
Anupam Das
Sara Negri (Eds.)

 123

LN
AI

 1
28

42

30th International Conference, TABLEAUX 2021
Birmingham, UK, September 6–9, 2021
Proceedings

Automated Reasoning
with Analytic Tableaux
and Related Methods

Lecture Notes in Artificial Intelligence 12842

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Anupam Das • Sara Negri (Eds.)

Automated Reasoning
with Analytic Tableaux
and Related Methods
30th International Conference, TABLEAUX 2021
Birmingham, UK, September 6–9, 2021
Proceedings

123

Editors
Anupam Das
University of Birmingham
Birmingham, UK

Sara Negri
University of Genoa
Genoa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-86058-5 ISBN 978-3-030-86059-2 (eBook)
https://doi.org/10.1007/978-3-030-86059-2

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-86059-2

Preface

TABLEAUX, the International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, is a conference series that started in 1992 and has been
held every year since then. The series brings together researchers interested in all
aspects - theoretical foundations, implementation techniques, systems development,
and applications - of the mechanization of reasoning with tableaux and related meth-
ods. Since 1995 proceedings of TABLEAUX have been published in Springer’s
LNCS/LNAI series.

TABLEAUX 2021 was the 30th edition of the conference series and was hosted by
the University of Birmingham, UK, during September 6–9, 2021. It was co-located
with the 13th International Symposium on Frontiers of Combining Systems (FroCoS
2021). Due to continued uncertainty caused by the COVID-19 pandemic, the confer-
ence was primarily held virtually, with facilities for hybrid participation available at the
School of Computer Science, University of Birmingham.

The Program Committee received a total of 46 submissions, including 43 research
papers and 3 system descriptions. Each submission received at least four peer reviews
in a single-blind process and was evaluated during Program Committee discussions.
Eventually 23 research papers and all 3 system descriptions were accepted for pre-
sentation at the conference.

This volume includes all the accepted research papers and system descriptions of
TABLEAUX 2021. These include papers on proof theory, with deductive mechanisms
ranging from tableaux, sequent calculi and variations thereof, and cyclic proofs. Their
objects of inquiry are modal logics, including provability logic and tense logic, con-
ditional logics, fuzzy logic, weak Kleene logic, and the study of properties such as cut
elimination, termination of proof search, and the finite model property. Attention is
paid to the development of proof systems from semantics, such as non-deterministic
matrices and game-theoretic semantics. Several papers are concerned with tools for
automated theorem proving for classical, intuitionistic, modal, and conditional logics,
for the formalization of proofs and SAT solvers. This year’s edition, particularly, saw
an increase of research at the intersection of theorem proving and machine learning.

This volume also includes abstracts of invited talks presented at TABLEAUX 2021.
The following five invited speakers were chosen by the Program Committee:

– Michael Benedikt (University of Oxford, UK). Joint with FroCoS 2021.
– Orna Kupferman (Hebrew University, Israel).
– Revantha Ramanayake (University of Gröningen, The Netherlands).
– Greg Restall (University of Melbourne, Australia, and University of St Andrews,

UK).
– Renate Schmidt (University of Manchester, UK). Joint with FroCoS 2021.

Finally, the Program Committee selected winners of the following awards:

– Best Paper. Stepan Kuznetsov. Complexity of a fragment of infinitary action logic
with exponential via non-well-founded proofs.

– Best Paper by Junior Researcher(s). Jan Rooduijn. Cyclic hypersequent calculi
for some modal logics with the master modality.

The two awards were presented at the conference. Each award was generously
financially supported by Springer.

We would like to thank all the people who contributed to making TABLEAUX
2021 a success. We thank the Program Committee and all additional reviewers for the
time, professional effort, and expertise they invested to deliver the high scientific
standards of the conference and these proceedings. We thank the invited speakers for
their inspiring talks and the Steering Committee for their helpful advice. Finally, we
thank all the authors for their excellent contributions.

We would like to thank Springer for sponsoring the conference and publishing these
proceedings, UK Research and Innovation for absorbing additional organizational costs
through funded projects1, and the University of Birmingham for providing online and
hybrid facilities. Thanks to them, registration to TABLEAUX 2021 was free of charge.

July 2021 Anupam Das
Sara Negri

1 Structure vs. Invariants in Proofs, project reference MR/S035540/1.

vi Preface

Organization

Program Committee Chairs

Anupam Das University of Birmingham, UK
Sara Negri University of Genoa, Italy

Steering Committee

Agata Ciabattoni Technical University Vienna, Austria
Cláudia Nalon University of Brasília, Brazil
Hans de Nivelle Nazarbayev University, Kazakhstan
Jens Otten University of Oslo, Norway
Elaine Pimentel Federal University of Rio Grande do Norte, Brazil
Andrei Popescu University of Sheffield, UK
Anupam Das University of Birmingham, UK
Dirk Pattinson Australian National University, Australia

Program Committee

Bahareh Afshari University of Amsterdam, The Netherlands,
and University of Gothenburg, Sweden

Carlos Areces Universidad Nacional de Córdoba, Argentina
Arnon Avron Tel-Aviv University, Israel
Nick Bezhanishvili University of Amsterdam, Netherlands
Patrick Blackburn University of Roskilde, Denmark
Serenella Cerrito Université d’Evry Val d’Essonne, France
Kaustuv Chaudhuri Inria, France
Liron Cohen Ben-Gurion University, Israel
Anupam Das University of Birmingham, UK
Stéphane Demri CNRS, France
Hans de Nivelle Nazarbayev University, Kazakhstan
Valeria de Paiva Topos Institute Berkeley, USA
Clare Dixon University of Manchester, UK
Christian Fermüller TU Wien, Austria
Didier Galmiche Université de Lorraine, France
Silvio Ghilardi Università degli Studi di Milano, Italy
Rajeev Goré Australian National University, Australia
Andrzej Indrzejczak University of Łódź, Poland
Hidenori Kurokawa Kanazawa University, Japan
Stepan Kuznetsov Russian Academy of Sciences, Russia
Björn Lellmann SBA Research, Austria
Stéphane Graham-Lengrand SRI International, USA

George Metcalfe University of Bern, Switzerland
Neil Murray University at Albany, USA
Cláudia Nalon University of Brasília, Brazil
Sara Negri University of Genoa, Italy
Nicola Olivetti Aix-Marseille University, France
Eugenio Orlandelli University of Bologna, Italy
Jens Otten University of Oslo, Norway
Alessandra Palmigiano Vrije Universiteit Amsterdam, The Netherlands
Dirk Pattinson Australian National University, Australia
Frank Pfenning Carnegie Mellon University, USA
Elaine Pimentel Federal University of Rio Grande do Norte, Brazil
Andrei Popescu University of Sheffield, UK
Gian Luca Pozzato University of Turin, Italy
Giselle Reis Carnegie Mellon University in Qatar, Qatar
Reuben Rowe Royal Holloway, University of London, UK
José Espírito Santo University of Minho, Portugal
Lutz Straßburger Inria, France
Josef Urban Czech Technical University in Prague, Czech Republic

Additional Reviewers

Matteo Acclavio
Patrick Baillot
Paolo Baldi
Valentin Cassano
Abhishek De
Tiziano Dalmonte
Jeremy Dawson
Santiago Escobar
Michael Färber
Raul Fervari
Robert Freiman
Sabine Frittella
Nathan Fulton
Francesco Genco
Guido Gherardi
Iris van der Giessen
Marianna Girlando
Giuseppe Greco
Edward Hermann Haeusler
Johannes Hafner
Natthapong Jungteerapanich
Martin Lange
Serafina Lapenta
Graham Leigh
Tim Lyon

Paolo Maffezioli
Joao Marcos
Johannes Marti
Andrea Mazzullo
Paulo Oliva
Francesco Paoli
Alexandra Pavlova
Edi Pavlovic
Adam Pease
Luís Pinto
Damien Pous
Michael Rawson
Giles Reger
Alexis Saurin
Igor Sedlar
Ian Shillito
Thomas Studer
Vasily Shangin
Apostolos Tzimoulis
Marco Volpe
Uwe Waldmann
Richard Zach
Anna Zamansky
Michał Zawidzki
Yoni Zohar

viii Organization

Abstracts of Invited Talks

The Strange Career of Interpolation
and Definability

Michael Benedikt

University of Oxford, UK
michael.benedikt@gmail.com

Beth Definability, Craig Interpolation, and their variants have long been seen as an
important topic in commputational logic, telling us something about logical simplifi-
cation. But the rationale for their significance has varied over time, and it is not even
clear whether they should be best seen as a property of a logic or of a proof system. In
this talk I will look back at the somewhat twisty evolution of the topic, highlighting
some issues that have been underexplored. I'll also present some current work (joint
with Pierre Pradic) aimed at filling some of the gaps. No background on interpolation
or definability will be assumed in the talk.

Rational Synthesis

Orna Kupferman

Hebrew University, Israel
orna@cs.huji.ac.il

In the traditional approach to synthesis, the system has to satisfy its specification in all
environments. Thus, the components that compose the environment can be seen as if
their only objective is to conspire to fail the system. In real life, the components that
compose the environment are often entities that have objectives of their own. The
approach taken in the field of game theory is to assume that interacting agents are
rational, and thus act to achieve their own objectives. Adding rationality to the syn-
thesis setting softens the universal quantification on the environments, and motivates
the study of rational synthesis. There, we seek a system that satisfies its specification in
all rational environments. The above can be formalized in two different ways. The first
is cooperative rational synthesis, where the desired output is a stable profile of
strategies to all components in which the objective of the system is satisfied. The
second is non-cooperative rational synthesis, where the desired output is a strategy for
the system such that its objective is satisfied in every stable profile where she follows
this strategy.

The talk introduces the two types of rational synthesis and surveys their
game-theoretical aspects. In particular, we discuss quantitative rational synthesis and
relate cooperative and non-cooperative rational synthesis with the two notions of
equilibrium inefficiency in game theory, namely price of stability and price of anarchy.

The talk is based on joint work with Shaull Almagor, Dana Fisman, Yoad Lustig,
Giuseppe Perelli, and Moshe Y. Vardi.

The Barter Trade in Structure and Cuts

Revantha Ramanayake

University of Gröningen, The Netherlands
d.r.s.ramanayake@rug.nl

Proof-based methods for reasoning about non-classical logics often rely on the sub-
formula property and its consequent restriction on the space of proofs. Sequent calculi
with the subformula property are a prominent success story, utilised for establishing
consistency, decidability, complexity bounds, interpolation, automated reasoning and
more. The bottleneck is the difficulty (or impossibility) finding such sequent calculi for
the many non-classical logics of interest.

The response in the structural proof theory community since the 1960s was the
formulation of an astonishing breadth of new and exotic proof formalisms: hyperse-
quents, nested sequents, labelled sequents, display calculi are just a few examples. Each
of these formalisms is obtained by extending the structural language of the sequent
calculus in a way that enables the subformula property for more logics. This program
has been very successful in terms of obtaining proof calculi with the subformula
property for many logics but the yield has been modest in terms of new meta-logical
results.

I will examine the trade that is the gain of cut-elimination (and consequent sub-
formula property) at the cost of introducing new structure. Illustrating using hyperse-
quent calculi, I will introduce a principled transformation that eliminates structure in
favour of highly restricted cuts–parametrised by the end formula–in the sequent cal-
culus and discuss what this means, for assessing the strength of the subformula
property in an exotic formalism, and as a common framework for automated reasoning
for non-classical logics. A concept of cut-restriction emerges that has cut-elimination as
a special case.

Comparing Rules for Identity in Sequent
Systems and Natural Deduction

Greg Restall

University of Melbourne, Australia, and University of St Andrews, UK
greg@consequently.org

It is straightforward to treat the identity predicate in models for first order predicate
logic. Truth conditions for identity formulas are given by a natural clause: a formula
s = t is true (or satisfied by a variable assignment) in a model if and only if the
denotations of the terms s and t (perhaps relative to the given variable assignment) are
the same.

On the other hand, finding appropriate rules for identity in a sequent system or in a
natural deduction proof setting leaves a number of questions open. Identity could be
treated with introduction and elimination rules in natural deduction, or left and right
rules, in a sequent calculus, as is standard for familiar logical concepts. On the other
hand, since identity is a predicate and identity formulas are atomic, it is also very
natural to treat identity by way of axiomatic sequents, rather than by inference rules.
I will describe and discuss this phenomenon, and explore the relationships between
different formulations of rules for the identity predicate, and attempt to account for
some of the distinctive virtues of each different formulation.

Forgetting and Subontology Generation
for the Medical Ontology SNOMED CT

Renate A. Schmidt

University of Manchester, UK
Renate.Schmidt@manchester.ac.uk

In this talk I discuss efforts in developing systems to provide automated support for
content extraction for the medical ontology SNOMED CT. SNOMED CT is a large
knowledge base of standardised, precise definitions of clinical terms and medical codes
for use in electronic health records to allow consistent data capture at the point of care
and meaningful processing of data across health care sectors. Since SNOMED CT is so
large it has long been an aim to have the capability to compute smaller extracts of the
ontology that are self-contained but restricted to a narrow focus, for example, kidney
diseases, dentistry or vocabulary relevant for nursing. Such subontologies would make
it easier to reuse and share content, to assist with new ontology creation, quality
assurance, ontology update and debugging. In addition, reasoning tasks such as
querying and classification take less time to execute over a smaller extract than over the
original ontology.

The aim of our research is to compute extracts that are semantically complete in
that they faithfully capture the knowledge in an ontology about a user-specified focus
signature. This is a challenging problem, because the knowledge of an ontology is not
only given by the explicitly stated axioms in the ontology but also all implicit
knowledge that can be inferred from these axioms. Forgetting creates a compact rep-
resentation of the implicit knowledge of an ontology over specified focus concepts and
relations, by performing inferences on the non-focus (forgetting) signature. A number
of PhD projects in our group have developed a series of forgetting tools and adaptations
for use in applications such as logical difference computation and abduction in the
context of description logic-based ontologies. These tools provided the basis for a
series of industry projects in which we applied and further developed these for use
cases of the medical ontology SNOMED CT. A workflow of different modularisation
and forgetting methods was devised and thoroughly evaluated. With this workflow we
managed to significantly improve the performance and success rates of our tools and
provide a feasible way to compute faithful extracts of SNOMED CT.

Building on these experiences, in a current joint project with SNOMED Intl we
have developed a new bespoke approach and prototype for computing subontologies of
SNOMED CT. This approach is definition driven and returns concise encodings of
descriptions of the specified focus concepts in a normal form according to modelling
guidelines of SNOMED Intl. These can be efficiently computed and are significantly
smaller than both forgetting solutions and subontologies computed by modularisation
methods.

The talk will give an overview of this research spanning several years, focussing on
key ideas, findings, experiences and practical challenges encountered.

https://orcid.org/0000-0002-6673-3333

Contents

Tableau Calculi

Tableaux and Restricted Quantification for Systems Related
to Weak Kleene Logic . 3

Thomas Macaulay Ferguson

Constraint Tableaux for Two-Dimensional Fuzzy Logics 20
Marta Bílková, Sabine Frittella, and Daniil Kozhemiachenko

Analytic Tableaux for Non-deterministic Semantics 38
Lukas Grätz

Tableaux for Free Logics with Descriptions . 56
Andrzej Indrzejczak and Michał Zawidzki

CEGAR-Tableaux: Improved Modal Satisfiability via Modal
Clause-Learning and SAT . 74

Rajeev Goré and Cormac Kikkert

Sequent Calculi

Proof-Theory and Semantics for a Theory of Definite Descriptions 95
Nils Kürbis

Basing Sequent Systems on Exclusive-Or. 112
Arnon Avron

Proof Search on Bilateralist Judgments over Non-deterministic Semantics . . . 129
Vitor Greati, Sérgio Marcelino, and João Marcos

From Input/Output Logics to Conditional Logics via Sequents –
with Provers . 147

Björn Lellmann

Theorem Proving

Towards Finding Longer Proofs . 167
Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk,
and Josef Urban

lazyCoP: Lazy Paramodulation Meets Neurally Guided Search 187
Michael Rawson and Giles Reger

AC Simplifications and Closure Redundancies
in the Superposition Calculus . 200

André Duarte and Konstantin Korovin

The Role of Entropy in Guiding a Connection Prover 218
Zsolt Zombori, Josef Urban, and Miroslav Olšák

The nanoCoP 2.0 Connection Provers for Classical, Intuitionistic
and Modal Logics . 236

Jens Otten

Eliminating Models During Model Elimination . 250
Michael Rawson and Giles Reger

Learning Theorem Proving Components . 266
Karel Chvalovský, Jan Jakubův, Miroslav Olšák, and Josef Urban

Formalized Proofs

A Formally Verified Cut-Elimination Procedure for Linear Nested Sequents
for Tense Logic . 281

Caitlin D’Abrera, Jeremy Dawson, and Rajeev Goré

Cut-Elimination for Provability Logic by Terminating Proof-Search:
Formalised and Deconstructed Using Coq . 299

Rajeev Goré, Revantha Ramanayake, and Ian Shillito

Non-Wellfounded Proofs

Complexity of a Fragment of Infinitary Action Logic with Exponential
via Non-well-founded Proofs . 317

Stepan L. Kuznetsov

Uniform Interpolation from Cyclic Proofs: The Case of Modal
Mu-Calculus. 335

Bahareh Afshari, Graham E. Leigh, and Guillermo Menéndez Turata

Cyclic Hypersequent Calculi for Some Modal Logics with the
Master Modality . 354

Jan Rooduijn

A Focus System for the Alternation-Free l-Calculus 371
Johannes Marti and Yde Venema

xviii Contents

Intuitionistic Modal Logics

Terminating Calculi and Countermodels for Constructive Modal Logics. 391
Tiziano Dalmonte, Charles Grellois, and Nicola Olivetti

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement . . . 409
Tim S. Lyon

Game Semantics for Constructive Modal Logic. 428
Matteo Acclavio, Davide Catta, and Lutz Straßburger

The Došen Square Under Construction: A Tale of Four Modalities 446
Michael Mendler, Stephan Scheele, and Luke Burke

Author Index . 467

Contents xix

Tableau Calculi

Tableaux and Restricted Quantification
for Systems Related to Weak Kleene

Logic

Thomas Macaulay Ferguson1,2(B)

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
2 Arché Research Centre, University of St. Andrews, St. Andrews, Scotland

tferguson@gradcenter.cuny.edu

Abstract. Logic-driven applications like knowledge representation typi-
cally operate with the tools of classical, first-order logic. In these applica-
tions’ standard, extensional domains—e.g., knowledge bases represent-
ing product features—these deductive tools are suitable. However, there
remain many domains for which these tools seem overly strong. If, e.g.,
an artificial conversational agent maintains a knowledge base cataloging
e.g. an interlocutor’s beliefs or goals, it is unlikely that the model’s con-
tents are closed under Boolean logic. There exist propositional deductive
systems whose notions of validity and equivalence more closely align
with legitimate inferences over such intentional contexts. E.g., philoso-
phers like Kit Fine and Stephen Yablo have made compelling cases that
Richard Angell’s AC characterizes synonymy, under which such inten-
tional contexts should be closed. In this paper, we adapt several of
these systems by introducing sufficient quantification theory to sup-
port e.g. subsumption reasoning. Given the close relationship between
these systems and weak Kleene logic, we initially define a novel theory of
restricted quantifiers for weak Kleene logic and describe a sound and com-
plete tableau proof theory. We extend the account of quantification and
tableau calculi to two related systems: Angell’s AC and Charles Daniel’s
S�
fde, providing new tools for modeling and reasoning about agents’ men-

tal states.

Keywords: Restricted quantifiers · Weak Kleene logic · Analytic
containment

1 Introduction

Logic-oriented fields incorporating semantics and reasoning tend to rely on a
fragment of the classical, first-order predicate calculus. E.g., although descrip-
tion logics like ALC and SROIQ differ with respect to expressivity, they rest
on the same Boolean semantic foundations. In most extensional contexts—e.g.,
cases in which a knowledge base is interpreted as a collection of truths about
a domain—inferences drawn on this foundation are appropriate. But knowledge
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-86059-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_1&domain=pdf
http://orcid.org/0000-0002-6494-1833
https://doi.org/10.1007/978-3-030-86059-2_1

4 T. M. Ferguson

bases representing intentional contexts may not be closed under classical valid-
ity; that ϕ is an agent’s belief does not entail that every classical consequence
of ϕ is counted as a belief as well.

Thus, semantic representations of such contexts would benefit from having
access to weaker deductive bases that more closely align with the closure condi-
tions for intentional contexts. One candidate is Richard Angell’s logic of analytic
containment AC of [1]. Philosophers like Fabrice Correia (in [5]), Kit Fine (in
[9]), and Stephen Yablo (in [18]) have provided sustained arguments that AC
characterizes a notion of fine-grained synonymy. A description logic based on
AC would close an intentional context under synonymy, which is a plausible clo-
sure condition. Tools like description logics require at least enough quantification
theory to describe class relations like subsumption, but convincing quantification
theory has been lacking for these systems. It is our goal to open up new deduc-
tive bases for such applications by introducing sufficient quantification theory to
support description logics, providing semantics and tableaux for several plausible
deductive systems. The results of [7] show that AC and a closely related system
of S�

fde bear a very close relationship with weak Kleene logic wK. A theory of
restricted quantification for wK could therefore be directly applied to provide
these systems with the desired quantification; likewise, a tableau calculus for wK
will form a foundation for tableau calculi for AC and S�

fde. (As we will describe,
the matter of quantification in wK is itself a nontrivial problem, so such a theory
is independently interesting.)

We will proceed by first examining wK, looking at some of the difficulties for
quantification and providing semantics and tableaux for a reasonable theory of
restricted quantification. We will conclude by showing how this work on wK can
be leveraged to induce similar model theory and tableau calculi for AC and S�

fde.

2 Weak Kleene Logic

In [14], Kleene introduces three-valued matrices for connectives to account for
cases in which a recursive procedure calculating truth values fails to converge:

In this section, we shall introduce new senses of the propositional connec-
tives, in which, e.g., Q(x) ∨ R(x) will be defined in some cases when Q(x)
or R(x) is undefined. It will be convenient to use truth tables, with three
“truth values” t (‘true’), f (‘false’) and e (‘undefined’), in describing the
senses which the connectives shall now have [14, p. 332].

Kleene considers that for each predicate there is a “range of definition” over
which it is then defined. For example, a predicate Q(x) understood as a function
with range {t, f} may not converge for every argument. This is in line with the
Halldén-Bochvar interpretation (in [11] or [2]), in which a predicate has a range
of objects about which it may be meaningfully applied. A natural interpretation
of these ranges is that ϕ(c) evaluates to e when an agent lacks competence with
the concept ϕ(x) and is unable to determine a truth value.

Tableaux for Systems Related to Weak Kleene Logic 5

This interpretation accords with thinking about reasoning about beliefs; if
an agent is not familiar with the use of a predicate—or does not have a clear
grasp of how a predicate may apply to certain objects—an atomic formula may
be viewed as not truth-evaluable.

2.1 The Propositional Case

We will first review the propositional basis of weak Kleene logic before embel-
lishing with additional expressivity. For our propositional language, let At be a
collection of propositional atomic formulas {p0, ..., q0, ...} and let L be the lan-
guage standardly defined by closing At under the unary ∼ and binary ∧ and
∨.

To provide semantics, we first describe the weak Kleene truth tables over the
set of truth values V3 = {t, e, f}:

Definition 1. The weak Kleene truth tables are:

∼ ∧ t e f ∨ t e f

t f t t e f t t e t

e e e e e e e e e e

f t f f e f f t e f

The tables in Definition 1 induce the weak Kleene truth functions. For conve-
nience, denote a connective’s corresponding truth function by decorating it with
a dot, e.g., we write ∼̇t or I(ϕ) ∧̇ I(ξ).

Definition 2. A propositional weak Kleene interpretation I is a function I :
L → V3 respecting the conditions that:

– I(∼ϕ) = ∼̇(I(ϕ))
– I(ϕ ∧ ψ) = I(ϕ) ∧̇ I(ψ)
– I(ϕ ∨ ψ) = I(ϕ) ∨̇ I(ψ)

Now, let us explore an account of restricted quantification.

2.2 Adding Restricted Quantifiers

Many applications for logical systems in semantics, artificial intelligence, or
computer science presuppose some degree of quantification theory. For exam-
ple, a description logic like SROIQ expresses the subsumption of one concept
by another by making a universally quantified statement that every individual
falling under once concept falls under the other. We thus have an interest in
providing a quantification theory for the systems we are studying.

6 T. M. Ferguson

In practice, however, such applications are keenly concerned with decidabil-
ity and computational complexity, meaning that the requirement is not for full
first-order quantification, but rather the limited resources provided by restricted
quantifiers. With an eye to allowing e.g. the representation of concept subsump-
tion or existential quantification of roles, we then wish to consider a language
of the form: Given a set C of individual constants and a set R of relation sym-
bols, we define a language L′ in the standard way, also introducing for any open
formula ϕ(x) and ψ(x) the formulae [∃xϕ(x)]ψ(x) (“some thing that is a ϕ is a
ψ”) and [∀xϕ(x)]ψ(x) (“all ϕs are ψs”) for restricted existential and universal
quantification, respectively.

Intuitions concerning the truth conditions of these sentences are fairly clear.
[∃xϕ(x)]ψ(x) should be evaluated as t if there is a c ∈ C such that ϕ(c) and
ψ(c) are t; [∀xϕ(x)]ψ(x) should be t if there is a guarantee that any time ϕ(c)
is true, ψ(c) will be true. If we follow typical interpretations of weak Kleene-like
many-valued logics—e.g., that of Halldén and Bochvar—we also allow for cases
in which a quantified sentence receives the value e. The line we will take on this
is that a sentence like [∃xϕ(x)]ψ(x) is treated as not truth-evaluable precisely
in case there is no point of comparison between ϕ(x) and ψ(x), that is, there is
no individual for which both properties can be meaningfully considered. Absent
such an individual, it is not clear how the necessary comparison could be carried
out.

To formalize these desiderata about restricted quantification, let us consider a
precise description of the expectations. Given the foregoing discussion, we would
require of an interpretation I that it observes:

I([∃xϕ(x)]ψ(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t if for some c, I(ϕ(c)) = t & I(ψ(c)) = t

e if for all c, either I(ϕ(c)) = e or I(ψ(c)) = e

f if

{
for all c, if I(ϕ(c)) = t then I(ψ(c)) 	= t and
for some c, I(ϕ(c)) 	= e & I(ψ(c)) 	= e

I([∀xϕ(x)]ψ(x)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t if

{
for all c, if I(ϕ(c)) = t then I(ψ(c)) = t and
for some c, I(ϕ(c)) 	= e & I(ψ(c)) 	= e

e if for all c, either I(ϕ(c)) = e or I(ψ(c)) = e

f if

{
for some c, I(ϕ(c)) = t & I(ψ(c)) 	= t and
for some c′, I(ϕ(c′)) 	= e & I(ψ(c′)) 	= e

To make definitions a bit more elegant, we generalize Carnielli’s account of dis-
tribution quantifiers introduced in [4], where a quantifier is interpreted as a
function mapping non-empty sets of truth values to truth values.

Au fond, evaluating restricted quantifiers involves considering for each c the
truth values assigned to I(ϕ(c)) and I(ψ(c)); the distribution of these pairs of
truth values, as it turns out, is sufficient to reproduce the above reasoning. This
observation permits us to interpret a restricted quantifier as a function mapping
sets of pairs of truth values to truth values.

Tableaux for Systems Related to Weak Kleene Logic 7

Definition 3. The restricted Kleene quantifiers are functions ∃̇ and ∀̇ mapping
a nonempty sets X ⊆ V2

3 to truth values from V3 as follows:

∃̇(X) =

⎧
⎪⎨

⎪⎩

t if 〈t, t〉 ∈ X

e if for all 〈u, v〉 ∈ X, either u = e or v = e

f if 〈t, t〉 /∈ X & for some 〈u, v〉 ∈ X, u 	= e and v 	= e

∀̇(X) =

⎧
⎪⎨

⎪⎩

t if 〈t, f〉, 〈t, e〉 /∈ X & for some 〈u, v〉 ∈ X, u 	= e and v 	= e

e if for all 〈u, v〉 ∈ X, either u = e or v = e

f if {〈t, f〉, 〈t, e〉} ∩ X 	= ∅ & for some 〈u, v〉 ∈ X, u 	= e and v 	= e

Definition 4. A predicate weak Kleene interpretation I is a pair 〈CI ,RI〉
where CI is a domain of individuals and RI is a collection of functions where
I assigns:

– every constant c an individual cI ∈ CI

– every n-ary predicate R a function RI : (CI)n → V3

In order to simplify matters, it is assumed that every element of CI is cI for
some constant c.

Definition 5. A predicate weak Kleene interpretation induces a map from L′ to
V3 defined as in Definition 2 with the exception that for atomic formulae:

– I(R(c0, ..., cn−1)) = RI(cI
0 , ..., cI

n−1)

and quantified formulae are evaluated as follows:

– I([∃xϕ(x)]ψ(x)) = ∃̇({〈I(ϕ(c)), I(ψ(c))〉 | c ∈ C})
– I([∀xϕ(x)]ψ(x)) = ∀̇({〈I(ϕ(c)), I(ψ(c))〉 | c ∈ C})

We note that although the above quantifiers align with reasonable intuitions
about restricted quantifiers, DeMorgan’s laws fail. Despite this, the quantifiers
will satisfy DeMorgan’s laws for S�

fde and AC, as we will see in subsequent sec-
tions.

Validity is then described naturally as:

Definition 6. Validity in weak Kleene logic is defined as truth preservation, i.e.

Γ �wK ϕ if for all wK interpretations such that I[Γ] = {t}, I(ϕ) = t

where I[Γ] = {I(ϕ) | ϕ ∈ Γ}.

2.3 Brief Excursus on Quantification

We have mentioned that the emphasis on restricted quantifiers here is driven not
only by the suitability to applications like description logics, but also by difficul-
ties with the general theory of quantification in the weak Kleene setting. Given
our concerns, the suitability of a quantification theory stands and falls with its

8 T. M. Ferguson

treatment of sentences of the form [∀xϕ(x)]ψ(x) and [∃xϕ(x)]ψ(x), with stan-
dard (and intuitive) translations as ∀x(ϕ(x) ⊃ ψ(x)) (where ⊃ is the defined
material conditional) and ∃x(ϕ(x) ∧ ψ(x)), respectively. A special desideratum
of full quantification theory on the weak Kleene basis, then, is the suitable inter-
pretation of sentences of these forms.

We have several candidates from the three-valued Kleene family avail-
able to extend propositional weak Kleene logic. Most obvious are the strong
Kleene and weak Kleene quantifiers, which are essentially infinitary conjunc-
tions/disjunctions. To capture the semantic features, we will describe these as
distribution quantifiers in the sense of [4], i.e., functions from sets of truth values
to truth values.

Definition 7. The strong Kleene quantifiers are defined as:

∃(X) =

⎧
⎪⎨

⎪⎩

t if t ∈ X

e if e ∈ X and t /∈ X

f if X = {f}
∀(X) =

⎧
⎪⎨

⎪⎩

t if X = {t}
e if e ∈ X and f /∈ X

f if f ∈ X

Comparing Definition 7 to the strong Kleene tables of [14] makes clear that e.g.,
strong Kleene existential quantification is essentially infinitary strong Kleene
disjunction (and mutatis mutandis for universal quantification).

By applying this analogy to weak Kleene connectives, we can define weak
Kleene quantifiers in a manner that carries over the hallmark features.1 The
weak quantifiers may be defined as follows.

Definition 8. The weak Kleene quantifiers are defined as:

∃(X) =

⎧
⎪⎨

⎪⎩

t if t ∈ X and e /∈ X

e if e ∈ X

f if X = {f}
∀(X) =

⎧
⎪⎨

⎪⎩

t if X = {t}
e if e ∈ X

f if f ∈ X and e /∈ X

Upon examination, each set of quantifiers has properties that conflict with our
intuitive understanding of the above first-order formulae, making neither account
entirely suitable for our purposes.

If we look to universally quantified statements, the strong Kleene quantifiers
seem to conflict with our intuitions. We might expect that ∀x(ϕ(x) ⊃ ψ(x))
should be considered true if it holds that whenever ϕ(c) is evaluated as t, also
ψ(c) is evaluated as t. But this is contradicted in cases in which there exists some
c′ for which either ϕ(c′) or ψ(c′) is evaluated as e. In such a case, ϕ(c′) ⊃ ψ(c′)
will be evaluated as e, and ∀x(ϕ(x) ⊃ ψ(x)) will not be evaluated as t. As an
example from the Halldén-Bochvar tradition, this is akin to saying that even
though every thing that is a dog is a mammal, the fact that “the number two is
a dog” is meaningless is sufficient to render “all dogs are mammals” meaningless.

1 Although not frequently encountered in the literature, Malinowski describes them
in [15].

Tableaux for Systems Related to Weak Kleene Logic 9

In the existentially quantified case, the weak quantifiers diverge from
expected behavior. According to the weak Kleene quantifiers, having a witness
c for which ϕ(c) and ψ(c) are true is insufficient to establish the truth of the
formula in case for some c′, ϕ(c′) is evaluated as e. To provide a simple illustra-
tion, even if we know, e.g., that both “Caesar is a skilled writer” and “Caesar is
a general” are true, the fact that “the number two is a skilled writer” is mean-
ingless propagates and renders “there exists a skilled writer who is a general”
meaningless as well.

In short, both pairs of Kleene quantifiers conflict in some way with our intu-
itions.2 There are potential alternatives to consider. In the context of strict-
tolerant interpretations of weak Kleene, [8] considers Carnielli et al.’s quantifiers
from [3], calling them “immune Kleene quantifiers” due to their being infinitary
analogues of the immune connectives of [17]. The discussion in [8] suggests that
it is plausible that the restricted quantifiers here respect the immune quantifiers.
But this is left for another time.

2.4 Tableau Calculus for Weak Kleene Logic with Restricted
Quantifiers

A tableau T is a tree with nodes that are decorated with a signed formula of the
form u : ϕ. Although our truth values appear as signs, we also incorporate two
additional signs to simplify the rules: m and n. m—understood as “meaningful”—
decorates a formula ϕ when both t : ϕ and f : ϕ are available for branching.
Likewise, n—understood as “nontrue”—decorates a formula when both f : ϕ
and e : ϕ are available.

Each node that is not a hypothesis is added to T by applying a rule to a
target node. In describing the rules, we follow [4] in using ◦ to indicate that one
or more items are to be added to the same branch and + to indicate that new
branches should be created for each formula in its scope.

Definition 9. The tableau calculus wKrQ for weak Kleene with restricted quan-
tifiers is captured by the following rules:

v : ∼ϕ

∼̇v : ϕ

m : ϕ

t : ϕ + f : ϕ

n : ϕ

f : ϕ + e : ϕ

v : ϕ ∧ ψ

+v0∧̇v1=v{v0 : ϕ ◦ v1 : ψ}
v : ϕ ∨ ψ

+v0∨̇v1=v{v0 : ϕ ◦ v1 : ψ}
t : [∃ϕ(x)]ψ(x)

t : ϕ(c) ◦ t : ψ(c)

f : [∃ϕ(x)]ψ(x)

m : ϕ(c) ◦ m : ψ(c) ◦ (n : ϕ(a) + n : ψ(a))

e : [∃ϕ(x)]ψ(x)

e : ϕ(a) + e : ψ(a)

t : [∀ϕ(x)]ψ(x)

m : ϕ(c) ◦ m : ψ(c) ◦ (n : ϕ(a) + t : ψ(a))

e : [∀ϕ(x)]ψ(x)

e : ϕ(a) + e : ψ(a)

2 One qualification is in order, namely, that the critique emphasizes the semantic
interpretations. Recent work by Andreas Fjellstad in [10] provides a very elegant
proof-theoretic analysis but explicitly declines to “engage in the discussion” of inter-
pretation.

10 T. M. Ferguson

f : [∀ϕ(x)]ψ(x)

m : ϕ(c) ◦ m : ψ(c) ◦ t : ϕ(c′) ◦ n : ψ(c′)

where v is any element of V3, c or c′ are new to a branch, and a is arbitrary.

Definition 10. A branch B of a tableau T closes if there is a sentence ϕ and
distinct v, u ∈ V3 such that both v : ϕ and u : ϕ appear on B.3

Definition 11. {ϕ0, ..., ϕn−1} �wKrQ ϕ when every branch of a tableau T with
initial nodes {t : ϕ0, ..., t : ϕn−1, n : ϕ} closes.

We now show soundness of wKrQ:

Theorem 1 (Soundness of wKrQ). If Γ �wKrQ ϕ then Γ �wK ϕ.

Proof. Inspection confirms that each rule of wKrQ exhaustively characterizes
the corresponding semantic conditions from Definitions 4 and 5. Thus, when
every branch closes in a tableau proving Γ � ϕ, this shows that no model I for
which I[Γ] = {t} and I(ϕ) 	= t is possible, i.e., Γ �wK ϕ.

For completeness, we give several definitions and lemmas:

Definition 12. Given a tableau with an open branch B, we define the branch
interpretation IB and domain CIB as follows:

– For all constants c appearing on the branch, cIB is a unique element of CIB

– For all relation symbols R and tuples c0, ..., cn−1 appearing on the branch,

RIB(cIB
0 , ..., cIB

n−1) =

{
v if v : R(c0, ..., cn−1) is on B
e otherwise

Lemma 1. For all sentences ϕ and v ∈ V3, if v : ϕ is on B, then IB(ϕ) = v.

Proof. As basis step, note that Definition 12 guarantees the property to hold of
atomic sentences. As induction hypothesis, assume that the property holds for
all subformulae of ϕ.

In case ϕ = ∼ψ, if v : ∼ψ is on B, then the appropriate rule from wKrQ
must at some point be applied on the branch, whence ∼̇v : ψ is on the branch.
By induction hypothesis, IB(ψ) = ∼̇v, whence IB(∼ψ) = v.

For binary connectives, we treat the case in which v : ψ∧ξ is on B. The rules
then guarantee values v0 and v1 such that v0 : ψ and v1 : ξ are on B. By the
induction hypothesis, then, IB(ψ) = v0 and IB(ξ) = v1. But per Definition 9, v0
and v1 are selected just in case v0 ∧̇ v1 = v, whence IB(ψ ∧ ξ) = v.

For the quantifiers, suppose that v : [∃xψ(x)]ξ(x) is on B. Then we consider
a case for each possible choice of v:
3 N.b. that the criterion for closure is that a formula appears signed with distinct truth
values and not distinct signs. E.g., m : ϕ is merely a notational device for potential
branching, so both m : ϕ and t : ϕ may harmoniously appear in an open branch.

Tableaux for Systems Related to Weak Kleene Logic 11

• If v = t, then there is a constant c for which t : ψ(c) and t : ξ(c) are on
B. By induction hypothesis, also IB(ψ(c)) = t and IB(ξ(c)) = t, whence
IB([∃xψ(x)]ξ(x)) = t.

• When v = e, for every constant c on B, either e : ψ(c) or e : ξ(c) appears on
B. By choice of CIB , for all c′, either IB(ψ(c′)) = e or IB(ξ(c′)) = e; that IB
respects ∃̇ thus guarantees that IB([∃xψ(x)]ξ(x)) = e.

• That v = f reveals two points about B: One, there is a c for which both ψ(c)
and ξ(c) appear on B signed by either t or f. By induction hypothesis, this
means that IB(ψ(c)) 	= e and IB(ξ(c)) 	= e. Two, for no c′ are both t : ψ(c′)
and t : ξ(c)′ on B; by the induction hypothesis, nor do both IB(ψ(c′)) = t and
IB(ξ(c′)) = t hold for any c′. Between these two observations, the definition
of ∃̇, and induction hypothesis, IB([∃ψ(x)]ξ(x)) = f.

The cases of disjunction and the universal restricted quantifier follow from nearly
identical reasoning.

Theorem 2 (Completeness of wKrQ). If Γ �wK ϕ then Γ �wKrQ ϕ.

Proof. In line with the standard argument, we prove the contrapositive. Suppose
that Γ �wKrQ ϕ. Then there is an open branch on a tableau including t : γi for
each γi ∈ Γ but on which either f : ϕ or e : ϕ appears. By Lemma 1, IB(γi) = t
for all γi ∈ Γ but IB(ϕ) 	= t. IB serves as a counterexample witnessing that
Γ �wK ϕ.

3 Bilateral Logics Related to Weak Kleene Logic

Although we find the question of providing an intuitive quantification theory
in the weak Kleene setting to be intriguing, weak Kleene logic seems to have
little promise as a tool for e.g. semantic representation of intentional contexts.
However, several logical frameworks that are obviously good candidates enjoy a
close relationship to weak Kleene logic, allowing us to directly employ the results
on wK.

We now examine two propositional logics related to wK: Charles Daniels’
“first degree story logic” S�

fde described in [6] and Richard Angell’s logic of
analytic containment AC described in [1]. Each is weaker than classical proposi-
tional logic and each has been offered as a notion of validity under which weak,
non-veridical theories can be closed. [6] argues that fictions are closed under
S�
fde; Correia in [5] and Fine in [9] have argued that AC preserves equivalence of

facts, whence even classes of e.g. desires are closed under AC consequence. Both,
therefore, are intriguing foundations for applications like description logics—
presuming the details of restricted quantification are worked out.

As these two systems are less familiar than wK, it may help the reader to
provide axiomatic presentations of propositional AC and S�

fde. As consecution
calculi, the first-degree account of AC is determined by the following axioms:

12 T. M. Ferguson

AC1a ϕ � ∼∼ϕ
AC1b ∼∼ϕ � ϕ
AC2 ϕ � ϕ ∧ ϕ
AC3 ϕ ∧ ψ � ϕ
AC4 ϕ ∨ ψ � ψ ∨ ϕ
AC5a ϕ ∨ (ψ ∨ ξ) � (ϕ ∨ ψ) ∨ ξ
AC5b (ϕ ∨ ψ) ∨ ξ � ϕ ∨ (ψ ∨ ξ)
AC6a ϕ ∨ (ψ ∧ ξ) � (ϕ ∨ ψ) ∧ (ϕ ∨ ξ)
AC6b (ϕ ∨ ψ) ∧ (ϕ ∨ ξ) � ϕ ∨ (ψ ∧ ξ)

and rules:
AC7 If ϕ � ψ and ψ � ϕ are derivable then ∼ϕ � ∼ψ is derivable
AC8 If ϕ � ψ is derivable then ϕ ∨ ξ � ψ ∨ ξ is derivable
AC9 If ϕ � ψ and ψ � ξ are derivable then ϕ � ξ is derivable

S�
fde can be defined by adding the following:

S1 ϕ � ϕ ∨ ∼ϕ
For a multiple-premise formulation with finite premises Γ , provability of Γ � ϕ
can be understood as derivability of

∧
Γ � ϕ.

In [7], a tight connection between wK (on the one hand) and S�
fde and AC (on

the other) is described. This connection can be summarized as the idea that these
two logics are essentially bilateral—tracking distinct values for both truth and
falsity—with the calculation of truth values and falsity values being performed
by parallel positive weak Kleene interpretations.

3.1 S�
fde and AC

A semantic value for S�
fde and AC is a pair 〈u, v〉 with u, v ∈ V3. We can read

the first coordinate as an indicator of corroborating evidence for a formula and
the second coordinate as representing whether there is refuting evidence. For
example, that ϕ receives value 〈t, f〉 can be understood as “there exists evidence
in favor of the truth of ϕ and no evidence refuting ϕ”; that it receives value 〈f, f〉
can be read as “there no evidence either supporting or refuting ϕ.”

We define propositional interpretations for AC:

Definition 13. A propositional AC interpretation I is a function I : L → V3 ×
V3. Let I0 and I1 denote functions mapping formulae ϕ to the first and second
coordinates of I(ϕ).

– I(∼ϕ) = 〈I1(ϕ), I0(ϕ)〉
– I(ϕ ∧ ψ) = 〈I0(ϕ) ∧̇ I0(ψ), I1(ϕ) ∨̇ I1(ψ)〉
– I(ϕ ∨ ψ) = 〈I0(ϕ) ∨̇ I0(ψ), I1(ϕ) ∧̇ I1(ψ)〉

N.b. that negation is clearly a “toggle” negation in the sense of [13] as it simply
exchanges the truth coordinate for the falsity coordinate. Moreover, the duality
between e.g. conjunction and disjunction is respected by defining the falsity of
a conjunction as the disjunction of the falsity values of the conjuncts.

Semantically, S�
fde is yielded from AC by restricting the available values to

V̂2
3 = {〈t, t〉, 〈t, f〉, 〈f, t〉, 〈f, f〉, 〈e, e〉}. From the Halldén-Bochvar perspective, this

Tableaux for Systems Related to Weak Kleene Logic 13

is equivalent to enforcing a condition that a formula is meaningless precisely
when its negation is.

Definition 14. A propositional S�
fde interpretation I is an AC interpretation

where atoms are mapped to the set V̂2
3 .

We now enrich the propositional base with the needed expressivity.

3.2 Adding Restricted Quantifiers

The discussion of restricted quantification and the way that duals are reflected in
the bilateral interpretation of truth values jointly lead to a natural interpretation
of quantification in S�

fde and AC.

Definition 15. A predicate AC (respectively, S�
fde) interpretation is a function

I from L′ to V2
3 (respectively, V̂2

3) evaluating connectives as in Definition 13 and
respecting the following:

I([∃xϕ(x)]ψ(x))= 〈∃̇({〈I0(ϕ(c)), I0(ψ(c))〉 | c ∈ C}), ∀̇({〈I0(ϕ(c)), I1(ψ(c))〉 | c ∈ C})〉
I([∀xϕ(x)]ψ(x)) = 〈∀̇({〈I0(ϕ(c)), I0(ψ(c))〉 |c ∈ C}), ∃̇({〈I0(ϕ(c)), I1(ψ(c))〉 | c ∈ C})〉

The restricted quantifiers we have introduced are perfectly harmonious with the
bilateral, weak Kleene-based interpretation from [7]. In the bilateral context,
consider two notions—one weak, one strong—in which [∃xϕ(x)]ψ(x) might be
thought to be false in an interpretation. In a weak sense, the sentence might be
considered refuted whenever searches for a c satisfying both ϕ(x) and ψ(x) have
failed, i.e., one has not successfully verified the sentence. In contrast, a stronger
notion can be invoked, i.e., that there is a demonstration that any c satisfying
ϕ(x) must falsify ψ(x).

Such a distinction is reflected in the assignment of a bilateral truth value
〈u, v〉 ∈ V2

3 to a quantified sentence [∃xϕ(x)]ψ(x). As in the propositional case,
the coordinates u and v represent the status of the verification and falsification
of [∃xϕ(x)]ψ(x), respectively. Thus, the weak notion of refutation described in
the foregoing paragraph may be codified by the assignment of a value 〈f, v〉 to
the sentence, i.e., whenever it is false that the sentence has been verified. In
contrast, the strong type of refutation of [∃xϕ(x)]ψ(x) is reflected in its receipt
of a value of the form 〈v, t〉, i.e., there is positive information attesting to the
falsification of the sentence.

The reader can confirm that the bilateral approach in fact improves on the
presentation for wK inasmuch as DeMorgan’s laws are reestablished; as S�

fde and
AC are our actual targets, this should relieve concerns about their failure in wK.

One further observation is required, establishing that V̂2
3 is in fact closed

under the bilateral interpretation of the restricted quantifiers.

Lemma 2. V̂2
3—the collection of S�

fde truth values—is closed under the above
interpretation of the restricted quantifiers.

14 T. M. Ferguson

Proof. For a valuation I mapping all atomic formulae to one of the S�
fde truth

values, the atomic and literal cases form a basis step. Assume that for all sub-
formulae ψ of ϕ, I0(ψ) = e if and only if I1(ψ) = e. That the set is closed under
negation and binary connectives is straightforward (see [7]), leaving only the
quantifiers; we consider existential quantification, as universal quantification is
analogous.

We show that the induction hypothesis entails that I0([∃xϕ(x)]ψ(x)) = e
occurs if and only if I1([∃xϕ(x)]ψ(x)) = e. Suppose that I0([∃xϕ(x)]ψ(x)) = e.
By definition, this holds when for all 〈u, v〉 ∈ {〈I0(ϕ(c)), I0(ψ(c))〉 | c ∈ C}
either u = e or v = e. By induction hypothesis, I0(ψ(c)) = e precisely when
I1(ψ(c)) = e. Thus, this holds if and only if the same can be said for each 〈u, v〉 ∈
{〈I0(ϕ(c)), I1(ψ(c))〉 | c ∈ C}. But this is just to say that I1([∃xϕ(x)]ψ(x)) = e.

We define validity in S�
fde and AC jointly:

Definition 16. Let L be either S�
fde or AC. Then L validity is defined as truth

preservation,4 i.e.

Γ �L ϕ if for all L interpretations such that I0[Γ] = {t}, I0(ϕ) = t.

3.3 Tableau Calculi for S�
fde and AC with Restricted Quantifiers

Rather than introduce signed tableau calculi with five or nine values for S�
fde

and AC, we leverage their close relationship with wK to supply tableaux.
A trick employed by Kamide in [12] for the study of the bilateral Nelson logic

N4 will play a role. Nelson’s N4 from [16] can be given a bilateral interpretation
in which its measures of truth and falsity are being individually calculated by
positive intuitionistic logic; Kamide shows that by introducing for each atomic
parameter p a parameter p� corresponding to p’s falsity value, N4 can be embed-
ded into positive intuitionistic logic. As a similarly bilateral semantics, the trick
can be employed in our case as well:

Definition 17. For a language L, let L� be the language that includes for every
predicate R a predicate of the same arity R�; for a sentence ϕ ∈ L, let ϕ� ∈ L�

be:

– R(t0, ..., tn−1)� = R(t0, ..., tn−1) and (∼R(t0, ..., tn−1))� = R�(t0, ..., tn−1)
– (∼∼ϕ)� = ϕ�

– (ϕ ∧ ψ)� = (ϕ)� ∧ (ψ)� and (ϕ ∨ ψ)� = (ϕ)� ∨ (ψ)�

– [∀xϕ(x)]ψ(x))� = [∀x(ϕ(x))�](ψ(x))�

– [∃xϕ(x)]ψ(x))� = [∃x(ϕ(x))�](ψ(x))�

– (∼(ϕ ∧ ψ))� = (∼ϕ)� ∨ (∼ψ)� and (∼(ϕ ∨ ψ))� = (∼ϕ)� ∧ (∼ψ)�

– (∼[∀xϕ(x)]ψ(x))� = [∃x(ϕ(x))�](∼ψ(x))�

– (∼[∃xϕ(x)]ψ(x))� = [∀x(ϕ(x))�](∼ψ(x))�

4 A reviewer has observed that alternative definitions could be considered, e.g., requir-
ing preservation of non-refutability in the second coordinate. Whether such alterna-
tives determine distinct consequence relations is an interesting question.

Tableaux for Systems Related to Weak Kleene Logic 15

For a set of sentences Γ , give Γ � the natural definition as the translation of each
element of Γ .

The techniques of [7] immediately adapt when restricted quantifiers are in play
to yield the following lemmas:

Lemma 3. For an AC interpretation I, I(ϕ) = I(ϕ�).

Lemma 4. Γ �AC ϕ iff Γ � �wK ϕ�

The tableau proof theory ACrQ is yielded by modifying Definition 9:

Definition 18. Let wKrQ+ be the result of dropping the ∼ rule from wKrQ.
Then the tableau calculus ACrQ is defined by adding to wKrQ+:

v : ∼R(c0, ..., cn−1)

v : R�(c0, ..., cn−1)

v : ∼R�(c0, ..., cn−1)

v : R(c0, ..., cn−1)

v : ∼∼ϕ
v : ϕ

v : ∼(ϕ ∧ ψ)

v : (∼ϕ ∨ ∼ψ)

v : ∼(ϕ ∨ ψ)

v : (∼ϕ ∧ ∼ψ)

v : ∼[∀ϕ(x)]ψ(x)

v : [∃ϕ(x)]∼ψ(x)

v : ∼[∃ϕ(x)]ψ(x)

v : [∀ϕ(x)]∼ψ(x)

where v is any element of V3.

Lemma 5. If u : ϕ and v : ψ, for distinct u and v, are on a branch of an ACrQ
tableau such that ϕ� = ψ�, then the branch will close.

Proof. This clearly holds for atomic formulae, so take this as a basis step and
assume that it holds for all subformulae of ϕ and ψ and their negations.

Now, if either ϕ and ψ are negated, applying negation elimination rules to
the branch yields non-negated formulae, so assume them to not be negated.
Importantly, that ϕ� = ψ� ensures that ϕ and ψ will share a common primary
logical operator.

For the case of a binary connective, suppose without loss of generality that
ϕ = ϕ0 ∧ ϕ1 and ψ = ψ0 ∧ ψ1. Applying the conjunction rule to these nodes
will yield a number of branches in which truth values are distributed to u0 : ϕ0,
u1 : ϕ1, v0 : ψ0, and v1 : ψ1. But the functionality of ∧̇ ensures that in any such
branch, either u0 	= v0 or u1 	= v1. Because ϕ�

i = ψ�
i for each i, the induction

hypothesis ensures that each branch will close.
Similar considerations apply to the case in which ϕ and ψ are quantified

sentences; suppose them to be [∃xϕ0(x)]ϕ1(x) and [∃xψ0(x)]ψ1(x). No matter
the values of u and v, applying the appropriate rules in the right order will
result in assortment of branches in which u0 : ϕ0(c), u1 : ϕ1(c), v0 : ψ0(c), and
v1 : ψ1(c) appear. But either u0 	= v0 or u1 	= v1 must hold in every such case
and, by the induction hypothesis, any resulting branches will close.

Lemma 6. Γ �ACrQ ϕ if and only if Γ � �ACrQ ϕ�

16 T. M. Ferguson

Proof. Take a tableau T and construct a new tableau T ◦ by replacing every
node n with formula u : ϕ by a node n◦ decorated with u : ϕ�. We first prove
that the application of rules is preserved through the transformation. There are
two cases to consider: those in which ϕ is negated and when it is not.

When ϕ is not negated then there must be one of the wKrQ+ rules that
applies. In all such cases, ϕ and ϕ� have the same primary logical operator, e.g.,
when ϕ is a conjunction, ϕ� is a conjunction. Thus, whenever a node n on T with
a non-negated sentence u : ϕ has children, the same rule will be applicable to n◦.
Moreover, the decomposition of complex sentences to subformulae induced by the
rules are respected by the clauses defining �. In other words, if the application of
a wKrQ+ rule to a node n decorated by u : ϕ yields children u0 : ϕ0, ..., un−1 :
ϕn−1, the same rule, applied to n◦, yields children u0 : ϕ�

0, ..., , un−1 : ϕ�
n−1.

When ϕ is negated, T must apply one of the proper ACrQ rules involving
negation. In this case, both parent and child nodes in T ◦ will be decorated by the
same signed formula. What was a negation rule in T will be a vacuous repetition
in T ◦.

Importantly, whenever distinct u : ϕ and v : ϕ appear in a branch in T ,
u : ϕ� and v : ϕ� will appear in that branch in T ◦, i.e., a closed branch in T will
remain closed in T ◦. This establishes the left-to-right direction of the lemma.

Because � is not injective, T ◦ may identify many sentences that T sees as
distinct. Thus, one may worry about cases in which T has an open branch that
is closed in T ◦, precluding the right-to-left direction of the lemma. But Lemma 5
clears a path forward; if such a case occurs, T can be extended to a new tableau
T ′ in which any such branches will ultimately be closed.

Given our results on wK, soundness of ACrQ is established:

Theorem 3 (Soundness of ACrQ). If Γ �ACrQ ϕ then Γ �AC ϕ.

Proof. Suppose that T is a tableau demonstrating that Γ �ACrQ ϕ. Then by
Lemma 6, there is a closed ACrQ tableau showing that Γ � �ACrQ ϕ�. But this
proof involves no properly ACrQ rules—it is thus a wKrQ+ (and a fortiori a
wKrQ) tableau. Thus, Γ � �wKrQ ϕ� and by Theorem 1, Γ � �wK ϕ�. Finally,
by Lemma 4, we conclude that Γ �AC ϕ.

Completeness similarly follows from previous remarks:

Theorem 4 (Completeness of ACrQ). If Γ �AC ϕ then Γ �ACrQ ϕ

Proof. We prove the contrapositive. Suppose that Γ �ACrQ ϕ. Then by Lemma
6, Γ �

�ACrQ ϕ�. As negation is essentially eliminated, Γ �
�wKrQ ϕ�, whence we

infer the existence of a wKrQ tableau with an open branch B. Definition 12 can
then be applied to yield a weak Kleene branch model IB for which IB[Γ] = {t}
and IB(ϕ) 	= t.

IB induces an AC interpretation I��
B that preserves the interpreta-

tion of constants while bilaterally interpreting n-ary predicates so that
RI��

B (cI��
B

0 , ..., c
I��
B

n−1) = 〈RIB(cIB
0 , ..., cIB

n−1), (R
�)IB(cIB

0 , ..., cIB
n−1)〉. The semantic

clauses ensure that I��
B verifies all of Γ � while failing to verify ϕ�. By Lemma 3,

this lifts to Γ and ϕ, whence we conclude that Γ �AC ϕ.

Tableaux for Systems Related to Weak Kleene Logic 17

These results summarize the presentation of restricted quantification for AC.
Now, we define an appropriate calculus for S�

fde:

Definition 19. The tableau calculus SrQ for S�
fde with restricted quantifiers is

captured by adding the following rules to ACrQ where v ∈ {t, f}:

e : R(c0, ..., cn−1)

e : R�(c0, ..., cn−1)

e : R�(c0, ..., cn−1)

e : R(c0, ..., cn−1)

v : R(c0, ..., cn−1)

m : R�(c0, ..., cn−1)

v : R�(c0, ..., cn−1)

m : R(c0, ..., cn−1)

with the proviso that an above rule may be applied to a formula R(c0, ..., cn−1)
or R�(c0, ..., cn−1) at most once on any branch.

Thinking of the notation m as indicating “not e” may aid in interpreting the
above rules. That R(c0, ..., cn−1) is assigned e.g. t establishes only that its mate
R�(c0, ..., cn−1) is not e, entailing a branch on the two remaining values.

To show soundness and completeness, we first establish some results about
a class of weak Kleene interpretations. Let S denote the class of weak Kleene
interpretations I over the broader language L� such that for all atomic sentences,
I(R(c0, ..., cn−1)) = e if and only if I(R�(c0, ..., cn−1)) = e. Furthermore, let �S

denote weak Kleene validity over the restricted class S.

Lemma 7. Γ �S�
fde

ϕ iff Γ � �S ϕ�

Proof. By definition, Γ �S�
fde

ϕ holds if and only if it holds in an AC interpretation
over V̂2

3 , in which no formula will correspond to values 〈t, e〉, 〈f, e〉, 〈e, t〉, or 〈e, f〉.
But the corresponding class of wK interpretations will be S. So the results of [7]
that support Lemma 4 establish this lemma as well.

Lemma 8. Let IB be a branch model defined on an open branch from an SrQ
tableau. Then IB ∈ S.

Proof. Suppose that IB(R(c0, ..., cn−1)) = e. Then one of two cases must have
occurred: First, suppose that for no v ∈ V3 does v : R(c0, ..., cn−1) appear on
the branch. Then the rules of SrQ ensure that neither does a signed formula
u : R�(c0, ..., cn−1) appear on B. In the second case, e : R(c0, ..., cn−1) does
appear on B, in which case the SrQ rules guarantee that e : R�(c0, ..., cn−1) is
on the branch. Either way, Definition 12 guarantees that IB(R�(c0, ..., cn−1)) = e.

Lemma 9. Let wKrQS be the result of adding properly SrQ rules to wKrQ+.
Then wKrQS is sound with respect to S.

Proof. By Theorem 1, all rules of wKrQ+ respect the semantics. But the prop-
erly SrQ rules precisely correspond to the semantic conditions defining S.

Now we have the necessary lemmas to prove soundness and completeness:

Theorem 5 (Soundness of SrQ). If Γ �SrQ ϕ then Γ �S�
fde

ϕ.

18 T. M. Ferguson

Proof. For any tableau demonstrating that Γ �SrQ ϕ, Lemma 6 can be applied
to generate a proof of Γ � �SrQ ϕ�. This proof includes only properly SrQ rules,
and is thus a wKrQS tableau. By Lemma 9, Γ � �S ϕ�. Finally, by Lemma 7,
we conclude that Γ �S�

fde
ϕ.

Theorem 6 (Completeness of SrQ). If Γ �S�
fde

ϕ then Γ �SrQ ϕ

Proof. Suppose that Γ �SrQ ϕ. Just as in Theorem 4, we can extract a branch
model I��

B from an SrQ tableau that does not close. By Lemma 8, I��
B is a

member of S. By Lemma 7, Γ �S�
fde

ϕ.

4 Concluding Remarks

The deductive systems wK, S�
fde, and AC capture notions of validity and equiva-

lence that are stricter than classical, Boolean logic. Given the interpretative and
philosophical work on these systems, they are plausible candidates for modest
closure conditions for intentional contexts, including collections of agents’ beliefs,
knowledge, or goals.

In this paper, we have introduced sufficient quantification theory for these
systems to support applications like description logics. The end results envisioned
are description logics that can felicitously and plausibly capture and reason about
agents’ intentional states. The present work has provided a formal foundation for
these applications, but work remains to be done, e.g., determining the complexity
of deductions in the tableau calculi introduced in this paper and adapting them
to calculi including the syntax of e.g. ALC or SROIQ.

One concluding note on the matter of the complexity of determining validity:
Definition 17 translates both systems into a positive logic and in the proposi-
tional case, this corresponds to classical validity in conjunction with a variable-
inclusion property. Thus, validity in propositional S�

fde or AC is polynomial-time
reducible to classical validity. It is worth investigating whether a similar app-
roach will work in the case of restricted quantification.

Acknowledgements. I appreciate the insights and thoughtful input of four reviewers,
whose suggestions were very helpful in revising this paper.

References

1. Angell, R.B.: Three systems of first degree entailment. J. Symb. Log. 42(1), 147–
148 (1977)

2. Bochvar, D.A.: On a three-valued logical calculus and its application to the analysis
of contradictions. Matematicheskii Sbornik 4(2), 287–308 (1938)

3. Carnielli, W., Marcos, J., de Amo, S.: Formal inconsistency and evolutionary
databases. Logic Log. Philos. 8, 115–152 (2000)

4. Carnielli, W.A.: Systematization of finite many-valued logics through the method
of tableaux. J. Symb. Log. 52(2), 473–493 (1987)

Tableaux for Systems Related to Weak Kleene Logic 19

5. Correia, F.: Grounding and truth functions. Logique et Anal. (N.S.) 53(211), 251–
279 (2010)

6. Daniels, C.: A note on negation. Erkenntnis 32(3), 423–429 (1990)
7. Ferguson, T.M.: Faulty Belnap computers and subsystems of FDE. J. Logic Com-

put. 26(5), 1617–1636 (2016)
8. Ferguson, T.M.: Secrecy, content, and quantification. Análisis Filosófico 1–14 (2021,

to appear)
9. Fine, K.: Angellic content. J. Philos. Log. 45(2), 199–226 (2016)

10. Fjellstad, A.: Structural proof theory for first-order weak Kleene logics. J. Appl.
Non-Classical Logics 30(3), 272–289 (2020)

11. Halldén, S.: The Logic of Nonsense. Lundequista Bokhandeln, Uppsala, Sweden
(1949)

12. Kamide, N.: An embedding-based completeness proof for Nelson’s paraconsistent
logic. Bull. Section Logic 39(3/4), 205–214 (2010)

13. Kapsner, A.: Logics and Falsifications. Springer, Cham (2014)
14. Kleene, S.C.: Introduction to Metamathematics. North-Holland Publishing Com-

pany, Amsterdam (1952)
15. Malinowski, G.: Many-valued logic. In: Jacquette, D. (ed.) A Companion to Philo-

sophical Logic, pp. 545–561. Blackwell Publishing, Oxford (2002)
16. Nelson, D.: Negation and separation of concepts in constructive systems. In: Heyt-

ing, A. (ed.) Constructivity in Mathematics, pp. 208–225. North-Holland, Amster-
dam (1959)

17. Szmuc, D., Da Re, B.: Immune logics. Australas. J. Log. 18(1), 29–52 (2021)
18. Yablo, S.: Aboutness. Princeton University Press, Princeton (2014)

Constraint Tableaux for Two-Dimensional
Fuzzy Logics

Marta B́ılková1 , Sabine Frittella2 , and Daniil Kozhemiachenko2(B)

1 The Czech Academy of Sciences, Institute of Computer Science,
Prague, Czech Republic
bilkova@cs.cas.cz

2 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Bourges, France
{sabine.frittella,daniil.kozhemiachenko}@insa-cvl.fr

Abstract. We introduce two-dimensional logics based on �Lukasiewicz
and Gödel logics to formalize reasoning with graded, incomplete and
inconsistent information. The logics are interpreted on matrices, where
the common underlying structure is the bi-lattice (twisted) product of
the [0, 1] interval. The first (resp. second) coordinate encodes the posi-
tive (resp. negative) information one has about a statement. We propose
constraint tableaux that provide a modular framework to address their
completeness and complexity.

Keywords: Constraint tableaux · �Lukasiewicz logic · Gödel logic ·
Two-dimensional logics

1 Introduction

A two-dimensional treatment of uncertainty. Belnap-Dunn four-valued logic BD
[5,11,27], also referred to as First Degree Entailment FDE, provides a logical
framework to reason with both incomplete and inconsistent information. In BD,
formulas are evaluated on the Belnap-Dunn square (Fig. 1, left) where the four
values encode the information available about the formula: {t, f, b, n} (true, false,
both, neither). Hence, b and n correspond to inconsistent and incomplete infor-
mation respectively. The shift in perspective lies in the values encoding the
information available about the formula, and not the intrinsic truth or falsity of
the formula which may not be accessible. This idea was generalized by introduc-
ing the algebraic notion of bilattices by Ginsberg [15] in the context of AI, and
studied further in [21,29]. Bilattices contain two lattice orders simultaneously: a
truth order, and an information order. Belnap-Dunn square, the smallest inter-
laced bilattice, can be seen as the product bilattice of the two-element lattice
where the four values are seen as pairs of classical values which can be natu-
rally interpreted as representing two independent dimensions of information –

The research of Marta B́ılková was supported by RVO: 67985807. The research of
Sabine Frittella and Daniil Kozhemiachenko was funded by the grant ANR JCJC 2019,
project PRELAP (ANR-19-CE48-0006).

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 20–37, 2021.
https://doi.org/10.1007/978-3-030-86059-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_2&domain=pdf
http://orcid.org/0000-0002-3490-2083
http://orcid.org/0000-0003-4736-8614
http://orcid.org/0000-0002-1533-8034
https://doi.org/10.1007/978-3-030-86059-2_2

Constraint Tableaux for Two-Dimensional Fuzzy Logics 21

the positive and the negative one. We can understand them as providing positive
and negative support for statements independently.

Non-standard probabilities [12,22] extend the idea of independent positive
and negative support of a statement in presence of uncertainty. They quantify
evidence for and evidence against (the positive and negative probabilistic infor-
mation about) a statement ϕ with a couple p(ϕ) = (p+(ϕ), p−(ϕ)) ∈ [0, 1]×[0, 1].
The maps are such that p−(ϕ) = p+(¬ϕ), p+ is a monotone map w.r.t. BD entail-
ment relation, and satisfies the import-export axiom p+(ϕ ∧ ψ) + p+(ϕ ∨ ψ) =
p+(ϕ) + p+(ψ). Since formulas are interpreted in BD, one cannot prove that
p(¬ϕ) = 1 − p(ϕ), and p(ϕ) = p(¬ϕ) = 1 can be the case when one has contra-
dictory information about ϕ. The range of non-standard probabilities coincides
with the carrier of the continuous extension of Belnap-Dunn square (Fig. 1, cen-
ter), which we see as the product bilattice of the unit real interval [0, 1]� [0, 1] in
Subsect. 2.1.1 We employ expansions of this algebra in Subsect. 2.2 to provide
semantics to two-dimensional fuzzy logics.2

A Broader Motivation. This paper is a part of the project introduced in [6]
aiming to develop a modular logical framework for reasoning based on uncer-
tain, incomplete and inconsistent information. We model agents who build their
epistemic attitudes (like beliefs) based on information aggregated from multiple
sources. A convenient framework to formalize such reasoning is that of two-layer
modal logics, first introduced in [13,20] and further developed in [4,7]. Roughly
speaking, the lower layer of events or evidence encodes the information given
by the sources, while the upper layer encodes reasoning with the agent’s atti-
tudes based on this information, and the modalities expressing the attitudes
connect the two layers and are interpreted in terms of an uncertainty measure
(like probability, belief function, etc.). In this article, we study two families of
logics suitable for the upper layer.

The Logics. We aim at a two-dimensional formalism that separates the posi-
tive and negative dimensions of information or support not only on the level of
evidence, but also on the level of reasoning with agent’s epistemic attitudes. In
[6], we have proposed examples of such two-layer modal logics of belief based on
incomplete and inconsistent information. In the two-layer framework, the upper
logic operates atomic propositions of the form Bφ where φ is a formula of the
lower layer (and the belief B modalities do not nest). Atomic propositions of the
logics we propose here can therefore be given such an epistemic interpretation,
depending on a choice of epistemic attitudes and the uncertainty measure used
to quantify evidence for and evidence against a statement. The logics themselves
then model graded reasoning with such epistemic attitudes.3

1 In the context of Nelson’s paraconsistent logics such product construction has been
called twisted product of algebras [30], or twist structures [26, Chapter 8].

2 We wish to stress we do not claim that non-standard probabilities are compositional
or propose an algebraic interpretation of them.

3 This is a natural point to enter the discussion whether reasoning about uncertainty
can be adequately handled within truth-functional semantics (see e.g. [10]). Such
discussion is however beyond the scope of the current paper.

22 M. B́ılková et al.

In some scenarios, it is reasonable to represent agents attitudes as probabil-
ities (e.g. a company reasoning with information based on statistical data). To
model graded reasoning about such attitudes, we propose logics derived from
�Lukasiewicz logic [9, Chapter VI], mainly because its language allows to express
the (non-standard) probability axioms which is crucial to obtain complete axiom-
atization of the resulting two-layer logics [6,20].

In other cases, the agent’s aggregated attitude is not a probability. For
instance, agents may be able to compare their belief on two different statements
while not being necessarily able to say exactly to what extent they believe. Just
as �Lukasiewicz logic can be seen as a logic of measure or quantity, Gödel logic
[9, Chapter VII] can be considered a logic of order. In this context it is therefore
natural to consider Gödel logic as the starting point.

To comply with the two-dimensionality aim, we define the logics semantically,
using expansions of the product bilattice [0, 1] � [0, 1] with connectives derived
from standard semantics of �Lukasiewicz logic or Gödel logic. Two-dimensional
treatment of implication is of a particular interest (as we explain more in detail
in Remarks 1 and 3). We consider two possibilities: the first dualizes implication
by co-implication, the second understands negative support of an implication as
a conjunction of the positive support of the antecedent and the negative support
of the consequent. The first option connects to one of Wansing’s logic of [31],
namely I4C4, and goes back to bi-intuitionistic logic [16,28], the second option
connects to Nelson’s logic N4 [25].

Depending on the choice of connectives, and the choice of the set of designated
values on the resulting algebra, we encounter both logics which are paraconsistent
and logics which are not. Before proceeding further, we need to clarify the notion
of paraconsistency. Unless specified otherwise, we construe ‘logic’ as a set of valid
formulas, not as sets of valid entailments. Hence, while not all logics considered
in the paper lack explosion w.r.t. their entailment—p,¬p � q, in none of them
(p ∧ ¬p) → q is valid. It is in this sense that we call the logics presented here
‘paraconsistent’.

Proof Theory. Proof theory for many-valued logics is mostly presented in either
of the following three forms. Hilbert style axiomatic calculi (cf., e.g. [20,23]); dif-
ferent versions of sequent and hypersequent calculi [18,23]; tableaux and decom-
position calculi (cf., e.g. [19] for �Lukasiewicz logic and [3] for Gödel logic).

Each of these proof formalisms has its own advantages: Hilbert calculi provide
an explicit list of postulates which facilitates establishing the relations between
different logics (e.g. whether one logic is an extension of another). The rules of
(hyper)sequent calculi provide structural insights into the algebraic properties
of the connectives of the given logic. On the other hand, tableaux and decom-
position systems are easily automatisable and can be readily used to determine
an upper bound on the complexity of the validity and satisfiability problems for
the logic in question. Another advantage of the tableaux is that their semantical
nature allows for a straightforward formalisation of different entailment rela-
tions defined on the same algebra. Since the logics we are going to introduce are

Constraint Tableaux for Two-Dimensional Fuzzy Logics 23

hybrids between FDE and �Lukasiewicz or Gödel logic, we opt for combining the
constraint tableaux framework with the FDE-tableaux by D’Agostino [8].

Structure of the Paper. Section 2 presents preliminaries on bilattices and matri-
ces and introduces the logics for a two dimensional treatment of uncertainty and
their properties (proofs are in the Appendix). Section 3 presents the constraint
tableaux for these logics and discusses their soundness and completeness, and
the complexity of the proof search. Section 4 presents further lines of research.

2 The Logics for a Two-Dimensional Treatment
of Uncertainty

2.1 Preliminaries

First, we describe the algebras we are going to use to interpret the logics. Their
construction relays on the standard MV-algebra, and the standard Gödel alge-
bra, which provide the standard semantics of �Lukasiewicz and Gödel logic respec-
tively (we refer the reader to [9, Chapters VI,VII] for a basic exposure to Gödel
and �Lukasiewicz logics and their standard semantics). In what follows, [0, 1]
denotes the real unit interval with its natural order, and [0, 1]op denotes the
interval with the reversed order.

The Standard MV-Algebra. [0, 1]�L = ([0, 1], 0,∧,∨,&,→�L) is defined as follows:
for all a, b ∈ [0, 1] the standard operations are given by

a ∧ b := min(a, b) a&b := max(0, a + b − 1)
a ∨ b := max(a, b) a →�L b := min(1, 1 − a + b)

Moreover, we define the negation ∼�La := a →�L 0, the constant 1 :=∼�L 0, the
truncated sum a⊕b :=∼�L a →�L b, and the truncated subtraction a	b := a&∼b.

The MV-algebra [0, 1]op�L = ([0, 1]op, 1,∨,∧,⊕,) arises turning the standard
MV-algebra upside down, and is isomorphic to it. Here, we have ∼�La := 1 	 a.

The Standard Gödel Algebra. [0, 1]G = ([0, 1], 0,∧,∨,→G) is defined as follows:
for all a, b ∈ [0, 1], the standard operations are given by a∧b := min(a, b), a∨b :=
max(a, b), and the implication is defined as follows. We at the same time spell
out a definition of a co-implication we shall need later on:

a →G b =

{
1, if a ≤ b

b else
b �G a =

{
0, if b ≤ a

b else

We define a negation ∼Ga := a →G 0, and 1 :=∼G 0.
The algebra [0, 1]opG = ([0, 1]op, 1,∨,∧,�G) arises by dualizing the standard

Gödel algebra (in particular, similarly as →G is the residuum of ∧, �G is the
residuum of ∨). A negation can be defined on this algebra as −Ga := 1 �G a.

24 M. B́ılková et al.

Remark 1. Observe that 	 and �G are dual to →�L and →G in the following
sense.

a ≤ b ⊕ c iff a 	 b ≤ c a&b ≤ c iff a ≤ b →�L c

a ≤ b ∨ c iff a �G b ≤ c a ∧ b ≤ c iff a ≤ b →G c

As one can see, 	 and �G residuate disjunctions dually to how →�L and →G

residuate conjuctions. Taking these dualities into account, we will call 	 and �G

co-implications.

Product Billatices. Given an arbitrary lattice L = (L,∧L,∨L), we can construct
the product bilattice L � L = (L × L,∧,∨,�,�,¬) [1,2]. In what follows, we
essentially use the product bilattice [0, 1] � [0, 1], constructed from the lattice
([0, 1],min,max). We only consider the {∧,∨,¬} reduct of this structure in this
paper, and not to complicate notation denote it by [0, 1] � [0, 1]. It is defined as
follows: for all (a1, a2), (b1, b2) ∈ [0, 1] × [0, 1],

(a1, a2) ≤ (b1, b2) := a1 ≤ b1 and b2 ≤ a2

¬(a1, a2) := (a2, a1)
(a1, a2) ∧ (b1, b2) := (min(a1, b1),max(a2, b2))
(a1, a2) ∨ (b1, b2) := (max(a1, b1),min(a2, b2)).

We use expansions of [0, 1] � [0, 1] by implication connectives derived from the
�Lukasiewicz or Gödel implication described above. Their positive support coin-
cides with those of �L and G implications. For the negative support, we consider
two options. The first one dualizes the implication by the co-implication, the
second results in negating implication by the conjunction of the positive part of
the antecedent and the negative part of the consequent. For �Lukasiewicz logics
these result in:

(a1, a2) → (b1, b2) := (a1 →�L b1, b2	a2) (a1, a2) � (b1, b2) := (a1 →�L b1, a1&b2)

For Gödel logics we obtain:

(a1, a2) → (b1, b2) := (a1 →G b1, b2�Ga2) (a1, a2) � (b1, b2) :=(a1 →G b1, a1∧b2)

In the first option, the interpretation arises as the one on the product algebra
[0, 1]�L × [0, 1]op�L or [0, 1]G × [0, 1]opG . In the Gödel case, it relates to how the
implication is interpreted in Wansing’s logic I4C4 [31]. In the second option,
� is not congruential, and a strong congruential implication can be defined as
(a � b) ∧ (¬b � ¬a). The second option corresponds to how implication is
interpreted in product residuated bilattices of [21]. In the Gödel case, it relates
to how the implication is interpreted in Nelson’s logic N4 [25].

