Z,, curves of the two system variants

We can see in the figure that the two curves overlap up to about 0.2 s, but after
that the junction temperature in the “dry thermal interface” case starts to increase
much faster than in the “wet” case.

The same phenomenon can be observed of course also on the Zy, curves.

The time constant spectra of Fig. 2.24 are generated from the Zy curves of
Fig. 2.23 using the T3Ster-Master standard transient evaluation tool of a thermal
tester equipment [54].

The simulated network represents a discretized system with three discrete time
constants, while real systems are always continuous ones. The thermal transient
evaluation software carries out mainly the steps defined in the previous sections.
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Fig. 2.24 Time constant spectra of the two system variants

Accordingly, it produces a continuous spectrum as defined in (2.21). A discretized
time constant set can be produced from it by identifying the position of the three
peaks and interpreting the area under the peaks as its magnitude.

There are various ways to accomplish the deconvolution process. A frequently
used methodology is based on an iterative algorithm [58]. The actual deconvolution
process resulted in the curve of Fig. 2.24 in 1000 iterative steps. Higher iteration
number would result in sharper peaks around the time constants but with the same
magnitude.

In Fig. 2.25 the structure functions of the thermal network of Example 2.5 are
shown. The steep elevations correspond to the resistive elements and the flat plateaus
to the capacitances in the Cauer-type representation. The readout of the values was
performed with manual cursor positioning in the evaluation software [54] on the
elevations and plateaus; an insignificant difference of these measured values from
the original values can be observed.

It can be observed that the curves belonging to the “wet” and the “dry” boundary
condition mostly coincide until the heat propagation in the “DUT” part in our
example of Fig. 2.21 is represented, showing the fact that the two cases differ only
in the last part of the heat-flow path.

The partial thermal resistances around 1 K/W each and the total Ry,ja junction to
ambient thermal resistance, 6 K/W for the “wet” and 10 K/W for the “dry” boundary,
can be easily identified, and so are the appropriate thermal capacitances.

In real structures the steps in the structure functions are obviously less expressed,
as demonstrated later in Example 2.7.

In Fig. 2.26 the differential structure functions of the thermal network and the
manually measured peak positions, corresponding to the highest steepness in the
cumulative structure function, are shown.

The next examples help in understanding the use of the structure functions.
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Fig. 2.25 (Cumulative) structure functions of the thermal network in Fig. 2.21. The steep eleva-
tions correspond to the resistive elements and the flat plateaus to the capacitances in the Cauer-type
representation
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Fig. 2.26 Differential structure function of the thermal network in Fig. 2.21. The peak positions
correspond to the resistive elements in the Cauer-type representation

Example 2.6: Analysis of the Heat Transfer in a Homogeneous Rod

A homogeneous rod with thermal boundary conditions is shown in Fig. 2.27.
This rod can be considered as a series of infinitesimally small material sections
as discussed above. Consequently, its discretized network model would also

(continued)
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Example 2.6 (continued)

be a series connection of the single RC stages as shown in the figure. Thus,
with this slicing along the heat conduction path, we create a ladder of lateral
thermal resistances between two thermal nodes, and thermal capacitances
between a node and the ambient.

Homogeneous Adiabatic Ideal heat sink
heating power surfaces atT,.,
density at the
top surface 7
/ A Ry, = dx/(A-L)
1D heat- o—-|:| |—o .
flow ] |:> Ambient
“ V = A-dx £ Cy = Ve,
LA b
H_J am
dx
- /)

Driving point @ Ambient
} !
r7 171717 17 17T 17T 17717 717 T T

Fig. 2.27 The RC model of a narrow slice of the heat conduction path with perfect
one-dimensional heat flow and the Cauer-type network model of the thermal impedance of
the entire heat-flow path

Since homogeneity is assumed, the ratio of the elementary thermal capac-
itances and thermal resistances in the network model shown in Fig. 2.27 is
constant. This means that the structure function of the rod is a straight line — its
slope is determined by the Cy /Ry, ratio of the network model and its differen-
tial structure function would be a constant — equal to the Cy/Ry, ratio of the
element values, as shown in Fig. 2.28.

This rod example demonstrates that the features of the structure functions
are in a one-to-one correspondence with the properties of the heat
conduction path.

Let us assume that in a given section in the middle of the rod, the Cy./Ry,
ratio is doubled. This results in a steeper middle section in the cumulative
structure function (with the slope doubled) and in a peak in the differential
structure function (which is twice as high as the constant value of the other
sections). This is illustrated in Fig. 2.29.

(continued)
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Example 2.6 (continued)
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Fig. 2.28 The cumulative and differential structure functions of a homogeneous rod
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Example 2.6 (continued)

Obviously, this “doubling” of the Cy,/Ry, ratio can be the result of reaching
a material section with different A or ¢y material parameters, or of larger cross-
sectional area.

This discretized model offers a way to determine the thermal behavior of
the rod. At any driving point excitation, an analog simulator tool, e.g., [57]
solving the response of the RC ladder yields the temperature of any point
within the rod, as it varies in time.

It is important to notice that there is no one-to-one correspondence between the
number of material layers in a laminate structure and the number of time constants
assigned to the system. Strictly taken, a homogeneous rod also has an infinite
number of time constants, which can be calculated with (2.21). In the frequent
case, however, when a material stack is composed of bulky layers of high conduc-
tance and thin layers of low conductance, a few characteristic time constants can be
identified from the capacitance of the bulky layers and the resistance of the thin
layers. A Cauer — Foster backwards transformation yields the major time constants
from the identified thermal resistances and thermal capacitances.

Still, when the smallest thermal time constant of a system is to be ascertained, a
generally good estimation can be the thermal capacitance of the chip multiplied by
the thermal resistance of the die attach layer.

The RC chain normally starts with a capacitance, in order to avoid a temperature
elevation of infinite steepness as a response to a sharp power step. An alternative
composition of the Cauer ladder is proposed in [9]; at higher number of constituents,
that approach is equivalent to the scheme outlined in Fig. 2.29.

Due to its simplicity, the heat spreading problem in the homogeneous rod has
known solutions also in the continuous approach. The heat equation which was
presented in various forms from (2.3) to (2.5) can be solved for any x position along
the rod at any ¢ time. In [1], Fourier used — not surprisingly — the Fourier method, and
found that the solution for the T(x, f) at any P(#) excitation is a sum of trigonometric
functions on x multiplied by exponential functions on .®

8 An alternative powerful methodology for solving differential equations of this kind is using the
Laplace transform. This technique transforms the time-dependent equations into the s complex
frequency domain, finds their solution there, and transforms the result back to time domain.
Notably, the Fourier and Laplace transforms convert not only functions but also operations. The
convolution of two functions in time domain is converted into a simple product of the transformed
functions. Calculation of a temperature response on a complicated P(f) function in the convolution
integral of (2.12) can be effectively simplified by converting the g(f) and P(¢) functions into
corresponding g’(s) and P'(s) functions in the complex frequency domain, and then converting
their g(s) - P'(s) product back to time domain. A useful table of Laplace transformed forms of a
bunch of functions can be found in [4].

The procedure of the Foster to Cauer-style conversion of RC circuits is also formulated in the
s complex frequency domain in Example 2.1 and in Annex C of the measurement standard [40].
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In the actual example, Figs. 2.28 and 2.29 represent a case with steady heat flux at
the driving point side of the rod (Neumann boundary condition of heat transfer) and
steady temperature on the ambient side (Dirichlet boundary condition of heat
transfer). Solving the equation for the driving point, we get the already known
sum of exponentials as outlined in (2.16) and (2.17).

A more compact analytical solution can be gained with further simplification of
the problem. A result of practical importance was introduced in [18] followed by
[62] and is used in [40].

Let us apply a Py power step on a rod of infinite length, that is, long enough in the
sense that its far end remains at ambient temperature for the intended time of
investigation. Solving the heat equation in the complex frequency domain at these
boundary conditions [62], obtains for the time dependence of the Ty temperature of
the driving point:

P
ATy(1) = XO Kiherm - V1 (2.26)
where the kyerm 18
2va 2 (2.27)

k = =
them = VT I -cy A

The thermal diffusivity a used in (2.27) again was defined as a@ = A/cy formerly at
Eq. (2.5); it is the measure of thermal inertia. In a material of high thermal
diffusivity, heat moves rapidly, and the substance conducts heat quickly relative to
its volumetric heat capacity.

In practical constructions where the heat generates in a thin “junction” layer on
the top of a block of homogeneous material, and starts spreading in that block, the
initial section of the temperature transient can be precisely approximated by a
square-root-time function.

When the heat spreading reaches the other end of the homogeneous block, then
the temperature change takes another shape.

If the homogeneous block is of d thickness conditions, [62] claims that the
square-root rule remains valid for short early times of ¢, duration:

d2

t -
VS 2

(2.28)

Several thermal properties of typical materials used in the construction of power
devices are listed in Table 2.1 (silicon at 25 °C and 125 °C, copper, solder die attach
material).

It has to be noted that very thin layers of high thermal conductivity add a very
small portion to the temperature elevation of a laminate composed of layers of
several constructional materials. In these cases, the “square root of elapsed propa-
gation time” style elevation of the temperature belonging to the next layer can be
observed in measured thermal transients.

Table 2.2 lists the valid duration for the square-root-time approach for different
materials and die (block) thickness. In the table typical semiconductor and die attach
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Table 2.1 Thermal properties of typical materials in power devices

G. Farkas et al.

ATW/mK] | ey I/m°K] | @ mm%/s] | kperm [M2K/WNS] | kiherm [Mm>K/WAs]

Si@25°C | 125 1.60-10° 78.3 7.99-107° 79.9

Si@125 °C | 100 1.60-10° 62.7 8.93.107° 89.3

Die attach 70 1.66-10° 421 1.05-107* 104.6

Cu 390 3.40-10° 114.9 3.10-107° 31.0

Table 2.2 Valid duration ty Si@25 °C | Si@125 °C Die attach Cu

values for the square-root-

. d [mm] t, [ms]

time approach
0.1 0.063 0.056 0.048 0.161
0.3 0.56 0.50 0.43 1.45
0.5 1.56 1.40 1.20 4.03
1 16.1
2 64
4 258

layer thickness values are shown. Copper is used in very thin layers on printed
boards and direct bonded copper (DBC) constructions, and also as bulk material in
cold plates. The table helps assigning the subsequent homogeneous spreading
regions which can be observed in measured transients to material layers, based on
the time range where the square-root-type temperature change occurs.

Example 2.7: Structure Functions of a Real Device

In Fig. 2.30 structure functions of a MOSFET device on a cold plate are
shown. This assembly has been used in the former sections as an example for a
distributed thermal system.
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F .
0.01
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Fig. 2.30 Structure functions of a real distributed parameter system (MOSFET on cold
plate, different TIM qualities) with characteristic Ry, and Cy, values

(continued)
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Example 2.7 (continued)

Curve MOS_cp was derived from a thermal transient test when the
MOSFET device was mounted on a water-cooled cold plate wetted by a
high-quality thermal paste. From the cooling curve (Fig. 2.9), the NID meth-
odology produced 160 RC stages in 1000 iteration steps; these are represented
in the time constant spectrum of Fig. 2.19 in a quasi-continuous manner,
without displaying each z value separately. The Foster — Cauer transforma-
tion converted these into other 160 RC stages, for which the first 100 are
shown as blue dots in Fig. 2.30. The remaining 60 stages are in the 1000 J/K to
10*® J/K thermal capacitance range and are not displayed because they are not
relevant for the actual study.

In order to distinguish between the device and the test environment, the
transient measurement was repeated inserting a ceramics sheet of 2.5 mm
thickness between the device package and the cold plate. The transient mea-
surement and the subsequent structure function calculation resulted in curve
MOS ins cp.

This comparison of two structure functions of a device measured at differ-
ent boundary conditions can be used for deriving standard thermal metrics, as
expounded in Sect. 3.1.2 and standardized in [40]. A deeper analysis of
structural details which can be recognized in the structure functions will be
given in Sect. 7.1 in Example 7.1.

