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Abstract. In classical modal logic, necessity ◻A, possibility ◇A, impos-
sibility ◻¬A and non-necessity ◇¬A form a Square of Oppositions (SO)
whose corners are interdefinable using classical negation. The relation-
ship between these modalities in intuitionistic modal logic is a more del-
icate matter since negation is weaker. Intuitionistic non-necessity ⊟ and
impossibility �, first investigated by Došen, have received less attention
and—together with their positive counterparts ◻ and ◇—form a square
we call the Došen Square. Unfortunately, the core property of construc-
tive logic, the Disjunction Property (DP), fails when the modalities are
combined and, interpreted in birelational Kripke structures à la Došen,
the Square partially collapses. We introduce the constructive logic CKD,
whose four semantically independent modalities ◻, ◇, ⊟, � prevent the
Došen Square from collapsing under the effect of intuitionistic negation
while preserving DP. The model theory of CKD involves a constructive
Kripke frame interpretation of the modalities. A Hilbert deduction sys-
tem and an equivalent cut-free sequent calculus are presented. Sound-
ness, completeness and finite model property are proven, implying that
CKD is decidable. The logics HK⊟, HK◻, HK◇ and HK� of Došen and
other known theories of intuitionistic modalities are syntactic fragments
or axiomatic extensions of CKD.

Being one world away from absurdity is very different from being in an absurd
world. Being one step removed from disaster is often very different, and feels
very different, from the disaster. (Routley 1983)

1 Introduction

The reader may recall the classical square of opposition (SO) [38] seen on the
left side in Fig. 1, whose four corners express the distinction between contra-
dictory and contrary oppositions, that were traditionally labelled with four let-
ters A,E, I,O designating propositions, and connected by means of six edges.
The SO has been applied to concepts in linguistics, mathematics and philos-
ophy and can be generalised in a number of ways. From the vantage point of
classical modal logic, the oppositions can be expressed in terms of the modal
operators ◇ and ◻, which traditionally express possibility and necessity, and
are interdefinable in terms of negation, i.e., ◇A = ¬ ◻ ¬A and ◻A = ¬◇ ¬A. In
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constructive modal logic this is no longer the case, which results in four inde-
pendent modal operators, complementing ◇ and ◻ with their opposing counter-
parts [10], namely impossibility �and non-necessity ⊟. In this work we construct
the Došen square (DS) seen on the right side in Fig. 1, by investigating the rela-
tionships between the modalities {◇,◻,⊟,�} in a constructive theory, in which
they remain independent under (intuitionistic) negation (∼) in the sense that
they are not interdefinable anymore, unlike in classical logic. We will shortly
discuss the interpretation of the DS.

Fig. 1. The square of oppositions and the Došen Square.

1.1 State of the Art

In classical Kripke semantics, the modal operators ◇ and ◻ are interpreted w.r.t.
frames F=(S,R), consisting of a set of states S and a binary accessibility relation R
on S. The satisfaction of formulas is defined relative to models M= (F, V ) extend-
ing a frame by a valuation V : S → P(Var) that associates a set V (s) ⊆ Var of
propositional variables satisfied at a state s. Their interpretation is given by quan-
tifying existentially and universally over states in the image of the relation R

M, s |= ◇A ⇔ ∃x. (sRx & M, x |= A) (1)
M, s |= ◻A ⇔ ∀x. (sRx ⇒ M, x |= A) (2)

where M, s |= A expresses that A is satisfied at state s in M. Standardly, in
modal extensions of intuitionistic propositional logic (IPL), Kripke models are
based on a birelational Kripke frame F = (S, ⊑, R), where the accessibility relation
R and the intuitionistic partial order ⊑ are relations on the same domain. Because
the classical clauses (1) and (2) fail to ensure intuitionistic heredity :

s ⊑ s′ and M, s |= A implies M, s′ |= A,

one common approach is to impose the frame conditions (⊑ ;R) ⊆ (R ; ⊒) and
(⊑ ;R) ⊆ (R ; ⊑), where R ;S =df {(x, z) | ∃y.xR y and y S z} denotes sequential
composition of two binary relations R and S. In the Došen square we enforce
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heredity without any frame conditions by the following ‘doubly quantified’ (con-
structive) interpretation:

M, s |= ◇A ⇔ ∀s′
⊒ s.∃x. (s′ R x & M, x |= A) (3)

M, s |= ◻ A ⇔ ∀s′
⊒ s.∀x. (s′ R x ⇒ M, x |= A). (4)

We can pronounce ◇A as “hereditarily, there is an R-accessible state at which
A holds” and ◻A as “hereditarily, for all R-accessible states A holds”, hence
the labelling of the Došen square in Fig. 1, in which such sentences have been
still further abbreviated. The mainstream approach is to either adopt the ‘singly
quantified’ approach (1) and (2) for both ◻ and ◇ [35,40,41] or to ‘mix and
match’, adopting (1) for ◇ and (4) for ◻ [29,34]. The ‘doubly quantified’ app-
roach for both modalities, first introduced by [39] and later used in the logic
CK [3,20,25,33], is far less common, as it leads to non-normal modal logics inval-
idating the axiom ◇(A∨B) → ◇A∨◇B. Computationally, this makes sense (see
[24,33]), and it has the consequence that ⊑ is not required to be antisymmetric
as in standard intuitionistic Kripke frames. In CK, this gives rise to cyclic struc-
tures which are crucial in establishing the Finite Model Property (FMP) [25].
Furthermore, the nullary case ∼ ◇ ⊥ is invalidated as well, because frames for CK
include so-called fallible states which verify all formulas of the language. Fallible
states may be accessible from other states via the modal accessibility relation
in the clause for ◇ and so become ‘visible’ in the form of ◇⊥ statements and ⊑
is no longer reflexive. Constructive modal logics such as CK therefore allow for
truth-value ‘gluts’ (i.e., they allow for the truth of formulas of the form A ∧ ∼A)
as well as truth value ‘gaps’ (i.e., formulas of the form A ∨ ∼A fail to be verified
at a state).

Consider now the impossibility and non-necessity operators [10] � and ⊟
which occupy the right side of the squares in Fig. 1, where�(or ⊟) is the negative
counterpart of the positive modality ◇ (or ◻) and vice versa:1

M, s |= �A ⇔ ∀x. (sRx ⇒ M, x �|= A) (5)

M, s |= ⊟A ⇔ ∃x. (sRx & M, x �|= A). (6)

Classically, these modalities can be expressed in terms of ◇ and ◻ as ¬◇A (or
◻¬A) and ¬◻A (or ◇¬A). Intuitionistically, this is no longer the case, because
intuitionistic negation ∼ is weaker than classical negation ¬ as it fails Excluded
Middle (EM).

