
Revisiting Peirce’s Rules
of Transformation for Euler-Venn Diagrams

Reetu Bhattacharjee1,2(B) and Amirouche Moktefi3

1 School of Cognitive Science, Jadavpur University, Kolkata, India
2 Department of Mathematics, Mandsaur University, Mandsaur, India

reetu.bhattacharjee@meu.edu.in
3 Ragnar Nurkse Department of Innovation and Governance,

Tallinn University of Technology, Tallinn, Estonia
amirouche.moktefi@taltech.ee

Abstract. Charles S. Peirce introduced in 1903 a set a transformation
rules for Euler-Venn diagrams. This innovation contrasted with earlier
practices where logicians rather extracted the desired information by a
simple ‘glance’ at their diagrams. Also, Peirce’s set of rules was the start-
ing point of Sun-Joo Shin’s more recent systems which, in turn, inspired
most subsequent modern diagrammatic systems. Despite their signifi-
cance, these rules got little attention from both diagram and Peirce schol-
ars. In this paper, we revisit Peirce’s rules of transformation and discuss
the extent to which they ‘survived’ in modern diagrammatic systems. We
will specifically consider their clarity and completeness to assess Peirce’s
assumption that some of his rules may be simplified while others may have
been overlooked.
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1 Introduction

Charles S. Peirce made significant contributions to logic diagrams. In addition
to his work on the theory of diagrams, it is known that he improved the Euler-
Venn’s scheme and that he designed a fascinating system of Existential Graphs.
His manuscripts continue to reveal remarkable advances, such as his recently
rediscovered inclusion diagrams [5,15]. In this paper, we discuss one of Peirce’s
major, yet seldom noticed, innovations: his rules of transformation for Eulerian
diagrams found in his manuscript ‘On logical graphs’ (1903), generally known as
MS 479 [12]1. This set of rules is historically significant for at least two reasons.
1 Unfortunately, manuscript MS 479 has still not been properly published. It has

only been partially reproduced and poorly edited in Peirce’s Collected Papers [13].
This transcription, on which was based Shin’s account, should be used with extreme
caution. The manuscript is also not reproduced in Ahti-Veikko Pietarinen’s edition
of Peirce’s existential graphs [15], but additional text and variants are included [14].
Apparently, Peirce intended to include his manuscript as a chapter in a volume of
Logical Tracts [14, p. 72]. The original manuscript MS 479 is freely accessible on the
Peirce Archive repository (https://rs.cms.hu-berlin.de/peircearchive/pages/search.
php). The page numbers we indicate for MS 479 are the file titles in the Peirce
Archive.
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First, it contrasts with earlier work on logic diagrams where no such formal
rules were provided. Sun-Joo Shin argued that “Peirce was probably the first
person that discussed the rules of transformation in a diagrammatic system” [18,
p. 24]. Indeed, Peirce’s predecessors generally invited their readers to detect the
conclusion of an argument by a simple “glance” at the diagram that represents
its premises [20, p. 15]2. Peirce rather provided rules in accordance with which
the diagram of the premises is to be transformed to produce the diagram of the
conclusion from which the conclusion can be read off3. By introducing his rules,
Peirce was “attempting to massage Euler diagrams into something that would
possess more of the character of a logical language than a diagram or a picture”
[14, p. 95]. As such, Peirce opened the way to a formal view of diagrams [9].

Second, Peirce’s rules played a crucial role in the shaping of modern dia-
grammatic systems. Indeed, Shin’s work, which is commonly regarded as the
primary inspiration for subsequent systems [19], was itself based on the rules
that Peirce has enumerated almost a century earlier [18, p. 28]. This legacy of
Peirce is almost ironical when it is reminded that Peirce himself did not think
highly of his Eulerian diagrams, sketched his rules rather loosely and did not
believe the system to have the potential for significant growth [12] (see also [14,
p. 84]). The formidable development of diagrammatic logic in recent decades
does not support Peirce’s scepticism, but it demonstrates the importance of his
pioneering work on transformation rules in diagrammatic reasoning.

