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Abstract. This paper presents a novel deep learning model for extract-
ing advertisements in images, PTPNet, and multiple loss functions that
capture the extracted object’s shape. The PTPNet model extracts fea-
tures using Convolutional Neural Network (CNN), feeds them to a regres-
sion model to predict polygon vertices, which are passed to a rendering
model to generate a mask corresponding to the predicted polygon. The
loss function takes into account the predicted vertices and the generated
mask. In addition, this paper presents a new dataset, AD dataset, that
includes annotated advertisement images, which could be used for train-
ing and testing deep learning models. In our current implementation,
we focus on quadrilateral advertisements. We conducted an extensive
experimental study to evaluate the performance of common deep learn-
ing models in extracting advertisement from images and compare their
performance with our proposed model. We show that our model manages
to extract advertisements at high accuracy and outperforms other deep
learning models.

Keywords: Ads extraction · Loss function · Segmentation model ·
Regression model

1 Introduction

Advertisements play a significant role in various aspects of our daily life. Com-
mercial organizations advertise their products and services for the general public,
and governments utilize the advertisement framework to deliver messages and
announcements for educating the public on a wide range of issues. As a result,
they occupy none trivial portions of our buildings, streets, and media (printed
and digital). Detecting advertisements in a view, an image, or a document has
numerous applications. For example, local municipalities are interested in detect-
ing advertisements on the streets for taxing issues, and advertisements agencies
want to measure the exposure of their posted advertisements in various media.

Advertisement extraction can be viewed as an image segmentation problem,
which is the task of assigning the pixels of each object, in the image, the same
label. The segmentation output is usually represented as a pixel map, a graph,
or a list of polygons that form the boundaries of these segments. Many recent
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research [1,2,7] focus on predicting polygons instead of explicit pixel-wise label-
ing, due to their simple representation. In this work, we adopt this scheme and
focus on extracting the boundary of objects in a polygon representation.

Object extraction research has made impressive progress over the recent
year [14]. However, they are far from obtaining pixel-level accuracy. In this work,
we limit our work to convex quadrilateral (Tetragon) objects and obtain high
pixel-level accuracy. These objects are very common in our daily views and
include advertisements, billboards, frames, paintings, screens, etc. We show that
by narrowing the search domain, we can obtain more accurate results than the
state-of-the-art general segmentation methods.

This paper explores extracting advertisements from images. It introduces
a new dataset (AD dataset), presents a novel deep learning model for adver-
tisement extraction, and develops several geometry-based loss functions for the
presented model. Our experimental study shows that our model outperforms
other general segmentation methods.

We introduce a new dataset for advertisement extraction, AD dataset. It
includes around six thousand images containing various forms of advertisements.
The images were collected from the internet and manually annotated by deter-
mining the boundary of each advertisement. The label of each advertisement
includes a boundary polygon and a mask. In addition, we present and evaluate a
novel deep learning model called PTPNet, which is trained using a loss function
that considers the polygon and mask labels in the AD dataset. The PTPNet
is composed of a regression model and a mask generator model. The regression
model extracts CNN features, which are fed to fully connected regression layers
to output the vertices of a polygon. These vertices are passed to the genera-
tor model to produce a mask, which is used by the loss function. The current
PTPNet model outputs the vertices and the mask of a quadrilateral.

The vertex-based loss function is the vertex-wise L1 distance between the
predicted and the ground-truth polygon. The drawback of these loss functions
is the assumption that the object’s vertices are independent variables. However,
these vertices are highly correlated. Considering the area of the polygon reduces
the dependency and strengthens the loss function. To overcome this limitation,
we introduce a novel loss function that takes into account the polygon and
its mask representations. The mask loss function is the Dice distance between
the ground-truth mask and the mask generated from the predicted polygon.
The final PTPNet loss function combines these two loss functions. According
to our experimental study, the loss function contributes to higher accuracy and
accelerates the model convergence; these findings align with this work [23].