To our knowledge, Došen was the first to pay extensive attention to the neg-
ative modalities in intuitionistic logic. For each ⊗∈{◻,◇,⊟,�}, Došen produced

1 Such negative modalities have been considered in the literature on FDE and Routley
semantics as ways of capturing forms of negation [17–19,28,36] often called ‘con-
structible’ or ‘strong’ negation [26,37]. We do not suggest that the role of � and ⊟
in the logic CKD is to capture forms of negation; rather, we are simply interested
in how they behave in a constructive setting (i.e. in which the Disjunction Property
holds) as modal operators.
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a logic HK⊗, combining ⊗ with IPL. In HK◻, the classical truth conditions
for ◻ in (2) are employed together with the frame condition (⊑;R) ⊆ (R; ⊑),
whilst in HK◇ the classical truth conditions for ◇ in (1) are employed together
with (⊒;R) ⊆ (R; ⊒) [6]. In HK�, the truth conditions (5) are employed for
� and (⊑;R) ⊆ (R; ⊒) are imposed, and in HK⊟ the truth conditions (6) are
employed for ⊟ with the frame condition (⊒;R) ⊆ (R; ⊑) [9–11]. Each HK⊗ for
⊗ ∈ {◻,◇,⊟,�} is a conservative extension of IPL which is sound and com-
plete with respect to birelational frames, subject to the associated frame con-
ditions. The work of Došen was very much out on a limb with respect to the
mainstream in intuitionistic logic, which concentrated on the positive modalities
almost entirely [42], and only in recent years have the negative modalities been
given more attention in the literature on intuitionistic and constructive logic
[15,16,28]. Curiously, Došen did not produce a logic which combines �, ⊟, ◇
and ◻ with IPL on a single birelational frame (S, ⊑, R) in which the modalities
are interpreted with respect to the same R.

Some combinations of the modalities ◻,◇,⊟,�with each other and negation
∼ have been explored. For example, [6] consider a system HK ◻ ◇, combining
◇ and ◻. They give two equivalent axiomatisations of HK ◻ ◇, yet the theory
does not have the DP, nor is it conservative over either HK◇ and HK◻ (see [6]
for discussion). Drobyschevich [15] investigates the properties of the combined
modality ∼�A in an extension N� of IPL he calls HKNR and he studies ∼�A in
HK⊟ in an extension he calls HKN⊟. N� is an extension of HK�but without ⊥,
known as N [11]. In N�, however, ⊟ and �collapse into a single modality, since R
is a functional accessibility relation, called the ‘Routley star’ operation. Addition
of ◇ to HK�plus frame conditions imposed to ensure hereditariness, have the
result that the modalities � and ◇ become interdefinable as ◇A ↔ ∼�A and
�A ↔ ∼◇A via intuitionistic negation. But, from a constructive point of view,
the directions of ∼�A → ◇A and ∼ ◇ A → �A are suspicious. If we can prove
the absurdity of something being impossible (i.e., ∼�A), this doesn’t mean
we have a positive construction which will allow us to show that something
is possible (i.e., ◇A). Likewise, if we can prove that a certain possibility is
absurd (i.e., ∼ ◇A), then we can’t conclude that we have a proof that it is
impossible. Similarly, addition of ◻ to HK⊟ plus frame conditions make ◻ and ⊟
interdefinable (◻B ↔ ∼ ⊟B and ⊟B ↔ ∼ ◻B) and similar reservations regarding
the constructive content of the implications ∼ ⊟B → ◻A and ∼ ◻B → ⊟B can
be made. Adding ◻ and its associated heredity frame condition forces axiom
⊟B ∨ ∼ ◻B without ⊟B or ∼ ◻B being provable by itself. This breaks DP and
thus constructiveness of non-necessity. This is a general side effect of the frame
conditions: Each positive modality ⊕ induces the disjunction ∼ ⊖A ∨ ⊖A, where
⊖ is the corresponding negative modality, and each negative modality ⊖ induces
the disjunction ∼ ⊕A ∨ ⊕A. Similar effects have been observed for N� [13], where
the scheme �A ∨ �∼A is valid and for HK ◻◇, where ◇A ∨ ◻¬A is an axiom,
both in violation of the DP.
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1.2 Contributions

The combination of the modalities ◻, ◇, �and ⊟ so as to ensure a constructive
logic is a delicate matter. Can the negative modalities � and ⊟ live happily
side-by-side with their ‘positive’ counterparts ◇ and ◻, within a constructive
setting? According to consolidated tradition, a constructive logic means a logic
in which the Disjunction Property (DP) holds: whenever A∨B is a theorem then
either A is a theorem, or B is a theorem. Constructiveness thus construed is not
a property of operators, but of logics. Our question is therefore whether we can
combine the modalities whilst retaining the DP. In this paper we show that if
we interpret � and ⊟ constructively like ◻ and ◇ in (4) and (3),

M, s |= �A ⇔ ∀s′
⊒ s.∀x. (s′ R x ⇒ M, x �|= A) (7)

M, s |= ⊟A ⇔ ∀s′
⊒ s.∃x. (s′ R x & M, x �|= A) (8)

then we can avoid the collapse of the modalities �, ⊟, ◇ and ◻, abandoning
the frame conditions relating ⊑ and R:2 The logic created by thus adding the
negative modalities to CK [25,33], we dub CKD. CKD is both conservative over
CK and constructive in the sense that it satisfies DP.

The Došen square is not supposed to be analogous to the SO; in fact, only
certain features of the square of oppositions hold in CKD. The logic CKD will
treat the relationships between the modalities in DS as follows. On the one hand,
◇ and �will be contradictories, i.e., ∼(◇A ∧ �A) is valid. Similarly, necessity
◻ and unnecessity ⊟ will be incompatible, i.e., ∼(◻A ∧ ⊟A) is valid. Due to the
absence of the Excluded Middle and fallibility, the modalities ◇ ∼A and ⊟A
are independent in CKD, distinguishing the Došen square from the classical SO.
In CKD ◇ ∼A → ⊟A follows from infallibility, expressed by �⊥. Moreover, we
have ⊟A → ◇ ∼A assuming ◻(A ∨ ∼A), which expresses the necessitation of the
Excluded Middle. Similarly, ◻ ∼A and �A are independent. Again, the connec-
tion hinges on the absence of gluts and gaps: In CKD we have that infallibility
�⊥ entails ◻ ∼ A → �A and similarly ◻(A ∨ ∼A) entails �∼A → ◻A. Unless
every state has an R-successor (seriality) – expressible by ◇⊤ – the modality
pairs ◻, ◇ and �, ⊟ are independent. However, like in the classical SO it holds
that from seriality ◇⊤ follows ◻A → ◇A and �A → ⊟A.