– We denote by [0, 1]�L � [0, 1]�L(→) and [0, 1]�L � [0, 1]�L(�) the corresponding
expansions of [0, 1] � [0, 1] defined using the �Lukasiewicz connectives.

– We denote by [0, 1]G � [0, 1]G(→) and [0, 1]G � [0, 1]G(�) the corresponding
expansions of [0, 1] � [0, 1] defined using the Gödel connectives.

Constraint Tableaux for Two-Dimensional Fuzzy Logics 25

2.2 The Logics

The logics considered in this paper are defined through matrix semantics [14].
We consider logical matrices of the form (A,D) where A is one of the four
algebras described above, and D ⊆ A is a set of designated values. As sets of
designated values, we use various lattice filters of the form (x, y)↑ := {(x′, y′) |
x ≤ x′ and y′ ≤ y} (see Fig. 1, center). The motivation is the following: x repre-
sents the threshold of having enough evidence to say there is reasonable evidence
supporting the truth of the formula, while y represents the threshold below which
one considers not to have enough evidence to say that there is reasonable evi-
dence supporting the falsity of the formula. Of particular interest are filters
(1, 0)↑ (the evidence fully supports the formula and does not contradicts it) and
(1, 1)↑ (there is some evidence that fully supports the formula).

f

n b

t

(0, 1)

(0, 0) (1, 1)

(1, 0)

•(x, y)

(0, 1)

(0, 0) (1, 1)

(1, 0)

•
z

•¬∼z

•¬z
•∼z

Fig. 1. Belnap-Dunn square 4 (left), its continuous probabilistic extension with the
filter (x, y)↑ (center) and the geometric interpretation of ¬, ∼, and ¬∼ for �L2 (right).

Each logical matrix determines the set of valid formulas in a given language
(formulas, which are, for each valuation, designated), and a consequence relation
(an entailment) between sets of formulas and formulas, defined as preservation
of designated values. Regarding the two types of implication introduced in the
previous subsection, the standard semantics of the logics is set as follows:

– Logics with the → implication in the language (i.e. the logics �L2
(x,y)(→) and

G2
(x,y)(→) below) are given by the matrices ([0, 1]�L � [0, 1]�L(→), (x, y)↑) and

([0, 1]G � [0, 1]G(→), (x, y)↑) respectively.
– Logics with the � implication in the language (i.e. the logics �L2

(x,y)(�) and
G2

(x,y)(�) below) are given by the matrices ([0, 1]�L � [0, 1]�L(�), (x, y)↑) and
([0, 1]G � [0, 1]G(�), (x, y)↑) respectively.

We however need to treat �Lukasiewicz and Gödel logics separately. Therefore it is
practical to define the language and semantics for them separately in a compact
way as follows. We refer by �L2 to �Lukasiewicz logics, and by G2 to Gödel logics,
specifying the filter in the subscript.

Definition 1 (Language and semantics of �L2). We fix a countable set Prop
of propositional letters and consider the following language:

φ := 0 | p | ¬φ | (φ ∧ φ) | (φ ∨ φ) | (φ → φ) | (φ � φ)

26 M. B́ılková et al.

where p ∈ Prop. We define ∼φ := φ → 0, ∼wφ := φ � 0, φ1 � φ2 := ∼(φ1 →
∼φ2), and φ1 ↔ φ2 := (φ1 → φ2) � (φ2 → φ1).

Let v : Prop → [0, 1]×[0, 1], and denote v1 and v2 its left and right coordinates,
respectively. We extend v as follows.

v(0) = (0, 1) v(φ1 ∧ φ2) = (v1(φ1) ∧ v1(φ2), v2(φ1) ∨ v2(φ2))
v(¬φ) = (v2(φ), v1(φ)) v(φ1 ∨ φ2) = (v1(φ1) ∨ v1(φ2), v2(φ1) ∧ v2(φ2))

v(φ1 → φ2) = (v1(φ1)→�L v1(φ2), v2(φ2) 	 v2(φ1))
v(φ1 � φ2) = (v1(φ1)→�L v1(φ2), v1(φ1) & v2(φ2))

Notice that

v(∼φ) = (1 − v1(φ), 1 − v2(φ))
v(φ1 � φ2) = (v1(φ1) & v1(φ2), v2(φ1) ⊕ v2(φ2))

v(φ1 ↔ φ2) = (1 − |v1(φ1) − v1(φ2)|, |v2(φ1) − v2(φ2)|)

Remark 2. In Sect. 2.3, we use the fact that ¬ corresponds to a symmetry w.r.t.
the horizontal axis, ∼ to a symmetry w.r.t. the point (0.5, 0.5), ∼¬ and ¬∼
are correspond to a symmetry w.r.t. the horizontal axis (see Fig. 1, right). From
the meaning perspective, ¬ corresponds for swapping the positive and negative
supports of the statement.

Definition 2 (Language and semantics of G2). We fix a countable set Prop
of propositional letters and consider the following language:

φ := 0 | 1 | p | ¬φ | (φ ∧ φ) | (φ ∨ φ) | (φ → φ) | (φ � φ) | (φ � φ)

where p ∈ Prop. We define ∼φ := φ → 0, and ∼wφ := φ � 0.
Let v : Prop → [0, 1]×[0, 1], and denote v1 and v2 its left and right coordinates,

respectively. We extend v as follows.

v(0) = (0, 1) v(φ1 ∧ φ2) = (v1(φ1) ∧ v1(φ2), v2(φ1) ∨ v2(φ2))
v(1) = (1, 0) v(φ1 ∨ φ2) = (v1(φ1) ∨ v1(φ2), v2(φ1) ∧ v2(φ2))

v(¬φ) = (v2(φ), v1(φ)) v(φ1 → φ2) = (v1(φ1)→G v1(φ2), v2(φ2) �G v2(φ1))
v(φ1 � φ2) = (v1(φ1)→G v1(φ2), v1(φ1) ∧ v2(φ2))

Remark 3 (Interpreting negations and (co-)implications). ψ → ψ′ is positively
supported in �L2 and G2 is interpreted as ‘positive evidence for ψ is not stronger
than for ψ′’. The negative support is obtained via co-implications. In the case
�L2, 	 measures the difference between negative supports of ψ′ and ψ. On the
other hand, in G2, the negative support of ψ → ψ′ is non-zero (and in fact is
equal to the negative support of ψ′) when the negative support of ψ′ is stronger
than that of ψ.

On the other hand, � in both G2 and �L2 could be considered as being closer to
the more intuitive ‘if . . . , then . . . ’ in natural language. Thus, to obtain negative
support of ψ � ψ′, we use positive support of ψ and negative support of ψ′.
Falsity of � is thus more related to the traditional understanding of implication
being false when the antecedent is true and the consequent is false.

Constraint Tableaux for Two-Dimensional Fuzzy Logics 27

Definition 3 (Validity and consequence). Let φ be a formula and Γ a set
of formulas of �L2 (resp. G2) and v[Γ] := {v(γ) | γ ∈ Γ}.

– φ is �L2
(x,y)-valid (resp. G2

(x,y)-valid) iff ∀v : v(φ) ∈ (x, y)↑.
– Γ ��L2

(x,y)
φ (resp. Γ �G2

(x,y)
φ) iff ∀v : if v[Γ] ⊆ (x, y)↑ then v(φ) ∈ (x, y)↑.

Convention 1. We introduce the following notation.

– �L2
(x,y)(→) stands for the �L2

(x,y) logics over {0,¬,∧,∨,→}.
– G2

(x,y)(→) stands for the G2
(x,y) logics over {0,1,¬,∧,∨,→,�}.

– �L2
(x,y)(�) stands for the �L2

(x,y) logics over {0,¬,∧,∨,�}.
– G2

(x,y)(�) stands for the G2
(x,y) logics over {0,1,¬,∧,∨,�}.

We note that 0 of �L2
(x,y)(→) can be defined as ¬(p → p). However, since there is

no definition of 0 using �, we leave it in both languages for the sake of preserving
the same tableau rules for all logics. Likewise, although 0 and 1 are definable in
G2

(x,y)(→), their presence in the language simplifies the proofs of their semantical
properties (cf. Propositions 5 and 6).

Remark 4. Let φ be a formula over {0,∧,∨,⊃} with ⊃ being the Boolean impli-
cation. Denote φ• the formula obtained from it by substituting ⊃ for →, and
φ◦ by substituting ⊃ for �. Since v1’s behave precisely like the valuations
in �Lukasiewicz (Gödel) logic, one can see that φ is �L-valid (G-valid) iff φ• is
�L2

(1,0)(→)-valid (G2
(1,0)(→)-valid). Furthermore, φ is �L-valid (G-valid) iff φ◦ is

�L2
(1,1)(�)-valid (G2

(1,1)(�)-valid). Thus, �L2
(1,0)(→) and �L2

(1,1)(�) are conserva-
tive extensions of �L while G2

(1,0)(→) and G2
(1,1)(�) are conservative extensions

of G.

Remark 5. Notice that if v(p) = (1, 1), then v(p � p) = (1, 1) in G2(�) and
�L2(�). Thus, if we refuse to consider (1, 1) as a designated value, the weak
implication ceases to be reflexive. Therefore, �L2

(x,y)(�)’s and G2
(x,y)(�)’s with

sets of designated values not containing (1, 1) do not extend �L and G.

In order to work with extensions of �L and G, we are going to consider only
�L2

(x,y)(�)’s and G2
(x,y)(�)’s whose sets of designated values extend (1, 1)↑, that

is �L2
(x,1)(�) and G2

(x,1)(�). In the remainder of the article φ, ϕ, χ, ψ denote
formulas. Unless there is some ambiguity, we do not specify to which language
they belong.

2.3 Semantical Properties of �L2
(x,y)(→)

In this section, we are going to explore how the choice of (x, y)↑ affects the set
of �L2

(x,y)(→)-valid formulas. In particular, we are providing families of formulas
differentiating different �L2

(x,y)(→)-validities.

Definition 4 (Closure under conflation). We say that a filter D of [0, 1] �
[0, 1] is closed under conflation if for any (x, y) ∈ D, we have (1−y, 1−x) ∈ D.

28 M. B́ılková et al.

In bilattices, the negation ¬ corresponds to a symmetry w.r.t. the horizontal axis
and the conflation corresponds to a symmetry w.r.t. the vertical axis. Notice that
a filter (x, y)↑ is closed under conflation iff y = 1 − x. In �L2

(x,y)(→), conflation
can be defined as ¬∼ or equivalently ∼¬ (cf. Fig. 1, right).

Proposition 1

– Let y ≥ 1 − x. Then φ is �L2
(x,y)(→)-valid iff φ is �L2

(x,1−x)(→)-valid.
– Let y < 1 − x. Then φ is �L2

(x,y)(→)-valid iff φ is �L2
(1−y,y)(→)-valid.

The following statements show that by choosing different sets of designated
values, we can alter the sets of tautologies.

Proposition 2. Let m,n ∈ {2, 3, . . .}. Then �L2

(m−1
m , 1

m) � �L2

(n−1
n , 1

n) iff m > n.

Note, however, that while �L(1
2 , 12) validates p ∨ ∼p, it does not collapse into

classical logic as the following propositions show.

Proposition 3. Let m,n ∈ {3, 4, . . .}. Then �L2

(m−2
2m ,m+2

2m) � �L2

(n−2
2n ,n+2

2n) iff m>n.

We end this subsection by noting that all �L2
(x,y)(→)’s where (x, y)↑ is prime

are paraconsistent in the following sense: p,¬p ��L2
(x,y)(→) q. Furthermore, if(

1
2 , 1

2

)
∈ (x, y)↑, the logic is paraconsistent even w.r.t. ∼ since p,∼p ��L2

(x,y)(→) q.

Last but not least, most �L2
(x,y)(→)’s are not closed under modus ponens.

Proposition 4. Let �L2
(1,0)(→) � �L2

(x,y)(→). Then �L2
(x,y)(→) is not closed under

modus ponens.

2.4 Semantical Properties of G2(→)

In this section, we show that all G2
(x,y)(→) logics have the same set of valid for-

mulas. This means that just as the original Gödel logic, G2(→) can be seen as the
logic of comparative truth. Furthermore, the presence of the second dimension
allows to interpret G2(→) as the logic of comparative truth and falsehood.

Proposition 5. Let φ be a formula over {0,1,¬,∧,∨,→,�}. For any v(p) =
(x, y) let v∗(p) = (1 − y, 1 − x). Then v(φ) = (x, y) iff v∗(φ) = (1 − y, 1 − x).

Proposition 6. Let φ be a formula over {0,1,¬,∧,∨,→,�} such that v(φ) ≥
(x, y) for any v and some fixed (x, y) �= (0, 1). Then v′(φ) = (1, 0) for any v′.

The last three propositions show that in contrast to L2(→), the changing of the
set of designated values does not change the set of valid formulas as long as the
set remains a filter4 on [0, 1] � [0, 1] generated by a single point. However, while
the sets of tautologies remain the same, the entailment relation can be made
4 Notice that p∨¬p would be valid for D = [0, 1]� [0, 1]\{(0, 1)}. But D is not a filter.

Constraint Tableaux for Two-Dimensional Fuzzy Logics 29

paraconsistent. Indeed, it suffices to choose any prime (x, y)↑ and the entailment
ceases to be explosive in the following sense: p,¬p �G2

(x,y)
q.

Furthermore, the propositions have an important corollary which simplifies
the construction of the tableaux proofs.

Corollary 1. v(φ) = (1, 0) for any v iff v′
1(φ) = 1 for any v′.

3 Tableaux

First, we give a general definition of a constraint tableaux, then in Sects. 3.1
and 3.2, we introduce tableaux for �L2’s and G2’s.

Definition 5 (Constraint tableaux). Let Label be a set of labels and L a set
of formulas. A constraint is one of these three expressions:

– Labelled formulas of the form L : φ with L ∈ Label and φ ∈ L,
– Numerical constraints of the form c ≤ d or c < d with c, d ∈ [0, 1],
– Formulaic constraints of the form L : φ � L′ : φ′ or L : φ < L′ : φ′ with

L,L′ ∈ Label and φ, φ′ ∈ L.

A constraint tableau is a downward branching tree each branch of which is a
non-empty set of constraints. Each branch B can be extended by applications of
a given set of rules. If no rule application adds new entries to B, it is called
complete.

As expected, in labelled formulas, L is some set of values. Thus, the intended
interpretation of L : φ is ‘φ has some value from L’. In formulaic constraints, L
and L′ are components of φ’s valuation. Hence, the intended interpretation of
L : φ � L′ : φ′ is ‘the component of φ’s valuation denoted by L is less or equal
to the component of φ′’s valuation denoted by L′’. The detailed interpretations
of all types of entries for each tableau calculus are given in Definitions 6 and 8
as well as remarks 6 and 7.

Henceforth, we only state the rules and the closure conditions for branches.
In what follows, we identify a branch with the set of entries that appear at some
point on the branch.

Since our logics are hybrids between FDE and �L (or G), we can combine
the constraint tableaux framework with the FDE-tableaux by D’Agostino [8]. In
particular, it means that we use two kinds of labelled formulas and formulaic
constraints: those that concern the left coordinate (evidence for the statement)
and those that concern the right coordinate (evidence against the statement).

3.1 Constraint Tableaux for �L2

Definition 6 (Constraint tableau for �L2—T
(
�L2

(x,y)

)
). Branches contain

labelled formulas of the form φ �1 i, φ �2 i, φ �1 i, or φ �2 i, and numerical
constraints of the form i ≤ j with i, j ∈ [0, 1]. We call atomic labelled formulas
labelled formulas where φ ∈ Prop.

30 M. B́ılková et al.

0 1
0 1 i

0 ≤ i
0 2

0 2 i

1 ≤ i
0 1

0 1 i

0 ≥ i
0 2

0 2 i

1 ≥ i

¬ 1
¬φ 1 i

φ 2 i
¬ 2

¬φ 2 i

φ 1 i
¬ 1

¬φ 1 i

φ 2 i
¬ 2

¬φ 2 i

φ 1 i

→ 1
φ1 → φ2 1 i

i ≥ 1
φ1 1 1 − i + j

φ2 1 j
j ≤ i

→ 2
φ1 → φ2 2 i

φ1 2 j
φ2 2 i + j

→ 1
φ1 → φ2 1 i

φ1 1 1 − i + j
φ2 1 j

→ 2
φ1 → φ2 2 i

i ≤ 0
φ1 2 j

φ2 2 i + j
j ≤ 1 − i

1
φ1 φ2 1 i

i ≥ 1
φ1 1 1 − i + j

φ2 1 j
j ≤ i

2
φ1 φ2 2 i

φ1 2 i + j
φ2 1 1 − j

1
φ1 φ2 1 i

φ1 1 1 − i + j
φ2 1 j

2
φ1 φ2 2 i

i ≤ 0
φ1 2 i + j
φ2 1 1 − j
j ≤ 1 − i

∧ 1
φ1 ∧ φ2 1 i

φ1 1 i | φ2 1 i
∧ 2

φ1 ∧ φ2 2 i

φ1 2 i
φ2 2 i

∧ 1
φ1 ∧ φ2 1 i

φ1 1 i
φ2 1 i

∧ 2
φ1 ∧ φ2 2 i

φ1 2 i | φ2 2 i

∨ 1
φ1 ∨ φ2 1 i

φ1 1 i
φ2 1 i

∨ 2
φ1 ∨ φ2 2 i

φ1 2 i | φ2 2 i

∨ 1
φ1 ∨ φ2 1 i

φ1 1 i | φ2 1 i
∨ 2

φ1 ∨ φ2 2 i

φ1 2 i
φ2 2 i

Fig. 2. Rules of T
(
�L2
(x,y)

)
. Vertical bars denote splitting of the branch.

Constraint Tableaux for Two-Dimensional Fuzzy Logics 31

Each branch can be extended by an application of one of the rules in Fig. 2
where i, j ∈ [0, 1]. Let i’s be in [0, 1] and x’s be variables ranging over the
real interval [0, 1]. We define the translation τ from labelled formulas to linear
inequalities as follows:

τ(φ�1 i) = xL
φ ≤ i; τ(φ�1 i) = xL

φ ≥ i; τ(φ�2 i) = xR
φ ≤ i; τ(φ�2 i) = xR

φ ≥ i

Let • ∈ {�1,�1} and ◦ ∈ {�2,�2}. A tableau branch

B = {φ1 ◦ i1, . . . , φm ◦ im, φ′
1 • j1, . . . , φ

′
n • jn, k1 ≤ l1, . . . , kq ≤ lq}

is closed if the system of inequalities

τ(φ1 ◦ i1), . . . , τ(φm ◦ im), τ(φ′
1 • j1), . . . , τ(φ′

n • jn), k1 ≤ l1, . . . , kq ≤ lq

does not have solutions. Otherwise, B is open. A tableau is closed if all its
branches are closed.

φ has a T
(
�L2

(x,y)

)
proof if the tableaux beginning with {φ �1 c, c < x} and

{φ �2 d, d > y} are both closed.

Remark 6 (How to interpret the rules of T
(
�L2

(x,y)

)
?). Consider for instance the

rule →�2. It’s meaning is: v2(φ1 → φ2) ≤ i iff there is j ∈ [0, 1] s.t. v2(φ1) ≥ j
and v2(φ2) ≤ i + j. While rule ∧�1 means v1(φ1 ∧ φ2) ≤ i iff either v1(φ1) ≤ i
or v1(φ2) ≤ i.

To prove completeness and soundness, we need the following definitions.

Definition 7 (Satisfying valuation of a branch). Let v be a valuation and
k ∈ {1, 2}. v satisfies a labelled formula φ �k i (resp. φ �k i) iff vk(φ) ≤ i
(resp. vk(φ) ≥ i). v satisfies a branch B iff v satisfies any labelled formula in B.
A branch B is satisfiable iff there is a valuation which satisfies it.

Theorem 1 (Soundness and completeness). φ is �L2
(x,y)(→)-valid (resp.

�L2
(x,y)(�)-valid) iff there is a T

(
�L2

(x,y)

)
proof for it.

Proof. The soundness follows from the fact that no closed branch is realisable
and that if a premise of the rule is realisable, then all labelled formulas are
satisfied in at least one of the conclusions.

To show completeness, we proceed by contraposition. We need to show that
complete open branches are satisfiable.

Assume that B is a complete open branch. We construct the satisfying valua-
tion as follows. Let ∗ ∈ {�1,�1,�2,�2} and p1, . . . , pm be the propositional vari-
ables appearing in the atomic labelled formulas in B. Let {p1∗i1, . . . , pm∗in} and
{k1 ≤ l1, . . . , kq ≤ lq} be the sets of all atomic labelled formulas and all numerical
constraints in B. Notice that one variable might appear in many atomic labelled
formulas, hence we might have m �= n. Since B is complete and open, the follow-
ing system of linear inequalities over the set of variables {xL

p1
, xR

p1
, . . . , xL

pm
, xR

pm
}

must have at least one solution under the constrains listed:

τ(p1 ∗ i1), . . . , τ(pm ∗ in), k1 ≤ l1, . . . , kq ≤ lq.

32 M. B́ılková et al.

Let c = (cL
1 , cR

1 , . . . , cL
m, cR

m) be a solution to the above system of inequalities
such that cL

j (resp. cR
j) is the value of xL

pj
(resp. xR

pj
). Define the valuation v as

follows: v(pj) = (cL
j , cR

j).
It remains to show by induction on φ that all formulas present at B are satis-

fied by v. The basis case of variables holds by construction of v. We consider only
the most instructive case of φ1 → φ2 �2 i as the other cases are straightforward.

Assume that φ1 → φ2 �2 i ∈ B. Then, by completeness of B, either i ≤ 0 ∈ B,
in which case, φ1 → φ2 �2 i is trivially satisfied, or φ1 �2 j, φ2 �2 i + j ∈ B.
Furthermore, by the induction hypothesis, v satisfies φ1 �2 j and φ2 �2 i + j,
and we also have that j ≤ 1 − i. Now, to show that v satisfies φ1 → φ2 �2 i,
recall from semantics that v2(φ1 → φ2) = max(0, v2(φ2) − v2(φ1)).

Now, we have

max(0, v2(φ2) − v2(φ1)) ≥ max(0, i + j − j) = max(0, i) = i

as desired.
The cases of other connectives can be tackled in a similar fashion. �

3.2 Constraint Tableaux for G2

Definition 8 (Constraint tableaux for G2—T (G2)). Let � ∈ {<,�} and
� ∈ {<,�}. Branches contain:

– formulaic constraints of the form x : φ � x′ : φ′ with x ∈ {1, 2};
– numerical constraints of the form c � c′ with c, c′ ∈ {1, 0};
– labelled formulas of the form x : φ ∗ c with ∗ ∈ {�,�}.

We abbreviate all these types of entries with X � X′. Each branch can be extended
by an application of one of the rules in Fig. 3 where c �= c′, c �= c′, c, c′ ∈ {0,1}
and c, c′ ∈ {0, 1}.

A tableau’s branch B is closed iff at least one of the following conditions
applies:

– the transitive closure of B under � contains X < X,
– 0 � 1 ∈ B or X > 1 ∈ B or X < 0 ∈ B.

A tableau is closed iff all its branches are closed. We say that there is a tableau
proof of φ iff there is a closed tableau starting from 1 : φ < 1.

Remark 7 (Interpretation of constraints). Formulaic constraint x : φ � x′ : φ′

encodes the fact that vx(φ) ≤ vx′(φ′), similarly labelled formula x : φ � c
encodes the fact that vx(φ) ≤ c.

Definition 9 (Satisfying valuation of a branch). Let x,x′ ∈ {1, 2}. Branch
B is satisfied by a valuation v iff

– vx(φ) ≤ vx′(φ′) for any x : φ � x′ : φ′ ∈ B and
– vx(φ) ≤ c for any x : φ � c ∈ B s.t. c ∈ {0, 1}.

Constraint Tableaux for Two-Dimensional Fuzzy Logics 33

Fig. 3. Rules of T
(
G2

)
. Vertical bars denote branching; c �= c′, c �= c′, c, c′ ∈ {0,1},

c, c′ ∈ {0, 1}.

34 M. B́ılková et al.

Theorem 2 (Soundness and completeness). φ is G2-valid iff it has a T (G2)
proof.

Proof. For soundness, we check that if the premise of the rule is satisfied, then
so is at least one of its conclusions.

For completeness, we show that every complete open branch B is satisfiable.
We construct the satisfying valuation as follows. If x : p � 1 ∈ B, we set
v1(p) = 1. If 1 : p � 0 ∈ B, we set v1(p) = 0. We do likewise for 2 : p � 0 and
2 : p � 1. To set the values of the remaining variables q1, . . . , qn, we proceed as
follows. Denote B+ the transitive closure of B under � and let

[x : qi] =

⎧⎨
⎩x′ : qj

∣∣∣∣∣∣
(x : qi � x′ : qj ∈ B+ or x : qi � x′ : qj ∈ B+)

and
x : qi < x′ : qj /∈ B+ and x : qi > x′ : qj /∈ B+

⎫⎬
⎭

It is clear that there are at most 2n [x : qi]’s since the only possible loop in B+

is x : r � . . . � x : r, but in such a loop all elements belong to [x : r]. We
put [x : qi] � [x′ : qj] iff there are x : r ∈ [x : qi] and x′ : r′ ∈ [x′ : qj] s.t.
x : r � x′ : r′ ∈ B+.

We now set the valuation of these variables as follows

vx(qi) =
|{[x′ : q′] | [x′ : q′] � [x : qi]}|

2n
(∗)

Thus, all constraints containing only variables are satisfied.
It remains to show that all other constraints are satisfied. For that, we prove

that if at least one conclusion of the rule is satisfied, then so is the premise. We
consider only the case of �2�. Let 1 : φ1 � X be satisfied. W.l.o.g., assume
that X = 2 : ψ and �=<. Thus, v1(φ1) < v2(ψ). Recall that v2(φ1 → φ2) =
min(v1(φ1), v2(φ2)). Hence, v2(φ1 � φ2) < v2(ψ), and 2 : φ1 � φ2 < 2 : ψ is
satisfied as desired. By the same reasoning, we have that if 2 : φ2 � X is satisfied,
then so is 2 : φ1 � φ2 � X.

The cases of other rules can be showed in the same fashion. �
3.3 Applications

Corollary 2. Satisfiability for any �L2
(x,y)(→) and �L2

(x,1)(�) is NP-complete
while their validities are coNP-complete.

Proof. Let |φ| be the number of symbols in φ. Observe, from the proof of The-
orem 1, that each tableau branch gives rise to two bounded mixed-integer pro-
gramming problems (bMIP)—each of the length O(ρ(|φ|)) for some polynomial
ρ. Recall that bMIP is NP-complete (cf. [17]). Thus we can non-deterministically
guess an open branch and then solve its two bMIPs (one arising from inequal-
ities with �1, and the other from those with �2). This yields the NP- and
coNP-membership for satisfiability and validity, respectively.

To obtain the NP-hardness, we use the same method as in [17,24]. For
each classical formula φ one can construct a formula two(φ) (cf. the detailed

Constraint Tableaux for Two-Dimensional Fuzzy Logics 35

definition in [24, Lemmas 3.1–3.3]). Then by [24, Lemma 3.2], φ is classically
valid iff φC := two(φ) ⊃ φ is �L-valid. Furthermore, if φC is not valid, there is an
�L-valuation v such that v(φC) = 0. Recall that φ• (resp. φ◦) denotes the formula
obtained by substituting ⊃ for → (resp. �) in the formula φ (cf. Remark 4).
Thus, φ is classically valid iff (φC)• is �L2

(1,0)(→)-valid and (φC)◦ is �L2
(1,1)(�)-

valid. Furthermore, if (φC)• is not valid, there is v′ such that v′((φC)•) = (0, 1),
and (φC)◦ is not valid, there is v′ such that v′((φC)•) = (0, x) for some x. Since
(0, 1) is not included in any non-trivial filter on [0, 1] � [0, 1], and since no non-
trivial filter can include (1, 1) and some (0, x) simultaneously, we obtain

�CPL φ iff (φC)• is �L2
(x,y)(→)-valid iff (φC)◦ is �L2

(x,y)(�)-valid

as desired. �
Remark 8 (Removing the branching). We have introduced branching rules in our
tableaux in order to make them more intuitive. It is possible, however, to make
all rules linear just as it was done originally in [17]. For example, the linear
versions of →�1 and →�2 look as follows (y ∈ {0, 1}):

φ1 → φ2 �1 i

φ1 �1 1 − i + j − y y � i
φ2 �1 j + y j � i

φ1 → φ2 �2 i

φ1 �2 j + y y � 1 − i
φ2 �2 i + j − y j � 1 − i

Other rules can be easily acquired since ∨ and ∧ can be defined via → and 0
in the language of �L2. Rules without branching improve efficiency of the proof
search by removing the need to guess the branch whose bMIP we should solve.

Corollary 3. Satisfiability for G2(→) and G2(�) is NP-complete.

Proof. It follows from the Proof of Theorem 2 that the satisfiability of G2(→)
and G2(�) is in NP: we obtain the valuation from (∗), and it takes polynomial
time to check that it indeed satisfies the formula.

The NP-hardness follows since G2’s are conservative extensions of G whose
satisfiability and validity are NP- and coNP-complete respectively. �
We can also use the tableaux to check whether a set Γ of assumptions entails
a formula φ in the logics we consider. This yields the finite strong completeness
for G2’s and �L2’s by means of tableaux, and extends the complexity results to
the finitary entailment.

Corollary 4. Let Γ be a finite set of formulas. Then Γ ��L2
(x,y)

φ iff the left
tableau closes, Γ �G2(→) φ iff the central tableau closes, and Γ �G2(�) φ iff the
left tableau closes.

Thus, the finitary entailment for any of these logics is coNP-complete.

36 M. B́ılková et al.

4 Conclusions and Further Research

Using constraint tableaux, we have provided a modular treatment of the �Luka-
siewicz and Gödel based two-dimensional logics. Our next steps are: (1) to study
the structural proof theory of these logics, and of the two layer logics introduced
in [6]; (2) to study and compare the logics in terms of consequence relations,
to provide a Hilbert style axiomatization (for those where modus ponens is
sound), and to prove standard completeness—cases we understand so far are
the following four: �L2

(1,1)(�), �L2
(1,0)(→) which is the logic �L(¬) of [6], G2

(1,0)(→)
whose validities coincide with the axiomatic extension of Wansing’s I4C4 [31]
with the prelinearity axiom, and G2

(1,1)(�) whose consequence coincides with
the axiomatic extension of Nelson’s N4⊥ [25,26] with the prelinearity axiom.

In a broader sense we naturally aim to provide a general treatment of two-
dimensional graded logics. Indeed, within the research project introduced in [6],
we want to develop a modular logical framework for reasoning based on hetero-
geneous information (such as crisp or fuzzy data, personal beliefs, etc.) that can
be both incomplete and inconsistent. In addition, we do not wish to commit to a
specific logic to model the reasoning of the agent(s), because different situations
may call for different logics—modeling the reasoning of a group of experts is
different from modeling the reasoning of the crowd. Doing so requires the ability
to manipulate and combine logics for these different situations in a modular way.

References

1. Avron, A.: The structure of interlaced bilattices. Math. Struct. Comput. Sci. 6(3),
287–299 (1996). https://doi.org/10.1017/S0960129500001018

2. Avron, A., Arieli, O.: Reasoning with logical bilattices. J. Logic Lang. Inform. 5,
25–63 (1996)

3. Avron, A., Konikowska, B.: Decomposition proof systems for Gödel-Dummett log-
ics. Stud. Logica. 69(2), 197–219 (2001)

4. Baldi, P., Cintula, P., Noguera, C.: On two-layered modal logics for uncertainty
(2020, manuscript)

5. Belnap, N.D.: How a computer should think. In: Omori, H., Wansing, H. (eds.)
New Essays on Belnap-Dunn Logic. SL, vol. 418, pp. 35–53. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31136-0 4

6. B́ılková, M., Frittella, S., Majer, O., Nazari, S.: Belief based on inconsistent infor-
mation. In: Martins, M.A., Sedlár, I. (eds.) DaLi 2020. LNCS, vol. 12569, pp.
68–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3 5

7. Cintula, P., Noguera, C.: Modal logics of uncertainty with two-layer syntax: a gen-
eral completeness theorem. In: Proceedings of WoLLIC 2014, pp. 124–136 (2014)

8. D’Agostino, M.: Investigations into the Complexity of Some Propositional Calculi.
Oxford University Computing Laboratory, Oxford (1990)

9. Di Nola, A., Leustean, I.: �Lukasiewicz logic and MV-algebras. In: Cintula, P.,
Hajek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic, vol. 2.
College Publications (2011)

10. Dubois, D.: On ignorance and contradiction considered as truth-values. Log. J.
IGPL 16(2), 195–216 (2008)

https://doi.org/10.1017/S0960129500001018
https://doi.org/10.1007/978-3-030-31136-0_4
https://doi.org/10.1007/978-3-030-65840-3_5

Constraint Tableaux for Two-Dimensional Fuzzy Logics 37

11. Dunn, J.M.: Intuitive semantics for first-degree entailments and ‘coupled trees’.
Philos. Stud. 29(3), 149–168 (1976)

12. Dunn, J.M.: Contradictory information: too much of a good thing. J. Philos. Log.
39, 425–452 (2010)

13. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Inf. Comput. 87, 78–128 (1990)

14. Font, J.: Abstract Algebraic Logic-An Introductory Textbook, Studies in Logic,
vol. 60. College Publications, London (2016)

15. Ginsberg, M.: Multivalued logics: a uniform approach to reasoning in AI. Comput.
Intell. 4, 256–316 (1988)

16. Goré, R.: Dual intuitionistic logic revisited. In: Dyckhoff, R. (ed.) TABLEAUX
2000. LNCS (LNAI), vol. 1847, pp. 252–267. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722086 21

17. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif.
Intell. 12(3–4), 231–263 (1994)

18. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic. HALO, vol. 2, pp. 297–395. Springer, Dordrecht
(2001). https://doi.org/10.1007/978-94-017-0452-6 5

19. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 2, pp. 100–178. Elsevier and MIT Press
(2001). https://doi.org/10.1016/b978-044450813-3/50005-9

20. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Springer,
Dordrecht (1998)

21. Jansana, R., Rivieccio, U.: Residuated bilattices. Soft. Comput. 16(3), 493–504
(2012)

22. Klein, D., Majer, O., Rad, S.R.: Probabilities with gaps and gluts. J. Philos. Log.
(2021). https://doi.org/10.1007/s10992-021-09592-x

23. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Applied
Logic Series, vol. 36. Springer, Heidelberg (2008)

24. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete.
Theor. Comput. Sci. 52(1), 145–153 (1987). https://doi.org/10.1016/0304-
3975(87)90083-1

25. Nelson, D.: Constructible falsity. J. Symb. Log. 14(1), 16–26 (1949)
26. Odintsov, S.: Constructive Negations and Paraconsistency. Trends in Logic, vol.

26. Springer, Heidelbrg (2008)
27. Omori, H., Wansing, H.: 40 years of FDE: an introductory overview. Stud. Logica.

105(6), 1021–1049 (2017). https://doi.org/10.1007/s11225-017-9748-6
28. Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intu-

itionistic logic. dissertation, Institute of Mathematics, Polish Academy of Sciences
(1980)

29. Rivieccio, U.: An algebraic study of bilattice-based logics. Ph.D. thesis, University
of Barcelona - University of Genoa (2010)

30. Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation.
Stud. Logica. 36(1–2), 109–125 (1977)

31. Wansing, H.: Constructive negation, implication, and co-implication. J. Appl. Non-
Classical Logics 18(2–3), 341–364 (2008). https://doi.org/10.3166/jancl.18.341-
364

https://doi.org/10.1007/10722086_21
https://doi.org/10.1007/10722086_21
https://doi.org/10.1007/978-94-017-0452-6_5
https://doi.org/10.1016/b978-044450813-3/50005-9
https://doi.org/10.1007/s10992-021-09592-x
https://doi.org/10.1016/0304-3975(87)90083-1
https://doi.org/10.1016/0304-3975(87)90083-1
https://doi.org/10.1007/s11225-017-9748-6
https://doi.org/10.3166/jancl.18.341-364
https://doi.org/10.3166/jancl.18.341-364

Analytic Tableaux for Non-deterministic
Semantics

Lukas Grätz1,2(B)

1 Technische Universität Darmstadt, Darmstadt, Germany
lukas.graetz@tu-darmstadt.de

2 Universität Leipzig, Leipzig, Germany

Abstract. Analytic tableau systems for the family of non-deterministic
semantics are introduced. These are based on tableaux for many-valued
logics using sets-as-signs DNF representations. Karnaugh maps illustrate
the construction of tableau rules. In contrast to classical many-valued
tableaux, we add a rule called sign intersection. Soundness and com-
pleteness are shown. As an example demonstrates, some tableau systems
would be incomplete without sign intersection. There is a correspondence
to well-studied canonical calculi based on sequent systems: Tableau sys-
tems can be translated into canonical calculi, but not vice-versa (struc-
tural rules are missing on the tableau side).

Keywords: Tableaux · Non-deterministic semantics · Sets as signs ·
Signed logic · DNF representation

1 Introduction

As a generalization of many-valued logics, non-deterministic semantics has been
successfully used to provide a semantics for a large variety of logics, including
para-consistent logics [1], non-standard modal logics [12,22]. As shown there,
some important logics do not have a deterministic finitely-valued semantics.

In this paper, a characterization of tableau systems for many-valued logics
[16–18] is adapted to non-deterministic semantics. A previous approach is a
special case within our framework [24].1

Tableaux are related to other Gentzen-style sequent systems, notably canon-
ical calculi (Sect. 8).

Just a short warning, for those who may see this paper as a sheer exercise:

1. Admittedly, the tableau rule definition is a straightforward generalization.
2. An additional structural rule called sign intersection is added. Without sign

intersection, some tableau systems would be incomplete (see Example 3). The
rule itself had already been suggested to improve complexity of many-valued
tableaux, see Note 4 below Definition 6.

1 Also note that a tableau system for a particular non-deterministic semantics is
already listed in [19, p. 211]. Unfortunately, we could not find out more about it; an
approach to contact the author was unsuccessful.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 38–55, 2021.
https://doi.org/10.1007/978-3-030-86059-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_3&domain=pdf
http://orcid.org/0000-0002-9716-3142
https://doi.org/10.1007/978-3-030-86059-2_3

Analytic Tableaux for Non-deterministic Semantics 39

3. In this paper, soundness and completeness proofs are designed to be simple.
4. Generalized DNFs make use of (meta-level) modal operators.

Finally, it becomes an exercise to construct new tableau systems by using our
framework for specific semantics in the literature.

The paper is organized as follows: After the preliminaries (Sect. 2), tableau
rules are defined (Sect. 3), which are shown to be sound and complete (Sects. 5
and 6). The meta-logical representation of a tableau rule is a generalized DNF
(Sect. 7). For finite valued semantics, tableau rules based on canonical DNF do
always exist. More efficient rules with less branching can be constructed using
generalized Karnaugh maps (Sect. 4).

2 Non-deterministic Semantics

This section provides self-contained notions, see [6] for in-depth descriptions.
A propositional language L = 〈P,C〉 consists of a countable set of proposi-

tional variables P = {p0, p1, . . . } and a set of logical connectives 〈C,α〉 where α
defines the arity α(�) ∈ N of each connective � ∈ C. For a compact notation
we write �(a) to indicate that � ∈ C has arity a, e.g., C = {¬(1),→(2),∨(2)}.

The set of all formulas is denoted by For L and has the usual inductive
definition: If �(m) ∈ C is a connective and A1, . . . , Am ∈ For L are formulas,
then �(A1, . . . , Am) ∈ For L is also a formula.

Definition 1 (Nmatrix). M = 〈V,D,O〉 is called nmatrix, where

– V is the set of truth values,
– D ⊆ V is the subset of designated values (non-designated are F = V \ D),
– O is the set of non-deterministic truth functions.

The set O includes a non-deterministic truth function �̃ : Vm → (2V \ ∅) for
each �(m) ∈ C.

This generalizes the definition of a (many-valued) matrix, with a truth func-
tion �̃ : Vm → V for each connective �(m) ∈ C. Such a matrix is equivalent to a
“deterministic” nmatrix, in which each truth function returns singletons only.

Note 1. Usually, see [29], the set of designated truth values D is required to be a
non-empty proper subset of V, since D = ∅ or D = V would make the semantics
trivial. Nevertheless, we do not need this assumption in the following. Still, we
will not introduce tableaux for “PNmatrices” [9] as we need �̃(x1, . . . , xm)
= ∅
in Lemma 2.

Definition 2 (Valuation). Let M = 〈V,D,O〉 be an nmatrix. A (dynamic)
valuation in M is a function v : For L → V such that for each �(m) ∈ C and
A1, . . . , Am ∈ For L:

v(�(A1, . . . , Am)) ∈ �̃(v(A1), . . . , v(Am))

40 L. Grätz

Logical entailment is given by a Tarskian consequence relation:

Definition 3 (�M). The semantic consequence relation

Δ �M A

between Δ ⊆ For L and A ∈ For L is defined as

∀v ∈ ValM : (∀B ∈ Δ : v(B) ∈ D) =⇒ v(A) ∈ D
where ValM is the set of all valuations in M. We say that a conclusion A follows
from a set of premises Δ in M.

3 Tableau System Definition

In this section and any following sections, let M = 〈V,D,O〉 be an nmatrix
(F = V \ D) and C be the set of connectives.

Definition 7 in this section generalizes tableau rules for many-valued seman-
tics. The remaining definitions in this section are taken from the many-valued
case, c.f. [18]; only the sign intersection rule is added here (again, see Note 4
for origins). The rest of the section is taken by Example 3, a tableau system for
demonstration purposes.

Tableau systems are meant to formalize indirect proofs. Simple tableau sys-
tems (c.f. Definition 14 and Note 6) use signed formulas “x A” or “A takes the
truth value x”. Proving that a particular formula A is valid (i.e., � A) would
require separate tableaux with an assumption “x A” for each x ∈ F . This for-
malizes separate indirect proofs for each x ∈ F .

However, it is more natural to use only one indirect proof with the assumption
that A takes any of the non-designated values. This assumption can be formalized
using sets as signs [16–18] by the signed formula F A. Although this paper covers
sets as signs only, simple tableau systems can still be simulated using singleton
sets as signs.

Definition 4 (S, S
+). A set of signs S for M, is a non-empty family of truth

value sets ∅
= S ⊆ 2V , closed under intersection {X ∩ Y | X,Y ∈ S} = S. Given
S, we call S

+ = S \ {∅} the set of non-empty signs.

Note 2. In the following, we will define a particular set of signs either by S or
by S

+. Given S
+, we usually get S = S

+ ∪ {∅}. Special cases with ∅
∈ S are of
little interest.

Example 1. The set of simple signs consists of all singletons S
+
1 = {{x} | x ∈ V}.

Example 2. The whole power set S2 = 2V is also a candidate.

Definition 4 permits a finite set of signs even under an infinite number of
truth values. In most of the proofs we require at least {{x} | x ∈ V} ⊆ S or
D,F ∈ S. The following definition is taken from [7,14]:

Analytic Tableaux for Non-deterministic Semantics 41

Definition 5 (Signed formula). Given X ∈ S and A ∈ For L, the expression
X A is called a signed formula and has the following semantics:

1. We say a signed formula (X A) is true under a valuation v in M if v(A) ∈ X.
2. Expressions over signed formulas and meta-connectives (∧∧, ∨∨, ¬¬, ⇐⇒, =⇒,

⇐=) have the semantics of classical propositional logic: For instance, if both
(X A) and (Y B) are true under v, then (X A∧∧ Y B) is true under v.

Note 3. Satisfiability and validity are adapted to signed formulas: A signed for-
mula (X A) is satisfiable or consistent iff there is a valuation v with v(A) ∈ X.
A signed formula (X A) is valid iff v(A) ∈ X holds for all valuations v.

Definition 6 (Sign intersection). The sign intersection rule can be applied
to signed formulas (X A), (Y A) and returns (X ∩ Y A).

X A
Y A

X ∩ Y A

Note 4. Sign intersection was already known as “contraction rule” in [17]. The
rule was renamed to prevent confusion with the well-known structural rule of
the sequent calculus. Both rules follow the same idea to contract two instances
with the same formula A into a single formula in their respective direction of
proof. However, the direction is converse in analytic tableaux and (synthetic)
sequent calculi. A structural rule with a similar effect to sign intersection is called
anti-contraction by Ohnishi and Matsumoto [21], also known as “expansion” or
“duplication”, see [23, p. 61 ff].

Definition 7 (Tableau rule). Given is a set of signs S for M. Let Y ∈ S
+ be

a sign, �(m) ∈ C a connective, Ij ⊆ {1, . . . ,m} index sets, and Xj,i ∈ S
+ signs

(for all j = 1, . . . , k and i ∈ Ij). Then

Y � (A1, . . . , Am)

{X1,i Ai | i ∈ I1} · · · {Xk,i Ai | i ∈ Ik}

is a tableau rule for Y and �̃ iff for all z1, . . . , zm ∈ V:

Y ∩ �̃(z1, . . . , zm)
= ∅ ⇐⇒
k∨

j=1

∧

i∈Ij

zi ∈ Xj,i (1)

As in [16], a tableau rule can also be written as function πY �.

Definition 8. The functional representation of a tableau rule for Y � (A1, . . . ,
Am) (Definition 7) is given by a function πY � : (For L)m → P(P(S × For L))
with:

πY �(A1, . . . , Am) =
{

{Xj,i Ai | i ∈ Ij}
∣∣∣ j ∈ {1 . . . k}

}

42 L. Grätz

Definition 9. Each E ∈ πY �(A1, . . . , Am) is called an extension of the tableau
rule πY � (i.e., an extension E is a “column” in a tableau rule).

Note 5. We distinguish between an extensionless rule πY �(A1, . . . , Am) = ∅
and a rule with a single empty extension πY �(A1, . . . , Am) = {∅} by using
Y �(A1, . . . , Am)

× for the former and
Y �(A1, . . . , Am)

for the latter.

Definition 10 (Tableau system). Let M = 〈V,D,O〉 be an nmatrix and S(⊆
2V) be a set of signs. A tableau system for M and S consists of tableau rules
for all X ∈ S

+ and � ∈ C and additionally, the sign intersection rule. We may
define such a tableau system Π = {πY � | X ∈ S

+,� ∈ C} by its tableau rules.

For the definition of a tableau proof tree, the reader is assumed to be familiar
with basic notions of graph theory, namely tree, node, root, leaf, child, and branch.
A branch is simply a path from the root to a leaf.

Definition 11. Let Θ be a set of signed formulas. A tableau proof tree for
assumptions Θ in a tableau system Π is a tree of signed formulas. Each node in
the tableau tree is either an assumption or a result of a rule application from Π.
Applying a tableau rule with k extensions on some signed formula in a branch
results in k subbranches, containing all signed formulas of the respective exten-
sion. These subbranches are located below the previous leaf of the branch. The
application of sign intersection on Y A and X A in a branch results in a new
leaf (X ∩ Y) A.

Definition 12. A branch of a tableau is closed iff either

– any empty-signed formula ∅ A occurs, or

– an extensionless rule
Y �(A1, . . . , Am)

× was applied, leaving no subbranches.

A tableau is closed iff every branch is closed.

Definition 13. A proper leaf in a tableau tree is a leaf that cannot be closed by
applying an extensionless tableau rule.

So to say, a proper leaf represents an end of a branch in the tree, while an
improper leaf is just an inner node with zero children. Applying an extensionless
tableau rule leads to the usual branching, just with zero continuing branches. A
branch with ∅ A is closed since it is obviously unsatisfiable.

Definition 14 (Simple tableau system). A simple tableau system for M
corresponds to a tableau system for M and S

+
1 = {{x} | x ∈ V} without sign

intersection and with a modified closing condition: A branch is closed by either
an extensionless rule, or two signed formulas {x} A and {y} A with x
= y.

Note 6. Instead of singleton signed formulas {x} A, formulas x A with truth
values x ∈ V as signs are used in the literature [11,14,18,24]. These are only
a syntactical variant of simple tableau systems, as we observe. A collection of
simple tableau systems for non-deterministic semantics is given in [24].

Analytic Tableaux for Non-deterministic Semantics 43

The following lemma shows that simple tableaux are equivalent to tableaux with
singleton sets.

Lemma 1. Let Π be a tableau system for M and S
+
1 = {{x} | x ∈ V}, and Π ′

be the corresponding simple tableau system for M, then there is a tableau proof
for a signed formula {x} A in Π whenever there is a similar tableau proof for
{x} A in Π ′.

Proof. Suppose that a tableau proof tree in Π has a sign intersection applied to
{y} B and {z} B with {y}, {z} ∈ S1. Then either y
= z or y = z. In the former
case, we get a closing condition with ∅ B. In the letter case, sign intersection
has no effect since {y} B already occurs on the branch.

Next, observe that closing conditions of Π and Π ′ can be mutually simulated:
A closing in Π with ∅ B involves a previous sign intersection of {y} B and
{z} B—the simple tableau would already be closed without sign intersection.
And a closing in Π ′ by {y} B and {z} B with y
= z can be simulated in Π by
sign intersection and closing with ∅ B. Of course, we do not have to simulate
closing with an extensionless rule as this is part of both tableau variants.

Thus, we can translate tableau proofs in Π to proofs in Π ′ and vice versa.

For soundness see Sect. 5; for completeness see Sect. 6.

Example 3. Let M3 = 〈{0, 1, 2}, {1, 2}, {�̃, ∼̃}〉 be an nmatrix2 with:

�̃ 0 1 2 ∼̃
0 2 2 2 2
1 0 0, 1 2 0, 2
2 0 0, 1 2 0

(2)

In this example, the signs are given by S
+
3 = {{0}, {0, 1}, {1}, {1, 2}} and the

tableau calculus Π3 consists of the following rules:

{0} A � B

{1, 2} A
{0, 1} B

{0, 1} A � B

{1, 2} A
{0, 1} B

{1} A � B

{1, 2} A
{1} B

{1, 2} A � B

{0} A {1, 2} B

{0} ∼A

{1, 2} A

{0, 1} ∼A

{1, 2} A

{1} ∼A

×
{1, 2} ∼A

{0, 1} A

Observe that these rules satisfy (1) in Definition 7 (alternatively this can be
checked visually using Karnaugh maps, see the next section).

To prove a certain formula, we have to assume that the formula is valuated
to any non-designated value, and construct a closed tableau. For example, we
prove �M3∼p �∼p by a tableau starting with assumption F ∼p �∼p. This is
shown in the left of Fig. 1.

2 A usage of this nmatrix in a meaningful logic would be nice but is not intended.

44 L. Grätz

1) {0} ∼p ∼p
|

2)1 {1, 2} ∼p
3)1 {0, 1} ∼p

|
4)2,3 {1} ∼p

|
5)4 ×

1) {0} ∼p ∼p
|

2)1 {1, 2} ∼p
3)1 {0, 1} ∼p

|
4)2 {0, 1} p

|
5)3 {1, 2} p

Fig. 1. Tableaux with assumption {0} ∼p �∼p in tableau system Π3 by Example 3
(the tree nodes are numbered, a subscript indicates that a node stems from a rule
application on the nodes with given numbers). The closed tableau on the left uses sign
intersection in node 4. The tableau on the right is open after exhaustive rule application
without sign intersection. Thus, Π3 without sign intersection is incomplete.

{1, 2} A

{1, 2} A B

{0} B

{0} A

∅ A

{1, 2} B

∅ B

{0} p ((p q) q)

{1, 2} p
{0, 1} (p q) q

{1, 2} p q
{0, 1} q

{0} p

∅ p

{1, 2} q

{1} q

Fig. 2. Closed tableau in Π3 (Example 3) for the consequence A, A � B � B and open
tableau in Π3 with assumption {0} p � ((p � q) � q).

What happened if we would drop the sign intersection rule? On the right of
Fig. 1, we exhaustively applied any tableau rule of Π3 except sign intersection. By
exhaustive, we mean that no further rule application adds a new signed formula
on the proof tree. Thus, Π3 would be incomplete without sign intersection!

We conclude that we need sign intersection for completeness of tableaux for
non-deterministic semantics. In contrast, tableaux with sets as signs for many-
valued semantics without sign intersection are sound and complete, c.f. [16].

A rule B1, . . . , Br �M A can be proven by a tableau tree with assumptions
D B1, . . . , D Br and F A. The proof tree for A,A � B �M3 B (modus ponens)
is given on the left of Fig. 2. On the other hand, �M3 p � ((p � q) � q) does not
hold. We can choose between v(p) = 1 or v(p) = 2 when constructing a valuation
for the open branch in the open tableau on the right, e.g., v(p) = 2, v(q) = 1,
v(p � q) = 1, v((p � q) � q) = 0. Lemma 2 together with Lemma 3 give the
general construction of valuations for countersatisfiability, see Sect. 6.

Analytic Tableaux for Non-deterministic Semantics 45

4 Rule Construction

As a consequence of (1) in Definition 7, the extensions of some signed formula
Y � (A1, . . . , Am) have to cover those and only those cells whose return value sets
that are not disjoint from Y . The construction could be done using a generaliza-
tion of Karnaugh maps to many-valued logic [17], which corresponds to shading
or colouring all matching cells in the nmatrix. Example 4 gives a demonstration.

Example 4. In this example, the construction of tableau rules for the nmatrix
M3 is discussed (M3 was defined in Example 3).

A tableau rule for {0} ∼ A has to cover all cells of ∼̃, which contain the
truth value 0. The tableau rule π′

{0}∼ covers each cell with separate extensions.
However, these extensions result in unnecessary branching in the tableau proof
tree.

∼̃
0 2
1 0, 2
2 0 {0} ∼A

{1} A {2} A
π′

{0}∼

∼̃
0 2
1 0, 2
2 0 {0} ∼A

{1, 2} A
π{0}∼

Using π{0}∼, the whole square is covered by a single extension.
The advantage of sets as signs becomes even more obvious when constructing

a rule for {0} �. This rule needs only one extension, whereas a version with
simple signs would need four extensions.

When the set of signs includes a truth value set like {1, 2}, we have to con-
struct tableau rules for these signs, too. A rule for {1, 2} A � B has to cover all
cells of �̃, which contain 1 or 2:

�̃ 0 1 2
0 2 2 2
1 0 0, 1 2
2 0 0, 1 2

�̃ 0 1 2
0 2 2 2
1 0 0, 1 2
2 0 0, 1 2

This is done by π′
{1,2}� or π{1,2}�:

{1, 2} A � B

{0} A {1, 2} B
{0} B

π′
{1,2}� {1, 2} A � B

{0} A {1, 2} B
π{1,2}�

If X � (A1, . . . , Am) is valid, i.e., X ⊇ �̃(z1, . . . , zm) for all z1 . . . zm ∈ V,
then the tableau rule has no condition on the subformulas. If X � (A1, . . . , Am)
is unsatisfiable, i.e., X ∩�̃(z1, . . . , zm) = ∅ for all z1 . . . zm ∈ V, then the current
branch gets killed. To indicate the differences, we use blank space for the former
and × for the latter. This is demonstrated by the following rules:

{0, 2} ∼A
π{0,2}∼

{1} ∼A

× π{1}∼

46 L. Grätz

Given any finitely-valued non-deterministic semantics, we can construct a
tableau system with singleton or simple signs, see Corollary 4 in Sect. 7.

In some cases, it is possible to create tableau rules for infinitely many truth
values. See [18] for tableaux based on infinitely many-valued (deterministic)
semantics.

5 Soundness

Throughout this paper, we assume a tableau system Π for an nmatrix M =
〈V,D,O〉 and a set of signs S (Definition 10). We can construct such systems
using the methods in Sect. 4. It is worth noting that soundness and complete-
ness would be preserved if we added (redundant) tableau rules (still respecting
Definition 7).

Theorem 1 (Strong soundness). Assume D,F ⊆ S. If there is a closed
tableau for D B1, . . . ,D Br,F C1 then B1, . . . , Br �M C1.

Proof. Suppose by contraposition that B1, . . . , Br �M C1. Then there is a val-
uation v with v(B1), . . . , v(Br) ∈ D and v(C1) ∈ F . Thus, the premises of the
tableau for D B1, . . . ,D Br,F C1 are satisfiable.

Consider a branch where the first k signed formulas are satisfied by v,
i.e., for Y A we have v(A) ∈ Y . Whenever we apply a tableau rule for a
signed formula Y �(A1, . . . , Am) on the branch that is satisfied by v, we have
v(�(A1, . . . , Am)) ∈ Y . Moreover, v(�(A1, . . . , Am)) ∈ �̃(v(A1), . . . , v(Am))
holds by the definition of a valuation and therefore

∃j ∈ {1, . . . , k} : ∀i ∈ Ij : v(Ai) ∈ Xj,i

by (1) in Definition 7. Hence there is a (sub) branch satisfied by v. Whenever
we apply sign intersection on X A and Y A, we have v(A) ∈ X and v(A) ∈ Y ,
hence this branch also satisfies the signed formula X ∩ Y A.

This shows that there is a branch which satisfies v (for any signed formula
X A on the branch, we have v(A) ∈ X). This branch must be open, since
∅
= {v(A)} ⊆ X. Therefore, the tableau would not be closed.

Corollary 1. By Theorem 1: If there is a closed tableau for F A then �M A.

6 Completeness

In [16], the completeness proof for many-valued sets as signs uses generalized
Hintikka sets. In the following, Hintikka sets are generalized for non-determini-
stic semantics using a similar approach. The difference is that the additional sign
intersection rule has to be met. We assume the same as in the previous section.

Definition 15. A set of signed formulas Θ ⊆ (S ∪ {∅}) × For L is called satis-
fiable iff there is a valuation v in M such that, for all (X A) ∈ Θ, v(A) ∈ X.

Analytic Tableaux for Non-deterministic Semantics 47

Definition 16. A Hintikka set is any set H ⊆ S×For L, which is closed under
sign intersection (3) and tableau rule application (4).

∀(X A), (Y A) ∈ H : (X ∩ Y A) ∈ H (3)
∀(X � (A1 . . . Am)) ∈ H : X
= ∅ =⇒ (∃E ∈ πX�(A1 . . . Am) : E ⊆ H) (4)

Note that the following proofs would also hold if we added more (redundant)
tableau rules π′

X� to the tableau system but not to (4). This means, πX� would
still be fixed in Definition 16.

Lemma 2 (Lindenbaum construction). A Hintikka set H is satisfiable iff
H does not include a formula with an empty sign (∅ A)
∈ H.

Proof. Assume (∅ A) ∈ H. Then H is unsatisfiable by definition.
Assume (∅ A)
∈ H. We enumerate the set of formulas {B1, B2, . . . } = For L

such that for any i ∈ N, all subformulas Bj of Bi have a lower index j ≤ i.
By choosing a value v(Bi) where v(B1), . . . , v(Bi−1) are already defined, we
inductively construct a valuation v satisfying H:

For a propositional variable Bi = p ∈ P choose any v(p) ∈ X if there is a
minimal X with (X p) ∈ H, otherwise choose any v(p) ∈ V.

For a formula Bi = �(A1, . . . , Am), choose any

v(�(A1, . . . , Am)) ∈ �̃(v(A1), . . . , v(Am)) ∩ X

if there is a minimal X with (X � (A1, . . . , Am)) ∈ H, otherwise choose any

v(�(A1, . . . , Am)) ∈ �̃(v(A1), . . . , v(Am)).

For contradiction, assume two minimal signs X
= Y with (X Bi), (Y Bi) ∈ H
but then we would also have (X ∩ Y Bi) ∈ H by Definition 16.

It remains to show �̃(v(A1), . . . , v(Am)) ∩ X
= ∅ for any minimal X with
(X � (A1, . . . , Am)) ∈ H. By (4) in Definition 16 we get E ⊆ H with E ∈
πX�(A1, . . . , Am). Without loss of generality, let E = {Xi Ai | i ∈ I} for a suit-
able index set I ⊆ {1, . . . , m} and Xi ∈ S

+ for all i ∈ I. By inductive construc-
tion of v, we already have

∧
i∈I v(Ai) ∈ Xi, thus �̃(v(A1), . . . , v(Am)) ∩ X
= ∅

by (1) in Definition 7.

We can construct Hintikka sets for any tableau branch:

Lemma 3. Let Θ ⊆ S×For L be a finite set of signed formulas as assumptions.
Then we can construct a finite tableau tree, such that the set of signed formulas
Ω on every path from the root to a proper leaf is a Hintikka set with Ω ⊇ Θ.

Proof. Starting from the root of an empty tableau proof tree, we create nodes
for all assumptions (X A) ∈ Θ. This guarantees Ω ⊇ Θ for the set of signed
formulas Ω on every path from root to leaf.

Suppose there is a leaf node with Ω not closed under tableau rule application,
i.e., there is a formula (X �(A1, . . . , Am)) ∈ Ω such that (4) is violated. Now we

48 L. Grätz

apply tableau rule πX� on the former leaf to get finitely many child nodes. For Ω
on each path of these child nodes we get E ⊆ Ω for some E ∈ πX�(A1, . . . , Am).
If there are no child nodes since πX�(A1, . . . , Am) = ∅, then the current node is
not a proper leaf.

Suppose that there is a leaf node with Ω not closed under sign intersection,
i.e., for two signed formulas (X A), (Y A) ∈ Ω we have (X ∩ Y A)
∈ Ω. Then
we apply sign intersection to get (X ∩ Y A) on the child node.

There are only finitely many combinations for sign intersection. Moreover,
each rule application gives only finitely many subformulas. Therefore, the process
terminates after finitely many rule applications. Thus, we have Hintikka sets on
each proper leaf.

Note 7 (Construction of countersatisfiable valuations). We can always construct
a tableau tree for F A with Hintikka sets by Lemma 3. By soundness, if
�M A
then this tableau tree has an open branch. Thus, we can construct a valuation
v for that branch (with v(A) ∈ F) by Lemma 2.

Theorem 2 (Strong completeness). Let D,F ∈ S and B1, . . . , Br �M C1.
Then there is a finite, closed tableau for Θ = {D B1, . . . ,D Br,F C1}.
Proof. By Lemma 3 we can construct a tableau tree for Θ with Hintikka sets
H ⊇ Θ on each path from root to a proper leaf. Assume that any of these
sets is satisfiable by some v with v(B1), . . . , v(Br) ∈ D and v(C1) ∈ F , then
B1, . . . , Br
�M C1. This is a contradiction. Hence, by Lemma 2, we have ∅ A ∈ H
for some formula A on every proper leaf. Thus, the tableau is closed.

Corollary 2. If �M A then there is a closed tableau for F A by Theorem 2.

7 DNF Representations

A DNF-like representation is already given in (1). Nevertheless, DNF represen-
tations for many-valued tableau rules are more compact and intuitive, using
signed formulas Xk,i Ai instead of set theory, see [18]. This requires a treat-
ment of signed meta-logic [7,10,14,15], originally introduced as “partial normal
forms” [25]. Incidentally, signed logic also facilitates to compare different calculi
used for many-valued logic.

In the following, we will see how DNF (and CNF) representations can be
adapted to non-deterministic semantics.

Depending on the z1, . . . , zm ∈ V, we can construct a valuation v such that
v(pi) = zi for i ∈ {1 . . . m}. Hence (1) holds iff for all valuations v:

Y ∩ �̃(v(p1), . . . , v(pm))
= ∅ ⇐⇒
k∨

j=1

∧

i∈Ij

v(pi) ∈ Xj,i (5)

Analytic Tableaux for Non-deterministic Semantics 49

By Definition 2, we have v(�(A1, . . . , Am)) ∈ �̃(v(A1), . . . , v(Am)). Hence

v(�(p1, . . . , pm)) ∈ Y =⇒
k∨

j=1

∧

i∈Ij

v(pi) ∈ Xj,i

for all valuations v. By applying Definition 5 we get that

Y � (p1, . . . , pm) =⇒
k∨∨

j=1

∧∧

i∈Ij

Xj,i pi (6)

is true under all valuations v. This is one direction of the DNF representation
for many-valued (deterministic) tableau rules, c.f. [18].

It is not hard to see that non-deterministic tableau rules do not respect the
back direction ⇐= of (6). This can be demonstrated by the rule π{0}∼ as given
in Example 4. For a valuation v with v(p) = 1, both v(∼p) = 0 and v(∼p) = 2
are possible.

In the non-deterministic case, we could loosely say that

Y � (p1, . . . , pm) is possible ⇐⇒
k∨∨

j=1

∧∧

i∈Ij

Xj,i pi,

since v(�(A1, . . . , Am)) ∈ Y is only a non-deterministic option (see also [14,
Proposition 4.7]). Nevertheless, a DNF representation can be achieved by defin-
ing a meta-logical modality ♦♦:

Definition 17. For any signed formula X A, define the semantics of ♦♦(X A)
and (X A) by:

♦♦(X p) is true under v ⇐⇒ X
= ∅
♦♦(X � (A1, . . . , Am)) is true under v ⇐⇒ X ∩ �̃(v(A1), . . . , v(Am))
= ∅

(X p) is true under v ⇐⇒ X = V
(X � (A1, . . . , Am)) is true under v ⇐⇒ X ⊇ �̃(v(A1), . . . , v(Am))

for all valuations v in M, p ∈ P , (A1, . . . , Am) ∈ For Lm, and �(m) ∈ C.

Note 8. Definition 17 gives the semantics for ♦♦α and α only when α is a single
signed formula. In contrast, classical meta-connectives (∧∧, ∨∨, ¬¬, ⇐⇒, =⇒, ⇐=)
are inductively defined for any expression over signed formulas.

By applying Definition 5 and 17 on (5), we get that

♦♦(Y � (p1, . . . , pm)) ⇐⇒
k∨∨

j=1

∧∧

i∈Ij

Xj,i pi (7)

is true under all valuations v. This is the DNF representation we were after.
Since X A implies ♦♦(X A), direction =⇒ in (6) is preserved.

In the following, we use X = V \X to denote the complement set of X ⊆ V.

50 L. Grätz

Corollary 3. (X A) ⇐⇒ ¬¬ ♦♦(X A) for any signed formula X A.

Dual tableaux (Sect. 8) and some other many-valued sequent systems have
CNF representations. For an early use of such a representation, see [26,
Lemma 1]. Using Corollary 3 and de Morgan’s laws, a DNF representation for
Y A can be translated into a CNF representation for Y A (c.f. [7, p. 1371]):

(Y � (p1, . . . , pm)) ⇐⇒
k∧∧

j=1

∨∨

i∈Ij

Xj,i pi (8)

Note that the negation of a signed formula is a formula with a complement sign.

7.1 Canonical DNF

In Sect. 4 we left open how to construct tableau rules for any finitely-valued
non-deterministic semantics. To show this, we are using canonical DNF repre-
sentations as defined in the following. Canonical DNF representations are also
known as complete disjunctive truth conditions [14, Definition 4.6].

Definition 18. Let M = 〈V,D,O〉 be an nmatrix with a finite set of truth
values |V| < ∞. Then a canonical DNF representation for Y ⊆ V and �(m) ∈ C
is defined as:

♦♦(Y � (p1, . . . , pm)) ⇐⇒
∨∨

(x1,...,xm)∈Vm

�̃(x1,...,xm)∩Y �=∅

m∧∧

i=1

{xi} pi

Now it is easy to construct a tableau system based on canonical DNF rep-
resentations for any finitely-many valued non-deterministic semantics. The fol-
lowing corollary is adapted from many valued logic, c.f. [26, Lemma 1] and [18,
Theorem 20, Theorem 32].

Corollary 4. Let M = 〈V,D,O〉 be an nmatrix with a finite set of truth values
|V| < ∞ and S be a set of signs with {{x} | x ∈ V} ⊆ S. Then we can construct
a tableau system for M and S using canonical DNF representations.

Note 9. A tableau rule of a canonical DNF representation has the form

Y �(A1, . . . , Am)
{x1,1} A1 {xk,1} A1

... · · · ...
{x1,m} Am {xk,m} Am

where x1,1, . . . , xk,m ∈ V are the truth values satisfying �(xj,1, . . . , xj,m)∩Y
= ∅
for 1 ≤ j ≤ k.

These correspond to the tableau rules for non-deterministic semantics as
defined in [24]. See there for further examples. Rules based on canonical DNF
are far from being efficient as they involve extensions for every single cell in the
Karnaugh map. In most cases, we could easily obtain much simpler rules.

Analytic Tableaux for Non-deterministic Semantics 51

8 Related Work

This section situates analytic tableau systems as defined in Sect. 3 in context with
other tableau systems and sequent systems. A particular interest is in a class of
sequent systems called canonical calculi. On the one hand, a canonical calculus
is a source of a characteristic non-deterministic semantics, see [3–5,9]. On the
other hand, tableau rules can be easily translated into a canonical calculus.

8.1 Analytic Tableaux for Many-Valued Logic

The tableaux described in the present paper generalize analytic tableaux for
many-valued logic [18]. In particular: Tableaux with rules based on canonical
DNF were defined in [28] (and in [24] for non-deterministic semantics). For
tableaux with simple signs, see [11]. Tableaux with sets as signs were finally
introduced in [16].

The following properties help to distinguish between analytic tableaux for
many-valued logics and other tableaux, e.g., dual tableaux:

1. They are cut-free by construction.
2. They are conservative extensions of the signed tableaux for classical logic.
3. They are based on DNF representations.
4. For each pair of sign and connective, there is only one tableau rule.
5. They implement indirect proofs, i.e., closing conditions are primitive contra-

dictions.

It is worth noting that all these properties are inherited to analytic tableaux for
non-deterministic semantics, as defined in the previous sections.

8.2 Dual Tableaux

It is well known that classical two-valued tableaux were derived from cut-ad-
missible Gentzen-style sequent systems; and it is easy to see the correspondence
between both: A tableau is a sequent proof written upside down, where the
sequents are given implicitly by the set of formulas between a node and the root
of the tableau. For a signed tableau calculus see [27]. Formulas with sign f go to
the right of a sequent, other formulas to the left side of a sequent.

For many-valued logics, the situation seems similar at first. Many-valued
sequents were introduced in [26]. For m truth values, a sequent is divided into m
parts, typically partitioned using the respective truth values as labels or signs.
The corresponding dual tableau [8,18] (also known as R-S system [2,20]) inherits
the signs from the sequent system. However, dual tableaux for two-valued sequent
systems have signs t and f swapped in contrast to the classical signed tableau:
The reason is that two-sided sequents are signed with f on the right and t on
the left. Moreover, a dual tableau proof no longer represents an indirect proof:
In particular, closing condition of dual tableaux are primitive axioms and not
primitive contradictions.

52 L. Grätz

Dual tableaux and analytic tableaux with simple signs are separate concepts.
However, we can translate (propositional) dual tableaux with CNF representa-
tions into analytic tableaux with sets as signs. Recall Sect. 7: The negation of a
DNF is a CNF with complement sets as signs.

8.3 Canonical Calculi

Canonical calculi (also known as canonical labelled calculi or canonical signed
calculi) [2–5,9] are sequent systems whose introduction rules are canonical (not
to be confused with canonical DNF). These are the “standard” introduction rules
involving one connective and the respective signs for the formula and immediate
subformulas. Further rules of a canonical calculus are the structural rules for cut
and weakening, as well as primitive axioms. For the origins of definitions, rules
and notations of canonical calculi we refer to [6].

An introduction rule is not required to have a CNF representation, i.e., it
may violate =⇒ in (9). Nevertheless, introduction rules based on CNF repre-
sentations are defined as follows (the syntax of canonical calculi is used here):

Definition 19. Given CNF representation

(S � (p1, . . . , pm)) ⇐⇒
k∧∧

j=1

∨∨

i∈Ij

Zj,i pi (9)

the introduction rule based on the CNF representation is:

Ω ∪ {Z1,i :pi | i ∈ I1} · · · Ω ∪ {Zk,i :pi | i ∈ Ik}
Ω ∪ {S :�(p1, . . . , pm)}

Converting an analytic tableau system to a canonical calculus is straight for-
ward. This is done by using the equivalent CNF representation (8) of a tableaux
rule (with simple signs):

Theorem 3. Given CNF representations for every connective �(m) ∈ C of an
nmatrix M and singleton complement {x} ∈ {{x} | x ∈ V }, i.e.:

({x} � (p1, . . . , pm)) ⇐⇒
k∧∧

j=1

∨∨

i∈Ij

Zj,i pi (10)

Then the canonical calculus with introduction rules based on these CNF repre-
sentations is sound and complete for M.

Proof. The proof is omitted due to limited space.

Corollary 5. Given a tableaux system with simple signs S = {{x} | x ∈ V }, we
can construct a sound and complete (Theorem 3) canonical calculus based on the
equivalent CNF representations.

Analytic Tableaux for Non-deterministic Semantics 53

Notably, the rule construction methods (Sect. 4) can be adapted to canonical
calculi: We just have to translate DNF into CNF representations. See [2] for a
different approach on rule construction, these rules do not necessarily have CNF
representations.

In general, the other conversion direction (from canonical calculi to tableaux)
does not work. This seems to be caused by missing structural rules in tableau
systems with sets as signs (implicit for canonical calculi). Candidates are:

(X ∩ Y) A

X A
Y A

sign split
X A X A

PM

8.4 Other Calculi

Rule PM is similar to the principle of bivalence used in the calculus KE, which
corresponds to a cut [13]. A many-valued version is called principle of multiva-
lence [17]. These calculi restrict branching to PM rule applications. This allows
optimizing proof complexity. Also, there is signed resolution and DPLL [10].

8.5 Semantic Games

Although not directly providing efficient proof procedures, semantic games [14]
have a close connection to tableaux and DNF/CNF representations.

9 Conclusion

Tableaux for non-deterministic semantics provide analytic methods for checking
validity, satisfiability and related questions. There are two aspects, the construc-
tion of a tableau system and its rules and the tableau proofs itself. The framework
is based on tableaux for many-valued semantics [18].

The difference lies in the formal condition on a tableau rule as discussed in
Sect. 7. For a signed formula {y} �(A1, . . . , Am), i.e., y = v(�(A1, . . . , Am)), the
tableau rule needs to cover all cases of signed subformulas {x1} A1, . . . , {xm} Am,
in which we possibly get the signed formula. For classical many-valued logics, it is
just get. Nevertheless, the process of rule construction is similar to many-valued
logics, graphically by shading cells in the nmatrix (Sect. 4).

Corollary 4 shows that a tableau system for any finite-valued non-
deterministic semantics can be given, generalizing a result from many-valued
semantics. For infinite valued non-deterministic semantics, rule construction is
a challenge.

Acknowledgements. I am indebted to Peter Steinacker for the supervision of my
master’s thesis and to Andreas Maletti, second reviewer, for spotting the mistake in
my thesis which initiated the work on the present paper. I would like to thank Daniel
Skurt, Hitoshi Omori, Reiner Hähnle, Richard Bubel, Elio La Rosa, Pawel Pawlowski
for useful suggestions.