To summarize, the main contributions of this paper are:

– A new dataset of quadrilateral objects, AD dataset, which includes advertise-
ments images labeled by boundary contours and binary mask.

– Novel loss functions for regression models that take into account the geometric
shape and the distance between the vertices of quadrilateral objects.

– A novel regression model, PTPNet, that utilizes boundary contours and
binary masks of elements in the AD dataset to learn predicting the boundary
polygon of an advertisement.
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The rest of the paper is organized as follows: we review the related work
in Sect. 2, then describe the new dataset in Sect. 3. In Sect. 4 we present our
method and in Sect. 5 we describe the different loss functions. Section 6 presents
our experiments and results. Finally, we draw concluding remarks in Sect. 7.

2 Related Work

Extracting the polygon representation of an object can be done by first segment-
ing the object in the image and extracting its contour, which is often simplified
to form a compact polygon. Classic object contour extraction methods are based
on superpixel grouping [15], Grabcut [20], and saliency detection [4,22].

One of the popular methods for polygon extraction using deep learning is
Polygon-RNN [3] and its improved version [1]. This method provides semi-
automatic object annotation using polygons. The RNN’s decoder considers only
three preceding vertices when predicting a vertex at each step which may produce
polygons with self-intersections and overlaps. PolyCNN [8] extracts rectangular
building roofs from images. However, this method does not handle perspective
transformations and its accuracy does not reach pixel level. PolyMapper [16]
presents a more advanced solution by using CNNs and RNNs with convolutional
long-short term memory modules. It provides good results for aerial images of
residential buildings.

In recent years, many deep learning methods and architectures have been
proposed for semantic segmentation and they lead to outstanding progress in
semantic segmentation. The most two relative groups of methods for our work
are Regional proposal and Upsampling/Deconvolution models.

Regional proposal models detect regions according to similarity metrics,
determine whether an object is present in the region or not, and applying seg-
mentation methods for positive regions. He et al. [9] proposed a Mask Regional
Convolutional Neural Network (Mask-RCNN). It extends Faster R-CNN [19]
abilities for object detection and segmentation.

The deconvolution models focus on extracting high-level features via layer-
to-layer propagation and obtain segmentation by upsampling and deconvolu-
tion. The reconstruction techniques for obtaining a segmentation map include
refinement methods that fuse low and high-level features of convolutional lay-
ers. Long et al. [18] proposed the first Fully Convolutional Network (FCN),
which constructs the segmentation by adding skip architecture that combines
the semantic and appearance for precise segmentation results.

Many other segmentation models [14] are used to provide benchmark results for
newdatasets, Such asXception [5], Resenet [10],MobileNet [11] andDenseNet [12].
These models are regression models which output polygon, while Mask-RCNN [9]
provides an object’s mask. In this paper, we apply these models to test various loss
functions and compare their performance with our proposed model.
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3 Dataset

This section presents a new dataset of advertisement images called AD dataset1.
It includes about six thousand RGB-images where each image contains at least
one quadrilateral advertisement. The AD dataset includes a wide range of adver-
tisements types and sizes, starting from billboards on the highway to advertise-
ments in malls. Figure 1 shows example images from the dataset.

Fig. 1. Example of images in AD dataset.

3.1 Collecting and Labeling Images

The images of the AD dataset were collected automatically from the internet
and labeled manually. We collected images that include advertisements using a
python script called ‘Google images download’2 which downloads images from
google using given keywords. The resolution of the images varies from 256 × 144
to 2048 × 1080. The advertisements within these images have diverse perspective
views.

We label the images using Labelbox3, the annotators went over each of the
downloaded images and traced the boundary of each advertisement in the image.
We define the boundary of an advertisement by its vertices in a counter-clockwise
(CCW) order, as shown in Fig. 2b. The labeling task was conducted by several
undergraduate and graduate students in our lab. In addition, we generate a
binary mask (See Fig. 2c) using the annotated polygon for each image, where the
pixels of the advertisement are marked by 1 and the background by 0. Hence,
we have two types of labels for each image.

