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Abstract. This paper investigates the optimal deployment of the con-
vergence nodes in hierarchical wireless sensor networks (WSNs) since it
plays an essential role in the performance of hierarchical WSNs, espe-
cially for those where the locations of sensing nodes are determined.
By optimizing the locations of the convergence layer nodes, two opti-
mization objectives are considered under the premise of ensuring that
all sensing nodes are effectively connected: one is to minimize the total
transmission power of sensing nodes, and the other is to make the energy
consumption of the sensing nodes as balanced as possible to prolong
the life of WSNs. These optimization problems are non-convex and NP-
hard. To solve them, this paper proposes an optimization scheme based
on the state-of-the-art swarm intelligence algorithm, namely the slime
mould algorithm (SMA). The simulation results show that the SMA-
based deployment scheme can dramatically reduce the total power of
the sensing nodes and balance the energy consumption among sensing
nodes.
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1 Introduction

For large scale wireless sensor networks (WSNs), hierarchical structures are typ-
ically preferred due to the strong scalability and stability [1,2]. A hierarchical
WSN generally includes convergence nodes (CNs) and sensing nodes (SNs). An
SN is mainly responsible for collecting information, and then forwarding it to
the associated convergence node. And a CN collects data from the associated
SNs and delivers them to servers. Typically, SNs are powered by batteries and it
is not practical to replace or recharge them. While CNs are much less in number
compared to SNs and typically have stable power supplies.

The deployment of CNs plays an important role in the performance of hier-
archical WSNs and has aroused great interests. Reference [3] studied the deploy-
ment of heterogeneous wireless directional sensor networks in a three-dimensional
intelligent city. A new distributed parallel multi-objective evolutionary algorithm
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was proposed to optimize the coverage, connectivity quality, lifetime, connectiv-
ity and reliability. In [4], the deployment of sensor nodes and relay nodes in
industrial environments is studied with the objectives of optimizing the secu-
rity, lifetime and coverage. In [5], a WSN is applied to air pollution mapping,
which solves the optimization problem of sensor deployment. On the premise of
ensuring network connectivity and considering node perception error, two kinds
of air pollution map layout models are derived by using the integer linear pro-
gramming method. Reference [6] proposed a distributed parallel coevolutionary
multi-objective large-scale evolutionary algorithm to optimize the WSN deploy-
ment in the three-dimensional (3D) cabin space of a super large crude oil carrier
to improve the coverage, network lifetime and reliability. In [7], a real coverage
model of 3D environment based on Bresenham line of sight is proposed, and
multi-objective genetic algorithm is used to solve the problem with the number
and location of sensors as the target.

In this paper, we aim to optimize the deployment of CNs for the hierarchical
WSN where the locations of SNs are determined due to the explicit require-
ments of the monitoring area. The goal is to make the total Tx power of the
sensing layer node as low as possible, or make the Tx power of the sensing layer
node as balanced as possible. Studies in [8] and [9] also investigated the optimal
deployment of CNs in hierarchical clustering WSNs, however, the objective was
to achieve the full coverage of SNs with the lowest total power of CNs, but not
SNs. It makes more sense to lower the power consumption of SNs rather than
CNs since it is the SNs rather than CNs that are power constrained.

The above optimization problems are both non-convex and NP-hard, so it
is difficult to obtain analytical solutions by using classical optimization theory.
Therefore, this paper introduces a state-of-the-art swarm intelligence optimiza-
tion algorithm (SIOA): slime mould algorithm (SMA) [10] to search for the
approximate optimal solutions of the optimization problems. SIOAs have been
proved to be highly effective in solving complicated optimization problems [11–
13]. Moreover, this paper fully considers the non-uniformity of the actual deploy-
ment environment, that is, there are various obstacles within the deployment
environment, which cause different degrees of attenuation to the wireless signals.
It should be noted that although we only concern two-dimensional deployment
scenarios in this work, it is straightforward to extend the proposed scheme to
3D scenarios by adding the value of z-axis as an additional decision variable.

