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Abstract. We present a framework for assessing the relative cognitive cost of
different representational systems for problem solving. The framework consists
of 13 cognitive properties. These properties are mapped according to two dimen-
sions: (1) the time scale of the cognitive process, and (2) the granularity of the
representational system. The work includes analyses of those processes that are
relevant to the internal mental world, and those that are relevant to the external
physical display too. The motivation for the construction of this framework is to
support the engineering of an automated system that (a) selects representations,
(b) that are suited for individual users, (c) and works on specific classes of prob-
lems.We present a prototype implementation of such an automated representation
selection system, along with an evaluation.

Keywords: Representational systems · Cognitive cost · External and internal
representation

1 Introduction

The motivation for (yet) another analysis of the nature of representations stems from our
project that is building an automated approach to the selection of appropriate represen-
tations for solving problems. The motivation and goals of the project are described more
fully in [9]. Representation selection must take into account: (a) the type of problem, (b)
the specific representational system in which the problem may live, and (c) the users’
abilities and familiarity across various representational systems. Expert teachers are able
to pick alternative representations to suit each individual students’ ability for specific
classes of problems; thus, our aim is to design and build a system that can make similar
selections. So, what kind of aspects do we need to take into account when building an
automated system? In our project, we identified formal properties and cognitive proper-
ties of representational systems. Further, we are developing methods to combine those
properties with information about individual users in order to suggest candidate repre-
sentations for them as well as rank them according to their efficacy for each individual.
In this paper, we focus on the cognitive properties. (We describe formal properties in
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detail in [18, 19, 23]). Fundamental to our approach is the assessment of the relative
cognitive cost of alternative representations. Therefore, this requires us to state what the
cognitive properties are and to formulate cost measures for them, which will be used in
the calculations of an overall cost of a representational system.

Many empirical studies have been conducted on the relative benefit of selected rep-
resentations for specific tasks, such as [5, 11, 27]. However, it is unclear how these
findings can be applied to the assessment of the cognitive costs of representations in
general: they only address particular isolated factors. In contrast, we aim to address the
following research questions:

1. What are cognitive properties and where do they come from?
2. How should cognitive properties’ relative importance be assessed in the context of

their multitude and diversity?
3. How can cost measures of the properties be combined to give the relative order of

the effectiveness of representations?

Our aim in this paper is to provide the foundational framework fromwhich to address
these questions. To be clear, we are not pursuing a general psychological theory of
representational systems, but aim to engineer a system to reason about representations;
in other words, we want to explore how to give computers the ability to select effective
representations for humans. Give the scope of this goal, it is not possible to cover all
relevant areas of the literature within this paper, so we have necessarily been selective.

The framework is presented in the next section. This is followed by the presentation
of three sample solutions to one problem in three different representational systems.
The five sections that then follow describe classes of cognitive properties identified by
the framework. We then present an example on how the framework has been used in
a prototype of an automated system for representation selection. The final discussion
section reflects on the scope and limitations of our framework.

2 Analysis Framework

We use these abbreviations: R – representation; RS – representational system1; ER
– external representation2; IR – internal (mental) representation; CP – cognitive property.

A cognitive property is a feature of a representational system that influences how
information is processed, and is thus likely to affect the cognitive cost of using the
representation (e.g., the number of symbols in a R can affect its cognitive cost).

By cognitive cost, we mean the cognitive load that a user experiences using a rep-
resentational system. This might be measured empirically in terms of: the time taken
to complete a problem; the number of operations or procedures used; a rating of the
moment to moment subjective effort that the user perceived; the amount of unproductive

1 Following [18], a representational system is an abstract entity from which many distinct
individual representations may be created.

2 Following [27], ERs are information and objects that exist in the external environment and can
be perceived; while IRs are knowledge and structures in memory (p. 180).
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effort due to errors or the pursuit of unproductive solution paths. At the level of cog-
nitive processes, some of the factors that are known to underpin cognitive cost include
(e.g., [4, 17, 20]): instantaneous working memory load; less accessible information;
operators that take more effort to select or to apply; reduced ability to anticipate the
consequence of applying operators; the possession of poor problem-solving heuristics;
the lack of externalisedmemory or free-ride inferences [20]. In contrast to Sweller’s [24]
notation of cognitive load, our approach broadens the idea to wider temporal and granu-
larity scales, rather than whole instructional tasks, but narrows the focus specifically on
representational systems, rather than instructional interventions in general.

Table 1. Cognitive properties framework.