In Sect. 2 the model theory of CKD is introduced and the DP is proven.
In Sect. 3.1, an axiomatic Hilbert system, HCKD, is provided for CKD, and its
conservativity over CK and over N is sketched. In Sect. 3.2, a sequent calcu-
lus, GCKD, for CKD is provided, proving its soundness and completeness with
respect to C-frames , and its translation into HCKD is obtained. As a corollary
of completeness, it follows that the theory of CKD has the FMP, is cut-free and
decidable. In Sect. 4 we end with Conclusions.

2 Our claim is that the doubly quantified truth conditions are a neat way out of the
bind, not that they are necessary in order to provide a logic which combines ◻, ◇,
� and ⊟ interpreted with respect to the same relation.
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2 The Došen Square CKD of Constructive Modalities

We begin by introducing the frames and models we will make use of.

Definition 1 (C-frame). A C-frame F = (S, ≤, F,R) consists of a set S /= ∅ of
states, a preordering ≤ (reflexive & transitive) on S, a subset F ⊆ S of fallible
states, s.t. s1 ≤ s2 and s1 ∈ F implies s2 ∈ F and a binary relation R on S. On
a C-frame we define the ordering ⊑ =df {(s, s′) | s ≤ s′ & s′ �∈F} and if F = ∅ then
F is called infallible.

C-frames are non-standard in three ways. Firstly, we do not require any frame
property to constrain the interaction of ≤ and R. In this way, we obtain a minimal
logic to fuse the modalities ◇, ◻, � and ⊟ on a single accessibility relation.
Secondly, we only require ≤ to be a preorder rather than a partial ordering, i.e.,
omitting antisymmetry allows for the possibility of cyclic structures which are
crucial in establishing the FMP. Thirdly, by adding the fallibility set F ⊆ S we
can declare frame states as ‘internally exploded’ and make states s ∈S such that
s R s′

∈ F border states “one world away from absurdity”. This is instrumental to
preserve constructiveness for certain extensions of CKD and amounts to working
with an intuitionistic accessibility ⊑ that is not only not antisymmetric but also
not reflexive.

Definition 2 (C-model). A C-model M = (F, V ) consists of a C-frame F =
(S, ≤, F,R) together with a valuation function V : S → P(Var) from S to the
subset of propositional variables subject to heredity and explosion conditions: if
s1 ≤ s2 then (i) V (s1) ⊆ V (s2) and (ii) if s ∈ F then V (s) =Var.

The language LCKD of CKD coincides with that of intuitionistic propositional
logic (IPL) extended by the four modalities {◻,◇,�,⊟}.

Definition 3 (Language LCKD). The language LCKD is based on a denumer-
able set of propositional variables Var = {p, q, . . .}. The set of well-formed CKD-
formulas over Var is inductively defined by the following grammar:

A,B :: = p | ⊤ | ⊥ | A ∧B | A ∨B | A → B | ◻A | ◇A | �A | ⊟A

Note that ∼A abbreviates intuitionistic negation A → ⊥, A ↔ B is expressed by
(A → B) ∧ (B → A) and implication → is right-associative.

The interpretation of LCKD is by means of the following satisfaction relation:

Definition 4 (Satisfaction in C-models). Let M = (S, ≤, F,R, V ) be a C-
model. The notion of a formula A being satisfied in a C-model M at a state s is
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defined inductively, for the modal operators as in (3), (4), (7), (8) and for the
other operators as in IPL.3

M, s |= ⊤,
M, s |= ⊥ iff s ∈ F,

M, s |= p iff p ∈ V (s),
M, s |= A ∧B iff M, s |= A and M, s |= B,

M, s |= A ∨B iff M, s |= A or M, s |= B,

M, s |= A → B iff for all s′
⊒ s, if M, s′ |= A then M, s′ |= B.

The semantics of Definition 4 permits us to assume that each fallible state
f ∈ F is a dead end of the frame, i.e., there is no s with either f R s or f ⊑ s.
Moreover, we may assume without loss of generality that every f ∈F is reachable
by an R-step from a non-fallible state, i.e., there is s � ∈ F with s R f . We call
such frames ⊥-condensed. In ⊥-condensed frames we have M, s |= �⊥ for all s∈S
iff M is infallible, i.e., F = ∅.

Definition 5 (Validity). A formula A is valid in a C-model M, written M |=
A, if M, s |= A for all s ∈S. If M is clear from the context, we will simply write
s |= A. A formula A is valid in a C-frame F, written F |= A, if M |= A for all
models M = (F, V ) over F. We lift all the validity relations to sets of formulas Γ
in the usual conjunctive way, for a state M, s |= Γ , a model M |= Γ and frame
F |= Γ .

Lemma 1. Satisfaction is hereditary and explosive, i.e., (i) s |= A iff
∀s′
⊒ s. s′ |= A and (ii) s ∈ F implies s |= A.

We define a semantic consequence relation axiomatising the semantic levels
of the modal satisfaction relation at the frame, model and state level (global
vs. local consequence) [21,31]. It allows us to map the semantic definition of
a logical system to its syntactic axiomatisation in the form a Hilbert calculus,
to be used in the discussion of the correspondences between Došen’s logics and
CKD (see Theorem 3).

Definition 6 (Semantic Entailment). Let Ω ( frame hypotheses), Φ (model
hypotheses), Γ ( state hypotheses) and Π ( state assertions) be sets of formulas.
We write Ω;Φ;Γ |= Π iff for all C-frames F = (S, ≤, F,R) with F |= Ω and all
models M = (F, V ) with M |= Φ and all states s ∈ S with M, s |= Γ , we have
M, s |= Π.

Let CKD be the set of all universally valid formulas, i.e., CKD= {A | ∅; ∅; ∅ |=
A}. This set is a logical theory, i.e., closed under Modus Ponens and Substitution.

3 As usual, we can take ⊤=df p → p for a variable p ∈Var . Interestingly, also absurdity
⊥ is representable, viz. as the non-necessity of truth, i.e., ⊥ =df ⊟⊤. First, M, s |= ⊥
implies M, s |= ⊟⊤ since by definition there is no s′ with s ⊑ s′. Second, if M, s |= ⊟⊤
and s �∈F we would have s ⊑ s and so by the truth condition for ⊟ there must be s′′

with s R s′′ and M, s′′
⊭ ⊤. This is impossible, hence s ∈ F and so M, s |= ⊥.
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The theory CKD does not validate the axiom �A∨�∼A of Drobyshevich nor any
of the axiom schemes ⊗A ∨ ∼ ⊗A for ⊗ ∈ {◇,�,◻,⊟}, as can be readily verified.

