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Abstract. This paper deals with a symbol recognition problem where
symbols are deformed in different ways. To address this difficulty, the
multivalent graph matching problem is considered to allow more match-
ing possibilities between the symbols. More precisely, a solution to the
multivalent graph matching problem is formulated as an extended graph
edit distance minimum with additional splitting and merging operations.
This minimization problem is tackled with a variant of ant colony opti-
mization, the max-min ant system. Besides, a neighborhood search strat-
egy added to the solution building process of the max-min ant system
aims to accelerate the computational time. The efficiency of the proposed
approach is illustrated in a symbol dataset in several aspects, covering
both quality and quantity analyses. The result shows the interest in using
multivalent graph matching to deal with noisy symbols and their mean-
ingful interpretability in the context of sub-part correspondence against
other bijective graph matching-based approaches.

Keywords: Multivalent graph matching · Extended graph edit
distance · Max-min ant system · Neighbor search · Symbol
recognition · Classification

1 Introduction

Several applications in real life demand the determination of an explainable simi-
larity measure between the objects rather than a numerical value. This is the case
in biometric identification, symbol recognition, medical diagnostics or handwrit-
ten document analysis [5,6,11,13,20,23]. Among the existing approaches, the
graph-based approach is promising because it provides the sub-part correspon-
dence as well as the similarity measure. In particular, a first step called graph
representation is done to transform the compared objects into the correspond-
ing graphs based on the features and topologies. Then, the problem of defining
the similarity of objects turns into the problem of matching graphs regarding
the features of vertices and edges of the graphs. Within some domains such as
2D and 3D image analysis, biological and biomedical applications, we can find
applications of graph-based approach [8,18,20,22]. Those strengthen the power
of graph-based techniques in digital society nowadays.
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A Graph Matching problem (GM) belongs to either exact GM or inexact GM.
For exact GM, the matching between vertices and edges must respect both the
attributes and the structure of the graph [7]. Consequently, it is well adapted to
symbolic attributes and in a non-noisy context. Inexact GM is more flexible since
it can violate the previous constraints about the attributes or the structure. In
the family of inexact GM, Graph Edit Distance (GED) is a way to produce inex-
act GM. Solving the GED problem leads to minimize the distance or dissimilarity
measure between two graphs through a series of edit operations. Regularly, these
edit operations are substitution, deletion, insertion of vertices or edges, with a spe-
cific cost associated to each operation. Two main categories of methods, exact and
heuristic, are proposed to tackle the GED. Unfortunately, the exact methods like
A∗ [9] have expensive computation time.Meanwhile, the heuristicmethods likeA∗-
Beam Search [12] have lower computational time with acceptable solution quality.
Furthermore, the exact methods seem to be infeasible for solving the GM problem
with large graph size from more than 100 nodes in an acceptable time. Therefore,
more and more heuristic approaches are developed for GED problem.

According to [19], the multivalent GM problem is more general than the GED
because it permits one vertex in one graphmatchingwithmore than one correspon-
dence in the other graph. In some cases, one feature in one object can correspond to
multiple ones in the other object [1,4]. Furthermore, in pattern recognition prob-
lems, distortions of the graph can occur, and error-tolerant graph matching tech-
niques should be used to allow node (edge) association even if they are not absolute
similar [7]. All these matching situations are special cases of multivalent matching.
Therefore, multivalent GM can be seen as the most general GM problem, and we
will contribute to bring the solution to solve it in this work.