Notation granularity

Symbol Expression Representational system

Cognitive
type or level

0. General Sub-RS-variety

1. Registration Registration-process
Number-of-symbols/expressions
Variety-of-symbol/expressions

–

2. Semantic
encoding

Concept-mapping
ER-semantic-process
IR-semantic-process

–

3. Inference Quantity-scale Expression-complexity
Inference-type

–

4. Problem
solution

– – Solution-depth
Solution-branching-factor
Solution-technique

A framework for cognitive properties has stringent requirements. First, it should
systematically identify cognitive properties without neglecting important high impact
properties. Second, the CPs should directly relate to established cognitive phenomena
and accepted theoretical cognitive constructs associated with representational systems
(e.g., [13]). Third, it should identify unique CPs that overlap minimally in scope.

So, to define the framework, three distinct primary cognitive dimensions have been
adopted, guided by insights from [1, 16, 21]. The space is represented in Table 1. The
dimensions are:

(1) The granularity of components of the ER: column headings in Table 1.
(2) The type and temporal level of cognitive processing: row headings in Table 1.
(3) Whether the component or the process is primarily associated with the ER or IR:

see the names of some CPs in the cells of Table 1.

The framework embodies the idea that, as CPs are manifestations of interactions
between cognitive and representational systems, both are conceptualised as nearly-
decomposable hierarchical systems [21] that function over large ranges of spatial and
temporal scales [1, 16] and are distributed between the IR and ER.
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Granularity of Components. This is a dimension ranging across the size of cognitive
objects that encode meaning. The Symbol3 level is for elementary, non-decomposable
carriers of concepts. Expressions are assemblies of elementary symbols, which occur at
different hierarchical levels. The Representational System level concerns the complete
notational system that is used in a particular case (the representation) for problemsolving,
which may include distinct sub-representational systems (sub-RSs).

Type and Temporal Level of Cognitive Processing. This dimension has two parts.
The first part is composed of four temporal levels at which cognitive processes oper-
ate, ranging from 100 ms to tens of minutes (e.g., from the time to retrieve a fact from
memory, to the time to develop a problem solution). These levels are: (1) registration,
(2) semantic encoding, (3) inference, and (4) problem solution. Registration refers to the
process of acknowledging the existence and location of objects. The encoding level con-
siders the cost of associating symbols with concepts. The inference level considers the
cost of the arguments and difficulty of inferences. The problem solution level captures the
complexity of the problem state and goal structure. Relatively strong interactions occur
between processes at a particular time scale, and relatively weak interactions between
different time scales [1, 16]. So, for the sake of analysis, cognitive processes at scales,
differing by an order of magnitude, may be treated as nearly independent. Nevertheless,
short processes impact long processes cumulatively.

The second part of this dimension is a further level zero, general, in Table 1, which
accommodates a CP that is not covered by the four temporal levels, but it is a feature
that affects how information is processed too.

Association with the ER or IR. This third dimension is recognised because the nature
of some processes that serve the same cognitive functionmay actually differ substantially
between IR and ER, and so, they need to be explained in terms of different CPs.

The CP framework builds upon the taxonomy of characteristics of effective RSs
compiled by [4], but diverges from that work by providing an underpinning cognitively
motivated theoretical justification for the framework’s structure. CPs are included in the
framework on the basis that a theoretical argument can be made that the CP impacts
the cost of using a representation. Inclusion makes no claim that a simple measure of
cognitive cost or practical means to compute the cost is necessarily available; this issue
is discussed below. As will be noted, some of our proposals need additional empirical
support. Before considering the CPs named in Table 1, we present the solutions to a
problem in alternative representations to provide running examples.

3 Sample Representations and Problem

We selected probability problems as one target domain for our project because they are
knowledge-rich and can be solved using a large variety of alternative representations.

3 Across disciplines, different terminology is used for symbols and expressions. From a com-
putational perspective, [18] refers to primitives instead of symbols, and composites instead of
expressions. These differences partially rise from different perspectives on what is understood
by a basic/elementary unit, whether it is considered decomposable or not. As this paper focuses
on cognitive aspects of RSs, we have adopted cognitive-oriented terminology.
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Probability tests are a good exemplar: they are an important class of problems that
have wide application in many disciplines, but are known to be challenging for problem
solvers and learners. Consider this medical problem:

1% of the population has a disease D. There is a test, T, such that: (i) if you have
the disease, the chance that T comes out positive is 98%; (ii) if you don’t have the
disease, the chance that T comes out positive is 3%. Suppose Alex takes the test
and it comes out positive. What’s the probability that Alex has the disease?

Figure 1 shows ideal solutions in two conventional representations: algebraic
Bayesian representation and contingency table; a third representation uses Probabil-
ity Space (PS) diagrams [3]. PS diagrams exemplify how our framework can be applied
to novel representations for which analysts do not have established intuitions. Also, PS
diagrams provide an interesting test case as they integrate information about sets and
probability relations using a coherent diagrammatic scheme that has been shown to sub-
stantially enhance problem solving and learning with little instruction [3]. The green
text in Fig. 1 shows values given in the problem statement shown above.