It can be observed that Zy, curves in previous figures do not disclose too much
details of the structural composition; practically only the junction to ambient thermal
resistance value or with multiple boundary conditions an approximate partial resis-
tance until a divergence point, also called bifurcation point, can be read in them. The
reason is that the equivalent thermal RC network of the system behaves as a low-pass
filter; the sharp power step at its input is converted into the smoothed bumps of the
thermal impedance function. On the other hand, the deconvolution algorithms,
which produce the structure functions, are closely related to the image enhancement
procedures which recreate lost fine details in a blurred picture.

In structure functions many details can be distinguished along with their partial
thermal resistance and capacitance value. Still, it has to be mentioned that the
structure function analysis is not a fully automated (“black box”) technique.

There are three ways to assign actual assembly components to sections in the
structure function. These are:

» The manufacturer of the device may know all internal geometries and material
parameters. In such a way, a “synthetic” structure function can be built up, for
example, superposing slices of material with given thermal resistance and capac-
itance in a spreadsheet tool, and comparing the measured structure functions to it.

* An approximate model can be built up in a finite element or a finite difference
simulation tool, such as [56]. Thermal transients can be simulated in the tool and
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structure functions can be composed of those. Geometry and material parameters
can be fine-tuned until the simulated and measured structure functions match.

* Measured structure functions can be compared to an already identified “golden
device.” This technique is advantageous in production control.

In the case of Example 2.7, it was easy to measure the external dimensions of the
standard TO-220 package which hosts the semiconductor chip. The size of the chip
was determined by sectioning the package after the transient test. The assignment of
the parts of the structure function to internal details of the same package is presented
in Example 7.1 of Chap. 7, Sect. 7.1.

Without this thorough analysis, some characteristic portions of the assembly can
be identified in the plot. The structure functions perfectly coincide until 0.6 K/W
thermal resistance and 0.178 J/K thermal capacitance, hinting that until this point the
heat propagates within the packaged device and the different TIM quality still did not
affect the spreading.

The deeper investigation given in the example proves that the first section of the
structure functions until 0.27 K/W and 8 mJ/K can be identified as a small silicon
chip in the package and the die attach. The next section with 0.33 K/W partial
thermal resistance and 0.17 J/K thermal capacitance can be attributed to the heat
spreading in the copper tab of the package.

Beyond the identification of the structural elements within the package and the
junction to case thermal resistance, also the thermal conductivity of the ceramics can
be calculated from the chart. The inserted sheet with its 2.5 mm thickness added
0.84 K/W to the total junction to ambient thermal resistance. The effective cross-
sectional area of the heat spreading was limited to the copper surface of the tab,
which was 13 mm x 9 mm. According to (2.6), it follows from these geometrical data
that the thermal conductivity of the ceramics is 4 = 25 W/mK, a plausible value for
sintered alumina material.

The structure function types introduced so far correspond to a one-dimensional
mapping of the change of thermal resistance and thermal capacitance along the heat-
conducting path. They depict how these local thermal quantities attributed to a
section in an assembly change while advancing in the structure from the junction
towards the ambient.

The (cumulative) structure function Cys(Ry,x) demonstrates the growth of the
total cumulated thermal capacitance as a function of the total thermal resistance
along the heat-flow path. In an alternative view, the differential structure function
dCy,s/dRys(Rys) was introduced, representing the change of the ratio of the thermal
capacitance and thermal resistance, versus the total thermal resistance.

In both representations the thermal properties of structural elements can be
identified; these carry the same information; still certain features are more percep-
tible in one or other form. For example, material interfaces induce a change of
steepness in a cumulative structure function, but in its typical logarithmic portrayal,
this change may become less apparent. The differential structure function enlarges
these differences as obvious local maxima and minima, forming peaks and valleys.
Volumes can be best measured in the cumulative version; material interface
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locations are often attributed to inflections in the differential one. In other words, the
cumulative structure function gives answers on questions of “how much is what we
look for?” the differential function rather identifies “where is what we look for?”.

2.4.3 The Local Thermal Resistance Function

Some structural elements in an electronics assembly are of well-defined geometry
and highly repeatable material properties. Such components are the semiconductor
chips and the metal or ceramics parts of the package; their structure is stable in the
manufacturing process and later during their lifetime.

As opposed to the above well-defined structural elements, the layers that connect
them, the thermal interface materials (TIMs), may show high scatter. Solders and
adhesives can be of different thickness and sometimes also of different structure after
manufacturing, because of variations in processing steps and heat treatments. Ther-
mal pastes change also later, depending on applied pressure and temperature fluctu-
ations in the normal use of an assembly.

One can observe that the stable constituents are of higher thermal conductivity,
resulting in lower thermal resistance. The TIM layers are often very thin, and they
add accordingly a smaller portion to the thermal capacitance of a stack; still they
contribute a large thermal resistance.

An important aim of structure testing is to find the location of the critical parts of
high variation in the structure and to follow their change. A way to magnify the
differences in the Ry, values along the heat-conducting path can be drawing local Ry,
values as function of the cumulated thermal capacitances.

This Ry (Canx) local thermal resistance function is also a graphical representation
of the Cauer ladder: on the horizontal axis, the sum of the Cy, elements and on the
vertical axis the next Ry, element of the chain are shown.

The Cyy values grow monotonously from the origin of the heat towards the
ambient. Due to the steadiness of the stable components and the low share in the total
thermal capacitance of the TIM layers, the horizontal axis can be considered to
correspond to the geometrical location.

Figure 2.31 presents the local thermal resistance functions of four packaged LED
samples, soldered to aluminum starboard and mounted on a temperature-controlled
cold plate. Sample 1C_W has a serious delamination problem, which can be identi-
fied as a high thermal resistance peak in the 0.2 mJ/K-30 mJ/K range of the local
thermal resistance function.

A further example on the use of the local thermal resistance function is presented
in Sect. 7.1, Example 7.3. The die attach delamination problem in Fig. 2.31 is treated
in depth in Example 7.4.
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Fig. 2.31 Local thermal resistance functions of packaged LED samples on a temperature-
controlled cold plate. Sample 1C_W has a serious delamination problem, as it can be observed in
the Cys = 0.2 mJ/K-30 mJ/K range

2.5 Heat-Spreading Patterns in Regular Geometries
and Their Appearance in the Structure Functions

In this section we examine some practical cases in which different heat-spreading
types can be recognized in the structure functions.

Heat Spreading in a Generalized Tube, Essentially 1D Heat Spreading

Numerical methods can solve the equations of heat spreading for arbitrary shapes
and material composition. In the first 150 years of the 200-year history of studying
the laws of heat spreading, only analytical methods were available. They can still be
used very effectively even today because they yield universal solutions; inserting a
few parameters describing the geometry and the material properties, the results are
instantly available.

The thermal resistance is always to be measured between two isothermal surfaces
in a solid body. In many practical cases, the body can be constructed as a “tube” or
“beam,” with a surface of varying cross-sectional area shifted along a line or curve
(Fig. 2.32).

If the area of the surface is A(x) at position x on the curve, then the thermal
resistance of a short dx section is dRy, = (1/4) - (1/A(x)) - dx, and the added thermal
capacitance of the section is dCy, = ¢y - A(x) - dx. Both dRy, and dCy, are to be added
to the cumulated quantities summed up until the point where the dx section started.

Between points xy and xi, the increase of the thermal resistance and thermal
capacitance can be calculated as
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Fig. 2.32 Two isothermal Surface 1
surfaces connected by a heat
flux tube Pin
Surface 2
Pout 1

X1 1 X1
Ry = /dR_/XO mdx and Cy= /dc_/xo evA(x)dx (2.29)

As suggested by the formulae in (2.29), for the heat transfer in a structure shown
in Fig. 2.32, the spatial distribution of both the thermal resistance and the thermal
capacitance can be represented as a continuous function of the same independent
variable. If this is the case, one can say that the heat spreading in the investigated
region is one dimensional (see the example of a homogenous rod shown in Figs. 2.27
and 2.28) or essentially one dimensional, as discussed below. If the actual depen-
dence of the thermal resistance and thermal capacitance on that common indepen-
dent variable is known, then the Cy,(Ry,) relationship, i.e., the structure function, is
also known, in certain cases given also by analytic formulae.

The Classic 1D Solution: 1D Longitudinal Spreading

As already analyzed in previous sections, the solution of (2.29) is obvious when the
area of the isothermal surfaces is constant between the starting and final positions.
The object can be considered to be a block or a cylinder, not necessarily a right
circular one.

Such a cylinder can be a stand-alone object with a heater on one of its base
surfaces, but can also be interpreted as a cylindrical protrusion on a larger object,
which emits heat flux into a base surface (Fig. 2.33).

The thermal resistance and capacitance along an L length between xy and x;
positions can be calculated inserting the constant A area as

1
Rth(L) = M . L, Cth (L) = CvA -L (230)

Expressing the L length from the first formula and inserting it into the second, we
get the analytical expression for the structure function of a cylindrical body:
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Fig. 2.33 Longitudinal heat spreading in a cylindrical object with constant A isothermal
surface area

1

L= m'Rth, C[h(Rth):)«'CV'AZ 'Rth (231)

The differential structure function is dCy/dRy = 4 - ¢y - A” again, but this formula
is always valid as previously shown in (2.25).

The Classic 2D Solution: Essentially 1D Radial Spreading

When a smaller heat source is mounted on a heat spreader plate of w thickness, then
the heat propagates radially, with concentric isothermal surfaces around the heater
position, at least after a certain distance from the position of a heater.

Such a situation can also be represented as a sort of one-dimensional heat
spreading, requiring only a transformation of the spatial distribution of the thermal
resistance and thermal capacitance to a radial coordinate system. Those cases of heat
spreading when a similar transformation from a single space coordinate to another
unique space coordinate is possible are considered essentially one dimensional.

In a hollow cylinder defined by annular base and w thickness, the dRy, and dCy,
increases can be formulated easily again.

As Fig. 2.34 hints, at radius x the perimeter of a ring is 2zx; thus, in a layer of
thickness w, the isothermal lateral surface area around the ring is A(x) = 2zxw.
Adding a thin annular shell of dx infinitesimal thickness to the propagation profile,
the lateral thermal resistance growth will be dRy, = 1/[A - A(x)] - dx, and the growth in
the thermal capacitance when adding an annulus to the existing profile will be
dCyq = cv - A(x) - dx.

Integrating between x, and x; positions, one gets for Ry,

S B 1 %
Rth_/m Towoan = A-w-zn'ln(x?) (2:32)

and for Cy,
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Fig. 2.34 Radial heat spreading in a plate of w thickness
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Fig. 2.35 The perimeter of various 2D profiles can be calculated as a characteristic “feature size”
b multiplied by an s, ratio. For the circle (a), the ratio is s, = 2, for the square (b) s, = 4, while for
an arbitrary rounded rectangle (c) such a ratio cannot be given easily

X1
Cch/ ey w-2m-x-dx=cy -w-x-(x]—x3) (2.33)

X0

In (2.33) one can recognize the area of the annular base as 7 - (x} —x3). The
descriptive formulae for the change of thermal resistance and thermal capacitance
are analogous to (2.32) and (2.33) also in other similar cases, when the spreading
occurs in a material sheet of w thickness on profiles of geometrical similarity along a
radial coordinate x in a polar coordinate system. The 2z ratio between the perimeter
and the radius of the circle will be replaced by a different s, factor for other profiles
characterized by a b “feature size” (Fig. 2.35).

An example for spreading in circular sectors of growing radius is shown in
Chap. 3, Sect. 3.1.2 (Example 3.1 and Figs. 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8).

Expressing x; from (2.32) and inserting it into (2.33) in two steps, one gets:

-i_] :eﬂ-wQﬂth (234)
0
2
Cp=cv ~w~ﬂ~x2(; — 1> :cv~w-7r~x% . (64”1‘W'R“‘ — 1) (2.35)
0

The (cumulative) structure function is typically plotted in a lin-log coordinate
system as exposed in Sect. 2.4.2.

