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Abstract. We present an object detection based approach to localize
handwritten regions from documents, which initially aims to enhance the
anonymization during the data transmission. The concatenated fusion
of original and preprocessed images containing both printed texts and
handwritten notes or signatures are fed into the convolutional neural
network, where the bounding boxes are learned to detect the handwrit-
ing. Afterwards, the handwritten regions can be processed (e.g. replaced
with redacted signatures) to conceal the personally identifiable informa-
tion (PII). This processing pipeline based on the deep learning network
Cascade R-CNN works at 10 fps on a GPU during the inference, which
ensures the enhanced anonymization with minimal computational over-
heads. Furthermore, the impressive generalizability has been empirically
showcased: the trained model based on the English-dominant dataset
works well on the fictitious unseen invoices, even in Chinese. The pro-
posed approach is also expected to facilitate other tasks such as hand-
writing recognition and signature verification.

Keywords: Handwriting localization · Object detection · Regional
convolutional neural network · Anonymization enhancement

1 Introduction

Handwriting localization plays an important role in the following scenarios: First,
the handwritten regions in the documents may contain sensitive information,
which must be anonymized before transmission. Second, handwriting localiza-
tion can be naturally served as the first stage to achieve handwriting-to-text
recognition. Third, signatures to be verified must be extracted via localization
from their surrounding texts or lines in the documents.

This work is initially motivated by the demanding case of anonymization
enhancement. Access to data is vital to undertake enterprise today. One of the
most common data types would be the invoices: with digitalized invoices and all
kinds of powerful AI-driven technologies, the companies would be able to analyze
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customers’ behaviors and extract business intelligence automatically, offering
utmost help to refine strategies and make decisions. However, the personally
identifiable information (PII) must be anonymized beforehand, as it is not worth
the risk of any privacy exposure.

Ostensibly, tabular texts are of overwhelming majority in the business pro-
cessing. In fact, the documents containing handwritten notes or signatures, such
as invoices, also play an important role. The goal of this work is to localize
the handwritten regions from the full-page invoice images for anonymization
enhancement. The detected handwriting shall be anonymized afterwards, while
the detailed implementation of which is beyond the scope of this work. As the
expected results of the whole processing, handwriting should be excluded from
the anonymized invoices, where it is assumed all handwritten regions would con-
tain PII. One trivial way to realize this would be replacing the handwritten boxes
with redacted signatures or notes.

Tesseract [24], the de facto paradigm of optical character recognition (OCR)
engines, is nowadays widely used in the industry to extract textual information
from images. OCR engines are competent to deal with the optimal data, which
is referred to as the image data of documents, where all items of interest are
regularly printed texts under the context of this work. In contrast, the real-
world documents are usually the ones containing not only the regularly printed
texts, but also some irregular patterns, such as handwritten notes, signatures,
logos etc., which might also be desired.

In this work, we adopt object detection approaches with deep learning net-
works to localize handwritten regions in the document data based on the SAP’s
Data Anonymization Challenge1. The feasibility and effectiveness of such algo-
rithms have been empirically shown on those scenarios, where the objects (hand-
writing) and the backgrounds (printed texts) are extremely similar. Besides, the
improvement from Faster R-CNN [23] to Cascade R-CNN [1] can be effortlessly
reproduced. In addition, the new baseline of the handwriting localization as the
subtask from the SAP’s Data Anonymization Challenge (see Footnote 1) has
been released. Last but not least, the proposed deep learning approach with
Cascade R-CNN [1] has demonstrated impressive generalizability. The trained
model based on the English-dominant dataset works well on the fictitious unseen
invoices, even for those in Chinese as toy examples. Empirically, it is believed
that the deep learning model has learned the irregularity of the images.

Since the detailed types of handwritten regions, such as signatures or notes,
are not discriminated during the experiments, we term detection and localiza-
tion in this work interchangeably. The one-class detection merely consists of the
localization regression task without classification. Despite the simplicity of the
task description, it is still challenging to distinguish the handwritten notes from
the printed texts, as they are similar regarding the contextual information. Fur-
thermore, the detected bounding boxes, which should contain PII, are expected
to be more accurate, compared to the general object detection tasks, i.e., the
primary evaluation score AP FP (average precision with penalty of false positive,
see Sect. 4.4) is thresholded with the IoU of 80%.