Despite their significance, Peirce’s transformation rules attracted little atten-
tion, except for Shin’s account [18, pp. 28–40]. Peirce scholars are justifiably more
interested in Peirce’s true chef d’oeuvre, his Existential graphs [2]4, while mod-
ern diagram scholars understandably discover those rules mainly through Shin’s
account (which does not reproduce Peirce’s original formulations). In this paper,
we revisit Peirce’s rules of transformation and discuss the extent to which they
‘survived’ in modern diagrammatic systems. We will specifically consider their
clarity and completeness to assess Peirce’s assumption that some of his rules may
be simplified while some others may have been overlooked [12]. For the purpose,
we first review and discuss each of Peirce’s six rules. To ease the reading of the
paper, we discuss rules-1 to 3 in Sect. 2, rule-4 and its variations in Sect. 3 and
rules-5 to 6 in Sect. 4. Finally we compare in Sect. 5 Peirce’s set of rules with
some modern diagrammatic systems, namely Shin’s systems Venn-I and Venn-II
[18] and the more recent system Vennin [4].

2 Lewis Carroll is a remarkable exception here. See [7,8]. A comparison of Carroll’s
rules with those of Peirce is found in [10].

3 Peirce explained that he used rules “in the sense in which we speak of the “rules” of
algebra; that is, as a permission under strictly defined condition” [12]. In his entry
on ‘Symbolic Logic’, published a year earlier, Peirce defined a rule as “a permission
under certain circumstances to make a certain transformation” [11, p. 450].

4 Peirce’s mature Eulerian diagrams and Existential graphs were developed at the
same time and share several features, including the formulation of transforma-
tion rules. But they differ significantly in their purpose: Eulerian diagrams served
mainly for logical calculus while Existential graphs were designed for logical analysis.
Roughly, calculus aims at carrying reasonings while analysis investigates them. On
the opposition between calculus and analysis, see [3,11, p. 450].
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2 Rules 1 to 3

Rule 1: “Any entire sign of assertion (i.e. a cross, zero or connected body of
crosses and zeros) can be erased” [12, p. 042]5.

This particular rule basically helps us to erase certain information from a
given conjunction of information. Using rule-1 we can get the diagram in Fig. 2
from the diagram in Fig. 1 by removing zero, cross and the connected body of
crosses from the regions (M − S − P), ((M ∩ S) − P) and ((S − M − P) ∪ ((S
∩ P)− M)) respectively.

Fig. 1. . Fig. 2. .

Rule 2: “Any sign of assertion can receive any assertion” [12, p. 043].
Using rule-2 we can introduce new pieces of information in the form of dis-

junction. For example, the cross in the region (S − P) and the zero in the region
(P − S) both receives cross to get the diagram in Fig. 4 from the diagram in
Fig. 3.

Fig. 3. . Fig. 4. .

Rule 3: “Any assertion which could permissively be written if there were no
other assertion can be written at any time, detachedly” [12, p. 043].

Although there is no doubt that both rule-1 and rule-2 are quite intuitive,
rule-3 does not turn out as such. How do we know which assertion is ‘permissible’
to be written in a diagram? Peirce never explained this particular rule nor gave
any kind of example right after stating this rule6. But later, while showing how
one can obtain conclusion in syllogistic reasoning using these six rules, Peirce
mentioned that using rule-3 we can unify two diagrams [12, p. 046]. Now suppose
we have the following two diagrams, Fig. 5 and Fig. 6.

The regions ((M ∩ P) − S) and ((P ∩ S) − M) in Fig. 5 are both blank.
We don’t know whether these two regions are empty or non empty and thus
neither zero nor cross is permissible to be written in these regions. But if we
consider the diagram in Fig. 6 together with the diagram in Fig. 5 then we have
the new information ‘Something are both M and P but not S and anything that

5 Here cross and zero represents non-emptiness and emptiness of a region respectively.
The connected lines between any of these symbols represent their disjunction

6 This rule was written by Peirce on the margins of his manuscript, without further
explanation. It seems to have been added later, as shown by the renumbering of the
following rule.
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Fig. 5. . Fig. 6. .

is both P and S is also M’ in our premise from the Fig. 6. Taking these two
diagrams together we know which assertions are permissible in the regions ((M
∩ P) − S) and ((P ∩ S) − M) of the diagram in Fig. 5. Thus by using rule-3 we
can introduce cross and zero in the regions ((M ∩ P) − S) and ((P ∩ S) − M)
respectively and get the diagram in Fig. 7.