At larger radii of the heat spreading where x; >> x, the In(Cy,(Ry,)) function will
become a straight line, as (2.35) indicates.
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Equation (2.35) is of D - exp.(4 ® A w Ry,) form; thus
ll’l(C[h) = ll’l (D) + 477)v W - R[h (236)

Taking two points of the structure function plot on a straight section of the
In(Cy(Ry)) function:

ln(Cth2) — ll’l(C[hl) =1In (C[hz/cthl) =47i-w- (Rch — R[hl) (237)
and A can be determined as

1 In(Cao/Cuni)
Aow=—. .~/ ) 2.38
i (Rw2 — Run1) (2.38)

An example of determining the thermal conductivity of a substrate based on
(2.38) is presented in [65].

The Classic 3D Solution: Essentially 1D Conical Spreading

A coordinate transformation can also map a true three-dimensional heat spreading
into a corresponding one-dimensional one, if the isothermal surfaces of the spread-
ing conform the principle of similarity. In these cases the A(x) surfaces along an
x space coordinate grow with a scale factor, or ratio of similarity. For simplicity let us
denote the constant scale factor as K.

For determining the scale factor of surfaces in space, first consider a cross section
of two typical spreading patterns as shown in Fig. 2.36.

Figure 2.36a corresponds to the spreading in a truncated cone, or truncated
pyramid, a standard concept of heat spreading, which is broadly treated in textbooks
and also in the literature [60, 65]. In the figure the length of the y vertical sections is
always proportional to their distance from the origin, y(x) = m - x; the parameter m is
the slope of the y(x) function. The area of the flat surface will be A(x) = yzn =m’x’n
if the isothermal surface is circular and A(x) = 4y* = 4m>x” for a square surface. In

Fig. 2.36 Similar triangles and circular sectors characterized by a 1D growth parameter m
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Fig. 2.37 Heat spreading in a “generalized cone,” through isothermal surfaces characterized by
similarity

both cases the surface grows with an A(x) = K - x* formula. K can be also interpreted
for other shapes, too, like the ones in Fig. 2.35c.

The formulae remain of the same style for spherical spreading, depicted in
Fig. 2.36b. In this case a similar m scale factor determines the ratio of the y arc
length and the x radius. In geometry m is called central angle, expressed in radians.

For a full sphere, y = m - x = 2mx and A(x) = 4x’x. For an m < 2 central angle
value, the surface of the spreading is proportionally smaller:

A(x) =4 - (%)2: m72x2 (2.39)

which is a K - x* formula again. Analogous formulae depict the growth of the
isothermal surfaces of arbitrary shape as illustrated in Fig. 2.37.
The integral between x, and x; positions yields Ry, as

o 1 11
Rth—/xU e et=rr (5 x) (240)
and Cy, as
X1 .
Co= [ vkt edn= K () (241)

X0

It can be observed that this generalized “conical” spreading scheme corresponds
to several realistic heat propagation patterns, including cones and pyramids.

Selecting the appropriate K scale factor the heat spreading can be calculated in a
dome, starting from a small spot in an infinite half space, which is a valid approx-
imation for chips with a hot spot, or bulky heat sinks farther from the mounted
device. Similarly, in a larger distance from the actual investigated thermal system,
the spreading in the ambient can be considered spherical, obeying (2.40) and (2.41).
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The “factor of 1/3” in (2.41) is justified by geometrical considerations, the volume of
a cone or pyramid is a third of the enclosing cylinder or block, and the volume of the
dome or sphere is two thirds of the circumscribed cylinder. These ratios can be well
recognized in actual measured thermal capacitances in real structure function.

In a 3D spreading, the “actual position to ambient” thermal resistance is of finite
value; (2.40) yields for “infinite” conical and spherical spreading, from position x,
towards the ambient Ry,yo = 1/(AKxp). For truncated cones and pyramids, and for
spherical shells, (2.40) provides the textbook formula of

1

Rth(L):le()bl

L (2.42)

where by and b, are the measured “feature size” at the beginning and at the end of the
generalized “cone.” As defined in Fig. 2.35, b is the radius of a circular shape and
half of the edge for a rectangle; K is = for the circle and 4 for the rectangle. It can be
seen that (2.42) describes the heat propagation over growing surfaces along an
x coordinate as a “generalized rod” where the surface in (2.30) is replaced by the
product of the linear by, b; dimensions at the beginning and at the end. Still, the
junction to ambient thermal resistance remains finite, as the L/b; ratio converges to
the constant m factor for large lengths.

Further research results on the spreading shapes are published in [66, 67, 139].

As illustrated in Fig. 2.38, in real package structures, one often finds actual heat-
flow paths with different sections that can be characterized with 1D or essentially 1D
heat-spreading patterns discussed above.

In summary, we can state that in many cases, there is a one-to-one correspon-
dence between the physical sections of the junction-to-ambient heat-flow path and
the structure functions. There are cases, however, where there is a real, complex
heat-spreading pattern within a package where one cannot identify any dominant
heat-flow path. In such a situation, the structure function (as one of the representa-
tions of a junction-to-ambient thermal impedance) is the thermal signature of the

The as heat source

IDEAL HEAT-SINK (cold plate) as ambient

Fig. 2.38 Real package structures often can be represented as a series of different heat-flow path
sections characterized by (essentially) 1D heat spreading
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Fig. 2.39 Structure functions can be considered as “1D projections” of complex 3D heat-spreading
patterns like X-ray images are 2D projections of three-dimensional bodies

system; it can be considered only as a one-dimensional “projection” of the complex
3D pattern. Note that this signature is still perfectly applicable to test the integrity of
the structure.

Measuring the thermal impedance of such packages on cold plates helps
un-blurring the image, though the heat is directed mainly into one major path,
towards that surface of the package that is in direct contact with the cold plate during
the test, while all other surfaces of the package are thermally isolated. Changing the
test setup such that another surface of the package is in contact with the cold plate
while the previous one is thermally isolated from the ambient directs most of the heat
into another path.

The structure functions obtained this way are somewhat similar to one’s taking
X-ray images from different directions, as illustrated in Fig. 2.39. Thermal “CAT-
scan images,” though, cannot be constructed from measured junction temperature
transients.

The DELPHI methodology [68] defines four different boundary conditions with
various high and low heat transfer coefficients on different package surfaces for
validating simulated package models by measurements. The actual boundary con-
ditions are presented in Chap. 7, Sect. 7.7.3.

2.6 The Concept of the Heat Transfer Coefficient

In the previous section, the thermal properties of structural elements were formulated
in Egs. (2.30)~(2.42), and more generally in (2.29). The thermal resistances were
calculated assuming that the geometry of the heat-conducting path is known in
details.
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Table 2.3 Typical values of Convection type 7 [W/m2K]
convective heat transfer -
R Air, free 2.5-25

coefficient
Air, forced 10-500
Liquids, forced 100-15,000
Boiling water 2500-25,000
Condensing water vapor 5000-100,000
Surface of a cold plate 1000-5000

In many cases it is more practical to use the concept of the 4 heat transfer
coefficient, the proportionality factor between the ¢ heat flux through and the AT
temperature between two isothermal surfaces.

The h coefficient is in common use as a thermal figure of merit of commodities
manufactured in specific thickness and composition. It is widely used for TIM sheets
or coatings in electronics or similarly for characterizing thermal insulation or glazing
in building industry.’

Another field of use is to characterize the termination of the heat-conducting path
in an assembly. In case of convective cooling, many formulae are used for deter-
mining the cooling capability of a gas or fluid flow on a solid surface. The formulae
are mostly empirical and take into consideration the nature of the fluid flow (natural,
laminar, turbulent flow) and material-related coefficients (Prandtl, Rayleigh, Nusselt
numbers, etc.). Table 2.3 lists approximate heat transfer coefficients for some
convective cooling solutions used in power electronics. Boiling water and vapor
condensation were included in the table because of the growing importance of heat
pipes in electronics cooling.

As the heat transfer coefficient is defined as & = ¢/AT, the thermal resistance of
an inserted material or a heat exchanger of A surface can be calculated as

.

Rth:h'A

(2.43)

2.7 Driving Point and Transfer Impedances: Self-Heating
and Transfer Heating

So far only such cases were investigated where a single point was heated, its own
temperature was measured, and the whole system was reduced into a single thermal
RC network model. There are many practical situations, however, where (due to
different reasons not discussed here) one cannot measure the temperature response at
the same location where the heating was applied. Typical examples are laterally
arranged multi-die packages (such as illustrated in Fig. 2.40), stacked die packages,

°The heat transfer coefficient is denoted as U or K factor in the building industry.
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Fig. 2.40 Axonometric Monitoring points ~ Heat source 2
view of the major parts of a

package of a dual-chip
power device with two heat
sources (driving points) and
three temperature
monitoring points.

Ty, T,, and T; represent the
temperatures of the two
chips and the temperature of
one of the pins of the device,
respectively

Heat source 1

thermal test chips [32], LED packages with multiple LED chips, or PCB-assembled
LED modules with a thermal test point on the board. In case of a multi-die package
or an RGB LED module one is interested, how the heat dissipation of one semicon-
ductor chip affects the temperature of the other dies in the system.

To allow a proper distinction and precise description of such cases, the concepts
of driving points and temperature monitoring points were introduced in the technical
literature [69].

The driving points are the locations of the heat sources in the system (i.e., the
junctions of the chips).

The temperature monitoring points are the locations where the temperature
responses are measured.

In most practical cases, as in the examples discussed previously, the junctions of
the chips are both driving points and temperature monitoring points. The thermal
impedance obtained from measurements when the power step is applied and the
temperature response is captured at the same location is called driving point thermal
impedance or self-impedance in short.

When the driving point and the temperature monitoring point are separated in
space, the thermal impedance obtained is called thermal transfer impedance, in this
book also referred to shortly as transfer impedance.

Example 2.8: Self-Heating and Transfer Heating in a DDR RAM
Module

As an example for the driving point and transfer impedances, a DDR RAM
module, mounted into the socket of a PC motherboard, was simulated. Apply-
ing 0.2 W power on the internal device Chip1 in the leftmost RAM package
RAM 1, the temperature distribution, which develops on the module surface in
steady state, is shown in Fig. 2.41.

(continued)
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Example 2.8 (continued)

30 mm

30 50 70°C

Fig. 2.41 Simulated temperature distribution in a DDR RAM module in PC socket, 0.2 W
applied on the leftmost RAM package RAM 1

As a further example, Fig. 2.42 presents the simulated transients on the
internal chips in Chipl, Chip2, and Chip8 encapsulated into packages
RAM 1, RAM 2, and RAM 8. The self-heating curve of the driving point
Chip1l starts growing at early time, a delay of 1.1 s can be observed in the
transfer curve of Chip2, and it takes nearly 10s until the heat propagates
towards monitoring point Chip8.
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Fig. 2.42 Simulated temperature response of the DDR RAM module in PC socket, 0.2 W
applied on the leftmost RAM package. Transients at the driving point Chipl and monitoring
points Chip2 and Chip8 are shown
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Fig. 2.43 Self-impedance curves Tjd and Tjw and transfer curves Tc_dry and Tc_wet of the
two simple Cauer models represent the dry and wet boundary conditions in Fig. 2.21 of Example
2.5. The naming of the curves corresponds to the node names in the model

Physical considerations imply that the temperature response at a single driving
point is always monotonous; the temperature constantly grows when power is
applied and decreases when it is revoked. Similarly, also transfer curves remain
monotonous if the structure is nearly one dimensional between the driving point and
the monitoring point.

The simulation of the two simple Cauer-style models in Fig. 2.21 of Example 2.5
yields the Zy, curves of Fig. 2.43. The curves denoted with Tjd and Tc_dry
correspond to the simulated self-impedance and transfer impedance of the model
at dry boundary condition, represented by higher thermal resistance from the internal
Tc_dry location towards the ambient. The curves Tjw and Tc_wet show the
results for the wet boundary condition.