1 https://www.herox.com/SAPAI/.

https://www.herox.com/SAPAI/
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2 Related Work

The input images are usually in the format of the cropped handwritten regions
in the signature verification competitions [15,19]. Likewise, some handwritten
text recognition datasets provide the option of the images labeled with divided
lines [16]. This work is expected to bridge the gap between these researches and
industrial applications through handwriting localization. Besides, text detection
in natural scene images is close to our work. One significant difference between
these two tasks is the target objects: All texts should be detected in scene text
detection task (e.g. [18]), while only the handwritten texts in this work. The
other difference is the background: The background in scene text detection task
is the natural view. In this work, the background is the printed texts and tables
on the blank document. Also based on Faster R-CNN [23], Zhong et al. [26]
uses LocNet [6] to improve the accuracy in scene text detection, whereas we use
Cascade R-CNN [1], the cascade version of Faster R-CNN.

There are two main categories of methods to localize the handwritten regions
in the documents. The OCR based approaches recognize and then exclude
printed texts. As a result, the unrecognizable parts are believed to be the hand-
writing. In contrast, the object detection based approaches regard this as a
localization task, where the handwriting is the target and all other items (such
as printed texts, logos, tables, etc.) are considered as the background. Thanks to
the datasets and detection challenges on common objects (e.g. [5,13]), a consider-
able number of novel algorithms about object detection have been productively
proposed in the recent years, e.g. Faster R-CNN [23], YOLO [21], SSD [14],
RetinaNet [12], Cascade R-CNN [1], etc.

Three different approaches submitted to the Data Anonymization Challenge
(see Footnote 1) are also briefly introduced in the following sections, including
an OCR based approach and two deep learning based approaches (one with
YOLOv3 [22], one with Google’s paid cloud service).

OCR Based Approaches. In this section, an example proposal from the chal-
lenge (see Footnote 1) is demonstrated. First, the images are sequentially prepro-
cessed, including removing the horizontal and vertical lines, median filtering (to
remove salt-and-pepper noises), thresholding and morphological filtering (e.g.
dilation and erosion). The handwritten parts are then discriminated from the
printed ones with respect to the manually chosen features like the heights and
widths of the text boxes, text contents and confidence scores recognized by OCR.
In the experiments, this approach brings in the results on a par with those using
deep learning approaches. However, the robustness and the generalizability of
the deep learning approaches are believed to be advantageous.

Object Detection Based Approaches with Deep Learning. Since object
detection is an intensively researched area in the field of computer vision, it
is natural to directly apply the deep learning algorithms to the handwriting
localization task. With the deep learning engine ImageAI [17], the networks
like YOLOv3 [22] can be trained in an end-to-end manner. Moreover, some
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deep learning services like Google’s Cloud AutoML Vision API take it further,
managing the training process even without specifically assigning an algorithm.

(a) Faster R-CNN (b) Cascade R-CNN

Fig. 1. Network Architectures of Faster R-CNN [23] and Cascade R-CNN [1]. Figures
are adapted from [1].

3 Method

3.1 Faster R-CNN

Faster R-CNN [23] consists of two modules: the Region Proposal Network (RPN)
that proposes rectangular regions containing the desired objects, and the Fast
R-CNN detector [7] that predicts the classes and the locations.

The processing pipeline is demonstrated based on Fig. 1a. The input images
(I) are first fed into a convolutional neural network (conv), where the shared
features are extracted for both RPN and Fast R-CNN detector. Given the shared
convolutional feature map of a size w × h × d and the number of the anchors k
for each location in the feature map, the RPN head (H0) transforms it into two
proposal features of w × h × 2k (C0) and w × h × 4k (B0) with one e.g. 3 × 3
convolutional layer followed by two sibling 1 × 1 convolutional layers.

Now, w × h × k proposals have been generated, each in the form of 6 repre-
sentative values: 2 objectness scores and 4 coordinate offsets. The higher-scored
proposals from B0 are selected as the inputs of the Fast R-CNN detector, together
with the shared convolutional feature map. The transform of the proposals’ coor-
dinates between the original images and the feature maps is calculated via e.g.
RoIPool [7] (pool) or RoIAlign [9] (align). The pooled or aligned region of
interest (RoI) feature map of some fixed size is flattened then projected onto
a feature vector via the RoI head (H1). Finally, two vectors of classes (C1) and
locations (B1) are obtained by fully connected layers upon the feature vector.