1 https://github.com/BorakMadi/Ads-Extraction-using-Deep-learning.
2 https://github.com/hardikvasa/google-images-download.
3 https://labelbox.com/.

https://github.com/BorakMadi/Ads-Extraction-using-Deep-learning
https://github.com/hardikvasa/google-images-download
https://labelbox.com/
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Fig. 2. Element example of AD dataset: (a) the original image, (b) the vector of ver-
texes label, and (c) the binary mask label

4 The PTPNet Model

Yu et al. [23] introduced Intersection-Over-Union (IOU) loss function to regress
four vertices of a box. This loss function considers the four vertices as a whole
unit, i.e. the bounding box. Their trained model manages to obtain higher accu-
racy than those using L2 (Euclidean) distance loss function. Their IOU loss func-
tion assumes axis aligned bounding boxes, which are calculated directly from the
predicted and ground-truth boxes. This calculation scheme of the IOU does not
suit our task, as the perspective view of the quadrilateral is not expected to be
axis aligned. In addition, the scalar difference between the size of the predicted
and the ground-truth polygons is an inappropriate approximation for the IOU
loss.

To overcome these limitations, we constructed a novel learning model called
PTPNet, which enables applying advanced geometrical loss functions to optimize
the prediction of the vertices of a polygon. The PTPNet outputs a polygon
and its mask representation and manages to combine classical regression and
advanced geometrical loss functions, such as IOU.

4.1 PTPNet Architecture

PTPNet network includes two sub-networks: Regressor and Renderer. The
Regressor predicts the four vertices of a quadrilateral. It utilizes the Xception
model as its backbone. The classification component of the Xception model
is removed and replaced by a regression component that outputs a vector of
eight scalars that represent the four vertices. The regression component includes
Global Average Pooling layers followed by 4-Fully-Connected layers with differ-
ent sizes, as shown in Fig. 9.

The Renderer (rendering model) generates a binary mask corresponding
to the Regressor’s predicted polygon. It is trained separately from the regres-
sion model using the quadrilaterals’ contours from the AD dataset (see Render
Datasets). The trained model is concatenated to the regression model and its
weights are frozen during the training of the regression model (Fig. 3).
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Fig. 3. The architecture of PTPNet

4.2 Rendering Models

We experimented with various rendering decoder networks, which are based
on fully connected and deconvolution networks. The results obtained using the
fully connected decoders were inadequate, while the deconvolutional decoders
produce promising results (see Sect. 6). Therefore, we developed a novel ren-
dering model based on the Progressive Growing of GANs [13], which is a form
of deconvolutional decoders. We removed the discriminator network and modi-
fied the generator network (the deconvolutional decoder) to act as a supervised
based learning decoder that accepts a polygon representation and outputs its
corresponding mask. We shall refer to this decoder as GenPTP.

To train and test the rendering models we build two datasets, synthesized-
quads and ads-quads. The synthesized-quads dataset was constructed by ran-
domly sampling convex quadrilaterals, i.e. sampling four vertices. In typical
images, the convex quadrilaterals are the perspective transformation of rect-
angular advertisements. Figure 4(b) shows an example of such quadrilaterals.
The ads-quads dataset was generated by considering only the contours of the
advertisements in the AD-Dataset (the manually annotated quadrilaterals), as
shown in Fig. 4(a). The labels of these contours are the binary masks of the cor-
responding advertisement, which are part of the AD-Dataset. We evaluated the
performance of the Rendering models using the two datasets, i.e. synthesized-
quads and ads-quads. We trained two different instances of each rendering model,
one for each dataset and compare their performances. For faithful comparison,
we evaluate the performance of these instances using test sets from the ads-quads
dataset.
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Fig. 4. Sample from ads-quads and synthesized-quads.

5 Loss Functions

In this section, we present several loss functions for optimizing our models. These
loss functions are categorized into vertex-based regression functions, areas-based
loss functions, and hybrid methods.