The propagation delay between the driving and the monitoring points is charac-
teristic to the transfer impedances; it is approximately 10 ms in this assembly.

The propagation delay in the time domain curves of the transfer impedances
results in some negative magnitude values in the time constant spectra.

The monotonous nature of the transfer curves cannot be assured in systems with
multiple heat sources or multiple heat-conducting paths within the thermal system.
The root cause of this non-monotonous behavior and its practical conscequences will
be treated in detail in Sect. 3.5.

A thermal system with multiple driving points and temperature monitoring points
(such as a multi-die system; see Fig. 2.44) can be fully represented if all its possible
self- and transfer impedances are known, i.e., all of these thermal impedances are
measured or simulated.

On the right side of Fig. 2.44, the Z}; and Z]*k symbols representing all possible

thermal impedances are arranged in a matrix. In [69] such matrices are called
thermal transfer impedance matrices. This is the dynamic extension of the concept
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Zl3 Z23 Z33

Fig. 2.44 A substrate with three heat sources (i.e., driving points) that are also used as temperature
monitoring points and the illustration of the corresponding self- and transfer impedances

of the thermal resistance matrix introduced among others in [70]. Nowadays such a
matrix is called thermal characterization matrix when steady-state values are
included in the matrix (usually denoted by Ry,) or dynamic thermal characterization
matrix (usually denoted by Zy;, ) when thermal impedances are therein. The features
and issues related to these thermal characterization matrices will be discussed later in
Chap. 3 dealing with the so-called thermal metrics.

Note that the elements included in these thermal characterization matrices do not
represent the element values of a so-called multi-port compact thermal model of a
multi-die system. Steps of obtaining a steady-state thermal model from the Ry,
matrix are described, e.g., in [71]; an application for dynamic compact thermal
modeling of digital IC chips based on the Zg matrix is described in [72].

2.8 System Descriptors for Periodic Excitations

Power electronics applications are mostly exposed to periodic excitations. Some
appliances, such as motors, generators, or the input side of power supplies, are
directly connected to the power grid, which operates at sinusoid alternating current.
Other applications, such as car and locomotive electronic traction control units
(ECUs), PWM controls in LED lighting, and internal circuitries of switching
power supplies, operate at pulsed direct current.

It was stated in the previous sections that the linear network theory enables the
calculation of the system response on arbitrary excitations from the measured step
response. The methodologies offered by the linear approach are particularly suitable
for directly deriving system responses on periodic excitations.

Below two cases of practical importance are discussed. First, the concept of the
complex locus, a system descriptor that enables the direct production of the response
of a thermal system on arbitrary periodic power change, will be presented. The
methodology expects the spectral decomposition, that is, the frequency, amplitude,
and phase of the constituents of the power as input, and yields the temperature
response in the frequency domain. The apparatus of the Fourier transform and
inverse Fourier transform connects the excitation and the response to their view in
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time domain. The technique is equally suitable for calculating the response of
driving and monitoring points.

The use of complex loci is indispensable in the investigation of the stability of
systems with thermal feedback, for tuning the control loop of thermostats at a given
thermal mass, etc.

The concept of pulse thermal resistance diagrams has a simpler and less univer-
sal use. The thermal system is represented as a parametrized set of curves from which
the peak temperature in the stationary state can be read when an excitation of
repeated pulses of known period time and duty cycle is applied.

2.8.1 Complex Loci

The frequency domain representation of the thermal impedance can be calculated
from the time domain Zy(f) function. The Fourier transform yields the Zy(w)
function as

Zin(w) = /0 OoZth(t) e dt (2.44)

where @ is the angular frequency of the excitation. The resulting Zy,(w) complex
thermal impedance function can be visualized, e.g., by means of a complex locus,
also known as Nyquist diagram.

In Example 2.5 an artificial Cauer model consisting of three RC ladder stages was
presented; the time domain Zg, curves characterizing the self-impedance and transfer
impedance were shown in Fig. 2.43.

Applying (2.44) on the self-impedance curves Tjd and Tjw corresponding to the
“dry” and “wet” boundary condition, the complex loci of Fig. 2.45 can be gained.

The complex loci depict how a thermal system responds to a unit-size sinusoid
power of the f frequency and the 2zf angular frequency.'” In the chart, the Re real
part of the thermal impedance corresponds to dissipation, and the Im imaginary part
expresses heat storage. The amplitude of the temperature response is the length
(absolute value) of the vector between the origin and the corresponding point in the
plot; the phase shift between the power and the temperature is the angle between the
x axis and the vector, representing the delay in the temperature response. As the
temperature always lags behind the power, the angle is negative; consequently the
thermal impedance curves belonging to a driving point are in the fourth quadrant of
the complex plane.

At a single sinusoid excitation, the thermal system behaves as a thermal resistance
of Re Zy,(w) and a thermal capacitance calculated from the formula Im Zy,(w) = 1/

'0The linear network theory also uses an alternative representation of the same information. The
Bode diagrams display the absolute value and the phase of the system response in separated charts.
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Fig. 2.45 Complex loci calculated from the time domain Zy, curves of Fig. 2.43, characterizing the
self-impedance in two simple systems of different boundary conditions, as presented in Example
2.5

(joCy). The physical meaning of the smaller temperature change on the same power
amplitude is that the periodically changing heat can be locally stored and released by
the structures near to the junction; it does not reach the ambient.

A single parallel RC circuit has the locus of a half circle, as its points can be
calculated from the fixed Ry, thermal resistance value and the shrinking joCy,
thermal admittance. In Fig. 2.45 the portions of the three half circles can be clearly
recognized showing the three discrete time constants of the system.

The zero-frequency value expresses the Ry,j junction to ambient thermal resis-
tance at the two boundary conditions. When a periodic power signal is applied on the
thermal system, which can be decomposed into several single frequency components
of various amplitude and phase angles, the system responds in the frequency domain
with a temperature response composed as the sum of the Zy,(w) vectors.

Figure 2.46 shows the self-impedance and transfer impedance, calculated from
the time domain Zy, curves Tjd and Tc_dry in Fig. 2.43, belonging to the “dry”
boundary. In the enlarged excerpt of Fig. 2.47, it can be observed that the temper-
ature change at the Tc_ dry monitoring point is of a phase shift higher than 90 ° at
frequencies above 40 rad/s which corresponds to 12 Hz. In general, complex loci
corresponding to transfer impedances extend both to the third and fourth quarters.

This can be also interpreted in such a way that because of the propagation delay
between the points Tjd and Tc_dry, the temperature change can be in an opposite
phase as compared to the power excitation.
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Fig. 2.46 Complex loci calculated from the time domain Zy, curves in Fig. 2.43 belonging to the
“dry” boundary, characterizing self-heating (TJjd) and transfer heating (Tc_dry)
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Fig. 2.47 Excerpt of Fig. 2.45. With positive feedback and high enough gain, thermal oscillation
can be expected above ~40 rad/s corresponding to ~12 Hz

In this system if the coupling between the electric side of the powering and the

Tc_dry point has a high enough gain, the positive feedback can induce a thermal
oscillation above 12 Hz.
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Fig. 2.48 Periodic power A
pulse sequence P(t)

T

Complex loci are a very powerful representation of the component and its
environment when analyzing periodic excitations. An application example is the
single valued “AC thermal impedance” of LEDs [73], detailed in Sect. 6.10.

2.8.2 Pulse Thermal Resistance Diagrams

So far we have discussed the thermal characterization of a system based on its
response to a single power step. In an important class of practical applications such
as switching power supplies and motor drives, the power excitation can be described
as a series of repeated power pulses. Similar pulse sequences play an important role,
e.g., in reliability testing (Chap. 7, Sect. 7.4).

A periodic pulse sequence can be characterized by the T, period time and the
t, length of the “on” state (Fig. 2.48), or by the T}, period time and the D = #,/T
duty cycle.

With an excitation of repetitive pulses at a certain duty cycle, some heat will be
stored in the internal thermal capacitances during the “on” state of the pulse and will
be released during the “off” state. In a more detailed view, if the pulse is applied at a
certain location of the system, the thermal energy is first stored in the material
sections in close vicinity of the excitation, and farther sections are filled up with
thermal energy at longer times as the heat propagates.

If T;, is longer than the shortest relevant time constant of the system, the thermal
capacitances cannot be fully discharged in the “off” state; the average temperature
continuously elevates in the system until stationary state is reached.

Example 2.9: Momentary Temperature Change and Peak Temperature
at Pulse Excitation

Two versions of a simplified heat-conducting path were presented in Fig. 2.21,
representing a DUT on a cooling mount. Different thermal interface qualities
were denoted as “wet” and “dry” boundary condition.

In the following example, the “dry” scheme was driven in three subsequent
simulations by different pulse sequences (Fig. 2.49).

(continued)
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Example 2.9 (continued)
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Fig. 2.49 Equivalent RC ladder scheme of a heat-conducting path, corresponding to the
“dry” boundary condition in Fig. 2.21, pulsed power excitation at different period time and
duty cycle

The transients were simulated until 2 s. In the first simulation, the circuit
was driven by 2 W power, with 40% duty cycle, 25 ms period time, and 10 ms
“on” time. The result of the simulation is shown as the red Tj1 line in
Fig. 2.50. The second simulation was carried out with the same duty cycle
but with 250 ps period time (Tj2, green line). A “long” step excitation was
applied in the third simulation, at least longer than the total 2 s simulation time.

It can be observed in Fig. 2.50 that, as a consequence of the linear approach,
the average temperature of the transients taken at 40% duty cycle is around
40% of the transient temperature in the step response. However, for thermal
overload and lifetime prediction, the peak temperature reached at pulsed
powering is of primary interest.

This peak temperature is highest in a pulsed heating process when station-
ary state is reached. This occurs when the elapsed heating time exceeds a few
times the largest time constant of the system; in Fig. 2.50 this is reached at a
few seconds.

(continued)
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Example 2.9 (continued)
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Fig. 2.50 Simulated results with pulsed power excitation at 40% duty cycle and different
period time: Tj1, T, = 25 ms; Tj2, T, = 250 ps; T3 3, step excitation (a) linear time scale

(b) logarithmic time scale
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Fig. 2.51 Junction temperature waveform at different heating pulse series:
(@1, =01ms, T, =02ms, D =05, f= UI, = 5 kHz, dTycax = 7.8 K, dT,,, = 7.3 K. (b)
ty=1ms, T, =5ms, D =02, f= /T, = 200 Hz, dTycqx = 79 K, dT,,, = 29K

In stationary state the junction temperature follows a periodic function of stable
waveform, similar to the ones shown in Fig. 2.51.

In an actual thermal testing of a real system, one way to establish the peak value
of the periodic temperature response is applying different pulses of different length
and amplitude and measuring the peak temperature directly. For practical reasons
this can be done in the “off” state just after the falling edge of the power pulse as
suggested in Sect. 5.4.1.

Carrying out a series of measurements with square wave excitation at many
frequencies and duty cycles is rather tedious. Instead, a plot representing the peak
temperature at several T period times and D duty cycles can be derived from a single
measurement with a sole step function excitation, followed by some mathematical
calculations. This plot, called pulse thermal impedance plot, can be calculated from
the time constant spectrum.

The actual temperature waveform can be determined by measurement and sim-
ulation. First, one of the RC models of the device defined in previous sections is to be
constructed from a thermal test with step excitation, and then a SPICE-like circuit
simulator can produce the waveforms. This technique is often used for creating the
pulse thermal resistance diagrams for data sheets; however, a direct methodology
based on LTI theory can produce the plot in a single convolution step.

Equation (2.21) yields the R(z) time constant spectrum from a measured step
response. In a linear approach, a single power pulse can be interpreted as a pair of
consecutive step functions; a negative power step after 7, time extinguishes the first
positive one. The corresponding thermal responses can also be superposed, deferred
by ¢, time and with opposite sign.