The performance of the SMA-based optimized deployment mechanism are
verified by sufficient simulations. The simulation results show that, compared
with the traditional uniform distribution wireless sensor model, the SMA-based
optimal convergence layer deployment scheme can significantly reduce the total
transmission power of the sensing layer nodes and balance the energy consump-
tion among sensing layer nodes on the premise that all sensing layer nodes are
covered by the signal.

The rest of this paper is organized as follows: Sect. 1 introduces the
system model of wireless sensor network and the mathematical model of the
optimization problem. Section 2 describes the detailed process of SMA based



412 J. Yi et al.

hierarchical wireless sensor network aggregation layer topology optimization
mechanism. Section 3 describes the simulation experiment and gives the opti-
mized results. Finally, Sect. 4 summarizes the paper.

2 System Model

Consider a hierarchical WSN deployed in the two-dimensional area M which is
divided into two layers, namely the sensing layer and the convergence layer. We
assume that there are Ns sensing nodes (SNs) in the sensing layer, denoted as
S = {SN1,SN2, . . . ,SNNs

} and Nc {Nc � Ns} convergence nodes (CNs) in the
convergence layer, denoted as C = {CN1,CN2, . . . ,CNNc

}. Each CN associates
with at least one SN while each SN can be associated to only one CN.

We divide the two-dimensional area M into m×m grids. Each grid is covered
by one SN, that is, Ns = m2. It is assumed that each SN is located in the center
of the small square. The position of SNi (i = 1, 2, · · · , Ns) is denoted as LSNi

=
(xSNi

, ySNi
), and its Tx power is denoted as pi (pmin ≤ pi ≤ pmax). The position

of CNj (j = 1, 2, . . . , Nc) is LCNj
=

(
xCNj

, yCNj

)
. The receiving sensitivity of a

CN is p0. Meanwhile, we assume that each wireless link between a SN and a CN
is bidirectional under the same transmission power, that is, as long as the signal
of SNi can effectively cover CNj , the signal of CNj can also effectively cover
SNi.

In this paper, the propagation attenuation of wireless signal from SNi to CNj

is modeled as α = β0+10γ lg di,j

d0
+β1, where γ represents the attenuation factor,

which depends on the surrounding environment; β0 represents the attenuation
of its signal caused by obstacles; d0 is the reference distance; β1 is the received

power of d0 at the reference distance; di,j =
√(

xSNi
− xCNj

)2 +
(
ySNi

− yCNj

)2

is the distance from SNi to CNj .
In order to better simulate the real environment, the target area M is set as

a non-uniform environment, that is, there are various obstacles within M. These
obstacles cause addition attenuation. If the line from SNi to CNj , denoted as
Li,j passes through an obstacle, the attenuation caused by this obstacle is then
taken into account.

The Boolean expression to judge whether SNi is effectively covered by CNj

is as follows:

C (SNi,CNj) =
{

1, if pi − α ≥ p0
0, otherwise (1)

Consequently, the indicator that whether SNi is covered by at least one CN can
be defined as C (SNi) = 1 − ∏

CNj∈G [1 − C (SNi,CNj)] , and the coverage rate
of the sensing nodes can be expressed as E(S,G) = 1

Ns

∑
SNi∈S C (SNi) .

We use the variance to evaluate the energy consumption balance among
sensing nodes, which is calculated as σ = 1

Ns

∑
SNi∈S (pi − p̄)2 , where p̄ =

1
Ns

∑
SNi∈S pi represents the average power of the sensing nodes.

The optimization problem in this paper is to optimize the locations of the con-
vergence nodes on the premise of ensuring the full coverage of the sensing nodes,



SMA-Based CN Deployment for HWSN 413

so that 1) the total transmission power of the sensing nodes can be minimized,
and 2) the transmission power can be balanced as far as possible. Therefore, the
mathematical model of the optimization problem is defined as follows:

OP1 : min
LCN

(∑

SNi∈S
pi

)

OP2 : min
LCN

σ

s.t. E (S,G) = 1

(2)

where LCN =
{
(xCN1 , yCN1) , (xCN2 , yCN2) , · · · ,

(
xCNNc

, yCNNc

)}
is the location

vector for convergence nodes, the constraint is the full coverage requirement.