While reviewing the literature, we found some interesting works dealing with
the multivalent GM problem. In [1], the authors apply the GED-based GM tech-
nique for recognizing diatoms. However, only merging and splitting nodes are com-
pleted in addition to the classic operations to accommodate the problem. In [3],
the authors also suggest a GED-based approach with node merging to evaluate
the similarity between images. Likewise in the previous works, the edge relations
related to the fusion of nodes are still unclear. In contrast, in works [2,3], the
authors specify the edge merging when it is necessary. However, the experimen-
tal results are not compared to other methods. In [4], a non-bijective GM app-
roach is utilized for seeking the correspondence between an original image and
its over-segmented ones. Due to the problem context, it is a bit confused between
node/edge substitution and node/edge merging. In [16,17], the authors propose a
general similarity measure for the multivalent GM and employ Ant Colony Opti-
mization (ACO), reactive tabu search to tackle the problem. However, the mea-
sure, which is intended for graphs with symbolic attributes, restricts the scope of
applications. In [10], the authors address the multivalent GM problem as an exten-
sion of GED called Extended Graph Edit Distance (ExGED). A formal formula-
tion of ExGED based on the concept of a cost matrix is given, and they provide a
way to calculate the costs of merging/splitting edges in extended cases. Nonethe-
less, the computational time is a drawback of the approach.
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From the mentioned works, we see that the GED-based approach is popular
for a multivalent GM problem. Following the direction of the work [10], we
formalize the multivalent GM problem as an ExGED one and specifying the costs
for edge merging and splitting induced by the edit operations done on nodes.
These costs are integrated into a cost matrix that considers both semantic and
topological features. We also apply the ACO-based methods, which is Max-Min
Ant System (MMAS), to resolve the problem. But, we enhance the performance
of MMAS by reducing its computational time. Particularly, a neighbor search
strategy based on the previously selected nodes is applied. Hence, the number
of candidates for the next steps will be shrunked and accelerating the solution
construction process of MMAS. The effectiveness of the proposed approach is
presented through numerical experiments for the symbol recognition problem.
The results show a significant improvement in MMAS’s execution time while
reserving a good solution quality.

The paper is organized as follows. Firstly, a problem formulation from GED
to ExGED is presented in Sect. 2. Secondly, the cost matrix construction for
ExGED is detailed in Sect. 3. Thirdly, the MMAS algorithm and the strategy
to reduce its computational time are specified in Sect. 4. Next, the efficiency of
the proposed approach is shown in Sect. 5. Finally, the conclusion sums up the
principal points and some suggestions in the future.

2 From GED to ExGED Problem Formulation

2.1 Graph Edit Distance

Definition 1. An attributed graph contains 4-tuple G = (V,E, μ, ξ), where

V,E are sets of vertices and edges, respectively,
lV , lE are sets of vertex and edge labels, respectively
μ : V �→ lV : function that assigns labels to vertices
ξ : E �→ lE: function that assigns labels to edges.

Definition 2. An edit path is a sequence of edit operations (edi) to transform
one graph to another graph, denoted λ(G1, G2) = {edi}. A valid edit path should
follow these conditions: 1) deleting a vertex implies deleting its related edges; 2)
inserting an edge is only permitted if the two vertices already exist; 3) inserting
an edge must not create more than one edge between two vertices (selfloops) [7].

Definition 3. Given two graphs G1 = (V1, E1), G2 = (V2, E2), the graph edit
distance (GED) is a dissimilarity measure between G1 and G2 and is defined by:

dmin(G1, G2) = min
λ∈Θ(G1,G2)

∑

edi∈λ

c(edi), (1)

where Θ(G1, G2) is the set containing all valid edit paths λ between G1 and G2,
c(edi) is the cost of each edit operation edi [7].

Classical edit operations are given in Table 1. The cost of each operation is
defined according to either the node or edge labels.
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2.2 Extended Graph Edit Distance Problem Formulation

Extended graph edit distance (ExGED) is also a dissimilarity measure derived
from the costs of the edit operations. In addition to traditional edit operations
in GED, the splitting and merging operations are supplemented to consider
multivalent matching as follows.