Fig. 7. .

Shin understood rule-3 in a similar manner and later used it as the basis of her
‘unification rule’. However, rule-3 might not be merely a unification rule for dia-
grams. This rule let us introduce any new piece of information in a diagram if we
have prior knowledge about it. For example, throughout MS 479 Peirce has men-
tioned that “nothing exists” is an absurd assertion [12, p. 034]. So we can take the
universe to be always non-empty. Having this prior knowledge about the universe,
take any diagram, say the diagram in Fig. 8. Now by using rule-3, we can intro-
duce a connected body of crosses in Fig. 8 such that each region of the diagram has
a cross of this connected body. The resulting diagram is in Fig. 9.

Fig. 8. . Fig. 9. .

3 Rule 4

In this section, in a manner similar to Shin’s exposition, Peirce’s original rule-4 is
divided for convenience into several sub-rules that are discusses here separately.

Rule 4: (i) “In the same compartment repetitions of the same sign, whether
mutually attached or detached, are equivalent to one writing of it” [12, p. 043].

So both the diagrams in Fig. 10 and Fig. 11 are equivalent to the diagram in
Fig. 12.
(ii) “Two different signs in the same compartment”
(a) “if attached to one another are equivalent to no sign at all and may be erased
or inserted” [12, p. 043].
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Fig. 10. . Fig. 11. . Fig. 12. .

The diagrams in Fig. 13 and Fig. 14 are equivalent.

Fig. 13. . Fig. 14. .

(b) “But if they are detached from one another, they constitute an absurdity”
[12, p. 043] (see Fig. 15).

Fig. 15. .

Point to be noted that all the above conditions are based on the presupposi-
tion that signs are not connected with any other signs in other compartments.

For the case where the same signs exists separately in the same compartment,
the clause (i) of rule-4 is superfluous. Because, using rule-1 we can erase the extra
sign and get the diagram in Fig. 12 from the diagram in Fig. 11. Again, if we have
the diagram in Fig. 12, then we have the information that ‘P is non-empty’. So
by using rule-3 we can have the diagram in Fig. 11 from the diagram in Fig. 12.
When the same signs exists mutually attached in the same compartment, we also
do not need clause (i) of rule-4 to get the diagram in Fig. 10 from the diagram
in Fig. 12. It can be done using rule-2. But we need rule-4(i) to get the diagram
in Fig. 12 from the diagram in Fig. 10. A question might arise here – we have
the information that ‘P is non-empty or P is non-empty’ (Fig. 10) and we know
that ‘P is non-empty’ (Fig. 12) is always derivable from this information then
why not use rule-3 to get the diagram in Fig. 12 from the diagram in Fig. 10?
It is because, rule-3 alone lets us introduce certain information about which we
have prior knowledge. It does not let us deduce anything from that information.
So even if we know that ‘P is non-empty or P is non-empty’ (Fig. 10), we can
not use rule-3 to derive ‘P is non-empty’ and get the diagram in Fig. 12.

Even if we need rule-4(i), it still needs modification. The condition that ‘signs
are not connected with any other signs in the other compartment’ makes rule-4(i)
incapable to get certain syntactically different looking diagrams which represents
the same information. For example, the diagrams in Fig. 16 and Fig. 17 represents
the same information but we cannot get the diagram in Fig. 17 from the diagram
in Fig. 16 by using rule-4(i) unless we drop the condition ‘signs are not connected
with any other signs in the other compartment’.
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Fig. 16. . Fig. 17. .

In plain sight rule-4(ii-a) is also not needed here as we have the information
that any region in diagram is ‘either empty or non-empty’ and thus by using
rule-3 we get the diagram in Fig. 13 from the diagram in Fig. 14. The converse
can be done by using rule-17. But we need rule-4(ii-a) to get the diagram in
Fig. 19 from the diagram in Fig. 18 as we cannot ‘derive’ the information ‘(S −
P) is non-empty’ from the information ‘either (P ∩ S) is empty or (P ∩ S) is
non-empty or (S − P) is non-empty’ using rule-3. But again, similar to rule-
4(i), the condition ‘signs are not connected with any other signs in the other
compartment’ prevents us from doing so. The converse can be done using rule-2.