One of the hallmarks of constructive logics is the disjunction property (DP),
stating that the proof of a disjunction A ∨ B requires positive evidence in the
form of a proof of either A or B. The absence of frame conditions in CKD admits
of a particularly simple model-theoretic argument for the Disjunction Property
(Theorem 1) that proceeds completely analogously to IPL.

Theorem 1 (Disjunction Property). The theory CKD has the Disjunction
Property.

Fig. 2. Cyclic model.

A striking feature of CKD is that the Finite Model
Property (Theorem 8) depends on permitting ≤-cycles in
C-frames. Consider the cyclic countermodel Mc on the
right in Fig. 2. The states s0, s1 each satisfy ∼ ⊟A,
∼ ⊟B and ⊟(A ∧B), being mutual ⊑-successors shar-
ing the same theory. Yet, they cannot be condensed
into a single state s = {s0, s1}, as s would have
both s′

0 and s′
1 as immediate R-successors, and sat-

isfy s |= ⊟A ∧ ⊟B which is inconsistent with the prop-
erties of s0 and s1. Observe that Mc does not sat-
isfy Došen’s HK⊟ frame condition [10] (⊒ ; R) ⊆ (R ; ⊑)
that generates the constructively disputable scheme
∼ ⊟A → ◻A. Even more, Mc provides a countermodel
for the distribution axioms ⊟(A ∧B) → (⊟A ∨ ⊟B) and
◇(A ∨B) → (◇A ∨ ◇B). Their absence is characteristic
of CKD as a non-normal modal logic, due to the ‘doubly-
quantified’ truth conditions in the existential modalities ⊟ (8) and ◇ (3).

Proposition 1. The scheme (∼ ⊟A ∧ ∼ ⊟B) → ∼ ⊟ (A ∧B) is valid in HK⊟ [10]
but not a theorem of CKD. Every CKD counter model for it is infinite or cyclic.

3 Proof Systems for CKD

We develop the proof theory of CKD, in the form of the Hilbert calculus HCKD and
the Gentzen-style sequent calculus GCKD. The calculus HCKD captures seman-
tic entailment Ω;Φ;Γ |= Π where the set of state hypotheses Γ = ∅ is empty,
which corresponds to the restriction [21] of rule Nec to apply to theorems only.
In contrast, the sequent calculus GCKD works entirely at the state level (i.e.,
Ω = ∅ = Φ).

3.1 CKD Global Reasoning: The Hilbert Calculus HCKD

Definition 7 (Hilbert Deduction and CKDAxioms). Let Ω and Φ be sets of
formulas. We write Ω;Φ 
H A if there is a sequence A0, A1, . . . An−1 of formulas
such that An−1 = A and each Ai (i ∈ n) is either a model hypothesis from Φ,
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a substitution instance of some frame hypothesis or axiom in Ω, or arises by
the rules of Modus Ponens (MP) or Necessitation (Nec) from formulas Aj

(j < i) appearing earlier. The set of axioms CKDax consist of those for IPL
(see, e.g., [14]) and the modal axioms as depicted in the following. We write
CKD;Φ 
H A for CKDax;Φ 
H A.

◻K =df ◻ (A → B) → ◻A → ◻B
◇K =df ◻ (A → B) → ◇A → ◇B

�K =df ◻ (A → B) → �B → �A

⊟K =df ◻ (A → B) → ⊟B → ⊟A
◻2 =df �A → ◻(A ∨B) → ◻B
◇2 =df �A → ◇(A ∨B) → ◇B

�2 =df �A → �B → �(A ∨B)
⊟2 =df �A → ⊟B → ⊟(A ∨B)
N 5 =df �(A ∧B) → ◇A → ⊟B
N 6 =df ◻ (A ∨B) → ⊟A → ◇B

N 7 =df ⊟ ⊤→ ⊥

Theorem 2 (Hilbert Soundness). If CKD;Φ 
H A then ∅;Φ;∅ |= A.

The axioms ◻K,◇K,�K, ⊟K in combination with Nec ensure that the logic
is extensional, i.e., satisfies the Replacement Principle: If CKD;Φ 
H A ↔ B
then CKD;Φ 
H φ[A] ↔ φ[B] where φ[.] is an arbitrary formula context. In the
axiomatisation by [10] replacement is achieved with the R-Rules

Ω;Φ 
H A → B
R⊕

Ω;Φ 
H ⊕A → ⊕B

Ω;Φ 
H A → B
R⊖

Ω;Φ 
H ⊖B → ⊖A

for ⊕ ∈ {◇,◻} and ⊖ ∈ {�,⊟}. These are derivable from our axioms ◻K, ◇K,
�K, ⊟K, Modus Ponens MP and Necessitation Nec.

The axioms ⊗K (for ⊗ ∈ {◇,◻,�,⊟}) deal with the consequences of a neces-
sary implication ◻(A → B) for statements made under modalities. Analogously,
the axioms ⊗2 express the consequences of an impossible property �A for
modalised statements. The import of axiom ◻2 is that if a disjunction A ∨ B
is necessary and one of the disjuncts is impossible, then the other disjunct is
necessary. The axiom ◇2 says that if a disjunction A ∨ B is possible and one
of the disjuncts is impossible, then the other disjunct is possible. The axiom �2
states that if two properties are impossible, then their disjunction is impossible,
too. The axiom ⊟2 says that if one property is impossible and another is non-
necessary, then its disjunction is non-necessary. N 5 implies that if a conjunction
A∧B is impossible while one of the conjuncts is possible then the other conjunct
is non-necessary. N 6 is the statement that if a disjunction is necessary and one
disjunct non-necessary then the other disjunct is possible. The final axiom N 7
gives a representation of absurdity as non-necessity of truth.

Let us verify that possibility ◇A and impossibility �A are contradictory,
i.e., 
H ∼(◇A ∧ �A). Since 
H A ↔ (A ∧ ⊤) we obtain 
H (◇A ∧ �A) ↔
(◇A ∧ �(A ∧ ⊤)) by the Replacement Principle. Then, instantiating N 5 as 
H

�(A ∧ ⊤) → ◇A → ⊟⊤, we can derive 
H (◇A ∧ �A) → ⊟⊤ by IPL. Finally
chaining up in IPL with the implication N 7 this implies 
H (◇A ∧ �A) → ⊥.