54 L. Grätz

References

1. Avron, A., Arieli, O., Zamansky, A.: Theory of Effective Propositional Paraconsis-
tent Logics. College Publications (2018)

2. Avron, A., Konikowska, B.: Multi-valued calculi for logics based on non-
determinism. Log. J. IGPL 13(4), 365–387 (2005). https://doi.org/10.1093/jigpal/
jzi030

3. Avron, A., Lev, I.: Canonical propositional Gentzen-type systems. In: Goré, R.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 529–544. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5 45

4. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. J. Log. Comput.
15(3), 241–261 (2005). https://doi.org/10.1093/logcom/exi001

5. Avron, A., Zamansky, A.: Canonical signed calculi, non-deterministic matrices and
cut-elimination. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407,
pp. 31–45. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92687-
0 3

6. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems. In: Gab-
bay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 16, 2nd edn, pp.
227–304. Springer, Heidelberg (2011). https://doi.org/10.1007/978-94-007-0479-
4 4

7. Baaz, M., Fermüller, C.G., Salzer, G.: Automated deduction for many-valued log-
ics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol.
2, chap. 19, pp. 1355–1402. Elsevier and MIT Press (2001)

8. Baaz, M., Fermüller, C.G., Zach, R.: Dual systems of sequents and tableaux for
many-valued logics. Bull. EATCS 51, 192–197 (1993)

9. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. J. Autom. Reason. 51(4), 401–430 (2013). https://doi.org/10.1007/s10817-
013-9273-x

10. Beckert, B., Hähnle, R., Manyà, F.: The SAT problem of signed CNF formulas. In:
Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganò, L. (eds.) Labelled
Deduction. APLS, vol. 17, pp. 59–80. Springer, Dordrecht (2000). https://doi.org/
10.1007/978-94-011-4040-9 3

11. Carnielli, W.A.: Systematization of finite many-valued logics through the method
of tableaux. J. Symb. Log. 52(2), 473–493 (1987). https://doi.org/10.2307/2274395

12. Coniglio, M.E., del Cerro, L.F., Newton, M.P.: Modal logic with non-deterministic
semantics: part I–propositional case. Log. J. IGPL 28(3), 281–315 (2020). https://
doi.org/10.1093/jigpal/jzz027

13. D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations
with analytic cut. J. Log. Comput. 4(3), 285–319 (1994). https://doi.org/10.1093/
logcom/4.3.285

14. Fermüller, C.G.: On matrices, Nmatrices and games. J. Log. Comput. 26(1), 189–
211 (2016). https://doi.org/10.1093/logcom/ext024

15. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 2, 2nd edn, pp. 297–395. Springer, Dordrecht
(2001). https://doi.org/10.1007/978-94-017-0452-6 5

16. Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics.
In: Börger, E., Kleine Büning, H., Richter, M.M., Schönfeld, W. (eds.) CSL 1990.
LNCS, vol. 533, pp. 248–260. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-54487-9 62

https://doi.org/10.1093/jigpal/jzi030
https://doi.org/10.1093/jigpal/jzi030
https://doi.org/10.1007/3-540-45744-5_45
https://doi.org/10.1093/logcom/exi001
https://doi.org/10.1007/978-3-540-92687-0_3
https://doi.org/10.1007/978-3-540-92687-0_3
https://doi.org/10.1007/978-94-007-0479-4_4
https://doi.org/10.1007/978-94-007-0479-4_4
https://doi.org/10.1007/s10817-013-9273-x
https://doi.org/10.1007/s10817-013-9273-x
https://doi.org/10.1007/978-94-011-4040-9_3
https://doi.org/10.1007/978-94-011-4040-9_3
https://doi.org/10.2307/2274395
https://doi.org/10.1093/jigpal/jzz027
https://doi.org/10.1093/jigpal/jzz027
https://doi.org/10.1093/logcom/4.3.285
https://doi.org/10.1093/logcom/4.3.285
https://doi.org/10.1093/logcom/ext024
https://doi.org/10.1007/978-94-017-0452-6_5
https://doi.org/10.1007/3-540-54487-9_62
https://doi.org/10.1007/3-540-54487-9_62

Analytic Tableaux for Non-deterministic Semantics 55

17. Hähnle, R.: Automated Deduction in Multiple-valued Logics. Oxford University
Press (1993)

18. Hähnle, R.: Tableaux for many-valued logics. In: D’Agostino, M., Gabbay, D.M.,
Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 529–580. Kluwer
(1999)

19. Ivlev, J.V.: Modal’naja logika. Moskovskogo Univ, Izdat (1991). (in Russian)
20. Konikowska, B.: Two over three: a two-valued logic for software specification and

validation over a three-valued predicate calculus. J. Appl. Non-Classical Log. 3(1),
39–71 (1993). https://doi.org/10.1080/11663081.1993.10510795

21. Ohnishi, M., Matsumoto, K.: A system for strict implication. Ann. Jpn. Assoc.
Philos. Sci. 2(4), 183–188 (1964). https://doi.org/10.4288/jafpos1956.2.183

22. Omori, H., Skurt, D.: More modal semantics without possible worlds. IfCoLog J.
Log. Appl. 3(5), 815–846 (2016)

23. Paoli, F.: Substructural Logics: A Primer. Trends in Logic. Kluwer Academic Pub-
lishers (2002)

24. Pawlowski, P.: Tree-like proof systems for finitely-many valued non-deterministic
consequence relations. Log. Univers. 14(4), 407–420 (2020). https://doi.org/10.
1007/s11787-020-00263-0

25. Rosser, J.B., Turquette, A.R.: Many-Valued Logics. North-Holland (1952)
26. Rouseau, G.: Sequents in many valued logic I. Fundam. Math. 60(1), 23–33 (1967).

https://doi.org/10.4064/fm-60-1-23-33
27. Smullyan, R.M.: First-Order Logic. Dover, 2 edn. (1995)
28. Surma, S.J.: An algorithm for axiomatizing every finite logic. In: Rine, D.C. (ed.)

Computer Science and Multiple-Valued Logic, pp. 137–143. North-Holland Pub-
lishing Company (1977)

29. Zamansky, A., Avron, A.: Canonical signed calculi with multi-ary quantifiers. Ann.
Pure Appl. Logic 163(7), 951–960 (2012). https://doi.org/10.1016/j.apal.2011.09.
006

https://doi.org/10.1080/11663081.1993.10510795
https://doi.org/10.4288/jafpos1956.2.183
https://doi.org/10.1007/s11787-020-00263-0
https://doi.org/10.1007/s11787-020-00263-0
https://doi.org/10.4064/fm-60-1-23-33
https://doi.org/10.1016/j.apal.2011.09.006
https://doi.org/10.1016/j.apal.2011.09.006

Tableaux for Free Logics
with Descriptions

Andrzej Indrzejczak2 and Micha�l Zawidzki1,2(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Department of Logic, University of �Lódź, �Lódź, Poland

andrzej.indrzejczak@filhist.uni.lodz.pl, michal.zawidzki@cs.ox.ac.uk

Abstract. The paper provides a tableau approach to definite descrip-
tions. We focus on several formalizations of the so-called minimal free
description theory (MFD) usually formulated axiomatically in the setting
of free logic. We consider five analytic tableau systems corresponding to
different kinds of free logic, including the logic of definedness applied in
computer science and constructive mathematics for dealing with partial
functions (here called negative quasi-free logic). The tableau systems for-
malise MFD based on PFL (positive free logic), NFL (negative free logic),
PQFL and NQFL (the quasi-free counterparts of the former ones). Also
the logic NQFL− is taken into account, which is equivalent to NQFL, but
whose language does not comprise the existence predicate. It is shown
that all tableaux are sound and complete with respect to the semantics
of these logics.

Keywords: Free logics · Definite descriptions · Analytic tableaux

1 Introduction

The topic of definite descriptions (DD) is of wide interest to philosophers, lin-
guists, and logicians. On the other hand, in proof theory and automated deduc-
tion the number of formal systems and studies of their properties is relatively
modest. In particular, there are several tableau calculi due to Bencivenga, Lam-
bert and van Fraassen [3], Gumb [10], Bostock [5], Fitting and Mendelsohn [8],
but all of them introduce DD by means of rather complex rules, and so, are
not really in the spirit of tableau methodology. Quite a lot of natural deduc-
tion systems for DD have been provided, but only a few of them (namely
Tennant’s [29,30] and Kürbis’ [19,20] works) deal with DD by means of rules
which allow for finer proof analysis and provide normalization proofs. Cut-free
sequent calculi for several theories of DD were provided by Indrzejczak [11–14]
and recently also by Orlandelli [25].

Both authors are supported by the National Science Centre, Poland (grant number:
DEC- 2017/25/B/HS1/01268). The second author is supported by the EPSRC projects
OASIS (EP/S032347/1), AnaLOG (EP/P025943/1), and UK FIRES (EP/S019111/1),
the SIRIUS Centre for Scalable Data Access, and Samsung Research UK.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 56–73, 2021.
https://doi.org/10.1007/978-3-030-86059-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_4&domain=pdf
http://orcid.org/0000-0003-4063-1651
http://orcid.org/0000-0002-2394-6056
https://doi.org/10.1007/978-3-030-86059-2_4

Tableaux for Free Logics with Descriptions 57

The number of theories of DD that have been proposed since Frege’s and
Russell’s first accounts (see, e.g., a discussion in [27]) is enormous, however what
we are concerned with in this paper is an adequate tableau characterization of
DD, so due to space restrictions we omit a detailed presentation of different
theories of DD and their philosophical or linguistic motivations. In particular,
we confine ourselves to only one approach to DD, strongly connected with free
logic and commonly called a minimal free description theory (MFD)1. It is based
on the so-called Lambert’s axiom (L):

∀x(ıxϕ(x) = x ↔ ∀y(ϕ(y) ↔ y = x)). (L)

In fact, this axiom added to different kinds of free logics leads to significantly
different theories of DD. We provide tableau calculi for four kinds of different free
logics, called here PFL, NFL, PQFL, and NQFL (where N stands for negative, P for
positive, Q for quasi). In negative free logics, in contrast to positive ones, atomic
formulas with non-denoting terms are always evaluated as false or, equivalently,
all predicates are strict, that is, defined only over denoting terms. Both PFL and
NFL characterize absolutely free logics in the sense that variables may also fail to
denote. On the other hand, NQFL and PQFL are systems for quasi-free logics in
the sense that only descriptions can fail to denote; variables are always denoting.

Recently, cut-free sequent calculi for several free logics, yet without DD, have
been presented by Pavlović and Gratzl [26] and by Indrzejczak [15]. In particular,
in the latter work it has been shown that if we restrict instantiation in quantifier
rules only to variables, we do not lose completeness, provided that some special
rules are added. It makes it possible to characterize NQFL and PQFL by means
of classical quantifier rules, which justifies our use of the term ‘quasi free’ (intro-
duced therein). Yet even more importantly, such a restriction on quantifier rules
allows us to extend this approach to MFD and preserve cut-freeness (see [14]).
Since the above-referenced paper provides a purely proof-theoretic approach,
completing the work with the semantic side and suitably defined adequate and
analytic tableau systems seems to be a natural next research step. The aim of
the present study is to make this step and fill the indicated gap.

We limit our considerations to the logics mentioned above as the most promi-
nent representatives of the family of free logics. PFL is by all means the most
popular version of free logic (see, e.g., [4,22], or [23]), applied mainly in philo-
sophical studies and as the basis of formalization of modal first-order logics
(see, e.g., Garson [9]). The original Lambert’s version of MFD was proposed on
the basis of PFL. The basic negative free logic NFL, known also as the logic of
existence ([28]), was more popular in computer science and foundational stud-
ies [29,30].

Negative quasi-free logic NQFL is known as the definedness logic (or the logic
of partial terms) by Beeson [2] and Feferman [7]. It has also been extensively
studied and applied in computer science. Although it was originally developed in

1 The reader may find a more fine-grained presentation of MFD and its extensions in
Lambert’s [21], Bencivenga’s [4] or Lehmann’s [23] works.

58 A. Indrzejczak and M. Zawidzki

the context of constructive mathematics to deal with partial untyped combina-
tory and lambda calculi, Feferman rightly noticed that it works without changes
in the classical setting (in fact, he was concerned only with classical semantics in
[7]. PQFL is a positive variant of NQFL, that is, not requiring that all predicates
are strict. It is interesting that its intuitionistic restricted version (no identity
and DD) was studied proof-theoretically by Baaz and Iemhoff [1] and recently
by Maffezioli and Orlandelli [24].

NQFL− is a variant of NQFL but formulated in the language without the exis-
tence predicate. Although the latter can be defined in all the considered logics,
it is handy to keep it as primitive. However, in [15] it was shown that in quan-
tifier rules for all free logics with identity, instantiation terms may be restricted
to variables. That opens a possibility of discarding the existence predicate and
simplifying the rules, at least for NQFL. Thus, this logic is presented here in
two variants: as NQFL with the existence predicate (which allows to compare
it with the remaining logics more easily), and then as NQFL− in an existence-
free version with simpler rules. In fact NQFL− with the rules for descriptions
on classical foundations appears to be equivalent also to the formalization of
Russellian theory of descriptions provided by Kalish, Montague and Mar [18];
(see Indrzejczak [16] for a detailed explanation).

Lambert’s axiom (L) was used as a basic way of formalizing DD in all the
abovementioned logics, except for PQFL. However, on the ground of NFL, (and
NQFL) it yields quite a strong theory of DD of essentially Russellian character.
This follows from the fact that in NFL (NQFL) (L) is equivalent to the following
formula:

ψ(ıxϕ(x)) ↔ ∃y(∀x(ϕ(x) ↔ x = y) ∧ ψ(y)), where ψ is atomic. (R)

(R) expresses the Russellian approach to characterizing DD and it was often
attacked as being too strong. The left-to-right implication encodes that if we
state something about a DD, it implies that this description denotes. According
to Strawson’s well-known criticism, if a DD is used as an argument of a predi-
cate, its existence and uniqueness is presupposed rather than implied. Lambert’s
axiom is in general weaker than (R) and in PFL (PQFL) implies only the right-
to-left implication of (R) which is commonly acceptable. The equivalence of (L)
and (R) in NFL is a consequence of the fact that in NFL all predicates are strict,
so the statement of an atomic formula implies that all terms occurring in it are
denoting (see [14]).

Due to space limitations, we confine ourselves to logics which are founded
on the classical core. Interestingly, cut-free sequent calculi in [14], after restrict-
ing sequents to at most one formula in the succedent and small refinements of
some rules for DD, may also characterize their intuitionistic versions. In the case
of tableaux adequate with respect to a given semantics, however, such small
refinements do not suffice to obtain intuitionistic versions. Hence, we postpone
completing this task, as well as the characterization of MFD on the basis of
neutral free logics, to future work. In the latter case even the standard sequent
calculus is not sufficient for a satisfactory proof-theoretic characterization.

Tableaux for Free Logics with Descriptions 59

In what follows, after a brief characterization of the syntax and semantics in
Sect. 2, in Sect. 3 we provide five tableau calculi for the logics PFL, PQFL, NFL,
NQFL, and NQFL−. Adequacy of all systems is established in Sect. 4. In Sect. 5
we briefly compare our tableau calculi with alternative approaches, in partic-
ular with sequent calculi by Indrzejczak [14]. Finally we discuss some possible
advantages of using DD instead of functional terms and present further lines of
research.

2 Preliminaries

2.1 Syntax

For the logics PFL, NFL, PQFL, NQFL we consider sentences, that is, formulas
with no free variables, built in the standard first-order language L with identity
and the unary existence predicate E treated as logical constants and with no
function symbols as primitives. The vocabulary of L consists of:

– a countably infinite set of bound individual variables VAR = {x, y, z . . .},
– a countably infinite set of parametric (free) individual variables PAR =

{a, b, c, . . .},
– a countably infinite set of n-ary predicate symbols PREDn =

{Pn, Qn, Rn, . . .}, for any non-negative integer n;
– a set of propositional connectives: ¬, ∧,
– the universal quantifier ∀,
– the definite description operator ı,
– the identity relation =,
– the existence predicate E,
– left and right parentheses: (,).

In the case of NQFL− we discard the existence predicate E from the language
and refer to such a restricted language as L −.

A set of terms TERM and a set of formulas FOR (in the language of deduction)
are defined simultaneously by the following context-free grammars:

TERM � t :: = x | a | ıxϕ,

FOR � ϕ :: = P (t1, . . . , tn) | t1 = t2 | Et | ¬ϕ | ϕ ∧ ϕ | ∀xϕ,

where x ∈ VAR, a ∈ PAR, P ∈ PREDn, t, t1, . . . , tn ∈ TERM, and ϕ ∈ FOR. The
existential quantifier and other boolean connectives are introduced as standard
abbreviations. Note that the absence of function symbols as primitives in L
and L − is due to the fact that they can be simulated by using the operator
ı in the sense that every term of the form fn(t1, . . . , tn) can be represented as
ıxFn+1(t1, . . . , tn, x). On the other hand, not every (proper) description can be
expressed using functional terms. For example, descriptions like ‘the winner of
the ultimate fight’, ‘the bear we have seen recently’ can only be represented by
constants.

60 A. Indrzejczak and M. Zawidzki

2.2 Semantics

By a model we mean a structure M = 〈D ,DE,I 〉, where DE is a (possibly
empty) subset of D and for each n-argument predicate Pn, I (Pn) ⊆ Dn.
An assignment v is defined as v : V AR ∪ PAR −→ D for PFL, NFL, and as
v : V AR ∪ PAR −→ DE for PQFL, NQFL, and NQFL−. Thus, in proper free
logics variables may fail to denote, which is not possible in quasi-free logics.
An x-variant v′ of v agrees with v on all arguments, save, possibly, x. We will
write vx

o to denote the x-variant of v with vx
o (x) = o. The notion of inter-

pretation Iv(t) of a term t under an assignment v is defined simultaneously
with the notion of satisfaction of a formula ϕ under v, in symbols M , v |= ϕ:

Iv(x) = v(x),
Iv(a) = v(a),

Iv(ıxϕ) = o ∈ DE iff M , vx
o |= ϕ, and for any x-variant v′ of v,

if M , v′ |= ϕ, then v′(x) = o,
M , v |= Pn(t1, ..., tn) iff 〈Iv(t1), . . . ,Iv(tn)〉 ∈ I (Pn)

(and Iv(ti) ∈ DE, i ≤ n, for NFL, NQFL,
and NQFL−),

M , v |= t1 = t2 iff Iv(t1) = Iv(t2)
(and Iv(t1),Iv(t2) ∈ DE, for NFL, NQFL,
and NQFL−),

M , v |= Et iff Iv(t) ∈ DE,
M , v |= ¬ϕ iff M , v �|= ϕ,

M , v |= ϕ ∧ ψ iff M , v |= ϕ and M , v |= ψ,
M , v |= ∀xϕ iff M , vx

o |= ϕ, for all o ∈ DE,

where x ∈ VAR, a ∈ PAR, Pn ∈ PREDn, and t, t1, . . . , tn ∈ TERM.
A formula ϕ is called satisfiable if there exist a model M and a valua-

tion v such that M , v |= ϕ. A formula is valid if, for all models M and
valuations v, M , v |= ϕ. In the remainder of the paper, instead of writing
M , v |= ϕ1, . . . ,M , v |= ϕn, we will write M , v |= ϕ1, . . . , ϕn.

3 Tableau Calculi

In this section, we present tableau calculi for the considered logics for definite
descriptions. For each logic L ∈ {PFL,NFL,PQFL,NQFL,NQFL−} we denote the
tableau calculus for L by TCL.

A tableau T generated by a calculus TCL, for L ∈ {PFL,NFL,PQFL,NQFL,
NQFL−}, is a derivation tree whose nodes are assigned formulas in a respective
(deduction) language. A branch of T is a simple path from the root to a leaf of
T . For brevity, we identify each branch B with the set of formulas assigned to
nodes constituting B.

Our tableau calculi are composed of rules whose general form is as follows:
Φ

Ψ1|...|Ψn
, where Φ is the set of premises and each Ψi, for i ∈ {1, . . . , n}, is a

Tableaux for Free Logics with Descriptions 61

set of conclusions. If a rule has more than one set of conclusions, it is called a
branching rule. Otherwise it is non-branching. Thus, if a rule Φ

Ψ1|...|Ψn
is applied

to Φ occurring on B, B splits into n branches: B ∪ {Ψ1}, . . . ,B ∪ {Ψn}. A rule
(R) with Φ as the set of its premises is applicable to Φ occurring on a branch B
if it has not yet been applied to Φ on B. A set Φ is called (R)-expanded if (R)
has already been applied to Φ. A term t is called fresh on a branch B if it has
not yet occurred on B. We call a branch B closed if the inconsistency symbol ⊥
occurs on B. If B is not closed, it is open. A branch is fully expanded if it is closed
or no rules are applicable to (sets of) formulas occurring on B. A tableau T is
called closed if all of its branches are closed. Otherwise T is called open. Finally,
T is fully expanded if all its branches are fully expanded. A tableau proof of a
formula ϕ is a closed tableau with ¬ϕ at its root. A formula ϕ is tableau-valid
(with respect to the calculus TCL) if all fully expanded tableaux generated by
TCL with ¬ϕ at the root are tableau proofs of ϕ. A tableau calculus TCL is sound
if, for each formula ϕ, whenever ϕ is tableau-valid wrt TCL, then it is valid. TCL

is complete if, for each formula ϕ, whenever ϕ is valid, then it is tableau-valid
wrt TCL.

When presenting the rules, we adopt the following notational convention:

– metavariables ϕ, ψ stand for arbitrary formulas in L (or L − if NQFL− is
considered),

– metavariables t, t1, . . . , tn represent arbitrary terms present on a branch,
– metavariables a, a1, . . . , an denote fresh parameters,
– metavariables b, b1, b2 stand for an arbitrary parameters present on a branch,
– an expression ϕ[x/t] represents the result of a correct substitution of all free

occurrences of x within ϕ with a term t,
– t1 �= t2 is an abbreviation for ¬(t1 = t2),
– ‘DD’ is an abbreviation for ‘definite description’.

The rules for tableau calculi TCPFL, TCNFL, TCPQFL, TCNQFL, and TCNQFL
−

are presented in Figs. 1 and 2. Intuitively, if a rule’s name contains ‘E’ and the
name of an operator, it is an elimination rule which removes the operator from
the processed formula. On the other hand, if a rule’s name contains ‘I’ and the
name of an operator, it is an introduction rule which adds to the branch an
expression featuring this operator. Moreover, we have three closure rules which
close the branch as inconsistent, and two special analytic cut rules which make
it possible to compare denotations of variables and definite descriptions.

A few words of comment on the rules displayed in Fig. 1 are in order. The
propositional core of the calculi is known from tableaux for classical proposi-
tional logic. The rule (⊥1) closes a branch when a propositional inconsistency
occurs thereon, whereas the remaining two closure rules, (⊥2) and (⊥3) rest on
reflexivity of identity (possibly in a restricted form). The rules (∀E1) and (¬∀E1)
are standard rules for quantifier elimination in first-order logic. The remaining
two rules for ∀, namely (∀E2) and (¬∀E2), reflect the semantic condition say-
ing that a term replacing a variable after quantifier elimination must denote
an existing object. While in quasi-free logics it is ensured by the definition of

62 A. Indrzejczak and M. Zawidzki

Fig. 1. Tableau rules for TCPFL, TCNFL, TCPQFL, TCNQFL, and TCNQFL
−

valuation, in the remaining (absolutely free) logics it needs to be secured by a
separate existence formula. Note that all quantifier elimination rules admit only
parameters as instances of bound variables. The (= E)-rule scheme ensures the
substitutability of identical terms within arbitrary formulas, often called Leib-
niz’ principle. One of its side effects is a guarantee that = is symmetric in all
calculi. (= I1) and (= I2), occurring only in TCNQFL

−, which lacks the existence
predicate E, make sure that each definite description occurring in a true atomic
formula has a unique and existing denotation, by equating it with a fresh vari-

Tableaux for Free Logics with Descriptions 63

Fig. 2. Tableau calculi TCPFL, TCNFL, TCPQFL, TCNQFL, and TCNQFL
−

able (which is always denoting in NQFL−). (cut1) and (cut2) are a restricted
form of analytic cut which, for each definite description and denoting variable
checks whether their denotations are identical or distinct. (EE1) works similarly
to (= I1) and (= I2) with the caveat that it equates with a fresh variable a
definite description that is known to be denoting. (EE2), which is present only
in TCNFL, enforces reflexivity of identity among denoting terms. Intuitively, it
allows us to prove that, for each non-denoting term t, a formula t �= t holds
in NFL. The rules (EI1) and (EI2) reflect the semantic condition stating that
each term which is an argument of a true atomic NQFL-formula, or each definite
description occurring in such an NFL-formula, is denoting. (EI3), on the other
hand, refers to the definition of valuation in PQFL and NQFL, where variables
are always mapped to existing objects. The rule (EI4) introduces a fresh vari-
able which is assumed to denote, provided that there are no parameters on the
branch. Consequently, it guarantees that the non-empty domain assumption is
satisfied, should we make it. The first pair of ı-rules, (ıE1) and (¬ıE1), eliminate
an occurrence of a definite description provided that it appears as an argument
of an identity. In (ıE1) a formula defining the definite description must hold
of b1, hence this formula is present in both conclusions. A definite description
is subsequently compared to each parameter b2 occurring on a branch. If we
assume that they are equal, it is also equal to b1 (the right conclusion), oth-
erwise ϕ does not hold of b2, so we obtain its negation. In (¬ıE1) we assume
that a denoting parameter b and a definite description have distinct denotations.
It is either because the formula defining the definite description does not hold

64 A. Indrzejczak and M. Zawidzki

of b (the left conclusion) or because some other object satisfies this formula.
To state the latter a fresh parameter a is introduced which satisfies ϕ, yet it
is not equal to b. The second pair of ı-rules, (ıE2) and (¬ıE2), being a part of
the calculi for proper free logics, work similarly, with the caveat that we need
to additionally ensure, using the existence predicate E, that respective variables
occurring in the premises of the rules are denoting. In PFL and NFL variables
are not automatically guaranteed to denote, so such an additional condition is
necessary for bringing the rules in line with the semantic condition for proper
definite descriptions.

Since the rules in all calculi are closed under subformulas modulo substitu-
tion, adding single negations and adding equality to two terms already present
on the branch one of which being a definite description and another one being a
parameter, one can think of the calculi as analytic in an extended sense of the
term.

4 Soundness and Completeness2

In order to prove soundness and completeness of the calculi TCPFL, TCPQFL,
TCNFL, TCNQFL, and TCNQFL

− we need two well-known lemmas which we recall
without proofs (see, e.g., [6, Sect. III.4 and III.8]).

Lemma 1 (Coincidence Lemma). Let ϕ ∈ FOR, let M = 〈D ,DE,I 〉 be a
model, and let v1, v2 be assignments. If v1(x) = v2(x) for each free variable x
occurring in ϕ, then M , v1 |= ϕ iff M , v2 |= ϕ.

Lemma 2 (Substitution Lemma). Let ϕ ∈ FOR, t, t′ ∈ TERM, and let M =
〈D ,DE,I 〉 be a model. Then M , v |= ϕ[x/t] iff M , vx

Iv(t)
|= ϕ.

4.1 Soundness

Let (R) Φ
Ψ1|...|Ψn

be a rule from a calculus TCL. We say that (R) is sound if
whenever Φ is L-satisfiable, then Φ ∪ Ψi is L-satisfiable, for some i ∈ {1, . . . , n}.

Lemma 3 For each L ∈ {PFL,PQFL,NFL,NQFL,NQFL−} all rules of TCL are
sound.

Proof. We confine ourselves to showing soundness of the rules for definite
descriptions.
To prove soundness of (ıE1) assume that b1 = ıxϕ is L-satisfiable, for L ∈
{PQFL,NQFL,NQFL−}, that is, there exists a model M = 〈D ,DE,I 〉 and
an assignment v such that M , v |= b1 = ıxϕ. Let v(b1) = o ∈ DE, then
Iv(ıxϕ) = v(b1) = o and by the satisfaction condition M , vx

o |= ϕ, and for any
x-variant v′ of v, if M , v′ |= ϕ, then v′(x) = o. The first conjunct guarantees,

2 Full Versions of the Proofs of Lemmas 3 and 4 and Propositions 1 and 2 Can Be
Found in [17].

Tableaux for Free Logics with Descriptions 65

by Substitution Lemma, that M , v |= ϕ[x/b1], which holds for both conclu-
sions. The second conjunct yields, for any b2 ∈ DE, that either M , v �|= ϕ[x/b2]
or M , v |= b1 = b2. The former case yields the left conclusion, whereas the
latter case yields the right one. To show that (¬ıE1) is sound assume that
b �= ıxϕ is L-satisfiable for L ∈ {PQFL,NQFL,NQFL−}. Then, there exists a
model M = 〈D ,DE,I 〉 and an assignment v such that M , v |= b �= ıxϕ. It
means that Iv(ıxϕ) �= v(b) = o ∈ DE. By the satisfaction condition M , vx

o �|= ϕ,
or for some x-variant v′ of v, M , v′ |= ϕ but o′ = v′(x) �= v(x) = o. In the first
case, by Substitution Lemma, M , v �|= ϕ[x/b], so the left conclusion is satisfied.
If the second holds, then by Coincidence Lemma and Substitution Lemma we
have that M , v |= ϕ[x/a] but M , v |= b �= a for some fresh a.

Proofs for (ıE2) and (¬ıE2), respectively, are conducted analogically with the
following caveat. In PFL and NFL variables are not automatically guaranteed to
denote, so the existence of a referrent object needs to be ensured externally. This
is done by placing a variable in the scope of the existence predicate E. ��

Now we are ready to prove the following theorem.

Theorem 1 (Soundness). The tableau calculi TCPFL, TCPQFL, TCNFL,
TCNQFL, and TCNQFL

− are sound.

Proof. To show that for each L-formula ϕ, where L ∈ {PFL,PQFL,NFL,
NQFL,NQFL−}, if ϕ is tableau-valid, then it is valid. Let T be a proof of ϕ,
that is, a closed tableau with ¬ϕ at the root. Each branch of T has ⊥ at the
leaf, which is clearly L-unsatisfiable. By Lemma 3 we know that all the rules
of TCL are L-satisfiability preserving, and so, going from the bottom to the top
of T , at each node we have an L-unsatisfiable set of formulas. Thus, (a single-
ton set consisting of) ¬ϕ is L-unsatisfiable. By the well known duality between
satisfiability and validity we obtain that ϕ is L-valid. ��

4.2 Completeness

In this section, we prove that, for each L ∈ {PFL,PQFL,NFL,NQFL,NQFL−},
TCL is complete. To that end we show that every open and fully expanded branch
B of a TCL-tableau T satisfies some syntactic conditions. Then we show how to
construct an L-structure M L

B and a function vL
B out of such an open and fully

expanded branch, and show that vL
B is an L-valuation, and M L

B is an L-model
satisfying, for each L-formula ϕ occurring on B, M L

B , vL
B |= ϕ.

We assume that for each L ∈ {PFL,PQFL,NFL,NQFL,NQFL−}, the calculus
TCL can be accompanied by a suitable fair procedure in the sense that whenever
a rule can be applied, it will eventually be applied. For example, an algorithm
from [8], with added steps for additional rules, can be applied to TCL. Thus, a
fully expanded, possibly infinite, branch B is closed under rule application.

Let B be an open and fully expanded branch of a TCL-tableau T , where
L ∈ {PFL,PQFL,NFL,NQFL,NQFL−}. Let TERM(B), VAR(B), and PAR(B) be
the sets of, respectively, all terms occurring on B (that is, parameters and definite

66 A. Indrzejczak and M. Zawidzki

descriptions), all bound variables occurring on B, and all parameters occurring
on B. We define a binary relation ∼ on TERM(B) in the following way:

∀t1, t2 ∈ TERM(B)
[
t1 ∼ t2 iff (t1 = t2 occurs on B or t1 is t2)

]
.

Proposition 1. ∼ is an equivalence relation.

Proposition 2. For any t1, t2 ∈ TERM(B), if t1 ∼ t2, then ϕ[x/t1] ∈ B iff
ϕ[x/t2] ∈ B, for all formulas ϕ.

So equipped, we are ready to prove the cornerstone result of this section.

Lemma 4 (Satisfaction Lemma). Let T be a TCL-tableau, for L ∈
{PFL,PQFL,NFL,NQFL,NQFL−}, and let B be an open and fully expanded
branch of T . Then there exists a structure M L

B = 〈DL
B,DE

L
B,I L

B 〉 and a func-
tion vL

B such that:

if ψ ∈ B, then M L
B , vL

B |= ψ. (�)

Proof. We first show how to construct M L
B and vL

B. The latter object is assumed
to serve as an assignment, which is normally defined for VAR(B) ∪PAR(B). The
values of bound variables, however, are arbitrary, so for convenience we introduce
an extra object o /∈ TERM(B) that will further play the role of their value. First
we define DL

B and DE
L
B.

– DL
B = {[t]∼ | t ∈ TERM(B)} ∪ {o}.

For L ∈ {PFL,NFL}:

– DE
L
B = {[t]∼ ∈ DL

B | Et ∈ B} [hence o ∈ DL
B \ DE

L
B].

For L ∈ {PQFL,NQFL}:

– DE
L
B = {[t]∼ ∈ DL

B | Et ∈ B} ∪ {o}.

For L ∈ {NQFL−}:

– DE
L
B = {[t]∼ ∈ DL

B | t ∈ PAR(B)} ∪ {o}.

Next, we define vL
B as a function mapping elements from VAR(B) ∪ PAR(B) to

DL
B for PFL and NFL, and as a function from VAR(B)∪PAR(B) to DE

L
B for PQFL,

NQFL, and NQFL−. We let

vL
B(t) =

{
[t]∼, if t is a parameter,
o, if t is a bound variable.

– I L
B vL

B
(t) = vL

B(t), for each t ∈ PAR(B) ∪ VAR(B);
– I L

B vL
B
(ıxϕ) = [t]∼ iff ϕ[x/t] ∈ B and for any b ∈ PAR(B), if ϕ[x/b] ∈ B, then

t = b ∈ B , for each ıxϕ ∈ TERM(B) and t ∈ PAR(B);
– I L

B (P) = {〈I L
B vL

B
(t1), . . . ,I L

B vL
B
(tn)〉 | P (t1, . . . , tn) ∈ B}.

Tableaux for Free Logics with Descriptions 67

We need to show that vL
B is a properly defined L-assignment.

Assignment vL
B

First, we show that vL
B is a properly defined L-assignment, for L being any of the

considered logics. First we prove that vL
B is a function on VAR(B). Totality of vL

B
straightforwardly follows from its definition. Uniqueness of the value assigned
by vL

B to each element of VAR(B) ∪ PAR(B) is a consequence of two facts. First,
∼ is an equivalence relation, so equivalence classes of ∼ are pairwise disjoint.
Secondly, DL

B is non-empty. Indeed, without loss of generality we can assume
that we check for validity of universally quantified formulas, that is, the input
formula ϕ is of the form ¬∀xψ. By expandedness of B we get that the rules
(¬¬E), (∧E), (¬ ∧ E), (¬∀i), and (¬∀i), for i ∈ {1, 2}, were applied on B to
the point where an atomic formula or a negated atomic formula with a free
term t, that is, a parameter or definite description, occurs on B. Such a formula
must finally occur on B as L does not contain the constants ⊥ and � and an
atomic formula of L is of one of the forms: t1 = t2, P (t1, . . . , tn), or Et, where
t, t1, . . . , tn are terms and P is an n-ary predicate symbol. Thus, an equivalence
class of such a freely occurring term t is an element of DL

B.
For L ∈ {PQFL,NQFL,NQFL−} we additionally need to show that the image

of vL
B is included in DE

L
B. But for the first two logics this is a straightforward

consequence of presence of the rule (EI3) in TCPQFL and TCNQFL, which, for each
parameter b on B, introduces Eb to B, and the definition of DE

L
B for both logics.

In the last case the required inclusion rests solely on the definition of DE
NQFL−
B .

Let us now show that (�) holds. The notion of satisfaction in M L
B is defined

as in Sect. 2.2. We proceed by induction on the complexity of ψ which is defined
as the number of connectives and quantifiers occuring in ψ but not in the scope
of the ı-operator. We restrict attention to the cases where ψ := t1 = t2 and
ψ := t1 �= t2.

ψ := t1 = t2 Let t1, t2 ∈ TERM(B) and t1 = t2 ∈ B. Let L ∈ {PFL,PQFL}.
By the definition of ∼, [t1]∼ = [t2]∼, and so, by the definition of I L

B vL
B
,

I L
B vL

B
(t1) = I L

B vL
B
(t2). Thus, by the satisfaction condition for =-formulas in

both logics, M L
B , vL

B |= t1 = t2. Now let L ∈ {NFL,NQFL}. By expandedness of
B we know that the rule (EI2) (NFL) or (EI2) together with (EI3) (NQFL) was
applied to t1 = t2, thus yielding Et1, Et2 ∈ B. By the proof of the case ψ := Et
we know that I L

B vL
B
(t1) ∈ DE

L
B and I L

B vL
B
(t2) ∈ DE

L
B. Moreover, by the defini-

tion of ∼ and I L
B vL

B
, I L

B vL
B
(t1) = I L

B vL
B
(t2). Hence, by the satisfaction condition

for =-formulas, M L
B , vL

B |= t1 = t2. Finally, let L = NQFL−. By expanded-
ness of B the rule (= I2) was applied to t1 = t2, thus yielding ai = ti, for
1 ≤ i ≤ 2 and ti being a definite description. Without loss of generality assume
that t1 ∈ PAR(B) and t2 is a definite description, so we have t1, a2 ∈ PAR(B)
and t2 = a2 ∈ B. By the definition of ∼ and DE

L
B for L = NQFL− we get that

[t1]∼ ∈ DE
L
B, [t2]∼ = [a2]∼ ∈ DE

L
B and [t1]∼ = [t2]∼. By the definition of I L

B vL
B
,

I L
B vL

B
(t1),I L

B vL
B
(t2) ∈ DE

L
B and I L

B vL
B
(t1) = I L

B vL
B
(t2). Hence, by the satisfaction

condition for =-formulas, M L
B , vL

B |= t1 = t2.

68 A. Indrzejczak and M. Zawidzki

ψ := t1 �= t2 Let t1, t2 ∈ TERM(B) and t1 �= t2 ∈ B. Let L ∈ {PFL,PQFL}.
By openness of B, t1 and t2 are distinct terms, for otherwise the rule (⊥2)
would close B. Again, by openness of B, t1 = t2 /∈ B, so by the definition of ∼,
[t1]∼ �= [t2]∼. Hence, by the definition of I L

B vL
B
, I L

B vL
B
(t1) �= I L

B vL
B
(t2). Thus,

by the satisfaction condition for =-formulas in both logics, M L
B , vL

B �|= t1 = t2,
and so, by the satisfaction condition for ¬-formulas, M L

B , vL
B |= t1 �= t2. Let

L ∈ {NFL}. Clearly, either t1 and t2 are distinct, or identical. Assume, first,
that t1 and t2 are distinct terms. Then we proceed with the proof similarly to
the case for L ∈ {PFL,PQFL}. Now, assume that t1 �= t2 is of one of the forms
t �= t. We know that Et /∈ B, for otherwise we could apply (EE2) and close B
with (⊥1). Then, by the definition of ∼ and DE

L
B, it follows that [t]∼ /∈ DE

L
B.

By the definition of I L
B vL

B
and the satisfaction condition for =-formulas, we get

M L
B , vL

B �|= t = t. By the satisfaction condition for ¬-formulas we finally obtain
M L

B , vL
B |= t �= t. Let L ∈ {NQFL,NQFL−}. Clearly, either t1 and t2 are distinct,

or t1, t2 /∈ PAR(B). Indeed, if t1 �= t2 was of the form b �= b for b ∈ PAR(B),
then B would be closed by an application of (⊥3). Assume, first, that t1 and
t2 are distinct terms. Then we proceed with the proof similarly to the case for
L ∈ {PFL,PQFL}. Now, assume that t1 �= t2 is of the form ıxϕ �= ıxϕ. Let
L = NQFL. Certainly, Eıxϕ /∈ B, for otherwise (EE1) would have been applied,
yielding a = ıxϕ and, through (= E), a �= a, thus closing B. So, by the definition
of ∼, DE

L
B, and I L

B vL
B
, we have I L

B vL
B
(ıxϕ) /∈ DE

L
B. The rest of the proof is identical

to the one for L = NFL. Let L = NQFL−. For the same reasons as for NQFL, for
each b ∈ PAR(B), b = ıxϕ /∈ B. Then, by the definition of ∼, DE

L
B, and I L

B vL
B
,

I L
B vL

B
(ıxϕ) /∈ DE

L
B. We conduct the rest of the proof similarly to the one for

L ∈ {NFL,NQFL}.
Interpretation I L

B vL
B
(ıxϕ)

The last thing we must show is that the condition for the interpretation of
definite descriptions holds in M L

B . In terms of the induced model it amounts to
the following condition:

I L
B vL

B
(ıxϕ) = [a]∼ ∈ DE

L
B iff M L

B , vx
[a]∼

L

B |= ϕ and for each x-variant v′L
B

of vL
B, if M L

B , v′L
B |= ϕ, then v′L

B(x) = [a]∼.

(†)

The right-hand side of (†), by Substitution Lemma, is equivalent to the condition
that M L

B , vL
B |= ϕ[x/a] and for each b such that [b]∼ ∈ DE

L
B, if M L

B , vL
B |= ϕ[x/b],

then [b]∼ = [a]∼, which will be applied in the proof. We show (†) for PQFL,
NQFL, NQFL−. For the remaining systems the proof is similar. First let us note
the following:

Claim. Let B be a fully expanded branch of a TCL-tableau T , for L ∈
{PFL,PQFL,NFL,NQFL,NQFL−}. Then the following holds:

I L
B vL

B
(ıxϕ) = [a]∼ iff ıxϕ = a ∈ B.

Tableaux for Free Logics with Descriptions 69

Proof. ⇒ By contraposition, assume that ıxϕ = a /∈ B. Then, by (cut1), ıxϕ �=
a ∈ B, which, by (�), yields that M L

B , vL
B |= ıxϕ �= a. Thus, I L

B vL
B
(ıxϕ) �= [a]∼.

⇐ If we assume that ıxϕ = a ∈ B, then, by (�), M L
B , vL

B |= ıxϕ = a, and we
are done.

Now let us prove (†):
⇒ Let I L

B vL
B
(ıxϕ) = [a]∼ ∈ DE

L
B. Hence, by Claim, ıxϕ = a ∈ B. By (ıE1),

either ϕ[x/a] ∈ B and ¬ϕ[x/b] ∈ B, or ϕ[x/a] ∈ B and a = b ∈ B, for every b. In
both cases, by (�), M L

B , vL
B |= ϕ[x/a]. Moreover, again by (�), either M L

B , vL
B �|=

ϕ[x/b] or M L
B , vL

B |= a = b, for every b. Hence the second conjunct follows.

⇐ Assume that M L
B , vL

B |= ϕ[x/a] and for each b ∈ DE
L
B, if M L

B , vL
B |= ϕ[x/b],

then [b]∼ = [a]∼, but I L
B vL

B
(ıxϕ) �= [a]∼. Hence, by Claim, ıxϕ �= a ∈ B. By

(¬ıE) we have either ¬ϕ[x/a] ∈ B or, for some b, ϕ[x/b] ∈ B and a �= b ∈ B.
Both cases, by (�), lead to a contradiction. ��

Theorem 2 (Completeness). The tableau calculi TCPFL, TCPQFL, TCNFL,
TCNQFL, and TCNQFL

− are complete.

Proof. We prove the contrapositive of the usual completeness condition. Assume
that a L-formula ϕ is not tableau-valid wrt TCL. Then, there is a fully expanded
TCL-tableau which is not a tableau proof of ϕ. Thus, there exists an open
branch B in T with ¬ϕ at the root. By Satisfaction Lemma the structure
M L

B = 〈DL
B,DE

L
B,I L

B 〉 is an L-model and the function vL
B : VAR∪PAR(B) −→ DL

B
is an �L-assignment and since ¬ϕ ∈ B, then M L

B , vL
B |= ¬ϕ. By the usual duality

between satisfiability and validity we obtain that ϕ is not valid, which yields the
conclusion. ��

5 Related Work

Alongside with the tableau systems mentioned in Sect. 1, which usually directly
transform the conditions (L) or (R), two alternative approaches deserve a sepa-
rate mention. One of them, although in the setting of labelled sequent calculus,
has recently been presented by Orlandelli [25]. He provided an alternative for-
mulation of modal theory of descriptions developed by Fitting and Mendelsohn
in [8] in the form of a tableau system not enjoying the subformula property.
Orlandelli’s system, on the other hand, is cut-free and analytic. These properties
are obtained at the cost of a significant enrichment of the technical machinery.
In addition to ordinary strong labels (i.e., labels naming worlds and attached
to formulas and relational atoms showing accessibility links between worlds),
he is using special denotation atoms D(t, x, w) to express that a term t in w
denotes the same object as the one denoted by a variable x. This device is used
to define rules for DD and for the λ-operator. Another cut-free formulation of
the same theory of descriptions was developed by Indrzejczak [13] in the setting
of hybrid modal language. The main difference is that instead of introducing

70 A. Indrzejczak and M. Zawidzki

external labelling apparatus, a richer language with nominal variables and sat-
operators is used and descriptions are characterized by means of rules dealing
with equalities, like in the present approach. MFD in all variants analyzed in the
present paper is a much weaker theory of descriptions than the theory mentioned
above, although the variants based on NQFL and NQFL− show some affinities
with Fitting and Mendelsohn’s theory. It would be an interesting task to embed
MFD, as represented in positive free logic, in the modal setting using one of the
two presented alternative approaches.

The tableau calculi devised in this paper, despite being based on the cut-free
sequent calculi for the same logics, introduced in [14], go beyond straightforward
transpositions of the rules presented therein. The main aim of [14] was to obtain
sequent formalizations of free logics for which it is possible to prove the cut
elimination theorem in a constructive way. Our main objective here is to con-
struct calculi which are analytic and effective tools of proof search in respective
logics. This basic difference has a significant impact on the way the sets of rules
are built in both approaches, which we briefly summarize in what follows. First
of all, in our tableau systems a restricted (to identities) form of analytic cut is
present, whereas in the sequent calculus from [14] cut is in general constructively
eliminable. However, cut-freeness of the latter systems leads to more complicated
forms of some other rules. In particular:

1. The sequent counterpart of the tableau rule (= E) is restricted to atomic
formulas and has three premises instead of one.

2. Some sequent rules are replaced here by suitable closure rules.
3. All tableau rules for definite descriptions are different than the respective

rules in sequent calculi.

What speaks in favour of tableaux presented in this paper is a decreased branch-
ing factor in comparison to the discussed sequent calculi. The price to be paid,
however, is a restricted form of analytic cut which is necessary to ensure com-
pleteness of the calculi. Since eliminating the three-premise rule makes it neces-
sary to add a restricted cut, we cannot be sure that it leads to simpler proof-trees
in the general case, but, at least on the basis of several tested examples, it seems
highly probable.

The presence of cut, even in a strictly limited form which does not destroy
the subformula property, may be seen as a disadvantage. However, both cut rules
could be dispensed with and replaced with two other rules expressing some form
of Leibniz’s law:

(RL1)
¬ϕ[x/t]

¬ϕ[x/b] | b �= t
(RL2)

¬ϕ[x/t], Eb
¬ϕ[x/b] | b �= t

,

where t is a DD and ϕ is atomic (including E and =). On the other hand, in
comparison to the above Leibniz’s rules the proposed form of analytic cut seems
to be a more direct solution without overhead costs. The cut-free and analytic
characterization of Russellian theory of DD from [16] is essentially based on the
introduction of a collection of special equality rules for every kind of involved

Tableaux for Free Logics with Descriptions 71

terms. Only after we augment the calculus with this extra toolkit, it becomes
possible to dispense with any form of cut. However, despite of some purely
proof-theoretic advantages of this solution, it does not seem to bring any serious
benefits in the tableau setting.

6 Conclusions

The role of definite descriptions in the field of proof theory and automated
deduction has so far been underestimated. That is why it is important to stress
advantages using them may bring. First of all, as we mentioned in Sect. 2, every
complex term represented by means of functional terms can be equivalently
expressed using a definite description. In the latter case we do not need extra
bridge principles showing how the information encoded by functional terms is
represented by predicates, whereas in the former case we do. For example such
bridge principles are usually needed as enthymematic premises in an analy-
sis of obviously valid arguments. Moreover, the presence of functions in for-
mal languages often easily leads to generating infinite Herbrand models even
when finite models are allowed. Let us illustrate this with a simple example.
From ∀x(a = f(x)) we infer a = f(a), a = f(f(a)), a = f(f(f(a))), . . . On
the other hand, from ∀x(a = ıyF (x, y)) we obtain a = ıyF (a, y), and then
F (a, a),¬F (a, a) | a = a, F (a, a), where the left branch gets closed, but the right
one provides a finite, single-element model. Moreover, definite descriptions can
be used to provide smooth definitions of new terms, and even new operators, in
formal languages. For example, one may define the abstraction operator in set
theory in an elegant way.

These virtues of definite descriptions have not hitherto been thoroughly
examined mainly because of a lack of good formal systems expressing their the-
ories. The presented tableau systems are a step towards filling this gap. They
are analytic despite of the use of restricted cuts and, in effect, seem to provide
handy proof-search tools. Further plans for research include:

1. designing and implementing a tool for automated proof-search and user-
friendly proof-assistance;

2. investigating computational efficiency of such a tool; in particular, comparing
it with well-known programs designed for standard languages with functional
terms;

3. formalizing stronger theories of definite descriptions in standard language and
in enriched languages (e.g., with modalities);

4. applying these systems to a formalization of elementary theories.

References

1. Baaz, M., Iemhoff, R.: Gentzen calculi for the existence predicate. Stud. Logica.
82(1), 7–23 (2006). https://doi.org/10.1007/s11225-006-6603-6

2. Beeson, M.J.: Foundations of Constructive Mathematics. Metamathematical Stud-
ies, Springer, Heidelberg (1985)

https://doi.org/10.1007/s11225-006-6603-6

72 A. Indrzejczak and M. Zawidzki

3. Bencivenga, E., Lambert, K., van Fraasen, B.: Logic, Bivalence and Denotation.
Ridgeview, Atascadero (1991)

4. Bencivenga, E.: Free logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of
Philosophical Logic, pp. 147–196. Springer, Dordrecht (2002). https://doi.org/10.
1007/978-94-017-0458-8 3

5. Bostock, D.: Intermediate Logic. Clarendon Press, Oxford (1997)
6. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate

Texts in Mathematics, Springer, New York (1994). https://doi.org/10.1007/978-
1-4757-2355-7

7. Feferman, S.: Definedness. Erkenntnis 43, 295–320 (1995). https://doi.org/10.
1007/BF01135376

8. Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Kluwer, Dordrecht (1998).
https://doi.org/10.1007/978-94-011-5292-1

9. Garson, J.W.: Modal Logic for Philosophers. Cambridge University Press, Cam-
bridge (2006). https://doi.org/10.1017/CBO9780511617737

10. Gumb, R.: An extended joint consistency theorem for a nonconstructive logic
of partial terms with definite descriptions. Stud. Logica. 69(2), 279–292 (2001).
https://doi.org/10.1023/A:1013822008159

11. Indrzejczak, A.: Cut-free modal theory of definite descriptions. In: Bezhanishvili,
G., D’Agostino, G., Metcalfe, G., Studer, T. (eds.) Advances in Modal Logic 12,
pp. 387–406. College Publications, London (2018)

12. Indrzejczak, A.: Fregean description theory in proof-theoretical setting. Log. Log-
ical Philos. 28(1), 137–155 (2019). https://doi.org/10.12775/LLP.2018.008

13. Indrzejczak, A.: Existence, definedness and definite descriptions in hybrid modal
logic. In: Olivetti, N., Verbrugge, R., Negri, S., Sandu, G. (eds.) Advances in Modal
Logic 13, pp. 349–368. College Publications, London (2020)

14. Indrzejczak, A.: Free definite description theory - sequent calculi and cut elimina-
tion. Log. Logical Philos. 29(4), 505–539 (2020). https://doi.org/10.12775/LLP.
2018.008

15. Indrzejczak, A.: Free logics are cut-free. Stud. Logica. 109(4), 859–886 (2020).
https://doi.org/10.1007/s11225-020-09929-8

16. Indrzejczak, A.: Russellian definite description theory - a proof theoretic approach.
Rev. Symb. Logic 1–26 (2021). https://doi.org/10.1017/S1755020321000289

17. Indrzejczak, A., Zawidzki, M.: Tableaux for free logics with descriptions (2021).
arXiv:2107.07228

18. Kalish, D., Montague, R., Mar, G.: Logic. Techniques of Formal Reasoning, 2nd
edn. Oxford University Press, New York (1980)

19. Kürbis, N.: A binary quantifier for definite descriptions in intuitionist negative free
logic: natural deduction and normalization. Bull. Section Log. 48(2), 81–97 (2019).
https://doi.org/10.18778/0138-0680.48.2.01

20. Kürbis, N.: Two treatments of definite descriptions in intuitionist negative free
logic. Bull. Section Log. 48(4), 299–317 (2019). https://doi.org/10.18778/0138-
0680.48.4.04

21. Lambert, K.: A theory of definite descriptions. In: Lambert, K. (ed.) Philosophical
Applications of Free Logic, pp. 17–27. Kluwer (1962)

22. Lambert, K.: Free logic and definite descriptions. In: Lambert, K. (ed.) New Essays
in Free Logic, pp. 37–48. Springer, Dordrecht (2001). https://doi.org/10.1007/978-
94-015-9761-6-2

23. Lehmann, S.: More free logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of
Philosophical Logic, vol. 5, 2nd edn., pp. 197–259. Springer, Dordrecht (2002).
https://doi.org/10.1007/978-94-017-0458-8-4

https://doi.org/10.1007/978-94-017-0458-8_3
https://doi.org/10.1007/978-94-017-0458-8_3
https://doi.org/10.1007/978-1-4757-2355-7
https://doi.org/10.1007/978-1-4757-2355-7
https://doi.org/10.1007/BF01135376
https://doi.org/10.1007/BF01135376
https://doi.org/10.1007/978-94-011-5292-1
https://doi.org/10.1017/CBO9780511617737
https://doi.org/10.1023/A:1013822008159
https://doi.org/10.12775/LLP.2018.008
https://doi.org/10.12775/LLP.2018.008
https://doi.org/10.12775/LLP.2018.008
https://doi.org/10.1007/s11225-020-09929-8
https://doi.org/10.1017/S1755020321000289
http://arxiv.org/abs/2107.07228
https://doi.org/10.18778/0138-0680.48.2.01
https://doi.org/10.18778/0138-0680.48.4.04
https://doi.org/10.18778/0138-0680.48.4.04
https://doi.org/10.1007/978-94-015-9761-6-2
https://doi.org/10.1007/978-94-015-9761-6-2
https://doi.org/10.1007/978-94-017-0458-8-4

Tableaux for Free Logics with Descriptions 73

24. Maffezioli, P., Orlandelli, E.: Full cut elimination and interpolation for intuitionistic
logic with existence predicate. Bull. Section Log. 48(2), 137–158 (2019). https://
doi.org/10.18778/0138-0680.48.2.04

25. Orlandelli, E.: Labelled calculi for quantified modal logics with definite descrip-
tions. J. Logic Comput. (2021). https://doi.org/10.1093/logcom/exab018, exab018

26. Pavlović, E., Gratzl, N.: A more unified approach to free logics. J. Philos. Log.
50(1), 117–148 (2020). https://doi.org/10.1007/s10992-020-09564-7

27. Pelletier, F.J., Linsky, B.: What is Frege’s theory of descriptions? In: Linsky, B.,
Imaguire, G. (eds.) On Denoting: 1905–2005, pp. 195–250. Philosophia Verlag,
Munich (2005)

28. Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey,
C., Scott, D. (eds.) Applications of Sheaves, pp. 660–696. Springer, Heidelberg
(1979). https://doi.org/10.1007/BFb0061839

29. Tennant, N.: Natural Logic. Edinburgh University Press, Edinburgh (1978)
30. Tennant, N.: A general theory of abstraction operators. Philos. Q. 54(214), 105–

133 (2004). https://doi.org/10.1111/j.0031-8094.2004.00344.x

https://doi.org/10.18778/0138-0680.48.2.04
https://doi.org/10.18778/0138-0680.48.2.04
https://doi.org/10.1093/logcom/exab018
https://doi.org/10.1007/s10992-020-09564-7
https://doi.org/10.1007/BFb0061839
https://doi.org/10.1111/j.0031-8094.2004.00344.x

CEGAR-Tableaux: Improved Modal
Satisfiability via Modal Clause-Learning

and SAT

Rajeev Goré1(B) and Cormac Kikkert2

1 Vienna University of Technology, Vienna, Austria 2 Australian National
University, Canberra, Australia
cormac.kikkert@anu.edu.au

Abstract. We present CEGAR-Tableaux, a tableaux-like method for
propositional modal logics utilising SAT-solvers, modal clause-learning
and multiple optimisations from modal and description logic tableaux
calculi. We use the standard Counter-example Guided Abstract Refine-
ment (CEGAR) strategy for SAT-solvers to mimic a tableau-like search
strategy that explores a rooted tree-model with the classical proposi-
tional logic part of each Kripke world evaluated using a SAT-solver.
Unlike modal SAT-solvers and modal resolution methods, we do not
explicitly represent the accessibility relation but track it implicitly via
recursion. By using “satisfiability under unit assumptions”, we can iter-
ate rather than “backtrack” over the satisfiable diamonds at the same
modal level (context) of the tree model with one SAT-solver. By keeping
modal contexts separate from one another, we add further refinements for
reflexivity and transitivity which manipulate modal contexts once only.
Our solver CEGARBox is, overall, the best for modal logics K, KT and
S4 over the standard benchmarks, sometimes by orders of magnitude.

1 Introduction

The TABLEAUX and DL communities have strived for thirty years to provide
practical theorem provers for non-classical logics while the SAT community has
moved from efficiently solving SAT-problems with tens of propositional vari-
ables to solving problems with hundreds of variables. The “silver bullet” was
conflict driven clause-learning [7,10]. Following Claessen and Rosén [1], Fioren-
tini et al. [3] and Goré et al. [5], we give a tableaux-like calculus containing
“modal clause learning” to handle modal satisfiability, where a main procedure
explores a rooted tree-model with worlds evaluated via an “oracle” SAT-solver.
Our implementation, CEGARBox, uses multiple optimisations and, overall, is the
best over the standard benchmarks, sometimes by orders of magnitude.

Consider monomodal logic with modal operators � and � with formulae
defined from atoms p ∈ Atm by the BNF grammar ϕ ::= ⊥ | � | p | ¬ϕ | ϕ ∧
ϕ | ϕ ∨ ϕ | �ϕ | �ϕ. Define (ϕ1 → ϕ2) := (¬ϕ1 ∨ ϕ2) and ϕ1 ↔ ϕ2 := ((ϕ1 →
R. Goré—Work supported by the FWF projects I 2982 and P 33548.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 74–91, 2021.
https://doi.org/10.1007/978-3-030-86059-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_5&domain=pdf
http://orcid.org/0000-0002-1723-4095
https://doi.org/10.1007/978-3-030-86059-2_5

CEGAR-Tableaux: Improved Modal Satisfiability 75

ϕ2) ∧ (ϕ2 → ϕ1)). We assume familiarity with the Kripke semantics for modal
logics in which the modal logic K, KT, K4 and S4 are respectively characterised
by all; reflexive; transitive; and reflexive-transitive frames.

We thank Steve Blackburn, Ullrich Hustadt and Daniel Le Berre.

2 Modal Clausal Tableaux

Following Goré and Nguyen [4], we define modal clausal tableaux as follows.
A literal is an atom p or its negation ¬p: we use a to f and l for literals.

We use A, B, C and D for a set of literals. We define l̄ := ¬p if l = p and
l̄ := p if l = ¬p so that ¯̄l = l. A formula is in negation normal form (NNF) if
it is implication-free and negations appear only in front of atomic formulae. A
formula ϕ can be converted into an at most polynomially longer formula nnf(ϕ)
in NNF so that ϕ is logically equivalent to nnf(ϕ). Let ϕ := nnf(¬ϕ).

A cpl-clause is a disjunction of literals. A formula (¬a ∨ �b) is a box-clause
and (¬c ∨ �d) is a dia-clause. We usually write box-clauses as a → �b and
dia-clauses as c → �d to convey that the literal b is “boxed” while the literal
d is “diamonded” and that these implications “fire” from left to right if their
antecedents are true. For any set w0 of these three types of clauses, let Ccpl(w0)
and C→�(w0) and C→�(w0) be, respectively, the set of cpl-clauses, box-clauses
and dia-clauses from w0.

A modal context is a possibly empty sequence of box-like modalities: for-
mally �0ϕ := ϕ and �i+1 := �i�ϕ. Every cpl-clause, box-clause and dia-
clause is a modal clause, and if ϕ is a modal clause then so is �iϕ, i ≥ 1.
Using “;” for set-union, a set w0 of modal clauses can be partitioned into
separate modal contexts via: w0 = �0C0(w0) ; �1C1(w0) ; · · · ; �nCn(w0)
where each set Ci contains only cpl-clauses, box-clauses and dia-clauses so
C0(w0) = Ccpl(w0) ; C→�(w0) ; C→�(w0). Letting MC := �0C1; · · · ;�k−1Ck,
we gather the non-zero modal contexts via w0 = Ccpl(w0); C→�(w0); C→�(w0);
�MC(w0).

A formula can be put into modal clausal form (or Mints [11] normal form) in
linear time and space wrt length [4]. The resulting modal clauses are K-satisfiable
iff the original formula is K-satisfiable [4].

We assume familiarity with the standard tableau calculi for modal logics K,
KT, K4 and S4 using NNF. These calculi will also work for formulae in modal
clausal form. In the modal rules, L is a finite set of literals, while X, Y , and Z
are possibly empty sets of modal clauses:

(T)
�ϕ;X

ϕ;�ϕ;X
(K)

�ϕ;�X;�Y ;L
ϕ;X

(K4)
�ϕ;�X;�Y ;L

ϕ;X;�X

Suppose we want to test the formula ϕ0 for validity. We negate it and put the
negation into nnf to obtain ϕ0 := nnf(¬ϕ0). We then put ϕ0 into modal clausal
form to obtain w0. Thus w0 is the modal clausal form of nnf(¬ϕ0). We then use
the rules shown above to try to find a closed tableau, as usual. But there is an
alternative which builds-in some aspects of modus ponens as explained next.

76 R. Goré and C. Kikkert

Given an example root node w0 := L ; {c → �d, c1 → �d1} ; {a1 →
�bi, a2 → �b2} ; �MC(w0), where L is a set of literals and �MC(w0) is arbi-
trary, consider the (transitional-but-modus-ponens-like) KE-rule [2] instance:

(jump)
L ; c → �d ; a1 → �b1, a2 → �b2 ; �MC(w0)

d ; b1 ; MC(w0)

Proposition 1. If ({c, a1, a2} ⊆ L, then this (jump) rule instance is derivable.

Instead of a derivation of (jump), we simply show how it mimics (K) viz:

L: the set of literals as in (K)
�ϕ: a principal diamond (c → �d) ∈ C→�(w0) which fires giving �d if c ∈ L
�Y : non-principal dia-clauses {c1 → �d1} = C→�(w0) \ {c → �d}
�X: box-clauses (a1 → �b1) ⊆ C→�(w0) giving {�b1} ⊆ �X if a1 ⊆ L
�X: the non-empty modal contexts �MC(w0) ⊆ �X and
none: box-clauses a2 → �b2 which are dormant if a2 ⊆ L and have no counter-

part in the original (K) rule.

We will replace the tableaux rules for cpl with a SAT-solver (oracle) and
replace (K) with a generalised variant of (jump) called (jump)/(restart) which
uses modal clause-learning. We first explain SAT-solvers and the CEGAR pro-
cedure.

3 SAT-solvers and the CEGAR Procedure

A formula is in conjunctive normal form (CNF) if it is a conjunction of cpl-
clauses. SAT-solvers are extremely efficient algorithms for determining the sat-
isfiability of a set of formulae of classical propositional logic in CNF [16].

Incremental SAT-solvers are solvers which allow alternating between adding
a clause to the SAT-solver and testing for satisfiability. Further, modern SAT-
solvers, such as MiniSAT [14], allow testing for Satisfiability Under Unit Assump-
tions, with a set of literals A = {l1, · · · , ln} called unit assumptions. That is,
if the SAT-solver is in some state σ after loading a set S of cpl-clauses into
it, we can now query whether or not S ∪ A is classically satisfiable. Moreover,
after computing the un/satisfiability of S ∪ A, such a SAT-solver will “undo”
its actions to return to its previous state σ. Using this feature, we can use one
single SAT-solver in state σ to iteratively test the classical satisfiability of many
different extensions S ∪{A1}, S ∪{A2}, · · · , S ∪{Am} of a given S without their
interfering with one another, as long as each Ai is a set of unit assumptions.

For example, if we are given the set �B ; �d1 ; · · · ; �dm ; �C where each
B ∪ {di} is a set of unit assumptions, and C is a set of arbitrary cpl-clauses,
then we can initially load the SAT-solver with the cpl-clauses in C to put it in
some state σ and then iteratively test the un/satisfiability of each set B ; di ; C
for i = 1, · · · ,m using just one SAT-solver which reuses the state σ, rather
than using m separate SAT-solvers with states B ; di ; C. We assume that the
SAT-solver we use provides the following operations:

CEGAR-Tableaux: Improved Modal Satisfiability 77

addClause(s, C): adds the cpl-clause C as a constraint to the SAT-solver s.
solve(s,A): accepts a set A = {l1, · · · , lm} of unit assumptions, and tries to

find a classical valuation ϑ that satisfies the cpl-clauses added so far to s
under the unit assumptions in A. The call returns one of two answers:
(sat, ϑ): if it is possible to find such an assignment ϑ representing the literals

that are true, and so we have that A ⊂ ϑ
(unsat, A′): if it is impossible to find such an assignment with A′ ⊂ A a,

not necessarily unique, unsatisfiable core of A, which causes the classical
unsatisfiability of s ∪ A. Note that A′ itself may be classically satisfiable.
The smaller A′ is the more efficient our algorithm becomes.

We also use the following operation as a shorthand to avoid complicating
specifications with the intricacies of implementation:

sat(C, A): Creates a SAT-solver s, adds the set C of cpl-clauses to s, then returns
solve(s,A) where A is a set of unit-assumptions (literals).

We use the SAT-solver MiniSat [14], in our implementation.

3.1 Counter-Example Guided Abstraction Refinement (CEGAR)

The standard way to use a SAT-solver, besides a direct translation, is called
Counter-Example Guided Abstraction Refinement (CEGAR) which involves cre-
ating an under-abstraction ψ which is less constrained than the original formula
ϕ. We use ψ := Ccpl(ϕ) as our under-abstraction. Using a SAT-solver, we check
whether a classical valuation ϑ can be found for ψ. If not, then it is impossible
to create a Kripke model for the more constrained ϕ, and we conclude that ϕ is
modally unsatisfiable. Otherwise, we check whether the classical valuation ϑ can
be extended into a Kripke model for ϕ. If so we conclude that ϕ is modally sat-
isfiable. Else we refine the under-abstraction ψ to be closer to ϕ by learning new
cpl-clauses from the classical unsatisfiable core, and repeat the whole procedure.

Some versions of CEGAR use an over-approximation or even both, but we
elide details for brevity as the method of under-approximation is the one we use.

We now present two tableau-like rules and a rule-application search strategy
to mimic modal clausal tableaux using a CEGAR approach.

4 CEGAR Tableaux: Modal Clause-Learning via SAT

We describe tableau-like rules which mimic CEGAR. Each rule has a single par-
ent above the line and multiple children below the line with the traditional modal
(rather than description logic) tableaux reading of “if the parent is modally sat-
isfiable then so is at least one child”. To handle “satisfiability under unit assump-
tions”, let A(w0) ⊆ w0 be a set of designated literals called assumptions.

local CPL satisfiability rule:

w0 := A(w0) ; Ccpl(w0) ; C→�(w0) ; C→�(w0) ; �MC(w0)(local)
sat(Ccpl(w0),A(w0))

78 R. Goré and C. Kikkert

where sat(Ccpl(w0),A(w0)) either returns “closed” because it finds an unsat-
isfiable core A′(w0) ⊆ A(w0) of literals or returns “open” because it finds a
classical valuation ϑ(w0) ⊇ A(w0) such that ϑ(w0) |= Ccpl(w0). We can imple-
ment sat(Ccpl(w0),A(w0)) with a SAT-solver via sat(Ccpl(w0), A(w0)).

Proposition 2. If the parent of the (local) rule is modally satisfiable at some
world w via ϑ(w) then its subset, the child, is classically satisfiable under ϑ(w).

modal (jump/restart) rule:

w0 := A(w0) ; Ccpl(w0) ; C→�(w0) ; C→�(w0) ; �MC(w0)
ϑ(w0)

w1 := d ; B ; MC(w0) w′
0 := w0 ; ϕ(w0)

where ϑ(w0) ⊇ A(w0) is a classical valuation such that ϑ(w0) |= Ccpl(w0) and
(1) there is at least one “fired” diamond (c → �d) ∈ C→�(w0) & ϑ(w0) |= c
(jump): left child w1 := d;B;MC(w0) for the fired diamond �d where the

“fired” (un)boxes are
(2) B := {b | (a → �b) ∈ C→�(w0) and ϑ(w0) |= a}
(restart): right child w′

0 := w0;ϕ(w0) if the left child w1 with A(w1) = (d ; B)
closes with an unsatisfiable core A′(w1) ⊆ (d ; B) and

Ad(w1) := {d} ∪ A′(w1) is the unsatisfiable core of w1 extended with d
CS(w0) := {e | ϑ(w0) |= e & (e → �f) ∈ C→�(w0) & f ∈ Ad(w1)}

∪ {e | ϑ(w0) |= e & (e → �f) ∈ C→�(w0) & f ∈ Ad(w1)}
= {l1, . . . , ln} ⊇ {c} are the “culprits” from w0

and ϕ(w0) := (¬l1 ∨ . . . ∨ ¬ln) is the local learned cpl-clause ϕ(w0) with
which we restart w0 as w′

0 to refine ϑ(w0) since ϑ(w0) |= c and the single
diamond �d that it fired leads to a counter example w1 w.r.t. �MC(w0).

The (local) and (jump)/(restart) rules are notionally applicable to any set w0

of modal clauses except that the (jump/restart) rule is additionally parametrised
by a classical valuation ϑ(w0): that is, they form a “producer-consumer” pair.
Thus the (local) rule searches for a classical valuation (using a SAT-solver that
returns (sat, ϑ)), effectively finding an open branch of static rule applications.
The (jump) rule then uses this valuation to mimic the (K) as follows.

Item (1) non-deterministically chooses a dia-clause c → �d from C→�(w0)
which “fires” because ϑ(w0) |= c giving us the principal formula �d of (K).

Item (2) collects each box-clause a → �b from C→�(w0) which “fires” because
ϑ(w0) |= a, and unboxes each �b producing literals B ⊆ X in the (K)-rule.

The left (jump) child w1 := d ; B ; MC(w0) mimics the conclusion of a (K)-
rule instance with a premise �d ; �B ; �MC(w0), so w1 is the set of formulae
which must be true at the R-successor of the premise w0.

Applying these two rules recursively will either close w1 or leave w1 open.
If w1 stays open then w1 is a putative R-successor in the underlying counter-

model that we are exploring so we must choose some other dia-clause which is

CEGAR-Tableaux: Improved Modal Satisfiability 79

fired by ϑ(w0): we must iterate over all such fired diamonds as we are looking
for a closed tableau but if all choices stay open then we have a Kripke model.

Else, if w1 closes then it will return an (there may be many) unsatisfiable
core A′(w1) ⊆ (d ; B), closing the tableau branch for �d and pinpointing the
unit assumptions from w1 which cause branch closure, effectively building in a
use-check as explained below.

In the “else” case, a traditional tableau would backtrack up to the next
highest application of the (∨)-rule. But we can be cleverer by learning a clause
as follows. We extend the unsatisfiable core A(w1)′ to Ad(w1) to ensure that
d is in Ad(w1) because �d was the principal formula of the “jump” from w0

to w1. We now find the “culprits” e ∈ ϑ(w0) by “unfiring” each e → �f and
each e → �f that caused their f to be put into the extended unsatisfiable core
Ad(w1) of the R-successor, thereby obtaining the conflict set CS(w0) (used in
the proofs) of w0. That is, we have moved from w1 back to w0.

We know there is at least one culprit in w0, namely c, but in general CS(w0) =
{l1, · · · , ln} ⊇ {c}. We therefore “switch off” at least one of these culprits by
adding the disjunction of their negations ϕ(w0) := (¬l1 ∨ · · · ∨ ¬ln) as a new
clause and restart w0 as w′

0 := w0 ; ϕ(w0). Intuitively, rather than backtracking
to the next highest disjunction, our traditional tableau procedure is effectively
re-starting the Static rules on the new incarnation w′

0 to find a “saturation”
that is guaranteed to be different from ϑ(w0). Traditional tableau would only be
guaranteed to find a different “saturation” if they included use-check or cut.

Proposition 3. If the parent w0 of the (jump/restart) rule is K-satisfiable in a
Kripke model with root valuation ϑ(w0) then so is its left (jump) child w1.

Proposition 4. If the (jump/restart) rule is applied with ϑ(w0) and the right
(restart) child w′

0 is classically satisfied by ϑ(w′
0) then ϑ(w′

0) is a different clas-
sical valuation from ϑ(w0), and all previous such restarts, as there is at least one
literal li which is true in the previous valuation but false in the new one.

Example 1. Consider the standard K axiom instance �(p → q) → (�p → �q).
We negate it and obtain the negation normal form ¬K: �(¬p ∨ q) ∧ �p ∧ �¬q.
A legitimate clausal form of ¬K for illustrative purposes is: w0 = {a1, a1 →
�b1,�(b1 → (¬p ∨ q)), a2, a2 → �p, c1, c1 → �¬q} with A(w0) = ∅ and
Ccpl(w0) = {a1, a2, c1} and C→�(w0) = {a1 → �b1, a2 → �p} and C→�(w0) =
{c1 → �¬q} and �C(w0) = {�(b1 → (¬p ∨ q))}. Our final optimised normal
forming procedure produces something smaller. Figure 1 contains the search-
space for the resulting closed tableau. If we try �(p → q) → (�p → �r)
then c1 → �¬q above becomes c1 → �¬r and the tableau will remain open
and will return a Kripke (counter-)model w0Rw1 with ϑ(w0) = {a1, a2, c1} and
ϑ(w1) = {b1, p, q,¬r} which falsifies �(p → q) → (�p → �r) at w0.

4.1 Termination, Soundness and Completeness of the Strategy

We dub our search strategy as CEGARTab (in bold font).

80 R. Goré and C. Kikkert

w0 = A(w0) ; Ccpl(w0) ; C→ (w0) ; C→ (w0) ; MC(w0)
= ∅ ; {a1, a2, c1} ; {a1 → b1, a2 → p} ; {c1 → ¬q} ;

{ (b1 → (¬p ∨ q))}

sat(Ccpl(w0), ∅)
= sat({a1, a2, c1}, ∅) = {a1, a2, c1}

(local)

(jump/restart)

w1 =
A(w1) ; Ccpl(w1) ; C→ (w1) ; C→ (w1) ; MC(w1)

= {b1, p, ¬q} ; {b1 → (¬p ∨ q)} ; ∅ ; ∅ ; ∅

sat({b1 → (¬p ∨ q), ¬q}, {b1, p, ¬q})
= Unsat({b1, p, ¬q})

(local)

(jump)

w0 = w0 ;
¬a1 ∨ ¬a2 ∨ ¬c1

Unsat({})

(local)

(restart)

ϑ(w0) = {a1, a2, c1}

Fig. 1. The search-space for the negation ¬K of the K axiom �(p → q) → (�p → �q)
where dotted lines indicate rule choices and solid lines indicate branching rules.

Each iteration in CEGARTab is finite because each node contains a finite
number of dia-clauses. Thus the only way to not terminate is for CEGARTab to
recurse for ever. But each recursion via the (jump) rule reduces the maximal
modal degree of the formula set in the child node and each recursion via the
(restart) rule enumerates a different classical valuation from the finite set of
classical valuations for Ccpl(w0). Thus CEGARTab must terminate.

Theorem 1. For all sets of modal clauses w0 := nnf(¬ϕ0), CEGARTab(w0)
returns closed iff w0 is K-unsatisfiable (and hence ϕ0 is K-valid).

Proof. Both proofs proceed by a simple induction on the number of restarts.

Soundness: If the (local) rule returns closed then w0 contains a classically unsat-
isfiable, and hence K-unsatisfiable, subset. Else there is a closed application
of the (jump)/(restart) rule with learned clause ϕ = (¬l1 ∨ · · · ∨ ¬ln). The
induction hypothesis on the closed (jump) child implies that w0 ∪ ¬ϕ is K-
unsatisfiable. The induction hypothesis on the closed (restart) child implies
that w0 ∪ϕ is K-unsatisfiable. Hence w0 is K-unsatisfiable (and cut is admis-
sible!).

Completeness: The open (local) rule returns ϑ(w0). If the (jump)/(restart) rule
is not applicable then there are no fired diamonds, and so the Kripke model
is just a dead-end w0 with ϑ(w0). Else if the (jump) child is open then
the induction hypothesis implies that we can extend ϑ(w0) into Kripke sub-
models for every diamond jump. Adding a new root with ϑ(w0) that sees all
these sub-models gives a Kripke model for w0 itself. Else if the (jump) child
is closed then the (restart) child with learned clause ϕ = (¬l1 ∨ · · · ∨ ¬ln)

CEGAR-Tableaux: Improved Modal Satisfiability 81

is open. Then the induction hypothesis implies that w0;ϕ is K-satisfiable,
which implies that w0 is K-satisfiable. ��

5 Implementation: Our Modal Satisfiability Tester
CEGARBox

The only data-structures our base algorithm uses are a trie and lists. Memoisa-
tion, outlined in Sect. 7.2, was implemented using a binary tree.

5.1 Initialising a Trie During Normal Forming

Normal forming creates new atomic “names” pψ for certain subformulae ψ of
the original formula: for example ��(p1 ∧ p2) becomes a1 ; a1 → �b2 ; �(b2 →
�d3) ; ��(d3 → p1) ; ��(d3 → p2) [4] where a1 names ��(p1 ∧ p2) and d3
names (p1 ∧ p2). We make a linear recursive descent of the formula and store
modal clauses in a trie where each trie-node represents a modal context. If we
stored modal contexts, our normal form would be quadratic in size, and thus
our algorithm would have a quadratic time and space complexity, as does the
one from Goré and Nguyen [4]. Below is a trie that stores the above clauses:

a1 ; a1 → �b2 b2 → �d3 d3 → p1 ; d3 → p2
��

Each node of the trie at a given level (context) has the following components:

sat: A SAT-Solver initialised with the purely classical clauses Ccpl(.) in the node
BoxCl: the box clauses C→�(.) of the form a → �b in the node
DiaCl: the dia-clauses C→�(.) of the form c → �d in the node
Child(1): the node’s (only) child node “containing” MC(.) as explained next.

Proposition 5. If the input set of modal clauses is the set w0 := Ccpl(w0) ;
C→�(w0) ; C→�(w0); �1C1 ; . . . ; �kCk then the trie has depth equal to the
maximal modal depth k of w0 and ∀i ≥ 0, Trie.node at depth i contains Ci :=
Ccpl

i ; C→�
i ; C→�

i with Trie.node.sat = Ccpl
i and Trie.node.BoxCl = C→�

i

and Trie.node.DiaCl = C→�
i and Trie.node.Child(1) = Ci+1 : as below.