The problem is a fairly canonical test situation, but has a complication. The test is
not an independent trial, but depends on whether the disease is actually present or not.
Thus, the five-line Bayesian solution (Fig. 1a) employs steps that are beyond school level
probability: (1) Bayes’ theorem; (2) law of total probability applied to the denominator;
(3) De Finetti’s axiom of conditional probability. Clearly, this solution requires a high
degree of mathematical sophistication.

The contingency table solution (Fig. 1b) assumes that the user knows the arithmetic
rules governing continency tables; the formulas in smaller letters at the bottom right of
the cells. The solution progresses by successively entering given values of the problem
statement into the cells, taking into account the arithmetic constrains. It is completed
by selecting the values from the cells that correspond to the target condition probability
and calculating the answer, as captured by the line below the table. Since the user must
be proficient at using contingency tables, they should be able to handle the impact of
lack of independence of the test and to complete only germane cells.

Students, who do not have mathematical instruction beyond 16 years of age, can
solve the medical problem by drawing a diagram like Fig. 1c, after just two hours of
instruction on PS diagrams [3]. A typical solution using PS diagrams might proceed
by sketching the sub-diagram for a binary outcome trial first: this is the horizontal
line D in the diagram, which consists of the slightly misaligned ‘no’ and ‘yes’ sub-
segments. Then, two more sub-diagrams are drawn within line T (below line D); each
one covers the two test outcomes of each state of D. For example, the left sub-diagram
of T (consisting of two slightly misaligned segments on the left) covers the test outcome
when the person ‘does not have the disease’ (since it is under the ‘no’ sub-segment of D)
and it shows a sub-segment for when ‘the chance that T comes out positive is 3%,’ which
is labelled with the ‘+’ sign and the ‘0.03’ value; thus, the sub-segment labelled with the
sign ‘−’ and value ‘0.97’ represents the chance that T comes out negative. With kinder
numbers, the diagram could be drawn to scale, nevertheless, the (green) numbers record
the information given in the problem statement. Knowing the probability of each space
(or sub-space), proceed to review the full diagram vertically. As required, we focus on the
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positive (+) outcomes of the test (the two middle segments labelled ‘+’ within T ), which
gives us a conditional sub-space that is represented with the horizontal line ‘Ans.’. Using
one of the basic rules of PS diagrams, we can calculate the probability of the outcomes in
that sub-space, by multiplying the values of the no_D and yes_T outcomes (0.99 * 0.03
= 0.0297), and the values of yes_D and yes_T outcomes (0.01 * 0.98 = 0.0098). Now,
the probability of “Alex has the disease” is given by the portion of the conditional space
that is yes_D within line ‘Ans.’ (thicker sub-segment) which by an approximate mental
calculation, is about a quarter.

Fig. 1. (a) Bayesian representation, (b) contingency table, and (c) probability space diagram
solutions to the medical problem. (Color figure online)

The comparison of these examples will informally support the claims below about
cognitive cost of different CPs.

4 General Cognitive Property – Sub-RS-Variety

Much of the literature on representational systems has typically focused on RSs with a
single format andmade comparisons between such unitaryRSs.However, all but the sim-
plest RSs are heterogeneous mixtures comprised of sub-RSs. Thus, the sub-RS-variety
is a CP, because sub-RSs are systems which must work in a coordinated fashion. This
entails matching information between the sub-RSs or translating information from the
format of one into another. Impacts of multiple sub-RSs include, for instance: increased
frequency of attention switches between sub-RSs, with all of the attendant delays in reac-
tivating propositions associated with each sub-RSs; greater number of inference rules
to handle; more opportunity for potential errors. Thus, high heterogeneity of sub-RSs
incurs a heavy cognitive cost [25].

Obviously, an RS is heterogeneous when it is composed of sub-RSs that would
be independently considered as RSs in their own right. For example, in Fig. 1a, the
Bayesian notation operates on the quantities of probability, P(…), separately from the
set theory notation embedded within the parentheses. More formally, sub-RSs may be
distinguished in four related ways. (1) A part of the RS is governed by an exclusive
set of syntactic rules, likely applied to distinct operator symbols (i.e., in [12]’s terms, it
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possesses a different format compared to the rest of the RS). (2) A part of the RS encodes
a distinct set of domain concepts, so it may be a separate sub-RS: in the contingency table
representation, rows and columns encode relations among sets, whereas the cell entries
are formulas involving magnitudes of probabilities. (3) An RS has an indexing system
that serves to coordinate between sub-RSs, but that does not directly encode domain
concepts: for example, the cell labels and subscripts within the contingency table. (4) A
part of the RS is a sub-RS and is spatially remote from the RS: for instance, in Fig. 1b
the equation below the contingency table.