As explained above, in the standard Kripke model theory, the presence of
frame conditions force a collapse of the modalities and the loss of DP. In CKD
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where we maintain their independence we can study existing theories as frag-
ments and extensions. Došen’s model theory of HK⊗-frames [10] in the language
L⊗ = {⊥,∧,∨,→,⊗} for fixed ⊗ ∈ {◇,�,◻,⊟} generates the logic called HK⊗.
A HK⊗-frame is an infallible C-frame satisfying the HK⊗ frame condition (see
Sect. 1). On such C-frames our truth conditions for ⊗ collapse to the ones of
Došen for ◇, �, ◻ and ⊟. As a result, CKD is conservative over HK⊗ in the
language fragment L⊗. However, the modalities ⊗∈{�,◇,⊟} of CKD are weaker
than the ones of HK⊗. This is not surprising since we want to avoid the collapses
arising from a naive fusion in the standard model theory. The properties of ⊗ in
HK⊗ can be regained in CKD by imposing frame conditions. Recall that N [11]
is HK� in the language LN = {∧,∨,→,�} without ⊥. Now consider the axiom
schemes:

(⊟1) : ⊟(A ∧B) → (⊟A ∨ ⊟B) (◇1) : ◇(A ∨B) → (◇A ∨ ◇B)
(�2) : �⊥ (◇2) : ∼ ◇ ⊥

(◻◇1) : ◇A ∨ ◻ ∼A (◻◇2) : ∼(◇A ∧ ◻ ∼A).

It can be shown that CKD in L◻ corresponds to HK◻ and in LN to N;
HK� is CKD + �2 restricted to L�; CKD + ⊟1 corresponds to HK⊟ in L⊟
and CKD +◇1 +◇2 generates the theory HK◇ in L◇. Finally, the extension
CKD+�2+◻◇1+◻◇2 coincides with the non-constructive theory HK◻◇ inves-
tigated by Božić & Došen [6] in L◻◇ =df {⊥,∧,∨,→,◻,◇}. In L◻◇ the logic CKD
does not lose constructiveness like HK◻◇ does. In fact, CKD is conservative over
CK [25] that combines the positive modalities ◻, ◇ by extending IPL with the
axioms ◻K and ◇K and the Nec rule.

Theorem 3 (Conservativity). CKD is a conservative extension of N and CK
and HK◻. The theories HK⊗ for ⊗ ∈ {◇,�,⊟} and HK ◻◇ are axiomatic exten-
sions of CKD:

For A in the language L◻◇ : CK;∅ �H A iff CKD;∅ �H A.
For A in the language L◻◇ : HK ◻◇;∅ �H A iff CKD,�2,◻◇1,◻◇2;∅ �H A.
For A in the language L⊟ : HK⊟;∅ �H A iff CKD,⊟1;∅ �H A.
For A in the language L◻ : HK◻;∅ �H A iff CKD;∅ �H A.
For A in the language L� : HK�;∅ �H A iff CKD,�2;∅ �H A.
For A in the language LN : N;∅ �H A iff CKD;∅ �H A.
For A in the language L◇ : HK◇;∅ �H A iff CKD,◇1,◇2;∅ �H A.

3.2 Landing at Došen Square: The Sequent Calculus GCKD

The proof theory of CK has previously been investigated in terms of a Natu-
ral Deduction system [3], multisequent calculi [22–24], nested sequents [2] and a
tableaux-based calculus [33]. Our sequent calculus GCKD is a refinement of the
multisequent calculus of Dragalin [12] for IPL, similar to [22], that is enriched by
additional scopes to cover local and global properties. This is required for the inter-
pretation of the four modalities, and is consonant with Poggiolesi’s remark that



456 M. Mendler et al.

[...] the failures of the search for a sequent calculus for modal logic gave rise to
the idea that the standard Gentzen calculus could only account for classical and
intuitionistic logics and should therefore be enriched. [30][Sec. 2.3, p. 51]

In relation to the many variants explored in the literature (see [30]) GCKD can
be considered a higher-arity extension in the sense of Sato [32] and Blamey and
Humberstone [5]. Notably, following Dragalin, we consider the logical variant of
the Gentzen calculus (in the terminology of [30]) approach to sequents, where
all structural rules are built into the axioms and logical rules. This is justified
as we are dealing with a logical theory that has not been discussed before and
thus are primarily interested in model-theoretic expressiveness, completeness,
constructiveness and finite-model property.

A sequent in CKD is a structure Γ � Δ � Θ 
 Π � Σ � Ψ where the sets Γ
and Π express direct truth and falsity at a state, as in a standard sequent. The
sets Δ, Θ, Σ and Ψ are finite (possibly empty) sets of signed formulas each of
which can be strong A+ or weak A−. With this structure, our sequents provide
a formalisation of Došen square as visualised in Fig. 3. Note, that in Γ (Π) all
formulas have no sign. Specifically, Δ and Θ contain positive existential and
universal statements about modally reachable successors, while Σ and Ψ are
negative existential and universal statements. Depending on the scope set, the
sign t ∈ {+,−} of a polarised formula At distinguishes local or hereditary global
properties, where for a set X of signed formulas we write Xt

=df {At | At
∈X}.

For instance, A+
∈Δ expresses the constraint that there exists an immediate R-

successor satisfying A, while A−
∈Δ is the weaker statement that such a successor

is reachable via ⊑;R, i.e., only after an initial intuitionistic step. Analogously,
A−
∈Σ says that A is false along immediate R-successors whereas A+

∈Σ is the
stronger statement that A is false along all ⊑;R. This is captured by the following
Definition 8.

Fig. 3. The Došen square structure of GCKD sequents.

Definition 8 (Refutability). A sequent Γ � Δ � Θ 
 Π � Σ � Ψ is refuted in a
state s of a C-model M = (S, ≤, F,R, V ) iff the following holds:
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– ∀A ∈ Γ.M, s |= A.

– ∀B−
∈Δ.∃s′.s ⊑;R s′ & M, s′ |= B;

∀B+
∈Δ.∃s′.s ⊑ s R s′ & M, s′ |= B.

– ∀C−
∈Θ, s′.s ⊑ s R s′ ⇒ M, s′ |= C;

∀C+
∈Θ, s′.s ⊑;R s′ ⇒ M, s′ |= C.

– ∀D ∈Π.M, s �|= D.

– ∀E−
∈Σ, s′.s ⊑ s R s′ ⇒ M, s′ �|= E;

∀E+
∈Σ, s′.s ⊑;R s′ ⇒ M, s′ �|= E.

– ∀F−
∈ Ψ.∃s′.s ⊑;R s′ & M, s′ �|= F ;

∀F+
∈ Ψ.∃s′.s ⊑ s R s′ & M, s �|= F .