There are two places where multi-task loss functions are calculated: RPN
(C0 and B0) and Fast R-CNN detector (C1 and B1). First, log loss is used for
both classification tasks (specifically, sigmoid activation function plus binary
cross entropy loss for C0 and softmax activation function plus cross entropy loss
for C1). Second, smooth L1 loss [7] is used for both bounding box regression
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tasks (B0 and B1), which is defined as: smoothL1(x) = 0.5x2 if |x| < 1 and
smoothL1(x) = |x| − 0.5 otherwise.

3.2 Cascade R-CNN

Figure 1 (adapted from [1]) depicts the differences of these two framework archi-
tectures. First, a cascade network is used to train the regressors and classifiers in
a multi-stage manner. A four-stage version is illustrated in Fig. 1b, including one
RPN stage and three detection stages. Second, the IoU threshold is different for
each detection stage, which is increasingly set to {0.5, 0.6, 0.7}. Note that the
mentioned IoU threshold does not refer to the one in the RPN or the one when
calculating mAP (mean Average Precision [13]). It is used to define the positive
or negative candidates during the mini-batch sampling (sample in Fig. 1).

Thanks to the cascade architecture with progressively increasing IoU thresh-
olds for sampling, Cascade R-CNN can accomplish object detection of high qual-
ity, which is exactly desired in the handwriting localization task to enhance
anonymization.

3.3 Other Techniques

Canny Edge Detection. The gradient intensity based Canny edge detector [2]
generates preliminary edges for the following processes. The detected edges might
be truncated, e.g. under different optical circumstances. Thus, further processes
of refinement or extraction are normally applied to the edges detected by Canny.

Hough Transform. Through the transform of line parameterizations, straight
lines can be efficiently detected by the voting based Hough Transform [4]. The
images are usually first processed by edge detectors like Canny, followed by
thresholding. Next, each edge pixel (x, y) in the binary images is represented by k
evenly rotating lines through it in the Hesse normal form: r = x cos(θ)+y cos(θ).
In the so-called accumulator space of (r, θ), each edge pixel would have k votes.
The peaks of the accumulator space are thus the desired lines. In this work, lines
detected by Hough Transform are removed in the preprocessing step to generate
clearer input images for the deep learning network.

Tesseract OCR Engine. As an open source paradigm OCR engine, Tesser-
act [24] has been widely used to recognize textual information in the industry. In
this work, a Python wrapper for the tesseract-ocr API has been used (https://
github.com/sirfz/tesserocr) to detect and eliminate the printed texts in the pre-
processing step.

4 Experiments

4.1 Dataset

The dataset used in this work is the scanned full-page low-quality invoices in
the tobacco industry from the 1990s (http://legacy.library.ucsf.edu/), which was

https://github.com/sirfz/tesserocr
https://github.com/sirfz/tesserocr
http://legacy.library.ucsf.edu/
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once served in a document classification challenge [8]. Based on the invoice (or
invoice-like) images from the same dataset, the labels and the bounding boxes of
names and handwritten notes are manually annotated for the Data Anonymiza-
tion Challenge (see Footnote 1).

In total, we have access to 998 gray-scale images with ground-truth labels,
which are randomly split to 600, 198 and 200 images as training, validation and
testing set, respectively (denoted below as 600train+198val+200test). The
hidden evaluation set consists of 400 images. In this case the training set covers
800 images, the validation set remains unchanged and the testing set covers 400
unseen images (denoted below as 800train+198val+400test). The sizes of the
images are varied around 700× 1000, which are resized to 768 × 768.

4.2 Preprocessing

Despite the powerful capability of extracting features automatically being one
of the benefits when using deep learning algorithms, it is believed that the ele-
mentarily preprocessed inputs or their fusions might improve the performance.
Intuitively, if some non-handwritten parts could be omitted in the preprocess-
ing step, the following handwriting localization task could be facilitated. Based
on this assumption, texts recognized by the OCR engine (tesseract-ocr [24])
of high confidence and the straight lines detected by Hough transform [4] are
excluded. In the experiments, the threshold confidence for the OCR engine is set
to 0.7. The preprocessed images without highly confident textual information or
straight lines of tables are denoted as ‘‘pre’’ in the following, while the original
ones as ‘‘o’’.