5.1 Vertex-Based Loss Functions

These loss functions compute the sum of the distances between the corresponding
vertices of predicted and ground-truth polygons. To determine the corresponding
among the vertices, we compute all the possible circular shifts of vertices of the
predicted polygon and choose the shift with minimum distance with respect to
the ground truth vertices. The distance between vertices is calculated using L1

and L2 metric. In this approach, the model learns to regress to polygon vertices
independent of their order, similar to [8]. Equation 1 and Eq. 2 formulate the
loss functions with respect to L1 and L2, receptively, where n is the number
of vertices, Vgt and Vpred represent vertices of the ground truth and predicted
polygons, and R is the circular shift function applied to the Vp with step r. Since
we limit our domain to quadrilaterals, n is equal to four.

MinRL2 = min
∀r∈[0,3]

1
n

n∑

i=1

‖Vg − R(Vp, 2 ∗ r)‖2 (1)

MinRL1 = min
∀r∈[0,3]

1
n

n∑

i=1

‖Vg − R(Vp, 2 ∗ r)‖1 (2)

5.2 Area Loss Functions

Area based loss functions, such as the difference between the area of prediction
and ground-truth polygons, are insufficient. These functions motivate the model
to learn to regress to four vertices that have the same area as the ground-
truth, but without considering the location of these vertices, which is incorrect.
We propose an alternative approach that considers the locations of the vertices
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and treats them as representatives of geometric shapes rather than independent
vertices, similar to IOU in [23].

Theoretically, calculating the similarity between two quadrilateral can be per-
formed using advanced geometrical loss functions such as IOU. However, calcu-
lating such similarity based only on polygon representation is complicated. Thus,
we approximate the difference between the intersection and the union between
the two polygons using two trapezoids. Among possible shifts of the predicted
vertices, we choose the permutation with minimum distance with respect to the
ground truth according to L1 criterion (see Eq. 3). Let us denote this permuta-
tion, by rmin. We calculate the two trapezoid areas by utilizing four vertices,
two from the rmin permutation and two from the ground truth. The final loss
value is the sum of these two trapezoid areas (see Eq. 4 and Fig. 5c).

rmin = min
∀r∈[0,n2 −1]

1
n

n∑

i=1

‖Vg − R(Vp, 2 ∗ r)‖1 (3)

Trapezoidsloss = TrapezoidArea(p1, p2, g1, g2) +
TrapezoidArea(p3, p4, g3, g4) (4)

5.3 Hybrid Loss Functions

The vertex-based and area-based approaches suffer from vertex-independent
optimization and overlook the importance of boundary vertices, respectively.
Since the vertices of a quadrilateral are correlated, the independent optimiza-
tion can not provide the best results. The distance between vertices does not
describe the difference in the induced areas faithfully. For example, the ground-
truth (See Fig. 6a) and predicted (See Fig. 6b) share the same three vertices and
differ in one (See Fig. 6c). As seen, the loss is the green region (See Fig. 6d),

Fig. 5. The trapezoids between the two polygons
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the loss based only on the vertices is small and gives insufficient feedback. The
area-based loss functions provide uniform weights for all quadrilateral points and
neglect the importance of vertices and edges.

To overcome these limitations, we combine independent vertex regression
and geometrical loss functions to take into account the appropriate weight of
the vertices and the correlation between them. Practically, we define the loss
function as a sum of the quadrilateral area and vertex-distance loss functions.