A sequent is called refutable, written Γ � Δ � Θ �|= Π � Σ � Ψ if there exists a
C-model M and a state s of M in which it is refuted. A sequent is called valid,
written Γ � Δ � Θ |= Π � Σ � Ψ , if it is not refutable.

Fig. 4. GCKD Sequent Rules. The sets Γ , Π are without sign. In the rules cpLt and cpRt

all signs are dropped in the occurrences of the sets Θ, Θ+ and Σ, Σ+ in the premisses.
Tagged rules (†) require its conclusion to be strict, i.e., |Δ ∪ Π ∪ Ψ | ≥ 1. We treat all
scopes as sets with implicit duplication and permutation.

The sequent rules for CKD are seen in Fig. 4. In the top part, the rules Ax ,
⊥L, ⊤R, ∧L, ∧R, ∨L, ∨R, →L and →R are the left and right introduction
rules for a (multisequent, logical [30]) Gentzen sequent calculus of IPL. These
rules operate in the central Γ 
 Π scopes, leaving the corner scopes of the
Došen square untouched. In the bottom part of Fig. 4 we list the left and right
introduction rules ◇L, ◇R, ◻L, ◻R, �L, �R, ⊟L and ⊟R for the modalities.
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These modal rules, applied in forward direction, take a signed formula from
one of the corners Δ, Θ, Σ and Ψ of the Došen square (Fig. 3) and introduce
an associated modal operator in the conclusion sequent, instead. From Ψ− and
Θ+ we introduce the ◻ modalities in rules ◻L and ◻R; From Ψ+ and Θ− we
introduce ⊟ via ⊟L and ⊟R. No other rule depends on the presence of formulas
in Ψ or Θ. From Δ− and Σ+ stem all occurrences of � through �R and �L,
while Δ+ and Σ− constitute a reservoir for ◇ introduced via ◇L and ◇R. So
far, GCKD does not present surprises as a Gentzen-style calculus. The speciality
of GCKD lies in the four rules cpL−, cpL+, cpR− and cpR+ seen in the center of
Fig. 4. The sign introduction rules cpLt, cpRt work in opposite direction to the
modal introduction rules ⊗L, ⊗R. Together, they orchestrate the ‘Grand Modal
Dispatch’ of the DS as suggested in Fig. 3.

Definition 9 (Derivability). A derivation of a sequent Γ � Δ � Θ 
 Π � Σ � Ψ
is either an axiom (rule Ax), an instance of ⊥L or ⊤R or an application of a
logical rule to derivations concluding its premises, that is built using the rules in
Fig. 4. We say that a sequent is underivable, written Γ � Δ � Θ �
 Π � Σ � Ψ , if
no derivation exists for it.

GCKD is conceived as a refutation system. Its purpose is to establish that a
state specification (based on the six scopes) presented as a sequent is refutable.
Refutability (Definition 8) and derivability (Definition 9) are linked in the sense
that a sequent is underivable iff it is refutable, as established in the soundness
and completeness proofs.

Theorem 4 (GCKDSoundness). If Γ � Δ � Θ �|= Π � Σ � Ψ then Γ � Δ � Θ �

Π � Σ � Ψ .

The proof of Theorem 4 is standard, by showing that for each sequent rule in
Fig. 4 that if the conclusion is refutable then at least one of its premises is
refutable as well.

Fig. 5. A successful GCKD derivation (left) and a non-completable derivation (right).

As examples consider the GCKD derivations in Fig. 5. The left derivation
demonstrates the incompatibility of ◇ and � and the right indicates why a
proof of the distribution ⊟(A ∧B) → (⊟A ∨ ⊟B) is doomed to fail. The appli-
cation (1) of rule ⊟R on the right of Fig. 5, corresponding to an intuitionistic
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≤-step in backwards direction, must clear the Π-scope and drop the constraint
⊟B. Because of this, the formula B is missing in situation (2) so that the sequent
cannot be derived.

Theorem 5. For each HCKD derivation ∅;∅ 
H D there is a GCKD derivation
of the sequent ∅ � ∅ � ∅ 
 D � ∅ � ∅ using the rules of Fig. 4 plus the cut rule:
From Γ�Δ�Θ 
 D,Π�Σ�Ψ and D,Γ�Δ�Θ 
 Π�Σ�Ψ infer Γ�Δ�Θ 
 Π�Σ�Ψ .

A sequent Γ � Δ � Θ 
 Π � Σ � Ψ is called strict if |Δ ∪ Π ∪ Ψ | ≥ 1 and
polarised if |Θ− ∪ Σ−| ≤ 1. One can show that every derivable sequent is strict
and that polarised sequents can be proven only using polarised sequents. For
polarised and strict sequents the following ‘hilbertification’ provides a translation
of GCKD back into HCKD.

Definition 10 (Hilbertification). Let each sequent Γ � Δ � Θ 
 Π � Σ � Ψ be
translated into the formula

(
Γ̂ ∧◇̂Δ∧�̂Σ∧◻̂Θ∧⊟Ψ

) → (
Π̌∨�̌Δ∨◇̌Σ∨⊟Θ∨◻̌Ψ

)

where
Γ̂ =df

∧
A∈Γ A, Π̌ =df

∨
D∈Π D,

◇̂Δ =df

∧
B+∈Δ◇B, �̌Δ =df

∨
B−∈Δ�B,

�̂Σ =df �
∨

E+∈Σ E, ◇̌Σ =df ◇
∨

E−∈Σ E,
◻̂Θ =df

∧
D+∈Θ ◻D, ⊟Θ =df ⊟̌

∧
D−∈Θ D,

⊟Ψ =df

∧
D+∈Ψ ⊟F, ◻̌Ψ =df

∨
D−∈Ψ ◻F,

and for empty sets we put Γ̂ =df ⊤ if Γ = ∅, Π̌ =df ⊥ if Π = ∅, and for ⊗ ∈
{◻,◇,�,⊟} and X a set of signed formulas: ⊗̂X = ⊤ if X+

= ∅ and ⊗̌X = ⊥
if X−

= ∅.

Theorem 6 Let Γ � Δ � Θ 
 Π � Σ � Ψ be a polarised sequent, derivable using
the rules of Fig. 4. Then, there exists a Hilbert derivation of

CKD;∅ 
H

(
Γ̂ ∧ ◇̂Δ ∧ �̂Σ ∧ ◻̂Θ ∧ ⊟Ψ

) → (
Π̌ ∨ �̌Δ ∨ ◇̌Σ ∨ ⊟Θ ∨ ◻̌Ψ

)
.