Definition 4. Given two attributed graphs G1 = (V1, E1, μ1, ξ1) and G2 =
(V2, E2, μ2, ξ2), we define:

– merging the set Smer = {ui ∈ V1, i ≥ 2} to v ∈ V2 is noted Smer → v
– splitting u ∈ V1 into the set Sspl = {vj ∈ V2, j ≥ 2} is noted u → Sspl

These two operators are also mentioned in Table 1. Usually, doing node merg-
ing and splitting can lead to edge splitting and merging, this will be discussed
more precisely when the cost of each operation will be detailed.

Table 1. Availability of edit operations for GED and ExGED (with u ∈ V1, v ∈
V2, e1 ∈ E1, e2 ∈ E2, ε the virtual vertex or edge). Smer and Sspl are subsets of V1 and
V2 defined in Definition 4.

Operation Notation Cost function notation GED ExGED

Vertex substitution u → v c(u → v) ✓ ✓

Vertex deletion u → ε c(u → ε) ✓ ✓

Vertex insertion ε → v c(ε → v) ✓ ✓

Edge substitution e1 → e2 c(e1 → e2) ✓ ✓

Edge deletion e1 → ε c(e1 → ε) ✓ ✓

Edge insertion ε → e2 c(ε → e2) ✓ ✓

Vertex merging Smer → v c(Smer → v) ✓

Vertex splitting u → Sspl c(u → Sspl) ✓

3 Cost Matrices for ExGED

3.1 Definition of the Cost Matrix for Node Operations

Inspired by the idea in [15], a cost matrix for ExGED is also built with five types
of edit operations. These operations are organized in separate blocks along with
their corresponding costs. Formally, given two attributed graphs G1, G2 as above,
we denote that n = |V1|,m = |V2|. P k

mer = {Si
mer} is a set of all possibilities for

merging of nodes in G1 and h = |P k
mer|. P k

spl = {Sj
spl} is a set of all possibilities

for splitting of nodes in G2 and l = |P k
spl|. k is a parameter that describes the

maximum size of sets Si
mer and Sj

spl, k ≥ 2. The cost matrix is demonstrated as
below.
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C =

1 . . . m ε 1 . . . l
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c1,1 . . . c1,m c1,ε c1,S1
spl

. . . c1,Sl
spl

1
...

. . .
...

...
...

. . .
...

...
cn,1 . . . cn,m cn,ε cn,S1

spl
. . . cn,Sl

spl
n

cε,1 . . . cε,m 0 ∞ . . . ∞ ε
cS1

mer,1 . . . cS1
mer,m ∞ ∞ . . . ∞ 1

...
. . .

...
...

...
. . .

...
...

cSh
mer,1 . . . cSh

mer,m ∞ ∞ . . . ∞ h

where ci,j denotes the cost of a node substitution (with (i, j) ∈ {1 . . . n} ×
{1 . . . m}), ci,ε denotes the cost of a node deletion, cε,j denotes the cost of a node
insertion, ci,Sspl

denotes the cost of a node splitting and cSmer,j denotes the cost
of a node merging.

The cost matrix C is not a square matrix as in GED case because of dimension
reductions on deletion block ((n × n) → (n × 1)) and insertion one ((m ×
m) → (1 × m)). This dimensional reduction aims to save more memory but
still preserving the property of a GED cost matrix. Moreover, by introducing
splitting and merging operations, the size of matrix C increases with h rows and
l columns. h and l are strongly influenced by k. The bigger k is the higher values
of h, l get. Consequently, the size of C will grow up significantly. Thus, choosing
the number of k would be very important, especially in a big graph. Regularly,
the parameter k is problem-dependent and based on expert knowledge.

3.2 Definition of the Costs for Edge Operations in Extended Case

To keep the computational cost reasonable, we propose to integrate the estimated
costs of edge operations involved in each node operation inside the previous
matrix C. Consequently, we need to estimate a cost for the edge operations in
the extended case. The detail is given below.