Besides, the documents usually consist of a white background (of the highest
intensity values, e.g. 1) and black texts (of the lowest intensity values, e.g. 0).
As the background is dominant in terms of the number of pixels, it is natural
to negate the images to obtain the inputs of sparse tensors, which is believed to
make the learning progress more effectively. Given an image ranged in [0, 1], the
negated image is calculated as the original image element-wise subtracted by 1.
With this in mind, the negated original and preprocessed images are denoted as
‘‘o-’’ and ‘‘pre-’’, respectively.

In addition, the inputs of the deep learning networks can be usually of an
arbitrary number of channels. The original and preprocessed images are concate-
nated to create fused inputs, where the preprocessed layer can be interpreted as
an attention mechanism, which highlights the most likely regions being the tar-
get objects. The concatenated inputs are denoted as e.g. ‘‘o/pre’’, the two
dimensions of which are original and preprocessed images. The influences of the
different inputs are investigated in Sect. 4.6.

4.3 Training with Deep Learning Networks

All experiments were running on a single RTX 2080 Ti GPU. The implementa-
tion of the deep learning networks are adopted by the open source toolbox from
OpenMMLab for object detection: MMDetection [3].
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The default optimizer is Stochastic Gradient Descent (SGD [11]) with a learn-
ing rate of 0.001, a momentum of 0.9, and a weight decay of 0.0001. Since the
training set of 600 images is relatively small, the default number of epochs is
set to a relatively large one (200) to make full use of the computational capac-
ity if the training lasts overnight. During the experiments, it is observed that
200 epochs are appropriate (Fig. 4). The train/val/test sets are defined as
in Sect. 4.1. Model weights after each epoch with the best results of val set
are chosen to make predictions on test set. The different preprocessing steps
are introduced in Sect. 4.2 and they are compared with Faster R-CNN [23] and
Cascade R-CNN [1] in details. Next, additional two deep learning networks,
RetinaNet [12] and YOLOv3 [22], have been tested with the preprocessing step
which yields the best result on Cascade R-CNN. Detailed experimental results
can be found in Sect. 4.6.

4.4 Evaluation Scores

IoU. Intersection over Union of two bounding boxes p and g is defined as below:

IoU(p, g) =
Area{ p ∩ g }
Area{ p ∪ g } (1)

GIoU. Global IoU of two lists of bounding boxes P = {p1, p2, ...} and G =
{g1, g2, ...} is defined as below:

GIoU(P,G) =
Area{ (p1 ∩ p2 ∩ ...) ∩ (g1 ∩ g2 ∩ ...) }
Area{ (p1 ∩ p2 ∩ ...) ∪ (g1 ∩ g2 ∩ ...) } (2)

APFP. Average Precision with penalty of False Positive is the original evaluation
score for the handwriting detection used in the Data Anonymization Challenge
(see Footnote 1), which is defined as follows:

APFP =

⎧
⎨

⎩

|MG|
|G| · 0.75|P|−|MP |, if |G| �= 0;

0.75|P|−|MP |, otherwise.
(3)

In Eq. 3, P, G, MG, MP denote the sets of predicted, ground-truth,
matched w.r.t. ground-truth and matched w.r.t. predicted bounding boxes,
respectively, and | · | denotes the number of the bounding boxes in this set.

The criterion to call some predicted bounding box pi ∈ P a match w.r.t. the
ground-truth bounding box g ∈ G is, when the IoU between pi and g is greater
than a threshold T , i.e.:

MG = { g ∈ G | ∃ pi ∈ P (
IoU(pi , g) > T

)}. (4)

Analogously,

MP = { p ∈ P | ∃ gi ∈ G (
IoU(p , gi) > T

)}. (5)
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It differs from the popular evaluation score AP (Average Precision) for object
detection in COCO [13], where the false positive (FP) has not been particularly
punished. Moreover, considering the potential application on the anonymization
enhancement, the IoU threshold T in the Data Anonymization Challenge (see
Footnote 1) is set to 0.8, which is more strict than the common single threshold
of 0.5 in COCO. In this work, the results are evaluated both with T = 0.8
and T = 0.5, which are denoted with AP FP

80 and AP FP
50 , respectively. In the

Data Anonymization Challenge, there is a mechanism of Bad-Quality: if an
image is marked as Bad-Quality, its AP FP

80 is assigned with 35%. We therefore
record another two evaluation scores AP FP

80 ∗ and AP FP
80 + , where ∗ denotes

the Bad-Quality mechanism is used when calculating AP FP
80 and + denotes the

images marked as Bad-Quality are excluded when calculating AP FP
80 .