Theorem 5 and 6 give us a back-and-forth translation of deductions in the
Hilbert and Gentzen systems for CKD. However, this involves the cut rule, so
neither calculus gives us a decision procedure. We address this by proving com-
pleteness of GCKD and thus completeness of HCKD, leading to our final complete-
ness result that implies cut-elimination. First, let us introduce some technical
definitions.

Definition 11 (Saturation). A sequent Γ �Δ�Θ 
 Π�Σ�Ψ is called saturated
if the following closure conditions hold:

1. If M ∧N ∈ Γ then both M,N ∈ Γ
2. If M ∨N ∈ Γ then M ∈ Γ or N ∈ Γ ;
3. If M → N ∈Γ then M ∈Π or N ∈Γ
4. If M ∨N ∈Π then both M,N ∈Π;
5. If M ∧N ∈Π then M ∈Π or N ∈Π

6. If �M ∈ Γ then M+
∈Σ

7. If �M ∈Π then M−
∈Δ

8. If ◻M ∈ Γ then M+
∈Θ

9. If ◻M ∈Π then M−
∈ Ψ

10. If Π = ∅ and Δ = ∅ then ⊥ ∈ Γ .
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In a saturated sequent the sets Γ and Π are coupled through the constraints (1)–
(5). Closure conditions (6)–(9) are lower bounds on the presence of positive signs
in Σ and Θ and on the negative signs in Δ and Ψ . If Γ1 � Δ1 � Θ1 
 Π � Σ1 � Ψ1

is saturated then any sequent Γ � Δ2 � Θ2 
 Π � Σ2 � Ψ2 with Θ+
1 ⊆Θ

+
2 , Σ+

1 ⊆Σ
+
2 ,

Δ−
1 ⊆ Δ−

2 and Ψ−
1 ⊆ Ψ−

2 is saturated, too. In other words, we can add positive
signs, or add and remove negative signs from Θ, Σ without losing saturation.
Analogously, we can add negative signs or add and remove positive signs in Δ,
Ψ and preserve saturation.

Definition 12. A set SF of formulas is subformula closed if for every subfor-
mula A of a formula M ∈ SF it holds that A ∈ SF. Let SF+

= SF ∪ {⊥}. We say
that a sequent Γ � Δ � Θ 
 Π � Σ � Ψ is called a SF -sequent if Γ ∪ Δ ∪ Θ ∪ Π ∪
Σ ∪Ψ ⊆SF+. Moreover, a SF sequent is called consistent if it cannot be derived
in the cut-free calculus. It is called SF -complete if for every M ∈ SF+ we have
M ∈ Γ or M ∈Π.

For saturated, consistent and SF -complete sequents the essential information
lies in Γ , in the positive signs B+

∈Δ, F+
∈Ψ and the negative signs E−

∈Σ, C−
∈Θ.

All of these express the existence and properties of immediate R-successors (see
Definition 8).

Definition 13 (Canonical Interpretation). Let SF be a subformula closed
set. We define a basic canonical C-structure Mc

= (Sc, ≤c, F c, Rc, V c) over SF
as follows: The states w ∈ Sc are the saturated and consistent SF sequents
w = 〈Γ � Δ � Θ 
 Π � Σ � Ψ〉. Relating these canonical states, we define the intu-
itionistic accessibility relation ≤c and the compatibility relation Rc on Sc as
follows:

〈Γ � Δ � Θ 
 Π � Σ � Ψ〉 ≤c 〈Γ ′ � Δ′ � Θ′ 
 Π ′ � Σ′ � Ψ ′〉
iff Γ ⊆ Γ ′ & Θ+

⊆Θ′ Σ+
⊆Σ′ (9)

〈Γ � Δ � Θ 
 Π � Σ � Ψ〉 Rc 〈Γ ′ � Δ′ � Θ′ 
 Π ′ � Σ′ � Ψ ′〉
iff Σ ⊆Π ′ & Θ ⊆ Γ ′. (10)

Let w=〈Γ � Δ � Θ 
 Π � Σ � Ψ〉∈Sc be an arbitrary state. The valuation of propo-
sitional variables p is given by stipulating p ∈ V c(w) iff p ∈ Γ or ⊥ ∈ Γ . The state
w is fallible w ∈ F c iff ⊥ ∈ Γ .

Lemma 1. The canonical structure Mc
=df (Sc, F c, ≤c, Rc, V c) in Definition 13

is a C-model in the sense of Definition 2 such that for every sequent w ∈ Sc the
pair (Mc, w) refutes w according to Definition 8.
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Theorem 7 (Gentzen Completeness). Every underivable sequent is
refutable, i.e., if Γ � Δ � Θ �
 Π � Σ � Ψ then Γ � Δ � Θ �|= Π � Σ � Ψ .

The completeness proof proceeds in the standard fashion via canonical models
(see Definition 13) constructed by saturation of unprovable end-sequents. Con-
sistent saturation in all scopes Γ , Δ, Θ, Π, Σ and Ψ only involves subformulas
(counting ⊥ as a subformula) of the original sequent. The canonical model does
not require maximal saturation or depends on the cut rule to achieve complete-
ness of canonical states. Hence, the cut rule is admissible in CKD. Moreover,
since all rules of CKD (not using cut) have the subformula property, it follows
that CKD has the Finite Model Property. The Completeness Theorem 7 for our
finite axiomatisation (Gentzen or Hilbert system) implies decidability. Therefore,
we have the following theorem.

Theorem 8. The theory CKD has the Finite Model Property, is cut-free and
decidable.

4 Conclusion

We have introduced a logic CKD, which combines the modalities ◇,◻,�,⊟ with
IPL. CKD is constructive since it has the Disjunction Property, and it is a con-
servative extension of the logics CK [25], N [11] and HK◻ [6]. Technically, this is
a clear contribution, since many extensions of N are not constructive, and com-
bining the modalities ◇,◻,�,⊟ with IPL can easily lead to loss of constructivity.
But, we would add, this is also a contribution on another front: by combining
the modalities ◇,◻,�,⊟ with IPL we have constructed a logic in which all parts
of the Došen square are included. Moreover, Došen’s logics HK⊗ for ⊗∈{◇,�,⊟}
are axiomatic extensions of CKD.

The proof theory of CKD has been given in the form of a Hilbert calculus
HCKD and a sequent calculus GCKD, and a constructive (bidirectional) transla-
tion between both proof systems is established. The soundness and complete-
ness of HCKD and GCKD is proven, relative to a semantics based on C-frames
and C-models. The structural complexity of GCKD sequents arises from the aim
to enforce the subformula property (analyticity) and to enable a Gentzen-style
separation between left and right introduction rules for each operator (orthogo-
nality). Finally, as a corollary of Gentzen completeness, it follows that the theory
of CKD has the finite model property, is cut-free and decidable.