– For node substitution ui → vj , two sets of incident edges of ui and vj are
computed, called Eui

and Evj
, respectively. Then, a square edge cost matrix

Ce is built from Eui
and Evj

based on the cost functions of edge operations
in Table 1. The size of Ce is (|Eui

| + |Evj
|) × (|Eui

| + |Evj
|). Finally, the

Munkres’s algorithm is applied on Ce to find the minimum sum of edge
operation costs [15], or ci,j ← c(ui → vj) + Munkres(Ce).

– For node deletion, deleting a node ui will remove all its adjacent edges, or
ci,ε ← c(ui → ε) +

∑
e∈Eui

c(e → ε).
– For node insertion, inserting a node vj will insert all its adjacent edges, or

cε,j ← c(ε → vj) +
∑

e∈Evj
c(ε → e).

– For node merging Smer → v, two sets of incident edges to nodes in Smer and
v are computed first, denoted ESmer

and Ev, respectively. Let Eloop be the set
of edges connecting the nodes ui ∈ Smer, we introduce E′

Smer
= ESmer

\Eloop.
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Then, an edge cost matrix Ce for two sets E′
Smer

and Ev is built similarly
as for node substitution. The Munkres’s algorithm is also used to find the
minimum cost for E′

Smer
and Ev. Finally, the total cost for node merging is

cSmer,v ← c(Smer → v) + Munkres(Ce) +
∑

e∈Eloop
c(e → ε).

– For node splitting ui → Sspl, the computational steps of edge cost are similar
to node merging: cu,Sspl

← c(u → Sspl) + Munkres(Ce) +
∑

e∈Eloop
c(ε → e).

3.3 Illustrative Example

Here we give an example of the cost computation both for node and edge oper-
ations. Let G1 and G2 be 2 unlabelled graphs as in Fig. 1, and each node can
be merged or split to maximum 2 other nodes (k = 2). Suppose that nodes with
an edge between them can be considered as candidates for merging/spliting.
Other words, P k

mer = {ab, bc}, and P k
spl = {AB,AC,BC,CD} are sets of merg-

ing and splitting nodes in G1 and G2, respectively. We have n = |V1| = 3 and
m = |V2| = 4. All cost functions are defined as in Table 2.

Fig. 1. The example graph with a partial matching λ = {b → B, C}.

Table 2. Cost functions for edit operations in the example.

Operation Node operation cost Edge operation cost

Substitution c(u → v) = 1 c(e1 → e2) = 1

Insertion c(ε → v) = 2 c(ε → e2) = 2

Deletion c(u → ε) = 10 c(e1 → ε) = 10

Merging c(Smer → v) = 10 c(e → ε) = 10, e ∈ Eloop

Spliting c(u → Sspl) = 1 c(ε → e) = 0, e ∈ Eloop

With the partial matching λ = {b → B,C} in Fig. 1, we need to compute
the sets of incidents edges to the involved nodes as follows.

– Incident edges to b: Eb = {(a, b), (b, c)}
– Looping edges: Eloop = {(B,C)}
– Incident edges to B,C: EBC = {(A,B), (A,C), (B,C), (C,D)}
– Incident edges to B,C, except Eloop: E′

BC = {(A,B), (A,C), (C,D)}
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Then, the edge cost matrix Ce for Eb and EBC is computed in Eq. (3.3). The
total cost for the partial matching λ = {b → B,C} is:

cb,BC = c(b → B,C) + Munkres(Ce) + c(ε → BC) = 1 + 4 + 0 = 5.