(a) GIoU = 76.4; AP FP
80 = 0; AP FP

50 = 100

(b) GIoU = 70.7; AP FP
80 = 0; AP FP

50 = 0 (c) GIoU = 23.1; AP FP
80 = 0; AP FP

50 = 0

Fig. 2. Comparison of different evaluation scores (in %). Green: ground-truth box;
Red : predicted box. See Sect. 4.4 for the definitions of GIoU,AP FP

80 , AP FP
50 . (a) shows

the IoU threshold of 80% might be too strict; (b) shows the AP family might not
effectively indicate the decent quality of the prediction if the ground-truth contains
multiple adjacent boxes and a larger one is detected, while GIoU could; (c) shows an
unacceptable prediction where most of sensitive data are exposed, in which case the
evaluation score of AP family (with a high threshold) is desired. (Color figure online)

In addition, the overall evaluation score is calculated by averaging all image
level scores, which applies to GIoU and AP FP . These 3 evaluation scores are
illustrated with visual results of ground-truth and predicted bounding boxes in
Fig. 2. It is shown that there is no single evaluation score considered as silver bullet,
especially if the ground-truth annotations are not perfect. In this dataset, imper-
fect is referred to as the fact that the neighboring handwritten regions are some-
times annotated as a single large box, sometimes as multiple separate small boxes.
With this in mind, the results are evaluated with the following five scores: AP FP

80 ,
AP FP

80 ∗ , AP FP
80 + , AP FP

50 and GIoU . Note that the first two evaluation scores
(AP FP

80 and AP FP
80 ∗ ) are eligible in the SAP’s Data Anonymization Challenge

(see Footnote 1).
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4.5 Postprocessing

The deep learning classifier outputs a confidence score for each corresponding
class. This confidence score can be thresholded as a hyperparameter to control
the false positive rate in the postprocessing step. It has been observed during
the experiments that the best results (w.r.t. AP FP

80 ) can be achieved, if this
confidence is thresholded as 0.8, which is thus chosen as default.

In addition, to reduce the overlapped bounding boxes, some postprocessing
steps are applied in the end, which follows the simple criterion: one large box is
preferable to multiple small ones. First, all the predicted bounding boxes from
each image are sorted in ascending order by their areas. Second, starting from
the smallest one, each box is checked if the intersection area over the smaller box
area is greater than a threshold (chosen as 0.9). If it is the case, the smaller box
is omitted. This postprocessing is applied by default and we observed a minimal
improvement, namely around 0.3% in terms of AP FP

80 .

4.6 Results

In this section, the experimental results are presented regarding the different
preprocessing steps (Table 1), the influences of the mechanism of Bad-Quality
(Table 1, 3), the comparison of various deep learning networks (Table 2) and
the results released on the leaderboard of Data Anonymization Challenge (see
Footnote 1) (Table 3). The improved performance from Fast R-CNN and Cascade
R-CNN is specifically demonstrated (Fig. 3, 4). Furthermore, the examples of
predicted handwritten regions from the val set are visualized in Fig. 5, together
with the ground-truth bounding boxes.

Fig. 3. mAP50 and mAP75 (val) of
Cascade and Faster R-CNN. The cas-
cade version surpasses Faster R-CNN by
a larger margin under the more strict
criterion.

Fig. 4. Overall loss (bottom; left axis)
and mAP50 (top; right axis) during the
training. The dashed vertical line indi-
cates the boundary of overfitting after
around 170 epochs.
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Preprocessing. To begin with, different types of preprocessed images as the
inputs of the deep learning networks are investigated based on Faster R-CNN
and Cascade R-CNN. As shown in Table 1, the preprocessed images alone can
bring in worse results, compared to the original ones, while the concatenated
preprocessed and original images as inputs (‘‘o/o-/pre-’’) have achieved the
best result w.r.t. AP FP

80 , which are therefore used as default in the following
experiments (Table 2, 3). It is believed that the fused preprocessed images could
be served as an attention mechanism, which highlights the regions more likely
containing the desired objects. Moreover, it is empirically shown in Table 1 that
sparse inputs have not always yielded better results, if compared the negated
inputs with the original ones.

Table 1. Handwriting detection results (in %) with different preprocessing steps as
inputs. Images which contain more than 3 detected boxes are marked as Bad-Quality.
Dataset: 600train+198val+200test. Input abbreviations see Sect. 4.2. Column-wise
best results are made bold.