3 SMA Based Optimal Deployment Scheme

The location vector of CNs (LCN) is mapped to the position of a slime mould in
the super dimensional space. That is, each individual in the swarm represents a
candidate solution of (2). Slime moulds approach food according to the smell in
the air which is interpreted as the fitness in the optimization algorithm. In this
paper, the fitness is defined as follows:

F(LCN) =
{

OP1 :
∑

SNi∈S pi,
OP2 : σ.

(3)

The approach behavior and contraction mode of the ith slime mould in the
swarm in the tth iteration can be modeled as

LCN(t + 1, i) =

⎧
⎨

⎩

r0 (Bu − Bl) + Bl, r1 < z
Lbest
CN (t) + vb · (

w · LA
CN(t) − LB

CN(t)
)
, r1 ≥ z, r2 < p

vc · LCN(t, i), r1 ≥ z, r2 ≥ p
(4)

The variables and vectors involved in (4) are explained as follows. Bu and Bl

are upper and lower bound of location coordinates. r0, r1 and r2 are random
values within the range of [0, 1]. z is a predefined threshold. LCN(t, i)|Np×2Nc

is the ith individual in the tth iteration and Np is the population size. Lbest
CN (t)

is the best individual, that is, the individual achieves the best fitness by the tth
iteration. Vb and Vc are two random factors where |vb| ≤ arctanh

(
− t

maxt t
+ 1

)

and |vc| ≤ t
maxt t

, respectively. t = 1, 2, . . . , itermax is the current iteration and
LA
CN(t) and LB

CN(t) represent two individuals randomly selected from the swarm.
p can be calculated as:

p = tanh |F(t, i) − Fbest(t)| , i = 1, 2, . . . , Np (5)

where F(t, i) returns the fitness of the ih individual in LCN(t),Fbest(t) =
F (

Lbest
CN (t)

)
. w is the fitness weight vector which can be calculated as:

w (IF (i)) =

⎧
⎨

⎩

1 + r · log
(

Fbest(t)−F(t,i)
Fbest(t)−Fworst(t)

+ 1
)

, condition

1 − r · log
(

Fbest(t)−F(t,i)
Fbest(t)−Fworst(t)

+ 1
)

, others
(6)
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where r ∈ [0, 1] is a random value, the condition indicates that F (
Li
CN(t)

)
ranks

first half of the population, Fworst(t) is the worst fitness value obtained in the
iterative process currently, IF denotes the sequence of fitness values sorted in
ascending order.

The pseudo code of the SMA-based optimal CN deployment scheme is sum-
marized in Algorithm 1.

Algorithm 1. SMA-based optimal CN deployment scheme.
Initialize Np, itermax, t ← 0 and the CN positions LCN(t, i), ∀i ∈ [1, Np];
while (t ≤ itermax) do

for each individual i in the population do
Calculate F(t, i) by (3);

end for
Lbest

CN (t) ← arg minLCN F(t);
Fbest(t) ← F(Lbest

CN (t));
Calculate w by (6);
t ← t + 1;
for each individual i in the population do

Update p by (5);
Randomly update vb andvc;
Update LCN(t, i) by (4);

end for
end while
return Fbest(t), L

best
CN (t);

4 Simulation Experiment

In this study, a two-dimensional space M of 100 m × 100 m is simulated and
divided into 20× 20 grids, as shown in Fig. 1(a). One sensing node is placed
in the center of each grid. Initially, 36 convergence nodes are evenly placed in
the target area (green triangles in Fig. 1(a)). In order to better simulate the
heterogeneous environment in real life, we also add some common obstacles in
the simulation space. The attenuation introduced by load bearing walls, rick
walls and wooden walls is 30 dB, 15 dB and 10 dB respectively. The maximum
and minimum powers of sensing layer node are 23.5 dBm and 1 dBm, respectively.
The attenuation factor (γ) is 3, the reference distance (d0) is 1 m.