Ce =

AB AC CD εab εbc⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

ab cab,AB cab,AC cab,CD cab,ε ∞
bc cbc,AB cbc,AC cbc,CD ∞ cbc,ε

εAB cε,AB ∞ ∞ 0 0
εAC ∞ cε,AC ∞ 0 0
εCD ∞ ∞ cε,CD 0 0

=

AB AC CD εab εbc⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

1 1 1 10 ∞
1 1 1 ∞ 10
2 ∞ ∞ 0 0
∞ 2 ∞ 0 0
∞ ∞ 2 0 0

(2)

4 MMAS for ExGED

4.1 Algorithmic Scheme

In this work, we use the Max-Min Ant System (MMAS) which is a variant of
Ant Colony Optimization (ACO) [21]. An ant colony is employed to generate
solutions to the considered problem in a parallel manner. At each iteration,
each ant constructs a complete matching based on the transition probabilities.
A construction graph denoted Gants, is utilized to know the possibilities for one
ant. In other words, Gants is the search space that shows all the possibilities of
node matching between 2 graphs. In this work, Gants is considered as a complete
undirected graph where each node in Gants represents an edit operation between
nodes in G1 and G2. Edges in Gants aim to build incrementally the best edit
path. Pheromones of natural ants here correspond to probabilities that are shared
among ants to build a solution. An initial pheromone value is laid on each vertex
of Gants and the pheromone value changes according to the performance of the
best matching found and the pheromone update schemes.

4.2 Construction Graph

A construction graph Gants provides all possible node matching (included
extended case) between two graphs G1 and G2. In other word, Gants is built
to explore all the edit paths for the ExGED problem defined in the previous
section. Figure 2 presents the construction graph built from the graphs Fig. 1.
The candidates for each edit operation is the Cartesian products of node sets
as in Table 3. Remark that when the possibility of an ant to move on Gants

depends on the current partial edit path. For instance, if the partial edit path
is λ = {b → B,C}, all candidates contain one of these nodes are pruned (gray
nodes). That means the current ant cannot move on these positions until the
edit path is complete.
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Table 3. Candidates for each edit operation in the construction graph, where V1, V2

are sets of nodes in G1, G2, respectively, ε is a virtual node, P k
mer, P

k
spl are sets of

merging and splitting nodes, respectively.

Operation Substitution Deletion Insertion Merging Splitting

Candidates V1 × V2 V1 × ε ε × V2 P k
mer × V2 V1 × P k

spl

Fig. 2. Construction graph representing all possible node matching of two graphs in
Fig. 1. Some edges are not presented for readability but all nodes are fully connected.

4.3 Construction of a Complete Matching and Neighborhood
Search Strategy

At each iteration, every ant builds a complete edit path. It starts with an empty
edit path λ = {}, then it adds a new candidate vi ∈ Gants to λ based on the
transition probability, until λ contains all nodes in both graphs. The transition
probability is computed based on two factors: the heuristic and the pheromone.
The heuristic is derived from the cost matrix C and the pheromone is laid on
the construction graph Gants. Let τvi

, ηvi
be respectively the pheromone and

heuristic values of the candidate vi, then the transition probability of vi is:

Prvi
=

[τvi
]α × [ηvi

]β
∑|cand|

j=1

[
τvj

]α × [
ηvj

]β
(3)

Besides, in this work, we enhance the method in [10] by considering a neighbor
search strategy to reduce the computational time of MMAS. That means from
a previously selected node in G1, we only focus on its neighbors to find the next
candidates. If no neighbor is found, a random choice is made. Due to this local
strategy search, it may miss good solutions but it is less time-consuming. Admit
that in the case of a complete graph, this strategy is useless because all nodes
have the same number of neighbors. A demonstration for the improvement is
given in Fig. 3.
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Fig. 3. Difference of search tree in [10] and the one with neighborhood search strategy
in our work. The gray nodes indicate pruned nodes in G2 according to the partial
solution built.

4.4 Pheromone Update

The pheromone updating process happens on each node in Gants after all ants
have built their solution at the current iteration, including reinforcement and
evaporation. The reinforcement is done only on the best solution of the current
iteration (λitbest). The evaporation is done for all nodes according to the evapo-
ration rate ρ ∈ [0, 1]. Then, the pheromone values are constrained in the interval
[τmin, τmax] [21].