Fig. 6. Intersection and loss regions

Vertex and area difference based loss functions combine the distance between
the corresponding vertices using L1 or L2 and the difference between the size
of the quadrilaterals, i.e. subtracting the two scalars. The size difference is not
an adequate optimization parameter in our case (see the discussion earlier).
Nevertheless, it improves performance when combined with vertex distance loss
components, i.e. this combination guides the loss to choose the nearest points
with the same area. Practically, we combine Eq. 1 or Eq. 2 with area difference.
The distance between ground-truth and predicted vertices is performed using
Eq. 1 or Eq. 2. We calculate the area based on Shoelace or Gauss’s area formula.
The area difference is computed by subtracting the areas of polygons spanned
by the ground truth Vgt and the predicted Vpsh vertices. This combination is
formally expressed by Eq. 5 and Eq. 6

Area MinRL2 = MinRL2 + AreaSub(Vpsh, Vgt) (5)

Area MinRL1 = MinRL1 + AreaSub(Vpsh, Vgt) (6)

5.4 Loss Function for PTPNet

Above we have shown how to integrate vertex-based loss function with simple
geometrical loss, such as areas. The geometrical element in previous hybrid-
loss functions is limited to scalar representation. This limitation prohibits using
sophisticated loss functions that accurately describe the geometrical relation
between the two quadrilateral shapes. The PTPNet model overcomes this by
integrating a rendering component, which generates a binary mask that resem-
bles the quadrilateral corresponding to the predicted vertices.
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The PTPNet loss function, Eq. 7, combines vertex-regression, Eq. 2, with
Sørensen–Dice coefficient (Dice) loss function. The Dice is applied to the gener-
ated and ground-truth mask.

PTPNet loss = MinRL1 + (1 − Dice) (7)

6 Experiments

In this section, we overview data preparation, models construction, and evalua-
tion results.

6.1 Dataset Preparation

In Sect. 3 we discussed collecting and annotating the dataset. Next, we overview
preparing the train and test dataset, the augmentation process, and the sanity-
check dataset.

The train and test sets are selected from the AD-dataset (see Sect. 3). In
this study, we focus on images that include one quadrilateral advertisement and
subdivide them to 70% and 30% for training and testing, respectively. The train
and test images are resized to 256×256. The annotations are modified according
to the resized images. Recall that the annotation of each advertisement includes
its boundary contours and a binary mask. The contour (polygon) is represented
by a normalized vector.

We augment the training dataset by applying the basic geometric transfor-
mation, i.e. rotation, scale, and sheer. We apply random rotations between 0◦ to
90◦, scale between 0.8 to 1.2, and shear from 0◦ to 20◦. The same transformation
is applied to the image and its labels, i.e. contour and mask.

We build a sanity-check dataset for the initial evaluation of our regression
methods. This dataset is generated from the contours of advertisements within
the images of the AD-dataset, i.e. a contour (quadrilateral polygon) is embedded
within a black image creating a binary image with a quadrilateral polygon (see
Fig. 7) (Fig. 8).

Fig. 7. Samples from sanity-check dataset.
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Fig. 8. Examples of augmented images

6.2 Study Models

Toward our evaluation study, we experimented with various types of deep learn-
ing architectures, which we discuss next.

We explored applying Mask-RCNN [9] to detect and localize advertisements
within images and outputting a binary mask. The MaskRCNN was pre-trained
on COCO-dataset [17]. We define the performance of the pre-trained MaskRCNN
as the baseline for our experiments.

Our regression networks accept a color image that contains quadrilateral
advertisement and predict the coordinates of its four vertices. These neural net-
works consist of a features extractor and a regression model. The model regresses
to four vertices (vector) using the latent vector of the feature extractor, similar
to PolyCNN [8], but with a different truncation style and model architecture.

We choose a set of study models that includes 13 network architecture, which
are variations4 of Xception [5], Resenet [10], MobileNet [11] and DenseNet [12]. We
refer to these 13 models as the study models, which are pre-trained on ImageNet [6]
and truncated to act as feature extractors. To build a regression model, we append
to each feature extractor a component composed of Global Average Pooling layers
followed by 4-Fully-Connected layers with different sizes as shown in Fig. 9.

We trained the study models on 10k synthesized images using the Mean
Square Error (MSE) loss function. As shown in Table 1 the top five models are
the modified (replacing the fully connected component with a regression model)

Fig. 9. The modified regression models network

4 The full list appears in Table 1.
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versions of Xception [5], ResNet50 [10], ResNet101 [10], DensNet121 [12] and
MobileNetV2 [21]. Therefore, we adopted these models to study the influence of
the various loss functions, i.e. we explore the performance of these models using
the loss functions we discussed in Sect. 5.