Logic Trie Depth Intuition where TrieNode(i) is i-th node of Trie

0 1 · · · k k is the maximum modal depth of the given w0

K C0 C1 · · · Ck finite chain with TrieNode(k).child(1) = nil

82 R. Goré and C. Kikkert

Algorithm 1 CEGARBox(A, TrieNode)
1: {Inputs: A is a set of unit assumptions and TrieNode is at level i in our trie}
2: Let t0 := solve(TrieNode.sat, A) {apply the (local) rule}
3: if t0 = (unsat, A) then
4: return Unsatisfiable(A)
5: else if t0 = (sat, ϑ) then
6: {Check box- and dia-clauses that fire under classical valuation ϑ}
7: for every (c → d) ∈ TrieNode.DiaCl with c ∈ ϑ do
8: Let B = {b | (a → b) ∈ TrieNode.BoxCl and a ∈ ϑ}
9: {apply the (jump) rule at next modal context}
10: if CEGARBox((d ; B), TrieNode.child(1)) = Unsatisfiable(X’) then
11: Let C = {c} ∪ {a | (a → b) ∈ TrieNode.BoxCl and a ∈ ϑ and b ∈ X }
12: { Learn new clause ϕ := ¬C}
13: Let ϕ := l∈C ¬l
14: addClause(TrieNode.sat, ϕ) {modify the i-th context globally}
15: { apply (restart) }
16: return CEGARBox(A, TrieNode)
17: end if
18: end for
19: return Satisfiable {because every fired diamond is fulfilled}
20: end if

Fig. 2. The main algorithm of CEGARBox with A a set of unit assumptions

5.2 The Main Algorithm

Our algorithm follows Fiorentini et al.’s reworking [3] of intuit for propositional
intuitionistic logic of Claessen and Rosén [1], which itself was “inspired” by
bddtab of Goré et al. [5]. The pseudocode is in Fig. 2. Our implementation does
not return an actual Kripke model, nor a closed tableau, as such, but it is trivial
to extend it with the bookkeeping required to do so.

5.3 Inputs and Outputs

We write node.child(i) for the child labelled i of the trie rooted at node: as our
logic is monomodal, i = 1. Similar to SAT-solvers we allow the use of a set of unit
assumptions A. Our algorithm either returns Satisfiable, or Unsatisfiable(A′),
where A′ ⊂ A is an unsatisfiable core of A.

We call CEGARBox(A, Trie) as the initial call with A = ∅.
Note that line 11 computes the correct conflict set as per the (jump)/(restart)

rule because we ensure that no two box-clauses have the same RHS and no two
dia-clauses have the same RHS, as explained later.

5.4 Use of Satisfiability Under Unit Assumptions

Note that in Line 10 of Fig. 2, we call the main algorithm recursively on
Trie.child(1) with a set X = (d ; B) of unit assumptions dependent

CEGAR-Tableaux: Improved Modal Satisfiability 83

Logic Trie Depth Intuition where TrieNode(i) is i-th node of Trie
0 1 · · · k k is the maximum modal depth of the given w0

K C0 C1 · · · Ck finite chain with TrieNode(k).child(1) = nil

KT C0 Ck
1 · · · Ck

k descending chain with TrieNode(k).child(1) = nil

K4 C0 C1
1 · · · Ck

1 ascending chain with TrieNode(k).child(1) = TrieNode(k)

S4 C0;Ck
1 Ck

1 · · · Ck
1 fixpoint at depth 1 with TrieNode(1).child(1) = TrieNode(1)

Fig. 3. The structure of the Trie for different logics with a modal context �0C0 ;
�1C1 ; · · · ; �nCn and Cn

i := Ci ; · · · ; Cn. For K, the modalised contexts form a
descending chain Ck

1 ⊇ Ck
2 ⊇ · · · ⊇ Ck

k while for K4 (not implemented) they form an
ascending chain C1

1 ⊆ C2
1 ⊆ · · · ⊆ Ck

1 . For S4, they are the constant Ck
1 after depth 1.

upon the fired dia-clause c → �d. Moreover, this call is inside a for-loop
which iterates over the fired diamonds. That is, if the set of fired diamonds
is {c1 → �d1, · · · , cn → �dn}, and the set of fired boxes gives B = {b | (a →
�b ∈ Trie.BoxCl and a ∈ ϑ} then the putative n successor worlds must contain
the unit assumption sets X1 = (d1 ; B) and X2 = (d2 ; B) up to Xn = (dn ; B).
We iteratively test the classical satisfiability of each set Xi ; Trie.child(1) by
putting X = (bi ; B) while keeping the parameter Trie.child(1) constant. This
is sound because the sat-solver Trie.child(1).sat in Trie.child(1) undoes
the assumptions it makes while computing the classical satisfiability of one set
d1 ; B ; Trie.child(1) (say) so that the same sat-solver Trie.child(1).sat
can be reused for the next set d2 ; B ; Trie.child(1) (say) without their
interfering with each other. That is, this is only sound because our SAT-solver
provides the ability to test for “satisfiability under unit assumptions”.

5.5 Modal Clause Learning Modifies the Modal Context at Level i

Note that we learn a new cpl-clause in Line 14 via addClause(Trie.sat, ϕ).
Consider a set of formulae and suppose that we saturate it using the tradi-

tional static tableau rules for cpl giving two OR-leaves, �ϕ1 ; �X1 ; �Y1 ; L1

and �ϕ2 ; �X2 ; �Y2 ; L2 where each Li is a set of literals. Thus we can treat
L1/L2 as a classical valuation ϑ1/ϑ2 which assigns all members of L1/L2 to true.

Suppose we try the successor ϕ1 ; X1 and find that it is modally unsatisfiable.
Putting X̂1 for the conjunction of the members of X1, we know that X̂1 → ¬ϕ1 is
K-valid, independently of ϑ1 itself. By necessition, we know that �(X̂1 → ¬ϕ1)
is K-valid. Goré et al. [5] tried to implement this insight into bddtab but it was
refined nicely into the current form by Claessen and Rosén [1].

As explained previously, the i-th level of our Trie stores the cpl-clauses Ccpl
i

from the i-th modal context �iCi inside the sat-solver Trie.sat at level i. Thus
addClause(Trie.sat, ϕ) modifies the i-th modal context across level i.

We now describe extensions to handle the modal logics KT and S4.

84 R. Goré and C. Kikkert

6 Extensions to KT and S4

Three aspects of our framework handle modalities: the modal contexts �MC =
�1C1;�2C2; · · · ;�kCk with Ci stored in the i-th level of the Trie; fired box-clauses
a → �b when ϑ |= a; and fired dia-clauses c → �d when ϑ |= c.

Capturing Reflexivity. The characteristic axioms for reflexivity are �ϕ → ϕ and
its dual ϕ → �ϕ so we make the following modification in these three aspects:

modal contexts: starting from level k, for all Trie nodes at levels i ≥ 1, add
TrieNode.child(1) to TrieNode so that the contexts in the Trie form a
descending chain, building �iCi → Ci globally into the Trie, see Fig. 3

fired box-clauses: for every context Ci of modal clauses, if (a → �b) ∈ Ci, add
the cpl-clause (a → b) to Ci, building in the T-axiom �b → b

fired dia-clauses: when calculating “fired” diamonds via “(c → �d) ∈
Trie.DiaCl with c ∈ ϑ”, add the extra condition “and d /∈ ϑ”. Thus,
(c → �d) ∈ Ccpl(w0) fires only if ϑ(w0) �|= d since w0 is its own successor.

Termination is as before for K. Soundness is obvious. For completeness, take
the reflexive closure of the tree-model created by our procedure. Why can the
deepest world be made reflexive when TrieNode(k) is not its own child? It
contains no box-clauses that fire so �ϕ → ϕ holds there vacuously.

Capturing Transitivity. Traditional proof-search in K4 can loop: e.g., the node
{��p,�p} usually creates an infinite sequence of (K4)-successors each contain-
ing the set {p,��p,�p}, leading to an infinite branch unless we check for ances-
tor loops. Thus the modal satisfiability of a given world depends not only on
its assumptions but also on its ancestors because a world w might be modally
satisfied only because some descendent v of w loops back to one of w’s ancestors.

The characteristic axiom �ϕ → ��ϕ for transitivity implies that �ϕ → �iϕ
for all i ≥ 1. So the modal contexts form an ascending chain: see Fig. 3.

modal contexts: In the K4 Trie, the k-th level is its own child and level i contains
Cn
1 := C1 ; · · · ; Cn building in �ϕ → ��ϕ;

fired box-clauses: In the i-th node of Trie, replace every box-clause a → �b
with a → �Pb, and add the modal clauses Pb → �Pb and Pb → b to every
node of the Trie from i + 1 to k where Pb is a new propositional variable
for “persistent b”, thereby encoding a finite state automaton that effectively
turns a → �b into a → �j≥ib, a technique from description logic tableaux;

ancestor loop-check: We add an additional input to CEGARBox, which is a list of
the classical valuations found for the ancestors of the current world w0. If w0

requires us to fulfil �d ; �B, where A = (d ; B) and some ancestor wa, has
ϑ(wa) |= A, then we can return satisfiable because we can just put w0Rwa.

Termination follows via ancestor loop-check. Soundness follows by noting
that the above transformations are all sound. For completeness, we just take the
transitive closure of our Kripke model.

CEGAR-Tableaux: Improved Modal Satisfiability 85

Capturing Reflexivity and Transitivity Together. We add the changes for both
KT and K4 as outlined above. The axiom �ϕ → ϕ made our Trie into a descend-
ing chain while the axiom �ϕ → ��ϕ made our Trie into an ascending chain,
so adding both means that our Trie contains only two levels 0 and 1 with the
second level being a fixed point. That is, level 1 is its own child with level 0
containing C0 ; Cn

1 and level 1 containing Cn
1 : see Fig. 3.

Termination is by ancestor loop-check. Soundness follows by seeing that we
are effectively encoding both of the (KT) and (K4) rules. For completeness, we
just take the reflexive and transitive closure of our underlying Kripke model.

7 Optimisations Which Made CEGARBox faster

We utilise standard simplification techniques, truth propagation, formula sort-
ing for the renaming process, and box lifting as described by Sebastiani and
Vescovi [15]. We also used techniques from Nalon et al. [12] when normal form-
ing to avoid new literals when old ones suffice. For modal logic K, this was
implemented by keeping a map in every modal context that associates the lit-
eral l with the formula ϕ it names. Then when renaming any occurrence of ϕ,
we check the map, and find l. For reflexivity, we can instead use a global map.

For brevity, we skip many small optimisations which allow us to avoid new
literals, as each such literal potentially doubles the number of classical valuations
the SAT-solvers need to search.

The running time of our algorithm depends on the number of box- and dia-
clauses, so our final processing stage involves replacing these with cpl-clauses.
Intuitively, the SAT-solver is better at handling cpl-clauses than CEGARBox is at
handling modal clauses. We therefore do the following:

1. If two box-clauses {a1 → �b, a2 → �b} or dia-clauses {a1 → �b, a2 → �b},
share a RHS b, create a new atomic formula pa and replace them with {pa →
�b/�b, a1 → pa, a2 → pa} so that no two RHSs are the same.

2. If two box clauses {a → �b, a → �c} share a LHS a, create a new literal pa

and replace these modal clauses with a → �pa, �(pa → b), and �(pa → c),
thereby moving information from the box-clauses into the modal context;

We use negative polarity for all literals in MiniSAT so it sets unknown vari-
ables to false, thus decreasing the number of box- and dia-clauses that fire.

7.1 Reducing the Number of Dia-Clauses

We make minor changes to the algorithm of CEGARBox from Fig. 2. First, the
previous optimisations mean that no two triggered dia-clauses have the same
RHS, however, a triggered box a → �r and a triggered diamond clause c → �r
may share the subformula r. Then, we can typically reduce the number of dia-
clauses we have to consider. Let B and D be the set of RHSs of triggered box
and dia-clauses, respectively. Instead of checking B ; d for every d ∈ D, we can
skip those with d ∈ B, as any world created by another triggered diamond clause

86 R. Goré and C. Kikkert

will contain d. For the case D \ B = ∅ with D �= ∅, we just check one diamond
clause, as this one world (if created) will contain D.

If a conflict set X ′ for some fired diamond contains literals only from box-
clauses, we know the box-clauses have no consistent successor, so we can learn
the appropriate clauses for all (fired and unfired) dia-clauses in one hit.

Finally, note that we can learn a new clause only when we find an unful-
fillable dia-clause. We experimented with a heuristic to remember unfulfillable
dia-clauses by tracking how many times a given dia-clause lead to Unsatisfiable,
and sorted them highest to lowest. In general this lead to improvements, but for
some benchmarks the overhead of sorting lead to a slower time. So we experi-
mented with a quicker approximation which instead just moves a clause to the
front of the list when it leads to Unsatisfiable, which also lead to performance
improvements. However, placing the failed dia-clauses at the end also lead to
performance improvements, and requires further investigation.

7.2 Memoisation of Satisfiable Assumptions

Memoisation of Satisfiable Assumptions in K. We can store which assumptions
have lead to Satisfiable wrt each particular modal context. During proof search,
if we find that the current unit assumptions have been found to be satisfiable in
the given modal context, we can immediately return Satisfiable, saving time.

We call this exact-cache, as we only return Satisfiable if we find that the exact
same assumptions have lead to Satisfiable before. Assumptions were stored in
a Binary Tree based implementation of a set. We experimented with a “subset
cache” approach which returns Satisfiable if the current assumptions is a subset
of any cached assumptions. To get more matches, once we find that some unit
assumptions leads to satisfiable we would store not the unit assumptions but
rather the whole classical valuation instead. While this gave more matches, it was
implemented with the slow process of checking each set in the cache individually,
which made it slower than exact-cache. A faster way of implementing a subset
check over a collection of sets may make “subset cache” more feasible.

Memoisation of Satisfiable Assumptions in KT. Descending chains mean that
an assumptions set A that leads to Satisfiable in the modal context �i will also
lead to Satisfiable in the modal context �i+1. Thus we can use a global cache,
instead of a cache for each modal context, and store the assumptions A as well
as the smallest i for which it returns Satisfiable at modal context �i. Then when
searching the assumptions in the modal context �j≥i we immediately return
Satisfiable if the assumptions occurs in the cache.

Conversely, any clause learnt in the modal context �i applies to the modal
context �i−1 since context �i is a subset of context �i−1: not implemented yet.

Loop-Check and Memoisation of Satisfiability in S4. Recall that traditional
proof-search in S4 require a loop-check for termination.

Caching not just the assumptions of a world but also its ancestors would
work, however it is unlikely matches would ever occur, leading to a limited

CEGAR-Tableaux: Improved Modal Satisfiability 87

speed up. Instead we take a different approach, that allows us to avoid storing
any information related to ancestors in the cache. The idea is to store worlds
only if every world reachable from it is modally satisfiable. That is, if a world
w1 has been deemed to be modally satisfiable, but uses a back edge to w0, we
will only add w1 to the cache once w0 has been shown to be modally satisfiable.

So we modify the proof search to look for maximally isolated subgraphs: that
is, submodels with a world that reaches only its descendants. Formally, a world
w such that there is no back edge connecting a descendent of w to an ancestor
of w. When w becomes satisfiable, we add all its descendants to the cache.

7.3 Two Phase Caching

One problem with the previous approach is that in the worst case the highest
world reachable by a world might be so high (e.g. the root), that the procedure
never caches any worlds leading to no speed improvements.

Suppose world y is satisfiable if an ancestor world x is satisfiable. Previously,
we only cache y if and when x becomes satisfiable but we can actually treat y as
cached satisfiable for all descendants of x. Such two-phase caching means y is in
a temporary cache until x becomes satisfiable, when it moves to a global cache.

Caution: we have to check for self contained models inside bigger ones.

8 Benchmarks and Issues with MOSAIC

We now outline various issues we found during our experiments. Our benchmarks
are from Nalon et al. [12] and (corrected) Lagniez et al. [9]:

LWB: extended LWB benchmarks created by Nalon et al. [12] but which need
to be generated in situ from their instructions as they can take up 14 GB;

3CNF: 1000 randomly generated 3CNFK formulae over 3 to 10 propositional
variables with modal depth 1 or 2 with 457 satisfiable and 464 unsatisfiable;

MQBF: the complete set of TANCS-2000 modalised random QBF formulae and
the MQBF formulae provided by Kaminski and Tebbi.

KT and S4: the corrected extended benchmarks from MOSAIC.

The “new kid on the block” is MOSAIC, by Lagniez et al. [9]. But some of
their extended LWB benchmark files were blank, unreadable, or lead to incorrect
answers. We have confirmed these with Daniel Le Berre.

Daniel Le Berre sent us an executable binary for the latest version MOSAIC
2.4. Unfortunately, MOSAIC 2.4 returned wrong answers for many (corrected)
benchmarks. Daniel Le Berre has retrospectively confirmed that MOSAIC 2.0 was
also unsound. These issues undermine all of their experimental results [9].

We re-implemented the extended benchmark generator in python and con-
firmed that there were no differences with the original, smaller benchmarks.

88 R. Goré and C. Kikkert

9 Experimental Results

We used the following options: InKreSAT 1.0 - default; FaCT++ 1.6.3 - default;
Spartacus 1.1.3 - default; BDDTab 1.0 - default; KSP 0.1.3 - ordered; and Vam-
pire 4.5.1 (OFT) (optimised functional translation) provided by Ullrich Hustadt.
Our virtual machine had an Intel Xeon E5-2640@2.40 GHz CPU and 8GB of
RAM. We also checked that all provers gave the same answers.

On the MQBF benchmarks, ksp is best, with CEGARBox second (Fig. 4). On
the extended K-LWB benchmarks, CEGARBox is best (Fig. 4) with all 56 problems
solved in the classes d4 n, d4 p, dum n, dum p, lin n, path n, path p, poly n, and
poly p within 15 s even though “only the best current provers, if any at all, will be
able to solve all the formulae within a time limit of 1000 CPU seconds” [12]. No
other prover managed to solve all 56 problems in any class. In 3CNF, CEGARBox
triumphs after 1 s (Fig. 4). Over all K-benchmarks, CEGARBox at rougly 0.7 s
beats every other prover at 15 s (Fig. 4). Indeed over all K-benchmarks, CEGARBox
solves almost 2500 problems in just 15 s while Nalon et al. [13] report that no
other prover solved more than about 2400 problems with 1000 s (16GB). For
KT, CEGARBox dominates after 1 s (Fig. 5). For S4, CEGARBox is by far the best
prover, beating every other prover within 0.25 s and solving over 600 problems
in 15 s while the best other prover, bddtab, solves only 350 (Fig. 5).

10 Related Work

All SAT-based provers except bddtab, intuit and CEGARBox use explicit names
for the reachability relation R: for example, a clause rij → · · · encodes that “if
world j is a successor of world i then ...”. Instead, we put all formulae into their
context while initialising the trie. Via the propositions about modal contexts,
we can also move all formulae from modal contexts i to j directly. We believe
that this is the reason for the massive improvement seen in our experiments.

As already stated, our approach is based on one from Claessen and Rosén [1],
which itself was “inspired” by that of Goré et al. [5], so we articulate the dif-
ferences. First, intuit handles propositional intuitionistic logic (Int), which is
characterised by finite, rooted, reflexive and transitive Kripke models without
any proper clusters, but as shown by Fiorentini et al. [3], intuit implements
the loop-free sequent calculus g4ip so termination is not an issue. Second, the
persistence property of Kripke models for Int allows them to propagate all for-
mulae “along” the reachability relation using one incremental SAT-solver, while
we must discard non-boxed formulae. Third, Claessen and Rosén outline “fur-
ther work” for classical modal logics using only one SAT-solver, using a similar
normal form, only one outermost �-context and a similar algorithm to ours, but
we cannot find anything published about this work. They also do not mention
reflexivity, transitivity, caching, loop-checking or optimisations. Thus our work
is not “just an implementation of Claessen and Rosén”.

InKreSAT [8] interleaves encoding phases with calls to an incremental SAT
solver, but uses a labelled tableau calculus, and keeps an explicit encoding of R.

CEGAR-Tableaux: Improved Modal Satisfiability 89

0.25 0.5 1 2 4 8 15
0

200

400

600

800

1,000

CPU time in seconds

In
st
an

ce
s
so
lv
ed

MQBF K-Benchmarks

0.25 0.5 1 2 4 8 15
0

200

400

600

800

1,000

CPU time in seconds

In
st
an

ce
s
so
lv
ed

extended LWB K-Benchmarks

0.25 0.5 1 2 4 8 15
0

200

400

600

800

1,000

CPU time in seconds

In
st
an

ce
s
so
lv
ed

3CNF K-Benchmarks

0.25 0.5 1 2 4 8 15
0

500

1,000

1,500

2,000

2,500

3,000

CPU time in seconds

In
st
an

ce
s
so
lv
ed

All K-Benchmarks

CEGARBox bddtab fact++ inKreSat

ksp Spartacus vampire

Fig. 4. Experimental results for the (extended) K benchmarks

0.25 0.5 1 2 4 8 15
0

200

400

600

800

1,000

CPU time in seconds

In
st
an

ce
s
so
lv
ed

Extended LWB KT-Benchmarks

0.25 0.5 1 2 4 8 15
0

200

400

600

800

1,000

CPU time in seconds

In
st
an

ce
s
so
lv
ed

Extended LWB S4-Benchmarks

CEGARBox bddtab fact++

inKreSat Spartacus

Fig. 5. Experimental results for the extended and corrected KT and S4 benchmarks

11 Further Work and Conclusions

Better heuristics for clause ordering will allow for both Sat and Unsat shortcuts.
For example, we found it is possible to solve all instances of branch p with one
clause learnt per modal context but our final prover does not use this ordering.

Our K prover can be extended trivially to multi-modal logics, however for
reflexive relations, the number of modal contexts a clause can belong to increases

90 R. Goré and C. Kikkert

drastically, which most likely would slow down our prover as the number of
different modalities increases. By ensuring that each subformula ψ is named
uniquely with pψ, we can avoid keeping contexts and put pψ → ψ “globally”. It is
also easy to extend our prover to handle local and global assumptions. Symmetric
relations require the notion of “too small” from Goré and Widmann [6].

Overall, CEGARBox is arguably the best prover for K, KT, and S4 on the
standard benchmarks, sometimes by orders of magnitude.

Our repository is here: https://github.com/cormackikkert/CEGARBox.
Clearly, efficient SAT-based CEGAR-tableaux are possible for many different

non-classical logics, including intuitionistic and modal (description) logics!
Finally, there is a very close connection between CEGAR-tableaux and the

KE-tableaux of D’Agostino and Mondadori [2] which we are currently investi-
gating. In particular, note that our proofs utilise a meta-level semantic cut-rule
rather than a syntactic cut-rule: that is we have identified and absorbed all
syntactic cuts required by KE-tableaux into the (jump)/(restart) rule!

Acknowledgment. Work supported by the FWF projects I 2982 and P 33548.

References

1. Claessen, K., Rosén, D.: SAT modulo intuitionistic implications. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp.
622–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-
7 43

2. D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations with
analytic cut. J. Log. Comput. 4(3), 285–319 (1994)

3. Fiorentini, C., Goré, R., Graham-Lengrand, S.: A proof-theoretic perspective on
SMT-solving for intuitionistic propositional logic. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 111–129. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9 7

4. Goré, R., Nguyen, L.A.: Clausal tableaux for multimodal logics of belief. Fundam.
Informaticae 94(1), 21–40 (2009)

5. Goré, R., Olesen, K., Thomson, J.: Implementing tableau calculi using BDDs:
BDDTab system description. In: Demri, S., Kapur, D., Weidenbach, C. (eds.)
IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 337–343. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08587-6 25

6. Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic
logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI),
vol. 6173, pp. 225–239. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14203-1 20

7. Bayardo, Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Kuipers, B., Webber, B.L. (eds.) Proceedings of the Fourteenth
National Conference on Artificial Intelligence and Ninth Innovative Applications
of Artificial Intelligence Conference, AAAI 97, IAAI 97, Providence, Rhode Island,
USA, 27–31 July 1997, pp. 203–208. AAAI Press/The MIT Press (1997)

8. Kaminski, M., Tebbi, T.: InKreSAT: modal reasoning via incremental reduction to
SAT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 436–442.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 31

https://github.com/cormackikkert/CEGARBox
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-030-29026-9_7
https://doi.org/10.1007/978-3-319-08587-6_25
https://doi.org/10.1007/978-3-642-14203-1_20
https://doi.org/10.1007/978-3-642-14203-1_20
https://doi.org/10.1007/978-3-642-38574-2_31

CEGAR-Tableaux: Improved Modal Satisfiability 91

9. Lagniez, J.-M., Le Berre, D., de Lima, T., Montmirail, V.: A recursive shortcut
for CEGAR: application to the modal logic K satisfiability problem. In: Sierra, C.
(ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 674–680.
ijcai.org (2017)

10. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm for sat-
isfiability. In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996
IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996,
San Jose, CA, USA, 10–14 November 1996, pp. 220–227. IEEE Computer Soci-
ety/ACM (1996)

11. Mints, G.: Gentzen-type systems and resolution rules. In: Mints, G., Martin-Löf,
P. (ed.) COLOG-88. LNCS, vol. 417, pp. 516–537. Springer (1988)

12. Nalon, C., Hustadt, U., Dixon, C.: KSP: a resolution-based prover for multimodal
K, abridged report. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, 19–25 August 2017, pp. 4919–4923. ijcai.org (2017)

13. Nalon, C., Hustadt, U., Dixon, C.: KSP: a resolution-based prover for multi-
modal Kn: architecture, refinements, strategies and experiments. J. Autom. Rea-
son. 64(3), 461–484 (2020)

14. Sörensson, N., Een, N.: http://minisat.se/Papers.html. Accessed 10 Feb 2020
15. Sebastiani, R., Tacchella, A.: SAT techniques for modal and description logics. In:

Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 781–824. IOS
Press (2009)

16. Various. http://www.satcompetition.org/. Accessed 10 Feb 2020

http://minisat.se/Papers.html
http://www.satcompetition.org/

Sequent Calculi

Proof-Theory and Semantics for a Theory
of Definite Descriptions

Nils Kürbis1,2(B)

1 Department of Logic and Methodology of Science, University of �Lódź, �Lódź, Poland
nils.kurbis@filhist.uni.lodz.pl

2 Department of Philosophie I, University of Bochum, Bochum, Germany
https://www.nilskurbis.weebly.com

Abstract. This paper presents a sequent calculus and a dual domain
semantics for a theory of definite descriptions in which these expressions
are formalised in the context of complete sentences by a binary quantifier
I. I forms a formula from two formulas. Ix[F, G] means ‘The F is G’. This
approach has the advantage of incorporating scope distinctions directly
into the notation. Cut elimination is proved for a system of classical
positive free logic with I and it is shown to be sound and complete for
the semantics. The system has a number of novel features and is briefly
compared to the usual approach of formalising ‘the F ’ by a term forming
operator. It does not coincide with Hintikka’s and Lambert’s preferred
theories, but the divergence is well-motivated and attractive.

Keywords: Definite descriptions · Positive free logic · Proof theory ·
Sequent calculus · Cut elimination · Dual domain semantics

1 Introduction

A definite description is an expression of the form ‘the F ’. Accordingly, the most
popular formalisations of the theory of definite descriptions treat them as term
forming operators: the operator ι binds a variable and turns an open formula
into a singular term ιxF . This treatment of definite descriptions goes back to
Whitehead and Russell [34].1 Whitehead and Russell, however, did not consider
definite descriptions to be genuine singular terms: they only have meaning in the
context of complete sentences in which they occur and disappear upon analysis:
‘The F is G’ is logically equivalent to ‘There is one and only one F and it is
1 Frege’s treatment of the function that is a ‘substitute for the definite article’ is

different. Frege’s operator \ applies to names of objects, not to (simple or complex)
predicates or function symbols. Typically these names refer to the extensions of
concepts, but this is not necessary. \ξ returns the unique object that falls under a
concept, if ξ is a name of the extension of a concept under which a unique object
falls, and its argument in all other cases. See [9, §11].

The research in this paper was funded by the Alexander von Humboldt Foundation.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 95–111, 2021.
https://doi.org/10.1007/978-3-030-86059-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_6&domain=pdf
http://orcid.org/0000-0002-3651-5458
https://doi.org/10.1007/978-3-030-86059-2_6

96 N. Kürbis

G’. Following the work of Hinitkka [12] and Lambert [25], many logicians prefer
to formalise definite descriptions in a fashion where they are not straightfor-
wardly eliminable. In such systems, ι is governed by what has come to be called
Lambert’s Law :

(LL) ∀y(ιxFx = y ↔ ∀x(Fx ↔ x = y))

The preferred logic of many free logicians is positive free logic, where formulas
containing names that do not refer (to objects considered amongst those that
exist) may be true. Then ‘The F is G’ is no longer equivalent to ‘There is one
and only one F and it is G’. In negative free logic, all atomic formulas containing
non-denoting terms are false, and the Russellian analysis is again appropriate.

There is agreement amongst free logicians that (LL) formalises the minimal
theory of definite descriptions. Lambert himself prefers a stronger theory [26]
that in addition has the axiom:2

(FL) t = ιx(x = t)

There are a number of other axioms that have been considered, but these two
will be the focus of the present investigation.3 The proof theory of the theory of
definite descriptions has received close study from the hands of Andrzej Indrze-
jczak.4 In a series of papers, Indrzejczak has investigated various formalisations
of theories of definite descriptions and provided cut free sequent calculi for them
[14–17,19]. A cut free system of positive free logic of his will form the background
to the present paper. It is presented in the next section.

Whitehead and Russell also note the need for marking scope distinctions to
formalise the difference between ‘The F is not G’ and ‘It is not the case that the
F is G’. Free definite description theory in general ignores scope: the thought is
that free logic says only very little about definite descriptions when they do not
refer, and in case they do refer, scope distinctions no longer matter, as already
pointed out by Whitehead and Russell.

Scope distinctions are, however, worth considering. The present paper pro-
poses a proof-system and a semantics for a theory of definite descriptions in
which scope distinctions are incorporated directly into the symbolism. ‘The F
is G’ is formalised by a binary quantifier that takes two formulas and forms a
formula Ix[F,G] out of them. The notation is taken from Dummett [5, p.162].
It is also found in the work of Neale [31] and Bostock [2, Sec. 8.4]. The external
negation ‘It is not the case that the F is G’ is formalised by ¬Ix[F,G], the inter-
nal negation ‘The F is not G’ by Ix[F,¬G]. Natural deduction proof-systems
for this approach have been investigated by the present author in the context of
intuitionist non-free as well as negative and positive free logic [20,21,23]. Rules
suitable for a sequent calculus for classical positive free logic were formulated

2 This axiom bears some resemblance to Frege’s Basic Law VI, the sole axiom for his
operator \, which is a = \έ(a = ε) [9, §18]. But see footnote 1.

3 For a survey of various theories and their axioms, see [1,8,27,30].
4 An earlier approach is by Czermak [4]. Gratzl provides a cut free proof system for

Russell’s theory of definite descriptions, including his method for marking scope [11].

Proof-Theory and Semantics for a Theory of Definite Descriptions 97

in [22].5 The latter system and its intuitionist counterpart were devised with
the intention to stay close to the systems of Hintikka and Lambert. The results
are rather complicated: I is governed by six rules, one right or introduction rule
and five left or elimination rules. Despite their complexities, the systems remain
proof-theoretically satisfactory as cut elimination and normalisation theorems
hold for them. The present paper severs the ties to Hintikka and Lambert and
considers alternative rules for I within classical positive free logic. The account
proposed here is rather simpler than the previous ones: I is governed by one right
rule, the same as before, but only two left rules. The result is a rather different
formal theory from the perspective of the validities provable from the rules and
compared to Hintikka’s and Lambert’s: the rules enforce the uniqueness of F , if
Ix[F,G] is true, but not its existence. The novelty of the present paper lies in
the addition of these new rules for I to classical positive free logic,6 the ensu-
ing alternative theory of definite descriptions, and the provision of a sound and
complete dual domain semantics for it.

The plan of this paper is as follows. The next section expounds Indrzejczak’s
sequent calculus formulation of classical positive free logic extended by rules
governing the binary quantifier I. Section 3 discusses consequences of the the-
ory and compares it to Hintikka’s and Lambert’s. Due to the absence of scope
distinctions in axiomatisations of ι based on (LL), a direct comparison between
the system proposed here and standard formalisations of definite descriptions
is not very illuminating: G(ιxF) has no direct and natural correspondent, as
¬G(ιxF) corresponds to two formulas, the internal and the external negation of
Ix[F,G]. Nonetheless, it is worth examining how the binary fares with respect to
analogues of(LL) and (FL), when ιxA = y is rendered as a binary quantification
Ix[A, x = y]. The latter formalises ‘The A is identical to y’, or ‘The A is y’
for short, which is exactly the reading one may give of ιxA = y. To anticipate,
while an analogue of (FL) is derivable in the system proposes here, only half
of an analogue of (LL) is. Section 4 proves that cut is still eliminable from the
extended system. Section 5 gives a formal semantics for classical positive free
logic extended by I. Section 6 proves the soundness and completeness of the sys-
tem. Some details of the completeness proof are relegated to the appendix for
the online version of this paper [24]. Section 7 gives rules tableaux proof system.

2 A Deductive Calculus for Classical Positive Free Logic
with a Binary Quantifier

Indrzejczak has provided a formalisation of classical positive free logic CPF in
sequent calculus with desirable proof-theoretic properties: cut is eliminable from
5 This paper also briefly considers rules for classical non-free and negative free logic.
6 The rules are, in fact, those given for non-free classical logic at the end of [22]: it is a

noteworthy result that, whereas in the context of this logic these rules are redundant
and Ix[F, G] definable in Russellian fashion as ∃x(F ∧ ∀y(F x

y → x = y) ∧ G), added
to classical positive free logic, the outcome is a theory of considerable logical and
philosophical interest.

98 N. Kürbis

the system [18]. The definition of the language is standard. I will only consider
→, ¬, ∀ and a distinguished predicate symbol ∃!, the existence predicate, as
primitives.7 ∧, ∨, ∃ are defined as usual. Free variables are distinguished from
bound ones by the use of parameters a, b, c . . . for the former and x, y, z . . . for the
latter. t1, t2, t3 . . . range over the terms of the language, which are the parameters,
constants, and complex terms formed from them and function symbols. For
brevity I will write F or A instead of F (x) or A(x) etc., except in the case of
the existence predicate, where I’ll write ∃!x etc. Ax

t is the result of substituting
t for x in A, where it is assumed that no variable free in t becomes bound in Ax

t ,
i.e. that t is free for x in A. Γ,Δ denote finite multisets of formulas. The rules
of CPF are as follows:

(Ax) A ⇒ A
Γ ⇒ Θ,A A,Δ ⇒ Λ

Cut
Γ,Δ ⇒ Θ,Λ

Γ ⇒ Δ(LW)
A,Γ ⇒ Δ

Γ ⇒ Δ(RW)
Γ ⇒ Δ,A

A,A, Γ ⇒ Δ
(LC)

A,Γ ⇒ Δ

Γ ⇒ Δ,A,A
(RC)

Γ ⇒ Δ,A

Γ ⇒ Δ,A
(L¬) ¬A,Γ ⇒ Δ

A,Γ ⇒ Δ
(R¬)

Γ ⇒ Δ,¬A

Γ ⇒ Δ,A B,Γ ⇒ Δ
(L→)

A → B,Γ ⇒ Δ

A,Γ ⇒ Δ,B
(R→)

Γ ⇒ Δ,A → B

Ax
t , Γ ⇒ Δ

(L∀) ∃!t,∀xA, Γ ⇒ Δ

∃!a, Γ ⇒ Δ,Ax
a(R∀)

Γ ⇒ Δ,∀xA

Ax
t2 , Γ ⇒ Δ

(= I)
t1 = t2, A

x
t1 , Γ ⇒ Δ

t = t, Γ ⇒ Δ
(= E)

Γ ⇒ Δ

where in (R∀), a does not occur in the conclusion, and in (L∀), t is substitutable
for x in A. In (= I), A is atomic. The general case follows by induction.

To these we add rules for the binary quantifier I:

Γ ⇒ Δ,Ax
t Γ ⇒ Δ,Bx

t Ax
a, Γ ⇒ Δ, a = t

(RI)
Γ ⇒ Δ, Ix[A,B]

7 It would be possible to define ∃!t as ∃x x = t, where ∃ may in turn be defined in
terms of ∀ and ¬. However, treating it as primitive is formally and philosophically
preferable: formally, it lends itself more easily to cut elimination, and philosophically,
it permits to take existence as conceptually basic, with the quantifiers explained in
terms of it: the attempted definition of ∃! is arguably circular, as the rules of inference
governing ∀, which explain its meaning, appeal to ∃!. The semantic clause for ∀, too,
implicitly appeals to the concept of existence, as it ranges only over objects in the
domain of the model which are considered to exist, that is, those of which ∃! is true.

Proof-Theory and Semantics for a Theory of Definite Descriptions 99

Ax
a, Bx

a , Γ ⇒ Δ
(LI1)

Ix[A,B], Γ ⇒ Δ

Γ ⇒ Δ,Ax
t1 Γ ⇒ Δ,Ax

t2 Γ ⇒ Δ,Cx
t2(LI2)

Ix[A,B], Γ ⇒ Δ,Cx
t1

where in (RI) and (LI1), a does not occur in the conclusion, and in (LI2) C is
an atomic formula. The general case follows by induction.

Vacuous quantification with I is allowed. If x is not free in A, then the truth
of Ix[A,B] requires or imposes a restriction on the domain: if there is only one
object (existing or not), then, if A is true and B is true (of the object in the
domain, if x is free in B), then Ix[A,B] is true; and if Ix[A,B] is true, then, if
A is true, then there is only one object in the domain and B is true (of it, if x
is free in B). If x is not free in B, then Ix[A,B] is true if and only if a unique
object (existing or not) is A and B is true.

Call the resulting system CPFI . Deductions are defined as usual, as certain
trees with axioms at the top-nodes or leaves and the conclusion at the bottom-
node or root. If a sequent Γ ⇒ Δ is deducible in CPFI , we write 	 Γ ⇒ Δ.

3 Consequences of the Formalisation

Call two formulas ιxA = y and Ix[A, x = y] analogues of each other. They
both formalise the same sentence ‘The A is identical to y’. Similarly for B(ιxA)
and Ix[A,B], where we restrict B to atomic formulas to avoid complications
regarding scope. Let CPFι be CPF plus (LL) and (FL). Analogues provide a
convenient means for comparisons between CPFI and CPFι.

First we state the obvious. The Law of Identity ⇒ t = t and Leibniz’ Law
t1 = t2, A

x
t2 ⇒ Ax

t1 are derivable in CPF:

t = t ⇒ t = t
⇒ t = t

Ax
t1 ⇒ Ax

t1

t2 = t1, A
x
t2 ⇒ Ax

t1

t1 = t2, t1 = t1, A
x
t2 ⇒ Ax

t1

t1 = t2, A
x
t2 ⇒ Ax

t1

t1 = t2, A
x
t1 ⇒ Ax

t2 of course also holds, as established by step two of the left
deduction through interchanging t1 and t2.

Leibniz’ Law is no longer applicable to definite descriptions in the present
framework, as definite descriptions are not analysed as singular terms but only
in the context of complete sentences in which they occur. We can, however,
mimic its use, as we can derive the sequents Ix[A, x = t], Bx

t ⇒ Ix[A,B],
Ix[A, x = t], Ix[A,B],⇒ Bx

t and Ix[A, Iy[B, x = y]], Ix[A,C] ⇒ Ix[B,C]. Using
analogues, these correspond to instances of Leibniz’ Law: ιxA = t, Bx

t ⇒ B(ιxA),
ιxA = t, B(ιxA),⇒ Bx

t and ιxA = ιyB,C(ιxA) ⇒ C(ιyB). We’ll prove the first
for purposes of illustration. Double lines indicate applications of structural rules,
in particular those needed to make the contexts of the rules identical by Thin-
ning. Let Π be the following deduction in CPFI :

100 N. Kürbis

Ax
b ⇒ Ax

b a = t, Ax
a ⇒ Ax

t ⇒ t = t

Ix[A, x = t], Ax
b , a = t, Ax

a ⇒ b = t

Ix[A, x = t], Ix[A, x = t], Ax
b ⇒ b = t

Ix[A, x = t], Ax
b ⇒ b = t

Then the following establishes the analogue of our instance of Leibniz’ Law:

a = t, Ax
a ⇒ Ax

t Bx
t ⇒ Bx

t Π

a = t, Ax
a, Bx

t , Ix[A, x = t] ⇒ Ix[A,B]
Ix[A, x = t], Bx

t , Ix[A, x = t] ⇒ Ix[A,B]
Ix[A, x = t], Bx

t ⇒ Ix[A,B]

To assess whether (LL) is provable, it is useful to have rules for the biconditional:

Γ ⇒ Δ,A,B A,B, Γ ⇒ Δ
(L ↔)

A ↔ B,Γ ⇒ Δ

A,Γ ⇒ Δ,B B,Γ ⇒ Δ,A
(R ↔)

Γ ⇒ Δ,A ↔ B

These are derivable from the rules for → given the usual definition of ↔.
Next we derive one half of an analogue of (LL) in CPFI :

Ax
a, a = b ⇒ Ax

b Ax
c ⇒ Ax

c ⇒ c = c

Ix[A, x = b], Ax
a, a = b, Ax

c ⇒ c = b Ax
a, a = b, c = b ⇒ Ax

c

Ix[A, x = b], Ax
a, a = b ⇒ Ax

c ↔ c = b

∃!c, Ix[A, x = b], Ax
a, a = b ⇒ Ax

c ↔ c = b

Ix[A, x = b], Ax
a, a = b ⇒ ∀x(A ↔ x = b)

Ix[A, x = b], Ix[A, x = b] ⇒ ∀x(A ↔ x = b)

Ix[A, x = b] ⇒ ∀x(A ↔ x = b)

⇒ Ix[A, x = b] → ∀x(A ↔ x = b)

∃!b ⇒ Ix[A, x = b] → ∀x(A ↔ x = b)

⇒ ∀y(Ix[A, x = y] → ∀x(A ↔ x = y))

The left and rightmost leaves are derivable by Leibniz’ Law.
The other half of (LL) is not derivable in CPFI . Intuitively, there being a

unique existing A is not sufficient for Ix[A,B], as there may also be non-existing
As in addition. It is straightforward to give a countermodel with the semantics
of Sect. 5.

⇒ Ix[x = t, x = t] follows by twice the Law of Identity and one application
of (RI), where both A and B are x = t:

⇒ t = t ⇒ t = t a = t ⇒ a = t
⇒ Ix[x = t, x = t]

Proof-Theory and Semantics for a Theory of Definite Descriptions 101

Thus the analogue of (FL) is derivable in CPFI . This is worth noting: Lambert
calls (FL) ‘an important theorem in traditional description theory’ [26, p. 58],
and, not being derivable in the minimal theory, is forced to add it as a further
axiom.

The present theory of definite descriptions is thus not comparable to Hin-
tikka’s and Lambert’s minimal theory: it contains only one half of the analogue
(LL), but also the analogue of (FL). The first respect provides a sense in which
the present theory is weaker than Lambert’s preferred theory, the second one in
which it is stronger, because the rules for I and = yield the analogue of (FL)
immediately, while in Lambert’s theory, (FL) needs to be added as an extra
axiom governing the definite description operator ι. The novelty of the present
theory is shown by these features. In particular, the failure of the right to left half
of (LL) is, arguably and pace Hintikka and Lambert, desirable, for the reason
stated.

The theory does not allow the derivation of the analogue of ιxF = ιxF ,
Ix[F, Iy[F, x = y]]. This is a tolerable loss. As Russell is not identical to White-
head, it is not difficult to accept that ‘The author of Principia Mathematica = the
author of Principia Mathematica’ is not logically true. Reasons normally given
for accepting ιxF = ιxF is that it is an instance of the Law of Identity. These
reasons, however, are not conclusive, as the example shows. Ix[F, Iy[F, x = y]]
is not an instance of the Law of Identity, and hence accepting that law does not
force us to accept it. If more than two objects satisfy F , then it is false.

Its differences to Hintikka’s and Lambert’s theory of definite descriptions are
advantages of the present proposal. It allows us to reject the claim that the author
of Principia Mathematica is identical to the author of Principia Mathematica
and to declare ‘The author of Principia Mathematica smokes a pipe’ to be false.
If there is more than one A, existing or not, then Ix[A,B] is false, whatever B
may be: an identity, a predicate letter, a complex formula. The present theory
provides principled reasons for declaring certain sentences containing definite
descriptions to be false on which Hintikka and Lambert prefer to remain silent
and for not having to accept some sentences they pronounce as logically true on
grounds which one may well want to reject.

4 Cut Elimination for CPFI

We’ll continue Indrzejczak’s proof of cut elimination for CPF by adding the
cases covering I. Let d(A) be the degree of the formula A, that is the number
of connectives occurring in it. ∃!t is atomic, that is of degree 0. d(D) is the
degree of the highest degree of any cut formula in deduction D. Ak denotes
k occurrences of A, Γ k k occurrences of the formulas in Γ . The height of a
deduction is the largest number of rules applied above the conclusion, that is
the number of nodes of a longest branch in the deduction. The proof appeals to
the Substitution Lemma:

Lemma 1. If 	k Γ ⇒ Δ, then 	k Γ a
t ⇒ Δa

t .

102 N. Kürbis

Its proof goes through as usual. Consequently, we can always rewrite deductions
so that each application of (R∀), (RI) and (LI1) has its own parameter that
occurs nowhere else in the proof. In the following, it will be tacitly assumed that
deductions have been treated accordingly.

Lemma 2 (Right Reduction). If D1 	 Θ ⇒ Λ,A, where A is principal,
and D2 	 Ak, Γ ⇒ Δ have degrees d(D1), d(D2) < d(A), then there is a proof
D 	 Θk, Γ ⇒ Λk,Δ with d(D) < d(A).

Proof. By induction over the height of D2. The basis is trivial: if d(D2) = 1, then
Ak, Γ ⇒ Δ is an axiom and hence k = 1, Γ is empty, and Δ consists of only one
A; we need to show Θ ⇒ Λ,A, but that is already proved by D1.

For the induction step, we consider the rules for I:

(I) The last step of D2 is by (RI). Then the occurrences Ak in the conclusion of
D2 are parametric and occur in all three premises of (RI): apply the induction
hypothesis to them and apply (RI) afterwards. The result is the desired proof
D.

(II) The last step of D2 is by (LI1). There are two options:
(II.a) If the principal formula Ix[F,G] of (LI1) is not one of the Ak, then apply
the induction hypothesis to the premises of (LI1) and then apply (LI1).
(II.b) If the principal formula Ix[F,G] of (LI1) is one of the Ak, then D2 ends
with:

F x
a , Gx

a, Ix[F,G]k−1, Γ ⇒ Δ

Ix[F,G]k, Γ ⇒ Δ

By induction hypothesis there is a deduction of F x
a , Gx

a, Θk−1, Γ ⇒ Λk−1,Δ with
cut degree less than d(A), and by the Substitution Lemma:

(1) F x
t , Gx

t , Θk−1, Γ ⇒ Λk−1,Δ

A, i.e. Ix[F,G], is principal in D1, so it ends with an application of (RI):

Θ ⇒ Λ,F x
t Θ ⇒ Λ,Gx

t F x
a , Θ ⇒ Λ, a = t

Θ ⇒ Λ, Ix[F,G]

Apply two cuts with (1) and the first and second premise, and conclude by
contraction Θk, Γ ⇒ Λk,Δ.

(III) The last step of D2 is by (LI2). In this case the succedent of the conclusion
of D2 is Δ,Ct1 , where Ct1 is an atomic formula. There are two cases.
(III.a) The principal formula Ix[F,G] of (LI2) is not one of the Ak: apply the
induction hypothesis to the premises of (LI2) and then apply the rule.
(III.b) The principal formula Ix[F,G] of (LI2) is one of the Ak. Then D2 ends
with:

Proof-Theory and Semantics for a Theory of Definite Descriptions 103

Ix[F, G]k−1, Γ ⇒ Δ, Fx
t1

Ix[F, G]k−1, Γ ⇒ Δ, Fx
t2

Ix[F, G]k−1, Γ ⇒ Δ, Cx
t2

Ix[F, G]k, Γ ⇒ Δ, Ct1

By induction hypothesis, we have:

(1) Θk−1, Γ ⇒ Λk−1,Δ, F x
t1

(2) Θk−1, Γ ⇒ Λk−1,Δ, F x
t2

(3) Θk−1, Γ ⇒ Λk−1,Δ,Cx
t2

A, i.e. Ix[F,G], is principal in D1, so it ends with an application of (RI):

Θ ⇒ Λ,F x
t Θ ⇒ Λ,Gx

t F x
a , Θ ⇒ Λ, a = t

Θ ⇒ Λ, Ix[F,G]

The Substitution Lemma applied to the third premise gives

(5) F x
t1 , Θ ⇒ Λ, t1 = t

(6) F x
t2 , Θ ⇒ Λ, t2 = t

To show: 	 Θk, Γ ⇒ Λk,Δ,Ct1 with d(D) < d(Ix[F,G]). Leibniz’ Law gives

(7) t1 = t, t2 = t ⇒ t1 = t2
(8) Ct2 , t1 = t2 ⇒ Ct1

Cuts with (1) and (5) and with (2) and (6) give Θk, Γ ⇒ Λk,Δ, t1 = t and
Θk, Γ ⇒ Λk,Δ, t2 = t, whence by Cut with (7) and contraction Θk, Γ ⇒
Λk,Δ, t1 = t2, and from the latter by Cuts with (3) and (8) and contraction
Θk, Γ ⇒ Λk,Δ,Ct1 . As Ct2 in (LI2) is restricted to atomic formulas, the degree
of the ensuing deduction is less than d(A), i.e. d(Ix[F,G]), which was to be
proved.

This completes the proof of the Right Reduction Lemma.

Lemma 3 (Left Reduction). If D1 	 Γ ⇒ Δ,Ak and D2 	 A,Θ ⇒ Λ have
degrees d(D1), d(D2) < d(A), then there is a proof D 	 Γ,Θk ⇒ Δ,Λk with
d(D) < d(A).

Proof by induction over the height of D1. The basis is trivial, as then D1 is an
axiom, and Γ consists of one occurrence of A and Δ is empty. What needs to be
shown is that A,Θ ⇒ Λ, which is already given by D2.

For the induction step, we distinguish two cases, and again we continue
Indrzejczak’s proof by adding the new cases arising through the addition of
I.

104 N. Kürbis

(A) No Ak in the succedent of the conclusion of D1 is principal. Then we apply
the induction hypothesis to the premises of the final rule applied in D1 and apply
the final rule once more.

(B) Some Ak in the succedent of the conclusion of D1 is principal. Two options:

(I) The final rule applied in D1 is (RI):

Γ ⇒ Δ, Ix[F, G]k−1, Fx
t Γ ⇒ Δ, Ix[F, G]k−1, Gx

t Fx
a , Γ ⇒ Δ, Ix[F, G]k−1, a = t

Γ ⇒ Δ, Ix[F, G]k

By induction hypothesis, we have

(1) Γ,Θk−1 ⇒ Δ,Λk−1, F x
t

(2) Γ,Θk−1 ⇒ Δ,Λk−1, Gx
t

(3) F x
a , Γ,Θk−1 ⇒ Δ,Λk−1, a = t

Apply (RI) with (1) to (3) as premises to conclude

(4) Γ,Θk−1 ⇒ Δ,Λk−1, Ix[F,G]

Here Ix[F,G] is principal, so apply the Right Reduction Lemma to the deduction
concluding (4) and D2 (where k = 1) to conclude Γ,Θk ⇒ Δ,Λk.

(II) The final rule applied in D1 is (LI2):

Γ ⇒ Δ,Ct1
k−1, F x

t1 Γ ⇒ Δ,Ct1
k−1, F x

t2 Γ ⇒ Δ,Ct1
k−1, Cx

t2

Ix[F,G], Γ ⇒ Δ,Ct1
k

By induction hypothesis, we have

(1) Γ,Θk−1 ⇒ Δ,Λk−1, F x
t1

(2) Γ,Θk−1 ⇒ Δ,Λk−1, F x
t2

(3) Γ,Θk−1 ⇒ Δ,Λk−1, Cx
t2

Apply (LI2) with (1) to (3) as premises to conclude:

(4) Ix[F,G], Γ,Θk−1 ⇒ Δ,Λk−1, Cx
t1

Proof-Theory and Semantics for a Theory of Definite Descriptions 105

Here Cx
t1 is principal, so apply the Right Reduction Lemma to the deduction

concluding (4) and D2 (where k = 1) to conclude Ix[F,G], Γ,Θk ⇒ Δ,Λk.

This completes the proof of the Left Reduction Lemma.

Theorem 1 (Cut Elimination). For every deduction in CPFI , there is a
deduction that is free of cuts.

Proof. The theorem follows from the Right and Left Reduction Lemmas by induc-
tion over the degree of the proof, with subsidiary inductions over the number of
cut formulas of highest degree, as in Indrzejczak’s paper.

5 Semantics for CPFI

For the purposes of providing a semantics for CPFI it is convenient to modify
the system slightly in the following way: free variables x, y, z . . . are allowed to
occur in formulas, parameters are treated like constants, and constants may play
the role of parameters if they occur parametrically in a deduction, that is, they
fulfil the restrictions imposed in (R∀), (RI) and (LI1). The restrictions for free
variables in these rules are as for the parameters. Furthermore, for the purposes
of this section, I take ⇒ to have sets of sentences rather the multisets to its left
and right. I’ll write Γ,A to abbreviate Γ ∪ {A}, A,B,C ∈ Δ for {A,B,C} ⊆ Δ.
The resulting modified system is evidently equivalent to the original formulation.

It is fairly obvious that the rules governing I enforce the uniqueness of A,
if it is the case that Ix[A,B], but not its existence. Arguing informally, it is
immediate from (LI2) that Ix[A,B], Ax

a, Ax
b ⇒ a = b, hence any As are identical;

and if Ax
a is false, whatever a might be, then Ax

a ⇒ ⊥, so by (LI1), Ix[A,B] ⇒ ⊥.
But the rules do not permit us to determine whether the unique A exists or not.
Conversely, to derive Ix[A,B], we need a unique A that is B, but it is not
required that it exists. Nonetheless, we will prove it rigorously by providing a
sound and complete semantics for CPFI . I follow the popular proposal by [3,28]
and [29], where two domains are considered, an inner one and an outer one, the
former the domain of existing objects, over which the universal quantifier ranges
and of which ∃! is true, and the latter the domain of ‘non-existent’ objects. I
shall take the inner domain to be a subset of the outer domain.

The exposition of the formal semantics for CPFI and the soundness and
completeness proofs in the next section follow Enderton closely, with necessary
adjustments to be suitable to free logic. Most of the following is well known
and not new, but I’ll be explicit about the details in order to demonstrate the
semantics of I explicitly and precisely.

A structure A is a function from the expressions of the language L of CPFI

to elements, a (possibly empty) subset, the sets of n-tuples of and operations on
a non-empty set |A|, called the domain of A, such that:

106 N. Kürbis

1. A assigns to the quantifier ∀ a (possibly empty) set |A∀| ⊆ |A| called the
inner domain or the domain of quantification of A.

2. A assigns to the predicate ∃! the set |A∀|.
3. A assigns to each n-place predicate symbol P an n-ary relation PA ⊆ |A|n.
4. A assigns to each constant symbol c an element cA of |A|.
5. A assigns to each n-place function symbol f an n-ary operation fA on |A|,

i.e. fA : |A|n → |A|.
Next we define the notion of satisfaction of a formula B by a structure A. To
handle free variables we employ a function s : V → |A| from the set of variables
V of L to the domain of the structure. Suppose x occurs free in B. Informally,
we say that A satisfies B with s, if and only if the object of the domain of A
that s assigns to the variable x satisfies B, that is, if s(x) is in the set A assigns
to B. We express this in symbols by �A A [s]. �A A [s] means that A does not
satisfy A with s. The formal definition of satisfaction is as follows.

First, s is extended by recursion it to a function s that assigns objects of |A|
to all terms of the language:

1. For each variable x, s(x) = s(x)
2. For each constant symbol c, s(c) = cA.
3. For terms t1 . . . tn, n-place function symbols f , s(ft1 . . . tn) = fA(s(t1) . . .

s(tn))

Satisfaction is defined explicitly for the atomic formulas of L:

1. �A t1 = t2 [s] iff s(t1) = s(t2).
2. �A ∃!t [s] iff s(t) ∈ |A∀|.
3. For n-place predicate parameters P , �A Pt1 . . . tn [s] iff 〈s(t1) . . . s(tn)〉 ∈ PA.

For the rest of the formulas, satisfaction is defined by recursion. Let s(x|d) be
like s, only that it assigns the element d of |A| to the variable x:

1. For atomic formulas, as above.
2. �A ¬A [s] iff �A A [s].
3. �A A → B [s] iff either �A A [s] or �A B [s].
4. �A ∀xA [s] iff for every d ∈ |A∀|, �A A [s(x|d)].

This gives a semantics for CPF. For CPFI , we add a clause for I:

5. �A Ix[A,B] [s] iff there is d ∈ |A| such that: �A A [s(x|d)], there is no other
e ∈ |A| such that �A A [s(x|e)], and �A B [s(x|d)].

Proof-Theory and Semantics for a Theory of Definite Descriptions 107

In other words, �A Ix[F,G] [s] iff there is exactly one element in the domain of
A such that A satisfies A with s modified to assign that element to x, and A
satisfies B with the same modified s.

We could define notions of validity, truth and falsity applicable to formulas, if
we like, but won’t need them in the following. A formula A is valid iff for every A
and every s : V → |A|, �A A [s]. Call a formula with no free variables a sentence.
A structure A either satisfies a sentence σ with every function s : V → |A| or
with none. If the former, σ is true in A, if the latter, σ is false in A. If the former,
we may write �A σ and say that A is a model of σ.

More important are notions applicable to the sequents of the deductive sys-
tem of CPFI . A sequent Γ ⇒ Δ is satisfied by a structure A with a function
s : V → |A| if and only if, if for all A ∈ Γ , �A A [s], then for some C ∈ Δ,
�A C [s]. We symbolise this by �A Γ ⇒ Δ [s]. A sequent Γ ⇒ Δ is valid iff it
is satisfied by every structure with every function s : V → |A|. In this case we
write � Γ ⇒ Δ.

Sequents have finite sets to the left and right of ⇒. We also need notions
that apply to finite and infinite set.

A set of formulas Γ is satisfiable iff there is some structure A and some
function s : V → |A| such that A satisfies every member of Γ with s.

A set of formulas Γ deductively implies a formula A, iff for some finite Γ0 ⊆ Γ ,
	 Γ ⇒ A. If Γ deductively implies A, we record this fact by Γ 	 A.

A set of formulas Γ semantically implies a formula A, iff for every structure
A and every function s : V → |A| such that A satisfies every member of Γ with
s, A satisfies A with s. If Γ semantically implies A, we record this fact by Γ � A.

6 Soundness and Completeness

I’ll prove two pairs of soundness and completeness theorems: one pair shows that
deducibility and validity of sequents coincide, and another that deductive and
semantic implication coincide.

A formula A′ is an alphabetic variant of a formula A if A and A′ differ only
in the choice of bound variables.

Lemma 4 (Existence of Alphabetic Variants). For any formula A, term
t and variable x, there is a formula A′ such that A ⇒ A′ and A′ ⇒ A and t is
substitutable for x in A′.

Proof. Mutatis mutandis Enderton’s proof goes through for CPFI , too [6, p.
126f].

Alphabetic variants are semantically equivalent: if A and A′ are alphabetic vari-
ants, then A � A′ and A′ � A.

Lemma 5 (The Substitution Lemma). �A Ax
t [s] iff �A A [s(x|s(t))], if t

is free for x in A.

Proof. See [6, p. 133f] and adjust.

108 N. Kürbis

Theorem 2 (Soundness for Sequents). If 	 Γ ⇒ Δ, then � Γ ⇒ Δ.

Proof. Standard, by induction over the complexity of deductions and observing
that the axioms are valid and all rules preserve validity. In the appendix of [24],
the soundness of the rules for the ∀ and I is proved.

Theorem 3 (Soundness for Sets). If Γ 	 A, then Γ � A.

Proof. If Γ 	 A, then for some finite Γ0 ⊆ Γ , 	 Γ0 ⇒ A. So by Theorem 2,
� Γ0 ⇒ A. Suppose some structure A satisfies all formulas of Γ with a function
s : V → |A|. Then A satisfies Γo with s, hence, as � Γ0 ⇒ A, A satisfies A with
s, and so Γ � A.

Some more definitions. Let ⊥ represent an arbitrary contradiction. A set of
formulas Γ is inconsistent iff Γ 	 ⊥. Γ is consistent iff it is not inconsistent. A
set of formulas Γ is maximal iff for any formula A, either A ∈ Γ or ¬A ∈ Γ . A
set of formulas Γ is deductively closed iff, if Γ 	 A, then A ∈ Γ .

Lemma 6. Any maximally consistent set is deductively closed.

Proof. Suppose Γ is maximal and Γ 	 A but A �∈ Γ . Then for some finite
Γ0 ⊆ Γ , 	 Γ0 ⇒ A. By maximality of Γ , ¬A ∈ Γ , hence for some finite Γ1 ⊆ Γ ,
	 Γ1 ⇒ ¬A. Hence 	 Γ0, Γ1 ⇒ A ∧ ¬A, and so Γ 	 ⊥. Contradiction.

Theorem 4. Any consistent set of formulas Δ can be extended to a maximally
consistent set Δ+ such that:
(a) for any formula A and variable x, if ¬∀xA ∈ Δ+, then for some constant c,
∃!c ∈ Δ+ and Ax

c �∈ Δ+;
(b) for any formulas A and B and variable x, if Ix[A,B] ∈ Δ+, then for some
constant c, Ax

c , Bx
c ∈ Δ+ and for all constants d, if Ax

d ∈ Δ+, then d = c ∈ Δ+.
(c) for any formulas A and B and variable x, if ¬Ix[A,B] ∈ Δ+, then for all
constants c, either Ax

c �∈ Δ+, or for some constant d, Ax
d ∈ Δ+ and d = c �∈ Δ+,

or Bx
c �∈ Δ+.

Proof is in the appendix of the online version [24].

Theorem 5. If Δ is a consistent set of formulas, then Δ is satisfiable.

Proof is in the appendix of the online version [24].

Theorem 6 (Completeness for Sequents). If � Γ ⇒ Δ, then 	 Γ ⇒ Δ.

Proof. Let ¬Δ be the negation of all formulas in Δ. If � Γ ⇒ Δ, then Γ,¬Δ
is not satisfiable. Hence by Theorem 5 it is inconsistent, and as they are both
finite, 	 Γ,¬Δ ⇒ ⊥. Hence by the properties of negation 	 Γ ⇒ Δ.

Theorem 7 (Completeness for Sets). If Γ � A, then Γ 	 A.

Proof. Suppose Γ � A. Then Γ,¬A is not satisfiable, hence by Theorem 5 it is
inconsistent and Γ,¬A 	 ⊥. So for some finite Σ ⊆ Γ,¬A, Σ ⇒ ⊥. If ¬A ∈ Σ,
then by the deductive properties of negation, Σ − {¬A} ⇒ A, and as Σ − {¬A}
is certain to be a subset of Γ , Γ 	 A. If ¬A �∈ Σ, then Σ ⇒ A by the properties
of negation, and again Γ 	 A.

Proof-Theory and Semantics for a Theory of Definite Descriptions 109

7 Tableaux Rules

In this section, we’ll extend Priest’s tableaux system for classical positive free
logic [32, Ch 13] by rules for I. His rules give a system equivalent to CPF:

A → B

B¬A

¬(A → B)

A
¬B

¬¬A

A

∀xA

Ax
t¬∃!t

¬∀xA

∃!a
¬Ax

a

Ax
t1

t1 = t2

|
Ax

t2

�

t3 = t3

where t is any term on the branch (or a new one if there is none yet), a is new
to the branch and t3 is any term.

The binary quantifier I has the following rules:

Ix[A,B]

Ax
a

Bx
a

a = t¬Ax
t

¬Ix[A,B]

Ax
a

¬ a = t
¬Bx

t¬Ax
t

where a is new to the branch and t is any term on the branch (or a new one if
there is none yet).

8 Conclusion

The theory of definite descriptions formulated here has some novel and attractive
features. The proof-theory is simple and has desirable consequences. It differs
from Hintikka’s and Lambert’s preferred theories in a well-motivated way. It
lends itself to applications of formalisations in which scope distinctions are of
importance. The distinction between internal and external negation has been
mentioned in the introduction. Other, and particularly interesting, cases are
found in modal discourse. There is a significant difference between ‘It is possible
the that present King of France is bald’ and ‘The present King of France is pos-
sibly bald’. In the present framework, the former is formalised by a formula such
as ♦Ix[Kx,Bx], the latter by Ix[Kx,♦Bx]. The importance of scope distinc-
tions in the context of modal logic was first pointed out by Smullyan [33]. His
account was further developed by Hughes and Cresswell [13, p. 323ff]. Elaborate
systems catering for definite descriptions in modal logic have been provided by

110 N. Kürbis

Fitting and Mendelsohn [7] and Garson [10]. In both of the latter systems, an
operator for predicate abstraction is used to mark scope, but it serves no further
purpose. Future research will investigate the addition of the binary quantifier
I to quantified modal logic and compare the result to existing systems. In par-
ticular, as the present system incorporates scope distinctions directly into the
formalism for representing definite descriptions, there is no need for additional
means to mark scope. This promises economy and clarity in the formalism for
representing definite descriptions where scope distinctions matter.

Acknowledgments. I would like to thank Andrzej Indrzejczak for comments on this
paper and discussions of the proof-theory of definite descriptions in general. Some of this
material was presented at Heinrich Wansing’s and Hitoshi Omori’s Work in Progress
Seminar at the University of Bochum, to whom many thanks are due for support and
insightful comments. Last but not least I must thank the referees for Tableaux 2021
for their thoughtful and considerate reports on this paper.

References

1. Bencivenga, E.: Free logics. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philo-
sophical Logic. Volume III: Alternatives to Classical Logic, pp. 373–426. Springer,
Dortrecht (1986)

2. Bostock, D.: Intermediate Logic. Clarendon Press, Oxford (1997)
3. Cocchiarella, N.: A logic of actual and possible objects. J. Symb. Log. 31(4), 668–

689 (1966)
4. Czermak, J.: A logical calculus with definite descriptions. J. Philos. Log. 3(3),

211–228 (1974)
5. Dummett, M.: Frege. Philosophy of Language, 2nd edn. Duckworth, London (1981)
6. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Harcourt Aca-

demic Press, San Diego (2000)
7. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Dordrecht (1998)
8. van Fraassen, B.C.: On (the x) (x = lambert). In: Spohn, W., van Fraassen, B.C.

(ed.) Existence and Explanation. Essays Presented in Honor of Karel Lambert.
Kluwer, Dordrecht (1991)

9. Frege, G.: Grundgesetze der Arithmetik. Begriffsschriftlich abgeleited. I. Band.
Jena: Hermann Pohle (1893)

10. Garson, J.W.: Modal Logic for Philosophers, 2nd edn. Cambridge University Press
(2013)

11. Gratzl, N.: Incomplete symbols - definite descriptions revisited. J. Philos. Log.
44(5), 489–506 (2015)

12. Hintikka, J.: Towards a theory of definite descriptions. Analysis 19(4), 79–85 (1959)
13. Hughes, G., Cresswell, M.: A New Introduction to Modal Logic. Routledge (1996)
14. Indrzejczak, A.: Cut-free modal theory of definite descriptions. In: Bezhanishvili,

G., D’Agostino, G.M., Studer, T. (eds.) Advances in Modal Logic, vol. 12, pp.
359–378. College Publications, London (2018)

15. Indrzejczak, A.: Fregean description theory in proof-theoretical setting. Logic Log.
Philos. 28(1), 137–155 (2018)

16. Indrzejczak, A.: Existence, definedness and definite descriptions in hybrid modal
logic. In: Olivetti, N., Verbrugge, R., Negri, S., Sandu, G. (eds.) Advances in Modal
Logic 13. College Publications, Rickmansworth (2020)

Proof-Theory and Semantics for a Theory of Definite Descriptions 111

17. Indrzejczak, A.: Free definite description theory - sequent calculi and cut elimina-
tion. Log. Logical Philos. 29(4), 505–539 (2020)

18. Indrzejczak, A.: Free logics are cut free. Stud. Logica. 109(4), 859–886 (2020)
19. Indrzejczak, A.: Russellian definite description theory - a proof-theoretic approach.

Forthcoming in the Review of Symbolic Logic (2021)
20. Kürbis, N.: A binary quantifier for definite descriptions in intuitionist negative free

logic: Natural deduction and normalisation. Bull. Section Log. 48(2), 81–97 (2019)
21. Kürbis, N.: Two treatments of definite descriptions in intuitionist negative free

logic. Bull. Section Log. 48(4), 299–318 (2019)
22. Kürbis, N.: A binary quantifier for definite descriptions for cut free free logics.

Forthcoming in Studia Logica (2021)
23. Kürbis, N.: Definite descriptions in intuitionist positive free logic. Logic Log. Philos.

30(2), 327–358 (2021)
24. Kürbis, N.: Proof-Theory and Semantics for a Theory of Definite Descriptions.

Online version on arXiv arXiv:2108.03944 (2021)
25. Lambert, K.: Notes on “E!”: II. Philos. Stud. 12(1/2), 1–5 (1961)
26. Lambert, K.: Notes on “E!”: III. Philos. Stud. 13(4), 51–59 (1961)
27. Lambert, K.: Foundations of the hierarchy of positive free definite description the-

ories. In: Free Logic. Selected Essays. Cambridge University Press (2004)
28. Leblanc, H., Thomason, R.: Completeness theorems for some presupposition-free

logics. Fundam. Math. 62, 125–164 (1968)
29. Meyer, R.K., Lambert, K.: Universally free logic and standard quantification the-

ory. J. Symb. Log. 33(1), 8–26 (1968)
30. Morscher, E., Simons, P.: Free logic: a fifty-year past and an open future. In:

Morscher, E., Hieke, A. (eds.) New Essays in Free Logic in Honour of Karel Lam-
bert. Kluwer, Dortrecht (2001)

31. Neale, S.: Descriptions. MIT Press, Cambridge (1990)
32. Priest, G.: An Introduction to Non-Classical Logic, 2nd edn. Cambridge University

Press, Cambridge (2008)
33. Smullyan, A.: Modality and description. J. Symb. Log. 13, 31–7 (1948)
34. Whitehead, A., Russell, B.: Principia Mathematica, vol. 1. Cambridge University

Press, Cambridge (1910)

http://arxiv.org/abs/2108.03944

Basing Sequent Systems on Exclusive-Or

Arnon Avron(B)

School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel
aa@cs.tau.ac.il

Abstract. In the standard Gentzen-type systems for classical logic, the
right hand side of a sequent is interpreted as the inclusive-or of its ele-
ments. In this paper we investigate what happens if the exclusive-or ⊕
is used instead. We provide corresponding analytic systems, and some of
the decision procedures that are based on them. The latter are particu-
larly efficient for the negation-equivalence fragment of classical logic.

Keywords: Analytic Gentzen-type proof systems · Cut-elimination ·
Translations · Hypersequents

1 Introduction

A Gentzen-type system G usually employs either single-conclusion sequents (like
the system LJ for intuitionistic logic in [5]) or with multiple-conclusion ones (like
the system LK for classical logic in [5]). The former has the form Γ ⇒ ϕ, where ϕ
is a formula, Γ is a finite sequence (or sometimes a set or a multiset) of formulas,
and ⇒ is not a symbol of the language. The latter is of the form Γ ⇒ Δ, where
both Γ and Δ are finite sequences (sets, multisets) of formulas.

What is the meaning of a sequent? In the single-conclusion proof systems
there is a straightforward interpretation: Γ ⇒ ϕ usually expresses the fact that
ϕ follows from Γ according to the corresponding logic L. This interpretation is
independent of whether L is defined semantically (using the notion of a model)
or proof-theoretically (e.g. using a Hilbert-type system). In contrast, a multiple-
conclusion sequent does not have an obvious direct interpretation (especially
when it is introduced by using some proof system). Therefore the meaning of a
multiple-conclusion proof system G is usually given by some syntactic reduction
of G to its single-conclusion fragment. This, in turn, is usually done by employing
some internal disjunction [2], i.e. a binary connective + for which it holds that
�G Γ ⇒,Δ1, ϕ, ψ,Δ2 iff �G Γ ⇒ Δ1, ϕ + ψ,Δ2. If such a connective + is
available, then the meaning of Γ ⇒ ϕ1, . . . , ϕn in case n > 0 can be identified
with the meaning of the single-conclusion sequent Γ ⇒ ϕ1 + · · · + ϕn. This
leaves open, though, the interpretation of sequents of the form Γ ⇒ (in which
the r.h.s. is empty). This is usually solved by having an internal negation ¬ such
that �G ϕ, Γ ⇒ Δ iff �G Γ ⇒ Δ,¬ϕ. In its presence one can internally interpret

This research was supported by The Israel Science Foundation (grant no. 550/19).

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 112–128, 2021.
https://doi.org/10.1007/978-3-030-86059-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_7&domain=pdf
http://orcid.org/0000-0001-6831-3343
https://doi.org/10.1007/978-3-030-86059-2_7

Basing Sequent Systems on Exclusive-Or 113

every sequent s = ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk such that n + k > 0 by the formula
¬ϕ1 + · · · + ¬ϕn + ψ1 + · · · + ψk.1 (The empty sequent ⇒ can be interpreted,
e.g. as ¬(¬ϕ + ϕ), where ϕ is some formula.2).

As is well-known, for the standard Gentzen-type systems for classical logic
the inclusive disjunction ∨ was chosen to serve as an internal disjunction, and the
systems are designed accordingly, that is: by interpreting the r.h.s of a sequent
as the inclusive-or of its elements. The goal of this paper is to investigate what
kind of calculi are obtained if the exclusive-or ⊕ is chosen instead. We show
that this interpretation too leads to corresponding analytic systems for classical
logics, and to decision procedures that are based on them. The latter are very
efficient, e.g., in the case of the negation-equivalence fragment of classical logic.

2 Preliminaries

In this section we review basic notions and facts about matrices (see e.g. [7,13])
and introduce the basic matrix which is relevant to the goals of this paper.

From now on we assume that all the propositional languages which we deal
with have the same propositional variables, and that they are ordered in a
sequence P1, P2, We use p, q, r as meta-variables for propositional variables,
and ϕ,ψ, τ as meta-variables for formulas.

Definition 1. A matrix for a language L is a triple 〈V,D,O〉, where

– V is a non-empty set of truth values;
– D is a non-empty proper subset of V (whose elements are called the designated

elements of V);
– O is a function that associates an n-ary function �̃ : Vn → V with every n-ary

connective � of L.

Definition 2. Let 〈V,D,O〉 be a matrix for L. A valuation in 〈V,D,O〉 is a
function v from the set of formulas of L to V such that the following condition
is satisfied for every connective � of L and for every formulas ψ1, . . . , ψn of L
(where n is the arity of �): v(�(ψ1, . . . , ψn)) = �̃(v(ψ1), . . . , v(ψn)).

Definition 3. Let M = 〈V,D,O〉 be a matrix for L.

– A valuation v in M is an M-model of a formula ϕ (v |= Mϕ), if v(ϕ) ∈ D.

1 For being definite, we may assume here association to the right. In practice, this
would not matter, since the interpretations of + are almost always associative.

2 In multiplicative linear logic and in many other logics, the empty sequent is inter-
preted by a special propositional constant ⊥, such that ⇒ and ⇒ ⊥ are derivable
from each other. In the logics we consider in this paper (as well as in plenty of
others), the role of ⊥ can be played by any formula of the form ¬τ , where τ is a
valid formula of the logic. In particular: we may take τ = ¬ϕ + ϕ, since ¬ϕ + ϕ is
necessarily valid for every general consequence relation (in the sense of [2]) for which
+ and ¬ are internal disjunction and negation, respectively.

114 A. Avron

– A valuation v in M is an M-model of a theory (i.e. a set of sentences) T
(ν |= MT) if it is an M-model of every element of T .

– A formula ϕ of L is valid in M if v(ϕ) ∈ D for every valuation v in M.
– A formula ϕ of L follows in M from a theory T (T �M ϕ) if every M-model

of T is an M-model of ϕ.

In this paper our main interest is in matrices for the following language:

Definition 4. L⊕ = {⊕,¬}

Definition 5. M−
⊕ is the matrix 〈V,D,O〉 for L⊕ in which V = {1, 0}, D = {1},

⊕̃ = λa, b.(a + b) mod 2 (i.e. ⊕̃ is the classical exclusive ‘or’), ¬̃ = λa.1 − a (i.e.
¬̃ is the classical negation).

The proof of the following lemma is straightforward.

Lemma 1. ⊕̃ satisfies in M−
⊕ the following identities:

1. a⊕̃(b⊕̃c) = (a⊕̃b)⊕̃c (associativity);
2. a⊕̃b = b⊕̃a (commutativity);
3. a⊕̃0 = 0⊕̃a = a;
4. a⊕̃1 = 1⊕̃a = 1 − a (= ¬̃a);
5. a⊕̃a = 0.

Definition 6. Let s = ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk be a sequent in a language L
which extends L⊕. Define:

τs =
{

¬ϕ1 ⊕ · · · ⊕ ¬ϕn ⊕ ψ1 ⊕ · · · ⊕ ψk n + k > 0
¬(¬P1 ⊕ P1) n + k = 0

Definition 7. Let v be a valuation in some matrix M for a language which
includes L⊕. v is extended to sequents by letting v(s) = v(τs). v is an M-model
of a sequent s (v |= s) if v(s) ∈ D. v is an M-model of a set S of sequents
(v |= S) if v |= s for every s ∈ S.