Fig. 18. . Fig. 19. .

The rule-4(ii-b) seems more of a definition than a rule as it ended abruptly
saying that “If they are detached from one another, they constitute an absur-
dity”. In Peirce’s Existential graphs, we know that empty oval is considered as
“constantly false proposition or absurdity” [2, p. 219] i.e. it is considered to be a
‘contradiction’(see [2,14,16]). Also, in existential graphs within a cut anything
can be inserted [17, p. 647], in other words anything follows from contradictions.
So, classical explosion rule was always present in Peirce’s diagrammatic systems.
In rule-4(ii-b), Peirce meant classical explosion by saying that “they constitute
an absurdity” and everything follows from it. But, although presented in prac-
tice in Peirce’s Existential graphs [17, p. 647] it is not mentioned explicitly here.
So a modification regarding this rule is needed.

Rules-4(i) and (ii) were criticized by Shin due the usage of the words ‘equiva-
lence’ and ‘absurdity’. Shin claimed that “By analyzing clause (i) and (ii) of this
rule, I will show that Peirce does not make a clear distinction between syntax
and semantics either. This confusion leads him to several problematic treatments
of diagrams” [18, p. 30] and Shin believed that “this reveals Peirce’s lack of a
distinction between syntax and semantics” [18, p. 35].

According to Shin, in rule-4(i) and (ii-a), Peirce used the word ‘equivalent’ to
actually represent ‘semantically equivalent’ diagrams, not ‘syntactically equiva-
lent’ diagrams. The main base for this argument, as shown by Shin [18, p. 31],
is that the following diagrams in Fig. 20 will be considered ‘equivalent’ by rule-
4(i) and (ii-a). But, although these diagrams represent the same facts, they are
syntactically different looking.

7 Shin also proposed to use rule 1 to get Fig. 12 and Fig. 14 from Fig. 11 and Fig. 13
respectively. She also proposed to use rule 2 to get Fig. 10 from Fig. 12.
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Fig. 20. .

Shin also pointed out the following three problems that occur when ‘semantic
equivalence’ is taken into consideration.

(1) The possibility of semantically equivalent diagrams having a different syn-
tactic form was not considered when Peirce criticized Lambert for having two
different looking diagrams for the two equivalent proposition “Some A are B”
(Fig. 21)[1] and “Some B are A” (Fig. 22)[12,18, p. 38].

Fig. 21. . Fig. 22. .

(2) A deductive system, which is both sound and complete, lets us deduce a
formula ‘α’ from a set of formula Γ if and only if α is a semantic consequence
of Γ . So if α is semantically equivalent to some formula β then we can deduce
α from β and vice-versa. But taking this assumption as a rule will make the
existence of a deductive system unnecessary [18, p. 31].
(3) Peirce “did not have an accurate semantics to support his use of “equivalence”
in a proper way” [18, p. 31]

Shin’s criticisms can be disputed if we are reminded that ‘Equivalence’ is not
always semantic since it can also be syntactic. Two different looking diagrams,
say D and D

′
, can be ‘syntactically equivalent’ if there is a rule that lets us

get D
′

from D and vice-versa. The diagrams in Fig. 10, Fig. 11 and Fig. 12 all
represent the same information i.e. ‘P is non-empty’ and rule-4(i) lets us get the
diagrams from each other. Similar situation happens for the diagrams in Fig. 13
and Fig. 14. In [12, p. 041], Peirce already mentioned that two opposite signs,
which are connected together in the same region, should annul each other and
be equivalent to no sign at all. Then why did he need to construct rule-4(ii-a)
that’s says the same thing? The reason is that Peirce was trying to construct
a rule that will let us get two syntactically different looking diagrams, which
represents the same fact, from each other. That’s why words like “equivalent
to one writing of it” and “may be erased or inserted” was used respectively in
rule-4(i) and (ii-a). It is true that we cannot just introduce a rule that would say
that ‘if formula α is a semantic consequence of a set of formulas Γ , then we can
deduce α from Γ ’, but it is permissible, and even desirable, to have a rule that
lets us get two equivalent but syntactically different looking diagrams from each
other? In Shin’s own system, she had the rule of splitting sequence where the
diagram D2 could be deduced from D1 and both diagrams represent the same
fact (see Fig. 23 [18, p. 123]).
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Fig. 23. .