Network Input AP FP
80 AP FP

80 ∗ AP FP
80 + AP FP

50 GIoU

Faster R-CNN o 34.2 45.4 59.2 65.5 64.6

Faster R-CNN o- 35.1 45.7 58.2 64.9 65.1

Faster R-CNN pre 31.3 43.1 55.9 54.0 56.3

Faster R-CNN pre- 29.6 42.4 54.0 54.6 55.3

Faster R-CNN o/pre 34.6 43.9 56.3 64.1 64.4

Faster R-CNN o-/pre- 35.1 44.5 53.3 66.7 65.4

Faster R-CNN o/o-/pre 37.2 45.6 59.6 63.3 64.9

Faster R-CNN o/o-/pre- 35.1 45.0 57.4 62.4 64.3

Cascade R-CNN o 37.7 45.7 56.6 65.6 66.4

Cascade R-CNN o- 34.7 42.9 49.2 65.1 66.5

Cascade R-CNN pre 31.9 41.6 47.5 55.4 56.7

Cascade R-CNN pre- 32.2 42.0 47.6 57.0 58.7

Cascade R-CNN o/pre 36.3 44.3 56.0 64.4 66.4

Cascade R-CNN o-/pre- 35.0 44.7 56.6 64.1 64.3

Cascade R-CNN o/o-/pre 37.2 46.9 60.0 64.4 66.3

Cascade R-CNN o/o-/pre- 38.3 46.0 56.5 65.0 66.8

Mechanism of Bad-Quality. As introduced in Sect. 4.4, the mechanism of
Bad-Quality is provided in the challenge (see Footnote 1), which has been made
full use of with the evaluation scores AP FP

80 ∗ and AP FP
80 + . It is observed based

on the val set that the performance tends to be worse with the increasing
number of the detected bounding boxes. With this in mind, all images with
more than 3 detected bounding boxes are marked as Bad-Quality. The purpose
of this mechanism is to raise the abnormal or complicated cases and turn to the
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Table 2. Handwriting detection results (in %) using different deep learning net-
works. Inference speed is tested on a single RTX 2080 Ti GPU. Images which contain
more than 3 detected boxes are marked as Bad-Quality. Dataset: 800train+198val+
400test. Column-wise best results are made bold.

Network Inference AP FP
80 AP FP

80 ∗ AP FP
80 + AP FP

50 GIoU

YOLOv3 42 fps 36.6 43.2 47.4 61.0 62.2

RetinaNet 11 fps 27.9 40.8 44.4 51.7 54.9

Faster R-CNN 11 fps 37.1 45.3 57.2 62.1 66.6

Cascade R-CNN 10 fps 41.8 47.5 57.5 66.9 68.2

Table 3. Comparison
with the leaderboard.
OCR: Tesseract with
manual engineering.
Service: Google’s Cloud
API. � and † denote
YOLOv3 results from
the leaderboard and
ours, respectively. BQ: if
Bad-Quality is used.

Method AP F P
80 BQ

YOLOv3� 26.3 ✗

OCR 37.5 ✗

Service 42.5 ✗

YOLOv3† 36.6 ✗

YOLOv3† 43.2 ✓

Cascade 41.8 ✗

Cascade 47.5 ✓
Fig. 5. Visual results of cropped handwritten regions from
val set (Cascade R-CNN with ‘‘o/o-/pre-’’). Green:
ground-truth box; Red : predicted box. (Color figure online)

manual process, which is practical in the industry. However, if the number of
images marked as Bad-Quality is too large to maintain the productive advantage
of machines, the evaluation scores AP FP

80 ∗ and AP FP
80 + might bring in pseudo

good results. Therefore, the number of images marked as Bad-Quality is loosely
limited up to 50% of all images. Conclusively, the mechanism of Bad-Quality
is believed to be a flexible trick to deal with the hard cases.

Faster and Cascade R-CNN. Not surprisingly, it is shown in Table 1 that
Cascade R-CNN outperforms Faster R-CNN in general except for AP FP

50 , as
Cascade R-CNN focuses on the object detection of higher quality and might
perform worse than Faster R-CNN in terms of AP FP

50 . As shown in Fig. 3, the
cascade version surpassed Faster R-CNN by a larger margin under the more
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strict criterion, when compared mAP75 to mAP50 (using COCO’s evaluation
scores [13] for brevity) in the val set. In addition, as depicted in Fig. 4, the
training progress has been overfitted after around 170 epochs, from where the
loss values and mAP50 start decreasing. Thus, the chosen 200 epochs during all
the experiments are appropriate.