This concept can be extended to a series of pulses which follow each other by a
T period time.
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The direct calculation of the convolution integral of (2.12) in the time domain
would need numerical approximate formulae. However, periodic functions
like the pulse sequence discussed so far have a compact form in the (complex)
frequency domain. The solution becomes of manageable complexity carrying
out the following operations again:

» Transforming the periodic excitation and the (logarithmic) time constant
spectrum by Fourier (or Laplace) transform into the (complex) frequency
domain

* Multiplying the transformed functions

» Applying the inverse Fourier (or Laplace) transform to get the (logarithmic)
time domain solution

In case of a periodic pulse excitation with #, pulse width, T, period time and
D = t,/T, duty factor (Fig. 2.48), the curves of the pulse thermal resistance diagram
can be calculated from the time constant spectrum by the following convolution
operation:

Zi(zy=In 1, D) =Re(2) @+ i_ef;p [ E_e:;p (Z()Z/);)] (2.45)

From the Zy,(zp,D) result, substituting z, with In #, a Zy,(t,,D) function can be
constructed again. Keeping the convention of engineering practice used so far, in
charts Z,(z,,D) will be plotted, but the horizontal axes will be labeled with #, and the
plot will be referred to as Z(#,.D).

The result of (2.45) is far from being mere theory; it is the mathematical
expression of a very practical algorithm which can convert the result of a single
transient measurement (test response) into the pulsed thermal impedance, without
the need to test a structure by pulse patterns of various f,, T and D parameters. An
example of this calculation is presented in [60]. An actual software tool which
realizes the calculation is part of the tester configuration of [54].

The calculated Z,(t,,D) pulse thermal resistance plots for the scheme of Fig. 2.49
are shown in Fig. 2.52. Several duty cycles are plotted in the 5%—50% range. The
curves were distilled from the response of the whole RC ladder, including both
the DUT part and the cooling mount part. Accordingly, the chart can be called
as junction to ambient pulse thermal resistance plot and can be denoted as
Znya(tp,D); it reflects the temporary energy storage on both the device and the
cooling mount sections. The peak temperature of the stationary state can be calcu-
lated for power pulses of P height as Tpeax = P - Zinja(tp,D).

The D = 0% curve corresponds to the Z, curve of the “dry” boundary scheme,
drawn as 3stageCauer_ dry plot in Fig. 2.23. At long period times, the temper-
ature can reach its full Tpe. = P - Ripya value. At high repetition frequencies, that is
at low £, the peak junction temperature equals approximately the average tempera-
ture, Zg, = D - Ripya and Tpeax = P - D - Ripya. In Fig. 2.52 the junction to ambient
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Fig. 2.52 Zyja(p,D) junction to ambient pulse thermal resistance of the heat-conducting path
scheme of Fig. 2.49; (a) linear, (b) logarithmic pulse thermal resistance scale

thermal resistance is Ryja = 10 K/W; we can observe at short pulses the pulse
thermal resistance value of 5 K/W, 2.5 K/W, and 1 K/W for duty cycles 50%, 25%,
and 10%, respectively.

Data sheets typically present simulated charts in logarithmic pulse thermal
resistance scale. These charts are mostly “reduced” to the “case” surface of a
packaged device or module, in various, and mostly doubtful ways.

In a more sophisticated technique, a simulation is carried out on the detailed
geometry of the device at constant uniform temperature on the baseplate, and the
transient results are used to compose the pulse thermal resistance chart.
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In a simpler approach, a Cauer RC network is composed from a measured thermal
transient of the device in a conductive test environment (defined in Chap. 5, Sect.
5.1), practically on a cold plate. Based on some assumptions, a single internal node
in the Cauer ladder is denoted as the “case” and that point is connected to the
ambient. An analog circuit simulator software tool is used to compose the pulsed
response of the shortened ladder.

In an even less justified approach, a Foster equivalent of a few stages is presented
as junction to case thermal model. A seen before, contrary to the Cauer model, when
a Foster model is terminated with different thermal impedances, the element values
in the chain vary, as the Foster model is only valid for a single boundary condition.
In other words, the Cauer model is a boundary condition-independent (BCI) model
for the cases, when there is only one heat-flow path from the junction to the ambient,
while the Foster model is always a boundary condition-dependent model.

A Zyyc(t,,D) “junction to case” pulse thermal resistance chart is presented in
Fig. 2.53. The plot was composed using the scheme of Fig. 2.49 again; the T node
in the Cauer ladder was assumed to be the interface between the models of the device
and the cooling mount. For mimicking the broadly used but theoretically wrong
procedure, T- was connected to the ambient (ground), and the pulse thermal
resistance was constructed with (2.45). The chart suggests that the heat spreading
in the modeled device reaches the assumed “case” surface at approximately 50 ms;
the partial thermal resistance between the junction and the case node is 2.2 K/W, as
also known from the circuit scheme.

This process for deriving the junction to case pulse thermal resistance is quite
ill-defined; in reality no isothermal “case” surface exists, and the complicated
trajectories of heat spreading cannot be reduced to a single one-dimensional RC
network with a dedicated case node. These ambiguities will be treated more in detail
in Chap. 3, where a standard Ry,jc junction to case thermal resistance metrics for
devices with a single major heat-conducting path is defined.

For all these reasons, the Zy,c(f,,D) plots reduced to an assumed case surface
have very limited practical meaning; they provide solely a rough estimation on the
thermal behavior of a device in an actual assembly.

In most power electronics constructions, the portion of the heat-conducting path
within the packaged device is of lower thermal resistance than that of the cooling
mount. Taking the Zyyc(#,,D) plots as system model for pulsed excitations would
postulate that the package case or module baseplate is at a fixed and known
temperature, which practically never occurs; it could be realized with infinite cooling
capability on the case surface.

Assuming the other extreme, considering the cooling mount as a mere additional
thermal resistance, the actual cooling performance of the assembly at pulsed exci-
tation is severely underestimated. A bulky heat sink can absorb thermal pulses well
in the minute range; its contribution to the transitory storage of the heat can be taken
into consideration in several steps.

An estimation on the performance of a given heat sink at pulsed excitations can be
based on the analytical Eq. (2.51), presented later in Sect. 2.11. As a further step, a
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Fig. 2.53 Z;5c(z,D), junction to case pulse thermal resistance of the heat-conducting path scheme
of Fig. 2.49, grounded at the Tc node; (a) linear, (b) logarithmic pulse thermal resistance scale

thermal transient simulation on a detailed model can confirm the suitability of the
selected cooling solution.

When the full realized assembly composed of the device with thermal interface
and cooling mount is available, it is essential to carry out single power step
measurements at different powering. These can give an insight into the thermal
performance of all parts in the assembly, in a wide power, frequency, and duty cycle
range, relying on the concept of the pulse thermal resistance.

A more detailed study on pulse thermal resistances is given in [74].
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2.9 Relationship Among the Different Representations
of Thermal Impedances

To summarize the various representations of the thermal impedance, Fig. 2.54
provides an overview chart that shows also how they are related to each other.

The boxes with lighter blue background are generic to both driving point and
transfer impedances.

The time constant spectrum is also generic to both types of the impedances. It has
to be emphasized that in case of transfer impedances, real, physically meaningful
time constant spectra may also include negative magnitude (R) values. Practical
implementations of the numerical deconvolution algorithm defined by Eq. (2.21)
may or may not yield these negative time constant values. This implementation
dependence is indicated by the darker blue color of the corresponding box in
Fig. 2.54. To be on the safe side, it is better to derive further representations of the
self-impedances only from time constant spectra, if the unique properties of the used
deconvolution algorithms are not known.

Dark red backgrounds indicate the representations that are defined or used only
for driving point thermal impedances. Though the procedures used to obtain the
Foster models or the pulsed thermal resistance diagrams do not pose mathematical
problems even when the time constant spectra contain negative magnitude values,
these representations are mostly used for driving point thermal impedances. Note

Foster Cauer

Step response A TJ ( t)

Cooling / heating curve

equivalent equivalent

transform

normalize by AP,;  discretize

Time constant
spectrum RQ(Q

1 — exp[-exp(2)]
1 — exp[—exp(z)/D]

Structure

Thermal
Zth(t) function

impedance

z=In(t), ddz, ® ®

Differential
structure func.

Pulse thermal

Complex locus .
of thermal impedance Zth(J(D)

resistance

Local thermal
resistance func.

Fig. 2.54 Summary chart of the different representations of the driving point thermal impedances
and the transformation paths among them. In light blue boxes, generic representations both for self-
impedances (aka driving point impedances) and transfer impedances are shown. In dark red boxes,
representations that are defined solely for driving point impedances are presented
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that Foster-type network models with negative thermal resistance values can be well
handled by circuit simulation algorithms. Note that if the numerical deconvolution
algorithm used for the implementation of Eq. (2.21) provides time constant spectra
with positive magnitude values only even in case of transfer impedances, the
representations shown with any red background in Fig. 2.54 can be numerically
calculated. Still, one has to be aware of the fact that parts of the structure functions
obtained this way from thermal transfer impedances do not represent physical
reality. As the calculation of the complex loci of thermal impedances bypasses the
calculation of time constant spectra, a quick look at these loci allows to check if the
thermal impedance is a pure driving point impedance or there is some “transfer
effect” included therein. If a locus has a section in the quarter of the complex
frequency plane with negative real part, that curve represents a transfer impedance,
such as the red curve in Fig. 2.47, and the corresponding Z,(¢) function cannot be
represented by any version of the structure functions.

2.10 Distributed Heat Transfer on a Surface Towards
a Convective Environment

Previously in Sect. 2.5 closed formulae have been constructed for obtaining the
thermal resistance and capacitance of finite length beams or tubes. It was assumed in
all cases that the heat transfer occurs exclusively at the two ends of the tube; the heat
flux enters the tube at one end, at the “driving point” of the equivalent thermal
network, and leaves on the other end, at an isothermal surface.

In a convective environment, the cooling of actual heat sinks and cold plates
occurs on their whole surface, in a distributed way.

From the viewpoint of thermal transient testing, this distributed heat loss can be
an intentional part of the test arrangement terminated by a cooling mount, or it can be
an undesirable parasitic effect which distorts the measured thermal quantities.

Such parasitic effects can be parallel heat-conducting paths from the test setup
through the surrounding air, or the distortion of the temperature field caused by
sensor probes attached to a hot surface. An analytical treatment of the parallel heat-
conducting paths and a methodology for a partial reconstruction of the primary path
are given in [75-77].

Large chapters of mechanics deal with heat convection, and empirical formulae
are listed in the literature which take into consideration the speed of the coolant,
possible turbulent effects, and surface roughness and similar. The unintentional
parallel cooling in thermal transient testing typically occurs towards the ambient
air, and considering a constant £ heat transfer coefficient for calculations is mostly
satisfactory.

Simulation of detailed system models yields the distribution of temperatures and
fluxes for arbitrary geometries and the heat loss at various surfaces towards a
convective environment, but the result is valid only for a given geometry and
powering.
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The analytical formulae of distributed cooling are obtained in a semiempirical
way, amalgamating the equations of heat spreading in Sect. 2.1 with empirical
correction factors. The treatment of these effects is beyond the scope of this book.
However, we illustrate in a short example that the results can be also obtained
starting from the discretized RC approach of the previous sections.

Example 2.10: Heat Spreading in Wires and Long Fins in a Convective
Environment

In an important practical case, when a temperature sensor is attached to a hot
surface, the leads of the electrical connection cause an additional cooling at the
measured spot, and in such a way, they distort the measured temperature value.
The heat loss occurs on the whole wire surface; the cooling at the very end, at
the instrument, can be neglected.

Similarly, plate or pin fins of a heat sink can be considered “long” when
most of the heat flux leaves on the surface, before reaching the far edge or tip
of the fin.

Assuming infinite length of these structures, simple analytical formulae of
their thermal resistance can be obtained again.