τvi
= (1 − ρ) ∗ τvi

+ Δvi
, Δvi

=
{ 1

1+c(λitbest)
if vi ∈ λitbest

0 otherwise
(4)

5 Experiments

Here the MMAS algorithm is used to seek the best matching between two graphs.
This is because the search space is huge and the underlying combinatorial prob-
lem can not be solved exactly in a reasonable time [2]. However, one needs to tune
the parameters of MMAS to be well adapted to the problem. All experiments
are implemented in Python 3.8.5 and run on Windows 10 Intel(R) Core(TM)
i7-8750 CPU @ 2.20 GHz, RAM of 16.0 Go. From now on, the proposed method
in this work is called im-MMAS-ExGED.

5.1 Data Set and Graph Representation

For the experiments, we use the models in the SESYD dataset which contains
architectural and electrical symbols1. The deformed symbols are created by
adding noises to break one line into several lines or rotating or scaling the sym-
bols. This new dataset representing noisy symbols is publicly available as in
following link.
1 Can be accessed here: http://mathieu.delalandre.free.fr/projects/sesyd/.

http://www.rfai.lifat.univ-tours.fr/PublicData/ExGED/home.html
http://mathieu.delalandre.free.fr/projects/sesyd/
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For the graph representation, nodes are lines and edges are relations between
lines. Node’s attributes are the relative length (l) which is normalized according
to the longest line in each graph. Edge’s attributes are the normalized relative
angle (θ ∈ [0, 1]) and type of relation (rel). The relation rel includes T-Junction
(T ), Parallel (P ), Successive (S), L-Junction (L) and intersection (X) [14]. We
give an example in Fig. 4.

Fig. 4. The symbol (left) and its graph representation (right) where numerical
attributes of nodes (blue) and edges (red) are normalized. (Color figure online)

From the observation, we suppose that the S-relation appears when there
are noises. So, we set nodes that are connected by edges with S relations will be
candidates for merging or splitting. Also, k = 3 is set according to the dataset
(Fig. 5).

Fig. 5. The S relation appears when lines in the model (left) are split into several lines
in the deformed symbol (right).

5.2 Definition of Cost Functions for Edit Operations

Normally, the proposal of cost functions is based on the graph knowledge, such
as the node/edge’s attributes and the graph’s topology. Therefore, we define the
cost functions for the node and edge operations vis-à -vis the previous graph rep-
resentation. For node operations, the cost is proportional to the length attribute
(l). That means deleting/inserting a long line should cost more than a shorter
one. Substitution of two lines of equivalent length should be zero. Likewise, merg-
ing lines will be cheaper if their merging generates a line of adequate length. For
edge operations, the cost depends on the relation type (rel) and the relative
angle (θ). The values of edge cost functions are also in [0, 1] to be compatible
with the node cost functions. Details of the cost functions are in Table 4.
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Table 4. Cost functions of edit operations for the data set.

Node operation cost Edge operation cost

c(u → v) = |lu − lv| c(e1 → e2) =

{
|θe1 − θe2 | if rele1 = rele2
1 otherwise

c(ε → v) = lv c(ε → e2) = 1

c(u → ε) = lu c(e1 → ε) = 1

c(Smer → v) = | ∑
ui∈Smer

lui − lv| c(e → ε) = 0, e ∈ Eloop

c(u → Sspl) = |lu − ∑
vi∈Sspl

lvi | c(ε → e) = 0, e ∈ Eloop

5.3 Parameter Setting for MMAS

In this part, we study the impacts of principal parameters of MMAS and local
search on the results of GM problems. Each parameter study is run 30 times
and the average results are presented. Figure 6 shows the influence of parameters
α, β, ρ to the final costs. Based on the results, we chose α = 1, β = 3, ρ = 0.01
and 3-opt local search for later experiments. For other parameters, we also do the
experiments but they do not affect the results. We set nbants = 5, [τmin, τmax] =
[0.1, 2.0] for later experiments.