Table 1. The accuracy of the regression models on the sanity-check dataset

Regression model Loss function Accuracy Regression model Loss function Accuracy

Xception MSE 0.961 InceptionV3 MSE 0.937

InceptionResNetV2 MSE 0.927 VGG16 MSE 0.947

ResNet50 MSE 0.965 ResNet50V2 MSE 0.949

ResNet101 MSE 0.964 ResNet101V2 MSE 0.951

ResNet152V2 MSE 0.951 MobileNet MSE 0.936

MobileNetV2 MSE 0.964 DenseNet121 MSE 0.955

DenseNet201 MSE 0.943

In this experiment we compare the performance of the modified regression
models using Eq. 1 and Eq. 2 as mentioned in Sect. 5. The training of the models
utilizes the polygon label only.

Table 2. The regression models results using MinRL2 and MinRL1 loss functions on
AD dataset.

Regression model Loss function Accuracy Regression model Loss function Accuracy

Xception MinRL1 0.843 Xception MinRL2 0.822

ResNet50 MinRL1 0.814 ResNet50 MinRL2 0.775

ResNet101 MinRL1 0.837 ResNet101 MinRL2 0.751

MobileNetV2 MinRL1 0.839 MobileNetV2 MinRL2 0.808

DenseNet121 MinRL1 0.850 DenseNet121 MinRL2 0.78

The results are shown in Table 2. As seen, Eq. 2 gives better results than
Eq. 1 for the five models. It outperforms Eq. 1 by at least 2.5% for all the models.
However, these two loss functions consider the four vertices independently, i.e.
do not take into account the correlation among the vertices. To overcome this
limitation, we integrate area difference in the loss functions.

The area difference, darea, measures the size difference between the area of the
ground truth and predicated quadrilaterals. We add darea to the MinRL2 and
MinRL1 and get hybrid loss functions that consider the vertices independently
and takes into account the area of the polygon they define. The loss functions
we use are Area MinRL2 and Area MinRL1 .
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Table 3. The performance of regression models using Area MinRL2 and
Area MinRL1

Regression model Loss function Accuracy Regression model Loss function Accuracy

Xception Area MinRL1 0.863 Xception Area MinRL2 0.8303

ResNet50 Area MinRL1 0.825 ResNet50 Area MinRL2 0.816

ResNet101 Area MinRL1 0.840 ResNet101 Area MinRL2 0.818

MobileNetV2 Area MinRL1 0.8366 MobileNetV2 Area MinRL2 0.801

DenseNet121 Area MinRL1 0.8578 DenseNet121 Area MinRL2 0.8177

As shown in Table 3 adding the area difference to MinRL2 and MinRL1

improves the performance of all the models by 2% on average, expect
MobileNetV2. The accuracy of MobileNetV2 deteriorates by less than 0.05%.
We believe this is due to the lack of training data, as our dataset is not big
enough.

Area MinRL2 and Area MinRL1 loss functions consider the vertices and the
area separately. They capture the correlation between the vertices as a geometric
shape; i.e. the predicted vertices aim at producing a shape, which area is equal
to that of the ground truth.

The Trapezoidsloss loss function aims at capturing the geometric correlation
between the predicted vertices and the shape they form without separating the
two, as we explained in Sect. 5. As shown in Table 4 the trapezoid loss function
gives better results than MinRL2 for all the study models. In addition, it gives
better results than MinRL1 for both Xception and MobileNetV2 models. This
indicates its usability for extracting objects in a similar way to MinRL2 and
MinRL1 with a focus on the object as a whole.

The Trapezoidsloss loss function considers the shape as one entity, vertices
and area together, thus restricting the independent movement of the vertices.
To evaluate the role of MinRL1 in the independent movement of the vertices
and the overall performance, we added the MinRL1 to the Trapezoidsloss loss
function. We refer to this loss function, as Trapezoids MinRL1 .