Suppose in a Cauer-type ladder network (Fig. 2.55) the series Zg elements
represent the thermal resistance of a section in the fin or wire which impedes
the heat propagation towards further similar sections. The parallel Z, elements
correspond to the heat transfer towards the air or other convective
environment.

Adding a further Z-Z, pair to an infinite ladder does not change its Z;,
driving point impedance:

Z, - Zin

Zin=17Z +m,

(2.46)

rearranging and solving for Z;, the equation yields

Zs+1\/Z3+4-Z,- Z,
Zin= (2.47)

in — 2

Sup———-4

Fig. 2.55 Infinite Cauer ladder

(continued)
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Example 2.10 (continued)

Along a dx length of the wire or a pin fin, the infinitesimal thermal
resistances can be calculated as

1 1 1 1

dx=——dx and Zp:h.Ap ~h2rm-dx’

Zszl~As A-rim

(2.48)

where r is the radius of the cylindrical element, A; and A, are the cross-
sectional and lateral surfaces and % is the heat transfer coefficient towards
the air.

The physical and geometrical parameters in (2.48) can be cumulated into
respective M and N multiplying constants: Z, = M - dx and Z, = N/dx. For this
infinitesimal geometry, Zs - Z, = N - M, and the result from (2.47) can be
written as

Mdx + \/ (Mdx)* + 4NM
Zin — 2 )

(2.49)

The limit of the driving point impedance becomes Z, =+/N xM as dx
approaches zero:

1 1 1
= \//1 PPz h-2rn \/A ~h- 21372 (2:50)

Equation (2.50) is known as “heat loss from infinite fin”; it is a useful formula for
calculating the heat removal from a surface when measured by thermocouple or
PT100 sensor. The A thermal conductivity is known from the material composition
of the thermocouple or of the connecting wire; similarly, the r radius (or “gauge”) is
provided by the manufacturers.

The 1/°"* dependence of the thermal resistance in the formula suggests that the
thickness of the thermocouple is of eminent importance. Likewise, thermal insula-
tion on wires can diminish the heat removal effect.

A correction algorithm to restore the structure functions of an equivalent heat-
spreading scheme, subtracting the parallel heat loss towards the ambient, is
presented in [75, 76], and is a realized feature in the software toolset of [54].

Figure 2.56 illustrates the simulated temperature distribution in a K-type
(chromel-alumel) thermocouple. The diameter of the welded ball at the tip was
supposed to be 0.6 mm; the diameter of both wires is 0.2 mm (gauge 32). The tip
touches a cold plate of 30 °C temperature; the upper half of the ball is embedded in
thermal grease of 40 W/mK thermal conductivity. The ambient temperature was set
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Fig. 2.56 Simulated temperature distribution in a K-type (chromel-alumel) thermocouple. The tip
touches a cold plate of 30.9 °C temperature; the upper half of the welded ball is embedded in
thermal grease. The temperature at the point where the wires adjoin becomes Ty om = 28.6 °C at
Ta = 20 °C ambient temperature and & = 10 W/m?K heat transfer coefficient towards the ambient.
The AT temperature difference in the figure is Thorom — Ta

to T4 = 20 °C in the simulation, and the heat transfer coefficient towards air was
taken as 10 W/m?K.

The thermocouple “reports” the temperature of that point where the two wires
adjoin, which is in this case Tyorom = 28.6 °C. A larger distance from the surface,
typical PTFE insulating coating, and similar other factors may diminish further the
accuracy of thermocouple measurements.

2.11 Temporary Heat Storage in the Cooling Mount

In an interesting way, a formula similar to Eq. (2.50) can be used for calculating the
thermal impedance of a rod, blade fin, or pin fin at pulsed excitation. The pulsed
waveform can be decomposed into an average steady power and a series of power
waveforms of frequency f, angular frequency w = 2zf alternating around the average
value.

In this case the Z series elements of the Cauer ladder in Fig. 2.55 correspond to
the Ry, thermal resistance of an infinitesimal section of the fin; the parallel compo-
nent corresponds to the thermal capacitance as Z, = 1/sC or Z, = 1/jwC. Composing
the Z - Z;, product, the equivalent thermal impedance of a fin at angular frequency
o will be
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1 1 1 1
Zin= \//1A jwcyA T A \//ijcv (251)

During system design an estimation on the performance of a selected heat sink
can be made based on (2.51)."" All blade or pin fins contribute to the cooling, as a
first assumption their cross-sectional area can be summed up in the formula. As a
further step, a thermal transient simulation on a detailed model can confirm that the
cooling solution fits the purpose.

A detailed treatment on the effects of external air or liquid cooling on heat sink
fins or wires is presented in [79].

2.12 The Limits of the Linearity Assumption

In the previous sections of this chapter, so far the characteristics and behavior of
thermal systems have been treated in a fully linear approach. This approach is
justified when the investigated system operates in a temperature range where the
nonlinearities can be neglected.

The root cause of nonlinearity in the thermal behavior is the temperature depen-
dence of the thermal parameters, namely, of the thermal conductivity and the specific
heat in the material layers which are the most exposed to temperature change.
Typically, these structural parts include the semiconductor chip, the die attach, and
the ceramics or metal base to which the chip is attached.

Farther elements in the heat-conducting path are mostly at lower temperature
because of the applied external cooling. The typical cooling solution in electronic
systems is convective heat transfer on dedicated cooling surfaces, assured by either
air or liquid cooling. The convective cooling mechanisms have inherent nonlinear-
ities, but the detailed discussion of these effects is beyond the scope of this book.'*

Nevertheless, thermal testing standards dealing with the environmental condi-
tions of the measurements are aware of these, especially in case of natural convection
[31] and forced air cooling]3 [34]. For example, in case of a standard natural
convection cooling environment, the air temperature has to be measured at the
temperature monitoring point of the test chamber in order to assure that the test
environment remained stable during a measurement.

"'"This formula is related to the “RMS heat storage for the thermal skin effect,” useful for calculating
the seasonal temperature change in different depths of the earth. The phase change effect with a
periodic thermal signal is also used to measure thermal conductivity, because it is proportional to
the thermal diffusivity (3w method).

2 These effects are related to the nature of the fluid flow of these media (such as laminar flow
turning into turbulent, etc.); discussion of these is the subject of fluid mechanics.

13 As the CFD-based thermal simulation tools emerged and their use became daily engineering
practice in electronics cooling design, the relevance of physical testing of semiconductor device
packages under forced air cooling conditions has significantly decreased.
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Some special electronic appliances operate at high temperatures, such as vacuum
tubes in broadcasting systems or silicon carbide rectifiers in locomotive applications.
At these temperatures the investigation of radiation has to be involved, which
follows the Stefan-Boltzmann law:

p(t)=¢e-c-T(1)", (2.52)

which tells that the emitted ¢ heat flux from a surface portion of a hot body is
proportional to the fourth power of its T temperature. In (2.52) ¢ is a physical
constant, the Stefan-Boltzmann constant. The material composition and the surface
quality also influence the emitted power. This is represented by the e emissivity of the
surface; it is € = 1 for an “absolute black body” and lower for real materials. Shiny
metal surfaces have an emissivity below 0.1, while ¢ of the anodized aluminum is
above 0.7. Paints are typically above 0.9, independently from their color, as they
have typically the same “color” in the infrared spectral range where emissivity really
counts.

Although the radiative heat transfer from the circuit boards or hotter package or
heat sink surfaces improves slightly the cooling of regular electronics, these surfaces
are typically below 100 °C, where radiation has a minor role. The spectacular
blackening of heat sinks serves mainly marketing purposes.

Time-dependent variation of the material properties is also out of the scope of this
current discussion, especially since these changes (e.g., thermal conductivity change
due to the dry-out of TIM pastes) are slow. Slow in this context means that that the
pace of such changes is slower by multiple orders of magnitudes than the lengths of
the temperature transients that we aim to measure. This huge difference in the pace of
changes allows one to use structure functions to monitor the degenerative (aging)
processes in certain structural elements of semiconductor device packages. Such
applications of thermal transient testing are discussed in Sect. 7.4.

Accounting for possible nonlinearities is the most relevant for the early parts of
driving point thermal impedances since these originate mostly from the temperature
dependence of the materials used inside a semiconductor device package
[69]. Though these nonlinearities slightly effect the thermal transfer impedances as
well (such as the Chipl-Chip2 transfer impedance for the arrangement presented in
Fig. 2.40), they are most affected by the properties of materials outside the package
structure — as it will be shown later, e.g., in Chap. 3.

Thermal transient testing may aim at different targets. One purpose can be the
determination of the temperature change in time, especially finding the maximum
temperature as a crucial factor which influences lifetime. Another target can be
checking internal structural details, partial resistances, and assembly integrity.

Therefore, during thermal transient testing, it is worthwhile to use different levels
of heating power for different purposes:

1. If the applied temperature sensors and the measurement apparatus are sensitive
enough to record tiny signals at proper resolution, lower levels of heating power
can be applied that result in a low junction temperature rise. Remaining below
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10 °C temperature change, the nonlinearities of the material properties are
negligible; thus, using the linear system theory for the postprocessing of the
measured thermal transients is well justified.

2. If the purpose of the thermal transient testing is to characterize a device under
conditions close to the relevant field applications, the heating power levels should
approximately match the levels of the foreseen levels in use. In many cases
typical junction temperature elevations are still expected to stay below 100 °C,
because of reliability considerations. A case study of exceeding this temperature
change limit and stepping into the range where nonlinearities of the material
parameters matter will be presented below in Example 2.11. Still, the outcome of
the study is that the linear apparatus can manage thermal changes in the 150 °C
range.

3. In reliability and accelerated lifetime tests, a common practice is to apply heating
power levels beyond the ones usual in field applications. These result in high
temperature elevations when nonlinear effects become significant. Such effects
may not necessarily hamper the NID method-based postprocessing of the mea-
sured transients, but need to be known and properly accounted for, e.g., applying
right correction formulae. Even in accelerated tests when the device is continu-
ously stressed with high-power pulses, the variations in the structure functions
still can properly reveal when and how fatal device degradations appear and
develop. Such applications are treated in Sect. 7.4 of Chap. 7.

Further on in this section, we focus on the second case, on nonlinearities
encountered during the measurements in typical operating conditions.

2.12.1 The Most Common Nonlinearities:
Temperature-Dependent Material Parameters

The major source of the nonlinearity of the thermal systems is the temperature
dependence of the A thermal conductivity and of the ¢, volumetric heat capacity of
the materials used in the structure. Different materials show rather different temper-
ature dependence, but the alteration of thermal parameters is low in the usual range
of the operation of electronics devices (200400 Kelvin). In [64] a thermal transient
technique is presented which yields the temperature dependence of the thermal
conductivity of materials used in electronics packaging.

In the usual temperature range of operation, these dependences can be of different
nature, but for typical materials, they can be described with an exponential formula:

/1:/10 - eXp [al . (T— To)], (253)

where T, is the reference temperature, 4, is the thermal conductivity of the material
at the reference temperature and «; is the coefficient of temperature dependence
(CTD) of A. The a, value is nearly equal to the relative change of 1 for 1 °C
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Table 2.4 Values the 4,, a,, cy,, and a. for some packaging materials (averages in the 300400

Kelvin range)

Ao Cvo Ac.
Material W/mK a, 1/K Ws/m*K 1/K
Cu 401 —0.0001 3.44-10° 0.0003
Ni 90.7 —0.00012 3.95-10° 0.0008
Ag 429 —0.000094 2.47-10° 0.00017
Inconel 11.7 0.0014 3.74-10° 0.00075
AlLO; 36 —0.0031 3.04-10° 0.002
Si 148 —0.004 1.66-10° 0.001

temperature rise. For small temperature changes, (2.53) can be well approximated
with the

A=l [1+a; (T—T,) (2.54)

linear relationship. The values for some common materials of packages are presented
in Table 2.4, taken from [64].