Numeration systems are in themselves RSs [28], so any RS that includes numbers
has at least two sub-RSs. This is the case in our three representations in Fig. 1. However,
numbers may be set aside in the count of sub-RSs because every one of our representa-
tions uses them in a similar fashion. So, the differential cost of their presence across the
three representations will be small compared to other CPs.

The Bayesian and contingency table representations are likely to have a similar
cognitive cost in terms of the number of sub-RS-variety CP. In contrast, the PS diagram
does not meet many of the criteria for the existence of other sub-RSs; in fact, it may
be a special case of a representation without instances of other sub-RSs, and thus, its
cognitive cost is predicted to be less than the cost of the other two representations.

5 Registration Cognitive Properties

Registration is the first of the four main temporal levels of cognitive process in the
framework. An RS has a vast number of possible features that might serve as symbols
because any part of a feature of a graphical element could be selected arbitrarily, such as
the ‘|’ or the ‘–’ in a ‘+’, or even their point of intersection. Registration process estab-
lishes what particular objects, features, or groups of objects are taken to be a potential
symbol (or expression), by acknowledging their existence and noting their location in
the representation.

Registration occurs when we seek a symbol in the ER to match a concept (in the
IR). Alternatively, we may examine an ER to find symbols in at least two ways. (1)
We may use our knowledge about the RS. For example, the answer to a problem, in a
problem solution, is likely to be found at the bottom of the solution – as in Fig. 1a. (2)
If we are not familiar with an RS, then those features that vary with the RS are potential
symbols or expressions, but constant features are not. For instance, the size of the font
in the Bayesian example in Fig. 1 is fixed, so it is not meaningful, but it would be if the
formulas included subscripts (as in Fig. 1b).

The registration-process CP concerns the various types of cognitive processes that
are used to register symbols or expressions. The purpose of this CPs is to specify the
relative cost arising from those processes. The processes, in order of increasing cost,
are: (a) iconic, (b) emergent, (c) spatial-index, (d) notational-index, and (e) search.
(a) The iconic registration process rapidly focuses attention upon 1 object or 1 group
that is highly recognisable to the user due to its familiarity. For example, following
instruction, students familiar with PS diagrams will perceive the main space (D and
T lines) in Fig. 1c as a single object; or the symbol ‘≈’ in Fig. 1a can be rapidly
recognised given its location and shape. (b) Emergent registration processes occur when



422 P. C.-H. Cheng et al.

a group of symbols are arranged so that they form a perceptual Gestalt (e.g., continuity,
closure). For example, the numbers in parentheses in Fig. 1a, which are not part of the
solution, but can be used to refer to the different algebraic statements. (c) Spatially-
indexed registration processes exploit the spatial organisation in the RS, as described
by [12]. (d) Notational-index registration processes exploit some alphanumeric system
to organise or index objects, such as the reference letters in the contingency table of
Fig. 1b. (e) Lastly, the registration process may default to mere search, perhaps using
heuristics or just exhaustively, when the other processes are unavailable (e.g., find ‘t|¬d’
in Fig. 1a). Although we consider our proposed order for these processes to be sensible,
further empirical evidence is needed to confirm this order.

The other pair of CPs at the registration level address (a) the number-of-symbols
or expressions and (b) the variety-of-symbols or expressions. An elementary symbol
is a non-decomposable carrier (representation) of a concept. For example, in our three
sample representations, symbols include: variables and mathematical operators, table
cells, and labelled line segments, respectively. The notion of symbols also encompasses
graphical properties of ER tokens that in themselves may encode particular concepts;
for example, the thickness of a line segment in the PS diagram denoting the solution.
Expressions are assemblies of elementary symbols, which occur at different hierarchical
levels; such as algebra formulas or their parts, rows and columns of the contingency table,
or the horizontal lines for a particular trial in the PS diagram. In some circumstances
we may treat expressions as single objects; e.g., dividing throughout by one side of an
equation to obtain a form equal to unity. So just as the number of symbols will impact
the cost of using a representation, so will the number of expressions.

It is unlikely that the cognitive cost of the number-of-symbols CP will be a simple
linear function of the number-of-symbols, because of the propensity of themind to chunk
information [14]. The same is likely to be true for number-of-expressions, as chunking
is a hierarchical process [21]. In the Bayesian representation, the number of symbols
including ‘P(…)’ is 14. However, the cognitive cost is more likely to be a count of the
variety-of-symbols/expressions, as chunking does not operate directly on categories. For
the contingency table representation, the varieties (types) include the table cells, variable
names, and numbers.