(a) α, β (b) ρ

Fig. 6. Influences of principal parameters to the convergence of MMAS to ExGED
(with 5 ants, 300 iterations, [τmin, τmax] = [0.1, 2.0]).

5.4 Matching Quality Analysis: Interest of Using Merging and
Splitting

In this section, we evaluate the matching quality regarding the sub-part corre-
spondence or node-to-node matching. The result of the approach is compared
to one of the bipartite methods for GED [15] (denoted BP-GED) and the one
in [10] (denoted old-ExGED-MMAS). We regulate a matching is reasonable if it
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matches correctly the split lines in the noisy symbols with its origin line in the
model. The node correspondence is checked manually. We take 5 models and 6
levels of distortions for each model for this experiment.

Fig. 7. Average costs of BP-GED, im-MMAS-ExGED and old-MMAS-ExGED in
terms of distortion levels.

Figure 7 shows the average cost given by three methods in terms of distor-
tion levels. Note that the cost is proportional to the distortion level in general,
higher cost for higher distortion. In all cases, the BP-GED obtains a higher
dissimilarity than the ExGED-based two methods. It confirms the appropri-
ateness of the ExGED for this kind of distortion against the GED. Looking
into the sub-part correspondence, the cost differences of methods are propor-
tional with the achieved mappings. Specifically, ExGED-based methods can find
more appropriate matching than BP-GED thanks to merging and splitting. A
demonstration is given in Fig. 8 and Table 5. Also, the results given by the im-
MMAS-ExGED are pretty competitive with the old-MMAS-ExGED. Their costs
are not very bias but the im-MMAS-ExGED is much more time-saving than
the old-MMAS-ExGED. For instance, the old-MMAS-ExGED needs 705.048 s
to produce the result, meanwhile the im-MMAS-ExGED only needs 149.425 s
with maxiter = 500 in this experiment. This consolidates that the proposed
method is less time-consuming but still gives a good result compared with the
old-MMAS-ExGED.

Table 5. Node correspondence at distorted positions between the model 032 and its
noisy versions in Fig. 8 given by BP-GED and ExGED-based methods.

Methods Level 5 Level 10 Level 15

BP-GED ε → 9 1 → 5; ε → 9 2 → 14; 3 → 17; 0 → 16; 6 → 18

ExGED-based ε → 8 1 → {5, 9} 2 → {14, 17}; 4 → {16, 18}
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Fig. 8. Drawing of nodes (in bold) and edges (dashed lines) on the symbol 032 and its
distortion levels. Ellipse indicates noise position, same noise position illustrated with
the same color. (Color figure online)

5.5 Classification Problem

In the above section, we point out the interest of using merging and splitting
for well recognizing the noisy symbols in terms of matching quality analysis for
a small dataset. In this part, we try to indicate the efficiency of the proposed
method for a bigger dataset in a classification problem. To serve this purpose, we
design the experiment as follows. We select randomly 20 models in the symbol
dataset as the training set (Fig. 9) and around 20 noise levels of each model
as the testing set. As a consequence, the size of the training set (#train =
20) is much smaller than the testing set (#test = 418). We expect that the
proposed method can get a good classification rate with such small training
information. We use one-nearest neighbor classifier or KNN with K = 1 to
do this task. So, the cost induced by GED-based or ExGED-based methods
are utilized directly for the classification. The performance of the im-ExGED-
MMAS is measured against these of BP-GED [15], Greedy algorithm for ExGED
(Greedy-ExGED), old-ExGED-MMAS [10], and GED-MMAS. The parameter
setting for this experiment is described in Table 6.

Fig. 9. Models for classification problem in the experiment.

Table 6. Parameter setting for symbol recognition problem.