Lemma 2. Let v be a valuation in M−
⊕.

1. v |= Γ1, Γ2 ⇒ Δ1,Δ2 iff v(Γ1 ⇒ Δ1) �= v(Γ2 ⇒ Δ2).
2. v |= Γ ⇒ Δ,ϕ iff v(Γ ⇒ Δ) �= v(ϕ).
3. v |= ϕ, Γ ⇒ Δ iff v(Γ ⇒ Δ) = v(ϕ).
4. v(⇒) = 0.

Proof. Immediate from the definitions and Lemma 1. �

Note 1. Let ϕ ↔ ψ = ¬(ϕ ⊕ ψ). It is not difficult to see that ↔ is interpreted
in M−

⊕ as the classical equivalence connective, that ϕ ⊕ ψ is equivalent there to
¬(ϕ ↔ ψ), while ϕ ↔ ψ is equivalent to (¬ϕ) ⊕ ψ and to ϕ ⊕ (¬ψ). Moreover:
τϕ⇒ψ (the internal interpretation of a sequent of the form ϕ ⇒ ψ) is ϕ ↔ ψ.

Basing Sequent Systems on Exclusive-Or 115

We now provide a useful criterion for being an M-model of a sequent s:

Notation. We denote the set of natural numbers (including 0) by N, the set of
even natural numbers by Neven, and the set of odd natural numbers by Nodd.

Definition 8. Let v be a valuation in M−
⊕, and let s = (Γ ⇒ Δ). Define:

nv(s) = #({ϕ ∈ Γ | v(ϕ) = 0}) + #({ϕ ∈ Δ | v(ϕ) = 1})

(where #(X) denotes the cardinality of X).

Proposition 1. Let v be a valuation in M−
⊕. v |= s iff nv(s) ∈ Nodd.

Proof. An induction on n shows that Lemma 1 implies that the following holds
for every a1, . . . , an ∈ {1, 0}:

a1⊕̃ · · · ⊕̃an =
{

0 #({i | ai = 1}) ∈ Neven

1 #({i | ai = 1}) ∈ Nodd

Let v be a valuation v in M−
⊕. Using an induction on nv(Γ ⇒ Δ), it easily

follows from this equation that if nv(Γ ⇒ Δ) is in Nodd then v |= Γ ⇒ Δ, while
if it is in Neven then v �|= Γ ⇒ Δ. �

3 The Basic Systems

In this section we provide Gentzen-type sequential systems for �M−
⊕
, i.e. for the

L⊕-fragment of classical logic (where ⊕ denotes the exclusive-or). We start with
the system GCL⊕ (Fig. 1), that differs from the standard Gentzen-type system
for the {¬,∨}-fragment of classical logic only with respect to the form of the
structural rules of weakening and contraction. In particular: the logical rules and
the axioms of the two systems are identical.

Note 2. The presence of the two permutation rules ([P]) in GCL⊕ means that
we are allowed to view the two sides of its sequents as if they are multisets. In
what follows we indeed frequently (implicitly) treat them as such.

Note 3. Another possible description of GCL⊕ is that it is obtained from MLL
(the multiplicative fragment of classical linear logic, where ⊕ denotes the multi-
plicative disjunction rather than the additive one) by the addition of the struc-
tural rules [2-D] and [2-W]. Nevertheless, the logic induced by GCL⊕ is not
substructural in the strict sense, since [2-D] is not classically valid.

Note 4. The rule [2-D] is the sole rule of GCL⊕ which is not valid in the classical
Gentzen-type system LK. This implies, of course, that it is not derivable from
the other rules of GCL⊕. It should also be noted that while the rule [2-W] of
GCL⊕ is obviously a weaker form of the weakening rule [W] of LK, [2-D] is
completely different from the contraction rule of that system. Thus, although
both rules eliminate some multiple occurrences of the same formula on one side

116 A. Avron

Axioms: ϕ ⇒ ϕ

Structural Rules:

[P]
Γ1, ϕ, ψ, Γ2 ⇒ Δ

Γ1, ψ, ϕ, Γ2 ⇒ Δ

Γ ⇒ Δ1, ϕ, ψ, Δ2

Γ ⇒ Δ1, ψ, ϕ, Δ2

[2-W]
Γ1, Γ2 ⇒ Δ

Γ1, ψ, ψ, Γ2 ⇒ Δ

Γ ⇒ Δ1, Δ2

Γ ⇒ Δ1, ψ, ψ, Δ2

[2-D]
Γ1, ψ, ψ, Γ2 ⇒ Δ

Γ1, Γ2 ⇒ Δ

Γ ⇒ Δ1, ψ, ψ, Δ2

Γ ⇒ Δ1, Δ2

[Cut]
Γ1 ⇒ Δ1, ψ Γ2, ψ ⇒ Δ2

Γ1, Γ2 ⇒ Δ1, Δ2

Logical Rules:

[⊕⇒]
ϕ, Γ1 ⇒ Δ1 ψ, Γ2 ⇒ Δ2

ϕ ⊕ ψ, Γ1, Γ2 ⇒ Δ1, Δ2
[⇒⊕]

Γ ⇒ Δ, ϕ, ψ

Γ ⇒ Δ, ϕ ⊕ ψ

[¬⇒]
Γ ⇒ Δ, ϕ

Γ, ¬ϕ ⇒ Δ
[⇒¬] Γ, ϕ ⇒ Δ

Γ ⇒ Δ, ¬ϕ

Fig. 1. GCL⊕

of a sequent, none of them is derivable from the other. What is more: while the
contraction rule is analytic3, [2-D] in general is not. This means that GCL⊕
has two non-analytic rules: [Cut] and [2-D]. Hence an analogue of the classical
cut-elimination theorem in the case of GCL⊕ should eliminate not only the
former, but also the latter. In fact, eliminating [2-D] is more critical, since [Cut]
is derivable using [2-D].4 This is shown in the next proposition.

Proposition 2. [Cut] is derivable from the other rules of GCL⊕.

Proof. Here is a derivation of [Cut]:

ϕ ⇒ ϕ

ϕ, Γ2 ⇒ Δ2

Γ1 ⇒ Δ1, ϕ

ϕ, ϕ, Γ1 ⇒ Δ1, ϕ
[2 − W]

ϕ,ϕ ⊕ ϕ, Γ1, Γ2 ⇒ Δ1,Δ2, ϕ
[⊕ ⇒]

ϕ ⊕ ϕ,ϕ ⊕ ϕ, Γ1, Γ2 ⇒ Δ1,Δ2, ϕ, ϕ
[⊕ ⇒]

Γ1, Γ2 ⇒ Δ1,Δ2
[2 − D]

Definition 9. Let G be a Gentzen-type system, and let S ∪ {s} be a set of
sequents. We say that s is derivable from S in G (S �G s) if s is provable in
3 Recall that a rule is analytic if every formula which occurs in one of its premises is

a subformula of some formula in its conclusion.
4 Nevertheless, for reasons that will become clear in Note 8, we prefer to leave it as

one of the primitive rules of GCL⊕.

Basing Sequent Systems on Exclusive-Or 117

the system which is obtained from G by adding the sequents in S (but not their
substitution instances) as new axioms.

Proposition 3 (Strong soundness of GCL⊕). Let v be a valuation in M−
⊕,

and let S ∪ {s} be a set of sequents. If S �GCL⊕ s and v |= S then v |= s.

Proof. It suffices to show that the axioms of GCL⊕ are valid, and that if v(s) =
1 for every premise of some application of a rule of GCL⊕, then v assigns 1 also
to the conclusion of that application. For most of the rules and axioms, this is
immediate from the definitions and from Lemmas 1 and 2. Below is the proof in
the less obvious case.

[⊕ ⇒] Suppose v |= ϕ, Γ1 ⇒ Δ1 and v |= ψ, Γ2 ⇒ Δ2. By Lemma 2,
it follows that v(Γ1 ⇒ Δ1) = v(ϕ) and v(Γ2 ⇒ Δ2) = v(ψ). Hence
v(Γ1, Γ2 ⇒ Δ1,Δ2) = v(Γ1 ⇒ Δ1)⊕̃v(Γ2 ⇒ Δ2) = v(ϕ)⊕̃v(ψ), and so
(again by Lemma 2) v |= ϕ ⊕ ψ, Γ1, Γ2 ⇒ Δ1,Δ2. �

We shall show later that the converse of Proposition 3 holds only partially:
GCL⊕ is complete for M−

⊕, but not strongly so. Before that, we show another
major drawback of GCL⊕.

Lemma 3. �GCL⊕ Γ ⇒ Γ iff #(Γ) is odd.

Proof. Suppose first that #(Γ) is odd. We prove that �GCL⊕ Γ ⇒ Γ by induc-
tion on #(Γ). This is obvious if #(Γ) = 1. For the induction step, suppose
�GCL⊕ Γ ⇒ Γ . We derive Γ, ϕ, ψ ⇒ Γ, ϕ, ψ as follows:

Γ ⇒ Γ
Γ ⇒ Γ, ϕ, ϕ

[2 − W]
ψ ⇒ ψ

ϕ,ϕ, ψ ⇒ ψ
[2 − W]

Γ, ϕ, ψ ⇒ Γ, ϕ, ψ
[Cut]

Now suppose that #(Γ) is even. An easy induction on #(Γ) (using the fact that
v(¬ϕ ⊕ ϕ) = 1 for every v and ϕ) shows that in this case v(Γ ⇒ Γ) = 0 for
every v in M−

⊕. Hence Proposition 3 imply that ��GCL⊕ Γ ⇒ Γ . �

Proposition 4. Let Γ ⇒ Δ be a sequent with the following properties:

– Γ and Δ consist just of propositional variables.
– There are at least two distinct propositional variables that occur an odd num-

ber of times in both Γ and Δ.

Then any proof in GCL⊕ of Γ ⇒ Δ contains either a cut, or some application
of [2-D] in which the deleted formula is not a variable.

Proof. It is easy to see that the last inference of any proof of Γ ⇒ Δ is either
some application of [2-D] in which the deleted formula is not a variable, or a cut,
or it has a single premise which also has the above two properties of Γ ⇒ Δ.
Hence the proposition follows by an induction on the length of proofs. �

118 A. Avron

Corollary 1. Let p1 and p2 be distinct propositional variables. The sequent
p1, p2, p3 ⇒ p1, p2, p3 is provable in GCL⊕, but any proof of it contains a cut,
or some application of [2-D] in which the deleted formula is not a variable.

Proof. Immediate from Lemma 3 and Proposition 4. �

Corollary 1 shows that the non-analytic rules cannot be eliminated from all
proofs in GCL⊕. Another drawback of GCL⊕ is that it has a rule ([⊕ ⇒]) which
is not invertible. (This would make it difficult for basing a useful tableaux system
on it.) Therefore we provide in Fig. 2 an alternative system, GCL�

⊕. Then we
show that GCL�

⊕ is equivalent to GCL⊕, but it does not share its drawbacks,
and that the two systems are (weakly) complete for M−

⊕.

Axioms: Γ ⇒ Γ (provided that #(Γ) is odd.)

Structural Rules:

[P]
Γ1, ϕ, ψ, Γ2 ⇒ Δ

Γ1, ψ, ϕ, Γ2 ⇒ Δ

Γ ⇒ Δ1, ϕ, ψ, Δ2

Γ ⇒ Δ1, ψ, ϕ, Δ2

[2-W]
Γ1, Γ2 ⇒ Δ

Γ1, ψ, ψ, Γ2 ⇒ Δ

Γ ⇒ Δ1, Δ2

Γ ⇒ Δ1, ψ, ψ, Δ2

[2-D]
Γ1, ψ, ψ, Γ2 ⇒ Δ

Γ1, Γ2 ⇒ Δ

Γ ⇒ Δ1, ψ, ψ, Δ2

Γ ⇒ Δ1, Δ2

[Cut]
Γ1 ⇒ Δ1, ψ Γ2, ψ ⇒ Δ2

Γ1, Γ2 ⇒ Δ1, Δ2

Logical Rules:

[⊕⇒]
ϕ, Γ ⇒ Δ, ψ

ϕ ⊕ ψ, Γ ⇒ Δ
[⇒⊕]

Γ ⇒ Δ, ϕ, ψ

Γ ⇒ Δ, ϕ ⊕ ψ

[¬⇒]
Γ ⇒ Δ, ϕ

Γ, ¬ϕ ⇒ Δ
[⇒¬] Γ, ϕ ⇒ Δ

Γ ⇒ Δ, ¬ϕ

Fig. 2. GCL�
⊕

Proposition 5. GCL�
⊕ and GCL⊕ are equivalent: S �GCL�

⊕ s iff S �GCL⊕ s.

Proof. The following is a derivation in GCL⊕ of the rule [⊕⇒]� of GCL�
⊕:

ϕ, Γ ⇒ Δ,ψ ψ ⇒ ψ

ϕ ⊕ ψ, Γ ⇒ Δ,ψ, ψ
[⊕ ⇒]

ϕ ⊕ ψ, Γ ⇒ Δ
[2 − D]

That if S �GCL�
⊕ s then S �GCL⊕ s follows from this and from Lemma 3.

Basing Sequent Systems on Exclusive-Or 119

To prove the converse, it suffices to show that the rule [⊕ ⇒] is derivable in
GCL�

⊕. Here is its derivation (where applications of [P] are omitted):

ϕ, Γ1 ⇒ Δ1

ϕ, Γ1 ⇒ Δ1, ψ, ψ
[2 − W]

ψ, Γ2 ⇒ Δ2

ϕ, Γ1, Γ2 ⇒ Δ1,Δ2, ψ
[Cut]

ϕ ⊕ ψ, Γ1, Γ2 ⇒ Δ1,Δ2
[⊕ ⇒]�

Corollary 2 (strong soundness of GCL�
⊕). Let v be a valuation in M−

⊕. If
S �GCL�

⊕ s and v |= S then v |= s.

Proof. Immediate from Propositions 3 and 5. �

Proposition 6. With the exception of [Cut], all the rules of GCL�
⊕ which have

a premise are invertible in it.

Proof. The various cases are easy. As an example, here is a derivation of the
premise of [⊕ ⇒]� from its conclusion. (Applications of [P] are not shown.)

ϕ ⇒ ϕ

ϕ ⇒ ϕ,ψ, ψ
[2 − W]

ϕ ⇒ ψ,ϕ ⊕ ψ
[⇒ ⊕]

ϕ ⊕ ψ, Γ ⇒ Δ

ϕ,Γ ⇒ Δ,ψ
[Cut]

Note 5. It is easy to see that all the results proved in this paper about GCL�
⊕

would remain true had we taken ↔ (Note 1) as primitive instead of ⊕, and
replace the two rules for ⊕ in GCL�

⊕ by the following two derived rules for ↔:

[↔⇒]
Γ ⇒ Δ,ϕ, ψ

ϕ ↔ ψ, Γ ⇒ Δ
[⇒↔]

ϕ, Γ ⇒ Δ,ψ

Γ ⇒ Δ,ϕ ↔ ψ

Note that these two rules for ↔ are by far simpler than the rules for ↔ in
the usual Gentzen-type framework (based on inclusive-or):

ϕ,ψ, Γ1 ⇒ Δ1 Γ2 ⇒ Δ2, ϕ, ψ

ϕ ↔ ψ, Γ1, Γ2 ⇒ Δ1,Δ2

ϕ, Γ1 ⇒ Δ1, ψ ψ, Γ2 ⇒ Δ2, ϕ

Γ1, Γ2 ⇒ Δ1,Δ2, ϕ ↔ ψ

Definition 10. A clause is a sequent which consists solely of propositional vari-
ables. A clause Γ ⇒ Δ is reduced if each propositional variable occurs at most
once in Γ and at most once in Δ.

Lemma 4. Any clause s is equivalent in GCL⊕ and GCL�
⊕ to a unique (up to

applications of [P]) reduced clause s′ such that:

– s′ is derivable from s using only applications of [2-D].
– s is derivable from s′ using only applications of [2-W].

Proof. Left to the reader. �

120 A. Avron

Proposition 7. For every sequent Γ ⇒ Δ in L⊕ we can effectively find a
reduced clause which is equivalent to Γ ⇒ Δ in GCL�

⊕, and from which Γ ⇒ Δ
can be derived in GCL�

⊕ without using either [Cut] or [2-D].

Proof. This easily follows from Proposition 6 and Lemma 4. �

Note 6. The procedure implicit in the proof of Proposition 7 is particularly
efficient, since all the rules of GCL�

⊕ except [Cut] have a single premise. (Hence
applying them backward amounts to producing a linear tableaux.)

Lemma 5. A clause Γ ⇒ Δ is valid in M−
⊕ iff it has the following properties:

1. Each propositional variable occurs in Γ ⇒ Δ an even number of times.
2. #(Γ) ∈ Nodd.

Proof. It is easy to see that the reduced clause, to which Γ ⇒ Δ is equivalent
according to Lemma 4, satisfies the above two conditions iff Γ ⇒ Δ does. Hence
it suffices by Proposition 3 to prove the lemma under the assumption that Γ ⇒ Δ
is reduced. In this case the satisfaction of the first condition by Γ ⇒ Δ means
that Γ = Δ. Therefore it immediately follows from Lemma 3 and Proposition 3
that if the two conditions are satisfied then Γ ⇒ Δ is valid in M−

⊕.
For the converse, suppose that Γ ⇒ Δ does not satisfy the first condition.

Assuming again that Γ ⇒ Δ is reduced, this means that there is a propositional
variable p that occurs in Γ ⇒ Δ exactly once. Suppose without loss in generality
that p occurs in Γ , but not in Δ. Let v be any valuation such that v(p) �=
v(Γ −{p} ⇒ Δ). (Such a valuation exists, since p does not occur in Γ −{p} ⇒ Δ.)
Then item 3 of Lemma 2 implies that v �|= Γ ⇒ Δ, and so Γ ⇒ Δ is not valid in
M−

⊕. It follows that if Γ ⇒ Δ is valid in M−
⊕ then it satisfies the first condition.

That it satisfies the second one too easily follows from that and from the fact
that if #(Γ) is even then v(Γ ⇒ Γ) = 0 for every v in M−

⊕. �

Note 7. Taking Note 6 into account, Proposition 7 and Lemma 5 provide us
(with the help of Corollary 2) an efficient procedure for deciding whether a
given sequent in L⊕ is valid. By Note 5, this is true also for sequents in the
negation-equivalence fragment of classical logic.5

Corollary 3. A reduced clause Γ ⇒ Δ is valid in M−
⊕ iff it can be derived from

an axiom of GCL�
⊕ using [P].

Theorem 1. A sequent Γ ⇒ Δ is valid in M−
⊕ iff it has a proof in GCL�

⊕ in
which neither [Cut] nor [2-D] is used.

5 In particular: to use this procedure in order to check whether a formula ψ in the
language of {¬, ↔} is classically valid, we should first find a clause which is obtained
from ⇒ ψ by applying backward the logical rules of the system described in Note 5.
Then we should check whether that clause satisfies the two conditions given in
Lemma 5. It is not hard to see that this happens iff ψ satisfies the criterion of
McKinsey and Mihailescu for validity of such formulas ([10], or [4], Corollary 1).

Basing Sequent Systems on Exclusive-Or 121

Proof. The ‘if’ part follows from Corollary 2. The converse follows from Propo-
sition 7 and Corollary 3. �

Corollary 4. A sequent is valid in M−
⊕ iff it is provable in GCL�

⊕ iff it is
provable in GCL⊕.

Corollary 5 (Cut-elimination and [2-D]-elimination). If �GCL�
⊕ Γ ⇒ Δ,

then Γ ⇒ Δ has a proof in GCL�
⊕ in which neither [Cut] nor [2-D] is used.

Corollary 6. Suppose that �GCL⊕ s. Then s has a proof in GCL⊕ in which all
applications of [Cut] and [2-D] are analytic.

Proof. Use Proposition 3, Theorem 1, and the proof of Proposition 5. �

Note 8. Corollary 6 would have failed, had we not included [Cut] among the
rules of GCL⊕ (despite Proposition 2).

Corollaries 5 and 6 can be strengthened as follows.

Theorem 2. Let S ∪ {s} be a set of sequents, and assume that S �= {⇒}.
1. S �GCL�

⊕ s iff there is a proof in GCL�
⊕ of s from S in which every application

of [Cut] or [2-D] is on a formula in Γ ∪ Δ for some Γ ⇒ Δ ∈ S.
2. If S �GCL⊕ s then s has a proof from S in GCL⊕ in which all applications

of [Cut] and [2-D] are analytic.

Proof

1. Suppose that s = Γ ⇒ Δ, and let S′ = {Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn} be a finite
subset of S such S′ �GCL�

⊕ s. We prove the claim by induction on n. The
case n = 0 is just Corollary 5. Suppose that the claim is true for n, we show
it for n + 1. So assume that S′ = {Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn, Γn+1 ⇒ Δn+1},
and S′ �GCL�

⊕ s. There are three cases to consider.
Γn+1 = Δn+1 = ∅ : Let τ be some formula in

⋃n
i=1(Γi ∪ Δi). (Such a

formula exists, since S �= {⇒}). Take some proof-tree of s from S′ in
GCL�

⊕, and transform it into another derivation in GCL�
⊕ by replacing

each premise of the form ⇒ (i.e. Γn+1 ⇒ Δn+1) by the axiom τ ⇒ τ ,
and then apply in each node exactly the same rule with the same active
formulas as in the original proof. Because of the context-independent
(‘pure’ in the terminology of [2], ‘multiplicative’ in that of [6]) nature of
the rules of GCL�

⊕ (including [Cut]), we get by doing this a proof in GCL�
⊕

from {Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn} of a sequent of the form Σ, Γ ⇒ Σ,Δ,
where Σ = τ, . . . , τ . Using [2-D], we get from this a proof in GCL�

⊕ from
{Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn} of either Γ ⇒ Δ or of τ, Γ ⇒ τ,Δ. In the
first case we directly apply the induction hypothesis to get a proof of
Γ ⇒ Δ as required. In the second case we apply it to get such a proof
for τ, Γ ⇒ τ,Δ. By adding to that proof a Cut with ⇒ τ, τ (which is
derivable from the empty sequent Γn+1 ⇒ Δn+1 by [2-W]), followed by a
permissible application of [2-D] on τ , we again get a proof of Γ ⇒ Δ as
required.

122 A. Avron

Γn+1 �= ∅ : Suppose, without loss in generality (due to the presence of
[P]), that Γn+1 = ψ, Γ ′

n+1. Take some proof-tree of s from S′ in GCL�
⊕,

and transform it into another derivation in GCL�
⊕ like in the previous

case, but this time replacing each premise of the form Γn+1 ⇒ Δn+1

by the valid sequent ψ, Γ ′
n+1, Γ

′
n+1 ⇒ Δn+1,Δn+1, ψ, which is obtained

(though not derived!) from Γn+1 ⇒ Δn+1 by adding Γ ′
n+1 to its l.h.s, and

Δn+1, ψ to its r.h.s. As in the previous case, with the help of [2-D] we
get by this transformation a proof in GCL�

⊕ from {Γ1 ⇒ Δ1, . . . , Γn ⇒
Δn} of either Γ ⇒ Δ or of Γ ′

n+1, Γ ⇒ Δ,Δn+1, ψ. By applying the
induction hypothesis to this proof we get a proof from S as required
of either Γ ⇒ Δ or of Γ ′

n+1, Γ ⇒ Δ,Δn+1, ψ. In the first case we are
done. In the second one we first add to this proof a permissible Cut on
ψ of its end-sequent with Γn+1 ⇒ Δn+1, to get a proof as required of
Γ ′

n+1, Γ
′
n+1, Γ ⇒Δ,Δn+1,Δn+1. Using permissible applications of [2-D],

we finally get a proof as required of Γ ⇒ Δ in this case as well.
Δn+1 �= ∅ : We leave this case to the reader.

2. The proof is similar to that of the first part, using Corollary 6 instead of
Corollary 5. �

Note 9. Theorem 2 is not true in case S = {⇒}. Thus {⇒} �GCL�
⊕ P1, P2 ⇒

P1, P2. (Apply [Cut] to ⇒ P2, P2 and ⇒ P2, P2, P1 ⇒ P1; The former is derivable
from ⇒ using [2-W], while the latter is derivable from the axiom P1 ⇒ P1 by
[2-W].) Nevertheless, it is easy to see that it is impossible to derive it without
using the [Cut] rule. However, by applying Theorem 2 to {⇒ ϕ,ϕ} (which is
equivalent to {⇒}) we conclude that if {⇒} �GCL�

⊕ s then there is a proof in
GCL�

⊕ of s from {⇒} in which all applications of [Cut] and [2-D] are on ϕ, where
the latter can arbitrarily be chosen.

4 Theorems on Strong Completeness

Corollary 4 is a weak completeness theorem for GCL⊕ (GCL�
⊕). The next propo-

sition implies that the corresponding strong completeness theorem fails.

Proposition 8. {⇒ p,⇒ ¬p} �M−
⊕
⇒ q, but {⇒ p,⇒ ¬p} ��GCL⊕⇒ q.

Proof. The first part is obvious, since {⇒ p,⇒ ¬p} has no model in M−
⊕.

The second part is immediate from the following observation (that can be
proved by an easy induction on length of proofs): if S �GCL⊕ s, and the propo-
sitional variable q occurs an even number of times in every element of S, then
it occurs an even number of times in s as well. �

The failure of GCL⊕ (or, equivalently, GCL�
⊕) to be strongly complete for

�M−
⊕

raises two problems:

(A) To find semantics for which a strong soundness and completeness theorem
for GCL⊕ (GCL�

⊕) does obtain.

Basing Sequent Systems on Exclusive-Or 123

(B) To extend GCL⊕ or GCL�
⊕ to a system which is strongly sound and com-

plete with respect to M−
⊕.

To solve problem (A), we use the following matrix for L⊕ from [4].

Definition 11. Mid
⊕ is the matrix 〈V,D,O〉 for L⊕ in which V = {1, 0}, D =

{1}, ⊕̃ is the classical equivalence, and ¬̃ is the identity function.

Definition 12. Let v be a valuation in Mid
⊕ , and let s = (Γ ⇒ Δ). Define:

nv(s) = #({ϕ ∈ Γ | v(ϕ) = 0}) + #({ϕ ∈ Δ | v(ϕ) = 0})

The proofs of the following lemmas and propositions about Mid
⊕ are similar

to the proofs of their counterparts concerning M−
⊕.

Lemma 6. ⊕̃ satisfies in Mid
⊕ the following identities:

1. a⊕̃(b⊕̃c) = (a⊕̃b)⊕̃c (associativity);
2. a⊕̃b = b⊕̃a (commutativity);
3. a⊕̃0 = 0⊕̃a = 1 − a;
4. a⊕̃1 = 1⊕̃a = a;
5. a⊕̃a = 1.

Lemma 7. Let v be a valuation in Mid
⊕ .

1. v |= Γ1, Γ2 ⇒ Δ1,Δ2 iff v(Γ1 ⇒ Δ1) = v(Γ2 ⇒ Δ2).
2. v |= ϕ, Γ ⇒ Δ iff v |= Γ ⇒ Δ,ϕ iff v(Γ ⇒ Δ) = v(ϕ)

Proposition 9. Let v be a valuation in Mid
⊕ . v |= s iff nv(s) ∈ Neven.

Proposition 10 (Strong soundness of GCL⊕). Let v be a valuation in Mid
⊕ ,

and let S ∪ {s} be a set of sequents. If S �GCL⊕ s and v |= S then v |= s.

Note 10. Since obviously {⇒ p,⇒ ¬p} ��Mid
⊕

⇒ q, Proposition 10 provides
another proof for the second part of Proposition 8.

In what follows we need the following:

Theorem 3 ([4]). ϕ follows from T in both M−
⊕ and Mid

⊕ (T �M−
⊕

ϕ and
T �Mid

⊕
ϕ) iff there are ψ1, . . . , ψn ∈ T such that ¬ψ1 ⊕ · · · ⊕ ¬ψn ⊕ ϕ is valid

in M−
⊕, i.e. iff the sequent ψ1, . . . , ψn ⇒ ϕ is valid in M−

⊕.

Corollary 7. ϕ follows in T in both M−
⊕ and Mid

⊕ iff there is a finite Γ ⊆ T
such that �GCL⊕ Γ ⇒ ϕ (�GCL�

⊕ Γ ⇒ ϕ).

Proof. Immediate from Theorem 3 and Corollary 4. �

Theorem 4. Let S ∪ {s} be a set of sequents. S �GCL⊕ s (S �GCL�
⊕ s) iff both

S �M−
⊕

s and S �Mid
⊕

s.

124 A. Avron

Proof. The ‘only if’ part follows from Propositions 3 and 10.
For the converse, suppose that S �M−

⊕
s, and S �Mid

⊕
s. This means that

T �M−
⊕

τΓ⇒Δ and T �Mid
⊕

τΓ⇒Δ, where s = Γ ⇒ Δ, and T = {τs′ | s′ ∈ S}.
Hence Theorem 3 implies that there are s1, . . . , sn ∈ S such that the sequent
τs1 , . . . , τsn

⇒ τΓ⇒Δ is valid in M−
⊕, and so also τs1 , . . . , τsn

, Γ ⇒ Δ is valid
in M−

⊕. It follows by Corollary 4 that the latter sequent is provable in GCL⊕
(GCL�

⊕). Now ⇒ τsi
is easily derivable in GCL⊕ (GCL�

⊕) from si (i = 1, . . . , n).
By applying cuts to these n sequents and to τs1 , . . . , τsn

, Γ ⇒ Δ, we get a proof
in GCL⊕ (GCL�

⊕) of Γ ⇒ Δ from S. �

Next we turn to Problem (B). The key for its solution is provided by the
following proposition.

Proposition 11. T �M−
⊕

ϕ iff there exists a finite Γ ⊆ T such that either
�GCL�

⊕ Γ ⇒ ϕ or �GCL�
⊕ Γ ⇒.

Proof. The if direction is obvious, since [Cut] is a sound rule, and ⇒ has no
models in M−

⊕. For the converse, let T �M−
⊕

ϕ. Then also T ,¬ϕ �M−
⊕

ϕ. Since
¬ϕ �Mid

⊕
ϕ, T ,¬ϕ �Mid

⊕
ϕ as well. Hence Corollary 7 implies that there is

Γ ⊆ T ∪ {¬ϕ} such that �GCL�
⊕ Γ ⇒ ϕ. If ¬ϕ �∈ Γ we are done. Otherwise

Γ = Γ ′ ∪ {¬ϕ}, and �GCL�
⊕ Γ ′,¬ϕ ⇒ ϕ. By applying [¬ ⇒] followed by [D-2]

on ¬ϕ, we get �GCL�
⊕ Γ ′ ⇒. �

Theorem 5. S �M−
⊕

s iff either S �GCL�
⊕ s or S �GCL�

⊕⇒.

Proof. The ‘if’ part follows from Corollary 2, and the fact that the empty
sequent has no model in M−

⊕. For the converse, let S �M−
⊕

s. Then by Propo-
sition 11, there are s1, . . . , sn ∈ S such that either �GCL�

⊕ τs1 , . . . , τsn
⇒ τs, or

else �GCL�
⊕ τs1 , . . . , τsn

⇒. Like in the proof of Theorem 4, in the first case we
have that S �GCL�

⊕ s, while in the second case we get that S �GCL�
⊕⇒. �

Definition 13. GCL⊕,¬ (GCL�
⊕,¬) is the system which is obtained from GCL⊕

(GCL�
⊕) by adding to it the following rule:

⇒
Γ ⇒ Δ

[Triv]

Corollary 8. GCL⊕,¬ (GCL�
⊕,¬) is strongly sound and complete for M−

⊕.

Note 11. From the proof of Theorem 5 it follows that if S �GCL�
⊕,¬ s then there

is a proof in GCL�
⊕,¬ of s from S in which there is at most one application of

[Triv], made (if at all) at the very end of the proof.

Note 12. It is straightforward to use Proposition 7, the first item of Theorem 2,
and Note 2 in order to provide a resolution-based decision procedure for the
question whether S �M−

⊕
s, where S ∪ {s} is a finite set of sequents. (This is

particularly useful in the equivalence-negation context.)

Basing Sequent Systems on Exclusive-Or 125

5 Enhancing the Expressive Power of the System

In [8] it was proved that L⊕ is not functionally complete for {1, 0}.6 In par-
ticular: the classical (inclusive) disjunction is not available in it. In this section
we describe how this problem can be overcome. We start with a method that
allows us to enhance the expressive power of our systems without changing the
underlying language: the use of hypersequents rather than simple sequents.7

Definition 14. A hypersequent is a finite multiset of ordinary sequents. The
elements of this multiset are called its components. We denote by s1 | · · · | sn

the hypersequent whose components are s1, . . . , sn, and use H as a metavariable
for (possibly empty) hypersequents.

Definition 15. Let M be a matrix for a language which includes L⊕.

– A valuation v in M is an M-model of a hypersequent H (v |= H) if v is an
M-model of some component of H.

– A hypersequent is M-valid if every valuation v in M is an M-model of it.
– A hypersequent H follows in M from a set S of hypersequents (S �M H) if

every M-model of S is also an M-model of H.

Proposition 12. Let M be a matrix for L, s1, . . . , sn, s sequents of L, and H
a hypersequent of L. If s1, . . . , sn �M s then {H | s1, . . . , H | sn} �M H | s.

In what follows, we identify a sequent s with the hypersequent {s}. The next
theorem is then the key for developing a hypersequential system for M−

⊕.

Theorem 6. Let H = Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn (n ≥ 1) be a hypersequent
in L⊕. �M−

⊕
H iff there are i1, . . . , ik ∈ {1, . . . , n} (1 ≤ k ≤ n) such that

�GCL�
⊕ Γi1 , . . . , Γik

⇒ Δi1 , . . . ,Δik
.

Proof. From the definitions it follows that Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn is valid iff

{¬τΓ1⇒Δ1 , . . . ,¬τΓn−1⇒Δn−1} �M−
⊕

τΓn⇒Δn

By Proposition 11, this is equivalent to the existence of i1, . . . , il ∈ {1, . . . , n −
1} (l ≥ 0) such that either �GCL�

⊕ ¬τΓi1⇒Δi1
, . . . ,¬τΓil

⇒Δil
⇒ τΓn⇒Δn

, or
�GCL�

⊕ ¬τΓi1⇒Δi1
, . . . ,¬τΓil

⇒Δil
⇒. This, in turn, can be the case iff either

�GCL�
⊕⇒ τΓi1⇒Δi1

, . . . , τΓil
⇒Δil

, τΓn⇒Δn
, or �GCL�

⊕⇒ τΓi1⇒Δi1
, . . . , τΓil

⇒Δil
.

By the invertibility of the logical rules of GCL�
⊕, this happens iff either �GCL�

⊕
Γi1 , . . . , Γil

, Γn ⇒ Δi1 , . . . ,Δil
,Δn or �GCL�

⊕ Γi1 , . . . , Γil
⇒ Δi1 , . . . ,Δil

. (So
either k = l + 1 or k = l.) �

6 An exact characterization of the expressive power of L⊕ is given in [4].
7 Hypersequents were independently introduced by Mints in [11], Pottinger in [12],

and the author in [1] and [3]. Among other applications, they now provide the main
framework for the proof theory of fuzzy logics ([9]).

126 A. Avron

Proposition 12 and Theorem 6 lead to the hypersequential extension HGCL�
⊕

of GCL�
⊕ which is presented in Fig. 3. It has the same axioms as GCL�

⊕, as well
as the hypersequential versions of all the rules of GCL�

⊕. In addition, it has
three new structural rules: the standard rules of external contraction ([EC])
and external weakening ([EW]), and the splitting rule [Sp]. (A hypersequential
counterpart HGCL⊕ of GCL⊕ can be defined similarly, and again the two calculi
can easily be shown to be equivalent using only analytic applications of rules.)

Axioms: Γ ⇒ Γ (provided that #(Γ) is odd.)

Internal Structural Rules:

[P]
H | Γ1, ϕ, ψ, Γ2 ⇒ Δ

H | Γ1, ψ, ϕ, Γ2 ⇒ Δ

H | Γ ⇒ Δ1, ϕ, ψ, Δ2

H | Γ ⇒ Δ1, ψ, ϕ, Δ2

[2-W]
H | Γ1, Γ2 ⇒ Δ

H | Γ1, ψ, ψ, Γ2 ⇒ Δ

H | Γ ⇒ Δ1, Δ2

H | Γ ⇒ Δ1, ψ, ψ, Δ2

[2-D]
H | Γ1, ψ, ψ, Γ2 ⇒ Δ

H | Γ1, Γ2 ⇒ Δ

H | Γ ⇒ Δ1, ψ, ψ, Δ2

H | Γ ⇒ Δ1, Δ2

[Cut]
H | Γ1 ⇒ Δ1, ψ H | Γ2, ψ ⇒ Δ2

H | Γ1, Γ2 ⇒ Δ1, Δ2

[Sp]
H | Γ1, Γ2 ⇒ Δ1, Δ2

H | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2

External Structural Rules:

[EC]
H | s | s

H | s
[EW]

H

H | s

Logical Rules:

[⊕⇒]
H | ϕ, Γ ⇒ Δ, ψ

H | ϕ ⊕ ψ, Γ ⇒ Δ
[⇒⊕]

H | Γ ⇒ Δ, ϕ, ψ

H | Γ ⇒ Δ, ϕ ⊕ ψ

[¬⇒]
H | Γ ⇒ Δ, ϕ

H | Γ, ¬ϕ ⇒ Δ
[⇒¬] H | Γ, ϕ ⇒ Δ

H | Γ ⇒ Δ, ¬ϕ

Fig. 3. HGCL�
⊕

Theorem 7. A hypersequent H in L⊕ is valid in M−
⊕ iff it has a proof in

HGCL�
⊕ in which [Cut], [2-D], and [EC] are not used.

Proof. This easily follows from Theorems 6 and 1. �

In order to generalize Theorem 7 to the consequence relation �M−
⊕

between
hypersequents, we add to HGCL�

⊕ a counterpart of [Triv] (Definition 13).

Basing Sequent Systems on Exclusive-Or 127

Definition 16. The system HGCL�
⊕,¬ is obtained from HGCL�

⊕ by the addi-
tion of the rule: from H |⇒ infer H | Γ ⇒ Δ.

Theorem 8. Let S ∪ {H} be a set of hypersequents in L⊕. S �M−
⊕

H iff there
is a proof in HGCL�

⊕,¬ of H from S in which every application of [Cut] or [2-D]
is on a formula in Γ ∪ Δ for some component Γ ⇒ Δ of some element of S.

Proof (Outline). First, the proof of Theorem 6 can be extended without great
difficulties to the following generalization: If S is a set of sequents, and H =
Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn (n ≥ 1) is a hypersequent (all in L⊕), then S �M−

⊕
H

iff there is a proof from S in GCL�
⊕ of either ⇒, or of Γi1 , . . . , Γik

⇒ Δi1 , . . . ,Δik

for some i1, . . . , ik ∈ {1, . . . , n} (1 ≤ k ≤ n). From Theorem 2 it follows that
we may assume that this proof satisfies the condition given in the formulation
of the theorem. The result for arbitrary set S of hypersequent follows now from
the following easily established observations:

1. S ∪ {H1 | H2} �M−
⊕

H iff S ∪ {H1} �M−
⊕

H and S ∪ {H2} �M−
⊕

H.
2. Given proofs in HGCL�

⊕,¬ of H from S ∪ {H1} and from S ∪ {H2}, we can
combine them into a proof in HGCL�

⊕,¬ of H from S ∪ {H1 | H2}, which
beside applications of [EC] uses exactly the same applications, with the same
active formulas, of the axioms and rules used in the given proofs. �
We end this paper by explaining how the framework of hypersequents enables

us to endow our system with the full power of propositional classical logic.

Definition 17. Let LCl be the language obtained by adding to L⊕ the classical
conjunction ∧. HGCL�

⊕,Cl is the system in LCl which is obtained by adding to
HGCL�

⊕,¬ the following two rules:

H | Γ ⇒ Δ | Γ ⇒ Δ,ϕ H | Γ ⇒ Δ | Γ ⇒ Δ,ψ H | Γ ⇒ Δ,ϕ | Γ ⇒ Δ,ψ

H | Γ ⇒ Δ,ϕ ∧ ψ

H |ϕ, Γ ⇒ Δ |ψ, Γ ⇒ Δ,ψ H |ϕ, Γ ⇒ Δ,ϕ |ψ, Γ ⇒ Δ H |ϕ, Γ ⇒ Δ |ψ, Γ ⇒ Δ

H | ϕ ∧ ψ, Γ ⇒ Δ

Theorem 9. Let H be a hypersequent in LCl. �M−
⊕

H iff there is a proof in
HGCL�

⊕,Cl of H in which there are no applications of [Cut], [2-D], or [EC].

Proof. It is not difficult to check that like HGCL�
⊕,¬, all the logical rules of

HGCL�
⊕,Cl, as well as all their inverses, are strongly sound for the classical

extension of M−
⊕. (Note that each of the ∧-rules has three inverses!) Hence for

every hypersequent H one can construct a finite set S of clauses from which H
can be derived using only logical rules, and H is valid iff all elements of S are
valid. The theorem follows therefore from Theorem 7. �
Note 13. Unlike Theorem 7, Theorem 6 fails in the presence of ∧. (A counterex-
ample is given by P1 ⇒ P1 ∧ P2 | P2 ⇒ P1 ∧ P2.) In contrast, Theorem 8 can
be generalized to HGCL�

⊕,Cl. However, it is not really needed in order to use
HGCL�

⊕,Cl for characterizing classical logic, since the following fact suffices: ψ
classically follows from {ϕ1, . . . , ϕn} iff �HGCL�

⊕,Cl
ϕ1 ⇒| · · · | ϕn ⇒|⇒ ψ.

128 A. Avron

References

1. Avron, A.: A constructive analysis of RM. J. Symb. Log. 52, 939–951 (1987)
2. Avron, A.: Simple consequence relations. Inf. Comput. 92, 105–139 (1991)
3. Avron, A.: The method of hypersequents in proof theory of propositional non-

classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic:
Foundations to Applications, pp. 1–32. Oxford Science Publications (1996)

4. Avron, A.: Implication, Equivalence, and Negation. Logical Investigations 27, 31–
45 (2021)

5. Gentzen, G.: Investigations into logical deduction, 1934. In: Szabo, M.E. (ed.)
German. An English Translation Appears in ‘The Collected Works of Gerhard
Gentzen’. North-Holland (1969)

6. Girard, J.E.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
7. Gottwald, S.: A Treatise on Many-Valued Logics, Studies in Logic and Computa-

tion, vol. 9. Research Studies Press, Baldock (2001)
8. Massey, G.J.: Negation, material equivalence, and conditioned nonconjunction:

completeness and duality. Notre Dame J. Formal Log. 18, 140–144 (1977)
9. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer,

Heidelberg (2009)
10. Mihailescu, E.G.: Recherches sur la negation el l’équivalence dans le calcul des

proposition. Annales scientiftques de l’Université de Jas 23, 369–408 (1937)
11. Mints, G.E.: Some calculi of modal logic. Proc. Steklov Inst. Math. 98, 97–122

(1968)
12. Pottinger, G.: Uniform, cut-free formulations of T, S4 and S5 (abstract). J. Symb.

Log. 48, 900 (1983)
13. Urquhart, A.: Many-valued logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook

of Philosophical Logic, vol. II, 2nd edn., pp. 249–295. Kluwer (2001)

Proof Search on Bilateralist Judgments
over Non-deterministic Semantics

Vitor Greati1(B) , Sérgio Marcelino2 , and João Marcos1

1 Universidade Federal do Rio Grande do Norte, Natal, Brazil
vitor.greati.017@ufrn.edu.br

2 Instituto de Telecomunicações, Lisboa, Portugal

Abstract. The bilateralist approach to logical consequence maintains
that judgments of different qualities should be taken into account in
determining what-follows-from-what. We argue that such an approach
may be actualized by a two-dimensional notion of entailment induced by
semantic structures that also accommodate non-deterministic and par-
tial interpretations, and propose a proof-theoretical apparatus to reason
over bilateralist judgments using symmetrical two-dimensional analytical
Hilbert-style calculi. We also provide a proof-search algorithm for finite
analytic calculi that runs in at most exponential time, in general, and
in polynomial time when only rules having at most one formula in the
succedent are present in the concerned calculus.

Keywords: Bilateralism · Two-dimensional consequence · Proof
search

1 Introduction

The conventional approach to bilateralism in logic treats denial as a primitive
judgment, on a par with assertion. One way of allowing these two kinds of judg-
ments to coexist without necessarily allowing them to interfere with one another
is by considering a two-dimensional notion of consequence, in which the validity
of logical statements obtains in terms of preservation of acceptance along one
dimension and of rejection along the other. From a semantical standpoint, as
we will show, this idea may be actualized by the canonical notion of entailment
induced by a BPN

Σ–matrix, a partial non-deterministic logical matrix in which
the latter judgments, or cognitive attitudes, are represented by separate collec-
tions of truth-values. This will, in particular, allow for distinct Tarskian (one-
dimensional, generalized) consequence relations to coinhabit the same logical
structure while keeping their interactions disciplined.

A common practice for incorporating bilateralism into a proof formalism con-
sists in attaching to the underlying formulas a force indicator or signal, say + for
assertion and – for denial [15,22]. For example, the inference –(A → B) � +A
describes a rule in the bilateral axiomatization of classical logic given in [22],
representing the impossibility of, at once, denying A → B while failing to
assert A. In [9], a concurrent approach is offered that consists in working with
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 129–146, 2021.
https://doi.org/10.1007/978-3-030-86059-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_8&domain=pdf
http://orcid.org/0000-0003-3240-386X
http://orcid.org/0000-0002-6941-7555
http://orcid.org/0000-0003-2601-8164
https://doi.org/10.1007/978-3-030-86059-2_8

130 V. Greati et al.

a two-dimensional notion of consequence, allowing for the cognitive attitudes of
acceptance and rejection to act over two separate logical dimensions and tak-
ing their interaction into consideration in determining the meaning of logical
connectives and of the statements involving them. The aforementioned infer-
ence, for instance, would be expressed by the two-dimensional judgment ∅

∅
| A
A→B ,

which is intended to enforce that an agent is not expected to find reasons for
rejecting A → B while failing to find reasons for accepting A. From a seman-
tical standpoint, the latter notion of consequence may be induced by a two-
dimensional logical matrix [7,9], whose associated two-dimensional canonical
entailment relation very naturally embraces bilateralism and involves two possi-
bly distinct collections of distinguished truth-values: the ‘designated’ values and
the ‘anti-designated’ values, respectively equated with acceptance and rejection.

Non-deterministic logical matrices have been extensively investigated in
recent years, and proved useful in the construction of effective semantics for
many families of logics in a systematic and modular way [5,12,12,19]. As in
[6], in the present paper the interpretations of the connectives in a matrix out-
puts (possibly empty) sets of values, instead of a single value. In our study,
we explore an essential feature of (partial) non-deterministic semantics, namely
effectiveness, to provide analytic axiomatizations for a very inclusive class of
finite monadic two-dimensional matrices. The latter consist in matrices whose
underlying linguistic resources are sufficiently expressive so as to uniquely char-
acterize each of the underlying truth-values, in a similar vein as in [10,13]. In
contrast to the multi-dimensional Gentzen-style calculi used in the literature to
axiomatize many-valued logics in the context of bilateralism (and multilateral-
ism) [16], we introduce much simpler two-dimensional symmetrical Hilbert-style
calculi to the same effect and show how they give rise to derivations that do not
conform to the received view that axiomatic proofs consist simply in ‘sequences
of formulas’. In our approach, indeed, extending to the bilateralist case the one-
dimensional tree-derivation mechanism considered in [10,20,23], the inference
rules, instead of manipulating metalinguistic objects, deal only with pairs of
accepted/rejected formulas, and derivations are trees whose nodes come labelled
with such pairs and result from expansions determined by the rules. As we
will show, the analyticity of the axiomatizations that we extract from our two-
dimensional (partial) non-deterministic matrices, using symmetrical rules that
internalize ‘case exhaustion’, allows for bounded proof search, and the design of
a simple recursive decision algorithm that runs in exponential time.

The paper is organized as follows: Sect. 2 introduces the basic concepts and
terminology involved in two-dimensional notions of consequence and in symmet-
rical analytic Hilbert-style calculi. Section 3 presents the general axiomatization
procedure for finite monadic matrices, illustrating it and highlighting its mod-
ularity via the correspondence between refining a matrix and adding rules to
a sound symmetrical two-dimensional calculus. Then, Sect. 4 describes our pro-
posed proof-search algorithm, proves its correctness and investigates its worst-
case exponential asymptotic complexity. In the final remarks, we reflect upon the
obtained results and indicate some directions for future developments. Detailed
proofs of the main results may be found at https://tinyurl.com/21-GMM-Bilat.

https://tinyurl.com/21-GMM-Bilat

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 131

2 Preliminaries

2.1 Languages

A propositional signature Σ is a family {Σk}k∈ω, where each Σk is a collection
of k-ary connectives. Given a denumerable set P := {pi | i ∈ ω} of propositional
variables, the propositional language over Σ generated by P, LΣ(P), is the abso-
lutely free algebra over Σ freely generated by P. The elements of LΣ(P), the
carrier set of the latter algebra, are called formulas and will be indicated below
by capital Roman letters. As usual, whenever there is no risk of confusion, we will
omit braces and unions in collecting sets and formulas, and leave a blank space
in place of ∅. For convenience, given Φ ⊆ LΣ(P), the set of formulas not in Φ will
be denoted by Φc. On any given language, we may define the functions subf and
props, which output, respectively, the subformulas and the propositional vari-
ables occurring in a given formula, and define as well the function size, such that
size(p) := 1 for each p ∈ P, and size(c©(A1, . . . , Ak)) := 1 +

∑k
i=1 size(Ai), for

each k ∈ ω and c© ∈ Σk. Moreover, as usual, endomorphisms on LΣ(P) are called
substitutions, and, given a formula B ∈ LΣ(P) with props(B) ⊆ {pi1 , . . . , pik}, for
some k ∈ ω, we write B(A1, . . . , Ak) for the image of B under a substitution σ
where σ(pij) = Aj, for all 1 ≤ j ≤ k, and where σ(p) = p otherwise; for a set Φ
of one-variable formulas, we let Φ(A) := {B(A) | B ∈ Φ}.

2.2 Two-Dimensional Consequence Relations

Hereupon, we shall call B-statement any 2×2-place tuple of sets of
formulas in a given language. By definition, a collection of B-statements will be
said to constitute a B-consequence relation ·

· | ·· provided that any of the follow-
ing conditions constitutes a sufficient guarantee for the consequence judgment
Φ N
ΦY

|Φ Y

ΦN
to be established:

(O) ΦY ∩ Φ Y	= ∅ or ΦN ∩ Φ N	= ∅

(D)
Ψ N

ΨY
|Ψ

Y

ΨN
and Ψα ⊆ Φα for every α ∈ {Y,N,

Y

, N}

(C)
ΩcS
ΩS

|Ω
c
S

Ω S
for all ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc N

(S)
Ψ N

ΨY
|Ψ

Y

ΨN
and Φα = σ(Ψα) for every α ∈ {Y,N,

Y

, N}, for a substitution σ

In the above conditions, ΦY,ΦN,Φ Y,Φ Ndenote arbitrary sets of formulas, that
may intuitively be read as representing, respectively, collections of accepted,
rejected, non-accepted and non-rejected formulas. It is not hard to check that
such definition, employing the properties of (O)verlap, (D)ilution, (C)ut and
(S)ubstitution-invariance, is equivalent to the one found in [9], and it general-
izes the well-known abstract Tarskian one-dimensional account of logical con-
sequence. In addition, a B-consequence relation will be called finitary when a
consequence judgment Φ N

ΦY
|Φ Y

ΦN
always implies that:

132 V. Greati et al.

(F)
ΦfN
ΦfY

|Φ
fY

ΦfN
, for some finite Φfα ⊆ Φα, for every α ∈ {Y,N,

Y

, N}

We will denote by ·
·×| ·

· the complement of ·
· | ·· , sometimes called the compatibility

relation associated to ·
· | ·· (cf. [8]). Furthermore, we should note that later on we

will sometimes write Ỹ for

Y

, write ˜Yfor Y, write Ñ for N, and write ˜Nfor N.
A B-consequence relation ·

· | ·· may be said to induce a 2-place relation · �t ·
over Pow(LΣ(P)) by setting ΦY �t Φ Yiff ∅

ΦY
|Φ Y

∅
. This is easily seen to constitute

a generalized (one-dimensional) consequence relation. Another such relation is
induced by setting ΦN �f Φ Niff

Φ N
∅

| ∅

ΦN
. Connected to that, we will say that · �t ·

inhabits the t-aspect of ·
· | ·· , and that · �f · inhabits the f-aspect of ·

· | ·· . These
are but two of many possible aspects of interest of a given B-consequence rela-
tion; in principle, very different Tarskian —and also non-Tarskian!— logics may
coinhabit the same given two-dimensional consequence relation (see [9]).

Finally, a B-consequence ·
· | ·· is said to be decidable when there is some deci-

sion procedure that takes a B-statement with finite component sets as

input, outputs true when Φ N
ΦY

|Φ Y

ΦN
is the case, and outputs false when Φ N

ΦY
×| Φ Y

ΦN
.

2.3 Two-Dimensional Non-deterministic Matrices

A partial non-deterministic B–matrix M over a signature Σ, or simply BPN
Σ–

matrix, is a structure 〈VM ,YM ,NM , ·M 〉 where the set VM is said to contain
truth-values, the sets YM ,NM ⊆ VM are said to contain, respectively, the des-
ignated and the anti-designated truth-values, and, for each k ∈ ω and c© ∈ Σk,
the mapping c©M : (VM)k → Pow(VM) is the interpretation of c© in M. For
convenience, we define

YM := VM\YM and NM := VM\NM . A BPN
Σ–matrix is

said to be total when ∅ is not in the range of the interpretation of any con-
nective of Σ, deterministic when the range of any interpretation contains only
singletons, also called deterministic images, and fully indeterministic if it allows
for the maximum degree of non-determinism, that is, if c©M (x1, . . . ,xk) = VM

for each k ∈ ω and c© ∈ Σk, and all x1, . . . ,xk ∈ VM .
In the following definitions, M will represent an arbitrary BPN

Σ–matrix.
Given a set of truth-values X ⊆ VM , the sub–BPN

Σ–matrix MX induced by
X is the BPN

Σ–matrix 〈X,YM ∩ X,NM ∩ X, ·MX〉 such that c©MX(x1, . . . ,xk) :=
c©M (x1, . . . ,xk) ∩ X, for all x1, . . . ,xk ∈ X, k ∈ ω and c© ∈ Σk. The set of
all subsets of the values of each non-empty total sub–BPN

Σ–matrix of M will be
denoted by TM , that is,

TM :=
⋃

∅�=X⊆VM

MX total

Pow(X).

Check Example 3 for an illustration of the latter.
We shall call M-valuation any mapping v : LΣ(P) → VM such that

v(c©(A1, . . . , Ak)) ∈ c©M (v(A1), . . . , v(Ak)) for all k ∈ ω, c© ∈ Σk and

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 133

A1, . . . , Ak ∈ LΣ(P). As proved in [6], given a set Φ ⊆ LΣ(P) closed under
subformulas, any mapping f : Φ → VM extends to an M-valuation provided
that f(c©(A1, . . . , Ak)) ∈ c©M (f(A1), . . . , f(Ak)), for every c©(A1, . . . , Ak) ∈ Φ,
and f(Φ) ∈ TM . Notice that if we disregard the latter condition we obtain the
property of effectiveness for total non-deterministic matrices ([2]); as this very
condition holds for all such matrices, by making it explicit in the previous defi-
nition we obtain a generalization of effectiveness that also applies to partial non-
deterministic matrices. Any formula A ∈ LΣ(P) with props(A) = {pi1 , . . . , pik}
may be interpreted on M as a k-ary mapping AM such that AM (x1, . . . ,xk) :=
{v(A) | v is an M-valuation and v(pi1) = x1, . . . , v(pik) = xk}.

The B-entailment relation induced by M is a 2×2-place relation ·
· | ·· M over

LΣ(P) such that:

(B-ent)
Φ N

ΦY
|Φ

Y

ΦN
M iff

there is no M-valuation v such that
v(Φα) ⊆ αM for every α ∈ {Y,N,

Y

, N}
for every ΦY,ΦN,Φ Y,Φ N⊆ LΣ(P). Whenever Φ N

ΦY
|Φ Y

ΦN
M, we say that the B-

statement holds in M. It is straightforward to check that (see [7]):

Proposition 1. The B-entailment relation induced by a BPN
Σ–matrix is a B-con-

sequence relation.

Example 1. Let V4 := {f ,⊥,, t}, Y4 := {, t}, N4 := {, f}, and consider a
signature ΣFDE containing but two binary connectives, ∧ and ∨, and one unary
connective, ¬. Next, define the BPN

ΣFDE–matrix I := 〈V4,Y4,N4, ·I〉 that interprets
the latter connectives according to the following (non-deterministic) truth-tables
(here and below, braces will be omitted from the images of the interpretations):

∧I f ⊥ � t

f f f f f
⊥ f f , ⊥ f f , ⊥
� f f � �
t f f , ⊥ � t, �

∨I f ⊥ � t

f f , � t, ⊥ � t
⊥ t, ⊥ t, ⊥ t t
� � t � t
t t t t t

¬I

f t
⊥ ⊥
� �
t f

The t-aspect of ·
· | ·· I is inhabited by the logic introduced in [3], which incorporates

some principles on how a processor would be expected to deal with information
about an arbitrary set of formulas.

Given two BPN
Σ–matrices M1 and M2, we say that M2 is a refinement of M1

when VM2 ⊆ VM1 and c©M2(x1, . . . ,xk) ⊆ c©M1(x1, . . . ,xk) for each k ∈ ω and
c© ∈ Σk, and for every x1, . . . ,xk ∈ VM2 . Also, we say that ·M2 agrees with ·M1

when both provide the same interpretations for the connectives of Σ. Evidently,
every BPN

Σ–matrix is a refinement of the corresponding fully indeterministic BPN
Σ–

matrix. In the examples that follow, we illustrate a couple of refinements of the

134 V. Greati et al.

BPN
Σ–matrix I presented in Example 1, giving rise to (two-dimensional versions

of) other well-known logics.

Example 2. Let E := 〈V4,Y4,N4, ·E〉 be the BPN
ΣFDE–matrix consisting of a refine-

ment of I with interpretations given by the following tables:

∧E f ⊥ � t

f f f f f
⊥ f ⊥ f ⊥
� f f � �
t f ⊥ � t

∨E f ⊥ � t

f f ⊥ � t
⊥ ⊥ ⊥ t t
� � t � t
t t t t t

¬E

f t
⊥ ⊥
� �
t f

One may readily see that these interpretations correspond to the ones of First
Degree Entailment and that this BPN

ΣFDE–matrix corresponds to the logic EB

presented in [7].

Example 3. We may still refine E (and thus I) a little more. Let K :=
〈V4,Y4,N4, ·K〉 be the BPN

ΣFDE–matrix such that ·K agrees with ·E except that
∧K(,⊥) = ∨K(,⊥) = ∧K(⊥,) = ∨K(⊥,) = ∅. Note that TK = {X ⊆
V4 | {,⊥} 	⊆ X}. As shown in [10], Kleene’s strong three-valued logic inhabits
the t-aspect of ·

· | ·· K.

Example 4. Let V5 := {f, F, I, T, t}, Y5 := {T, I, t}, N5 := {T, I, f}, and consider
a signature ΣmCi containing but three binary connectives, ∧, ∨ and ⊃, and two
unary connectives, ¬ and ◦. Inspired by the 5-valued non-deterministic logical
matrix presented in [1] for the logic of formal inconsistency called mCi [21], we
define the BPN

ΣmCi–matrix P := 〈V5,Y5,N5, ·P〉 with the following interpretations:

∧P(x1,x2) :=

{
{f} if either x1 	∈ Y5 or x2 	∈ Y5

{t, I} otherwise

∨P(x1,x2) :=

{
{t, I} if either x1 ∈ Y5 or x2 ∈ Y5

{f} if x1,x2 	∈ Y5

⊃P (x1,x2) :=

{
{t, I} if either x1 	∈ Y5 or x2 ∈ Y5

{f} if x1 ∈ Y5 and x2 	∈ Y5

f F I T t

¬P t,I T t,I F f

f F I T t

◦P T T F T T

We note that the logic mCi inhabits the t-aspect of ·
· | ·· P. It is worth pointing

out that, up to now, no finite Hilbert-style calculus was known to axiomatize
this logic; however, a finite two-dimensional symmetrical Hilbert-style calculus
for mCi results smoothly from the procedure described in the next section.

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 135

Given X,Y ⊆ VM and α ∈ {Y,N}, we say that X and Y are α-separated,
denoted by X#αY, if X⊆ αM and Y⊆ VM\αM , or vice-versa. Given two truth-
values x, y ∈ VM , a single-variable formula S is a monadic separator for x and y

whenever SM (x)#αSM (y), for some α ∈ {Y,N}. The BPN
Σ–matrix M is said to

be monadic when for each pair of distinct truth-values of M there is a monadic
separator for these values.1 We say that a set of single-variable formulas Dx iso-
lates x whenever, for every y 	= x, there exists a monadic separator S ∈ Dx for x
and y. A discriminator for M, then, is a family D := {(

Dx
Y,DxY,Dx

N,Dx
N

)}
x∈VM

such that Dx :=
⋃
αD

x
α isolates x and SM (x) ⊆ αM whenever S ∈ Dx

α. We denote
the set

⋃
x∈VM Dx by D�� and say that D is based on D��.

Example 5. The tables below describe, respectively, a discriminator based on
{p} for any BPN

Σ–matrix of the form 〈V4,Y4,N4, ·〉 (see Examples 1, 2 and 3) and
a discriminator for P based on {p,¬p} (of Example 4):

x Dx
Y DxY Dx

N Dx
N

f ∅ p p ∅

⊥ ∅ p ∅ p
� p ∅ p ∅

t p ∅ ∅ p

x Dx
Y DxY Dx

N Dx
N

f ∅ p p ∅

F ∅ p ∅ p
I p, ¬p ∅ p ∅

T p ¬p p ∅

t p ∅ ∅ p

The following result —which will be instrumental, in particular, within the
soundness proof of the axiomatizations that we will develop later on— shows
that a discriminator is capable of uniquely characterizing each truth-value of
the corresponding BPN

Σ–matrix:

Lemma 1. If M is a monadic BPN
Σ–matrix and D is a discriminator for M,

then, for all A ∈ LΣ(P), x ∈ VM and M-valuation v,

v(A) = x iff v(Dx
α(A)) ⊆ αM and v(Dx

α̃(A)) ⊆ α̃M for every α ∈ {Y,N}.

Proof. Analogous to the proof of Lemma 1 in [10].

2.4 Calculi for Two-Dimensional Statements

We may consider the B-statements themselves as the formal objects whose
provability by a given (Hilbert-style) deductive proof system we will be inter-
ested upon. The B-statements with finite component sets will be hereupon
called B-sequents. A (Set2–Set2) rule schema r :=

ΦY ; ΦN

Φ Y; Φ N
is a B-statement

that, when having its component sets subjected to a substitution σ,
produce a (rule) instance (with schema r), denoted simply by rσ; for each rule

1 Whether monadicity of a BPN
Σ–matrix is decidable is still an open problem.

136 V. Greati et al.

instance rσ, the pair (σ(ΦY),σ(ΦN)) is said to be the antecedent and the pair
(σ(Φ Y),σ(Φ N)) is said to be the succedent of rσ. For later reference, we also set
branch(rσ) := |σ(Φ Y) ∪ σ(Φ N)| and size(rσ) :=

∑
α size(σ(Φα)), which extends

to sets of rule instances in the natural way. Notice that our notation for rule
schemas differs from that of B-statements with respect to the positioning of the
sets of formulas. The purpose is to facilitate the development of proofs in tree
form growing downwards from the premises to the conclusion as described in the
sequel. B-statements, in turn, follow the notation for consequence judgements,
which is motivated by the bilattice representation of the four logical values under-
lying a B-consequence relation [9], in addition to the desire of better expressing
the possible interactions between the two dimensions.

A (Set2–Set2) calculus C is a collection of rule schemas. We shall sometimes
refer to the set of all rule instances of a schema r of C as an inference rule (with

schema r) of C. An inference rule with schema r :=
ΦY ; ΦN

Φ Y; Φ N
is called finitary

whenever Φα is finite for every α ∈ {Y,N,

Y

, N}. A calculus is finitary when each
of its inference rules is finitary.

In order to explain what it means for a B-statement to be
provable—in other words, for its succedent (Φ Y,Φ N) to follow from its antecedent
(ΦY,ΦN)—using the inference rules of a calculus, we will first introduce the
notion of a derivation structured in tree form. A directed rooted tree t is a poset
〈nds(t),�t〉 such that, for every node n ∈ nds(t), the set actst(n) := {n′ | n′ ≺t n}
of the ancestors of n is well-ordered under ≺t, and there is a single minimal
element rt(t), called the root of t. We denote by dctst(n) := {n′ | n ≺t n′} the
set of descendants of t, by chnt(n) the minimal elements of dctst(n) (the children
of n in t), and by lvs(t) the set of maximal elements of �t, the leaves of t. A
rooted tree t is said to be bounded when every branch of t has a leaf. Moreover,
we will call labelled a rooted tree t that comes equipped with a mapping lt :
nds(t) → Pow(LΣ(P))2 ∪ {�}, each node n of t being labelled with lt(n). A node
labelled with � is said to be discontinued. In what follows, labelled bounded
rooted trees will be referred to simply as trees. A tree with a single node labelled
with l ∈ Pow(LΣ(P))2 ∪ {�} will be denoted by sntree(l).

Given a node n labelled with (Φ,Ψ) and given a formula A, we shall use
nAS to refer to a node labelled with (Φ ∪ {A},Ψ) and use nASto refer to a node
labelled with (Φ,Ψ ∪ {A}). We say that a tree t is a C-derivation provided that
for each non-leaf node n of t labelled with (ΨY,ΨN) there is an instance of an

inference rule of C, say rσ =
σ(ΦY) ; σ(ΦN)

σ(Φ Y) ; σ(Φ N)
, that expands n or, equivalently, that

is applicable to the label of n, meaning that σ(Φα) ⊆ Ψα, for every α ∈ {Y,N},
and

– if Φ Y∪ Φ N= ∅, then chnt(n) = {n�} and lt(n�) = �
– otherwise, chnt(n) = {nAS | A ∈ σ(Φ Y)} ∪ {nAS| A ∈ σ(Φ N)}
We should observe that, with our present notation, traditional Hilbert-style
derivations (when only inference rules with a single formula in the succedent
are applied) turn out to be linear trees; for all practical purposes, at any given

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 137

node we may count with all the information from previous nodes in the branch,
and, accordingly, a rule application with a single succedent just adds a new bit
of information to that very branch.

Given a B-statement and a calculus C, a C-derivation t with
lt(rt(t)) = (ΨY,ΨN) is a C-proof of s provided that Ψα ⊆ Φα for every α ∈ {Y,N}
and, for all n ∈ lvs(t) with lt(n) = (Ψ Y,Ψ N), we have Ψα ∩ Φα 	= ∅ for some
α ∈ { Y

, N}. We also say that a node is (Φ Y,Φ N)-closed when the latter condition
holds for such node and we say that t is (Φ Y,Φ N)-closed when all of its leaf nodes
are (Φ Y,Φ N)-closed. When a C-proof exists for the B-statement s, we say that s
is C-provable. The reader is referred to Example 10 in order to see some proofs
of the form we have just described. A calculus C induces a 2×2-place relation
·
· | ·· C over Pow(LΣ(P)) such that Φ N

ΦY
|Φ Y

ΦN
C whenever is C-provable. As

we point out in Proposition 2 below, this provides another realization (compare
with Proposition 1) of a B-consequence relation.

Proposition 2. Given a calculus C, the 2×2-place relation ·
· | ·· C is the smallest

B-consequence containing the rules of C.

Given a collection R of rule instances, we say that a B-statement s is R-
provable whenever there is a proof of s using only rule instances in R. We may

define a 2×2-place relation ·
· | ·· R by setting Φ N

ΦY
|Φ Y

ΦN
R to hold iff is R-

provable. Although not necessarily substitution-invariant, one may readily check
that this relation respects properties (O), (D) and (C).

Given a BPN
Σ–matrix M, we say that a calculus C is sound with respect to M

whenever ·
· | ·· C ⊆ ·

· | ·· M and say that it is complete with respect to M when
the converse inclusion holds. Being sound and complete means that C axioma-
tizes M.

Example 6. Any fully indeterministic BPN
Σ–matrix is axiomatized by the empty

set of rules.

Example 7. We present below a calculus that axiomatizes the BPN
Σ–matrix I intro-

duced in Example 1, resulting from the simplification of the calculus produced
via the recipe described in Definition 1, given further ahead.

p ;

p∨q ; ∨4
1

q ;

p∨q ; ∨4
2

; p,q

; p∨q ∨4
3

; p∨q
; q ∨4

4
; p∨q
; p ∨4

5

p∧q ;

p ; ∧4
1

p∧q ;

q ; ∧4
2

p,q ;

p∧q ; ∧4
3

; q

; p∧q ∧4
4

; p

; p∧q∧4
5

; ¬p
p ; ¬4

1
; p

¬p ; ¬4
2

¬p ;

; p¬4
3

p ;

; ¬p¬4
4

The next example illustrates how adding rules to an axiomatization of a
BPN
Σ–matrix M imposes refinements on M in order to guarantee soundness of

these very rules. Such mechanism is essential to the axiomatization procedure
presented in the next section.

138 V. Greati et al.

Example 8. We obtain an axiomatization for E by adding rules p∨q ;

p,q ; ∨4
6 and

; p∧q
; p,q ∧4

6 to the calculus of Example 7. If, in addition, we include the rule
q ; q

p ; pT4

we axiomatize K (see Example 3).
Let us explain the intuition behind this mechanism considering the case of

rule ∧4
6; the other rules will follow the same principle. What rule ∧4

6 enforces is
that any refinement of I with respect to which this rule is sound must disallow
valuations that assign values in {⊥, t} to formulas A and B while assigning
a value in {, f} to A ∧ B, for otherwise such valuation would constitute a
countermodel for that very rule. This is reflected in ∧E (Example 2) by the
absence of the values from the set {, f} in the entries corresponding to the
truth-value assignments in which both inputs belong to {⊥, t}.

Example 9. By the same mechanism used in the previous example, in adding the
rules

;

p ; p⊥E and
p ; p

; E to the axiomatization of E, we force empty outputs on
any truth-table entry whose input involves either ⊥ or . It follows that Classical
Logic inhabits the t-aspect of the resulting BPN

Σ–matrix, hereby called C.

Example 10. In Fig. 1, we offer proofs of , and

, respectively, in the calculi for E, K and C presented in the previ-
ous examples.

Fig. 1. Examples of derivations in tree form. For the sake of a cleaner presentation, we
omit the formulas that are inherited when expanding a node.

We conclude this section by introducing the notion of (generalized) analytic-
ity of a calculus, an important feature for proof-search procedures that is built
in the axiomatizations delivered by the recipe of the next section. Given a B-

statement , let S(s) :=
⋃
α∈{Y,N, Y

, N} subf(Φα) be the collection of

subformulas of s, and SΨ(s) := S(s)∪{σ(A) | A ∈ Ψ,σ : P → S(s)} be the gener-

alized subformulas of s (with respect to Ψ). Define the 2×2-place relation ·
· | ·· S

Ψ

C

over Pow(LΣ(P)) by setting Φ N
ΦY

|Φ Y

ΦN

SΨ

C
iff there is a C-proof t of

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 139

such that lt(nds(t)) ⊆ Pow(SΨ(s))2 ∪ {�}. Such a proof is said to be Ψ-analytic.

We say that C is Ψ-analytic in case Φ N
ΦY

|Φ Y

ΦN
C implies Φ N

ΦY
|Φ Y

ΦN

SΨ

C
. We will denote

by C[s] the set of all rule instances of C resulting from substitutions that only
use formulas in SΨ(s).

3 Axiomatizing Monadic BPN
Σ-matrices

We now describe four collections of rule schemas by which any sufficiently expres-
sive BPN

Σ–matrix M is constrained. Together, these schemas constitute a presenta-
tion of a calculus that will be denoted by CD, where D is a discriminator for M.
The first collection, CD∃ , is intended to exclude all combinations of separators
that do not correspond to truth-values. The second, CDD , sets the combinations
of separators that characterize acceptance apart from those that characterize
non-acceptance, and sets the combinations of separators that characterize rejec-
tion apart from those that characterize non-rejection. The third one, CDΣ , fully
describes, through appropriate refinements, the interpretation of the connectives
of Σ in M. At last, the rules in CDT guarantee that values belong to total sub–
BPN
Σ–matrices of M.

In what follows, given X⊆ VM , we shall use
(
ḊX

Y , ḊX
N

)
to denote a pair of

sets in which ḊX
α , with α ∈ {Y,N}, is obtained by choosing an element of Dx

α for
each x ∈ X. Notice that, when X = ∅, the only possibility is the pair (∅, ∅);
moreover, when Dx

Y ∪ Dx
N = ∅ for some x ∈ X, no such pair exists. The pair(

ḊXY, ḊX
N

)
shall be used analogously.

Definition 1. Let M be a BPN
Σ–matrix, and let D be a discriminator for M. The

calculus CD is presented by way of the following rule schemas:

(CD∃) for each X1 ⊆ VM and each possible choices of
(
ḊX0

Y , ḊX0
N

)
and of

(
ḊX1Y, ḊX1

N

)
, with X0 := VM\X1,

Ḋ
X1Y ; Ḋ

X1
N

Ḋ
X0
Y ; Ḋ

X0
N

(CDD) for an arbitrary propositional variable p ∈ P, and for each x ∈ VM ,

Dx
Y(p), p

Y(x) ; Dx
N(p)

DxY(p), pY(x) ; Dx
N(p)

Dx
Y(p) ; Dx

N(p), p N(x)

DxY(p) ; Dx
N(p), pN(x)

where, for α ∈ {Y,N,

Y

, N}, pα : VM → Pow({p}) is such that pα(x) =
{p} iff x ∈ αM .

140 V. Greati et al.

(CDΣ) for each k-ary connective c©, each sequence X := (x1, . . . ,xk) of truth-
values of M, each y 	∈ c©MX, and for a sequence (p1, . . . , pk) of distinct
propositional variables,

Θ c©,X,y
Y ; Θ c©,X,y

N

Θ c©,X,yY ; Θ c©,X,y
N

where each Θ c©,X,y
α :=

⋃

1≤i≤k
D

xi
α (pi) ∪ D

y
α(c©(p1, . . . , pk)).

(CDT) for each X 	∈ TM and an arbitrary family {px}x∈X of distinct propositional
variables,

⋃
x∈XDx

Y(px) ;
⋃

x∈XDx
N(px)

⋃
x∈XDxY(px) ;

⋃
x∈XDx

N(px)
.

Theorem 1. If D is a discriminator for a BPN
Σ–matrix M, then the calculus CD

is sound with respect to M.

Proof. We can show by contradiction that no M-valuation can be a counter-
model for the schemas in each of the groups of schemas of CD. We detail the

case of (CD∃). Consider a schema s :=
Ḋ
X1Y ; Ḋ

X1
N

Ḋ
X0
Y ; Ḋ

X0
N

, for some X1 ⊆ VM and some

choice of
(
ḊX0

Y , ḊX0
N

)
and

(
ḊX1Y, ḊX1

N

)
. Suppose that s does not hold in M, with

the valuation v witnessing this fact. We will prove that, given a propositional
variable p, v(p) 	= x, for all x ∈ VM , an absurd. For that purpose, let x ∈ VM .
In case x ∈ X1, there must be a separator S in Dx

α̃, for some α ∈ {Y,N}, such
that v(S(p)) ∈ αM . By Lemma 1, this implies that v(p) 	= x. The reasoning is
similar in case x ∈ X0.

In what follows, denote by SD the mapping SD
��

, which indicates what for-
mulas may appear in a D��-analytic proof. In order to prove completeness and
D��-analyticity of CD with respect to M, we shall make use of Lemma 2 presented
below, which contains four items, each one referring to a group of schemas of CD.
Intuitively, given a B-statement s and assuming that there is no D��-analytic
proof of it in CD, items 1 and 2 give us the resources to define a mapping
f : subf(s) → VM that, by items 3 and 4, can be extended to a countermodel for
s in M.

Lemma 2. For all B-statements s of the form :

1. if Ω
c
S

ΩS
×| Ω

c
S
Ω S

SD

CD∃
, then for all A ∈ subf(s) there is an x ∈ VM such that Dx

α(A) ⊆
Ωβ and Dx

α̃(A) ⊆ Ωcβ, for (α, β) ∈ {(Y,S) , (N, S)};
2. if Ω

c
S

ΩS
×| Ω

c
S
Ω S

SD

CDD
, then for every A ∈ subf(s) and x ∈ VM such that Dx

α(A) ⊆ Ωβ
and Dx

α̃(A) ⊆ Ωcβ, we have x ∈ αM iff A ∈ Ωβ, for (α, β) ∈ {(Y,S) , (N, S)};

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 141

3. if Ω
c
S

ΩS
×| Ω

c
S
Ω S

SD

CDΣ
, then for every c© ∈ Σk, A := c©(A1, . . . , Ak) ∈ subf(s) and

x1, . . . ,xk ∈ VM with D
xi
α (Ai) ⊆ Ωβ and D

xi
α̃ (Ai) ⊆ Ωcβ, for each 1 ≤ i ≤ k

and (α, β) ∈ {(Y,S) , (N, S)}, we have that Dy
α(A) ⊆ Ωβ and D

y
α̃(A) ⊆ Ωcβ for

each (α, β) ∈ {(Y,S) , (N, S)} implies y ∈ c©M (x1, . . . ,xk);

4. if Ω
c
S

ΩS
×| Ω

c
S
Ω S

SD

CDT
, then {x ∈ VM | Dx

α(A) ⊆ Ωβ and Dx
α̃(A) ⊆ Ωcβ,

for each (α, β)∈{(Y,S) , (N, S)} and A∈subf(s)}∈TM .