6 Semantic Encoding Cognitive Properties

This set of CPs considers the cost of associating symbols and expressions with concepts,
that is, the establishment of meaning (not just mere existence and location as in the
registration level). Two aspects are considered. One addresses the relation between con-
cepts and things encoding them in a representation, and the other concerns the cognitive
processes.

The first CP of the first aspect is concept-mapping, which applies both to symbols
and expressions. This CP draws upon the literature on the nature of possible matches
between symbols (tokens) and expressions in the ER and concepts in the IR [7, 15].
There are five ways in which matches may occur, which are described next in likely
order of cognitive cost. As our focus is cognitive, we propose a slightly different ranking
to [15]. (1) Isomorphic: Matching occurs when each concept precisely matches one
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symbol; this entails the lowest cognitive cost. (2) Symbol-excess: It occurs when some
symbols do not represent any domain concept, they only add noise to the representation.
Normally, when a user is familiar with the representation, such noise (junk) symbols can
be ignored without undue effort. (3) Symbol-redundancy: It occurs when one concept
maps to many symbols. For example, as in the Bayesian representation in Fig. 1a, the
symbol ‘d’ appears several times. In terms of cost, some effort is required to handle this,
but since we are naturally able to deal with duplicated symbols and synonyms, the cost
may not be too high. (4) Symbol-deficit: The cost increases in this case because there
is no symbol for a concept, so the benefits of externalising memory are not available.
Thus, effort must be expended to place a mental pointer to where its symbol would have
appeared in the ER. (5) Symbol-overload: This is the worst kind of match. It occurs
when multiple concepts map to one symbol. This has the grave potential of propagating
error due to confusion. To avoid such errors, laborious inferences exploiting contextual
information must be executed to mitigate such ambiguities. The contingency table and
the PS diagram are largely isomorphic, in part because the numerical contents of cells
of the Test negative column have been omitted from the table and the negative test
values have been greyed out in the PS diagram, specifically to reduce symbol-excess for
the medical problem. Finally, regarding the proposed order for these processes, we are
currently working on supporting these claims with empirical evidence.

The next pair of CPs deal with cognitive processing costs. The ER-semantic-
process, which applies both to symbols and expressions, refers to five cognitively dif-
ferent types of processes that associate symbols or expressions in the ER to concepts in
the IR; these are listed here in our proposed rank order of cost. (1) The easiest, known-
association encoding, depends on the familiarity of the user with the RS (e.g., people
are typically familiar with numbers, such as the numbers in Fig. 1). (2) Visual-properties
can be used to represent quantities. This generally has a low cognitive cost, but there
are variations among properties that may increase the cost, such as position, length or
angle for instance [5]. (3) The linear-order in one spatial dimension can readily encode
information. For example, temporal sequencing of events D and T in the PS diagram, or
placing the result of a computation to the right side (instead of the left) of an equal sign
in a Bayesian solution (Fig. 1a). (4) Encoding the meaning of a symbol due to its spatial-
arrangement in 2D is more challenging and uses devices such as: coordinate systems
or arrays (e.g., the contingency table), hierarchical assemblies (e.g., the PS diagram), or
networks (e.g., trees or lattices). (5) The costliest encoding is for arbitrary unstructured
list of collections.

IR-semantic-process is the other in the pair of CPs and applies to symbols and
expressions. We identify five processes within this CP, which are presented in our pro-
posed rank order of cost (c.f., [13]). (1) The lowest are known cases, or prototypes, such
as our understanding of the general format of a contingency table. (2) More complex and
costly are schemas, whose slots and fillers require more processing (e.g., PS diagrams
are diagrammatic configuration schemes [10]). (3) IRs based on rules are next, which
are more costly because they have fewer constraints, so effort must be expended just to
identify categories and track concepts. (4) Mental-imagery is more costly still, because
the imagery system’s limited functionality and resolution will tend to demand multiple
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iterations of procedures [6]. (5)Propositional-networks, such as analogies, are the costli-
est because they are largely built on simple associations, which place little constraint on
valid inferences. The form of a given RS may suggest what IR a user will likely adopt
(e.g., for Fig. 1a: rules; for Fig. 1b: schema; for Fig. 1c: diagrammatic schema). So, the
ordering provided by these processes provides means to estimate the relative cost of the
CP.

Note that the order of our proposed processes for ER- and IR-semantic-process CPs,
although sensible, is something that needs to be demonstrated empirically too.