One may reasonably argue that Peirce’s opposition to Lambert’s was moti-
vated by the absence of rules in the latter to go from one diagram to it’s semanti-
cally equivalent diagram. Shin’s next objection that Peirce did not have accurate
semantics didn’t stand here as the notion ’equivalence’ is used here ‘syntacti-
cally’.

For rule-4(ii-b) Shin’s objection was mainly regarding the notion of ‘absur-
dity’. According to Shin there are two possible interpretations of ‘absurdity’.

(1) “One is to take this phrase to mean that we should not be allowed to draw
a diagram with two different kinds of signs in the same compartment. If so, this
system has no way to represent a contradiction” [18, p. 32]. We argued earlier
that this was not Peirce’s interpretation of ‘absurdity’.
(2)“The other interpretation of clause (ii-2), which seems to be more plausible,
is that a diagram with “o” and “x” in the same compartment means absurdity.
According to this interpretation, clause (ii-2) does not tell us how to transform
a given diagram, but explains what assertion is made if a diagram has more
than one character in a certain way. When we recall that these rules are stip-
ulated to tell us what we are permitted to do in manipulating diagrams, it is
rather puzzling why Peirce had to explain what a diagram means under these
rules. What assertion is made in a diagram belongs to semantics, whereas the
transformation rules belong to syntax. This clearly reveals Peirce’s lack of a dis-
tinction between syntax and semantics” [18, p. 32]. This is again a same problem
as we have dealt for the notion ‘equivalence’. Peirce mentioned that whenever
cross and zero exists detachedly in the same compartment it leads to absurdity
way before introducing his rule of transformation. There was no need for him
to again write it as a rule here. Also, in existential graphs, transformation rules
are presented in a very much syntactic point of view, a fact that rather suggests
an understanding of semantics and syntax. Yet, it is true that rule-4(ii-b) is not
properly written and needs modification.

Rule 4: (iii) “If two contrary signs are written in the same compartments, the
one being attached to certain others, P, and the other to certain others, Q, it is
permitted to attach P to Q and to erase the contrary signs” [12, p. 043].

Using rule-4(iii) we can remove the contrary signs when it is in a disjunctive
form. Peirce has given the following example where, by using the rule-4(iii), the
diagram in Fig. 25 is obtained from the diagram in Fig. 24 [12, p. 044].
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Fig. 24. . Fig. 25. .

For rule-4(iii), Shin pointed out that if we have the following argument

“All S is P or some S is P.
No S is P.

Therefore, there is no S”[18, p. 33].

Then we have the diagrams in Fig. 26 where “first diagram in the following
represents what the two premises convey. One of the o’s in the first diagram
is not attached to any other sign. Accordingly, the antecedent of clause (iii) is
not satisfied. However, if we allow P (in clause (iii)) to be an empty sign, then
we get the second diagram from the first one. After that, we need to add the
second premise, “No S is P,” to the second diagram. This is how we get the third
diagram, which represents the conclusion of the previous syllogism. In order to
get the rightmost diagram (which we want to get), we need to represent the
second premise twice” [18, p. 33].

Fig. 26. .

If we follow the examples given by Peirce in MS 479 in [12, pp. 046–047] we
will find that in the above case where two contradictory signs, ‘0’ and ‘×’, are
in the same region ‘S ∩ P’ but only ‘×’ is connected with another sign in ‘S −
P’, we only erase the ‘×’ and get the third diagram instead of the second one by
applying rule-4(iii) to the first diagram. But again this condition, where one of
the contrary signs is not connected with some other sign in some other region,
is not mentioned precisely in rule-4(iii) and this rule needs to be modified.