Proof. The strategy to prove each item is the same: by contraposition, use the
data from the assumptions to compose an instance of a rule schema of the cor-
responding group of rule schemas. We detail below the proof for the third item.
Suppose that there is a connective c© ∈ Σk, a formula A := c©(A1, . . . , Ak) ∈
subf(s), a sequence (x1, . . . ,xk) of truth-values with D

xi
α (Ai) ⊆ Ωβ and D

xi
α̃ (Ai) ⊆

Ωcβ for each 1 ≤ i ≤ k and (α, β) ∈ {(Y,S) , (N, S)}, and some y 	∈ c©M (x1, . . . ,xk)
such that D

y
α(A) ⊆ Ωβ and D

y
α̃(A) ⊆ Ωcβ for each (α, β) ∈ {(Y,S) , (N, S)}. Then

⋃
1≤i≤kD

xi
α (Ai)∪Dy

α(A) ⊆ Ωβ∩SD(s) and
⋃

1≤i≤kD
xi
α̃ (Ai)∪Dy

α̃(A) ⊆ Ωcβ∩SD(s)

for each (α, β) ∈ {(Y,S) , (N, S)}, and thus we have Ω
c
S

ΩS
|Ω

c
S
Ω S

SD

CDΣ
.

Theorem 2. If D is a discriminator for a BPN
Σ–matrix M, then the calculus CD

is complete with respect to M. Furthermore, this calculus is D��–analytic.

Proof. Let be a B-statement and suppose that (a) Φ N
ΦY

×| Φ Y

ΦN

SD

CD
.

Our goal is to build an M-valuation witnessing Φ N
ΦY

×| Φ Y

ΦN
M. From (a), by (C),

we have that (b) there are ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc Nsuch that
Ωc

S
ΩS

×| Ω
c
S
Ω S

SD

CD
. Consider then a mapping f : subf(s) → VM with (c) f(A) ∈ αM

iff A ∈ Ωβ, for (α, β) ∈ {(Y,S) , (N, S)}, whose existence is guaranteed by items
(1) and (2) of Lemma 2. Notice that items (3) and (4) of this same lemma
imply, respectively, that f(c©(A1, . . . , Ak)) ∈ c©M (f(A1), . . . , f(Ak)) for every
c©(A1, . . . , Ak) ∈ SD(s), and f(subf(s)) ∈ TM . Hence, f may be extended to
an M-valuation v and, from (b) and (c), we have v(Φα) ⊆ αM for each α ∈
{Y,N,

Y

, N}, so Φ N
ΦY

×| Φ Y

ΦN
M.

The calculi presented so far (Examples 7 and 8) were produced by means of
the axiomatization procedure just described, followed by some simplifications
consisting of removing instances of conditions (O) and (D), and using condition

(C) on pairs of schemas having the forms
ΦY,A ; ΦN

Φ Y ; Φ N
and

ΦY ; ΦN

Φ Y,A ; Φ N
, or the

forms
ΦY ; ΦN

Φ Y; Φ N,A
and

ΦY ; ΦN,A

Φ Y; Φ N
, yielding in either case the schema

ΦY ; ΦN

Φ Y; Φ N
.

By Theorem 2 and the fact that these simplifications preserve analyticity, it
follows that such calculi are analytic. It is also worth mentioning that this same
procedure may be applied to the matrix P in view of its monadicity (see a

142 V. Greati et al.

discriminator for it in Example 5), which means that we also obtain a finite
Hilbert-style symmetrical axiomatization for mCi.

4 Proof Search in Two Dimensions

Throughout this section, let be an arbitrary B-sequent, C be
a finite and finitary calculus, and Ψ be a finite set of formulas. Notice that,
whenever C is Ψ-analytic, it is enough to consider the rule instances in C[s] in
order to provide a proof of s in C. Searching for such a proof is clearly a particular
case of finding a proof of s using only candidates in a finite set R of finitary rule
instances. A proof-search algorithm for this more general setting is presented
in Algorithm 1 by means of a function called Expand. The algorithm searches
for a proof by expanding nodes that are not closed or discontinued using only
instances in R that were not used yet in the branch of the node under expansion.
As we shall see in the sequel, the order in which applicable instances are selected
does not affect the result, although for sure smarter choice heuristics may well
improve the performance of the algorithm in particular cases.

Algorithm 1: Proof search over a finite set of finitary rule instances
1 function Expand(F := (ΨY,ΨN), C := (Φ N,Φ Y), R):

Input: antecedents in F, succedents in C and a finite set R of finitary rule
instances

2 t ← sntree(F)
3 if Ψα ∩ Φα̃ �= ∅ for some α ∈ {Y,N} then return t

4 foreach rule instance rσ :=
ΘY ; ΘN

Θ Y; Θ N
∈ R do

5 if Θα̃ ∩Ψα = ∅ and Θα ⊆ Ψα for each α ∈ {Y,N} then
6 if Θ Y∪Θ N= ∅ then return t with a single child sntree(�)
7 foreach α ∈ {Y,N} and A ∈ Θα̃ do
8 t′ ←Expand((ΨY ∪ PY(A),ΨN ∪ PN(A)), C, R\{rσ}), where

Pα(A) is ∅ if A �∈ Θα and {A} otherwise
9 add rt(t′) as a child of rt(t) in t

10 if t′ is not C-closed then return t

11 if t is C-closed then return t

12 return t

The following lemma (verifiable by induction on the size of R) proves the
termination of Expand and its correctness. The subsequent result establishes
the applicability of this algorithm for proof search over Ψ-analytic calculi.

Lemma 3. Let R be a finite set of finitary rule instances. Then the proce-
dure Expand((ΦY,ΦN) , (Φ Y,Φ N) , R) always terminates, returning a tree that
is (Φ Y,Φ N)-closed iff Φ N

ΦY
|Φ Y

ΦN
R .

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 143

Lemma 4. If C is Ψ-analytic, then Expand is a proof-search algorithm for C

and a decision procedure for ·
· | ·· C .

Proof. We know that C[s] provides enough material for a derivation of s to be
produced, since C is Ψ-analytic. Clearly, such set is finite and contains only fini-
tary rule instances, hence the present result is a direct consequence of Lemma 3.

The next results concern the complexity of Algorithm 1. In what follows,
let R be a finite set of finitary rule instances, b := maxrσ∈R branch(rσ), s :=
size({s} ∪ R) and n := |R|. We shall use p(m) to refer to “a polynomial in m”.

Lemma 5. The worst-case running time of Expand((ΦY,ΦN) , (Φ Y,Φ N) , R) is
O(bn + n · p(s)).

Proof. Let T(n, s) be the worst-case running-time of Expand. Note that it
occurs under three conditions: first, Φ N

ΦY
|Φ Y

ΦN
R ; second, the set R needs to be

entirely inspected until an applicable rule instance is found; and third, such an
instance does not have an empty set of succedents. Notice that T(0, s) = c1+p(s)
and, based on the assignments above and after some algebraic manipulations, we
have, for n ≥ 1, T(n, s) ≤ b ·T(n–1, s+p(s))+2n ·p(s). It is then straightforward
to check by induction on n that T(n, s) ∈ O(bn + n · p(s)).

Theorem 3. If C is Ψ-analytic, Expand is a proof-search algorithm for C that
runs in exponential time in general, and in polynomial time if C contains only
rules with at most one formula in the succedent.

Proof. Clearly, the set of all instances of rules of C using only formulas in SΨ(s)
is finite and contains only finitary rule instances, and its size is polynomial in
size(s). The announced result then follows directly from Lemma 5.

The previous result makes the axiomatization procedure presented in Sect. 3
even more attractive, since it delivers a D��–analytic calculus for M, where D��

is a finite set of formulas acting as separators. It follows then that Expand is a
proof-search algorithm for such axiomatization running in at most exponential
time. More than that, Expand outputs a tree with at least one open branch
when the B-sequent s of interest is not provable. From such branch, one may
obtain a partition of SD(s) and, by Proposition 2, define a mapping on subf(s)
that extends to an M-valuation. It follows that the discussed algorithm may
easily be adapted so as to deliver a countermodel when s is unprovable. For
experimenting with the axiomatization procedure and searching for proofs over
the generated calculus, one can make use of the implementation that may be
found at https://github.com/greati/logicantsy. We should also emphasize that,
by Theorem 3 and the axiomatization procedure given in Sect. 3, we have:

Corollary 1. Any finite monadic BPN
Σ–matrix M whose induced axiomatization

contains only rules with at most one succedent is decidable in polynomial time.

https://github.com/greati/logicantsy

144 V. Greati et al.

By the above result, then, the B-entailment relation ·
· | ·· I (from Example 1) is

decidable in polynomial time. Consequently, the same also holds for its t-aspect,
which is inhabited by the 4-valued logic introduced in [3].

In addition, it is worth stressing that, although no better in the limiting cases,
the axiomatization provided in Sect. 3 together with the algorithm presented
in this section translate the problem of deciding a B-entailment relation into
a purely symbolic procedure that may perform better than searching for M-
valuations in some cases.

We close with another complexity result concerning the decidability of ·
· | ·· C ,

complementing the one given by the discussed algorithm; it follows by an argu-
ment similar to the one presented for the one-dimensional case in [18].

Theorem 4. If C is Ψ-analytic, then the problem of deciding ·
· | ·· C is in coNP.

5 Conclusion

In this paper, we approached bilateralism by exploring a two-dimensional notion
of consequence, considering the cognitive attitudes of acceptance and rejec-
tion instead of the conventional speech acts of assertion and of denial. Our
intervention has been two-fold: on the semantical front we have employed two-
dimensional (partial) non-deterministic logical matrices, and on proof-theoretical
grounds we have employed two-dimensional symmetrical proof formalisms which
generalize traditional Hilbert-style calculi and their associated unilinear notion
of derivation. As a result, and generalizing [10], we have provided an axiomati-
zation procedure that delivers analytic calculi for a very expressive class of finite
monadic matrices. On what concerns proof development, in spite of well-known
evidence about the p-equivalence between Hilbert-style calculi and Gentzen-style
calculi ([14]), die-hard popular belief concerning their ‘deep inequivalence’ seems
hard to wash away. To counter that belief with facts, we developed for our calculi
a general proof-search algorithm that was secured to run in exponential time.

We highlight that our two-dimensional proof-formalism differs in important
respects from the many-placed sequent calculi used in [4] to axiomatize (one-
dimensional total) non-deterministic matrices (requiring no sufficient expressive-
ness) and in [16] for approaching multilateralism. First, a many-placed sequent
calculus is not Hilbert-style: rules manipulate complex objects whose structures
involve contexts and considerably deviate from the shape of the consequence
relation being captured; our calculi, on the other hand, are contained in their
corresponding B-consequences. Second, when axiomatizing a matrix, the struc-
ture of many-placed sequents grows according to the number of values (n places
for n truth-values); our rule schemas, in turn, remain with four places, and reflect
the complexity of the underlying semantics in the complexity of the formulas
being manipulated. Moreover, the study of many-placed sequents currently con-
templates only one-dimensional consequence relations; extending them to the
two-dimensional case is a line of research worth exploring.

As further future work, we envisage generalizing the two-dimensional notion
of consequence relation by allowing logics over different languages ([17]) —for

Proof Search on Bilateralist Judgments over Non-deterministic Semantics 145

instance, conflating different logics or different fragments of some given logic
of interest— to coinhabit the same logical structure, each one along its own
dimension, while controlling their interaction at the object-language level, taking
advantage of the framework and the results in [18]. This opens the doors for a line
of investigation on whether or to what extent the individual characteristics of
these ingredient logics, such as their decidability status, may be preserved. With
respect to our proof search algorithm, an important research path to be explored
would involve the design of heuristics for smarter choices of rule instances used
to expand nodes during the search, as this may improve the performance of
the algorithm on certain classes of logics. At last, we also expect to extend the
present research so as to cover multidimensional notions of consequence, in order
to provide increasingly general technical and philosophical grounds for the study
of logical pluralism.

Acknowledgements. V. Greati and J. Marcos acknowledge support from CAPES
(Brasil)—Finance Code 001 and CNPq (Brasil), respectively. S. Marcelino’s research
was done under the scope of Project UIDB/50008/2020 of Instituto de Telecomu-
nicações (IT), financed by the applicable framework (FCT/MEC through national
funds and cofunded by FEDER-PT2020).

References

1. Avron, A.: 5-valued non-deterministic semantics for the basic paraconsistent logic
mCi. In: Studies in Logic, Grammar and Rhetoric, pp. 127–136 (2008)

2. Avron, A.: Multi-valued semantics: why and how. Stud. Logica. 92(2), 163–182
(2009). https://doi.org/10.1007/s11225-009-9193-2

3. Avron, A., Ben-Naim, J., Konikowska, B.: Cut-free ordinary sequent calculi for
logics having generalized finite-valued semantics. Log. Univers. 1, 41–70 (2007).
https://doi.org/10.1007/s11787-006-0003-6

4. Avron, A., Konikowska, B.: Multi-valued calculi for logics based on non-
determinism. Logic J. IGPL 13(4), 365–387 (2005). https://doi.org/10.1093/
jigpal/jzi030

5. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems. In: Gab-
bay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 16, pp. 227–
304. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0479-4 4

6. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. J. Autom. Reason. 51(4), 401–430 (2013). https://doi.org/10.1007/s10817-
013-9273-x

7. Blasio, C.: Revisitando a lógica de Dunn-Belnap. Manuscrito 40, 99–126 (2017).
https://doi.org/10.1590/0100-6045.2017.v40n2.cb

8. Blasio, C., Caleiro, C., Marcos, J.: What is a logical theory? On theories contain-
ing assertions and denials. Synthese (2019). https://doi.org/10.1007/s11229-019-
02183-z

9. Blasio, C., Marcos, J., Wansing, H.: An inferentially many-valued two-dimensional
notion of entailment. Bull. Sect. Logic 46(9), 233–262 (2017). https://doi.org/10.
18778/0138-0680.46.3.4.05

10. Caleiro, C., Marcelino, S.: Analytic calculi for monadic PNmatrices. In: Iemhoff,
R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp.
84–98. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6 6

https://doi.org/10.1007/s11225-009-9193-2
https://doi.org/10.1007/s11787-006-0003-6
https://doi.org/10.1093/jigpal/jzi030
https://doi.org/10.1093/jigpal/jzi030
https://doi.org/10.1007/978-94-007-0479-4_4
https://doi.org/10.1007/s10817-013-9273-x
https://doi.org/10.1007/s10817-013-9273-x
https://doi.org/10.1590/0100-6045.2017.v40n2.cb
https://doi.org/10.1007/s11229-019-02183-z
https://doi.org/10.1007/s11229-019-02183-z
https://doi.org/10.18778/0138-0680.46.3.4.05
https://doi.org/10.18778/0138-0680.46.3.4.05
https://doi.org/10.1007/978-3-662-59533-6_6

146 V. Greati et al.

11. Caleiro, C., Marcelino, S.: On Axioms and Rexpansions. In: Arieli, O., Zamansky,
A. (eds.) Arnon Avron on Semantics and Proof Theory of Non-Classical Logics.
OCL, vol. 21, pp. 39–69. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-71258-7 3

12. Caleiro, C., Marcelino, S., Filipe, P.: Infectious semantics and analytic calculi for
even more inclusion logics. In: IEEE International Symposium on Multiple-Valued
Logic, pp. 224–229 (2020). https://doi.org/10.1109/ISMVL49045.2020.000-1

13. Caleiro, C., Marcos, J., Volpe, M.: Bivalent semantics, generalized compositionality
and analytic classic-like tableaux for finite-valued logics. Theoret. Comput. Sci.
603, 84–110 (2015). https://doi.org/10.1016/j.tcs.2015.07.016

14. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44(1), 36–50 (1979). https://doi.org/10.2307/2273702

15. Drobyshevich, S.: Tarskian consequence relations bilaterally: some familiar notions.
Synthese (2019). https://doi.org/10.1007/s11229-019-02267-w

16. Hjortland, O.T.: Speech acts, categoricity, and the meanings of logical connec-
tives. Notre Dame J. Form. Logic 55(4), 445–467 (2014). https://doi.org/10.1215/
00294527-2798700

17. Humberstone, L.: Heterogeneous logic. Erkenntnis 29(3), 395–435 (1988). https://
doi.org/10.1007/BF00183072

18. Marcelino, S., Caleiro, C.: Decidability and complexity of fibred logics without
shared connectives. Logic J. IGPL 24(5), 673–707 (2016). https://doi.org/10.1093/
jigpal/jzw033

19. Marcelino, S., Caleiro, C.: Disjoint fibring of non-deterministic matrices. In:
Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp.
242–255. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-
2 17

20. Marcelino, S., Caleiro, C.: Axiomatizing non-deterministic many-valued general-
ized consequence relations. Synthese (2019). https://doi.org/10.1007/s11229-019-
02142-8

21. Marcos, J.: Possible-translations semantics for some weak classically-based para-
consistent logics. J. Appl. Non-Class. Logics 18(1), 7–28 (2008). https://doi.org/
10.3166/jancl.18.7-28

22. Rumfitt, I.: “Yes” and “No”. Mind 109(436), 781–823 (2000). https://doi.org/10.
1093/mind/109.436.781

23. Shoesmith, D.J., Smiley, T.J.: Multiple-Conclusion Logic. Cambridge University
Press, Cambridge (1978). https://doi.org/10.1017/CBO9780511565687

https://doi.org/10.1007/978-3-030-71258-7_3
https://doi.org/10.1007/978-3-030-71258-7_3
https://doi.org/10.1109/ISMVL49045.2020.000-1
https://doi.org/10.1016/j.tcs.2015.07.016
https://doi.org/10.2307/2273702
https://doi.org/10.1007/s11229-019-02267-w
https://doi.org/10.1215/00294527-2798700
https://doi.org/10.1215/00294527-2798700
https://doi.org/10.1007/BF00183072
https://doi.org/10.1007/BF00183072
https://doi.org/10.1093/jigpal/jzw033
https://doi.org/10.1093/jigpal/jzw033
https://doi.org/10.1007/978-3-662-55386-2_17
https://doi.org/10.1007/978-3-662-55386-2_17
https://doi.org/10.1007/s11229-019-02142-8
https://doi.org/10.1007/s11229-019-02142-8
https://doi.org/10.3166/jancl.18.7-28
https://doi.org/10.3166/jancl.18.7-28
https://doi.org/10.1093/mind/109.436.781
https://doi.org/10.1093/mind/109.436.781
https://doi.org/10.1017/CBO9780511565687

From Input/Output Logics to Conditional
Logics via Sequents – with Provers

Björn Lellmann(B)

TU Wien, Vienna, Austria

Abstract. We consider cut-free sequent calculi for a number of deon-
tic logics from the family of Input/Output logics. These sequent calculi
provide a correspondence to the flat fragment of certain conditional log-
ics. Two of the introduced calculi are non-standard in that they include
non-derivability statements, and hence are interesting also from a purely
technical perspective. We further modularise the calculi in an extended
sequent framework. Proof search in the extended calculi is implemented
in Prolog, providing seemingly the first automated reasoning systems for
some of the considered logics.

Keywords: I/O logic · Conditional logic · Deontic logic · Sequent
systems

1 Introduction

A formalism which has recently gained interest in the field of deontic logic is
that of Input/Output logics [16,23]. Here, conditional obligations such as “If
there is a dog, then there must be a fence” are treated as Input-Output pairs,
intuitively converting their input (the conditions under which the conditional
obligation holds, e.g., “there is a dog”) into their output (what is obligatory
under these conditions, e.g., “there is a fence”). In the Input/Output approach
this conversion mechanism, called detachment, is taken as the core mechanism of
deontic logics, and is used to analyse phenomena and problems of deontic logic
including, e.g., Contrary-to-Duty reasoning (reasoning with and about violated
norms) or deontic paradoxa and dilemmas. In this framework, an Input/Output
logic is viewed as a “transformation engine”, which converts an input, i.e., a
state description, into an output, i.e., what should be the case, using a set of
conditional obligations in the form of Input/Output pairs. As a main aspect
of the Input/Output framework, the Input/Output pairs are given by a meta-
level connective instead of an object-level connective as in, e.g., dyadic deontic
logic or conditional logic. Different Input/Output logics are then obtained (on
the syntactical side) by varying the mechanisms of obtaining new input-output
pairs from a given set of these pairs.

This work has been supported by BRISE-Vienna (UIA04-081), a European Union
Urban Innovative Actions project.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 147–164, 2021.
https://doi.org/10.1007/978-3-030-86059-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_9&domain=pdf
http://orcid.org/0000-0002-5335-1838
https://doi.org/10.1007/978-3-030-86059-2_9

148 B. Lellmann

While the more theoretical side of the basic Input/Output logics by now is
rather well understood, their automated reasoning side has not yet been fully
explored: The only more practical approaches in this direction so far seem to be
the semantical embedding of some systems of Input/Output logic into Higher-
Order logic enabling automation for these systems in [3] and a goal-directed
method for deciding certain Input/Output logics introduced in [29]. However, the
embedding into Higher-Order Logic makes use of an embedding of Input/Output
logics into certain modal logics, and the goal-directed decision procedures are
based heavily on the semantic characterisation of the logics.

Here we take a more proof-theoretic approach and exploit a strong similarity
to the KLM framework for nonmonotonic reasoning [10]. Analogously to the
notion of an Input/Output pair the KLM framework is based on a meta-level
connective for nonmonotonic inference, written Γ |∼ A and interpreted as “Γ
nonmonotonically entails A”. Different systems then are given by different rules
for this connective. However, it has been observed already in op. cit., that this
meta-level connective corresponds to a dyadic object-level connective, specifically
that of conditional logics, and that different systems in the KLM framework
therefore correspond to the flat (i.e., unnested) fragment of various conditional
logics. This of course opens up the possibility of transferring certain results from
one framework to the other. In addition, the formulation in terms of an object-
level connective facilitates the application of syntactic methods, in particular the
construction and use of sequent systems.

In the present paper we will use the same idea to obtain axiomatisa-
tions for the logical connective corresponding to input/output pairs in certain
Input/Output logics. With the aim of obtaining automated reasoning procedures
we consider corresponding sequent systems for these logics. These correspon-
dences are also interesting in their own right, because they yield a representation
of certain Input/Output logics in conditional logics, resulting in an alternative
semantics. Two of the sequent systems are in addition non-standard in that they
mention underivability in the premisses, stemming from the fact that the corre-
sponding Input/Output logics contain consistency constraints in the formulation
of the rules. With respect to automated reasoning, we then consider a modifica-
tion of the sequent systems which facilitates a prototype implementation.

Of course the idea of turning Input/Output pairs into logical connectives
goes against the original idea of treating conditional obligations expressly at the
meta-level [16]. While there are certainly good philosophical arguments to do
so, here we do not take a stance on this matter and treat the connectives from
a purely syntactical point of view.

2 Input/Output Logics and Their Sequent Calculi

We briefly recall the relevant Input/Output logics, henceforth also simply I/O
logics, and then consider their sequent calculi. The reader is referred to [16,23]
for more details on Input/Output logics including the semantics, motivation
and philosophical discussion. We defer the technical results about the calculi to
Sect. 3.

From I/O Logics to Conditional Logics via Sequents - with Provers 149

The set Prop of propositional formulae is given as usual by the grammar
Prop ::= V | ⊥ | � | ¬Prop | Prop ∧ Prop | Prop ∨ Prop | Prop → Prop where
V is a countable infinite set of propositional variables. We assume the usual
conventions about binding strength of the operators, i.e., ¬ binds stronger than
∧ binds stronger than ∨ binds stronger than →.

Definition 1. An Input/Output pair, short I/O pair is a tuple (A,X), where
A,X ∈ Prop are propositional formulae.

In the following we only consider mainly unconstrained I/O logics (see,
e.g., [23] for the details). From the purely syntactic point of view, these log-
ics then are given by different rules for obtaining new I/O pairs from a
given set of I/O pairs, captured in the form of different derivability rela-
tions. Here we consider the following I/O logics: simple-minded output deriv1,
simple-minded throughput deriv+1 , reusable output deriv3, and reusable throughput
deriv+3 from [16], simple-minded output without weakening (or aggregative simple-
minded output) ag der1 and reusable output without weakening (or aggregative
reusable output) ag der3 from [26,30], and simple minded output with consis-
tency check c ag der1 as well as basic output with consistency check c ag der3
from [24,25].

The rules are given in Fig. 1. Rule SI (Strengthening of the Input) corresponds
to downwards monotonicity in the first argument of the pair operator, while WO
(Weakening of the Output) corresponds to upwards monotonicity in the second
argument. Rule OEQ (Output Equivalence) is the weaker version of the latter
stating congruence in the second argument. Rules � (Tautology) and ID (Iden-
tity) are self-explanatory. Rule AND and its weaker version RAND (Restricted
AND) state that conjunction distributes over the second argument, while the
rules CT (Cumulative Transitivity), ACT (Aggregative Cumulative Transitivity)
and RACT (Restricted Aggregative Cumulative Transitivity) state various weaker
versions of transitivity. Note that since there is no nesting of the I/O pair opera-
tor, the entailment relation in the rules SI,OEQ and WO as well as the consistency
requirement in the rules RAND and RACT range over classical propositional logic.

Definition 2. Let G be a set of I/O pairs, and let L be one of deriv1, deriv+1 ,
deriv3, deriv+3 , ag der1, ag der3. An I/O pair (A,X) is derivable from G in L,
written G 	L (A,X), iff there is a derivation in L with conclusion (A,X) whose
leaves are I/O pairs from G or entailment or consistency statements true in
classical propositional logic. Here as usual a derivation in L is a finite labelled
directed tree, whose nodes are labelled with I/O pairs or statements about propo-
sitional logic such that the label of each node follows from the labels of its children
using the rules of L as given in Fig. 2. For L one of c ag der1 or c ag der3 the
definition is the same with the additional requirement that for all leaves (B, Y)
of the derivation we have that B ∧ Y is consistent.

In order to formulate the sequent systems corresponding to such logics we
internalise the I/O pairs using a corresponding logical connective > as follows.

150 B. Lellmann

(A,X) B A

(B, X)
SI

(A, X) X Y Y X

(A,Y)
OEQ

(A, X) X Y

(A, Y)
WO

(,) (A,A)
ID

(A,X) (A ∧ X, Y)
(A,Y)

CT

(A,X) (A, Y)
(A, X ∧ Y)

AND
(A, X) (A,Y) A ∧ X ∧ Y consistent

(A, X ∧ Y)
RAND

(A,X) (A ∧ X, Y)
(A, X ∧ Y)

ACT
(A, X) (A ∧ X, Y) A ∧ X ∧ Y consistent

(A,X ∧ Y)
RACT

Fig. 1. I/O logic rules

Logic SI OEQ WO ID RAND AND RACT ACT CT Reference
deriv1 () () [16]
deriv+1 () () () [16]
deriv3 () () () () [16]
deriv+3 () () () () () [16]
ag der1 () D1 in [26]
ag der3 () () D3 in [26]
c ag der1 D1 in [25]
c ag der3 () D3 in [25]

Fig. 2. The different I/O logics. Checkmarks in parentheses are implied.

Definition 3. The set F of formulae in the internalised I/O language is given
by F ::= V | ⊥ | � | F ∧ F | F ∨ F | F → F | F > F . A sequent in the
internalised I/O language is a tuple of multisets of formulae from F , written
Γ ⇒ Δ.

We assume that all propositional connectives bind stronger than >. The
sequent systems considered below all contain the standard G3p rules for classical
propositional logic given in Fig. 3 (see also [32]).

Converting the rules for the I/O pairs into sequent rules by simply moving
the I/O pairs from the premisses to the antecedent of the conclusion yields the
rules and axiomatic sequents in Fig. 4. Of course, replacing the sequent arrow in
these with an implication yields Hilbert-style axiomatisations. Using the methods
of [11,12,27] to absorb cuts between the conclusions of these rules into the rule
set yields the rules in Fig. 5. To save space in the presentation of the rules we
abuse notation and use set notation in the premisses. E.g., instead of writing

C ⇒ A1 C,B1 ⇒ A2 C,B1, B2 ⇒ A3 B1, B2, B3 ⇒ D

(A1 > B1), (A2 > B2), (A3 > B3) ⇒ (C > D)
R3

From I/O Logics to Conditional Logics via Sequents - with Provers 151

Γ, ⊥ ⇒ Δ
⊥L

Γ ⇒ ,Δ
R

Γ, p ⇒ p, Δ
init

Γ ⇒ A, Δ

Γ, ¬A ⇒ Δ
¬L

Γ, A ⇒ Δ

Γ ⇒ ¬A, Δ
¬R

Γ, B ⇒ Δ Γ ⇒ A, Δ

Γ, A → B ⇒ Δ
→L

Γ, A ⇒ Δ Γ, B ⇒ Δ

Γ, A ∨ B ⇒ Δ
∨L

Γ, A, B ⇒ Δ

Γ, A ∧ B ⇒ Δ
∧L

Γ, A ⇒ B, Δ

Γ ⇒ A → B, Δ
→R

Γ ⇒ A,B, Δ

Γ ⇒ A ∨ B, Δ
∨R

Γ ⇒ A,Δ Γ ⇒ B, Δ

Γ ⇒ A ∧ B, Δ
∧R

Fig. 3. The classical propositional sequent rules

B ⇒ A
(A > X) ⇒ (B > X)

(SI) X ⇒ Y Y ⇒ X
(A > X) ⇒ (A > Y)

(OEQ) X ⇒ Y
(A > X) ⇒ (A > Y)

(WO)

() : > (ID) : ⇒ (A > A) (CT) : (A > X) ∧ (A ∧ X > Y) ⇒ (A > Y)

(AND) : (A > X) ∧ (A > Y) ⇒ (A > X ∧ Y)

(ACT) : (A > X) ∧ (A ∧ X > Y) ⇒ (A > X ∧ Y)

A ∧ X ∧ Y consistent
(A > X) ∧ (A > Y) ⇒ (A > X ∧ Y)

(RAND)

A ∧ X ∧ Y consistent
(A > X) ∧ (A ∧ X > Y) ⇒ (A > X ∧ Y)

(RACT)

Fig. 4. Axioms and rules corresponding to the I/O rules

we write

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ 3} B1, B2, B3 ⇒ D

(A1 > B1), (A2 > B2), (A3 > B3) ⇒ (C > D)
R3

.

Note also that the systems include the special case of the rules for n = 0, i.e.,
the rules

⇒ D
Γ ⇒ (C > D),Δ

CC0
C ⇒ D

Γ ⇒ (C > D),Δ
CCI0

which are the same as R0 and RI0, respectively. Most significantly, the rules
c ag CCn and c ag Rn include underivability statements of the form �	 Γ ⇒ Δ in
the premisses. In order to capture this we use the following notion of derivability:

Definition 4. A proto-derivation for a sequent Γ ⇒ Δ in GL is a finite directed
labelled tree, where the root is labelled with Γ ⇒ Δ and:

– each internal node is labelled with a sequent, each leaf is labelled with a sequent
or an underivability statement of the form �	 Σ ⇒ Π

152 B. Lellmann

{C ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
CCn

{C ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn, C ⇒ D

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
CCIn

{C, B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
Rn

{C, B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn, C ⇒ D

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
RIn

{C ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
ag CCn

{C, B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
ag Rn

{C ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n}
B1, . . . , Bn ⇒ D C, D ⇒

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
c ag CCn

{C, B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n}
B1, . . . , Bn ⇒ D C, D ⇒

Γ, (A1 > B1), . . . , (An > Bn) ⇒ (C > D), Δ
c ag Rn

Gderiv1 : {CCn : n ≥ 0} Gderiv3 : {Rn : n ≥ 0}
G

deriv+1
: {CCIn : n ≥ 0} G

deriv+3
: {RIn : n ≥ 0}

Gag der1 : {ag CCn : n ≥ 1} Gag der3 : {ag Rn : n ≥ 1}
Gc ag der1 : {c ag CCn : n ≥ 1} Gc ag der3 : {c ag Rn : n ≥ 1}

Fig. 5. Sequent rules for I/O logics

– whenever a node has a standard sequent as its label, then that sequent follows
from the labels of the node’s children using the rules of GL

The depth of a proto-derivation is the depth of the underlying tree. A proto-
derivation in GL is valid if for every underivability statement �	 Σ ⇒ Π there is
no valid proto-derivation of Σ ⇒ Π in GL. A sequent is derivable in GL, written
	GL Γ ⇒ Δ if there is a valid proto-derivation for it in GL.

Of course, since the definition of a valid proto-derivation makes use of the
very same notion, we need to show that the concept is well defined.

Lemma 5. Every proto-derivation in GL is valid or not valid, but not both.

Proof. By induction on the modal rank of its conclusion Γ ⇒ Δ, i.e., the maximal
nesting depth of the modal operator > in a formula in the sequent. All rules of
GL have the subformula property, i.e., every formula occurring in its premisses is
a subformula of a formula occurring in its conclusion. Hence, if the modal rank

From I/O Logics to Conditional Logics via Sequents - with Provers 153

of the conclusion of a proto-derivation is 0, then only propositional rules occur
in it, and hence no underivability statements. Thus it is automatically valid.

Suppose that the modal rank of the conclusion of a proto-derivation D is
n + 1. Then again by the subformula property and the fact that the underivability
statements in the rules have strictly lower modal rank than their conclusions we
obtain that all the underivability statements in D have modal rank at most
n. By induction hypothesis every proto-derivation for the sequent in such an
underivability statement is either valid or not valid, but not both. Thus for
every sequent occurring in such an underivability statement either there is a
valid proto-derivation or there is not, but not both. Hence the proto-derivation
D is either valid or not, but not both. �

Since this definition of derivability is rather non-standard, some remarks are
in order. First for the calculi without underivability statements the definition
collapses to the standard notion of derivability in sequent systems. Hence the
reader not interested in the calculi for c ag der1 and c ag der3 may mentally
substitute the standard definition for the rest of the paper.

We could avoid underivability statements by considering an antisequent cal-
culus for underivability along the lines of [4]. While for propositional rules this
works well due to invertibility, for the modal rules we would need rules stating
that for every modal rule which could have been used to derive a sequent at least
one of its premisses is underivable. Since every ordered subset of modal formulae
in a sequent corresponds to such a possible rule application, the number of pre-
misses for the modal antisequent rules would become rather large. For the sake
of a more compact presentation we therefore keep to the current formulation.

3 Technical Results and Correspondence

We now consider the properties of our calculi, starting with a number of standard
results leading up to cut elimination and the correspondence to the I/O logics.

Lemma 6 (Generalised Initial Sequents). Let L be one of the logics without
consistency check. Then 	GL Γ,A ⇒ A,Δ. If L is one of c ag der1 and c ag der3
then 	GL Γ,A ⇒ A,Δ for purely propositional A.

Proof. By induction on the complexity of the formula A. In case A is of the
form C > D we use the modal rule with exactly one principal formula on the
left hand side, e.g., in the calculus Gderiv+3

we have an application of the rule RI1
with conclusion (C > D) ⇒ (C > D) and premisses C ⇒ C and D,C ⇒ D.
The premisses are derivable by induction hypothesis. �

Note that derivability of the generalised initial sequents does not hold unre-
strictedly for the logics c ag der1 and c ag der3, because we cannot derive
sequents (A > B) ⇒ (A > B) where A and B are inconsistent. This includes
examples such as (⊥ > ⊥) ⇒ (⊥ > ⊥) or (A > ¬A) ⇒ (A > ¬A). For the pur-
pose of showing equivalence to I/O logics the form restricted to propositional
formulae is enough, though, since I/O logics do not contain nested I/O pairs.

154 B. Lellmann

Lemma 7 (Invertibility of the propositional rules). Let L be one of the
logics considered. Then the propositional rules are depth-preserving invertible,
i.e., whenever their conclusion is derivable with a proto-derivation of depth n,
then so are their premisses.

Proof. By induction on the depth of the proto-derivation, using the fact that
the formulae with a propositional connective at the top level occur in the modal
rules only as context formulae. �
Lemma 8 (Admissibility of the structural rules). Let L be one of the logics
considered. Then the structural rules of weakening, left contraction and right
contraction below are depth-preserving admissible, i.e., whenever their premiss
is derivable in depth n, then so is their conclusion.

Γ ⇒ Δ
Σ,Γ ⇒ Δ,Π

W
Γ,A,A ⇒ Δ

Γ,A ⇒ Δ
ICL

Γ ⇒ A,A,Δ

Γ ⇒ A,Δ
ICR

Proof. By induction on the depth of the proto-derivation. In case the last applied
rule is a propositional rule with the contracted formula principal, as usual we use
depth-preserving invertibility of the propositional rules (Lemma7). In case the
last applied rule is a modal rule with both instances of the contracted formula
principal, we apply contraction to the premisses followed by the version of the
same modal rule with one principal formula less. Note that the modal rules only
have one principal formula on the right hand side, hence we do not need to
consider contractions between principal formulae on the right and avoid having
to deal with contractions in the underivability statements. �
Theorem 9 (Cut Admissibility). The cut rule is admissible in GL, i.e.,

if 	GL Γ ⇒ Δ,A and 	GL A,Σ ⇒ Π then 	GL Γ,Σ ⇒ Δ,Π .

Proof. As usual by double induction on the complexity of the cut formula A and
the sum of the depths of the valid proto-derivations D1 of Γ ⇒ Δ,A and D2 of
A,Σ ⇒ Π, see, e.g., [32]. The case where the complexity of A is 1, i.e., A is a
propositional variable is standard, permuting the cut over the last applied rule in
D1 using the induction hypothesis until that rule is init, then absorbing it into the
last applied rule in D2. In case the complexity of A is n + 1 we distinguish cases
according to the topmost connective of A. In the propositional case we follow
the standard approach and use invertibility of the propositional rules (Lemma7)
to reduce the cut to cuts on formulae of smaller complexity, potentially followed
by admissibility of Contraction (Lemma 8) to eliminate duplicate formulae.

The interesting case is where A is of the form (C > D). Again we permute
the cut over the last applied rule in D1 until the cut formula is principal there
using the inner induction hypothesis, then do the same with D2. What is left
to check is that cuts between the principal formulae of two modal rules can be
reduced to cuts of smaller complexity. We only consider a complicated case here,
the remaining cases are similar but simpler.

From I/O Logics to Conditional Logics via Sequents - with Provers 155

Suppose that L is c ag der3, and the last applied rules were c ag Rn:

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ n} {D ⇒ Bi : i ≤ n} B1, . . . , Bn ⇒ D �	 C,D ⇒
(A1 > B1), . . . , (An > Bn) ⇒ (C > D)

and c ag Rm:

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
G,F1, . . . , Fk−1 ⇒ C

{G,F1, . . . , Fk−1,D, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k �= i ≤ m}

H ⇒ D
F1, . . . , Fk−1,D, Fk+1, . . . , Fm ⇒ H

�	 G,H ⇒
(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm) ⇒ (G > H)

Applying the induction hypothesis to cut on the formulae C and D we obtain:

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
{G,F1, . . . , Fk−1, B1, . . . , Bi−1 ⇒ Ai : i ≤ n}

{G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k �= i ≤ m}

{H ⇒ Bi : i ≤ n}
F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H

�	 G,H ⇒
and applying c ag Rn+m−1 yields the desired (E1 > F1), . . . , (Ek−1 > Fk−1),
(A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . (Em > Fm) ⇒ (G > H). �

As usual, one of the main consequences of cut admissibilty is consistency:

Corollary 10 (Consistency). The calculi are consistent, i.e., �	GL ⇒ ⊥.

Proof. All rules have the subformula property, and no rule introduces ⊥. �
Lemma 11 (Derivability of the axioms). Let L be one of the considered
logics. Then the axioms and rules of Fig. 4 for the corresponding I/O rules are
derivable in GL, restricted to non-nested formulae for c ag der1 and c ag der3.

Proof. The rules (SI) and (WO) are special cases of the rules CC1, CCI1, R1

and RI1 respectively. The rule (OEQ) is a special case of ag CC1 and ag R1. For
(RACT) we have for purely propositional formulae A,B,C:

A ⇒ A A,B ⇒ A ∧ B B ∧ C ⇒ B B ∧ C ⇒ C B,C ⇒ B ∧ C �	 A,B ∧ C ⇒
(A > B), (A ∧ B > C) ⇒ (A > B ∧ C)

c ag R2

(A > B) ∧ (A ∧ B > C) ⇒ (A > B ∧ C)
∧L

where the underivability premiss is the premiss of (RACT) and the other pre-
misses are derivable using Lemma 6 since A,B,C are purely propositional. The
case of (RAND) is similar, using c ag CC1. Deriving the axiomatic sequents is
relatively straightforward using Lemma6. �

156 B. Lellmann

Using cut admissibility we can finally show that the sequent systems indeed
capture the corresponding I/O logics:

Theorem 12 (Equivalence). Let L be one of the logics considered here. For
every set {(A1,X1), . . . , (An,Xn)} of I/O pairs we have

{(A1,X1), . . . , (An,Xn)} 	L(A,X) iff
	GL (A1 > X1), . . . , (An > Xn) ⇒ (A > X) .

Proof. We use the fact that the construction of an I/O logic derivation corre-
sponds to the construction of a sequent rules for > using cuts.

The left to right direction is shown by induction on the depth of the I/O
derivation, i.e., the maximal length of a branch in that derivation. We first
consider an example of an I/O rule corresponding to an axiom from Fig. 4.
Suppose that {(A1,X1), . . . , (An,Xn)} 	L (A,X) and that the last applied rule
was CT. Then there are P1,P2 with P1 ∪ P2 = {(A1,X1), . . . , (An,Xn)} and a
formula Y such that P1 	L (A, Y) and P2 	L (A ∧ Y,X). Hence by induction
hypothesis for the sets P>

1 and P>
2 of conditional formulae corresponding to the

tuples in P1 and P2 respectively we have 	GL P>
1 ⇒ (A > Y) and 	GL P>

2 ⇒
(A ∧ Y > X). By Lemma 11 we have 	GL (A > Y) ∧ (A ∧ Y > X) ⇒ (A > X),
and hence by invertibility of the propositional rules also 	GL (A > Y), (A ∧
Y > X) ⇒ (A > X). Applying cut admissibility (Theorem9) twice we have
	GL P>

1 ,P>
2 ⇒ (A > X), and admissibility of contraction (Lemma8) yields the

result. The cases for the other I/O rules corresponding to axiomatic sequents
are similar.

As an example of an I/O rule corresponding to a rule from Fig. 4, assume
that the last applied I/O rule was WO. Thus there is an I/O pair (A, Y) with
{(A1,X1), . . . , (An,Xn)} 	L (A, Y) and Y 	 X. By induction hypothesis we
have 	GL (A1 > X1), . . . , (An > Xn) ⇒ (A > Y). Since Y 	 X propositionally
and the propositional rules of GL are complete for classical propositional logic
we also have 	GL Y ⇒ X, and Lemma 11 yields 	GL (A > Y) ⇒ (A > X). Now
admissibility of the cut rule gives the result.

For the right to left direction we use an induction on n, i.e., the number of
I/O formulae on the left hand side of the sequent. If 	GL (A1 > X1), . . . , (An >
Xn) ⇒ (A > X), then the last applied rule must be a modal rule. Assume w.l.o.g.
that all the (Ai > Xi) are principal formulae (otherwise apply the induction
hypothesis on the principal formulae). The base cases are those for 0 ≤ n ≤ 2.
In each case we distinguish subcases according to which rule was applied. We
further use the fact that for propositional formulae we have A ⇒ B iff A 	 B.

Case n = 0: The last applied rule was one of CC0,CCI0,R0,RI0. For an
application of CC0 or R0 with premiss ⇒ D and conclusion ⇒ (C > D) we
first obtain (�,�) from �, which together with C 	 � yields (C,�) by SI. This
together with � 	 D yields (C,D) by WO. The case of CCI0 or RI0 is even
simpler, using ID and SI.

From I/O Logics to Conditional Logics via Sequents - with Provers 157

Case n = 1: The rules CC1 and R1 are straightforward using SI and WO. For
the rule CCI1 (and analogously for RI1) we have:

C ⇒ A B,C ⇒ D

(A > B) ⇒ (C > D)
CCI1 �

(A,B) C 	 A

(C,B) SI (C > C) ID

(C,B ∧ C) AND
B ∧ C 	 D

(C,D) WO

For ag CC1 or ag R1 with premisses C ⇒ A as well as D ⇒ B and B ⇒ D and
conclusion (A > B) ⇒ (C > D) we obtain (C,B) from (A,B) and C 	 A by
SI. Together with D 	 B and B 	 D this yields (C,D) by OEQ. For c ag CC1

and c ag R1 we use the same derivation as for ag CC1. However, to ensure that
we obtain a derivation valid in c ag der1 (resp. c ag der3) we need to check that
none of the I/O pairs used as premisses is contradictory, i.e., specifically that
�	 A ∧ B → ⊥. Assume that 	 A ∧ B → ⊥. Then since C 	 A we also have
	 C ∧ B → ⊥. Since moreover D 	 B and B 	 D we then obtain 	 C ∧ D → ⊥,
in contradiction to �	 C,D ⇒ . Thus �	 A ∧ B → ⊥.

Case n = 2: Rule CC2 is straightforward using SI followed by AND and WO.
For CCI2 we also need to use ID and AND before WO. For R2 we use SI followed
by CT, AND and finally WO. For RI2 we do the same but again insert ID and
AND before the final application of WO. For ag CC2, suppose we have:

C ⇒ A1 C ⇒ A2 D ⇒ B1 D ⇒ B2 B1, B2 ⇒ D

(A1 > B1), (A2 > B2) ⇒ (C > D)
ag CC2

Applying SI on (A1, B1) and C ⇒ A1 yields (C,B1) and similarly SI on (A2, B2)
and C ⇒ A2 yields (C,B2). An application of AND then gives (C,B1 ∧ B2),
which together with D 	 B1 ∧ B2 and B1 ∧ B2 	 D by OEQ yields (C,D). The
case of ag R2 is similar, using ACT instead of AND. For c ag CC2 we use the
same derivation as for ag CC2. Additionally, we have to check that none of the
I/O pairs occurring as assumptions of the derivation is inconsistent, i.e., that
�	 A1 ∧ B1 → ⊥ and �	 A2 ∧ B2 → ⊥. From �	 C,D ⇒ we obtain �	 C ∧ D → ⊥.
Together with 	 C ↔ B1 ∧ B2 this yields �	 C ∧ B1 ∧ B2 → ⊥. Since C 	 A1

and C 	 A2 this yields �	 A1 ∧ B1 ∧ B2 → ⊥ and �	 A2 ∧ B1 ∧ B2 → ⊥, and thus
finally �	 A1 ∧ B1 → ⊥ and �	 A2 ∧ B2 → ⊥. The case of c ag R2 is analogous.

Case n = m + 2 with m ≥ 1: We use essentially the method of prov-
ing soundness of “cuts between rules” from [11, Lem.2.4.5], using that the
rules are constructed from smaller components via closure under cuts. I.e.,
for a rule with conclusion (A1 > B1), . . . , (Am+2 > Bm+2) ⇒ (C > D)
we construct a formula (E > F) such that both (A1 > B1), . . . , (Am >
Bm), (E > F) ⇒ (C > D) and (Am+1 > Bm+1), (Am+2 > Bm+2) ⇒
(E > F) are derivable given the original premisses. Then by induc-
tion hypothesis we obtain {(A1, B1), . . . , (Am, Bm), (E,F)} 	L (C,D) and
{(Am+1, Bm+1), (Am+2, Bm+2)} 	L (E,F) Putting these together we then
have {(A1, B1), . . . , (Am+2, Bm+2)} 	L (C,D). For space reasons we only give
the formula (E,F), assuming the rules as in Fig. 5 with conclusion (A1 >
B1), . . . , (Am+2 > Bm+2) ⇒ (C > D).

158 B. Lellmann

For CCm+2 we set (E > F) = (C > Bm+1 ∧ Bm+2). For CCIm+2 we set
(E > F) = (C > C ∧ Bm+1 ∧ Bm+2). For Rm+2 we use (E > F) = (C ∧∧

i≤m Bi > Bm+1 ∧ Bm=2), and for RIm+2 we set (E > F) = (C ∧ ∧
i≤m Bi >

C ∧ ∧
i≤m+2 Bi). For ag CCm+2 and c ag CCm+2 we use (E > F) = (C >

(Bm+1 ∧ Bm+2) ∨ D). In the case of c ag CCm+2 we additionally need to show
the underivability premisses, i.e., �	 C, (Bm+2 ∧ Bm+2) ∨ D ⇒ . This follows by
invertibility of the propositional rules from �	 C,D ⇒ . Finally, for ag Rm+2 and
c ag Rm+2 we set (E > F) = (C ∧ ∧

i≤m Bi > (Bm+1 ∧ Bm+2) ∨ D). In the
case of c ag Rm+2 again we also need to show the underivability premiss, i.e.,
�	 C ∧∧

i≤m Bi, (Bm+1∧Bm+2)∨D ⇒ . Assume otherwise. Then by invertibility
of the propositional rules we also have 	 C,B1, . . . , Bm+2 ⇒ . Together with
	 D ⇒ Bi for i ≤ m + 2 and admissibility of cut and contraction this yields
	 C,D ⇒ in contradiction to the original premiss �	 C,D ⇒ . �

One benefit of the equivalence is that now we have a formal correspondence
between certain I/O logics and the conditional logics or dyadic deontic logics
obtained by adding (the Hilbert-style versions of) the axioms and rules of Fig. 4
to standard axioms for classical propositional logic:

Corollary 13. For every finite set {(Ai,Xi) : i ≤ n} of I/O pairs we have
{(Ai,Xi) : i ≤ n} 	L (A,X) iff

∧
i≤n(Ai > Xi) → (A > X) is a theorem of the

conditional logic given by the corresponding axioms and rules of Fig. 4.

Proof. The proof of Theorem 12 also shows that the sequent calculi are sound
and complete for the logics given by the axioms and rules of Fig. 4 and the
cut rule, and thus also the corresponding Hilbert-style systems. In particular,
soundness is seen by converting the sequent rules into I/O derivations, then
converting these into derivations using the axioms and rules of Fig. 4. �

This opens up new possibilities for comparing I/O logics to other conditional
or dyadic deontic logics by investigating them in the same framework of Hilbert-
or sequent systems, or by giving them semantics along the lines of [5]. As an
example, Lewis’ counterfactual logic V from [15] in the language with the dyadic
comparative plausibility operator � has been equipped with a cut-free sequent
system in [13]. The sequent rules for the operator � are given by the set {Rn,m :
n ≥ 1,m ≥ 0} for the rules

{Bk ⇒ A1, . . . , An,D1, . . . , Dm : k ≤ n} {Ck ⇒ A1, . . . , An,D1, . . . , Dk−1 : k ≤ m}
Γ, (C1 � D1), . . . , (Cm � Dm) ⇒ (A1 � B1), . . . , (An � Bn),Δ

Rn,m

Setting n = 1 we note that the structure of the premisses is the same as that of
the rule RIm, only with flipped right and left hand sides. Thus we obtain:

Theorem 14. We have {(A1,X1), . . . , (An,Xn)} 	deriv+3
(A,X) if and only if

∧
i≤n(¬Ai � ¬Xi) → (¬A � ¬X) is a theorem of V.

Proof. Applications of the rule RIm are simulated in the system for V by nega-
tion rules followed by R1,n. Vice versa, if (¬A1 � ¬X1), . . . , (¬An � Xn) ⇒

From I/O Logics to Conditional Logics via Sequents - with Provers 159

(¬A � ¬X) is derivable in the system for V, then w.l.o.g. it is the conclusion
of an application of R1,n. Since the premisses are purely propositional, they are
derivable in Gderiv+3

. Using invertibility of the propositional rules we remove the
negations, and then apply the rule RIn. The full equivalence then follows from
Theorem 12. �

Thus the I/O logic deriv+3 can be seen as the flat modal Horn fragment of
conditional logic V. This then yields an alternative semantics for deriv+3 in terms
of the sphere models of [15] by simply spelling out the truth conditions for a
formula (¬A � ¬X).

4 Theorem Proving

One of the immediate benefits of the cut-free sequent calculi introduced above
is that we immediately obtain an alternative decidability and complexity proof:

Theorem 15 (Decidability and Complexity). Derivability in all the con-
sidered sequent systems is decidable in polynomial space.

Proof. By a standard backwards proof search argument, e.g., the generic com-
plexity result in [11, Thm. 2.7.8]. For the calculi with underivability statement
we just need to flip the results for these statements. �

Since I/O pairs do not contain nested operators, the complexity for solving
the entailment problem in I/O logics using our sequent calculi drops to the class
ΠP

3 of the polynomial hierarchy. However, since this is still above the optimal
coNP-bounds following from [31] we do not consider this in detail here.

In terms of implementing our calculi, one suboptimal factor is that the num-
ber of principal formulae in the conclusion is unbounded, and that in contrast
to, e.g., the rules for modal logic K the order of the principal formulae on the left
hand side is crucial. We can obtain a more modular and arguably more elegant
formulation by considering sequents with an additional block, in line with the
idea of modularisation of sequent calculi in [14] and inspired by the blocks for
nested sequent calculi in [1,8,19]. The main idea is to build up the sequent rules
one formula at a time, starting with the principal formula on the right. The
block is used to store the information during the building up of the rule.

Definition 16. An extended sequent is a standard sequent possibly extended
with a block [A > B : Ω] containing a formula A > B and a multiset Ω of
formulae. An extended sequent with a block is written Γ ⇒ Δ, [A > B : Ω].

The modal extended sequent rules then are given in Fig. 6, the modal part
of the extended sequent calculi EGL is given in Fig. 7. In addition, all the calculi
contain the standard propositional rules of Fig. 3. Note that this implies that
the propositional rules can only be applied to standard sequents, i.e., sequents
which do not contain a block. This is a design choice based purely on conve-
nience, because it automatically separates the propositional and modal phases

160 B. Lellmann

of a derivation, hence eliminating the need for a permutation-of-rules argument
as in [14, Thm.4.3] when showing equivalence of the calculi. Note also the subtle
difference between the rules jump and jumpag: In the latter the left hand side of
the premiss contains a formula B and hence cannot be empty. This ensures that
the rule jumpag can not be applied immediately above the rule >R, capturing
the fact that aggregative logics do not satisfy the axiom � of Fig. 4 and hence
their sequent rules from Fig. 5 have a non-empty left hand side in the conclusion.
The same mechanism holds for the consistent version jumpc ag of the rule.

Γ ⇒ Δ, [C > D :]
Γ ⇒ Δ, C > D

>R
Ω ⇒ D

Γ ⇒ Δ, [C > D : Ω]
jump

Ω, C ⇒ D

Γ ⇒ Δ, [C > D : Ω]
jump+

C ⇒ A Γ ⇒ Δ, [C > D : Ω, B]
Γ, A > B ⇒ Δ, [C > D : Ω]

>L

C, Ω ⇒ A Γ ⇒ Δ, [C > D : Ω, B]
Γ, A > B ⇒ Δ, [C > D : Ω]

>3
L

C ⇒ A D ⇒ B Γ ⇒ Δ, [C > D : Ω, B]
Γ, A > B ⇒ Δ, [C > D : Ω]

>ag
L

Ω, B ⇒ D

Γ ⇒ Δ, [C > D : Ω, B]
jumpag

C, Ω ⇒ A D ⇒ B Γ ⇒ Δ, [C > D : Ω, B]
Γ, A > B ⇒ Δ, [C > D : Ω]

>ag 3
L

Ω, B ⇒ D C, D ⇒
Γ ⇒ Δ, [C > D : Ω, B]

jumpc ag

Fig. 6. The extended sequent rules for internalised I/O logics

>R >L >3
L >ag

L >ag 3
L jump jump+ jumpag jumpc ag

EGderiv1

EG
deriv+1

EGderiv3

EG
deriv+3

EGag der1

EGag der3

EGc ag der1

EGc ag der3

Fig. 7. The exended sequent calculi

Proposition 17. The standard sequent calculi and the extended sequent calculi
are equivalent, i.e., a standard sequent is derivable in GL if and only if it is
derivable in EGL.

Proof. To see that every sequent derivable in the standard sequent calculi is also
derivable in the corresponding extended sequent calculi it is enough to show that
the standard modal rules are derivable rules in the extended sequent calculi. We

From I/O Logics to Conditional Logics via Sequents - with Provers 161

do this by first applying (bottom-up) the right rule for >, followed by a number of
applications of the left rule for > and finally an application of the corresponding
jump rule. E.g., an application

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), (A2 > B2), . . . , (An > Bn) ⇒ (C > D),Δ
Rn

C ⇒ A1

C, B1 ⇒ A2

C, B1, . . . , Bn−1 ⇒ An

B1, . . . , Bn ⇒ D

Γ ⇒ Δ, [C > D : B1, . . . , Bn]
jump

Γ, (An > Bn) ⇒ Δ, [(C > D) : B1, . . . , Bn−1]
>3

L

....
Γ, (A3 > B3), . . . , (An > Bn) ⇒ Δ, [C > D : B1, B2]

Γ, (A2 > B2), . . . , (An > Bn) ⇒ Δ, [(C > D) : B1]
>3

L

Γ, (A1 > B1), (A2 > B2), . . . , (An > Bn) ⇒ Δ, [(C > D) :]
>3

L

Γ, (A1 > B1), (A2 > B2), . . . , (An > Bn) ⇒ (C > D), Δ
>R

Fig. 8. The derivation of the sequent rule Rn

of the rule Rn is simulated by the derivation in Fig. 8. The other cases are similar.
For the other direction, due to the fact that an extended sequent contains at most
one block and the shape of the rules, the modal rules are applied only in blocks
with an application of >R at the bottom, followed by a number of applications
of the appropriate version of the >L rule and finally a single application of the
appropriate version of the jump rule. Such blocks straightforwardly correspond
to an application of the respective standard sequent rule, essentially reversing
the simulation of that rule considered above. �

A prototype implementation of proof search in the extended sequent calculi
in SWI-Prolog1 is available as IOCondProver both as a web interface2 and as
source code on GitHub3. The implementation uses the Lean methodology [2] to
delegate proof search to Prolog’s backtracking mechanism. In case proof search
is successful it outputs a LaTeX file containing the derivation, which is automat-
ically rendered to a PDF file in the web interface.

While decision procedures for some I/O logics have been given using a seman-
tic embedding into Higher Order Logic [3], it seems like the only other approach
to automated reasoning for the logics considered here is that of the I/O Logics
Workbench [29], which in its current version captures the logics deriv1, deriv+1 ,
deriv3 and deriv+3 but does not seem to capture the logics ag der1, ag der3,

1 See https://www.swi-prolog.org.
2 See http://subsell.logic.at/bprover/iocondprover/.
3 See https://github.com/blellmann/iocondprover.

https://www.swi-prolog.org
http://subsell.logic.at/bprover/iocondprover/
https://github.com/blellmann/iocondprover

162 B. Lellmann

c ag der1 or c ag der3. In contrast to the proof theoretic approach underlying
IOCondProver, the reasoning underlying the I/O Logics Workbench is based on
the semantic characterisation of the I/O logics, using a module for the conse-
quence relation of an underlying base logic. While this makes the I/O Logics
Workbench easily adaptable to other base logics such as intuitionistic logic, it
also makes it difficult to adapt to the full nested logics characterised by the
sequent calculi considered here. The proof theoretic approach of IOCondProver
has the additional advantage of certificates for derivable sequents in the form of a
derivation. Since IOCondProver is merely a prototype implementation, the focus
of this article is on the theoretical background, and in the absence of meaningful
sets of benchmark formulae for I/O logics we do not consider a performance
comparison with the I/O Logics Workbench here.

There are a number of calculi and theorem provers available both in the KLM-
framework, see, e.g., [6,7,28] as well as in the framework of conditional logics,
e.g., [9,18,20]. However, the vast majority of the available calculi and provers is
based on KLM or conditional logics not corresponding to one of the I/O logics
considered here. An exception is provided by the prover VINTE from [9], which
implements proof search in an internal calculus for conditional logic V. For the
reasons given in the context of the I/O Logics Workbench we also do not consider
performance comparisons with these provers here.

5 Conclusion

In this article we considered cut-free sequent calculi for a number of I/O logics
including ones with consistency constraints. Two of the calculi are non-standard
in that they contain underivability statements in the premisses. The calculi yield
a correspondence of the original I/O logics to certain conditional logics and
hence can form the basis of future comparisons between the two frameworks.
We also considered modified versions of the calculi which are implemented in
the prototype prover IOCondProver. For half of the considered logics this seems
to be the first implementation available.

There are a number of possible directions for future research. The most obvi-
ous one is the extension to further I/O logics, in particular the logics deriv2
and deriv4, which result from deriv1 and deriv3 by adding essentially the axiom
(A > C) ∧ (B > C) → (A ∨ B > C). Since all the axioms for these logics have
modal Horn form a cut-free sequent system immediately follows from the generic
construction of [11, Sec. 4.1, Cor. 4.1.20]. The rules could even be made com-
prehensible by using the universal orders of derivation of [16, Sec. 8], since the
order of applying I/O rules corresponds to an order in the construction of the
sequent rules by cuts. Unfortunately Contraction might not be admissible in the
resulting systems, and hence it is not clear that they can be used for automated
reasoning. In contrast, it might be simpler to adapt the calculi considered here to
the operators for permissions considered in [17,21]. Since the logics considered
here are given by axioms in modal Horn form and do not involve disjunction it
might also be straightforward to adapt them to intuitionistic instead of classical

From I/O Logics to Conditional Logics via Sequents - with Provers 163

logic as the base logic in the spirit of [22]. Finally, it might be possible to exploit
the sequent formulation in order to give a constructive proof of an analog of the
Craig Interpolation Property for I/O logics, following the methods of [11,13].

Acknowledgements. This article would not have been possible without the many
discussions on the topic with Leon van der Torre. I also thank the reviewers for their
thorough reading and comments which helped to improve the article.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal condi-
tional logics. J. Log. Comput. 26(1), 7–50 (2013). https://doi.org/10.1093/logcom/
ext034

2. Becker, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Reason.
15, 339–358 (1995). https://doi.org/10.1007/BF00881804

3. Benzmüller, C., Farjami, A., Meder, P., Parent, X.: I/O logics in HOL. J. Appl.
Logics 6(5), 715–754 (2019)

4. Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics.
ACM Trans. Comput. Log. 3, 226–278 (2002)

5. Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)
6. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux calculi for

KLM logics of nonmonotonic reasoning. ACM Trans. Comput. Log. 10(3), 1–47
(2009)

7. Giordano, L., Gliozzi, V., Pozzato, G.L.: KLMLean 2.0: a theorem prover for KLM
logics of nonmonotonic reasoning. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS
(LNAI), vol. 4548, pp. 238–244. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73099-6 19

8. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi
for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016.
LNCS (LNAI), vol. 10021, pp. 272–287. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48758-8 18

9. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L., Vitalis, Q.: VINTE: an
implementation of internal calculi for Lewis’ logics of counterfactual reasoning. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp.
149–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 9

10. Kraus, S., Lehman, D., Magidor, M.: Nonmonotonic reasoning, preferential models
and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

11. Lellmann, B.: Sequent calculi with context restrictions and applications to condi-
tional logic. Ph.D. thesis, Imperial College London (2013). http://hdl.handle.net/
10044/1/18059

12. Lellmann, B., Pattinson, D.: Cut elimination for shallow modal logics. In: Brünnler,
K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 211–225.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22119-4 17

13. Lellmann, B., Pattinson, D.: Sequent systems for Lewis’ conditional logics. In: del
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp.
320–332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-
8 25

14. Lellmann, B., Pimentel, E.: Modularisation of sequent calculi for normal and non-
normal modalities. ACM Trans. Comput. Logic 20(2), 7:1–7:46 (2019)

https://doi.org/10.1093/logcom/ext034
https://doi.org/10.1093/logcom/ext034
https://doi.org/10.1007/BF00881804
https://doi.org/10.1007/978-3-540-73099-6_19
https://doi.org/10.1007/978-3-540-73099-6_19
https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-3-319-66902-1_9
http://hdl.handle.net/10044/1/18059
http://hdl.handle.net/10044/1/18059
https://doi.org/10.1007/978-3-642-22119-4_17
https://doi.org/10.1007/978-3-642-33353-8_25
https://doi.org/10.1007/978-3-642-33353-8_25

164 B. Lellmann

15. Lewis, D.: Counterfactuals. Blackwell (1973)
16. Makinson, D., van der Torre, L.: Input/Output logics. J. Philos. Log. 29, 383–408

(2000). https://doi.org/10.1023/A:1004748624537
17. Makinson, D., van der Torre, L.: Permission from an input/output perspective. J.

Philos. Log. 32, 391–416 (2003). https://doi.org/10.1023/A:1024806529939
18. Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving condlean for stronger condi-

tional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702,
pp. 328–332. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554 27
http://www.springerlink.com/index/835jd3u9fx8klwy9.pdf

19. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual
logics. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp.
270–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2 19

20. Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent cal-
culi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 511–518. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08587-6 39

21. Olszewski, M., Parent, X., van der Torre, L.: Input/Output logic with a consistency
check - the case of permission. In: DEON 2020/2021. College Publications (2021)

22. Parent, X., Gabbay, D., Torre, L.: Intuitionistic basis for input/output logic. In:
Hansson, S.O. (ed.) David Makinson on Classical Methods for Non-Classical Prob-
lems. OCL, vol. 3, pp. 263–286. Springer, Dordrecht (2014). https://doi.org/10.
1007/978-94-007-7759-0 13

23. Parent, X., van der Torre, L.: Input/output logic. In: Gabbay, D., Horty, J., Parent,
X., van der Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and
Normative Systems, chap. 8, pp. 495–544. College Publications (2013)

24. Parent, X., van der Torre, L.: The pragmatic oddity in norm-based deontic logics.
In: Governatori, G. (ed.) ICAIL 2017, pp. 169–178. Association for Computing
Machinery (2017). https://doi.org/10.1145/3086512.3086529

25. Parent, X., van der Torre, L.: I/O logics with a consistency check. In: Broersen, J.,
Condoravdi, C., Nair, S., Pigozzi, G. (eds.) Deontic Logic and Normative Systems.
DEON 2018, pp. 285–300. College Publications (2018)

26. Parent, X., van der Torre, L.: Input/Output logics without weakening. Filosofiska
Notiser 6(1), 189–208 (2019)

27. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional
logics. Log. Methods Comput. Sci. 7(1:4), 1–28 (2011)

28. Pozzato, G.L.: Conditional and Preferential Logics: Proof Methods and Theorem
Proving. Frontiers in Artificial Intelligence and Applications, vol. 208. IOS Press,
Amsterdam (2010)

29. Steen, A.: Goal-directed decision procedures for input/output logics. In: Liu, F.,
Marra, A., Portner, P., Putte, F.V.D. (eds.) DEON2020/2021. College Publications
(2021, to appear)

30. Stolpe, A.: Normative consequence: the problem of keeping it whilst giving it up.
In: van der Meyden, R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI),
vol. 5076, pp. 174–188. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70525-3 14

31. Sun, X., Robaldo, L.: On the complexity of input/output logic. J. Appl. Logic 25,
69–88 (2017)

32. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in The-
oretical Computer Science, vol. 43, 2nd edn. Cambridge University Press, Cam-
bridge (2000)

https://doi.org/10.1023/A:1004748624537
https://doi.org/10.1023/A:1024806529939
https://doi.org/10.1007/11554554_27
http://www.springerlink.com/index/835jd3u9fx8klwy9.pdf
https://doi.org/10.1007/978-3-319-24312-2_19
https://doi.org/10.1007/978-3-319-08587-6_39
https://doi.org/10.1007/978-3-319-08587-6_39
https://doi.org/10.1007/978-94-007-7759-0_13
https://doi.org/10.1007/978-94-007-7759-0_13
https://doi.org/10.1145/3086512.3086529
https://doi.org/10.1007/978-3-540-70525-3_14
https://doi.org/10.1007/978-3-540-70525-3_14

Theorem Proving

Towards Finding Longer Proofs

Zsolt Zombori1,2(B), Adrián Csiszárik1,2, Henryk Michalewski3,4,
Cezary Kaliszyk3,5, and Josef Urban6

1 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
zombori@renyi.hu

2 Eötvös Loránd University, Budapest, Hungary
3 University of Warsaw, Warsaw, Poland

4 Google Inc., Warsaw, Poland
5 University of Innsbruck, Innsbruck, Austria

6 Czech Technical University in Prague, Prague, Czech Republic

Abstract. We present a reinforcement learning (RL) based guidance
system for automated theorem proving geared towards Finding Longer
Proofs (FLoP). Unlike most learning based approaches, we focus on gen-
eralising from very little training data and achieving near complete con-
fidence. We use several simple, structured datasets with very long proofs
to show that FLoP can successfully generalise a single training proof to
a large class of related problems. On these benchmarks, FLoP is com-
petitive with strong theorem provers despite using very limited search,
due to its ability to solve problems that are prohibitively long for other
systems.

Keywords: Automated theorem proving · Machine learning ·
Reinforcement learning · Connection calculus

1 Introduction

Automated Theorem Proving (ATP) is the study of using machines for formal
mathematical reasoning. It is related to general game playing, for example, the
game of Go can be viewed as a simple formal system. Building on the recent
success of machine learning, a growing trend in this field is to use learning
methods to make theorem provers more powerful. Several research projects have
shown that learning can be used to replace/surpass human-engineered heuristics.
Despite huge improvements, interesting mathematical theorems remain elusive
today. One crucial shortcoming of ATP systems is that they can typically find
only relatively short proofs.

In this paper, we address this shortcoming and ask the question of how
machine learning can be used to solve problems requiring very long inference
chains. We argue that the fundamental reason why current ATP systems are
limited to short proofs is that they focus on the search aspect of the task in the
space of inference steps. It is very natural to see theorem proving as a search

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 167–186, 2021.
https://doi.org/10.1007/978-3-030-86059-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_10

168 Z. Zombori et al.

problem: each proof step involves a choice from a set of valid inferences, yielding
a search space that grows exponentially with the length of the proof. Due to
the exponential blowup, the search is bound to fail beyond a certain depth –
except for special classes of problems where one of the smart human heuristics
of the theorem prover allows for finding the solution without a search. As W.
W. Bledsoe observed [7]: “Automated theorem proving . . . is not the beautiful
process we know as mathematics. This is ‘cover your eyes with blinders and hunt
through a cornfield for a diamond-shaped grain of corn’.”

Approaches that try to avoid excessive search broadly fall into three cate-
gories: 1) Perform large steps, such as the invocation of tactics, decision proce-
dures in SMT solvers [4], or other complex algorithms. This approach is widely
used in interactive theorem provers, e.g. [5,13,30]. 2) Perform hierarchical rea-
soning by first creating a high-level proof plan and then gradually refine it to
the calculus level, e.g. [10,29]. 3) Reason by analogy, e.g. [8,28].

Reasoning by analogy involves observing the proof of one problem, extract-
ing the core idea, and successfully applying it to another. Note that using this
formulation, success is barely dependent on proof length. On the other hand,
establishing mappings between proofs is challenging and depends heavily on
a proper data representation, which has been from the beginnings of ATP a
major bottleneck for this approach. However, with the advent of machine learn-
ing methods capable of automatically discovering good data embeddings, the
analogy approach seems worth revisiting.

In this work, we interpret analogical reasoning as building a model that
internalises a proof and then successfully applies it to a class of related problems,
without relying much on search. The trained model is supposed to know the
proof of an unseen, yet familiar problem. This is a highly simplified approach
which does not capture the full potential of analogy, but we argue that it is
a meaningful start that will hopefully lead to more refined solutions. We select
classes of problems where proofs are highly similar and trained humans can often
generalize a single demonstration to the entire class, even if proof lengths greatly
differ. We explore whether machine learning can yield similar generalization.

Many successful ATP systems, such as [11,17,19,31,36,52,56] implement the
MaLARea [50,52] learning/reasoning loop (described later also as the DAg-
ger [43] meta-algorithm). The MaLARea loop interleaves ATP runs based on
the current models (data collection phase) with a training phase, in which these
models are updated to fit the collected data.

An alternative family of reinforcement learning methods, including Temporal
Difference (TD) learning [49], continuously update their models, allowing the
system to bootstrap on itself. Such methods have so far been mostly ignored by
the theorem proving community. In these methods, the search is usually replaced
by rollouts. While MaLARea has been shown to yield good search heuristics, we
argue that rollout based data collection is more suitable when the aim is to fully
explore the space around a single problem without overfitting to it. Our work
has the following contributions.

Towards Finding Longer Proofs 169

– We introduce a new theorem proving algorithm FLoP (Sect. 4) based on a TD
algorithm1 and the connection tableau calculus [6]. FLoP makes use of the
curriculum learning algorithms presented by [40] and [44]. These techniques
are well established in RL, however, they have never been applied to theorem
proving before.

– We introduce a synthetic dataset of increasingly difficult arithmetic problems,
as well as two datasets from the Logical Calculi domain of the TPTP [48]
library, augmented with lemmata (Sect. 5).

– We show that when restricted to single shot evaluation – without search –
FLoP performs very well, while another prover based on guided Monte Carlo
Tree Search greatly degrades.

– We evaluate FLoP on our arithmetic benchmarks by training it on a single
problem and show that it generalizes very well even when evaluated without
search, allowing just a few proof attempts. This suggests that it has learned
a simple form of reasoning by analogy.

– We use the arithmetic benchmarks to compare FLoP with state-of-the-art
provers Vampire [25], E [46], leanCoP [32] guided by human-designed strate-
gies, and with rlCoP [19] – an RL-based connection tableau prover. In the
simple setup of unary encoding of numbers, FLoP is only outperformed by
a portfolio (multi-strategy) mode of a single manually optimized rewriting-
based system and only after trying several of its autoconfiguration heuristics.
When using binary encoding, FLoP performs best, demonstrating its ability
to generalize to long proofs.

Our datasets presented in Sect. 5 seem to be particularly suited for machine
learning methods: some problems are algorithmically simple, with long solutions
and strong shared structure (Robinson Arithmetic) while others are less similar,
but hierarchically structured (Logical Calculi). Nevertheless, state-of-the-art sys-
tems struggle with solving some of the problems (see Sect. 6). Furthermore, our
problems are much easier to analyze than typical heterogeneous proof corpora,
hence promising better understanding of the current limits of theorem provers.
The difficulty of our synthetic problems, as well as the proof lengths, are easily
adjustable, yielding a scalable RL benchmark with interpretable failure modes.

Our code, datasets and all experiment configuration files are available at
http://bit.ly/code atpcurr2. Supplementary materials including screencasts with
gameplays performed in our environments are available at the project webpage
http://bit.ly/site atpcurr.

2 Related Work

Theorem Proving by Analogy. Analogy has long been considered one of the most
important heuristics in mathematical problem solving, e.g. [37,38]. It also gained
1 In particular, we use Proximal Policy Optimization [45] (PPO), a variant of the

policy gradient method, which uses Temporal Difference learning for optimization
of the value function.

2 This distribution does not include the fCoP theorem prover, which cannot yet be
publicly released, however, a binary can be obtained upon request.

http://bit.ly/code_atpcurr
http://bit.ly/site_atpcurr

170 Z. Zombori et al.

attention in automated theorem proving, e.g. [8,28], as an alternative of search-
based methods. [8] defines analogical reasoning as “the proof of one theorem is
used to guide the proof of a similar theorem by suggesting analogous steps”.
They rely on a user-provided matching between analogous concepts related to
the two theorems and try to reuse the proof steps (adjusted modulo analogy) in
the source proof during the construction of the target. [28] aim to achieve this
on a higher level of abstraction by matching proof plans of a source and a target
problem. As the proof plan is constructed, the plan of the source is searched
for steps that can be transformed into a suitable step for the target. The set
of allowable transformations are predefined and designed for a narrow domain.
For example, the transformations given in [28] aim to carry a result, such as
the Heine Borel theorem, stated in R

1 over to R
2. The characteristic feature of

these systems is that search is performed on the meta level of plan mappings
and proof step transformations. The search space is often defined ad hoc and is
much smaller than that given by the inference rules of the calculus.

A machine learning system that is trained to guide a theorem prover is
supposed to achieve a similar result, with two important improvements. First
transformations are learned, without the need for manual engineering. Second,
establishing mappings between proof steps (that can be transformed into each
other) should result from learning of flexible and abstract features. The flexibility
and abstraction allows for potentially reusing the same proof components sev-
eral times, as well as using components from different proofs, which goes beyond
earlier attempts that only establish direct matching between the two proofs.

Machine Learning Systems for Guiding Theorem Provers. A large body of
research exists that aims to provide guidance for theorem provers via machine
learning. FEMaLeCoP [18], rlCoP [19,31] plCoP [56] and lazyCoP [39] guide
the leanCoP [32] compact connection tableau prover, which is also the system
guided in our project. Learning based guidance is added to the saturation based
E prover [46] in [11,15,16,26]. The HOList project [3,33] builds guidance on
the tactic level3 for the HOL Light [13] higher-order theorem prover. A distinc-
tive feature of all these systems is that they rely heavily on an external search
procedure, such as Monte Carlo Tree Search [24], or the search engine of the
guided prover. Learning is aimed at making search more efficient and it is imple-
mented in alternating iterations of proof search and model fitting, according to
the DAgger [43] meta-algorithm, first used in MaLARea [52] for theorem proving.
In contrast with the above, we use an algorithm which uses bootstrapping and
learns from generated rollouts, aiming to learn to generate entire proof sequences
in the leanCoP calculus. Such rollout based learning has so far been barely used
in theorem proving, with the noteable exception of [12], developed in parallel
with FLoP, which guides a saturation style prover using a simple policy gradient
RL algorithm.