GCKD is the first sequent calculus that combines all four modalities ⊗ ∈
{◻,◇,⊟,�} preserving the disjunction property of intuitionistic logic. It is
instructive to look at special fragments: In the modal-free fragment IPL, i.e.,
without the rules ⊗L, ⊗R for ⊗ ∈ {◻,◇,⊟,�}, all scope sets except Γ and Π
may be assumed empty. Hence, the dispatch rules cpLt, cpRt become obso-
lete and GCKD reduces to the rules {Ax ,⊥L,⊤R,∧L,∧R, ∨L,∨R,→L,→R}
corresponding to Dragalin’s sequent calculus for IPL. In the ◻-fragment of
GCKD (i.e., IPL plus ◻), the modal rules ◻L, ◻R generate only the positive
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signs Θ+ and negative signs Ψ− while Δ =Σ = ∅. Hence, from the modal dis-
patch only cpR− remains. The resulting sequents Γ � ∅ � Θ+ 
 Π � ∅ � Ψ− cor-
respond to an intuitionistic version of the 4-ary sequents Γ ⇒Ψ−

Θ+ Π of Blamey
and Humberstone’s logic4 K4 [5], called H−ask by [30]. These K4 sequents
are translatable as formulas (

∧
Γ ∧

∧
◻Θ+) → (

∨
Π ∨

∨
◻Ψ−) (see [30] and

also Definition 10). The constructive nature of CKD appears in the fact that
the right introduction rules ◇R and ⊟R are not obviously (locally) invert-
ible, due to the restriction of the scopes in their premises. In classical logic,
where ⊑ is the identity relation and there is no difference between positive
and negative signs in the sequent’s scope, the rule ◇R could be replaced by
the sound rule Γ � Δ � Θ 
 Π � D,Σ � Ψ ⇒ Γ � Δ � Θ 
 ◇D,Π � Σ � Ψ , which
is invertible. Similarly, the rule ⊟R could be relaxed as the invertible rule
Γ � Δ � D,Θ 
 Π � Σ � Ψ ⇒ Γ � Δ � Θ 
 ⊟D,Π � Σ � Ψ . In such a classical col-
lapse, GCKD might be seen as a 6-ary multi-sequent calculus for the modalities
⊗ ∈ {◻,◇,⊟,�} in the spirit of Blamey and Humberstone.

Two novel features of the semantics for CKD deserve to be highlighted for
those unfamiliar with the literature on constructive logic: C-frames admit fallible
states, and C-models adopt doubly-quantified truth conditions for modal oper-
ators, these latter explaining why ◇ does not distribute over disjunction, just
like in CK [20,25,33]. We note that, fallible states appear to be relevant also in
N. Došen [11] (see also [28,36]) proves completeness of N on HK�-frames in the
language LN which does not contain ⊥. In the proof, however, canonical states
with inconsistent theories must be permitted. As a result, the standard model
theory via HK�-frames is no longer adequate in the extended language LN∪{⊥},
since it would force the axiom �⊥, which is not part of N. This problem does
not re-occur in CKD since the definition of C-models permits fallible states to
reject �⊥. Hence, in CKD the fusion of N and full IPL can be studied.

There are various other logics in the vicinity of CKD which can be studied,
too. For example, the theory of C-frames in which R is a transitive subrelation
of ≤ that is reflexive on infallible states (if s � ∈F then s R s) generates Propo-
sitional Lax Logic PLL [20] also known as Computational Logic CL [4]. Both
negative modalities �A and ⊟A collapse in this case, and become semantically
equivalent to intuitionistic negation ∼A, whilst ◻ collapses since ◻A ↔ A. Only
◇ remains independent, yielding the (only) monadic modal operator ◯ of Lax
Logic, axiomatised by the single axiom (A → ◯B) ↔ (◯A → ◯B), and the
axiom ∼ ◯ ⊥ if additionally R is a subrelation of ⊑.

Other logics arise from CKD when the combined relation ⊑;R is functional. C-
frames in which ⊑;R is functional collapse �A and ⊟A to a form of negation ¬A,
known as Routley negation in the literature on FDE [17–19]. Routley negation
is weaker than intuitionistic negation ∼A in that it satisfies contraposition and
DeMorgan laws while permitting gaps and gluts. In C-frames in which ⊑;R is
functional the theories N� and N�

i of Routley negation [27] can be developed.

4 Blamey and Humberstone also use sets as scopes as we do, avoiding structural rules
of duplication and permutation. However, [5] use an explicit weakening rule, which
is built into the rules of GCKD. Our dispatch rule cpR− is named Switch in [5].
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Specifically, if ⊑;R is weakly functional5 then we obtain the theory called N′ [28]
that extends IPL by axioms [27]

(N1) : ¬(A∧B) → (¬A∨¬B) (N2) : (¬A∧¬B) → ¬(A∨B) (N3) : ¬⊤→ ⊥
with derivation rules of Modus Ponens and Contraposition (“from A → B
infer ¬B → ¬A”). If we further assume that frames are infallible, the relation
⊑;R becomes functional, and we arrive at Heyting-Ockham logic N� [7,27,28]
(extended by quantifiers in [36]) that extends N′ by the axiom ¬⊥. Note that
CKD on functional frames also collapses the positive modalities ◻A ↔ ◇A into
a single modality ◻ that preserves the properties of ◻. This naturally generates
an extension of N� with modality ◻ in a coherent theory that appears not to
have been considered in the literature.

There are a number of open problems which could be considered in the future.
The Correspondence Theory for CKD could be explored and a sequent calculus
provided for extensions of CKD, such as N� and N�

i in language {◻,◇,¬} where
¬ collapses both � and ⊟ into a single modality ¬. Following [36], the addition
of quantifiers to CKD could be investigated. On the proof-theoretic front, means
for termination control (such as invertibility of rules, duplication elimination,
blocking conditions) of the sequent calculus GCKD could be investigated, and the
algorithmic complexity of the theory CKD determined. Since CKD is construc-
tive, the question naturally arises of what lambda calculus is related to CKD via
the Curry Howard isomorphism, and if there exists a natural deduction calcu-
lus for CKD. Recent work by [1] provides a novel semantics for proofs in CK,
and could form the basis of constructing a semantics of proofs in CKD including
negative modalities. Finally, it would be interesting to investigate if the neigh-
bourhood semantics for CK and other non-normal extensions proposed by [8]
could be used to interpret the negative modalities of CKD.
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