7 Inference Cognitive Properties

This penultimate group of CPs concerns costs at the level of making inferences. One of
the properties in this group is quantity-scale, which concerns the type of quantity or
measurement scale that dominates an RS, specifically, nominal, ordinal, interval or ratio
[22]. Zhang [26] considered the role of quantity scales in the design of representational
systems, and the scale hierarchy is well documented [29]. Here, we claim, further, that
as the more sophisticated scales have more information content, they will impose greater
cognitive cost. However, it is unlikely that RSs will differ in their use of quantity scales,
because this is substantially determined by the content of the problem. For example, all
three of our examples in Fig. 1 involve quantities related to nominal (manipulation of
sets) and ratio (manipulation of probability quantities) scales. Rather, this CP is included
because users’ degree of experience in reasoning with more sophisticated scales is likely
to have cost implications. For thisCP,we are currently conducting empirical studies about
the relative costs of the scales.

The next CP in the inference group is expression-complexity. Obviously, the longer
an expression, the more components it possesses or the more tortuous it is, the greater
the costs of using it to generate new information. For instance, it is easier to understand
how each part of a PS diagram constrains the size of other parts than it is to work out how
the magnitudes of variables vary in relation to each other in the Bayesian representation.
Expression-complexity may be decomposed into particular factors such as the depth of
relations and the arity of relations. The former is the number of levels of nesting of
relations. The latter is the number of arguments that relations take. The more arguments,
the more information must be handled, so the greater the cost [8]. For instance, the
calculation of the final answer in the Bayesian and the contingency table solutions take
six numbers, whereas only two are used in the PS diagram solution.

Not all inferences have the same difficulty, so the inference-type CP considers
various types, for which we propose this rank ordering cost: (1) symbol-selection (e.g.,
lookup a table cell entry); (2) assign/substitute a symbol or concept (let the top-left
sub-segment line in the PS diagram in Fig. 1c stand for no_D); (3) compare/match
symbols or concepts; (4) select-expression; (5) substitute-expression; (6) calculate; and
(7) transform-expression, which re-arranges the structure, resulting in a new relation
(e.g., writing a new line in Fig. 1a; drawing a new sub-space in Fig. 1c). The Bayesian
representation in Fig. 1a is dominated by the costliest of the 7 inference-types (e.g.,
transform-expression), but not so for Fig. 1b and 1c. Again, some empirical evidence
will be needed to support our proposed order of processes for this CP.
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8 Problem Solution Cognitive Properties

To capture the impact at the overall level of problem solutions, three CPs are proposed
[17]. The first two are solution-depth and solution-branching-factor, which consider
the overall topology of the hierarchical problem state space that users of a representation
generatewhen solving problems. Solution-depth is the number of steps on themost direct
path between the initial state and solution. The solutions to the medical problem in Fig. 1
are ideal solutions, with no back-tracking nor branching, so the number of operations that
generate the solutions is also the solution depth. The solution-branching-factor addresses
the likely width of the problem space experienced by a problem solver. For example, the
branching factor from step 1 to 2 in Fig. 1a is higher than in Fig. 1c: a problem solver
using a Bayesian representation may need to consider several theorems to move from
step 1 to 2; while a problem solver using the PS diagram just needs to draw the different
events for each of those steps. A problem state space given by an RS offers the problem
solver alternative paths to follow and it will increase costs in at least two ways. First, it
is the simple challenge of choosing which path to follow; and second, many alternative
paths may lead to impasses rather than solutions. Clearly, the heuristics possessed by a
problem solver will influence the solution-depth and the solution-branching-factor.

The solution-technique CP considers problem solution approaches that depend on
the nature of the problem, which are distinct from general heuristics, and focuses on
the nature of the procedures that are used for solutions. Two problem solutions might
have the same breadth and depth but may vary in the variety of operators that are used
to generate expressions. For example, a solution in a PS diagram typically involves
iterative applications of finding a subspace in the diagram and drawing further sub-
divisions of them, whereas algebraic solutions invoke a larger range of operations that
vary with the changing structure of the expressions [3]. As teachers of programming
know, iterative processes are typically easier to grasp and to implement than recursive
processes. Hierarchical processes also tend to be more complex than iterative processes,
because they require nested sub-procedures and the management of sub-goals.

9 Example of Application

One can envisage many uses for the CP framework [9]. It may serve as a checklist
of factors that instructors might consider when they develop a curriculum in order to
determine the order in which to introduce different representations. More ambitiously,
we are using the framework to develop an AI engine that will automatically select
representations that are suited to particular problems and users with different levels of
familiarity of a target pool of representations. This section of the paper summarises the
role of the CPs framework in the development of our first prototype of a representation
selection system called rep2rep [18] as a concrete illustration of the framework’s utility.
In [18], the main focus is on the formal properties and the application of our framework,
whereas the underpinning cognitive rationale is the main contribution of this paper.