4 Rules 5 to 6

Rule 5: “Any Area-boundary, representing a term can be erased, provided that
if, in doing so, two compartments are thrown together containing independent
zeros, those zeros be connected, while if there be a zero on one side of the bound-
ary to be erased which is thrown into a compartment containing no independent
zero, the zero and its whole connex be erased” [12, p. 044].
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Rule-5 is a similar to rule-1, where we can erase information. By eliminating
the curve M from the diagram in Fig. 27, we obtain the diagram in Fig. 28. Since,
by the rule-4(i) the diagram in Fig. 28 is equivalent to the diagram in Fig. 29,
the final diagram obtained after eliminating curve M is in Fig. 29.

Fig. 27. . Fig. 28. . Fig. 29. .

Rule 6: “Any new Term-boundary can be inserted; and if it cuts every com-
partment already present, any interpretation desired may be assigned to it. Only
where the new boundary passes through a compartment containing a cross the
new boundary must pass through the cross, or what is the same thing a second
cross connected with that already there must be drawn and the new boundary
must pass between them, regardless of what else is connected with the cross. If
the new boundary passes through a compartment containing a zero, it will be
permissible to insert a detached duplicate of the whole connex of that zero, so
that one zero shall be on one side and the other on the other side of the new
boundary” [12, p. 044].

By Introducing the curve M, we get the diagram in Fig. 31 from the diagram
in Fig. 30.

Fig. 30. . Fig. 31. .

Rule-6 let us introduce a closed curve without changing the given information.
In this particular rule Peirce mentioned what is to be happen to a cross or a zero
after introducing a closed curve and there were several examples also. But in all
of them there were no connected body of cross and zero together (see Fig. 32).

Fig. 32. .

So if we introduce the curve M in Fig. 32 which one of the following figures
(Fig. 33 to Fig. 36) will we get as a result?
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Fig. 33. A new cross was introduced and
connected with the old one without
taking the connected zero in consideration

Fig. 34. A new cross has been added
with the old connex of the cross and
only a single zero, without it’s connex,
has been duplicated

Fig. 35. Whole connex of the zero
has been duplicated

Fig. 36. Connex of zero has been
duplicated

Now both Fig. 34 and Fig. 35 are not a valid transformation from Fig. 32. By
valid transformation we meant the validity notion used in Shin [18] or Vennin

[4]. So we cannot get this two diagrams by using rule-6. Both Fig. 33 and Fig. 36
are valid. But the final figure that we will get from Fig. 32, by using rule-6, is
Fig. 36. Figure 33 has been discarded since it doesn’t precisely follow the condi-
tions mentioned in the rule. While we introduce a new curve, a region having
zero, is divided into two parts and each part should have a single detached zero.
But this has not been done in this figure. Now in Fig. 36, everything mentioned
in rule-6 has been followed. A new cross has been introduced and connected with
the old connex of cross. Connex of zero has been duplicated− in this case we see
two crosses for the connex of zero in the region ((P − S − M) ∪ ((P ∩ M) − S)
∪ (P ∩ S ∩ M)). This is because, while duplicating connex of zero, we find that
the region containing cross has been divided in two parts. So two crosses have
been introduced instead of one (like we did in Fig. 35).

Shin criticizes rule-5 and rule-6 saying that these rules do not exhaust all
the possible cases as nothing about the existing ‘×’ or the connected bodies of
×’s has been mentioned in them. Although this is true for rule-5 it is not so for
rule-6. In rule-6 all the possible cases have been discussed. For rule-5, Peirce gave
several examples in [12, pp. 046–047]. By examining these examples, we can say
that after eliminating a curve, a cross or a connected body of crosses remains in
the same region. But again it is not mentioned explicitly in the rule8.

8 Additional difficulties may appear when the number of closed curves increases, if
the diagrams are not simple or reducible. Peirce occasionally used Venn diagrams
for more than 3 curves. Some examples are found in [15]. On the construction of
diagrams for n number of curves, see [6].
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5 Comparison with Modern Diagrammatic Systems

We previously alluded to modern systems Venn I, Venn II and Vennin which are
all based on Peirce’s extended version of Venn diagrams [4,18]. Before proceed-
ing, we need to mention that there are two more diagrammatic objects in Vennin ,
‘names of individuals’ and ‘absence of individuals’ (see [4]). If we exclude these
objects then Vennin is similar to Shin’s Venn-II system. From here onward, to
ease the comparison with Peirce’s rules, whenever we refer to Vennin we exclude
the diagrammatic objects ‘names of individuals’ and ‘absence of individuals’
and anything regarding them. The main differences between these systems and
Peirce’s system are given in Table 1.