Concurrently with our work, [35,36,51] have used recurrent neural networks,
attention and transformers to generate next proof steps. E.g., [36] report gen-
eralisation on problems with relatively short proofs. In line with emphasizing

3 A tactic is a human-designed program which aggregates multiple proof steps.

Towards Finding Longer Proofs 171

analogy over search, their evaluation protocol only allows for limited search in a
single proof attempt4. Our work employs much smaller neural models and focuses
on generalizing to proofs with hundreds and thousands of steps (see Fig. 3).

Provers guiding the leanCoP Connection Tableau Calculus. As noted above, a
series of learning systems guide the leanCoP connection calculus. Of these, we
highlight three systems that use roughly the same learning setup: rlCoP [19],
plCoP [56] and graphCoP [31]. In these systems, the value and policy functions
of the guided MCTS algorithm are learned similarly to [1,47]. FLoP shares the
same manually developed features [21] with rlCoP and plCoP, while graphCoP
employs a graph neural network for feature extraction. We use these systems as
an important baseline in Sect. 6. While the differences are important, they play
little role in our current investigation and we refer to them jointly as mcts-CoPs.

By trying to match individual steps, these works all manipulate on the level
of abstraction of a sequence of proof steps, instead of matching entire proof
objects. This is a simplified approach that does not capture the full potential of
analogy. Nevertheless, we argue that it is a meaningful start and we take the same
approach in our work and interpret analogical reasoning as being able to produce
a sequence of proof steps after having internalised a sequence of proof steps of
an “analogous” problem. In our interpretation, we will put large emphasis proof
construction without search: we ask what sort of machine learning scenarios allow
for building a model that can internalize complex proof patterns and produce
proofs for a class of problems (almost) without search.

A number of works have demonstrated how machine learning can enhance
calculus level search of theorem provers. In this paper we intend to point out
that machine learning is also well suited for analogical reasoning. We provide
datasets and benchmarks which enforce very long proofs and in turn make the
search very hard, emphasizing a need for reasoning via analogy.

3 The leanCoP Connection Tableau Calculus

FLoP provides guidance for of the very compact leanCoP [32] connection tableau
calculus. The calculus was originally implemented in Prolog, but it also has an
OCaml reimplementation fCoP [20] and FLoP can be used to guide both systems.

We briefly describe the connection tableau calculus, assuming basic first-
order logic and theorem proving terminology [41]. The input is a (mathematical)
problem consisting of axioms and conjectures formally stated in first-order logic
(FOL). The calculus searches for refutational proofs, i.e. proofs showing that the
axioms together with the negated conjectures are unsatisfiable. The FOL formu-
las are first translated to clause normal form (CNF), producing a set of first-
order clauses consisting of literals, e.g. {∀X,Y : (f(X)|r(X,Y |¬f(Y)), f(a)}.
Proof search starts with a start clause as a goal and proceeds by building a
connection tableau by repeatedly applying extension steps and reduction steps.

The extension step connects (unifies) the current goal with a complemen-
tary literal of a new clause. This extends the current branch, possibly splitting

4 A maximum of 4096 search nodes are allowed.

172 Z. Zombori et al.

it into several branches if there are more literals in the new clause, and possibly
instantiating some variables in the tableau. The reduction step connects the cur-
rent goal to a complementary literal of the active path, thus closing the current
branch. The proof is finished when all branches are closed. The extension and
reduction steps are nondeterministic, requiring backtracking in the standard con-
nection calculus. Iterative deepening is often used to ensure completeness. The
project webpage shows an example closed connection tableau, i.e., a finished proof
tree where every branch contains complementary literals (literals with opposite
polarity). This shows that the set of clauses is unsatisfiable.

leanCoP represents theorem proving as a one-person game. The game ends
with success if a proof is found. The prover has many choices to make along the
way, in particular it can select from several valid extension and reduction steps.
Whether a step is valid depends on the unification condition, i.e., if the current
goal unifies with the negation of a literal in the corresponding clause. The full
information about the game state consists of all previous proof steps, the partial
proof tree (proof state) and the current goal.

The search space of the prover is exponentially large in the length of the
proof. In leanCoP, the action space is roughly correlated with the size of the
axiom set. While this can be large for large problems, typically only a few actions
are available in any particular state.

4 FLoP – Main Algorithm

Agent (PPO)

Make rollouts based on current policy

Collect (state, action, reward) triples

Train Value and Policy networks

Controller

Select problem
Set initial prover state
Collect success statistics
Determine reward
Reset after episode is over
Advance curriculum

EmbedderFCoP theorem
prover Actions

Current tableau

Valid inferences

Selected step

Reset

State

Proof found?

Reward

Selected Action

Theorem Proving Environment

Fig. 1. Theorem proving as a reinforcement learning environment.

FLoP combines the connection tableau calculus with guidance based on Tem-
poral Difference and curriculum learning. After each inference step, the prover
engine returns its current state as well as the set of valid actions, i.e., valid infer-
ence steps that transform the current goal. The prover is encapsulated into a

Towards Finding Longer Proofs 173

Reinforcement Learning (RL) environment. In the following, we provide a brief
summary of the relevant RL techniques.

4.1 Reinforcement Learning Fundamentals

Our RL summary is highly selective, aiming to describe Proximal Policy Opti-
mization [45], the method used in FLoP. For further details, see [49].

Markov Decision Process. The mathematical foundation of the class of problems
that Reinforcement Learning aims to solve is given by Markov Decision Processes
(MDP). An MDP(S,A,R,P, γ) describes a dynamic process and consists of the
following components: S is the set of states, A is the set of actions, R : (S×A) →
R is a reward function, P : (S × A) → S is the state transition function and
γ is the discount factor. We assume that an agent interacts with this MDP,
generating sequences of (st, at, rt) state-action-reward tuples, called trajectories.
The agent is equipped with a policy function π : S → A which determines which
action it selects in a particular state. The aim of the agent is to maximize its
total accumulated reward

∑
t≥0 γtrt. Several components of the model can be

stochastic: the reward function, the transition function, as well as the policy.
In such settings, the aim of the agent it to find the policy π∗ that maximizes
its cumulative expected reward, where future rewards are discounted with the γ
discount factor:

π∗ = arg max
π

E[
∑

t≥0

γtrt|π]

Policy Gradient. One successful family of methods solves this task by considering
a parametric class of policy functions Π = {πΘ, Θ ∈ R

m}. We continuously
sample trajectories from the current policy and optimize the parameters Θ via
gradient descent based on the observed rewards. This is called policy gradient,
and the RL literature contains numerous variants that differ in the details of
optimization.

One well known difficulty of policy gradient is the large variance in the sam-
pled trajectories, which makes convergence slow and requiring large number of
training samples. A popular technique to reduce variance is to train a baseline
model that estimates the expected reward from a given state and optimize the
policy with respect to the excess reward on top of the baseline. This gives rise
to the actor-critic framework. We train two models jointly: a critic: Vπ(s) that
estimates the expected reward of trajectories starting from s given policy π and
an actor, which is our policy π. Given some state s, we use the policy to sample
an action a. We then sample further transitions to estimate the expected reward
Qπ(s, a) from state s after taking action a. We define advantage as the difference
between these two expectations: Aπ(s, a) = Qπ(s, a) − Vπ(s). Our optimization
objective is then:

min
ΘV

max
Θπ

Aπ(s, a)

where ΘV and Θπ are the parameters of the critic and the actor, respectively.

174 Z. Zombori et al.

Proximal Policy Optimization. Policy gradient is an on-policy method, meaning
that it optimizes the parameters of the policy based on trajectories sampled
from the same policy. In contrast with off-policy methods, which extract samples
through some other mechanism, policy gradient learning can be highly unstable.
This is because the change in policy potentially invalidates the samples it was
trained on. Proximal Policy Optimization [45] (PPO) addresses this problem by
introducing a soft constraint on the magnitude of the policy updates.

We maintain two instances of the policy network: πΘ which we aim to improve
and πΘold

which we sample from. The ratio of the two policies gives us a measure
of difference:

rt(Θ) =
πΘ(at|st)

πΘold
(at|st)

If this ratio lies outside of the range [1− ε, 1 + ε], then the advantage function is
clipped:

r∗
t (Θ) = clip(rt(Θ), 1 − ε, 1 + ε)

A∗
πΘ

(s, a) = min(rt(Θ)AπΘold
, r∗

t (Θ)AπΘold
)

The two networks are periodically synchronized to ensure that they are not too
different. PPO has been shown to strike a good balance between simplicity and
stability and is one of the most popular policy gradient methods.

4.2 Reinforcement Learning in FLoP

Theorem proving can be directly mapped into an MDP by treating prover states
as states, inference steps as actions and proof attempts as trajectories. The only
missing component is the reward function, which we set to be

R(s, a) =
{

1 if perfoming a in s finishes the proof
0 otherwise

Other reward functions are also possible, though we argue that the selected one
is most faithful to the task at hand: 1) we know very little about progress before
we have found a proof, hence the zero reward for intermediary steps and 2) it is
hard to tell if one proof is better than another, hence the binary nature of the
rewards.

Reward maximization directly corresponds to finding a proof. Hence, we aug-
ment the core connection tableau calculus with a value (critic) and a policy
(actor) model trained using PPO. Classical proof search is then replaced with
generating proof attempts from the policy. Figure 1 shows the overall architec-
ture of the system and Fig. 2 shows the policy and value network architectures.
The state and the actions (formulae) are represented using previously developed
features [21]. The features include (suitably hashed) triples, pairs, and singletons
of adjacent nodes in the formula trees and the partial proof trees, as well as some
global features: number of open goals, number of symbols in them, their maxi-
mum size and depth, length of the current path, and two most frequent symbols
in open goals. This means that the proof states and the actions are presented as
(sparse) fixed-length vectors.

Towards Finding Longer Proofs 175

Action 1
Features

Action 2
Features

Action k
Features

...

Action 1
Logit

Action 2
Logit

Action k
Logit

...

Softmax

State
Features

Action 1
Probability

Action 2
Probability

Action k
Probability

...

Value function

Dense(500) + ReLU

Dense(500) + ReLU

Dense(1)

PPO
Loss

Dense(500) + ReLU

Dense(500) + ReLU

Dense(1)

Policy

Fig. 2. Value and Policy network architectures in PPO. Their inputs are state and
state-action pair features, respectively. The policy returns a score for each action,
which are then normalized to a probability.

4.3 Curriculum Learning

A fundamental challenge for an RL system that learns to prove theorems from
its own exploration is that rewards are sparse and binary. In case proofs are long,
this makes learning nearly impossible. To tackle this, we use curriculum learning
on the length of proofs in case a proof is available. Initially, we start exploration
from near the end of the proof, making it easy to succeed and obtain positive
reward. As the system gets more confident, we gradually move the starting state
backwards along the given proof. This approach has already been successfully
applied in many RL experiments. When there is no good alternative to the train-
ing proof, the system eventually learns those steps, while random exploration
helps to identify alternatives and find novel proofs. Exploration also helps to
learn steps that make the proof impossible to finish. We can start learning with
or without training proofs. Each training problem can have its own curriculum
schedule, which can be restarted when a new proof is found. Curriculum learning
is an efficient tool for boosting rewards found during exploration.

176 Z. Zombori et al.

Algorithm 1. FLoP: Main Learning Loop
Require: problems P, policy π, value v, train steps ∈ N, threshold ∈ [0..1], episodes

between updates: k ∈ N

Ensure: trained policy π, trained value v, possibly proofs for some problems in P
1: curriculum ← dictionary such that for each p ∈ P with proof Pr curriculum[p] =

len[Pr] − 1
2: steps ← 0
3: while steps ¡ train steps do
4: for j in 1..k do
5: p ← random problem from problem set P {An episode corresponds to a prob-

lem}
6: initialize prover on problem p
7: if p has stored proof then
8: Take curriculum[p] proof steps according to stored proof
9: end if

10: while not episode over do
11: s′, a′

1, a
′
2 . . . a′

l ← Query prover for current state and valid actions
12: s, a1, a2 . . . al ← feat(s′), feat(a′

1), feat(a′
2) . . . feat(a′

l) {Extract features}
13: Take action according to policy π(a|s), observe reward r
14: steps ← steps + 1
15: end while
16: update success ratio for p
17: if p is solved with proof Pr and no proof of p was known before then
18: curriculum[p] ← len(Pr) − 1 {Start curriculum}
19: end if
20: if success rate for p ¿ threshold then
21: curriculum[p] ← curriculum[p] − 1 {Advance curriculum}
22: end if
23: end for
24: Update policy π and value v
25: end while

4.4 Training Algorithm

Algorithm 1 gives an overview of the learning loop. First, in line 5 we sample a
problem (in case there are multiple). In lines 6–9 we interact with the prover and
ensure that its state corresponds to the one dictated by the current curriculum.
In lines 10–15 we generate a proof attempt iterating 1) prover steps, 2) featur-
ization, and 3) sampling a next action according to the policy. If a new problem
is solved, we start the curriculum on it in lines 17–19. If performance on a given
problem and curriculum reaches a threshold, we advance the curriculum in lines
20–22. In line 24 we update the policy and value models.

4.5 Implementation Details

Most of the FLoP system is implemented in the Python programming language,
using the [14] RL framework. FLoP guides the fCoP [20] system, which is a

Towards Finding Longer Proofs 177

reimplementation of leanCoP in the OCaml programming language. The com-
munication between the guidance and prover components is provided via the C
foreign language interface.

5 Datasets

To evaluate our system, we select simple classes of theorems with strong shared
structure, giving a large room for learning-based improvement. Our five datasets
are described in Table 1. The datasets are bundled into an OpenAI-gym [9]
compliant environment and can be tested with modern RL algorithms.

Table 1. Three challenges defined in the theory of Robinson Arithmetic (RA) and two
challenges from the Logical Calculi (LCL) domain of the TPTP library

Name Theory Size Description

RA-1 RA 1800 Expressions of the form N1 + N2 = N ,
N1 · N2 = N , where 0 ≤ Ni < 30. (Examples:
3+4=7 or 5·12=60.)

RA-2 RA 1000 T = N , where 0 ≤ N , and T is a random
expression with 3 operators and operands Ni such
that 0 ≤ Ni < 10. (E.g.: ((3+4)·2)+6=20.)

RA-3 RA 1000 T1 = T2, where T1 and T2 are random expressions
with 3 operators and operands Ni such that
2 ≤ Ni < 10. E.g. ((3+4)·2)+6=((1+1)·5)·2.)

LCL-Eq LCL 890 TPTP domain: Logic Calculi (Equivalential) –
extended with lemmata from E prover.

LCL-Imp LCL 1204 TPTP domain: Logic Calculi
(Implication/Falsehood 2 valued sentential) –
extended with lemmata from E prover

Three datasets are built on the theory of Robinson Arithmetic [42], which
defines addition and multiplication on the nonnegative integers. Despite its rel-
ative simplicity, this theory seems to be particularly suited for machine learning
methods: solutions are long and repetitive, while also challenging for state-of-
the-art systems (see Sect. 6). We examine both unary (24 actions) and binary (40
actions) encoding of numbers. The axioms of Robinson Arithmetic are given on
the project webpage. Increasing the numbers in the conjecture greatly increases
the length of the proof, making this dataset suitable for detecting the length
boundary of various theorem provers.

Two datasets are extracted from the TPTP library, from the domain of
Logical Calculi with condensed detachment (LCL). These theorems have been
extensively studied from the early days of automated theorem proving, e.g.
[22,27,34,55]. We run E prover with a large time limit on the problems and
augment the dataset with lemmata extracted by E. As a result, many proofs of

178 Z. Zombori et al.

simpler problems can be directly used as parts of the proofs of harder problems.
A direct analogy from one problem to the other is usually not possible, however,
shallow search is often sufficient to connect the proofs of easier problems to the
proof of harder ones.

The LCL domain in the TPTP [48] library consists of statements about var-
ious formal inference systems. LCL-Eq and LCL-Imp formalize properties of the
Equivalential Calculus and the Implication and Falsum Calculus, respectively.
Both are subsystems of the classical propositional calculus, restricting the set
of allowed connectives to {≡} and { =⇒ ,⊥}. For both subsystems, the appro-
priate variant of the condensed detachment inference rule (A,A ≡ B � B and
A,A =⇒ B � B) constitutes a strongly complete inference system, i.e., when-
ever a formula semantically follows from a set of premises, it also follows from the
set syntactically. A number of complete axiomatizations of both the Equivalen-
tial Calculus and the Implication and Falsum Calculus exist and the theorems
in our datasets establish connections between them.

All arithmetic problems in our dataset are quite simple for humans, but in
the case of logical calculi, some of the problems were posing a challenge for
mathematicians (see [54]).

6 Experiments

Our experiments with Robinson arithmetic aim to demonstrate that in this
highly structured dataset FLoP is capable of extracting a general proof pattern
from one or two proofs and generalizing to related proofs of arbitrary length,
using a restricted few-shot evaluation method (see below). Experiments 1, 2,
and 3 compare FLoP with strong theorem provers using different fragments of
the arithmetic dataset, varying the complexity of the axiomatization (unary vs.
binary encoding of numbers) and the complexity of the target theorems (RA-1,
RA-2, RA-3). FLoP is either the best or the second-best in each experiment. In
each of these experiments, FLoP is allowed 100 proof attempts without back-
tracking: the first attempt is a deterministic run with a high time limit (1000
sec) that always selects the action maximizing the policy and the remaining 99
runs are stochastic samples from the policy with a time limit of 60 sec.

The LCL problems used in our experiments are less structured and success
is dependent on search, even if the hierarchical composition of problems ensures
that a relatively small search is sufficient to generalize from easier problems to
harder ones. Consequently, we expect that search-based methods are better in
this domain. However, when search is completely disallowed during evaluation,
we show in Experiment 4 that FLoP performs much better than the mcts-CoPs.
In Experiments 5 and 6 we demonstrate the benefit of using curriculum learning.

Our hyperparameters were selected using small grid searches. We checked
standard RL parameters (e.g., the discount factor), parameters related to cur-
riculum scheduling (e.g., local vs. global), neural network architectures (1–5
layers with 128–1024 neurons), feature sizes (64–1024) and training steps (105

– 108). Parameters used in the experiments are described in configuration files
which are accessible along with the shared codebase.

Towards Finding Longer Proofs 179

Experiment 1: Comparison with Other Provers. We compare FLoP with a ran-
dom model, two state-of-the-art saturation-style theorem provers (E 2.4, Vam-
pire 4.3.0), a heuristic guided connection tableau prover (leanCoP 2.1), and rlCoP
(one of the mcts-CoPs). Vampire, E, and leanCoP use human-designed strategies
instead of learning. We use these provers in the configuration used for CASC, the
yearly competition of fully automated theorem provers, employing a time limit
of 60 sec. per problem. For E, we also report the results of the auto-schedule
mode. For rlCoP we used the hyperparameters described in [19], only modifying
the policy temperature from 2.5 to 1.5, as this works better with the Robinson
datasets. The number of inferences in MCTS was limited to 200000. rlCoP was
trained on the whole evaluation set, while FLoP was trained on a single problem:
1 · 1 = 1 and 1 · 1 · 1 = 1 for RA-1 and RA-2, respectively.5

Fig. 3. Distributions of length of proofs found by FLoP. Note the logarithmic scale.
Left: RA-1, RA-2 and RA-3 with average proof lengths 367, 2082, and 1864. Right:
binary RA-1 and binary RA-2 with average proof lengths 85 and 179.

Table 2. Comparing a random model,
Vampire, E, leanCoP, rlCoP and FLoP, with
respect to success ratio for RA-1, RA-2
and RA-3 problems. Our method (FLoP) is
marked in grey. E1 – auto mode, E2 – auto-
schedule mode, E3 – auto-schedule with
renamed equality. The reason why FLoP did
not reach 100% on RA-2 is that a few prob-
lems timeouted.

Dataset Random Vampire E1 E2 E3 leanCoP rlCoP FLoP

RA-1 0.04 0.60 0.60 1.0 0.54 0.22 0.86 1.0
RA-2 0.05 0.40 0.39 1.0 0.25 0.14 0.74 0.99
RA-3 0.00 0.34 0.28 1.0 0.22 0.01 0.41 0.67

Success ratios are given in Table 2.
FLoP is only outperformed by E’s
auto-schedule, which tries multiple
strategies and finds one with the left-
to-right ordering of all the addition
and multiplication axioms. This solves
all of our problems immediately with-
out proof search by only rewriting
to a normal form [2]. This demon-
strates the power of equational the-
orem proving when a suitable term
ordering exists and can be found by
human-designed heuristics. This is, however, far from guaranteed in general even
in such simple domains, as witnessed by Vampire’s failure to find this ordering.
To evaluate E without access to its built-in rewriting capability, we have renamed
the equality to a new predicate ‘eq’ axiomatized exactly in the same way as in
leanCoP. The auto-schedule mode then becomes somewhat weaker than the auto
mode.
5 For a description of RA-3 training problems, see Experiment 2.

180 Z. Zombori et al.

Experiment 2: Harder Arithmetic Expressions. RA-3 consists of arithmetic
equalities with random expressions on both sides. This dataset is significantly
more complex because there are many ways of proving the same problem. Proofs
are longer, too. For FLoP, we examined various training sets and found that the
system is very prone to overfitting. Most problems can be proven in many dif-
ferent ways, that vary greatly in terms of how well they foster generalization. It
is true especially of easier problems that they can be proven with “shortcuts”
that hinder generalization (see more on this on the project webpage). The harder
the problems, the less likely they can be solved with such heuristic approaches,
hence harder training problems promise better training signal. We demonstrate
this by training FLoP on a few harder problems with proofs provided, making
use of curriculum learning described in Sect. 4. A single longer training proof is
sufficient to yield meaningful generalization. Adding one more training problem
helps even more, as shows Table 3.

Table 3. Curriculum learning for RA-3 on
two harder problems with proofs of 113
and 108 steps. We report success ratios
and average proof lengths, based on 3 runs.
Standard deviations are given in parenthe-
sis.

Training problem Succ Len
1 · 2 + 1 + 1 = (1 + 1) · 1 · 2 0.32(0.05) 566(14)
1 · 2 + 1 + 1 = (1 + 1) · 1 · 2
(1 + 1 + 1) · 2 = 2 · 1 + 2 + 2 0.67 (0.03) 1864(54)

Figure 3 shows the distribution of
the length of proofs found by FLoP.
We can see that a large part of the
problems requires thousands of steps
to solve, highlighting the need to
avoid search.

For rlCoP, all RA-3 problems are
too hard to solve without guidance
within the inference limit, so we
started with the version trained on the
solutions of RA-2. Table 2 shows that FLoP is only outperformed by E’s auto-
schedule mode, which again finds the rewrite ordering that solves all problems
without search.

Table 4. Comparing Vampire, E (auto-
schedule mode), leanCoP, rlCoP and FLoP,
using binary encoding of numbers.

Dataset Vampire E leanCoP rlCoP FLoP

RA-1 0.67 0.81 0.19 0.56 1.0
RA-2 0.62 0.62 0.13 0.12 1.0

Experiment 3: Binary Number Encod-
ing. We experiment with Robinson
Arithmetic using binary encoding of
numbers. This makes the domain the-
ory more complex: the total number of
actions increases from 24 to 40.6 On
the other hand, proofs get shorter, as
shows Fig. 3. Again, we train FLoP on a single proof: 3 ·3 = 9 and (1 ·2+1) ·3 = 9
for RA-1 and RA-2, respectively. Table 4 shows that provers get weaker, except
for Vampire and FLoP. In particular, E is no longer capable of solving the prob-
lems with rewriting only. FLoP manages to generalize from a single proof to
the whole dataset despite the increased action space and performs best in this
experiment.

Experiment 4: Search vs. Eager Evaluation. We compare FLoP with plCoP (one
of the mcts-CoPs) using two different evaluation methods. After training both

6 Note that only a subset of these is applicable in a given state.

Towards Finding Longer Proofs 181

Table 5. Comparing FLoP and plCoP using two different evaluation methods: 1) guided
MCTS and 2) eager evaluation based on the policy model (Eager Policy). For plCoP
we also evaluate based on the value model (Eager Value)

Prover Eval LCL-Eq LCL-Imp RA-1 RA-2

plCoP MCTS 47% 61% 65% 48%

plCoP Eager Policy 5% 5% 82% 49%

plCoP Eager Value 1% 1% 3% 5%

FLoP MCTS 19% 24% 61% 31%

FLoP Eager Policy 19% 27% 100% 99%

systems on the whole dataset, we evaluate them using 1) MCTS and 2) eager
evaluation, i.e. always select the action with the highest probability according
to the policy model. Table 5 shows that plCoP performs better when search is
allowed, especially for the more heterogeneous LCL problems. However, FLoP
takes the upper hand in eager evaluation. For the LCL problems, plCoP collapses
while FLoP is unaffected. This suggests that plCoP depends heavily on the search
procedure it used for training. FLoP cannot make good use of MCTS, which is
somewhat expected, since its policy and value networks were not trained for
that purpose. For the arithmetic datasets, both systems benefit from not doing
search because they reach proofs that are longer than what MCTS can reach.
For FLoP, the removal of the depth limit reveals that it fully mastered the two
problem classes, regardless of depth.

The performance of plCoP gets even worse if the eager evaluation is based
on the value model, i.e., when we select the action whose successor state has the
highest value score. We conjecture that this is because assigning a value to a
never observed state is much harder than selecting from a smaller set of actions.
These results are in line with our conjecture that the DAgger approach of plCoP
is better for learning good search heuristics, while FLoP is better at internalizing
a full proof pattern.

Table 6. Curriculum Learning compared
with only exploration based learning, on
the LCL-Eq and LCL-Imp datasets, using
10M and 30M inference limit, respectively.
We report the ratio of proofs found during
training. The results are averages of 2 runs.

Dataset Curriculum No curriculum
LCL-Eq 0.24 (0) 0.23 (0.001)
LCL-Imp 0.51 (0.002) 0.45 (0.003)

Experiment 5: Curriculum Learning
vs only Exploration Based Learning.
When training proofs are not avail-
able, the positive reward signal only
occurs after the system solves a prob-
lem through exploration. Afterward,
curriculum learning ensures that the
system is continuously faced with a
“reasonably” hard problem, alleviat-
ing the sparse reward challenge of the-
orem proving. We demonstrate this on the two LCL datasets. Here, before gen-
erating each rollout, we randomly select a problem from the entire dataset.
We report the number of proofs found during training in Table 6. Curriculum

182 Z. Zombori et al.

learning brings a small, but consistent improvement when compared with only
exploration-based learning.

Experiment 6: Curriculum Learning vs. Supervised Learning. When training
proofs are available, a natural baseline of curriculum learning is supervised learn-
ing on the proof steps. While such behavioral cloning sometimes leads to great
performance, we show in Table 7 that it greatly depends on the quality of the
given proof. We train RA-1 and RA-2 using the following training problems:

1. RA-1 1 + 1 = 2, 1 · 1 = 1
2. RA-2 1 + 1 = 2, 1 · 1 = 1, 1 · 1 · 1 = 1

Table 7. Curriculum Learning vs Super-
vised Learning trained on proofs with extra
steps added for distraction.

Data Proof Lengths Supervised Succ. Curriculum Succ.
RA-1 5, 9 0.98(0.04) 1(0.01)

9, 11 0.52(0.08) 0.98(0.01)
RA-2 5, 9, 23 0.85(0.04) 0.76(0.02)

9, 11, 25 0.59(0.08) 0.76(0.01)

We take the “nice” proofs (5, 9 and
23 steps) of these problems and con-
struct variants with 2-3 extra steps
added. We observe that supervised
learning degrades as superfluous steps
are introduced, while FLoP’s explo-
ration allows the system to recover
and find the original proofs.

7 Conclusion and Future Work

We have built FLoP, a proof guidance system based on a variant of temporal
difference reinforcement learning, addressing the problem of finding long proofs
in an exponential search space. Previous work [23,53] focused on finding long
proofs with the help of human-designed heuristics. We showed that FLoP is
capable of extracting proof patterns via learning and can generalise to much
longer proofs, implementing a simple form of reasoning by analogy. We believe
that mastering analogical reasoning is an important step in creating human-
level automated mathematicians. We presented a set of theorem proving datasets
that are suitably challenging for existing learning methods and are intended to
become a general-purpose testing ground for reinforcement learning methods.
We showed that FLoP can outperform strong theorem provers on some of these
datasets. We find that curriculum learning is a useful component of the learning
algorithm as it allows for amplifying training signal when proofs are long.

Acknowledgments. Adrián Csiszárik and Zsolt Zombori were supported by the
European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-
16-2017-00002), the Hungarian National Excellence Grant 2018-1.2.1-NKP-00008
and by the Hungarian Ministry of Innovation and Technology NRDI Office
within the framework of the Artificial Intelligence National Laboratory Pro-
gram. Henryk Michalewski was supported by the Polish National Science Cen-
ter grant UMO-2018/29/B/ST6/02959. Cezary Kaliszyk was supported by ERC
grant no. 714034 SMART. Josef Urban was supported by the AI4REASON ERC
Consolidator grant number 649043, and by the Czech project AI&Reasoning
CZ.02.1.01/0.0/0.0/15 003/0000466 and the European Regional Development Fund.

Towards Finding Longer Proofs 183

This research was supported by the PL-Grid Infrastructure. In particular, quan-
titative results of FLoP reported in this paper were performed using the Prometheus
supercomputer, located in the Academic Computer Center Cyfronet in the AGH Uni-
versity of Science and Technology in Kraków, Poland.

References

1. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and
tree search. CoRR abs/1705.08439 (2017). http://arxiv.org/abs/1705.08439

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an envi-
ronment for machine learning of higher-order theorem proving (extended version).
CoRR abs/1904.03241 (2019). http://arxiv.org/abs/1904.03241

4. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 11

5. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-662-07964-5

6. Bibel, W., Eder, E., Fronhöfer, B.: Towards an advanced implementation of the
connection method. In: Bundy, A. (ed.) Proceedings of the 8th International Joint
Conference on Artificial Intelligence. Karlsruhe, FRG, August 1983, pp. 920–922.
William Kaufmann (1983). http://ijcai.org/Proceedings/83-2/Papers/072.pdf

7. Bledsoe, W.W.: Some thoughts on proof discovery. In: Proceedings of the 1986
Symposium on Logic Programming, Salt Lake City, Utah, USA, 22–25 September
1986, pp. 2–10. IEEE-CS (1986)

8. Brock, B., Cooper, S., Pierce, W.: Analogical reasoning and proof discovery. In:
Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 454–468. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0012849

9. Brockman, G., et al.: OpenAI gym. CoRR abs/1606.01540 (2016). http://arxiv.
org/abs/1606.01540

10. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E., Over-
beek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg
(1988). https://doi.org/10.1007/BFb0012826

11. Chvalovský, K., Jakubuv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neu-
ral and gradient-boosted inference guidance for E. CoRR abs/1903.03182 (2019).
http://arxiv.org/abs/1903.03182

12. Crouse, M., et al.: A deep reinforcement learning approach to first-order logic
theorem proving. Artificial Intelligence (2019)

13. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

14. Hill, A., et al.: Stable baselines (2018). https://github.com/hill-a/stable-baselines
15. Jakub̊uv, J., Chvalovský, K., Oľsák, M., Piotrowski, B., Suda, M., Urban, J.:

ENIGMA anonymous: symbol-independent inference guiding machine (system
description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51054-1 29

http://arxiv.org/abs/1705.08439
http://arxiv.org/abs/1904.03241
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-662-07964-5
http://ijcai.org/Proceedings/83-2/Papers/072.pdf
https://doi.org/10.1007/BFb0012849
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/BFb0012826
http://arxiv.org/abs/1903.03182
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://github.com/hill-a/stable-baselines
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29

184 Z. Zombori et al.

16. Jakub̊uv, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6 20

17. Jakubuv, J., Urban, J.: Hammering mizar by learning clause guidance. In: Harrison,
J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive
Theorem Proving, ITP 2019, September 9–12, 2019, Portland, OR, USA. LIPIcs,
vol. 141, pp. 34:1–34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.ITP.2019.34

18. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection
prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48899-7 7

19. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning of
theorem proving. In: NeurIPS, pp. 8836–8847 (2018)

20. Kaliszyk, C., Urban, J., Vyskočil, J.: Certified connection tableaux proofs for HOL
Light and TPTP. In: Proceedings of the 2015 Conference on Certified Programs
and Proofs, CPP ’15, pp. 59–66. ACM (2015). https://doi.org/10.1145/2676724.
2693176. http://doi.acm.org/10.1145/2676724.2693176

21. Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated
reasoning over large theories. In: Yang, Q., Wooldridge, M. (eds.) Proc. of the 24th
International Joint Conference on Artificial Intelligence (IJCAI’15), pp. 3084–3090.
AAAI Press (2015)

22. Kalman, J.A.: A shortest single axiom for the classical equivalential calculus.
Notre Dame J. Form. Logic 19(1), 141–144 (1978). https://doi.org/10.1305/ndjfl/
1093888216

23. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups:
an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.)
Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 151–164.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8 8

24. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

25. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

26. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: 21st International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR) (2017)

27. McCune, W., Wos, L.: Experiments in automated deduction with condensed
detachment. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 209–223.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8 167

28. Melis, E.: Theorem proving by analogy — A compelling example. In: Pinto-
Ferreira, C., Mamede, N.J. (eds.) EPIA 1995. LNCS, vol. 990, pp. 261–272.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60428-6 22

29. Melis, E., Siekmann, J.H.: Knowledge-based proof planning. Artif. Intell. 115(1),
65–105 (1999). https://doi.org/10.1016/S0004-3702(99)00076-4

30. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1145/2676724.2693176
https://doi.org/10.1145/2676724.2693176
http://doi.acm.org/10.1145/2676724.2693176
https://doi.org/10.1305/ndjfl/1093888216
https://doi.org/10.1305/ndjfl/1093888216
https://doi.org/10.1007/978-3-642-36675-8_8
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/3-540-55602-8_167
https://doi.org/10.1007/3-540-60428-6_22
https://doi.org/10.1016/S0004-3702(99)00076-4
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

Towards Finding Longer Proofs 185

31. Olsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated
reasoning. In: Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S.,
Bugaŕın, A., Lang, J. (eds.) ECAI 2020–24th European Conference on Artifi-
cial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain,
August 29 - September 8, 2020 - Including 10th Conference on Prestigious Appli-
cations of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and
Applications, vol. 325, pp. 1395–1402. IOS Press (2020). https://doi.org/10.3233/
FAIA200244

32. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36, 139–161 (2003)

33. Paliwal, A., Loos, S.M., Rabe, M.N., Bansal, K., Szegedy, C.: Graph representa-
tions for higher-order logic and theorem proving. CoRR abs/1905.10006 (2019).
http://arxiv.org/abs/1905.10006

34. Peterson, J.G.: Shortest single axioms for the classical equivalential calculus.
Notre Dame J. Formal Log. 17(2), 267–271 (1976). https://doi.org/10.1305/ndjfl/
1093887534

35. Piotrowski, B., Urban, J.: Guiding inferences in connection tableau by recurrent
neural networks. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI),
vol. 12236, pp. 309–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-53518-6 23

36. Polu, S., Sutskever, I.: Generative language modeling for automated theorem prov-
ing. CoRR abs/2009.03393 (2020). https://arxiv.org/abs/2009.03393

37. Polya, G.: Mathematics and Plausible Reasoning. Introduction and Analogy in
Mathematics, vol. 1. Princeton University Press, Princeton (1954)

38. Polya, G.: How to Solve It. Princeton University Press (1971). http://www.amazon.
com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691023565

39. Rawson, M., Reger, G.: lazycop 0.1. EasyChair Preprint no. 3926 (2020, EasyChair)
40. Resnick, C., Raileanu, R., Kapoor, S., Peysakhovich, A., Cho, K., Bruna, J.: Back-

play: “Man muss immer umkehren”. CoRR abs/1807.06919 (2018). http://arxiv.
org/abs/1807.06919

41. Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier
Science Publishers B. V, Amsterdam (2001)

42. Robinson, R.M.: An essentially undecidable axiom system. In: Proceedings of the
International Congress of Mathematics, pp. 729–730 (1950)

43. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In: Gordon, G., Dunson, D., Dudik,
M. (eds.) Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 15,
pp. 627–635. PMLR, Fort Lauderdale (2011). http://proceedings.mlr.press/v15/
ross11a.html

44. Salimans, T., Chen, R.: Learning Montezuma’s Revenge from a single demonstra-
tion. CoRR abs/1812.03381 (2018). http://arxiv.org/abs/1812.03381

45. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017)

46. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49

47. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354 (2017). https://doi.org/10.1038/nature24270

48. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

https://doi.org/10.3233/FAIA200244
https://doi.org/10.3233/FAIA200244
http://arxiv.org/abs/1905.10006
https://doi.org/10.1305/ndjfl/1093887534
https://doi.org/10.1305/ndjfl/1093887534
https://doi.org/10.1007/978-3-030-53518-6_23
https://doi.org/10.1007/978-3-030-53518-6_23
https://arxiv.org/abs/2009.03393
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691023565
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691023565
http://arxiv.org/abs/1807.06919
http://arxiv.org/abs/1807.06919
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://arxiv.org/abs/1812.03381
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1038/nature24270

186 Z. Zombori et al.

49. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The
MIT Press (2018). http://incompleteideas.net/book/the-book-2nd.html

50. Urban, J.: MaLARea: a metasystem for automated reasoning in large theories.
In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Work-
shop on Empirically Successful Automated Reasoning in Large Theories, Bremen,
Germany, 17th July 2007. CEUR Workshop Proceedings, vol. 257. CEUR-WS.org
(2007). http://ceur-ws.org/Vol-257/05 Urban.pdf

51. Urban, J., Jakub̊uv, J.: First neural conjecturing datasets and experiments. In:
Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 315–
323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6 24

52. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 37

53. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning
program: case studies. J. Autom. Reason. 16(3), 223–239 (1996)

54. Wos, L., Winker, S., Smith, B., Veroff, R., Henschen, L.: A new use of an auto-
mated reasoning assistant: open questions in equivalential calculus and the study
of infinite domains. Artifi. Intell. 22(3), 303–356 (1984)

55. Wos, L.: Meeting the challenge of fifty years of logic. J. Autom. Reason. 6(2),
213–232 (1990)

56. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 489–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 33

http://incompleteideas.net/book/the-book-2nd.html
http://ceur-ws.org/Vol-257/05_Urban.pdf
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33

lazyCoP: Lazy Paramodulation Meets
Neurally Guided Search

Michael Rawson(B) and Giles Reger

The University of Manchester, Manchester, UK
michael@rawsons.uk

Abstract. State-of-the-art automated theorem provers explore large
search spaces with carefully-engineered routines, but most do not learn
from past experience as human mathematicians can. Unfortunately,
machine-learned heuristics for theorem proving are typically either fast or
accurate, not both. Therefore, systems must make a tradeoff between the
quality of heuristic guidance and the reduction in inference rate required
to use it. We present a system (lazyCoP) based on lazy paramodulation
that is completely insulated from heuristic overhead, allowing the use
of even deep neural networks with no measurable reduction in inference
rate. Given 10 s to find proofs in a corpus of mathematics, the system
improves from 64% to 70% when trained on its own proofs.

1 Introduction

The great majority of automatic theorem provers use some kind of heuris-
tic search. This could be simple, such as the use of iterative deepening on a
certain property to achieve completeness [25]; complex, as in hand-engineered
schemes [8]; or even learned in some way [41]. Such heuristics are critical for sys-
tem performance: an excellent heuristic could find a proof in linear time1, while a
poor heuristic increases search time drastically. Historically these routines have
been engineered, rather than learned, resulting in fast yet disproportionately-
effective heuristics like the age/weight schemes [35] used in systems like Vam-
pire [15,29].

Learning a good heuristic from previous proof attempts has become more
popular recently, and can achieve good results [4]. Techniques from machine
learning can approximate complex functions that are difficult to discover or
write down, but this comes at computational cost. This cost can result in an
unfortunate outcome where a learned heuristic that appears promising during
testing actually degrades performance when included in a concrete system, due
to reduced inference throughput. Even assuming a heuristic is both fast and
accurate, it is not always clear how to gainfully include predictions into existing
target systems, particularly as a single wrong prediction can sometimes have
disastrous results. Approaches are either ad-hoc or adapt existing techniques
from other domains which are not necessarily well-suited to theorem proving.
1 achieved by only making inferences used in the eventual proof.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 187–199, 2021.
https://doi.org/10.1007/978-3-030-86059-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_11

188 M. Rawson and G. Reger

This paper presents a new system specifically designed to avoid these issues.
lazyCoP (available online2) is an automatic theorem prover for first-order logic
with equality in the connection tableaux family (Sect. 3). The system may use a
policy learned end-to-end from previous proofs (Sect. 5) to bias a special-purpose
backtracking search (Sect. 4.1) toward areas the policy considers promising. Per-
formance penalties are eliminated by asynchronously evaluating the policy net-
work on a coprocessor, such as commodity GPU hardware (Sect. 4.2).

The result is a system in which learned guidance has no measurable impact
on inference rate (Sect. 6.1) and learns in a feedback loop from previous proofs on
a set of training problems (Sect. 6.2). No manual features are used for learning,
and the only manual heuristic used is “tableaux with fewer subgoals are more
likely to lead to a proof”. The system augmented with the final learned policy
improves from 64% to 70% in real time under identical conditions.

2 Related Work

The rlCoP system introduced by Kaliszyk et al. [14] is the inspiration for this
work and is most similar in spirit. In rlCoP, a connection tableaux system is
guided by Monte-Carlo Tree Search (MCTS henceforth, as in work on two-player
games [37]), learning both policy and value guidance with gradient-boosted trees
from hand-engineered features. Learning from previous proofs or failures is a
common approach for many different applications of machine learning to theorem
proving, avoiding the need to generate data manually. For instance, all learned
premise-selection systems we are aware of are trained using premises used by
automated systems in existing proofs [12,42]. rlCoP sets up a feedback loop
in which new information automatically found by the system is added to the
training set in order to guide future iterations, as here.

Connection tableaux and classical first-order logic are popular settings
for other internal guidance experiments—notably monteCoP [6], rlCoP, MaLe-
CoP [41], FEMaLeCoP [13], FLoP [43] and plCoP [44]—but internal guidance for
other domains exist, including first-order saturation systems [4], SAT and QBF
solvers [16,36], and systems for higher-order logics [1,5,7].

Performance is a recurring problem for systems with learned internal guid-
ance. The authors of rlCoP exclude some kinds of learned models for perfor-
mance reasons, and results are reported based on an inference, rather than time,
limit. Loos et al. [19] report that the main bottleneck in the guided saturation-
style system E [34] is the evaluation of inferences, and suggest a two-phase
guided/unguided approach to theorem proving with learned guidance. Asyn-
chronous evaluation was suggested in our earlier work on the same problem [28].

3 Unguided System

If an unguided system is completely hopeless, little progress can be made: very
few positive training data can be generated from successful proofs, and the
2 https://github.com/MichaelRawson/lazycop.

https://github.com/MichaelRawson/lazycop

lazyCoP: Lazy Paramodulation Meets Neurally Guided Search 189

P (t̄)

¬P (s̄) L̄

σ(t̄) = σ(s̄)

P (t̄)

¬P (s̄)

x1 �= s1 . . . xn �= sn

L̄

σ(x̄) = σ(t̄)

Fig. 1. Adding ¬P (s̄)∨ L̄ to a tableau where P (t̄) is the current goal. The left tableau
shows conventional “strict” extension, the right LPCT “lazy” extension.

learned guidance must be better still in order to achieve reasonable performance.
However, it is not as simple as selecting a state-of-the-art theorem prover, as
some are more amenable to guidance than others. Instead, there is a spectrum
of different possible research directions, from attempting to guide weaker-yet-
amenable systems up to meet stronger unguided systems, to integrating learning
into already-strong systems which are not so easily improved by guidance.

The guidance scheme suggested here is designed for backtracking search, such
as that found in systems based on connection calculi [18]. It is not clear how this
could be adapted to a saturation theorem prover such as Vampire or E, which
employ proof-confluent search with a time-sensitive choice point at the selection
of a given clause. The basic system must therefore be as strong as possible while
still allowing backtracking policy-guided search, and lazyCoP is purpose-built for
this. A prototype version [31] entered the most recent CASC competition [39],
and subsequent developments including a dedicated clausification routine have
significantly improved performance.

3.1 Connection Tableaux

lazyCoP belongs to the connection-tableaux/model-elimination family [18] of the-
orem provers, which includes systems such as leanCoP [25] and SETHEO [2]. Such
systems aim to refute a proposition by building a closed tableau: a tree of case-
splits such that every path through the tree ends in a contradiction. Connection
tableaux reduce the search space by constraining tableaux such that each addi-
tion to any given tableau must be connected in some way to the current leaf3,
as shown on the left-hand side of Fig. 1 where P (t̄) connects to ¬P (s̄). To prove
a conjecture, it suffices to begin with the negated conjecture and build a closed
tableau refuting it.

Since there is often more than one possible next step in building a tableau,
not all of which lead to a proof, it is necessary to backtrack if a misstep is

3 Usually this means that when adding a clause, there must be a literal with opposite
sign that unifies with a leaf literal. Lazy paramodulation extends this notion to
equality reasoning.

190 M. Rawson and G. Reger

made. Typical connection systems often use some kind of iterative deepening to
maintain completeness, but any fair scheme works: rlCoP uses MCTS for this
purpose.

3.2 Lazy Paramodulation

Reasoning with equality has traditionally been a weak point of connection
systems. The most widespread method for efficiently reasoning with equality,
paramodulation [22], is incomplete in the obvious formulation for connection
tableaux due to insufficient flexibility in the order of inferences. There have
been various attempts to remedy this deficit, but as yet there is no conclusive
solution.

lazyCoP uses the “lazy paramodulation” proof calculus LPCT [27], which
relaxes some of the classical connection-tableaux rules in exchange for a
paramodulation-like rule and some extra refinements. The basic idea is delaying
unification to allow rewriting terms in the resulting disequations. For example,
in the right-hand side of Fig. 1, it is not required that P (t̄) unify with P (s̄)
immediately as in the classical calculus, instead deducing that at least one of
the terms must not be equal. Terms may still be unified with a reflexivity rule
dispatching goals of the form t �= s.

This implementation detail of lazyCoP is not the main focus of this work: the
vital feature of the proof calculus is backtracking proof search.

3.3 Calculus Refinements

To improve performance against the pure calculus, lazyCoP implements a number
of well-known refinements of the classical predicate calculus (which are lifted to
equalities where appropriate), including tautology deletion, various regularity
conditions, and folding up [17], a way of re-using proofs of literals. Additionally,
it is frequently the case that a unification is “lazy” when it could have been
“strict”—such as in the case with no equality. lazyCoP therefore implements
“lazy” and “strict” versions of every relevant inference rule, which shortens some
proofs considerably. The resulting duplication is eliminated by not permitting
“lazy” rules to simulate their “strict” counterparts.

It is not clear whether some refinements help or hinder the learned-guidance
scenario. Some are definite improvements: folding up and strict rules decrease
proof lengths and therefore increase the potential benefit of learned guidance.
However, others, such as the regularity condition or the term ordering constraints
in LPCT, are not as clear-cut. In some cases such refinements lengthen proofs
significantly, outweighing the pruning effect, and previous work shows that guid-
ance can partially replace these pruning mechanisms [9]. We leave all refinements
switched on for this approach, but allowing the learned policy a greater amount
of freedom is an interesting future direction.

lazyCoP: Lazy Paramodulation Meets Neurally Guided Search 191

Some techniques such as restricted backtracking [26] sacrifice completeness
for performance. lazyCoP does not implement any approach known to be incom-
plete4: all problems attempted can be solved in principle.

4 Proof Search

Given a learned policy5, we aim to use it to improve proof search outcomes.
The policy π (a | n) is a function from a tableau n and possible inferences a to
a probability distribution. We work with an explicit search tree, each node of
the tree representing an open tableau, although tableaux are not actually kept
in memory for efficiency reasons. From each open tableau, there is a positive
non-zero number of possible inferences (or actions in the reinforcement learning
literature) which may be applied to generate a new child tableau. Nodes with
zero possible inferences cannot be closed and are pruned from the tree. The root
of the tree is an empty tableau, from which possible inferences are the start
clauses, in this case clauses derived from the conjecture.

4.1 Policy-Guided Search

There are many possible tree search algorithms which can include some kind
of learned heuristic. We experimented with the classical A∗ informed-search
procedure, although we found that it was difficult to learn a good heuristic
function that was neither too conservative nor too aggressive. Other approaches
might include the aforementioned MCTS, single-player adaptations of MCTS [33]
single-agent approaches like that of LevinTS or LubyTS [24], or simply following
a stochastic policy with restarts if no proof is found at some depth. While these
approaches are no doubt interesting and provide theoretical guarantees, we did
not find them to be necessary for our case.

Instead, we could simply employ best-first search, expanding the leaf node
that the policy considers most likely first. If a leaf node n was obtained by taking
actions ai from ancestor nodes ni, select

argmax
n

∏

i

π (ai | ni)

Unfortunately, this simple scheme is not likely to recover if π makes a confident
misprediction, and is even incomplete if any node has an infinite chain of single
children beneath, where π (aj | nj) = 1 by definition. To correct this issue we take
inspiration from rlCoP’s initial value heuristic, where tableaux are exponentially

4 It is not known whether lazyCoP’s calculus with refinements is complete. For instance
and to the best of our knowledge, Paskevich [27] leaves the compatibility of lazy
paramodulation with the regularity condition an open question.

5 no value function is employed: it is unclear how to adapt this to asynchronous
evaluation, or how useful this would be in an asynchronous context.

192 M. Rawson and G. Reger

less likely to be closed the more open branches they have. We model this idea
as an exponential distribution

p(n) = λe−λg(n)

where λ is a tunable parameter (set to 1 in our experiments here) and g(n) is
“number of open branches plus length of the path”. Including “length of the
path” in g(n) makes little practical difference and makes the search procedure
complete again. The two estimates are combined with a geometric mean so that
nodes are selected by

argmax
n

√
p(n)

∏

i

π (ai | ni)

In practice this expression is numerically difficult to evaluate, but in logarithmic
space it is better-behaved, producing the final expansion criterion

argmax
n

[(
∑

i

ln π (ai | ni)

)
− λg(n)

]

4.2 Asynchronous Policy Evaluation

The proof search routine above assumes that the policy is evaluated syn-
chronously for each expanded node. As discussed in the introductory sections,
this has a significant impact on performance, particularly so for computationally-
expensive policies. Instead, evaluation is deferred and a separate CPU thread
continuously arranges for nodes to be processed on a GPU, selecting the first
non-evaluated node on the path to the current best leaf node. π (a | n) is set to 1
for nodes not yet evaluated: applying a uniform distribution does not work well
in practice.

It does not appear to be particularly important that all nodes are evaluated
for a learned policy to improve search, perhaps because guidance at the top of
the search tree has a disproportionate effect. Asynchronous policy evaluation
allows use of policies that are orders of magnitude slower than expansion steps
without reduction in inference rate.

5 Learned Policy

Section 4.1 describes biasing proof search with a learned policy, directing node
expansions toward areas the policy considers useful. lazyCoP’s policy is trained
from its own proofs—at each non-trivial step6 in a proof we record three things:
(i) the tableau, (ii) available actions, and (iii) the action that lead to a proof.
This procedure produces a training set of tableaux and actions which we use to
train a neural-network based policy to predict the correct action. Learning from
existing proofs in this way has advantages and disadvantages: each example’s
6 that is, states with more than one possible action.

lazyCoP: Lazy Paramodulation Meets Neurally Guided Search 193

label is guaranteed to lead to a proof, but it is not necessarily the shortest proof,
nor can the training data express preference amongst other actions.

We train and evaluate using the same set of problems from the MPTP trans-
lation [40] of the Mizar Mathematical Library [10] into first-order logic with
equality. There are 32,524 problems in total in the M40k set; we use the M2k
subset of 2003 problems in order to iterate quickly. All problems have a labelled
conjecture which lazyCoP is able to exploit so that search proceeds backward
from the conjecture. Problems from the M2k set come from related articles in
Mizar, suggesting a degree of similarity which may be exploited by learning.

5.1 Representing Tableaux with Actions

There are many possible ways to represent first-order logical data in neural
networks. We use directed graphs paired with residual graph convolutions, as
introduced for other similar tasks [30]. This approach has significant advantages
for a first-order tableau system such as lazyCoP as it allows reconstructing an
equivalent tableau (up to renaming) from a compact, pre-parsed representation
invariant up to e.g. variable names.

Construction of directed graphs from tableaux is mostly typical for first-
order representations [42], with a few problem-specific modifications. First, while
occurrences of identical symbols and variables share nodes in the graph, identical
compound terms do not: this is because they may be rewritten by equalities
separately in LPCT. Additionally, variable binding is non-destructive in LPCT
to implement a form of basic paramodulation. Bound variables therefore remain
in place but have an outgoing edge attached to their binding.

Encoding actions is then straightforward. lazyCoP implements a small num-
ber of inference rules, such as reductions, extensions, reflexivity and so on. Each
inference is attached to some terms or literals in the tableau to form a concrete
action: rewriting t = s in L[p], for example, is represented as a node connected
to the graph with an incoming edge from t and outgoing edge from p, uniquely
identifying the inference.

+

gather
incoming

gather
outgoing

batch
normalisation

batch
normalisation

incoming
weight

outgoing
weight

ReLU

ReLU

Fig. 2. Residual block used in the network. Note disjoint parameters for incoming and
outgoing edges, both linear and normalisation layers.

194 M. Rawson and G. Reger

input
graph

node
embedding

residual
convolutions

select
actions

output
layer

softmax
policy

*

*

Fig. 3. Network diagram. As there is no pooling of any kind, data is processed at the
node level until action nodes marked (*) are projected out.

5.2 Network Architecture

We use a residual version of the directed graph networks introduced in previous
work [30] which allow the network to distinguish incoming and outgoing edges.
The core of the network is the residual block shown in Fig. 2: this allows one
round of message-passing from neighbouring nodes in the graph, treating incom-
ing and outgoing edges separately before combining the results for the next layer.
Batch normalisation [11] is inserted before the linear part of the convolution. The
theoretical merits of this are unclear but it works well in practice. The complete
network (Fig. 3) is, in order (Table 1):

Table 1. Network and training hyper-parameters.

Parameter Value Parameter Value

Node dimension 64 Initial learning rate 0.01

Residual layers 24 Cycle batches 2000

Batch size 64

Momentum 0.9

Weight decay 0.0001

Embedding. An embedding layer projects integer node labels into a real vector
of the same size used in the convolutional layers.

Convolution layers. Several residual blocks combine and transform feature
maps from neighbouring nodes, producing in particular a real vector for each
action node.

Action projection. The vector for each action node is projected out, all other
nodes are discarded at this point.

Output layer. Computes a single output value for each action.

Rectified linear units are used as non-linearities throughout.

lazyCoP: Lazy Paramodulation Meets Neurally Guided Search 195

5.3 Training

Training such a network on limited training examples from early iterations is
challenging due to its tendency to memorise the training set if sufficient parame-
ters are available and underfit drastically if they are not. This is perhaps a good
argument for feature-based learning rather than the end-to-end approach we take
here. However, the network can be made to train somewhat effectively by cosine
annealing a high initial learning rate to 0 with “warm restarts” [20], repeating
after a certain number of mini-batches. This has two benefits: the regularising
effect of high learning rates somewhat reduces overfitting, and the network also
trains faster.

5.4 Integration and Optimisation

After the network is trained, network weights are compiled into lazyCoP. The
forward pass is re-implemented from scratch in CUDA [23], allowing a number
of optimisations such as known array sizes, re-use of allocated buffers and the
ability to profile for the specific workload. Additionally, batch normalisation
layers’ forward operation can be fused into the subsequent layer in this case,
decreasing implementation complexity and increasing performance.

6 Experimental Results

We investigate two areas of practical interest: the effect of learned policy eval-
uations on inference rate, and whether this learning translates into improved
performance on a training set of problems. Systems are only allowed 10 s of real
time: this is relatively short, but a good approximation to real-world settings
in which users of automatic “hammers” included in interactive theorem proving
systems are unwilling to wait much longer than 30 s [3].

Table 2. Results from iterative training of lazyCoP’s policy on M2k .

Proved Cumulative Steps

0 1,289 1,289 16,880

1 1,390 1,406 19,394

2 1,402 1,419 19,700

3 1,403 1,426 19,881

6.1 Inference Rates

There is no measurable decrease in inference rate when learned guidance is
switched on. Occasionally the rate of inference even improves, perhaps due
to guidance producing areas which are less productive or otherwise easier to

196 M. Rawson and G. Reger

explore. Running on TOP001-1, a non-theorem mid-sized topology problem from
TPTP [38], unguided lazyCoP achieves around 62,000 expansions per second for
10 s at the time of writing on desktop hardware. Guided, the system evaluates
around 200 policies per second and reaches inference speeds in excess of 70,000
expansions per second.

6.2 Effect of Guidance

We train lazyCoP iteratively on M2k as described in Sect. 5, training each itera-
tion on the proofs produced by all previous iterations. Iteration 0 does not have
access to a learned policy, iteration 1’s policy is trained on iteration 0’s proofs,
iteration 2 on proofs from both iteration 0 and 1, etc. If there are two proofs for
the same problem, the shorter proof is retained. The system is given 10 s of real
time per problem, measured from program startup to the point of discovering
a proof (but before output begins), and 16 GB memory on a desktop machine7.
Table 2 shows the number of problems solved by that iteration, the number of
problems proved by all previous iterations, and the total number of proof steps
for training available after the iteration finishes.

7 Conclusion and Future Work

We have introduced a new system, lazyCoP which combines a lazy
paramodulation-based connection tableau prover with lazy neural guidance. The
neural guidance improves the underlying search from 64% to 70% without any
measurable impact on inference rate. There are several future directions we will
consider pursuing:

Scaling network and problem sets. It is very possible that a larger/deeper
policy network would allow learning even better policies. This requires either
more careful tuning or a larger set of problems such as M40k to avoid over-
fitting excessively.

Parallelism. Implementing both parallel search and parallel evaluation on
today’s multicore machines would have a beneficial impact on performance.
Parallel search allows exploiting remaining cores to search faster and is a
clear win, the explicit search tree of lazyCoP allowing for several easy schemes
to inject parallelism. Parallel evaluation does not inherently improve perfor-
mance, but does ensure that the coprocessor is always kept busy: at present
there are short pauses while the evaluation thread propagates the previous
evaluation and prepares another input. Using multiple host threads also allows
hiding latency from e.g. coprocessor cache misses, increasing overall through-
put at the expense of the speed of single evaluation.

7 IntelR© Core
TM

i7-6700 CPU @ 3.40 GHz, NVIDIAR© GeForceR© GT 730.

lazyCoP: Lazy Paramodulation Meets Neurally Guided Search 197

Incomplete modes. A system does not necessarily have to be complete
to be useful [21]. leanCoP includes a powerful but incomplete restricted-
backtracking mode, for example. As well as e.g. restricted backtracking, lazy-
CoP could implement a strategy in which parts of the search tree are progres-
sively discarded as resource limits draw nearer, in a similar way to Vampire’s
limited resource strategy [32]. We expect this to help with finding extremely
long proofs.

Generality. An anonymous reviewer suggested that with a little more effort
this work could become a standalone tool for advising existing (backtracking)
systems. We agree and thank the reviewer for the suggestion, although we also
agree with the reviewer’s assessment that existing systems would need to be
modified somewhat.

References

1. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: HOList: an environment
for machine learning of higher order logic theorem proving. In: International Con-
ference on Machine Learning, pp. 454–463 (2019)

2. Bayerl, S., Letz, R.: SETHEO: a sequential theorem prover for first-order logic.
Esprit’87-Achievements and Impacts, part 1, pp. 721–735 (1987)

3. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14203-1 9

4. Chvalovský, K., Jakub̊uv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 197–215. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 12

5. Färber, M., Brown, C.: Internal guidance for satallax. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 349–361. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 24

6. Färber, M., Kaliszyk, C., Urban, J.: Monte-Carlo connection prover. In: Second
Conference on Artificial Intelligence and Theorem Proving (2017)

7. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: learning
to prove with tactics. J. Autom. Reason. 65(2), 257–286 (2021)

8. Gleiss, B., Suda, M.: Layered clause selection for theory reasoning. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp.
402–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9 23

9. Goertzel, Z.A.: Make E smart again (short paper). In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 408–415.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1 26

10. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reason. 3(2), 153–245 (2010)

11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

12. Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: DeepMath
– deep sequence models for premise selection. In: Advances in Neural Information
Processing Systems, pp. 2235–2243 (2016)

https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-319-40229-1_24
https://doi.org/10.1007/978-3-030-51074-9_23
https://doi.org/10.1007/978-3-030-51054-1_26

198 M. Rawson and G. Reger

13. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection
prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48899-7 7

14. Kaliszyk, C., Urban, J., Michalewski, H., Oľsák, M.: Reinforcement learning of the-
orem proving. In: Advances in Neural Information Processing Systems, pp. 8822–
8833 (2018)

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 1

16. Lederman, G., Rabe, M., Seshia, S., Lee, E.A.: Learning heuristics for quan-
tified boolean formulas through reinforcement learning. In: International Con-
ference on Learning Representations (2020). https://openreview.net/forum?
id=BJluxREKDB

17. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection
tableau calculi. J. Autom. Reason. 13(3), 297–337 (1994)

18. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In:
Handbook of Automated Reasoning, vol. 2. MIT Press (2001)

19. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: LPAR-21. 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, pp. 85–105 (2017)

20. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
In: 5th International Conference on Learning Representations (2017)

21. McCune, W., Wos, L.: Otter – the CADE-13 competition incarnations. J. Autom.
Reason. 18(2), 211–220 (1997)

22. Neuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook
of Automated Reasoning, vol. 1. MIT Press (2001)

23. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. ACM Queue 6(2), 40–53 (2008)

24. Orseau, L., Lelis, L., Lattimore, T., Weber, T.: Single-agent policy tree search with
guarantees. In: Advances in Neural Information Processing Systems, pp. 3201–3211
(2018)

25. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 23

26. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010)

27. Paskevich, A.: Connection tableaux with lazy paramodulation. J. Autom. Reason.
40(2–3), 179–194 (2008)

28. Rawson, M., Reger, G.: A neurally-guided, parallel theorem prover. In: Herzig, A.,
Popescu, A. (eds.) FroCoS 2019. LNCS (LNAI), vol. 11715, pp. 40–56. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29007-8 3

29. Rawson, M., Reger, G.: Old or heavy? Decaying gracefully with age/weight shapes.
In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 462–476. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 27

30. Rawson, M., Reger, G.: Directed graph networks for logical reasoning. In: Practical
Aspects of Automated Reasoning (2020)

31. Rawson, M., Reger, G.: lazyCoP 0.1. EasyChair Preprint no. 3926 (EasyChair 2020)
(2020)

https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-642-39799-8_1
https://openreview.net/forum?id=BJluxREKDB
https://openreview.net/forum?id=BJluxREKDB
https://doi.org/10.1007/978-3-540-71070-7_23
https://doi.org/10.1007/978-3-030-29007-8_3
https://doi.org/10.1007/978-3-030-29436-6_27

lazyCoP: Lazy Paramodulation Meets Neurally Guided Search 199

32. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem prov-
ing. J. Symb. Comput. 36(1–2), 101–115 (2003)

33. Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot, G.M.J.-B., Uiter-
wijk, J.W.H.M.: Single-player Monte-Carlo tree search. In: van den Herik, H.J., Xu,
X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 1–12. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87608-3 1

34. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2, 3), 111–126 (2002)
35. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-

based theorem proving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 330–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40229-1 23

36. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685 (2018)

37. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

38. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337 (2009). https://doi.org/10.1007/s10817-009-9143-8

39. Sutcliffe, G.: The CADE ATP system competition – CASC. AI Mag. 37(2), 99–101
(2016)

40. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1–2), 21–43 (2006)

41. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP: machine learning connection
prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI),
vol. 6793, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22119-4 21

42. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. In: Advances in Neural Information Processing Systems,
pp. 2786–2796 (2017)

43. Zombori, Z., Csiszárik, A., Michalewski, H., Kaliszyk, C., Urban, J.: Towards find-
ing longer proofs. arXiv preprint arXiv:1905.13100 (2019)

44. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 489–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 33

https://doi.org/10.1007/978-3-540-87608-3_1
https://doi.org/10.1007/978-3-319-40229-1_23
https://doi.org/10.1007/978-3-319-40229-1_23
http://arxiv.org/abs/1802.03685
https://doi.org/10.1007/s10817-009-9143-8
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-642-22119-4_21
http://arxiv.org/abs/1905.13100
https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33

AC Simplifications and Closure
Redundancies in the Superposition

Calculus

André Duarte(B) and Konstantin Korovin(B)

The University of Manchester, Manchester, UK
{andre.duarte,konstantin.korovin}@manchester.ac.uk

Abstract. Reasoning in the presence of associativity and commutativ-
ity (AC) is well known to be challenging due to prolific nature of these
axioms. Specialised treatment of AC axioms is mainly supported by
provers for unit equality which are based on Knuth-Bendix completion.
The main ingredient for dealing with AC in these provers are ground
joinability criteria adapted for AC. In this paper we extend AC join-
ability from the context of unit equalities and Knuth-Bendix completion
to the superposition calculus and full first-order logic. Our approach is
based on an extension of the Bachmair-Ganzinger model construction
and a new redundancy criterion which covers ground joinability. A by-
product of our approach is a new criterion for applicability of demodula-
tion which we call encompassment demodulation. This criterion is useful
in any superposition theorem prover, independently of AC theories, and
we demonstrate that it enables demodulation in many more cases, com-
pared to the standard criterion.

Keywords: Superposition · Associativity-commutativity · Ground
joinability · First-order theorem proving · Demodulation · iProver

1 Introduction

Associativity and commutativity (AC) axioms occur in many applications but
efficient reasoning with them remain one of the major challenges in first-order
theorem proving due to prolific nature of these axioms. Despite a number of
theoretical advances specialised treatment of AC axioms is mainly supported by
provers for unit equality such as Waldmeister [11], Twee [15] and MaedMax [19].
These provers are based on Knuth-Bendix completion, and the main ingredient
for dealing with AC in these provers are ground joinability criteria adapted
for AC [1,12]. Completeness proofs for ground joinability, known so far, are
restricted to unit equalities, which limits applicability of these techniques. These
proofs are based on proof transformations for unit rewriting which are not easily
adaptable to the full first-order logic and also lack general redundancy criteria.

In this paper we extend ground AC joinability criteria from the context of
Knuth-Bendix completion to the superposition calculus for full first-order logic.
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 200–217, 2021.
https://doi.org/10.1007/978-3-030-86059-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_12&domain=pdf
http://orcid.org/0000-0002-5228-213X
http://orcid.org/0000-0002-0740-621X
https://doi.org/10.1007/978-3-030-86059-2_12

AC Simplifications and Closure Redundancies in the Superposition Calculus 201

Our approach is based on an extension of the Bachmair-Ganzinger model con-
struction [4] and a new redundancy criterion called closure redundancy. Closure
redundancy allows for fine grained redundancy elimination which we show also
covers ground AC joinability. We also introduced a new simplification called
AC normalisation and showed that AC normalisation preserves completeness of
the superposition calculus. Superposition calculus with the standard notion of
redundancy can generate infinitely many non-redundant conclusions from AC
axioms alone. Using our generalised notion of redundancy we can show that all
of these inferences are redundant in the presence of a single extension axiom.

Using these results, superposition theorem provers for full first-order logic
such as Vampire [10], E [14], SPASS [18], Zipperposition [17] and iProver [9] can
incorporate AC simplifications without compromising completeness.

A by-product of our approach is a new criterion for applicability of demod-
ulation which we call encompassment demodulation. Demodulation is one of
the main simplification rules in the superposition-based reasoning and is a key
ingredient in efficient first-order theorem provers. Our new demodulation crite-
rion is useful independently of AC theories, and we demonstrate that it enables
demodulation in many more cases, compared to the standard demodulation.

The main contributions of this paper include:

1. New redundancy criteria for the superposition calculus called closure redun-
dancy.

2. Completeness proof of the superposition calculus with the closure redundancy.
3. Proof of admissibility of AC joinability and AC normalisation simplifications

for the superposition calculus.
4. Encompassment demodulation and its admissibility for the superposition cal-

culus.

In Sect. 2 we discuss preliminary notions, introduce closure orderings and
prove properties of these orderings In Sect. 3 we introduce closure redundancy
and prove the key theorem stating completeness of the superposition calculus
with closure redundancy. In Sect. 4 we use closure redundancy to show that
encompassment demodulation, AC joinability and AC normalisation are admis-
sible simplifications. In Sect. 5 we show some experimental results and conclude
in Sect. 6.

2 Preliminaries

We consider a signature consisting of a finite set of function symbols and the
equality predicate as the only predicate symbol. We fix a countably infinite set
of variables. First-order terms are defined in the usual manner. Terms without
variables are called ground terms. A literal is an unordered pair of terms with
either positive or negative polarity, written s ≈ t and s �≈ t respectively (we
write s ≈̇ t to mean either of the former two). A clause is a multiset of literals.
Collectively terms, literals, and clauses will be called expressions.

202 A. Duarte and K. Korovin

A substitution is a mapping from variables to terms which is the identity
for all but a finitely many variables. If e is an expression, we denote applica-
tion of a substitution σ by eσ, replacing all variables with their image in σ. Let
GSubs(e) = {σ | eσ is ground} be the set of ground substitutions for e. Over-
loading this notation for sets we write GSubs(E) = {σ | ∀e ∈ E. eσ is ground}.
Finally, we write e.g. GSubs(e1, e2) instead of GSubs({e1, e2}).

An injective substitution θ with codomain being the set of variables is a
renaming. Substitutions which are not renamings are called proper.

A substitution θ is more general than σ if θρ = σ for some proper substitution
ρ. If s and t can be unified, that is, if there exists σ such that sσ = tσ, then
there also exists the most general unifier, written mgu(s, t). A term s is said to
be more general than t if there exists a substitution θ that makes sθ = t but
there is no substitution σ such that tσ = s. We may also say that t is a proper
instance of s. Two terms s and t are said to be equal modulo renaming if there
exists a renaming θ such that sθ = t. The relations “less general than”, “equal
modulo renaming”, and their union are represented respectively by the symbols
‘�’, ‘≡’, and ‘�’.

A more refined notion of instance is that of closure [3]. Closures are pairs t · σ
that are said to represent the term tσ while retaining information about the orig-
inal term and its instantiation. Closures where tσ is ground are said to be ground
closures. Let GClos(t) = {t · σ | tσ is ground} be the set of ground closures of
t. Analogously to term closures, we define closures for other expressions such as
literals and clauses, as a pair of an expression and a substitution. Overloading
the notation for sets, if N is a set of clauses then GClos(N) =

⋃
C∈N GClos(C).

We write s[t] if t is a subterm of s. If also s �= t, then it is a strict subterm.
We denote these relations by s � t and s � t respectively. We write s[t �→ t′]p to
denote the term obtained from s by replacing t at the position p by t′. We omit
the position when it clear from the context or irrelevant.

A relation ‘→’ over the set of terms is a rewrite relation if (i) l → r ⇒ lσ →
rσ and (ii) l → r ⇒ s[l] → s[l �→ r]. The members of a rewrite relation are
called rewrite rules. The reflexive-transitive closure of a relation is the smallest
reflexive-transitive relation which contains it. It is denoted by ‘ ∗→’. Two terms
are joinable (s ↓ t)if s

∗→ u
∗← t.

If a rewrite relation is also a strict ordering (transitive, irreflexive), then it
is a rewrite ordering. A reduction ordering is a rewrite ordering which is well-
founded. In this paper we consider reduction orderings which are total on ground
terms, such orderings are also simplification orderings i.e., satisfy s� t ⇒ s t.

For an ordering ‘’ over a set X, its multiset extension ‘’ over multisets of
X is given by: A B iff ∀x ∈ B. B(x) > A(x) ∃y ∈ A. y x ∧ A(y) > B(y),
where A(x) is the number of occurrences of element x in multiset A. It is well
known that the multiset extension of a well-founded (total) order is also a well-
founded (respectively, total) order [6].

AC Simplifications and Closure Redundancies in the Superposition Calculus 203

Orderings on Closures

In the following, let ‘t’ be a reduction ordering which is total on ground terms.
Examples of such orderings include KBO or LPO [2]. It is extended to an ordering
on literals via L l L′ iff Ml(L) t Ml(L′), where Ml(s ≈ t) = {s, t} and
Ml(s �≈ t) = {s, s, t, t}. It is further extended to an ordering on clauses via
C c D iff C l D.

We extend this ordering to an ordering on ground closures. The idea is to
“break ties”, whenever two closures represent the same term, to make more gen-
eral closures smaller in the ordering than more specific ones. The definitions
follow.

s · σ tc t · ρ iff either sσ t tρ
or else sσ = tρ and s � t.

(1)

This is a well-founded ordering, since ‘t’ and ‘�’ are also well-founded. How-
ever it is only a partial order even on ground closures (e.g., f(x, b) · (x �→ a) ��
f(a, y) · (y �→ b)), but it is well-known that any partial well-founded order can
be extended to a total well-founded order (see e.g. [5]). Therefore we will assume
that ‘tc’ is extended to a total well-founded order on ground closures. Then let
Mlc((s ≈ t) · θ) = {s · θ, t · θ} and Mlc((s �≈ t) · θ) = {s · θ, sθ · id , t · θ, tθ · id} in

L · σ lc L′ · ρ iff Mlc(L · σ) tc Mlc(L′ · ρ), (2)

and let Mcc(C · σ) = {L · σ} if C is a unit clause {L}, and Mcc(C · σ) = {Lσ · id |
L ∈ C} otherwise, in

C · σ cc D · ρ iff Mcc(C · σ) lc Mcc(D · ρ). (3)

Let us note that unit and non-unit clauses are treated differently in this
ordering. Some properties that will be used throughout the paper follow.

Lemma 1. ‘tc’, ‘lc’, and ‘cc’ are all well-founded and total on ground term
closures, literal closures, and clause closures, respectively.

Proof. We have already established that tc is well-founded by construction.
‘lc’ and ‘cc’ are derived from ‘tc’ by multiset extension, so they are also
well-founded. Similarly, ‘tc’ is total on ground-terms on by construction, and
‘lc’ and ‘cc’ are derived from ‘tc’ by multiset extension, so they are also
total on ground literals/clauses. ��
Lemma 2. Assume s, t are ground, then s · id tc t · id ⇔ s t t. Analogously
for ‘lc’ and ‘cc’.

Lemma 3. ‘tc’ is an extension of ‘t’, in that sσ t tρ ⇒ s · σ tc t · ρ,
however this is generally not the case for ‘lc’ and ‘cc’: sσ ≈̇ tσ l uρ ≈̇ vρ �⇒
(s ≈̇ t) · σ lc (u ≈̇ v) · ρ, and Cσ c Dρ �⇒ C · σ cc D · ρ.

204 A. Duarte and K. Korovin

Proof. As an example, let a t b and consider literal closures

(f(x) ≈ a) · x/a (f(a) ≈ b) · id (4)

The literal represented by the one on the left is greater than the one represented
by the one on the right, in ‘l’. However, the closure on the left is smaller than
the one on the right, in ‘lc’. This is also an example for ‘cc’ if these are two
unit clauses. ��
Lemma 4. tρ · σ �tc t · ρσ. Analogously for ‘lc’ and ‘cc’. In particular,
tσ · id �tc t · σ and analogously for ‘lc’ and ‘cc’.

Proof. From definition and the fact that tρ � t. ��
Lemma 5. t · σ tc s · id ⇔ tσ t s.1 Analogously for ‘lc’ and ‘cc’.

Proof. For t · σ tc s · id to hold, either tσ t s, or else tσ = s but then t � s
cannot hold. The ⇐ direction follows from the definition. ��
Lemma 6. ‘tc’ has the following property: l t r ⇒ s[l] · θ tc s[l �→ r] · θ.
Analogously for ‘lc’ and ‘cc’.

Proof. For ‘tc’: let l t r. By the fact that ‘t’ is a rewrite relation, we have
l t r ⇒ s[l] t s[l �→ r] ⇒ s[l]θ t s[l �→ r]θ. Then, by the definition of ‘tc’,
s[l] · θ tc s[l �→ r] · θ. For ‘lc’ and ‘cc’: by the above and by their definitions
we have that the analogous properties also hold. ��

Sometimes we will drop subscripts and use just ‘’ when it is obvious from
the context: term, literals and clauses will be compared with ‘t’, ‘l’, ‘c’
respectively, and corresponding closures with ‘tc’, ‘lc’, ‘cc’.

3 Model Construction

The superposition calculus comprises the following inference rules.