Comparison with Other Approaches. Some of the popular deep learning
networks for object detection are compared in Table 2, including YOLOv3 [22],
RetinaNet [12], Faster R-CNN [23] and Cascade R-CNN [1]. They are imple-
mented with [3]. Darknet-53 [20] is used as the backbone for YOLOv3 and
ResNeXt-101 [25] for the other three. The dataset used in this experiment,
800train+198val+400test (see Sect. 4.1), is identical with the one used in
the leaderboard. The images are preprocessed to the form of ‘‘o/o-/pre-’’
as described in Sect. 4.2. The results show that Cascade R-CNN outperforms
other networks, with the trade-off regarding the inference speed on a single RTX
2080 Ti GPU due to the extra computational overhead though. As showcased in
Table 3, the results of our approaches are compared with those submitted to the
leaderboard. The first three rows are the results from the leaderboard, and the
following four rows are our approaches. Our best achieved result (with Cascade
R-CNN and BQ) has surpasses previous submissions on the leaderboard. With-
out considering the mechanism of BQ, however, the paid Google AutoML Vision
API is slightly more advantageous (by 0.7%). Besides, it is noticeable that our
YOLOv3 result (implemented by [3]) has outperformed the version submitted
to the leaderboard (implemented by [17]) by more than 10% in terms of AP FP

80 .

4.7 Generalizability

English is the vast majority of the languages used in the dataset. Other languages
such as Dutch or German are also included. However, the deep learning network
is not expected to recognize the discrepancy of different languages. It is natural to
categorize the languages using Latin alphabets indiscriminately. In this section,
it is tested if the trained model works on the redacted real-world images in
foreign languages.

Figure 6 illustrates two toy examples of fictitious and unseen invoices to eval-
uate the generalizability of the trained model. The model used to localize the
handwritten regions is Cascade R-CNN. It is noteworthy that the language in
the left image in Fig. 6 is Chinese, which can be considered as a foreign language
in the dataset. Analogous to the German invoice demonstrated in the right one,
the handwritten regions of both images are accurately detected as desired. The
generalizability of the R-CNN family has also been observed by [26] during the
text detection in natural scene images.

It is believed to be beneficial in the industry, if the model can be trained
once and applicable to various cases. Additionally, it has also raised the com-
mon question of what the deep learning network has learned. In this case, it is
supposed that the irregularity might be learned to discriminate the printed and
handwritten texts.
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Fig. 6. Test of generalizability on toy examples with fictitious and unseen invoices. The
handwritten regions are accurately localized from the images in Chinese and German.

5 Discussion

5.1 Conclusion

In this work, we present an object detection based approach to localize the
handwritten regions, which is effective, fast and applicable to the unseen lan-
guages. First, the influences of the preprocessing steps are investigated. It has
been empirically found that the fused concatenation of original and preprocessed
images as the inputs can achieve the best performance. Second, different deep
learning networks are compared. It is noticeable that the improvement from
Faster R-CNN to Cascade R-CNN can be reproduced and the high quality char-
acteristic of the cascade version suits the problem of the handwriting localization
well. The results of our approaches can be served as a baseline of deep learning
approaches in the handwriting localization problem. At last, the generalizability
of the deep learning approach is impressive. The learned model is capable to suc-
cessfully detect the handwritten regions on the real-world unseen images, even
for those in the unseen language of Chinese. We believe it is of great interest
both for the future research and for the industrial applications.

5.2 Outlook

As showcased in Fig. 5, some printed cursive texts are also detected as hand-
writing. It remains challenging to distinguish such nuanced discrepancies. Fur-
thermore, apart from the object detection approaches, other proposals in the
field of computer vision can also be adopted to differ the handwritten texts
from the printed ones. One example is the anomaly detection, where the printed
texts can be considered as the normal instances, since they are more regularly
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shaped. Thanks to the algorithms like variational autoencoder (VAE) [10], it is
also promising to accomplish such tasks in a semi-supervised or even unsuper-
vised manner. The other benefit of using the algorithms like VAE is that the
learned intermediate representations can also be exploited to synthesize the arti-
ficial signatures, further enhancing the anonymization without eliminating the
existence of such entities.
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