The general challenge is to develop computational mechanisms that formalise the
CPs described by the framework in such a way that their associated cognitive costs can
be accurately calculated – to enable the selection of effective RSs for problem solving.
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In order to meet this challenge, we need to cover two levels of abstraction. At the
lower level we have questions such as ‘how do we count the number of symbols in a
representation?’ and ‘what is the expected cost of reading any of the symbols in Fig. 1a?’
– which requires a prediction of how the physical components would be chunked into
discrete symbols and how much time and effort it would take. And at the higher level,
we have questions such as ‘how does the number of symbols affect the cost?’. For our
computational formalisation, we assume-as-given some answers to the lower-level type
of questions.We only address computationally the higher level. To be clear, this does not
mean that we have concrete answers to the lower level-type of questions. It only means
that to turn our implementation into a full computational formalisation of the framework
we need to plug in mechanisms that yield the lower-level values.

Computationally, we encode representations abstractly as collections of primitive
terms, patterns, laws, and tactics. We call these the formal components of a repre-
sentation. Terms (or symbols) are assigned types, and patterns capture the idea that
higher-granularity items (composite terms) in a representation are formed from lower-
granularity items, all thewaydown to the primitive terms. Specifically, a pattern describes
the structure of composite terms (of a certain type) which are made up from more basic
terms of certain types. This abstraction – of patterns as the glue of composite terms
– can capture the complexity of various grammars: from natural language, to formal
mathematics, to graph-theoretic or geometric diagrams [18, 19]. Analogous to the way
in which patterns describe the structure of composite terms from more basic terms, tac-
tics encode the structure of inferences from more basic knowledge, all the way down to
laws4.Moreover, the links between different representations (e.g., how the same problem
is encoded in multiple RSs) is captured by the concept of correspondence. Lastly, the
user’s general expertise is captured simply as a value between 0 (novice) and 1 (expert).

Given the abstraction of representations into their formal components, the question
now is how the CP framework is applied. For the work in [18], we formalised a version
of each of: sub-RS variety, registration (of primitives and composite terms), concept-
mapping, quantity-scale, expression-complexity, inference-type, solution-depth, and
solution-branching-factor5. As stated above, the formalisation of these properties relies
on some low-level assumed-as-givens. These take either of the following forms:

1. Given a problem-solution representation, its abstraction into formal components is
assumed. This means, for instance, that the question of which terms are considered
primitive (in practice, a question of chunking) must be given. Furthermore, a value
of importance is assigned to each component, encoding its relevance with respect
to the solution (e.g., a component that plays no role in the solution is considered
unimportant and given a value of 0).

2. The assignment of cognitive attributes to components is assumed. This means, for
instance, that whether a tactic is assigned the attribute of being a substitution or a
calculation (see Sect. 7), must be given. Furthermore, the parameter values for basic

4 In formal, sentential mathematics these would be called axioms, but we do not want to give the
impression that either (i) our system only applies to axiomatic systems or that (ii) laws have to
be as low level as axioms typically are.

5 Other CPs, e.g., IR & ER-semantic-process and solution-technique, are yet to be implemented.
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costs, associated with these attributes, are assumed. This means, for instance, that
the cost of a single inference which is a calculation is assumed to be twice as costly
as that of a simple substitution. Lacking specific and accurate empirical data, ratios
such as this one were chosen arbitrarily with the simple constraint that they must
preserve the rank order specified by the framework.

Given these low-level assumed values, we assign a cognitive cost for each CP using
a variety of methods. For example, registration and inference-type costs are similarly
computed as a sum of the basic parameter values for the given components modulated
by importance and expertise (expertise is assumed to reduce the impact of noisy compo-
nents, as these can be ignored). Expression-complexity and solution-branching-factor,
on the other hand, are computed from the branchiness and nestiness of patterns and
tactics, respectively, with a similar effect from expertise. Quantity-scales is computed
via the correspondences of components to arithmetic operators, and concept-mapping is
computed via the type of relation given by the correspondence map to a fixed represen-
tation. Sub-RS-variety is simply computed from the number of modes (a given) which
are intended to capture individual formats used in the representation.

Once the cognitive cost associated to each CP is computed, they are combined in a
weighted sum, with CPs in higher cognitive level and higher notation granularity being
assigned greater weights. Moreover, expertise is assumed to have a stronger impact on
the cost of CPs of higher notation granularity components.