In the dynamic behavior, the temperature dependence of the heat capacitances
may also play arole. Fortunately, this effect is rather small and often negligible in the
0-150 °C range. For the description of the temperature dependence of the heat
capacity, a function similar to (2.53) can be used as

¢y =cyo - exp [ac(T —Tp)], (2.55)

where ¢y, is the volumetric heat capacity value at the reference temperature and a.. is
the coefficient of the temperature dependence. Similarly to the thermal conductivity,
the linear approximation holds also here.

Values of ¢, and a,. are also presented in Table 2.4; their temperature dependence
is shown in Fig. 2.57. As the table shows, these parameters change only slightly in
the usual temperature range of operation.

Various authors have examined the significance of nonlinearities in the thermal
behavior of electronics packages [64, 69, 80]. They agree that for small temperature
changes (<25 °C), the error of the linear approximation is negligible. For temper-
ature changes within the 0 °C, 100 °C range the error is about 2—5%, depending of
the materials used in the structure. In case of larger temperature changes, the error
can be higher, depending of course again on the a parameters of the different
materials in the structure.

As mentioned previously in this section, the temperature dependence of the
structural materials of the heat conduction path from the semiconductor junction
affects mostly the driving point thermal impedances at early times, as emphasized by
D. Schweitzer et al. in [69].

In Egs. (2.26) and (2.27) in Sect. 2.4.2, the time evolution of the junction
temperature transient was expressed with a AT7(¢) = kherm % v/t formula, where
both the A thermal conductivity and the ¢, volumetric heat capacity appear in the
definition of the ke, coefficient.
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Fig. 2.57 Temperature o [}/cm3K]
dependence of the
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As shown in [69], if the Zy,(f) = ATy(t)/Py driving point thermal impedance is
known for an initial 7; temperature of the chip, then for an elevated 7, chip
temperature, the value of the thermal impedance can be rescaled as follows:

Asem(T1) - v —sem(T
Zin(Tr,t) =Zn(T1,t) - \//lsemET;; c —semET;;

(2.56)

where A¢er, and ¢, _ ¢y are the temperature-dependent thermal properties of the
semiconductor chip.

The above equation and Eqgs. (2.26) and (2.27) were derived with the assumption
in [69] that the semiconductor chip is thick enough to consider as infinite in size for a
prolonged time. Moreover, it was assumed that the heat leaves the junction through
the chip, towards the bottom of the structure, and there is no heat flux towards the
top. Extending this concept, A. Alexeev et al. recently derived in [77, 78] a new
formula for AT)(¢) that is valid for the cases, when the heat generated at the junction
flows in both directions, for example, in case of LEDs where some heat also leaves
through the lens. Similarly to D. Schweitzer’s correction for nonlinearities, also in
this case, early transients follow the AT (t) ~ /7 time dependence; the square-root
approach for Zy,(¢) is maintained.

Based on (2.56), the correction procedure in [69] accounts for these temperature
dependencies during thermal simulations. The models of the temperature depen-
dence can be similar to (2.53) and (2.55) or to the simpler (2.54) for the thermal
conductivity.

Figure 2.58 presents finite element-based simulation results for a device driven
with a short heating pulse of 200 W [69]. The blue curve represents the “real” device
behavior with considering the temperature dependence of the thermal conductivity
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Fig. 2.58 Simulated AT [°C]
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and volumetric heat capacity of the heated silicon chip in an exact way. The green
curve was obtained by a purely linear model-based calculation (thus, with
temperature-independent, constant material properties), while the red curve was
obtained by calculations where a linear thermal model completed by the correction
procedure based on Eq. (2.56) was used [69]. By comparing the green and the blue
curves, one can clearly see that at junction temperature elevations above ~150 °C,
neglecting nonlinearities results in large (>10%) error.

Note, however, that according to the study reported in [64], if the junction
temperature elevations do not exceed ~100 °C, the errors due to neglecting the
temperature dependence of the material properties remain below 5%. Thus, the
postprocessing of the measured thermal transients using deconvolution or other
apparatus based on the linear system theory is justified from an engineering
perspective.

Temperature dependence of the effective thermal conductivity of thermal inter-
face layers is another reason why one may observe temperature-related changes in
structure functions.

Example 2.11: Nonlinearity of the Thermal Behavior of a Packaged SiC
Power Device

A CFD simulation with the tool of [56] was carried out on the detailed model
presented in Fig. 2.59. In the arrangement a power MOSFET device in
a TO220 package was placed on a cold plate with an inserted alumina sheet
of 1 mm thickness.

The chip was modeled as a SiC block of 1.3 mm % 1.3 mm X 0.3 mm size,
with a | mm x 1 mm x 0.005 mm dissipating junction on its surface. The die
attach layer was of 0.025 mm thickness. The simulation was carried out in the
10 °C-90 °C cold plate temperature range, in 20 °C steps.

(continued)
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Example 2.11 (continued)

z.’\x

Fig. 2.59 Detailed model of a SiC power transistor for thermal simulation in the SIEMENS
SIMCENTER Flotherm tool [56]
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Fig. 2.60 Temperature change of the MOSFET device on cold plate, during heating at
applied 10 W power, at 10 °C and 90 °C cold plate temperature

In the simulation partly the material parameters built into the tool, partly
data from the literature were used.

The temperature range to be considered was quite broad; at 10 W applied
power, the simulated device temperature varied between 10 °C and 160 °C,
depending on the cold plate temperature; see Fig. 2.60.

In this range the simulation tool uses a piecewise linear approach for the
thermal conductivity of the SiC chip material (A = 330 W/mK until 125 °C and

(continued)
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Example 2.11 (continued)

A = 214 W/mK between 125 °C and 225 °C). We added further data to the
material library of the simulation tool for the copper and ceramics layers in the
DBC structure.

Copper was characterized with the thermal conductivity value 4 = 401 W/
mK along with a negative temperature coefficient of « = —0.00011 /K. The
die attach material was modeled with the thermal parameters of A = 40 W/mK;
a; = —0.007 /K. The ceramics layers were represented by Al,O; material,
with 1 = 36 W/mK; a; = —0.003 /K values. The ¢y volumetric specific heat
(volumetric heat capacity) was specified as 3.45 J/em’K for copper, 1.65 J/
cm’K for the die attach, and 3.03 J/cm’K for the ceramics.

The simulated transients were converted to structure functions, as shown in
Fig. 2.61. Several regions could be identified in the structure functions based
on their thermal capacitance calculated from the volume in the module and the
assigned specific heat.

The sections below 1 mJ/K were identified as the SiC chip and until 8 mJ/K
as the die attach, denoted as DA. Two arrowed lines correspond to the volume
of a copper block based on the dimensions of the package base in the model
(line Cu) and to the third of the volume (line Cu/3). The end of the steep
section which can be attributed to the high conductivity of copper lies between
the Cu and Cu/3 positions. This may refer to a heat spreading in a truncated
pyramid between the small chip and the wide package base bottom touching
the ceramics, as introduced in Sect. 2.5.

Tcp —
1000 T T T T T T T
— SiC_MOS_10°C
100 f{
— SiC_MOS_50 °C
10 {
';‘ 1 1 SIC7M08790 °C M”""‘"‘:
~
2
= 01 Cu/3 Cu
£
(@)
3 4 5 6 7

Rinz [K/W]

Fig. 2.61 Structure functions of the MOSFET device on cold plate, at applied 10 W power
in the 10 °C-90 °C cold plate temperature range

(continued)



2 Theoretical Background of Thermal Transient Measurements 87

Example 2.11 (continued)

It has to be noted that the structure functions gained from real thermal
transient measurements are often of lower steepness in the die attach region.
This is typically due to die attach voids or delamination. A study on the effect
of die attach voids of different coverage is presented in Example 7.5 in
Sect. 7.3.

As all constructional materials were supposed to have a negative thermal
coefficient, accordingly, growth of the thermal resistance at higher temperature
can be observed in all portions in the heat-conducting path. Figure 2.61 proves
that the temperature-related difference in the thermal resistance starts building
up in the SiC and die attach regions. Fitting the structure functions at the
ambient (Fig. 2.62), we can see that the copper and the subsequent layers have
a minor share only in the growth of the thermal resistance.

1000 {— sic_MOS_10°C :
100 5 sic mos 50°c =
10 I— sic_mos_70°c
= —— SiC_MOS_90°C
SN 1 B i e |
2
2 o ! !
-
g 0.01 i
0.001
10 .
10-5 1 I 1 I
4 5 6 7
Rins [K/W]

Fig. 2.62 Structure functions of Fig. 2.61 fitted at the thermal resistance of the ambient

Figures 2.63 and 2.64 present the calculated structure functions for the
lowest and highest cold plate temperatures, when both heating and cooling
transients were simulated. The orange and red curves denote the results of
heating, for 10 °C and 90 °C cold plate temperatures, respectively. The results
calculated from cooling transients are represented as blue and gray plots.

(continued)
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Example 2.11 (continued)
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Fig. 2.63 Structure functions derived from simulated heating transients (red and brown
curves) and cooling transients (blue and green curves), at cold plate temperature 10 °C and
90 °C
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Fig. 2.64 Excerpt of Fig. 2.63. Change of the thermal conductivity in the SiC, die attach,
and copper region can be observed
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In the previous example, the structure functions calculated from heating and
cooling measurements match well along the heat-conducting path. This suggests
that for this device, cooling or heating transients yield nearly the same data for
structural analysis, despite the assumed nonlinearities. Accordingly, using the linear
system theory for data processing is well justified.

It can be observed in the plots that as all material layers were expected to have a
thermal conductivity of negative thermal coefficient, all regions in all structure
functions shift towards higher thermal resistance values at higher temperatures.
This indicates a possible instability, which may result in thermal runaway. In a
thermal assembly design, increased cooling capability of the cooling mounts at
higher temperatures has to be ensured in order to guarantee thermal stability.

This highlights the fact that in case of identifying the so-called standard thermal
metrics of packages, the test environment (applying a layer of thermal interface
material in this example) and the test conditions'* (the cold plate temperature here)
have a significant effect on the overall junction to ambient thermal resistance we
measure. This also suggests that one needs to apply well-defined and easily repeat-
able and reproducible procedures to separate the structure function portions
corresponding to the package under test and corresponding to the test environment.

2.12.2 Measurement Artifacts Appearing as Nonlinearities

In our discussions so far, we assumed that ideal measurement apparatus was used,
i.e., all the captured signals represent the true temperature transients. In practice, this
is not always the case. It strongly depends on the way how the temperature is
measured by the thermal transient test equipment. Details of usual realizations of
such equipment are discussed in Chap. 5, followed by Chap. 6, providing descrip-
tions of measurement basics of different types of electronic components. The
discussion here is restricted solely to the possible artifacts caused by the actual
temperature measurement method. These — if not known — are wrongly appearing as
the nonlinear behavior of the thermal system realized by the device package.

In daily practice direct measurement of temperature is replaced by indirect
methods, matched to the actual temperature range of interest. Early thermometers
used to measure temperatures in everyday human environment were based on the
physical effect of thermal expansion, converting it to a length scale. Modern,
electrical thermometers convert the temperature to an electrical signal, e.g., to
voltage. The accuracy of the practical temperature measurement depends on how
accurately a known temperature change is calibrated against the change of the
electrical signal of the electrical thermometer.