Parameter (α, β) maxiter nbants ρ (τmin, τmax) k

Value (1,3) 50,100 5 0.01 (0.01,2.0) 2,3
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The results are shown in Table 7. “Accuracy” is percentage of the num-
ber of testing symbols correctly classified. #matchings is the total num-
ber of matchings done for each method. For BP-GED and Greedy-ExGED,
#matchings = #test × #train. For the remaining methods, #matchings =
#test×#train×nbants×maxiter. “Time/Matching(s)” is the ration between the
total computational time and the total number of matchings. Through Table 7,
we observe the following main points. Firstly, the MMAS-based approaches give a
better accuracy but more time-consuming than the other approaches (BP-GED,
Greedy-ExGED). It is natural because the MMAS needs to repeat the searching
process several times to improve its solution quality. Nevertheless, examining
the average time for constructing a matching, the MMAS-based approaches are
more time-saving. Secondly, between GED-based and ExGED-based approaches,
the ExGED-based ones are usually more robust with a higher classification rate,
especially the im-ExGED-MMAS. Thirdly, better results are obtained with k = 3
rather than k = 2 since it provides extra matching possibilities. In contrast, it
demands more computational time due to the size increase of the cost matrix.
Finally, the im-ExGED-MMAS proves its effectiveness against the old-ExGED-
MMAS, which supports our initial expectation of balancing between solution
quality and computational time.

Table 7. Symbol classification results given by GED-based and ExGED-based
approaches, the best result of each method is in bold.

Solver (k,maxiter) Accuracy (%) Time/matching (s) Total time (s) #matchings

BP-GED 83.014 0.008 66.621 8360

Greedy-ExGED (2,1) 74.402 0.120 96.347 8360

(3,1) 74.880 0.012 100.561 8360

Im-ExGED-MMAS (2,50) 84.450 0.002 4130.574 2090000

(3,50) 85.885 0.002 4326.690 2090000

(2,100) 84.211 0.002 8401.295 4180000

(3,100) 86.124 0.002 8267.924 4180000

Old-ExGED-MMAS (2,50) 84.211 0.005 9996.545 2090000

(3,50) 85.167 0.005 10271.611 2090000

(2,100) 83.732 0.005 20481.097 4180000

(3,100) 85.407 0.005 20754.161 4180000

GED-MMAS ( ,50) 83.253 0.004 9451.112 2090000

( ,100) 83.253 0.004 18683.444 4180000

6 Conclusion

This paper proposes an enhancement made to the performance of the proposed
method MMAS-ExGED in [10] for the multivalent GM problem. More precisely,
a neighborhood searching strategy is applied during the solution building pro-
cess of MMAS to reduce the computational time. In other words, this strategy
focuses only on the neighbor of the previously selected nodes to seek the next
candidates. The efficiency of the proposal is shown in an application of symbol
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recognition at various levels of distortions. The numerical results demonstrate
both qualitative (quality and interpretability of the generated matchings) and
quantitative (classification performance) aspects. It confirms the advantage of
using splitting and merging for symbols at multiple noise levels rather than the
traditional GED-based methods. Also, it consolidates our hypothesis that the
enhancement can keep the balance between the solution quality and the execu-
tion time. These optimist results encourage us to apply the proposed method to
other datasets in the upcoming time, for instance, brain connectome comparison
at different scales.
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10. Ho, K.D., Ramel, J., Monmarché, N.: Multivalent graph matching problem solved
by max-min ant system. In: S+SSPR, pp. 227–237 (2020)

11. Lades, M., et al.: Distortion invariant object recognition in the dynamic link archi-
tecture. IEEE Trans. Comput. 42(3), 300–311 (1993)

12. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computa-
tion of graph edit distance. In: S+SSPR, pp. 163–172 (2006)

13. Noma, A., Pardo, A., Cesar, R.M., Jr.: Structural matching of 2D electrophoresis
gels using deformed graphs. Pattern Recogn. Lett. 32(1), 3–11 (2011)

14. Qureshi, R.J., Ramel, J.Y., Cardot, H., Mukherji, P.: Combination of symbolic and
statistical features for symbols recognition. In: ICSPCN, pp. 477–482 (2007)

15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)
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