Our prototype engine for representation selection can also be used to produce an
informational suitability score, which estimates the likelihood that a given RS can be
used to represent and solve a problem. An interesting question for future research is how
the informational and cognitive computations can be used synergistically. It is clear that
it depends on the application in which our framework is employed. Precise formulae for
informational suitability and cognitive costs, and details of their implementation can be
found in [18].

9.1 Evaluation

In [18], we presented an evaluation of the effectiveness of the implementation, which is
summarised here. Since there are no other systems to compare against, the evaluation
was done by comparing computed measures of informational suitability6 (IS) and cog-
nitive cost against data obtained from surveying expert analysts. That is, was our system
producing similar rankings as expert humans? The evaluation focused on the domain of
probability and the medical problem presented in Sect. 3, albeit using different values.
The RS used were Natural Language (NL), Bayes, Areas, and Contingency Table. The
computation of IS was done as stated at the start of this section, and the cognitive cost
function was computed considering 3 user profiles, which were set through the general
expertise function described above.

Eleven analysts with strongmathematical background completed an online question-
naire, which contained 2 tasks. In Task 1, participants were first shown the description

6 Information suitability measures how well a representation encodes the informational content
of a problem and is computed using the formal properties of representations.
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of the medical problem. Then they were asked to give feedback on how informationally
sufficient (descriptions of) RSs were using a 7-point Likert scale. In Task 2, participants
were asked to rank the same RS descriptions, but for novice, expert and average users.

The mean Likert score given to different RSs in Task 1 was used to derive IS ranking,
and the mean of the rank scores across different RS was used to derive the ranking of
different RSs for different user profiles. In terms of IS, the rank order produced from the
rep2rep system and the analysts was similar for the most and least IS RSs (Bayes and
NL, respectively), but different on the Areas and Contingency Table RS. Although the
correlation was not significant, it was considered that the overall ranking produced by
the system was sensible. In terms of cognitive costs, the rankings given by the analysts
and the rep2rep system for the expert and average profiles showed high and statistically
significant correlations at p < .05 (r = 0.9), but not for the novice profile. A possible
explanation of this result is that users’ familiarity with the RS is not yet modelled in the
system. Details can be found in [18].

Overall, the results are promising in terms of the AI system being able to recommend
effective representations – although more empirical work still needs to be done.

10 Discussion

To identify cognitive properties that contribute to the cognitive cost of an RS, we formu-
lated the analysis framework, as summarised in Table 1. We proposed 13 diverse CPs.
Some relate cost to counts of instances found, some require the calculation of an average
to represent some commonly occurring factor, and others propose ranking of processes
as guides to relative cost. Although 13 CPs are postulated, we make no claim that they
are exhaustive, and note that some are applicable at multiple levels of granularity of RSs.
A key feature and potential benefit of the framework is its differentiation of CPs within
a two-dimensional space of cognitive level and notation granularity. Given a particular
problem-solving process, one can use the dimension to locate its position within the
space and, hence, the CPs that are likely to be important factors that impact the cost of
the process in different representations. Nonetheless, CPs are not perfectly orthogonal.
For example, the number-of-symbols will likely increase with the number of sub-RSs.
However, the distinction between these RSs is important, not just because they span
very different ranges in the framework, but because we can imagine a situation where
one RS A is comprised of two sub-RSs, and a second RS B without sub-RSs has an
equal number-of-symbols. In that case, the RS A will have a higher cost because of the
challenges related to multiple sub-RSs.

Whilst more extensive justification and rigorous definition could be made about the
values of CPs and the rank order of the costs of particular CPs, we consider that the
given notions and orders are reasonable.

Note that the three example representations in Fig. 1 encode equivalent sets of con-
cepts. If this were not the case, then fair comparisons could not be made [2]. However,
the framework does permit comparisons where the ERs of two RSs are not equivalent,
as long as any difference is remedied in the IR content of the RS in deficit.

As part of our ongoingworkwith the framework,we are investigating how to combine
the CPs into a single cost measure for whole RSs. Three critical issues will need to be
addressed.
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1. How can the disparate measures, with their different scales, be normalised so that
they can be reasonably combined?

2. What weighting should be given to those normalised CPs, as they naturally have
different levels of impact?

3. How should the weights of each CP be moderated given differences in individual’s
expertise with alternative RSs?

Our first prototype representation selection engine rep2rep, described in Sect. 9,
provides one tentative solution to the first two issues, at least for selected CPs. More
broadly and fortunately, the framework supports our analyses of the questions, because it
acknowledges the range of granularity scales applicable in the use of RSs. For instance,
we have some basis to examine trade-offs between changes to CPs at the lower levels
(registration, semantic encoding), which have small impacts on numerous symbols and
expressions, versus changes to CPs at higher levels (inference and solution), which
impact just a few large-scale procedures.
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