We assume that each SN knows the location of the associated CN and
always adjusts its Tx power to the lowest value which ensures a reliable con-
nection. In the initial layout, the minimum total Tx power of the sensing nodes
is 10680.39 mW. The association between the convergence nodes and the sens-
ing nodes is shown in Fig. 1(a). The Tx power of each sensing node is shown in
Fig. 1(b). It can be observed that the TX powers of sensing nodes are distributed
over a considerable large range. The Tx power variance is 1127.76.
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4.1 Optimization on Total Tx Power

Firstly, the deployment of convergence nodes is optimized with the objective
of minimizing the total Tx power of sensing nodes by the proposed SMA-based
scheme. The population size is 500 and the maximum number of iteration is 2000.
The optimization process is shown in Fig. 1(c). It can be seen from the figure
that in the first 500 iterations, slime moulds are looking for a higher quality
food source, and the total Tx power remains unchanged. With the continuous
iteration of the algorithm, it can be seen that the total Tx power of the sensing
nodes is significantly reduced. The total Tx power remains stable after about
1800 iterations, with the value of 6032.16 mW. Compared with the total Tx
power of 10680.39 mW before optimization, a 43.52% reduction is achieved. The
optimized locations of the convergence nodes and the association between the
sensing nodes and convergence nodes are shown in Fig. 1(d).

4.2 Optimization on Energy Consumption Balance

Then, we optimize the deployment of the convergence nodes to minimize the
variance of the TX powers of the sensing nodes, so that the energy consumption
of the sensing nodes can be balanced. The optimization process is shown in
Fig. 1(e). Similarly, it can be observed that the variance of the Tx power starts
to drop after 500 iterations and remains stable at the value of 166.72 after about
1500 iterations, which is only 14.78% of the original. Figure 1(f) depicts the
distribution of the TX powers of the sensing nodes after optimization. Compared
with Fig. 1(b), the TX powers is much more balanced at this time. The optimized
locations of the convergence nodes and the association between the sensing nodes
and convergence nodes are shown in Fig. 1(d).

We further evaluated the survival rate of sensing nodes and the survival time
of the WSN. It is assumed that each sensing node has the same total energy(
1 × 104 J

)
and that each sensing node transmits and receives data for a period

of 10 ms per second. A sensing node is considered dead if its energy decreases to
0. In addition, the whole WSN is considered dead if 30% of the sensing nodes
die.

Figure 1(h) compares the survival rate and the network survival time between
the traditional uniform deployment and the optimized one. It can be found that
the death rates drop significantly in the optimized deployed WSNs compared
with the uniformly deployed WSN. The uniformly deployed WSN stops working
(30% of SNs run out of energy) after 307056 s, while as a contrast, only 4% and
1.75% of SNs die in the OP1-optimized scenario (OP1) and the OP2-optimized
scenario (OP2) by then, respectively. The OP1-optimized WSN can survive for
892536 s. And the OP2-optimized WSN lives much longer than the other two. It
continues working for up to 1020668 s.
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Fig. 1. (a) Initial deployment and associations between SNs and CNs, (b) Tx powers
of SNs in initial deployment, (c) OP1: Converge curve of the total Tx power of SNs,
(d) OP1: Associations between SNs and CNs, (e) OP2: Converge curve of the total
Tx power of SNs, (f) OP2: Tx powers of SNs, (g) OP2: Associations between SNs and
CNs, (f). Survival rate of SNs.

5 Conclusion

In this paper, we propose an optimized convergence node deployment scheme for
hierarchical WSNs based on SMA. The objectives are to minimize the total Tx
power or balance the power consumption among sensing nodes on the premise
of full coverage of the sensing nodes.

Moreover, this paper fully considers various obstacles which introduce addi-
tional signal attenuation within the target area. Experimental results show that
the optimal deployment scheme can greatly reduce the total energy consumption
of the sensing nodes, promote the energy consumption balance among sensing
nodes, and prolong the network lifetime.
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