“The so-called standard thermal metrics and issues of the related thermal test conditions will be
discussed in Chap. 3 in detail.
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In thermal testing of electronics, the temperature change is converted to electric
signal by active semiconductor devices used as temperature sensors using one of
their temperature-sensitive parameters (TSP), or by other dedicated electrical tem-
perature sensors attached to accessible surfaces of the measured system. A few
important ones are:

* Diode sensors
We usually say that the 77 junction temperature dependence of the Vg forward
voltage of a diode driven by a constant forward current is linear, but this is also
just an approximation, which is true only for small temperature excursions (<50 °
C). In Chap. 4 the actual sensitivity is derived from semiconductor physics, and
the resulting equation shows that, e.g., in a range of 200 °C, this dependence is far
from linear. The nature of nonlinearity of the Vg(Tj) relationship is more pro-
nounced, e.g., for [II-V compound semiconductors than for silicon.
* Resistor sensors
In resistor-based temperature sensors, the temperature dependence of the
electrical resistance is utilized. Such thermometers also frequently show non-
linearities. For example, the resistance of metal sheets is of exponential temper-
ature dependence. For example, a PT100 platinum sensor has 100 € resistance at
0 °C, and it grows by 385 ppm/K with the temperature. In a small temperature
range, this means that applying 10 mA electric current to sense the temperature,
the obtained voltage will be 1 V, with the sensor exhibiting 3.85 mV/K sensitiv-
ity, but in a broader range, the sensitivity will change, corresponding to the
sensor’s exponential temperature dependence.

In both cases, in simple measurements, a single sensitivity parameter is used that
is a good approximation of the sensors’ real characteristics only for a relatively small
temperature range (e.g., AT < 50 © C). If the temperature elevations are beyond the
validity of linear approximation of the temperature sensors’ characteristics, but still a
single sensitivity parameter is used for the temperature-voltage conversion, the
measured AT,(¢) transients and the corresponding Zy,(f) thermal impedances will
be distorted by the measurement error, and the measured thermal system would
appear as if it was nonlinear. Such a nonlinearity of a thermal system is obviously a
measurement artifact.

If during thermal characterization of a semiconductor device larger temperature
ranges are involved (e.g., AT > 50 ° C), a careful calibration of the sensors and the
exact calculation with the temperature sensors’ actual characteristics is a must to
avoid the above measurement artifacts. For example, the software of [54] supports
such careful sensor calibrations and performs polynomial or exponential fitting on
the set of measured points; the resulting calibration files can be used by the data
postprocessing software to yield Zg(f) thermal impedances free of the
abovementioned artifact.
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Example 2.12: Forward Voltage: Temperature Mapping of a Power LED
Device

Figure 2.65 shows a calibration curve of the voltage-to-temperature mapping
(calibration curve) of a Royal Blue Cree XP-E2 medium power LED device
driven by 10 mA constant forward current. The temperature range covered by
the presented set of calibration data is 160 °C. In the diagram we also present
results of two different linear approximations for the low and high temperature
ranges.

If the sensitivity parameter derived by linear regression for the low tem-
perature range is used, e.g., for a junction temperature above 50 °C (resulting
in ATy > 60 ° C) from the reference, the low temperature region), significant
errors will develop. To avoid artifacts in the postprocessing of the measured
AT;(¢) transients of the LEDs, a quadratic approximation of the Vg(T}) rela-
tionship, as shown in the figure, is already sufficient [81, 82].
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Fig. 2.65 Voltage-to-temperature calibration curve of a Royal Blue Cree XP-E2 medium
power LED device at 10 mA sensor current. (Based on Refs. [81, 82])

2.12.3 Limits of the Validity of the Linear Approach in Actual
Measurement Results

So far this chapter has elaborated the theoretical aspects of heating and cooling of a
thermal system. In further chapters the implementation and evaluation of actual
measurements will be discussed.

Nowadays all thermal measurements are based on recording temperature-related
electric signals of the chips in an appliance or of dedicated temperature sensors. The
recorded signal has to be examined in all time intervals for the following criteria:
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» Is the electric transient in a time interval related to a thermal change of some
parameters or is it caused by other electric effects?

« Ifitis of thermally induced nature, does the related thermal change occur within
the investigated thermal subsystem such as a tested device or module, or in a
broader environment out of the device?

» If it is within the investigated thermal subsystem, is its behavior linear in the
thermal domain?

In subsequent chapters, especially in Chap. 5 it will be expounded how high
power is generated in different device categories such as transistors, diodes, or
integrated circuits and why is some power maintained on these devices also during
cooling measurements. Without going into details, at this point it can be stated that a
common way of powering is to force a higher electric current through the device, and
a general way of measuring the temperature of an active device is to record some
electric device parameter at a low current bias, called the measurement current. The
applied power can be always determined from known currents and measured
voltages in the electric system.

Multiplying a measured, often called “raw” electric transient by an appropriate
scale factor, a sort of “quasi thermal transient” can be gained. The calculation of the
power for several device categories and the definition of an appropriate “voltage
change to temperature change” conversion factor are presented in Chaps. 5, 6, and 7.

Example 2.13: Measurement of a Power MOSFET Device at Different
Powering and Boundary Conditions

Forced current of various levels such as 1 A, 1.5 A, and 2 A was applied on a
packaged power MOSFET (IRF540) for 10 seconds. The resulting power on
the device was 0.74 W, 1.14 W, and 1.6 W at the three current levels. After
revoking the heating power, the change of the voltage on the device was
recorded at different measurement currents (100 pA, 1 mA, 10 mA). The
measurements were repeated with the device placed on dry and wet cold plate.
Figure 2.66 presents the “quasi temperature” curves recorded at a few
selected combinations of heating current, measurement current, and boundary.
Three curves in the figure, denoted with a key starting as wet D , were
measured on the wet plate, and the other three on the dry one. The voltage-to-
temperature conversion factor was determined for all measurement currents in
a calibration process as defined above in Example 2.12 and later in Sect. 5.6.2.
As introduced before, the thermal impedance is defined as the temperature
change in time divided by the applied power. The Z, curves of a linear thermal
system are identical at different power levels and starting temperature.

(continued)


https://doi.org/10.1007/978-3-030-86174-2_5
https://doi.org/10.1007/978-3-030-86174-2_5
https://doi.org/10.1007/978-3-030-86174-2_6
https://doi.org/10.1007/978-3-030-86174-2_7
https://doi.org/10.1007/978-3-030-86174-2_5#Sec17

2 Theoretical Background of Thermal Transient Measurements 93

Example 2.13 (continued)
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Fig. 2.66 “Quasi temperature” curves calculated from thermal transients of a power
MOSEET at various powering and at two boundary conditions. At applied heating current
of 1 A, 1.5 A, and 2 A, the power which developed on the device was 0.74 W, 1.14 W, and
1.6 W, respectively

A sort of “quasi thermal impedance” can be produced dividing the transient
change of the “quasi temperature” by the applied power. In Fig. 2.67 the
curves of this “quasi thermal impedance” are shown, gained from Fig. 2.66
with dividing by the corresponding power. It can be observed that between
30 ps and 100 ms seconds, all curves coincide, regardless of the boundary
condition; then, until 10 seconds those curves coincide which were measured
at the same “wet” or “dry” boundary. This indicates that the variation in the
recorded “quasi thermal impedance” was of purely thermal root cause after
30 ps; it was proportional to the applied power only. The difference in the
thermal quality of the “wet” or “dry” cold plate causes the divergence of the
curves after 100 ms; this can be used for identifying the role of the device as
opposed to the test environment in the thermally induced temperature change.

Figure 2.68 shows the early section of the “quasi Zy,” curves enlarged. All
presented “wet” curves in the previous figure were taken at 1| mA measurement
current, as it was impossible to find any difference between them at the present
resolution of the charts; for better clarity only one of them is shown now.

(continued)
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Example 2.13 (continued)
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Fig. 2.67 “Quasi Zy,” curves calculated from thermal transients of a power MOSFET at
various powering and at two boundary conditions. Pure thermal nature of the variation can
be seen between 30 ps and 10 seconds where all curves measured at the same boundary
condition coincide
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Fig. 2.68 Excerpt of Fig. 2.67. The voltage change on the device is of purely thermally
induced nature when the curves belonging to different heating and measurement currents
coincide

The range in which the transient change is of the thermally induced nature can be
determined with the comparison of transient curves at different powering and
measurement currents, as shown in Example 2.13. Omitting the part of nonthermal
root cause, typically described as “electric transient”; the valid, true Zy, thermal
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impedance curves can be gained from the “quasi” Zy, curves. Based on Eq. (2.26)
even the restoration of the thermal change covered by the “electric transient”
becomes possible, as presented in Chap. 6, Sect. 6.1.4.

The distinction between thermal and nonthermal changes in the “quasi” thermal
impedance curves is especially complex in the testing of devices based on GaN
material (Chap. 6, Sect. 6.9.2). Depending on the measurement technique, these
devices can produce electric transients in the many millisecond range which can be
mistakenly attributed to thermal effects. A study on the separation of transient
changes of different nature and correction procedures is given in [83].

Effect of the Voltage Drop on Wiring

A sort of “procedural” nonlinearity can be observed in measured Zg, curves of large
power modules at high heating current. As defined in several standards, linear thermal
descriptors of a device such as thermal impedance curves and structure functions are
composed from recorded transient curves normalized by the applied power. However,
the power value is calculated from the forced heating current multiplied by the voltage,
measured on the external pins of the module. The wiring within the module is farther
from the active devices and is not heated in the same manner as those are, still, the
power fraction due to the voltage drop on the wires is added to the power used for
normalizing. This increase in the calculated power which actually does not appear in
the heating of the active devices causes a characteristic shrinking of the Zy, curves and
the structure function at larger heating currents. Although this effect seems to be an
artifact at the first glance, it is rather a feature caused by the definition of the thermal
measurement standards. The phenomenon is discussed in this context, because it
affects the structure functions in a similar way as the nonlinear effects caused by the
temperature-dependent material parameters.

Effects of Additional Energy Transport

A similar “procedural” nonlinearity can be attributed to devices with multiple energy
transport, like LEDs in which the applied electric power is partly dissipated as heat,
partly emitted as light. The emitted optical power does not contribute to the temperature
elevation of the device. The LED efficiency that is the share of the emitted optical power
compared to the electric power fed into the device strongly depends on the current and
temperature. Accordingly, in case the thermal transient measurement aims at the
structural analysis of the device, the optical fraction in the power has to be measured
and subtracted. Similarly, when an external cooling mount is added to the device, only
this “optically corrected,” reduced heating power is to be taken into consideration.

This concept is illustrated in Fig. 2.69 showing the structure functions of a Cree
MCE LED module on the temperature-regulated device holder plate of an optical
integrating sphere. The voltage-to-temperature mapping of the LED was similar to
the one shown in Fig. 2.65; it was an obviously nonlinear one.

Still, converting the temperature-induced forward voltage change to temperature
by the exact mapping and subtracting the optical power, all structure functions taken
at different cold plate temperature fit perfectly in region (2.1) of the figure, belonging
to the LED and its metal core heat distributor board. The thermal system of the LED
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Fig. 2.69 Optically corrected structure functions of a 10 W LED module on the temperature-
regulated device holder plate of an optical integrating sphere. Plate temperature T; is elevated from
15°Cto 70 °C

module can be considered linear. The shrinking of the structure functions in regions
(2.2) and (2.3) corresponds to the thinning of the thermal interface between the
module and holder plate, and the higher heat sinking capability of the temperature-
controlled holder at higher temperature.

Details of the optical correction procedure are presented in Chap. 6, Sect. 6.10.

Summary of Nonlinear Effects

A complete steady-state to steady-state ATj(f) junction temperature transient com-
prises all information about the junction to ambient heat transfer, including the heat
transfer processes in the test environment, also beyond the conduction path(s) of the
package or module under test. Such mechanisms are, e.g., convective cooling from
the thermal test board holding the package or, in extreme cases, radiative heat
transfer from hot package surfaces. These mechanisms exhibit temperature depen-
dence: the natural convection from hotter surfaces is more intensive; the radiative
heat transfer exhibits very strong temperature dependence according to the Stefan-
Boltzmann law. In both cases the nonlinearities appear at the largest time constants
of the system that can be clearly identified as changes at the very ends of the structure
functions and, thus, can be well separated from the parts that are characteristic of the
package under test [156].

Treating the thermal effects which are characteristic to the test environment is
beyond the scope of this book. It has to be mentioned that providing a correction
formula to account for these effects in a linear model-based approach is not
straightforward.
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