Table 1. Differences between the four systems

Primitive symbols Peirce Venn-I Venn-II Vennin

Universe Sheet of
drawing

Rectangle Rectangle Rectangle

Predicate
Closed curve Closed curve Closed curve Closed curve

Emptiness 0
Shading Shading Shading

Non-emptiness × x

Disjunction

———
connecting 0’s
or ×’s or 0’s

and ×’s

———
connecting only

’s

———
connecting ’s
or connecting
two diagrams

———
connecting x’s
or connecting
two diagrams

For simplicity, here onward we are going to use ‘x’ to represent ‘non-
emptiness’ in Venn-I and Venn-II system also. Since the connecting line of Peirce
(———) also connects diagrams in Venn-II and Vennin , we have a new type of
diagrams called compound diagrams (type-III diagrams for Vennin system [4])
where each of its components are called atomic diagrams (type-I or type-II dia-
grams for Vennin system. If a diagram consists of a single curve in a rectangle
it is called a type-I diagram. If there are more than one curve then it is called a
type-II diagram [4]). For example, the diagram in Fig. 37 is a compound diagram
which represents the information ‘Either All A are B and Some B are not A or
Some A are not B and No A is B’. For Peirce’s system we can represent this
type of information of ‘disjunctions of conjunctions’ form by just converting the
form into ‘conjunction of disjunction’. So the corresponding diagram for Fig. 37
in Peirce’s system is shown in Fig. 38. Generally, Peirce did not used any such
compound diagrams but he did proposed an alternative way of representing a
diagram when we deal with a complex form of information (see [12, p. 052]).
There are no compound diagrams in the system Venn-I.
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Fig. 37. . Fig. 38. .

In the previous section we mentioned that rule-4 and rule-5 need modifica-
tions. Now suppose, we modify these rules accordingly, i.e.

(1) we remove the condition ‘signs are not connected with any other signs in the
other compartment’ from rule-4(i) and (ii-a).
(2) For rule-4(ii-b), we add the condition that if ‘it constitutes absurdity then
anything follows’.
(3) For rule-4(iii), we add the condition that if two contrary signs are in the
same compartment and only one of them is attached to some other sign, say R,
in another region, then it is permitted to erase only the attached contrary sign
and to keep the sign R as it is.
(4) For rule-5, after erasure of curve, the cross or connected body of cross will
remain in the same position.

After this kind of modification it can be shown that Peirce’s rules are ade-
quate to perform any kind of transformations that are permitted in the other
three systems. Table 2 shows which of Peirce’s rules are analogous to the rules
of the three systems.

For example, using types I-II diagrams, suppose we have the following two
diagrams D1 and D2 (see Fig. 39). Now we get the diagram D2 from D1 by
eliminating the x-node of the x-sequence in the region (((A ∩ B) − C) ∪ ((A ∩
C) − B) ∪ (C − A − B) ∪ ((B ∩ C) − A)) that falls in the shaded region ((A
∩ C) − B) of the diagram D1.

Fig. 39. .

In Peirce’s system we get a similar transformation by using rule-4(iii) (see
Fig. 40).
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Table 2. Comparison of transformation rules among four systems

Types of Diagrams Venn-I Venn-II Vennin Peirce

Type-I/II The rule of erasure for
Closed Curves

The rule of erasure for
Closed Curves

Elimination Rules for
Closed Curves

Rule-5

The rule of erasure for
Shading

The rule of erasure for
Shading

Elimination Rules for
Shading

Rule-1

The rule of erasure for⊗
or sequence of

⊗
’s

The rule of erasure for⊗
or sequence of

⊗
’s

Elimination Rules for x
or sequence of x’s

Rule-1

The rule of erasure of
part of

⊗
-sequence

The rule of erasure of
part of

⊗
-sequence

Elimination Rules for
part of x-sequence

Rule-4(iii)