As shown in Table 5, using Trapezoids MinRL1 outperform Trapezoidsloss
for all the study models, expect ResNet101. The accuracy of the remaining study

Table 4. The performance of the regression models using Trapezoidsloss

Regression model Loss function Accuracy

Xception Trapezoidsloss 0.8671

ResNet50 Trapezoidsloss 0.7949

ResNet101 Trapezoidsloss 0.7923

MobileNetV2 Trapezoidsloss 0.8461

DenseNet121 Trapezoidsloss 0.8068
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Table 5. The performance of the regression models using Trapezoids MinRL1

Regression model Loss function Accuracy

Xception Trapezoids MinRL1 0.8674

ResNet50 Trapezoids MinRL1 0.8349

ResNet101 Trapezoids MinRL1 0.7852

MobileNetV2 Trapezoids MinRL1 0.840

DenseNet121 Trapezoids MinRL1 0.820

models increased by an average of 2%, which indicates that combing the vertices
with the geometric shape loss function improves performance.

6.3 PTPNet

We refer to the rendering model composed of Fully-Connected (FC) layers as
n-FCGenNet, where n refers to the number of FC layers in the network. In
this experiment we compare the performance of n-FCGenNet and GenPTP (see
Sect. 4). We experiment with two n-FCGenNet instance models: 3-FCGenNet
and 6-FCGenNet. The two models input a vertex vector and output a pixel
vector, which represents a 256 × 256 mask. We choose the Dice coefficient loss
function to train the rendering models, in which accuracy is measured using IOU
and DICE.

Table 6 summarized the comparison of the three rendering models. As
seen, the GenPTP outperforms the 3-FCGenNet and 6-FCGenNet models. The
GenPTP trained using ads-quads outperforms the same model trained on the
synthesized-quads dataset by %12 and %7 using IOU and DICE metrics, respec-
tively. We train GenPTP separately and combine it with the Regressor.

Table 6. The performance of different rendering models

Render model Dataset IOU DICE

GenPTP ads-quads 91.18 95.33

GenPTP synthesized-quads 79.64 88.21

3-FCGenNet ads-quads 59.73 73.3

3-FCGenNet synthesized-quads 49.23 63.38

6-FCGenNet ads-quads 75.59 85.95

6-FCGenNet synthesized-quads 65.4 78.15
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Table 7. Comparing the accuracy of PTPNet and MaskRCNN

Model Loss function Accuracy

PTPNet PTPNet loss 0.851

MaskRCNN MaskRCNNLossfunction 0.810

We decided to compare the performances of PTPNet with MaskRCNN. As
shown in Table 7, PTPNet outperforms MaskRCNN by 4%. The performance of
PTPNet is similar to the top regression model, which is the Xception architecture
with Trapezoids MinRL1 loss function. However, PTPNet is easier to generalize
for any polygon since its loss function does not assume a prior geometric shape.
In addition, having the mask and the polygon in the training phase enables
handling more complex tasks.

7 Conclusion

In this paper, we presented various deep learning models with different loss func-
tions for advertisement extraction. We introduce AD dataset, which is a dataset
of quadrilateral advertisements. Modified versions of several regression models
are explored and their performances are studied using various loss functions. We
use L2 and L1 loss functions and add the area difference to improve performance.
We introduce the trapezoid loss function that considers the vertices as represen-
tatives of a shape instead of focusing on the predicted vertices independently
and show that adding L1 loss to trapezoid loss gives the best results in most
of the modified regression models. In addition, we introduce the PTPNet model
with its own loss function that combines the results of a rendering model and a
regression model. We conduct an extensive experimental study to evaluate the
performance of common deep learning models in extracting advertisements from
images and compare their performance with our proposed model. We show that
our proposed model manages to extract advertisements at high accuracy and
outperforms common deep learning models. The scope of future work includes
extending our approach to handle general polygons.
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