The rule of spreading⊗
’s

The rule of spreading⊗
’s

Extension Rules for
x-sequence

Rule-2

The rule of
introduction of basic
regions (Closed Curves)

The rule of
introduction of basic
regions (Closed Curves)

Introduction Rules for
Closed Curves

Rule-6

The rule of conflicting
information (Classical
Explosion)

The rule of conflicting
information (Classical
Explosion)

Inconsistency Rules
(Classical Explosion)

Rule-4(ii-b)

The rule of unification
of diagrams

The rule of unification
of diagrams

Unification Rules Rule-3

N.A. As the universe
can be either empty or
non-empty

N.A. As the universe
can be either empty or
non-empty

Introduction Rules for
x’s

Rule-3

Type-IIIa N.A. As there is no
type-III diagrams

The rule of connecting
diagram

Extension Rules for
Diagrams

Rule-2

The rule of splitting⊗
’s

Rules of Splitting
Sequences

Not required
hereb

The rule of the
excluded middle

Rule of Excluded
Middle

Rule-3

The rule of conflicting
information (Classical
Explosion)for type-III
diagram

Inconsistency Rules
(Classical Explosion)
for type-III diagram

Rule-4(iii)

aBy rules for type-III diagrams, we only mean the rules using which type-I/II diagrams
produce a type-III diagram.
bThe rule of splitting sequences basically gives an equivalent type-III diagram of a
type-I/II diagram. There is no change of information while using this rule. Thus it is
not needed in Peirce’s system, where we have only type-I or type-II diagrams.

Fig. 40. .

Thus rule-4(iii) is analogous to the rule of erasure of part of
⊗

-sequence in
Venn-I and Venn-II or the elimination rule for part of x-sequence for the system
Vennin .

When we use type-III diagrams, we need an additional rule ‘the rule of con-
struction’. When dealing with such transformations in Peirce’s case we need all
together rule-4(i), rule-4(ii-a) and rule-2. For example, consider the following
type-III diagrams, D1 − D2 and D3 − D4, in Fig. 41 and Fig. 42 respectively.



180 R. Bhattacharjee and A. Moktefi

We get the diagram D3 − D4 from the diagram D1 − D2 through the following
transformations (Fig. 43 to Fig. 45).

Fig. 41. . Fig. 42. .

Fig. 43. .

Fig. 44. .

Fig. 45. .

In Peirce’s system, by transforming the information from the form of ‘dis-
junction of conjunction’ to the form of ‘conjunction of disjunction’, we get cor-
responding diagrams of D1 − D2 and D3 − D4 in the Fig. 46 and Fig. 47 respec-
tively. We get the diagram D6 from the diagram D5 by using the rules shown in
Fig. 48.

Fig. 46. . Fig. 47. .
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Fig. 48. .

6 Conclusion

In this paper, we exposed and discussed Peirce’s set of rules for the transfor-
mation of Euler-Venn diagrams. We invoked its historical importance, then we
identified the uses and shortcomings of each rule. We also considered the extent
to which they ‘survived’ in modern diagrammatic systems.

Peirce himself conjectured that some of the rules may be simplified and some
rules may have been overlooked. Such a task was more recently undertaken by
Shin who argued that “(1) Some of the rules need to be clarified. (2) We need
more rules to make this system complete. (3) Some semantic terminology (equiv-
alence or absurdity) is used without clarification” [18, p. 35]. Our work partly
corroborates Peirce’s intuition and Shin’s criticism. However, we demonstrate
that only minor modifications are required. Moreover, such modifications were
already implemented by Peirce in hi usage of the rules in the many examples
that he provided. These examples were absent from Shin’s account which was
primarily based on the abridged transcription of manuscript MS 479 included in
Peirce’s Collected Papers [13].

A look at the original manuscript allowed us to return Peirce’s original formu-
lations and the modifications that his examples have suggested to him. Finally,
we argued that slightly modified Peirce’s rules are adequate to perform any kind
of transformations that can be done to diagrams in the modern diagrammatic
systems Venn-I, Venn-II and Vennin .
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