Superposition
l ≈ r ∨ C s[u] ≈̇ t ∨ D

(s[u �→ r] ≈̇ t ∨ C ∨ D)θ
,

where θ = mgu(l, u),
lθ � rθ, sθ � tθ,
and s not a variable,

(5)

Eq. Resolution
s �≈ t ∨ C

Cθ
, where θ = mgu(s, t), (6)

Eq. Factoring
s ≈ t ∨ s′ ≈ t′ ∨ C

(s ≈ t ∨ t �≈ t′ ∨ C)θ
,

where θ = mgu(s, s′),
sθ � tθ and tθ � t′θ, (7)

and the selection function (underlined) selects at least one negative, or else all
maximal (wrt. ‘t’) literals in the clause.

The superposition calculus is refutationally complete wrt. the standard
notion of redundancy [4,13]. In the following, we refine the standard redundancy
to closure redundancy and prove completeness in this case.
1 But not, in general, s · id �tc t · σ ⇔ s �t tσ, e.g. f(a) · id �tc f(x) · (x �→ a).

AC Simplifications and Closure Redundancies in the Superposition Calculus 205

Closure Redundancy. Let GInsts(C) = {Cθ | Cθ is ground}. In the standard
definition of redundancy, a clause C is redundant in a set S if all Cθ ∈ GInsts(C)
follow from smaller ground instances in GInsts(S). Unfortunately, this standard
notion of redundancy does not cover many simplifications such as AC normali-
sation and a large class of demodulations (which we discuss in Sect. 4).

By modifying the notion of ordering between ground instances, using ‘cc’
rather than ‘c’, we adapt this redundancy notion to a closure-based one, which
allows for such simplifications. We then show that superposition is still complete
wrt. these redundancy criterion.

A clause C is closure redundant in a set S if all C · θ ∈ GClos(C) follow from
smaller ground closures in GClos(S) (i.e., for all C · θ ∈ GClos(C) there exists
a set G ⊆ GClos(S) such that G |= C · θ and ∀ D · ρ ∈ G.D · ρ ≺cc C · σ).

Although the definition of closure redundancy looks similar to the standard
definition, consider the following example showing differences between them.

Example 1. Consider unit clauses S = {f(x) ≈ g(x), g(b) ≈ b} where f(x)
g(x) b. Then f(b) ≈ b is not redundant in S, in the standard sense, as it
does not follow from any smaller (wrt. ‘c’) ground instances of clauses in S,
(it does follow from instances f(b) ≈ g(b), g(b) ≈ b, but the former is bigger
than f(b) ≈ b). However, it is closure redundant in S, since its only ground
instance (f(b) ≈ b) · id follows from the smaller (wrt. ‘cc’) closure instances:
(f(x) ≈ g(x)) · (x �→ b) and (g(b) ≈ b) · id . In other words, the new redundancy
criterion allows demodulation even when the smaller side of the equation we
demodulate with is greater than the smaller side of the target equation, pro-
vided that the matching substitution is proper. As we will see in Sect. 4 this
considerably simplifies the applicability condition on demodulation and more
crucially when dealing with theories such as AC it allows to use AC axioms to
normalise clauses when standard demodulation is not be applicable.

Likewise, we extend the standard notion of redundant inference. An infer-
ence C1, . . . , Cn |− D is closure redundant in a set S if, for all θ ∈
GSubs(C1, . . . , Cn,D), the closure D · θ follows from closures in GClos(S) which
are smaller wrt. ‘cc’ than the maximal element of {C1 · θ, . . . , Cn · θ}.

Let us establish the following connection between closure redundant infer-
ences and closure redundant clauses. An inference C1, . . . , Cn |− D is reductive
if for all θ ∈ GSubs(C1, . . . , Cn,D) we have D · θ ≺cc max{C1 · θ, . . . , Cn · θ}.

Lemma 7. If the conclusion of a reductive inference is in S or is closure redun-
dant in S, then the inference is closure redundant in S. ��

A set of clauses S is saturated up to closure redundancy if any inference
C1, . . . , Cn |− D with premises in S, which are all not redundant in S, is closure
redundant in S. In the sequel, we refer to the new notion of closure redundancy
as simply “redundancy”, when it is clear form the context.

Theorem 1. The superposition inference system is refutationally complete wrt.
closure redundancy, that is, if a set of clauses is saturated up to closure redun-
dancy and does not contain the empty clause ⊥, then it is satisfiable.

206 A. Duarte and K. Korovin

Proof. Let N be a set of clauses such that ⊥ �∈ N , and G = GClos(N). Let us
assume N is saturated up to closure redundancy. We will build a model for G,
and hence for N , as follows. A model is represented by a convergent term rewrite
system (we will show convergence in Lemma 8), where a closure C · θ is true in
a given model R if at least one of its positive literals (s ≈ t) · θ has sθ ↓R tθ, or
if at least one of its negative literals (s �≈ t) · θ has sθ �↓R tθ.

For each closure C · θ ∈ G, the partial model RC·θ is a rewrite system defined
as

⋃
D·σ≺ccC·θ εD·σ. The total model R∞ is thus

⋃
D·σ∈G εD·σ. For each C · θ ∈ G,

the set εC·θ is defined recursively over ≺cc as follows. If:

a. C · θ is false in RC·θ,
b. lθ ≈ rθ strictly maximal inCθ,
c. lθ t rθ,
d. C · θ \ {(l ≈ r) · θ} is false in RC·θ ∪ {lθ → rθ},
e. lθ is irreducible via RC·θ,

(8)

then εC·θ = {lθ → rθ} and the closure is called productive, otherwise εC·θ = ∅.
Let also RC·θ be RC·θ ∪ εC·θ.

Our goal is to show that R∞ is a model for G. We will prove this by contra-
diction: if this is not the case, then there is a minimal (wrt. ‘cc’) closure C · θ
such that R∞ �|= C · θ. We will show by case analysis how the existence of this
closure leads to a contradiction, if the set is saturated up to redundancy. First,
some lemmas.

Lemma 8. R∞ and all RC·θ are convergent, i.e. terminating and confluent.

Proof. It is terminating since the rewrite relation is contained in t, which is
well-founded. For confluence it is sufficient to show that left hand sides of rules in
R∞ are irreducible in R∞. Assume that l → r and l′ → r′ are two rules produced
by closures C · θ and D · σ respectively. Assume l is reducible by l′ → r′. Then
l � l′, and since t is a simplification order, then l �t l′. If l t l′ then by (8b)
and (8c) we have l t all terms in Dσ, therefore all literal closures in Dσ · id
will be smaller than the literal closure in C · θ which produced l → r (by Lemma
5), therefore C · θ cc Dσ · id �cc D · σ (see Lemma 4). But then C · θ could
not be productive due to (8e). If l = l′ then both rules can reduce each other,
and again due to (8e) whichever closure is larger would not be productive. In
either case we obtain a contradiction. ��
Lemma 9. If RC·θ |= C · θ, then RD·σ |= C · θ for any D · σ cc C · θ, and
R∞ |= C · θ.

Proof. If a positive literal s≈t of Cθ is true in RC·θ, then s ↓RC·θ t. Since no rules
are ever removed during the model construction, then s ↓RD·σ t and s ↓R∞ t.

If a negative literal (s �≈ t) · θ of C · θ is true in RC·θ, then sθ �↓RC·θ tθ.
Wlog. assume that sθ t tθ. Consider a productive closure D · σ cc C · θ that
produced a rule lσ→rσ. Let us show that lσ→rσ cannot reduce sθ �≈tθ. Assume
otherwise. By (8b), lσ ≈ rσ is strictly maximal in Dσ, so if lσ → rσ reduces

AC Simplifications and Closure Redundancies in the Superposition Calculus 207

either tθ or a strict subterm of sθ, meaning lσ ≺t sθ, then clearly sθ t all
terms in Dσ, therefore (s �≈ t)θ · id �lc (s �≈ t) · θ lc all literals in Dσ · id �lc

respective literals in D · σ (Lemmas 4 and 5), which contradicts D · σ cc C · θ
regardless of whether any of them is unit. If lσ = sθ, then Mlc((s �≈ t) · θ) =
{s · θ, t · θ, sθ · id , tθ · id} tc {lσ · id , rσ · id} = Mlc((l ≈ r)σ · id), since sθ =
lσ t tσ implies sθ · id = lσ · id , and s · θ tc rσ · id . Hence, by Lemma 4,
(s �≈ t)θ · id �lc (s �≈ t) · θ lc (l ≈ r)σ · id �lc (l ≈ r) · σ, contradicting D · σ cc

C · θ (again regardless of either of them being a unit). ��
Lemma 10. If C · θ = (C ′ ∨ l ≈ r) · θ is productive, then RD·σ �|= C ′ · θ for any
D · σ cc C · θ, and R∞ �|= C ′ · θ.

Proof. All literals in C ′ · θ are false in RC·θ by (8d). For all negative literals
(s �≈ t) · θ in C ′ · θ, if they are false then sθ ↓RC·θ tθ. Since no rules are ever
removed during the model construction then sθ ↓RD·σ tθ and sθ ↓R∞ tθ.

For all positive literals (s ≈ t) · θ in C ′ · θ, if they are false in RC·θ then
sθ �↓RC·θ tθ. Two cases arise. If C · θ is unit, then C ′ = ∅, so C ′ · θ is trivially false
in any interpretation. If C · θ is nonunit, then consider any productive closure
D · σ cc C · θ that produces a rule l′σ → r′σ, by definition D · σ cc Cθ · id
and by Lemma 5 Dσ c Cθ. Since lθ ≈ rθ is strictly maximal in Cθ then
l′σ lθ any term in Cθ. Therefore l′σ → r′σ cannot reduce sθ or tθ. ��

We are now ready to prove the main proposition by induction on closures
(see Lemma 1), namely that for all C · θ ∈ G we have R∞ |= C · θ. We will show
a stronger result: that for all C · θ ∈ G we have RC·θ |= C · θ (the former result
follows from the latter by Lemma 9). If this is not the case, then there exists a
minimal counterexample C · θ ∈ G which is false in RC·θ.

Notice that, since by induction hypothesis all closures D · σ ∈ G such that
D · σ ≺cc C · θ have RD·σ |= D · σ, then by Lemma 9 we have RC·θ |= D · σ (and
RC·θ |= D · σ). Consider the following cases.

Case 1. C is redundant.

Proof. By definition, C · θ follows from smaller closures in G. But if C · θ is the
minimal closure which is false in RC·θ, then all smaller D · σ are true in RD·σ,
which (as noted above) means that all smaller D · σ are true in RC·θ, which
means C · θ is true in RC·θ, which is a contradiction. ��
Case 2. C contains a variable x such that xθ is reducible.

Proof. Then RC·θ contains a rule which reduces xθ to a term t. Let θ′ be identical
to θ except that it maps x to t. Then Cθ′ ≺ Cθ, so C · θ′ ≺ C · θ (see Lemma 3),
and therefore C · θ′ is true in RC·θ. But C · θ′ is true in RC·θ iff C · θ in RC·θ,
since xθ ↓RC·θ t, therefore C · θ is also true in RC·θ, which is a contradiction. ��
Case 3. There is reductive inference C,C1, . . . |− D which is redundant, such
that {C,C1, . . . } ⊆ N , C · θ is maximal in {C · θ , C1 · θ , . . . }, and D · θ |= C · θ.

208 A. Duarte and K. Korovin

Proof. Then D · θ is implied by closures in G smaller than C · θ. But since those
closures are true in RC·θ, then D · θ is true, and since D · θ implies C · θ, then
C · θ is true in RC·θ, which is a contradiction. ��
Case 4. Neither of the previous cases apply, and C contains a negative literal
which is selected in the clause, i.e., C · θ = (C ′ ∨ s �≈ t) · θ with s �≈ t selected in
C.

Proof. Then either sθ �↓RC·θ tθ and C · θ is true and we are done, or else sθ ↓RC·θ
tθ. Wlog., let us assume sθ � tθ.

Subcase 4.1. sθ = tθ.

Proof. Then s and t are unifiable, meaning that there is an equality resolution
inference

C ′ ∨ s �≈ t |− C ′σ, with σ = mgu(s, t), (9)

with premise in N .
Take the instance C ′σ · ρ of the conclusion such that σρ = θ; it always exists

since σ = mgu(s, t). Also, since the mgu is idempotent [2] then σθ = σσρ = σρ,
so C ′σ · ρ = C ′σ · θ. We show that C · θ = (C ′ ∨ s �≈ t) · σρ C ′σ · ρ = C ′σ · θ.
If C ′ is empty, then this is trivial. If C ′ has more than 1 element, then this is also
trivial (see Lemma 2). If C ′ has exactly 1 element, then let C ′ = {s′ ≈̇ t′}. We
have (s′ ≈̇ t′ ∨ s �≈ t) · σρ (s′ ≈̇ t′)σ · ρ if (s′ ≈̇ t′)σρ · id � (s′ ≈̇ t′)σ · ρ, which
is true by Lemma 4. Notice also that if C ′σ · ρ is true then (C ′ ∨ · · ·) · σρ must
also be true.

Recall that Case 3 does not apply. But we have shown that this inference is
reductive, with C ∈ N , C · θ trivially maximal in {C · θ}, and that the instance
C ′σ · θ of the conclusion implies C · θ. So for Case 3 not to apply the inference
must be non-redundant. Also since Case 1 doesn’t apply then the premise is not
redundant. This means that the set is not saturated, which is a contradiction. ��
Subcase 4.2. sθ tθ.

Proof. Then (recall that sθ ↓RC·θ tθ) sθ must be reducible by some rule in RC·θ.
Since by (8b) the clause cannot be productive, it must be reducible by some
rule in RC·θ. Let us say that this rule is lθ → rθ, produced by a closure D · θ
smaller than C · θ.2 Therefore closure D · θ must be of the form (D′ ∨ l ≈ r) · θ,
with lθ≈rθ maximal in Dθ, and D′ · θ false in RD·θ. Also note that D · θ cannot
be redundant, or else it would follow from smaller closures, but those closures
(which are smaller than D · θ and therefore smaller than C · θ) would be true,
so D · θ would be also true in RD·θ, so by (8a) it would not be productive.

Then lθ = uθ for some subterm u of s, meaning l is unifiable with u, meaning
there exists a superposition inference

D′ ∨ l ≈ r , C ′ ∨ s[u] �≈ t |− (D′ ∨ C ′ ∨ s[u �→ r] �≈ t)σ, σ = mgu(l, u), (10)
2 We can use the same substitution θ on both C and D by simply assuming wlog. that

they have no variables in common.

AC Simplifications and Closure Redundancies in the Superposition Calculus 209

Similar to what we did before, consider the instance (D′∨C ′∨s[u �→r] �≈t)σ ·ρ
with σρ = θ.3 We wish to show that this instance of the conclusion is smaller
than C · θ (an instance of the second premise), that is that

(C ′ ∨ s �≈ t) · σρ (D′ ∨ C ′ ∨ s[u �→ r] �≈ t)σ · ρ. (11)

Several cases arise:

• C ′ �= ∅. Then both premise and conclusion are non-unit, so comparing them
means comparing C ′θ∨sθ �≈ tθ and D′θ∨C ′θ∨sθ[uθ �→rθ] �≈ tθ (Lemma 2), or
after removing common elements, comparing sθ �≈tθ and D′θ∨sθ[uθ �→rθ] �≈tθ.
This is true since (i) lθ rθ ⇒ sθ[lθ] sθ[lθ �→ rθ] ⇒ sθ �≈ tθ sθ[lθ �→
rθ] �≈ tθ, and (ii) sθ � lθ rθ and lθ ≈ rθ is greater than all literals in D′θ,
so sθ �≈ tθ is greater than all literals in D′θ.

• C ′ = ∅ and D′ �= ∅. Then we need (s �≈ t) · σρ (D′ ∨ s[u �→ r] �≈ t)σρ · id .
By Lemma 5, this is true only if sθ �≈ tθ D′θ ∨ sθ[uθ �→ rθ] �≈ tθ. To see
that this is true we must also notice that, since D · θ ≺ C · θ, then (again by
Lemma 5) D′θ ∨ lθ ≈ rθ ≺ sθ �≈ tθ must also hold, so {sθ �≈ tθ} D′θ. Then
obviously {sθ �≈ tθ} {sθ[uθ �→ rθ] �≈ tθ}.

• C ′ = ∅ and D′ = ∅. Then simply sθ[uθ] sθ[uθ �→ rθ] means
s[u] · σρ s[u �→ r]σ · ρ, which since sσρ tσρ, means (s[u] �≈ t) · σρ
(s[u �→ r] �≈ t)σ · ρ.

In all these cases this instance of the conclusion is always smaller than the
instance C · θ of the second premise. Note also that C · θ is maximal in {C · θ ,
D · θ}. Also, since D′ · θ is false in RC·θ (by Lemma 10) and (s[u �→r] �≈t)·θ is false
in RC·θ (since (s �≈ t) · θ is in the false closure C · θ, uθ ↓RC·θ rθ, and the rewrite
system is confluent), then in order for that instance of the conclusion to be true
in RC·θ it must be the case that C ′σ · ρ is true in RC·θ. But if the latter is true
then C · θ = (C ′ ∨ · · ·) · σρ is true, in RC·θ. In other words that instance of the
conclusion implies C · θ. Therefore again, since Case 1 and Case 3 don’t apply,
we conclude that the inference is non-redundant with non-redundant premises,
so the set is not saturated, which is a contradiction. ��
This proves all subcases. ��
Case 5. Neither of the previous cases apply, so all selected literals in C are
positive, i.e., C · θ = (C ′ ∨ s ≈ t) · θ with s ≈ t selected in C.

Proof. Then, since if the selection function doesn’t select a negative literal then
it must select all maximal ones, wlog. one of the selected literals s≈ t must have
sθ≈tθ is maximal in Cθ. Then if either C ′ · θ is true in RC·θ, or εC·θ = {sθ→tθ},
or sθ = tθ, then C · θ is true in RC·θ and we are done. Otherwise, εC·θ = ∅, C ′ · θ
is false in RC·θ, and wlog. sθ tθ. If s≈t is maximal in C then sθ≈tθ is maximal
in Cθ.

3 And again note that the mgu σ is idempotent so (D′ ∨ C′ ∨ s[u �→ r] �≈ t)σ · ρ =
(D′ ∨ C′ ∨ s[u �→ r] �≈ t)σ · θ.

210 A. Duarte and K. Korovin

Subcase 5.1. sθ ≈ tθ maximal but not strictly maximal in Cθ.

Proof. If this is the case, then there is at least one other maximal positive literal
in the clause. Let C · θ = (C ′′ ∨ s ≈ t ∨ s′ ≈ t′) · θ, where sθ = s′θ and tθ = t′θ.
Therefore s and s′ are unifiable and there is an equality factoring inference:

C ′′ ∨ s ≈ t ∨ s′ ≈ t′ |− (C ′′ ∨ s ≈ t ∨ t �≈ t′)σ, with σ = mgu(s, s′), (12)

with σ = mgu(s, s′). Take the instance of the conclusion (C ′′ ∨ s ≈ t ∨ t �≈ t′)σ · ρ
with σρ = θ. This is smaller than C · θ (since s′θ ≈ t′θ tθ �≈ t′θ, and Lemma
2 applies). Since tθ = t′θ and C ′′σ · ρ is false in RC·θ, this instance of the
conclusion is true in RC·θ iff (sσ ≈ tσ) · ρ is true in RC·θ. But if the latter is true
in RC·θ then (s ≈ t ∨ · · ·) · σρ also is. Therefore that instance of the conclusion
implies C · θ. As such, and since again Cases 1 and 3 do not apply, we have a
contradiction. ��
Subcase 5.2. sθ ≈ tθ strictly maximal in Cθ, and sθ reducible (in RC·θ).

Proof. This is similar to Subcase 4.2. If sθ is reducible, say by a rule lθ → rθ,
then (since εC·θ = ∅) this is produced by some closure D · θ smaller than C · θ,
with D · θ = (D′ ∨ l ≈ r) · θ, with the lθ ≈ rθ maximal in Dθ, and with D′ · θ
false in RD·θ.

Then there is a superposition inference

D′ ∨ l ≈ r , C ∨ s[u] ≈ t |− (D′ ∨ C ′ ∨ s[u �→ r] ≈ t)σ, σ = mgu(l, u), (13)

Again taking the instance (D′∨C ′∨s[u �→r]≈t)σ ·ρ with σρ = θ, we see that it is
smaller than C · θ (see discussion in Subcase 4.2). Furthermore since D′ · θ and
C ′ · θ are false in RC·θ, then that instance of the conclusion is true in RC·θ iff
(s[u �→ r] ≈ t)σ · ρ is. But since also uθ ↓RC·θ rθ, then (s[u �→ r] ≈ t)σ · ρ implies
(s[u] ≈ t)σ · ρ. Therefore that instance of the conclusion implies C · θ. Again this
means we have a contradiction. ��
Subcase 5.3. sθ ≈ tθ strictly maximal in Cθ, and sθ irreducible (in RC·θ).

Proof. Since C · θ is not productive, and at the same time all criteria in (8)
except (8d) are satisfied, it must be that (8d) is not, that is C ′ · θ must be
true in RC·θ = RC·θ ∪ {sθ → tθ}. Then this must mean we can write C ′ · θ =
(C ′′ ∨ s′ ≈ t′) · θ, where the latter literal is the one that becomes true with the
addition of {sθ → tθ}, whereas without that rule it was false.

But this means that s′θ ↓RC·θ t′θ such that any rewrite proof needs at least
one step where sθ→tθ is used, since sθ is irreducible by RC·θ. Wlog. say s′θ t′θ.
Since: (i) sθ ≈ tθ s′θ ≈ t′θ, (ii) sθ tθ, and (iii) s′θ t′θ, then sθ � s′θ t′θ,
which implies t′θ �� sθ, which implies sθ → tθ can not be used to reduce t′θ.
Then the only way it can reduce s′θ or t′θ is if sθ = s′θ. This means there is an
equality factoring inference:

C ′′ ∨ s′ ≈ t′ ∨ s ≈ t |− (C ′′ ∨ s′ ≈ t′ ∨ t �≈ t′)σ, with σ = mgu(s, s′). (14)

AC Simplifications and Closure Redundancies in the Superposition Calculus 211

Taking θ = σρ, we see that the instance of the conclusion (C ′′ ∨ t �≈ t′ ∨ s ≈ t)
σ ·ρ is smaller than the instance of the (C ′′ ∨ s′ ≈ t′ ∨ s ≈ t) · σρ.

But we have said that s′θ ↓RC·θ t′θ, where the first rewrite step had to take
place by rewriting s′θ = sθ → tθ, and the rest of the rewrite proof then had to
use only rules from RC·θ. In other words, this means tθ ↓RC·θ t′θ. As such, the
literal (t �≈ t′) · θ is false in RC·θ, and so the conclusion is true in RC·θ iff rest of
the closure is true in RC·θ. But if the rest of the closure (C ′′ ∨ s′ ≈ t′)σ · ρ then
so is C · θ, so that instance of the conclusion implies C · θ. Once again, this leads
to a contradiction since none Cases 1 and 3 apply and therefore the set must
not be saturated. ��
This proves all the subcases and the theorem. ��
Remark: As part of this proof we have also shown that all inferences in the
superposition system are reductive, so per Lemma 7 one way to make inferences
redundant is simply to add the conclusion.

4 Redundancies

Now we will show three novel redundancy criteria whose proof is enabled by the
framework we have just discussed. One is an extension of the demodulation rule,
used in many different provers.

Demodulation

Recall the “standard” demodulation rule (a struck clause means that it can be
removed from the set when the conclusion is added).

Demodulation
l ≈ r ���C[lθ]
C[lθ �→ rθ]

,
where lθ rθ
and {lθ ≈ rθ} ≺ C[lθ].

(15)

We show an extension which is also a redundancy in this framework.

Encompassment
Demodulation

l ≈ r ���C[lθ]
C[lθ �→ rθ]

,
where lθ rθ, and
either {lθ ≈ rθ} ≺ C[lθ]
or lθ � l.

(16)

Theorem 2. Encompassment demodulation is a sound and admissible simpli-
fication rule wrt. closure redundancy (a redundancy criterion is admissible if its
struck premises are redundant wrt. the conclusion and the non-struck premises).

Proof. The proof can be found in the full version [8]. ��
This theorem has many practical implications. Demodulation is widely used

in superposition theorem provers, and improvement this criterion provides are
two-fold.

212 A. Duarte and K. Korovin

First, it enables strictly more simplifying inferences to be performed where
they previously could not. Let us re-consider Example 1 from Sect. 3. Standard
demodulation is not applicable to f(b)≈b by clauses in S = {f(x)≈g(x), g(b)≈b}.
However, we can simplify it to a tautology and remove it completely using encom-
passment demodulation. Our experimental results (Sect. 5) show that encom-
passment demodulation extends usual demodulation in many practical problems.

Second, it enables a faster way to check the applicability conditions. One of
the considerable overheads in the standard demodulation is to check that the
equation we are simplifying with is smaller than the clause we are simplifying.
For this, right-hand side of the oriented equation needs to be compared in the
ordering with all top terms in the clause. In the encompassment demodulation
this expensive check is avoided in many cases. After obtaining the matching
instantiation θ of the left side of the oriented equation, if it is not a renaming (a
quick check) or the matching is strictly below the top position of the term, then
we can immediately accept the inference and skip potentially expensive ordering
checks.

Associative-Commutative Joinability

Let ACf be
f(x, y) ≈ f(y, x), (17a)

f(x, f(y, z)) ≈ f(f(x, y), z), (17b)
f(x, f(y, z)) ≈ f(y, f(x, z)). (17c)

The first two axioms (17a) and (17b) define that f is an associative-commutative
(AC) symbol. The third equation (17c) follows from those two and will be used
to avoid any inferences between these axioms and more generally to justify AC
joinability simplifications defined next.

We define the two following rules:

AC joinability (pos)
�����s ≈ t ∨ C ACf

,
where s ↓ACf

t
s ≈ t ∨ C not in ACf , (18a)

AC joinability (neg) �����s �≈ t ∨ C ACf

C
, where s ↓ACf

t, (18b)

Theorem 3. AC joinability rules are sound and admissible simplification rules
wrt. closure redundancy.

Proof. Let us prove rule (18a). We will show how, if s ↓ACf
t, then all ground

instances (s ≈ t) · θ are rewritable, via smaller instances of clauses in ACf , to a
smaller tautology or to a smaller instance of clauses in ACf , meaning that s ≈ t
is redundant wrt. closure redundancy. Using closure redundancy is essential, as
instances of ACf axioms used in the following rewriting process can be bigger
than the clause we are simplifying in the usual term ordering, but as we will see
they are smaller in the closure ordering.

AC Simplifications and Closure Redundancies in the Superposition Calculus 213

For conciseness, let us denote f(a, b) by ab in the sequel. We will assume
that the term ordering has following properties: if s t t then st t ts and
s(tu) t t(su), and also that (xy)z t x(yz). This conditions hold for most
commonly used families of orderings, such as KBO or LPO [2].

First some definitions. Let subtermsf collect all “consecutive” f -subterms
into a multiset, that is

if u = f(s, t) : subtermsf (u) = subtermsf (s) ∪ subtermsf (t), (19a)
otherwise: subtermsf (u) = u. (19b)

so for example subtermsf (a((bc)d)) = {a, b, c, d}. Let us define sortf as follows:

sortf (u) = u′′
1(· · · u′′

n),

where {u1, . . . , un} = subtermsf (u)
and u′

i = sortf (ui)
and {u′′

1 , . . . } = {u′
1, . . . },

and u′′
1 ≺ · · · ≺ u′′

n.

(20)

such that for example if a ≺ b ≺ c then sortf ((ba)(g(cb))) = a(b(g(bc))). Note
that we have s ↓ACf

t ⇒ ∀θ ∈ GSubs(s, t). sθ ↓ACf
tθ, and s ↓ACf

t ⇔
sortf (s) = sortf (t). Therefore we will now show how, if s ↓ACf

t, then for
any ground instance (s ≈ t) · θ, the closure (s′ ≈ t′) · θ, with s′θ = sortf (sθ) =
sortf (tθ) = t′θ, is either an instance of ACf or a tautology, implied by smaller
instances of clauses from ACf .

For the cases where |subtermsf (s)| is 1, 2, or 3, ad-hoc proofs are required.
In the full version [8] we give such proofs for all cases with subtermsf (s) = {x},
{x, y}, and {x, y, z}. Then by Lemma 4 all cases with |subterms(s)| ≤ 3 follow,
since they will be an (equal or more specific) instance of some such case.

For the cases with |subtermsf (s)| ≥ 4, consider any ground instance
(s ≈ t) · θ. First, exhaustively apply the rule (xy)z → x(yz) on all subterms
of s ≈ t. Since (xy)z x(yz), s � s′ and t � t′, then (Lemma 6) (s ≈ t) · θ �
(s′ ≈ t′) · θ. In order to show that (s′ ≈ t′) · θ and ACf make (s ≈ t) · θ redun-
dant, it remains to be shown that these rewrites were done by instances of (17b)
which are also smaller than (s ≈ t) · θ.

Since |subtermsf (s)| ≥ 4, then any s or t where we can rewrite with (xy)z →
x(yz) is in one of the following forms: (i) (a1a2)(a3a4), in which case we can use
an identical argument to encompassment demodulation since (a1a2)(a3a4) �
(xy)z, or (ii) a1a2 with the term being rewritten being a2 or a subterm thereof,
in which case the rewrite is also by a smaller instance.

After this, s′ and t′ are of the form a1(· · · an). Now, since the closure is
ground, for every adjacent pair of terms either aiθ ≺ ai+1θ or aiθ ai+1θ or
aiθ = ai+1θ. This means we can always instantiate and apply one of (17a) or
(17c) and “bubble sort” the AC terms until they become a′

1(· · · a′
n) with a′

1θ ≺
· · · ≺ a′

nθ, where there is a bijection between {a1, . . . , an} and {a′
1, . . . , a

′
n},

obtaining an a′
1θ(· · · a′

nθ) � a1θ(· · · anθ).
Once again, these rewrites are done via smaller instances of ACf , since we

either rewrite with (17a) on a subterm, in the case of an−1/an, or with (17c) on

214 A. Duarte and K. Korovin

a subterm, in the case of ai/ai+1 with 2 ≤ i ≤ n − 1, or with (17c) on a less
general term, in the case of a1/a2.

The process we have just described is done bottom-up on terms (meaning
for instance f(g(f(b, a)), c) → f(g(f(a, b)), c) → f(c, g(f(a, b)))). Obviously, the
rewrites on inner f -subterms are trivially done by smaller instances.

This concludes the process. Applying this on both sides yields the closure
(s′ ≈ t′) · θ with s′θ = sortf (sθ) and t′θ = sortf (tθ), which we have shown is
� (s ≈ t) · θ and follows from it by smaller closures in GClos(ACf). This can be
done for all θ ∈ GSubs(s, t). Thus sortf (s, θ) ≈ sortf (t, θ), a tautology, makes
clause s ≈ t redundant, meaning any s ≈ t ∨ C is redundant in ACf . The same
process proves rule (19a). ��

AC Normalisation

We will now show some examples to motivate another simplification rule. Assume
a ≺ b ≺ c. The demodulation rule already enables us to rewrite any occurrence
of, for instance, b(ca), or (ac)b or any other such permutation, to a(bc). However,
take the term b(xa). It cannot be simplified by demodulation. Yet it is easy to
see that in any instance of a clause where it appears, it can be rewritten to a
smaller a(xb) via smaller instances of clauses in ACf .

Such cases motivate the following simplification rule.4

AC norm. ������C[t1(· · · tn)] ACf

C[t′1(· · · t′n)]
,

where t1, . . . , tn lex t′1, . . . , t
′
n

and {t1, . . . , tn} = {t′1, . . . , t
′
n} (21)

Theorem 4. AC normalisation is a sound and admissible simplification rule
wrt. closure redundancy.

Proof. The proof can be found in the full version [8]. ��
In practice, this criterion can be implemented by applying the following func-

tion

normf (s1(· · · sn)) =
let csortf (normf (s1), . . . ,normf (sn)) = (s′

1, . . . , s
′
n)

in s′
1(· · · s′

n)

normf (g(t1, . . . , tn)) = g(normf (t1), . . . ,normf (tn)), if g �= f (22)

to all literals in the clause, where

csortf (s1, . . . , sn) =

⎧
⎪⎨

⎪⎩

sk ++ csort∗f (s1, . . . , sn \ sk)
if ∃ sk ∈ {s1, . . . , sn}. sk ≺t s1
and sk minimal in {s1, . . . , sn}

s1 ++ csortf (s2, . . . , sn) otherwise
(23)

and csort∗f orders the list of terms using some total extension of the term
ordering.
4 Note we trivially assume all ACf terms are right associative, since (xy)z → x(yz) is

always oriented.

AC Simplifications and Closure Redundancies in the Superposition Calculus 215

Some examples, assume g(. . .) b a:

b(xa) → a(xb) (24a)
x(ba) → x(ab) (24b)

g(x) (ax) → a(x g(x)) (24c)
g(bx) g(ba) → g(ab) g(bx) (24d)

note the rhs may not be unique (e.g. in the first and third), since we are free to
extend the term ordering in any (consistent) way.

The main advantages of applying this simplification rule are

– Strictly more redundant clauses found. For example, in the set {a(bx), a(xb),
x(ab), b(xa), b(ax), x(ba)}, the latter three are redundant, instead of only the
latter one.

– Faster implementation. Even for simplifications that were already allowed by
demodulation, we avoid the work of searching in indices and instantiating
the axioms to perform the rewrites. Also, we can avoid storing ACf in the
demodulation indices entirely. Since (17a) matches with all f -terms, and (17c)
with all f -terms with 3 or more elements, this makes all queries on those
indices faster.

5 Experimental Results

We implemented the simplifications developed in this paper – encompassment
demodulation, AC joinability and AC normalisation – in a theorem prover for
first-order logic, iProver [7,9].5 iProver combines superposition with Inst-Gen
and resolution calculi. For superposition iProver implements a range of simplifi-
cations including demodulation, light normalisation, subsumption and subsump-
tion resolution. We run our experiments over FOF problems of the TPTP v7.4
library [16] (17 053 problems) on a cluster of Linux servers with 3GHz 11 cores
AMD CPUs, 128GB memory, each problem was running on a single core with
time limit 300 s.

In total iProver solved 10 358 problems. Encompassment demodulation (excl-
uding cases when usual demodulation is applicable) was used in 7283 problems,
≥1000 times in 2343 problems, ≥10 000 in 1018 problems, and ≥100 000 in 272
problems. This is in addition to other places where usual demodulation is valid
but an expensive ordering check is skipped.

There are 1366 problems containing 1 to 6 AC symbols, as detected by
iProver. AC normalisation was applied in 1327 of these: ≥1000 times in 1047
problems, ≥10 000 times in 757 problems; and ≥100 000 times in 565 problems.
AC joinability was applied in 1138 problems: ≥1000 times in 646, ≥10 000 times
in 255 problems. We can conclude that new simplifications described in this
paper were applicable in a large number of problems and were used many times.

5 iProver is available at http://www.cs.man.ac.uk/~korovink/iprover.

http://www.cs.man.ac.uk/~korovink/iprover

216 A. Duarte and K. Korovin

6 Conclusion and Future Work

In this paper we extended the AC joinability criterion to the superposition cal-
culus for full first-order logic. For this we introduced a new closure-based redun-
dancy criterion and proved that it preserves completeness. Using this criterion we
proved that AC joinability and AC normalisation simplifications preserve com-
pleteness of the superposition calculus. Using these results, superposition provers
for full first-order logic can incorporate AC simplifications without compromising
completeness. Moreover, we extended demodulation to encompassment demod-
ulation, which enables simplification of more clauses (and faster), independent
of AC theories.

We believe that the framework of closure redundancy can be used to prove
many other interesting and useful redundancy criteria. For future work we are
currently exploring other such applications, including more AC simplifications
as well as general ground joinability criteria which can be incorporated in our
framework.

References

1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in
equational theorem proving. J. Symb. Comput. 36(1,2), 217–233 (2003)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf.
Comput. 121(2), 172–192 (1995)

4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994)

5. Bonnet, R., Pouzet, M.: Linear extensions of ordered sets. In: Rival, I. (ed.) Ordered
Sets. NATO Advanced Study Institutes Series (Series C – Mathematical and Phys-
ical Sciences), vol. 83, pp. 125–170. Springer, Dordrecht (1982). https://doi.org/
10.1007/978-94-009-7798-3_4

6. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979)

7. Duarte, A., Korovin, K.: Implementing superposition in iProver (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_24

8. Duarte, A., Korovin, K.: AC simplifications and closure redundancies in the super-
position calculus. arXiv (2021). (full version)

9. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7_24

10. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

11. Löchner, B., Hillenbrand, T.: A phytography of WALDMEISTER. AI Commun.
15(2,3), 127–133 (2002)

https://doi.org/10.1007/978-94-009-7798-3_4
https://doi.org/10.1007/978-94-009-7798-3_4
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-39799-8_1

AC Simplifications and Closure Redundancies in the Superposition Calculus 217

12. Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E. (ed.)
CADE 1990. LNCS, vol. 449, pp. 366–380. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52885-7_100

13. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 371–443.
Elsevier and MIT Press (2001)

14. Schulz, S.: E–a brainiac theorem prover. AI Commun. 15(23), 111–126 (2002)
15. Smallbone, N.: Twee: an equational theorem prover. In: Platzer, A., Sutcliffe, G.

(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 602–613. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5_35

16. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

17. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tour-
ret, S.: Making higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.)
CADE 2021. LNCS (LNAI), vol. 12699, pp. 415–432. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5_24

18. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2_10

19. Winkler, S., Moser, G.: MædMax: a maximal ordered completion tool. In: Galmiche,
D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp.
472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_31

https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1007/978-3-030-79876-5_24
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-319-94205-6_31

The Role of Entropy in Guiding
a Connection Prover

Zsolt Zombori1,2(B), Josef Urban3, and Miroslav Oľsák4

1 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
zombori@renyi.hu

2 Eötvös Loránd University, Budapest, Hungary
3 Czech Technical University in Prague, Prague, Czechia

4 University of Innsbruck, Innsbruck, Austria

Abstract. In this work we study how to learn good algorithms for
selecting reasoning steps in theorem proving. We explore this in the
connection tableau calculus implemented by leanCoP where the partial
tableau provides a clean and compact notion of a state to which a lim-
ited number of inferences can be applied. We start by incorporating a
state-of-the-art learning algorithm — a graph neural network (GNN) –
into the plCoP theorem prover. Then we use it to observe the system’s
behavior in a reinforcement learning setting, i.e., when learning infer-
ence guidance from successful Monte-Carlo tree searches on many prob-
lems. Despite its better pattern matching capability, the GNN initially
performs worse than a simpler previously used learning algorithm. We
observe that the simpler algorithm is less confident, i.e., its recommen-
dations have higher entropy. This leads us to explore how the entropy
of the inference selection implemented via the neural network influences
the proof search. This is related to research in human decision-making
under uncertainty, and in particular the probability matching theory. Our
main result shows that a proper entropy regularization, i.e., training the
GNN not to be overconfident, greatly improves plCoP’s performance on
a large mathematical corpus.

Keywords: Automated theorem proving · Machine learning ·
Reinforcement learning · Graph neural networks · Connection
calculus · Entropy regularization

1 Introduction

Automated Theorem Proving (ATP) and Interactive Theorem Proving (ITP)
are today increasingly benefiting from combinations with Machine Learning
(ML) methods [44]. A number of learning-based inference guiding methods
have been developed recently, starting with the leanCoP [33,34] style connec-
tion tableaux setting [12,23,25,32,35,46,51], later expanding into the E prover’s
[38,39] and Vampire’s [28] superposition setting [9,18,19,29,42], and HOL’s
[15,16,41], Coq’s [10] and Isabelle’s [48] tactical settings [4,6,13,14,17,31,50].
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 218–235, 2021.
https://doi.org/10.1007/978-3-030-86059-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_13

The Role of Entropy in Guiding a Prover 219

The connection tableau calculus as implemented by leanCoP is a very good
framework for studying combinations of ML and ATP methods [5]. leanCoP has
a compact Prolog implementation that is both easy to modify and surprisingly
efficient. At the same time, unlike in the superposition and tactical setting, the
partial tableau provides a clean and compact notion of a state to which a limited
number of inferences (actions) can be applied. This has recently allowed the first
experiments with AlphaZero [40] style Monte-Carlo tree search (MCTS) [12] and
Reinforcement Learning (RL) [43] of theorem proving in the rlCoP [25], graphCoP
[32] and plCoP [51] systems.

In this work, we start by extending plCoP with a state-of-the-art learning
algorithm – a graph neural network (GNN) [32] – which was designed for pro-
cessing logical formulae and exhibits several useful invariance properties, namely
invariance under renaming of symbols, negation and reordering of clauses and
literals. Despite its better pattern matching capability, the GNN initially per-
forms worse than a simpler previously used learning algorithm based on gradient
boosted trees (XGBoost [8]). We observe that the simpler algorithm is less con-
fident about the inferences that should be applied to the proof states, i.e., its
recommendations have higher entropy, leading to greater exploration of different
inferences.

This leads us to analyze how the entropy of the inference selection imple-
mented via the neural network influences the proof search. We try increasingly
high penalties for overconfidence (low entropy) during the training of the GNN,
using an approach called Maximum Entropy Reinforcement Learning [49]. For
this, we need to be able to compare the entropy of proof states with different
numbers of possible inferences (actions). We do that by introducing normalized
entropy, which allows for comparing discrete distributions of different lengths.
We make a rather surprising discovery that replacing the particular trained pre-
dictors by arbitrary (random) but entropy-normalized predictors that respect
the inference ordering yields only slightly weaker ATP performance. This sug-
gests that the correct ordering of possible inferences according to their utility in
a given state plus the right amount of entropy capture most of the benefits of
the learned guidance. In summary, our contributions are:

1. We integrate a fast logic-aware graph neural network into the plCoP system,
allowing its use for guiding the choice of inferences (policy) and for estimating
the provability of a partial connection tableau (value).

2. We adapt the graph construction algorithm to support the paramodulation
inferences used in plCoP.

3. We analyze the entropy of the policy and its role in plCoP’s performance.
4. We show that random policies with the right ordering and normalized entropy

perform already quite well.
5. We do several smaller and larger evaluations over the standard corpus

extracted from the Mizar Mathematical Library (MML) and show that the
best entropy regularized GNN greatly improves over other learning-guided
connection tableaux systems. In particular, we report 17.4% improvement on
the Mizar40 evaluation set over rlCoP, the best previously published result.

220 Z. Zombori et al.

The rest of the paper is structured as follows. Section 2 introduces in more
detail the necessary background such as neural guidance of provers, the lean-
CoP setting, reinforcement learning and Monte-Carlo tree search, and Maximum
Entropy learning. Section 3 discusses in more depth the use of Maximum Entropy
learning in guiding MCTS-based theorem proving. Section 4 describes our new
implementation and Sect. 5 experimentally evaluates the methods.

2 Background and Related Work

2.1 Neural Feature Extraction for Guiding Theorem Provers

Learning based ATP systems have for a long time explored suitable characteriza-
tions of mathematical objects, leading to solutions that process text directly (e.g.
[2,4,29]) and solutions that rely on manually engineered features (e.g. [18,26]).
Graph neural networks (GNN) [37] provide an alternative to both approaches:
the graph representation allows for retaining the syntactic structure of mathe-
matical objects, while also allowing for end-to-end (i.e., involving no manually
designed features) training. However, improving over learning based on man-
ual feature extraction has proven to be challenging with GNNs, especially in
real time, as noted in several works (e.g. [9,11]). Usually it required high level of
technical engineering. The GNN presented in [32] was designed to preserve many
useful invariance properties of logical formulae and has demonstrated impressive
improvement in guiding the leanCoP connection calculus compared with gradient
boosted trees. We refer to this system as graphCoP.

2.2 Systems Guiding the leanCoP Theorem Prover

leanCoP [34] is a compact theorem prover for first-order logic, implementing
connection tableau search. The proof search starts with a start clause as a goal
and proceeds by building a connection tableau by applying extension steps and
reduction steps. leanCoP uses iterative deepening to ensure completeness.

A series of learning systems guiding the leanCoP connection calculus have
been developed recently. Of these, we highlight three that use roughly the same
reinforcement learning setup: rlCoP [25], plCoP [51] and graphCoP [32]. These
systems search for proofs using Monte Carlo Tree Search [7] and they train the
value (the proof state quality) and the policy (the inference quality in a proof
state) functions similarly to systems like AlphaZero [3,40]. rlCoP and plCoP use
manually developed features [26] and gradient boosted trees (XGBoost [8]) for
learning while graphCoP employs a GNN for end-to-end feature extraction and
learning. This graph neural network was designed for processing mathematical
formulae and has several useful invariance properties: the graph structure is
invariant under renaming of symbols, negation and reordering of clauses and
literals. In this paper, we incorporate the GNN of [32] into plCoP.

The plCoP system extends leanCoP with paramodulation steps that can han-
dle equality predicates more efficiently. Let t|p denote the subterm of t at position

The Role of Entropy in Guiding a Prover 221

p and t[u]p denote the term obtained after replacing in t at position p by term u.
Given a goal G and an input clause1 {X �= Y,B}, such that, for some position p
there is a substitution σ such that G|pσ = Xσ, the paramodulation step changes
G to {G[Y]pσ,Bσ}. Rewriting is allowed in both directions, i.e., the roles of X
and Y can be switched.

2.3 Reinforcement Learning (RL)

Reinforcement learning (RL) [43] aims to find the optimal behaviour in an envi-
ronment defined as a Markov Decision Process (MDP). An MDP(S,A,R,P, γ)
describes a dynamic process and consists of the following components: S is the
set of possible states, A is the set of possible actions, R : (S × A) → R is a
reward function, P : (S × A) → S is the state transition function and γ is the
discount factor. We assume that an agent interacts with this MDP, generating
sequences of (st, at, rt) state-action-reward tuples, called trajectories. The agent
is equipped with a policy function π : S → A which determines which action
it selects in a particular state. The policy is often stochastic, i.e., it defines a
probability distribution over inferences that are possible in a given state. The
aim of the agent is to maximize its total accumulated reward

∑
t≥0 γtrt. Several

components, such as the reward and transition functions, can be stochastic, in
which case the aim of the agent it to find the policy π∗ that maximizes its cumu-
lative expected reward, where future rewards are discounted with the γ discount
factor:

π∗ = arg max
π

E

⎡

⎣
∑

t≥0

γtrt|π
⎤

⎦

2.4 Monte Carlo Tree Search (MCTS)

MCTS is a simple RL algorithm, which builds a search tree whose nodes are
states and where edges represent actions. The aim of the search algorithm is
to find trajectories (branches in the search tree) that yield high accumulated
rewards. The search starts from a single root node, and new nodes are added
iteratively. In each node i, we maintain the number of visits ni, the total reward
ri, and the prior probability (estimated typically by a trained predictor) pi of
all its possible successors (in our case produced by the possible inferences). Each
iteration, also called playout, involves the addition of a new leaf node.

The policy π used for selecting the actions of the playout is based on the
standard UCT [27] (Upper Confidence Trees) formula (1): in each state we select
the action with the maximal UCT value in the successor state. Once a new leaf
state is created, we observe its reward and update its ancestors: visit counts are
increased by 1 and rewards are increased by the reward of the leaf.

UCT(i) =
ri

ni
+ cp · pi ·

√
lnN

ni
(1)

1 Assuming Disjunctive Normal Form.

222 Z. Zombori et al.

In (1), N is the number of visits of the parent, and cp is a parameter that deter-
mines the balance between nodes with high reward (exploitation) and rarely
visited nodes (exploration). In [3,40] MCTS is augmented with two learned func-
tions. The value function estimates the accumulated reward obtainable from a
state, and the leaf nodes are initialized with this value estimates. The second
function predicts the prior probability of state-action pairs, which is usually
referred to as the policy, with a slight abuse of terminology. When it can lead to
confusion, we refer to this policy as πM .

The plCoP, rlCoP and graphCoP systems use the MaLARea/DAgger [36,45]
meta-learning algorithm to learn the policy and value functions. They interleave
ATP runs based on the current policy and value (data collection phase) with a
training phase, in which these functions are updated to fit the collected data.
Such iterative interleaving of proving and learning has been used successfully in
ATP systems such as MaLARea [45] and ENIGMA [20].

During the proof search we build a Monte Carlo tree for each training prob-
lem. Its nodes are the proof states (partial tableaux), and the edges represent
inferences. Note that the Monte Carlo tree is thus different from the tableau
trees. A branch of this Monte Carlo tree leading to a node with a closed tableau
is a valid proof. Initially, the three leanCoP-based systems use somewhat different
heuristic value and policy functions, later to be replaced with the learned guid-
ance. To enforce deeper exploration, we perform a bigstep after a fixed number
of playouts: the starting node of exploration is moved one level down towards
the child with the highest value (called the bigstep node). Later MCTS steps
thus only extend the subtree under the bigstep node. This in practice means no
backtracking of the bigsteps, which in turn involves giving up completeness.

2.5 Maximum Entropy Reinforcement Learning

When training the policy, directly maximizing the expected utility on the action
sequences observed by an RL agent (i.e., the training examples) can lead to
instability. The policy can get stuck in local minima and become overconfident,
preventing it from exploring the search space sufficiently when necessary to make
good decisions. This has motivated using stochastic policies and several regular-
ization (i.e., encouraging generality) techniques that ensure that all actions have
a chance of being selected. Another motivation for properly regularized stochas-
tic policy learning comes from experiments on humans and animals, suggesting
that biological agents do not deterministically select the action with the great-
est expected utility [47]: instead they randomly select actions with probability
proportional to the expected utility, called probability matching. Consequently,
action sequences that generate similar rewards tend to be similarly probable,
i.e., we avoid making strong commitments whenever it is possible. Maximum
Entropy Reinforcement Learning (MaxEnt RL), achieves probability matching
by adding an entropy term to the loss function when the policy is trained:

π∗ = arg max
π

E[
∑

t≥0

γtrt + αHπ[a|st]|π]

The Role of Entropy in Guiding a Prover 223

where Hπ[a|st] is the Shannon entropy of the probability distribution over valid
actions in state st:

H[p] = −
n∑

i=1

pi log(pi)

and α is the entropy coefficient. This means that the training of the policy will
be maximizing a weighted sum of the (discounted) rewards and of the entropy of
the resulting distribution, thus discouraging overconfidence. The entropy term in
the objective was first used in [49] and since then its benefit has been empirically
demonstrated in several domains. It is particularly useful in dynamic environ-
ments, where some uncertainty remains, irrespective of the amount of explo-
ration.

2.6 Kullback-Leibler Divergence

Shannon’s entropy measures the uniformity of a single distribution. However,
when contrasting different policies, we will need a measure to compare different
distributions. For this, one of the most widely used options is the Kullback-
Leibler (KL) divergence, also called relative entropy, which is a measure of how
one probability distribution differs from a given reference distribution. For a
discrete target distribution Q and a reference distribution P , the KL divergence
is defined as:

KL(P‖Q) =
∑

x

P (x) log
P (x)
Q(x)

This measure is zero exactly when P and Q are identical, otherwise it is positive.
It can be infinite if there is some x such that P (x) > 0 and Q(x) = 0. A small
KL(P‖Q) means that the two distributions are similar on the domain where
most of the probability mass of P lies. Note that KL(P‖Q) �= KL(Q‖P). For
example, consider the following distributions:

P = [0.5, 0.47, 0.01, 0.01, 0.01]
Q = [0.96, 0.01, 0.01, 0.01, 0.01]

KL(P‖Q) = 1.48 and KL(Q‖P) = 0.58. When the summed terms are
weighted according to P in KL(P‖Q), the first two terms get large weight, while
only the first term gets large weight in KL(Q‖P). When both KL divergences
are small, it is a good indicator of similarity of the two distributions.

3 Maximum Entropy for MCTS and Theorem Proving

In this section we discuss the entropy of the inference policy and its potential
influence on the proof search. We also introduce a normalized entropy to correctly
handle probability vectors of different lengths and argue that MaxEnt RL is more
targeted and powerful than previously used temperature-based entropy control.
Section 4 then describes our implementation.

224 Z. Zombori et al.

3.1 Exploration and Entropy in MCTS

The MCTS implemented via the UCT formula has a built-in mechanism for bal-
ancing the exploitation of proof states that already have high rewards and the
exploration of inferences whose effect is not yet known. This balancing serves
to mitigate errors in the proof state value estimates. However, we need to do
another balancing within exploration, between the different under-explored infer-
ence branches. This is estimated by the πM policy predictor as the prior prob-
abilities of the possible inferences. Hence, besides the ordering of the inferences
that are possible from a given state, their exact prior probabilities are important
as they determine how the exploration budget is split between them. This obser-
vation directs our attention to the entropy (uncertainty) of πM and its relation
to the theorem proving performance.

We argue that finding the right level of (un)certainty is particularly important
for theorem proving. The goal of learning is to acquire inductive biases that allow
the system to perform well on novel problems.2 In many situations, however, it
is not realistic to extract enough knowledge from the training data that justifies
a high level of confidence. Sometimes, there is just not enough analogy between
a new problem and the training problems, and we would like our guidance to
be more conservative so that we can explore all directions equally. This makes
a strong case for using MaxEnt RL, which gives tools for shaping the entropy
(uncertainty) profile of our learned πM policy predictor.

3.2 Normalized Entropy

In this work, we empirically demonstrate the importance of including the “right
amount” of entropy when training the policy that guides the theorem prover.
To the best of our knowledge, this is the first time that the effect of entropy
regularization for MCTS in general and for theorem proving in particular is
examined.

Using standard entropy for comparing probability vectors of different length
would, however, be misleading. The same entropy value can mean very different
uncertainty if the length of the vector changes. For example, consider the vectors

[0.34, 0.33, 0.33]
[0.73, 0.07, 0.05, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01]

Their entropy is roughly the same (1.1), despite the fact that the first is nearly
uniform and the second centers around its first value. To make the uncertainty
of these two vectors comparable, we introduce normalized entropy :

Definition 1. Given a discrete probability vector p of length n, let H∗[p] =
H[p]/ log(n) denote the normalized entropy of p.

2 In this sense, theorem proving can be considered as a meta learning task.

The Role of Entropy in Guiding a Prover 225

Here, log(n) is the entropy of the uniform distribution when the length is n,
hence it is the upper bound of H[p]. Consequently, H∗[p] ∈ [0, 1]. Furthermore,
it is dimensionless, i.e., it does not depend on the base of the logarithm. The
difference between the two distributions in the example above is better captured
by their normalized entropy, which is 1 and 0.48.

3.3 Temperature-Based and Regularization-Based Entropy Control

An alternative mechanism for injecting entropy into the policy is through the
softmax temperature parameter T . Our policy predictors (both XGBoost and
GNN) output an unconstrained logit vector l, which is normalized to a proba-
bility vector p using the softmax function:

pi =
e

li
T

∑n
j=1 e

lj
T

Increasing the temperature flattens the probability curve, approaching the uni-
form distribution in the limit. On the other hand, if the temperature gets close
to 0, then most of the probability mass concentrates on the most likely action.

While both higher temperature and entropy regularization increase the ulti-
mate entropy of the policy, they work differently. The temperature acts globally
and uniformly, flattening all inference probabilities estimated by the trained pol-
icy predictor. Entropy regularization, on the other hand, is part of the training
process and it allows the neural network to learn distinguishing between situa-
tions with low and high uncertainty. In obvious situations, entropy regularization
does not prevent the neural network from acquiring great certainty, while it will
drive the network to more uniform predictions when there is no strong evidence
against that in the training data. Hence, we expect entropy regularization to be
more targeted and powerful than the temperature optimization. This is empiri-
cally demonstrated in Sect. 5.

4 Entropy Regularized Neural Guidance for plCoP

This section gives an overview of the training procedure, including how data is
extracted from tableaux and Monte Carlo trees.

4.1 Neural Representation of the State and Inference Steps

The proof state in the leanCoP setting is roughly described by the partial tableau
and by the set of input clauses corresponding to the initial axioms and conjecture.
Each time we choose an extension step, we map the state into a hypergraph, as
described in [32]. In more detail, we use the current goal (single literal), the
active path leading to the current goal (set of literals), the set of all open goals
(set of literals), and the input clauses in the hypergraph construction. The GNN
processes the hypergraph and outputs a value prediction for the proof state in

226 Z. Zombori et al.

the range [0, 1]. It also outputs a probability distribution over all the literals of
the axiom clauses that can be used for extension steps, i.e., that can be unified
with the negation of the current goal literal.

The above method is used already in graphCoP, but the hypergraph construc-
tion algorithm used by graphCoP was designed to guide only the extension steps.
Hence it expects the set of all clauses together with the information that identi-
fies literals within the clauses that unify with the negation of the current goal.
We adapt this to paramodulation by temporarily creating a clause for each valid
paramodulation step that “simulates” the latter as an extension step. Suppose
that the current goal is G and there is an input clause {X �= Y,B}, such that,
for some position p there is a substitution σ such that G|pσ = Xσ. There is a
valid paramodulation step that replaces G with {G[Y]pσ,Bσ}. We simulate this
step as an extension by adding clause {¬Gσ,G[Y]pσ,Bσ} to the input clauses,
when constructing the graph.

4.2 Training the Policy and Value Guidance for MCTS

As in plCoP, the value and policy estimates are stored in the MCTS nodes and
are used for guiding proof search. The training data for learning policy (inference
probabilities) and value (state quality) are also handled as in plCoP. They are
extracted from the tableau states of the bigstep nodes. For each bigstep state,
the value target is 13 if it leads to a proof and 0 otherwise. The policy targets
at a particular proof state are the relative frequencies of the possible inferences,
i.e., the children in the search tree.

For graphCoP, a single GNN was jointly trained to predict both the value and
the policy [32]. However, we observed that training separate predictors yields a
small improvement, hence we conduct our experiments in this setup. Consider a
tableau state s for which we want to learn its target value v and target policy
p1, . . . , pn. Suppose that the partially trained value predictor outputs v′ and the
policy predictor outputs p′

1, . . . , p
′
n, then the objectives that we minimize are:

– value objective: (v − v′)2
– policy objective: −∑n

i=1 pi · log(p′
i) − αH[p′]

For more details of the graph construction and neural training we refer to
[32]. In summary, we use the same setting as there, except for (i) extending
guidance to paramodulation steps, (ii) training separate policy and value GNNs,
(iii) increasing the number of neural layers in the GNN from 5 to 10,4 and (iv)
changing the policy training to encourage policies with higher entropy.

5 Experiments

We first introduce our datasets and other experimental settings (Sect. 5.1). Then
we show the impact of entropy regularization (Sect. 5.2) and experimentally com-
3 A discount factor of 0.99 is applied to positive rewards to favor shorter proofs.
4 This is motivated by the experiments with the ENIGMA-GNN system [18], where

8–10 layers produce better results than 5 layers.

The Role of Entropy in Guiding a Prover 227

pare the entropies and other characteristics of the XGBoost and GNN predictors
(Sect. 5.3). In Sect. 5.4, we show that random policies with the right ordering
and normalized entropy perform already quite well. Section 5.5 then compares
temperature-based entropy control with our approach. Finally, Sect. 5.6 eval-
uates the methods in a train/test scenario on the full Mizar40 dataset using
several iterations of proving and learning.

5.1 Datasets and Common Settings

We evaluate our system5 using the same datasets as those in [25]. The Mizar40
dataset [22] consists of 32524 problems from the Mizar Mathematical Library
that have been proven by several state-of-the-art ATPs used with many strategies
and high time limits in the experiments described in [24]. Based on the proofs,
the axioms were ATP-minimized, i.e., only those axioms were kept that were
needed in any of the ATP proofs found. The smaller M2k dataset [21] consists
of 2003 Mizar40 problems that come from related Mizar articles. Finally, we use
the bushy (small) problems from the MPTP2078 benchmark [1], which contains
just an article-based selection of Mizar problems, regardless of their solvability
by a particular ATP system.

Unless otherwise specified, we use the same hyperparameters as described
in [51], with the following important exceptions. To allow for faster experiments
and put more emphasis on guidance instead of search, we reduce the per problem
inference limit from 200000 to 20000 and the bigstep frequency from 2000 to 200.
Hence the overall search budget is reduced by a factor of 10. We use a very large
CPU time limit (300 s) intended to ensure that proof search terminates after
exhausting the inference limit.

5.2 Experiment 1: Influence of Entropy Regularization

In this experiment, we examine the effect of regularizing the entropy of our
policy predictor. We produce several variants of the GNN policy predictor which
differ in the entropy coefficient α used in its training. Table 1 summarizes our
results. We find that the entropy coefficient has a big impact on performance.
By the 10th iteration, the best GNN predictor with α = 0.7 is 17% better
than the unregularized GNN and 5% better than XGBoost. Table 1 also shows
the average entropy of the policies generated by the predictor during the proof
search. Note that the average entropy of the best predictor in most iterations
is reasonably close (often the closest) to the entropy of the XGBoost predictor.
This suggests that one key strength of the XGBoost predictor is that it hits the
“right” amount of entropy. Matching this entropy in the GNN with adequate
regularization allows for matching and even surpassing XGBoost in performance.

5 The new extensions described here and the experimental configuration files are pub-
licly available at plCoP’s repository: https://github.com/zsoltzombori/plcop.

https://github.com/zsoltzombori/plcop

228 Z. Zombori et al.

Table 1. Number of problems solved (Succ) and average policy entropy (Ent) on
the M2k dataset. α is the entropy loss term coefficient. Best models are marked with
boldface, best GNN models are underlined.

Model α Iter 1 Iter 2 Iter 4 Iter 6 Iter 8 Iter 10

Ent Succ Ent Succ Ent Succ Ent Succ Ent Succ Ent Succ

XGB 1.41 790 1.29 956 1.22 1061 1.19 1119 1.17 1147 1.14 1171

GNN 0 0.91 746 0.56 850 0.37 938 0.34 992 0.31 1021 0.32 1050

GNN 0.1 0.86 787 0.6 867 0.43 933 0.37 996 0.37 1031 0.38 1070

GNN 0.2 1.11 769 0.71 878 0.51 976 0.51 1045 0.49 1077 0.46 1114

GNN 0.3 1.05 736 0.8 868 0.7 991 0.73 1071 0.69 1109 0.78 1170

GNN 0.5 1.31 781 1.14 884 1.17 1015 1.13 1085 1.12 1144 1.06 1191

GNN 0.6 1.37 759 1.25 889 1.26 1040 1.21 1098 1.18 1150 1.19 1197

GNN 0.7 1.41 727 1.32 854 1.27 1057 1.22 1132 1.24 1184 1.2 1228

GNN 0.8 1.42 757 1.37 912 1.35 1029 1.32 1079 1.29 1111 1.3 1144

GNN 1.0 1.53 742 1.41 911 1.38 1032 1.35 1102 1.36 1144 1.35 1173

GNN 2.0 1.59 725 1.57 782 1.53 894 1.5 1007 1.5 1047 1.5 1086

5.3 Experiment 2: Relative Entropy on the Same Proof States

Table 1 reveals that there is a reasonable match in average entropy between
XGBoost policies and our best GNN policies. Note, however, that this is in gen-
eral measured on different proof states as the policies themselves determine what
proof states the prover explores. To gain a deeper understanding, we create a sep-
arate dataset of proof states and compare the different GNNs from Experiment 1
with XGBoost on these proof states using the following four metrics: 1) fraction
of proof states where the two predictors have the same most probable inference
(Best), 2) fraction of proof states where the two predictors yield the same infer-
ence ordering (Order), and the average KL divergence (relative entropy) between
the predictors in both directions: 3) KL(X‖G) and 4) KL(G‖X).6 We contrast
these metrics with the number of problems solved (Succ) by the corresponding
entropy regularized GNN.

We perform this comparison using two datasets. These are the set of states
visited by an unguided prover on the 1) M2k dataset and the 2) MPTP2078
bushy benchmark. The first set is part of the training corpus, while the second
was never seen by the predictors before. The results can be seen in Table 2.

Changing the entropy coefficient mostly does not change the order of actions,
as expected. For the two datasets, the GNN and the XGBoost predictors select
the same best inference in around 80% and 58% of the states and yield exactly
the same inference ordering in around 40% and 22% of the states. This reveals
a significant diversity among the two predictor families, suggesting potential in
combining them. We leave this direction for future work.

We find that the same level of entropy regularization (α = 0.7) is the
best when running both on the familiar (M2k) and the previously unseen
6 X and G stand for the probability distributions predicted by XGBoost and GNN,

respectively.

The Role of Entropy in Guiding a Prover 229

Table 2. Comparing the differently entropy-regularized GNN predictors (G) with
XGBoost (X) on two fixed sets of proof states generated by running an unguided prover
on the M2k and MPTP2078 benchmarks. All predictors were trained on M2k for 10
iterations. α is the entropy regularization coefficient. XGBoost solves 1171 (M2K) and
491 (MPTP2078) problems.

α M2K MPTP2078b

Succ Best Order KL(X‖G) KL(G‖X) Succ Best Order KL(X‖G) KL(G‖X)

0 1050 0.81 0.43 0.52 2.9 230 0.56 0.22 0.97 4.5

0.1 1070 0.8 0.44 0.5 2.37 245 0.58 0.24 0.91 3.83

0.2 1114 0.81 0.42 0.47 1.66 256 0.56 0.24 0.88 2.82

0.3 1170 0.82 0.42 0.36 0.58 276 0.56 0.23 0.61 0.9

0.5 1191 0.82 0.42 0.24 0.28 335 0.59 0.23 0.41 0.43

0.6 1197 0.82 0.4 0.22 0.23 359 0.59 0.23 0.36 0.36

0.7 1228 0.82 0.4 0.22 0.21 399 0.58 0.22 0.34 0.32

0.8 1144 0.81 0.39 0.22 0.21 357 0.58 0.22 0.34 0.31

1.0 1173 0.82 0.4 0.24 0.21 363 0.58 0.22 0.33 0.29

2.0 1086 0.81 0.39 0.34 0.26 362 0.58 0.21 0.37 0.3

(MPTP2078) dataset. This is where the two directional KL divergences (rela-
tive entropies) roughly coincide and their sum is roughly minimal. These results
make a stronger case for the hypothesis from Experiment 1, that the best GNN
performance is obtained when the policy distributions are statistically close to
those of the XGBoost predictor.

5.4 Experiment 3: Order and Entropy Are Largely Sufficient

Tables 1 and 2 demonstrate the importance of the entropy of the inference policy
in ATP performance. To make this even more apparent, we design an experiment
in which we remove a large part of the information contained in the inference
policy, only preserving the inference ordering and the normalized entropy. The
top two lines of Table 3 show the normalized entropy across iterations of the
XGBoost and GNN predictors. Note that it is very stable. We select a target
normalized entropy H∗ and for each length l we generate a fixed random discrete
probability pl of length l whose normalized entropy is H∗. Finally, we run an
MCTS evaluation in which each time our policy predictor emits a probability
vector of length l, we replace it with pl, permuted so that the ordering remains
the same as in the original policy. Table 3 shows the ATP performance for the
differently normalized entropy targets.

We find that the performance of this predictor is surprisingly good: its per-
formance (1154) is only 1% worse than XGBoost (1171), 10% better than unreg-
ularized GNN (1050) and 6% worse than the best GNN (1228). This suggests
that the right inference ordering plus the right amount of entropy capture most
of the benefits of the learned inference guidance.

230 Z. Zombori et al.

Table 3. Normalized entropy of the XGBoost and GNN predictors on M2k (top two
rows) and number of problems solved by random policies constrained to have the same
action ordering and fixed normalized entropy.

Iteration 0 1 2 3 4 5 6 7 8 9 10

XGBoost H∗ 1 0.73 0.71 0.69 0.68 0.67 0.67 0.67 0.66 0.67 0.66

GNN (α = 0.7) H∗ 1 0.83 0.79 0.8 0.79 0.79 0.78 0.78 0.78 0.8 0.78

GNN H∗ = 0.6 523 700 782 849 909 956 984 1019 1037 1059 1083

GNN H∗ = 0.7 523 702 800 856 922 954 995 1040 1077 1110 1129

GNN H∗ = 0.8 523 693 832 938 1023 1054 1086 1077 1115 1129 1154

5.5 Experiment 4: Temperature vs. Entropy Regularization

As noted in Sect. 3, tuning the softmax temperature is an alternative to entropy
regularization. For XGBoost, the temperature was previously optimized to be
T = 2 and all reported experiments use this number. For the GNN predic-
tors, we used the default T = 1. In Table 4, we show how the ATP perfor-
mance of the GNN changes after it has been trained for 10 iterations on the
M2k dataset (without entropy regularization). Increasing the temperature brings
some improvement, however, this is much smaller than the benefit of entropy
regularization. This is true even if we take the best temperature (T = 4) and
perform a full 10 iteration training with this temperature, as shown in Table 5.
We obtain 3% improvement via the temperature optimization, compared with
17% improvement via the entropy regularization. We conclude that the effect of
entropy regularization is much more refined and powerful than just flattening
the probability curve.

Table 4. The effect of changing the temperature of an (unregularized) GNN predictor
trained for 10 iterations on the M2k dataset on the number of problems solved.

Model T = 0.5 T = 1 T = 2 T = 3 T = 4 T = 5

GNN 1036 1050 1057 1066 1068 1061

Table 5. Number of problems solved by the GNN trained for 10 iterations on the M2k
dataset with different softmax temperatures.

Iteration 0 1 2 3 4 5 6 7 8 9 10

GNN T = 1 523 746 850 899 938 971 992 1012 1021 1023 1050

GNN T = 4 523 705 800 864 894 931 993 1017 1049 1065 1079

The Role of Entropy in Guiding a Prover 231

5.6 Experiment 5: Final Large Train/Test Evaluation on Mizar40

Finally, we perform a large evaluation of plCoP using XGBoost and GNN on the
full Mizar40 dataset, and we compare its performance with rlCoP and graphCoP.
This evaluation, including the training of the GNNs on the growing sets of proofs
generated from the successive proving/learning iterations, takes over 10 days
on a large multicore server, and the number of training policy/value examples
extracted from the MCTS proof searches goes over 5M in the last iteration.

The 32524 problems are randomly split using a 9:1 ratio into 29272 train-
ing problems and 3252 evaluation problems. For consistency, we employ the
same split that was used in [25]. Successive predictors are only trained on data
extracted from the training problems, but we always evaluate the predictors on
both the training and evaluation sets and report the number of proofs found for
them. Our results can be found in Table 6, with plCoP/GNN solving in the last
iteration 16906 training problems and 1767 evaluation problems. These are the
highest numbers obtained so far with any learning-guided leanCoP-based system.

For training the GNN policy predictor, we use the entropy regularization
coefficient (α = 0.7) that worked best on M2k, without its further tuning on this
larger dataset. Note that the resource limits are higher in Table 6 for rlCoP and
also a bit different for graphCoP (which was run only for a few iterations), as
we took their published results from [25,32] rather than rerunning the systems.
Also, the evaluation of plCoP with GNN was stopped after iteration 8 due to
our resource limits and the clear flattening of the performance on the evaluation
set (1767 vs 1758 in the 8th vs 7th iteration).

Table 6. Comparing plCoP with XGBoost, plCoP with GNN, rlCoP and graphCoP
on the Mizar40 training and evaluation set. rlCoP employs 200000 inference limit and
2000 bigstep frequency, plCoP uses 20000 inference limit and 200 bigstep frequency,
graphCoP uses 200 depth limit and 200 bigstep frequency.

Iteration 0 1 2 3 4 5 6 7 8 9 10

Train set

rlCoP 7348 12325 13749 14155 14363 14403 14431 14342 14498 14481 14487

graphCoP 4595 11978 12648 12642

plCoP XGB 4904 8917 10600 11221 11536 11627 11938 11999 12085 12063 12151

plCoP GNN 4888 8704 12630 14566 15449 16002 16467 16745 16906

Eval set

rlCoP 804 1354 1519 1566 1595 1624 1586 1582 1591 1577 1621

graphCoP 510 1322 1394 1360

plCoP XGB 554 947 1124 1158 1177 1204 1217 1210 1212 1213 1204

plCoP GNN 554 969 1375 1611 1650 1730 1742 1758 1767

In particular, plCoP was given 20000 inferences per problem, i.e., one tenth
of the inference limit used for rlCoP in [25]. For a fair comparison with rlCoP,
we thus take the predictors (both XGBoost and GNN) used in the last plCoP

232 Z. Zombori et al.

iteration (iteration 10 for XGBoost and iteration 8 for GNN) and run plCoP
with them on the evaluation set with 200000 inference limit and 2000 bigstep
frequency, which corresponds to the limits used for rlCoP in [25]. To ensure that
the system has enough time to exhaust its inference limit, we increase the timeout
to 6000 s. plCoP with XGBoost then solves 1499 of the evaluation problems while
plCoP with GNN solves 1907 (58.6%) of them. This is our final evaluation result,
which is 17.4% higher than the 1624 evaluation problems solved by rlCoP in the
best previously published result so far [25].

6 Conclusion

We have extended the plCoP learning-based connection prover with a fast, logic-
aware graph neural network (GNN) and explored how the GNN can learn good
guidance for selecting inferences in this setting. We have identified the entropy
of the inference selection predictor as a key driver of the ATP performance and
shown that Maximum Entropy Reinforcement Learning largely improves the
performance of the trained policy network, outperforming simpler temperature-
based entropy increasing methods. To the best of our knowledge, this is the first
time that the role of entropy in guiding a theorem prover has been analyzed.

We have discovered that replacing the particular trained predictors by arbi-
trary (random) but entropy-normalized predictors that respect the inference
ordering yields only slightly weaker theorem proving performance than the best
methods. This suggests that the right inference ordering plus the right amount
of entropy capture most of the benefits of the learned inference guidance. In
the large final train/test evaluation on the full Mizar40 benchmark our system
improves by 17.4% over the best previously published result achieved by rlCoP.

Acknowledgments. ZZ was supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002), the Hungarian National
Excellence Grant 2018-1.2.1-NKP-00008 and by the Hungarian Ministry of Innova-
tion and Technology NRDI Office within the framework of the Artificial Intelligence
National Laboratory Program. JU was funded by the AI4REASON ERC Consolida-
tor grant nr. 649043 and the European Regional Development Fund under the Czech
project AI&Reasoning CZ.02.1.01/0.0/0.0/15 003/0000466. MO was supported by the
ERC starting grant no. 714034 SMART. We thank the TABLEAUX’21 reviewers for
their thoughtful reviews and comments.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2),
191–213 (2014)

2. Alemi, A.A., Chollet, F., Een, N., Irving, G., Szegedy, C., Urban, J.: DeepMath
- deep sequence models for premise selection. In: Proceedings of the 30th Inter-
national Conference on Neural Information Processing Systems, NIPS 2016, USA,
pp. 2243–2251. Curran Associates Inc. (2016)

The Role of Entropy in Guiding a Prover 233

3. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and
tree search. CoRR, abs/1705.08439 (2017)

4. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an environ-
ment for machine learning of higher order logic theorem proving. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) International Conference on Machine Learning, ICML
2019. Proceedings of Machine Learning Research, vol. 97, pp. 454–463. PMLR
(2019)

5. Bibel, W.: A vision for automated deduction rooted in the connection method. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp.
3–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 1

6. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the Coq
proof assistant. In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC
Series in Computing, vol. 73, pp. 138–150. EasyChair (2020)

7. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4, 1–43 (2012)

8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, New York, NY, USA, pp. 785–794. ACM (2016)

9. Chvalovský, K., Jakub̊uv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 197–215. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 12

10. The Coq Proof Assistant. http://coq.inria.fr
11. Crouse, M., et al.: A deep reinforcement learning approach to first-order logic

theorem proving. Artificial Intelligence (2019). arXiv
12. Färber, M., Kaliszyk, C., Urban, J.: Machine learning guidance for connection

tableaux. J. Autom. Reason. 65(2), 287–320 (2021)
13. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4

tactics. In: Eiter, T., Sands, D. (eds.) LPAR-21. 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in
Computing, vol. 46, pp. 125–143. EasyChair (2017)

14. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: learning
to prove with tactics. J. Autom. Reason. 65(2), 257–286 (2021)

15. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Prov-
ing Environment for Higher Order Logic. Cambridge University Press, Cambridge
(1993)

16. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

17. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: Gamepad: a learning environment
for theorem proving. In: 7th International Conference on Learning Representations,
ICLR 2019. OpenReview.net (2019)

18. Jakub̊uv, J., Chvalovský, K., Oľsák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA anonymous: symbol-independent inference guiding machine (system
description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51054-1 29

https://doi.org/10.1007/978-3-319-66902-1_1
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-030-29436-6_12
http://coq.inria.fr
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29

234 Z. Zombori et al.

19. Jakub̊uv, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6 20

20. Jakubuv, J., Urban, J.: Hammering Mizar by learning clause guidance. In: Harri-
son, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive
Theorem Proving, ITP 2019, Portland, OR, USA, 9–12 September 2019. LIPIcs,
vol. 141, pp. 34:1–34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

21. Kaliszyk, C., Urban, J.: M2K dataset. https://github.com/JUrban/deepmath/
blob/master/M2k list

22. Kaliszyk, C., Urban, J.: Mizar40 dataset. https://github.com/JUrban/deepmath
23. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection

prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48899-7 7

24. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256
(2015). https://doi.org/10.1007/s10817-015-9330-8

25. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning of
theorem proving. In: NeurIPS, pp. 8836–8847 (2018)

26. Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated
reasoning over large theories. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, pp.
3084–3090. AAAI Press (2015)

27. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

28. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

29. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: 21st International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR) (2017)

30. Mohamed, O.A., Muñoz, C., Tahar, S. (eds.): TPHOLs 2008. LNCS, vol. 5170.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7

31. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for
Isabelle/HOL. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, 3–7 September 2018, pp. 362–372. ACM (2018)

32. Olsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated
reasoning. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Conference
on Artificial Intelligence, Santiago de Compostela, Spain, 29 August-8 September
2020 - Including 10th Conference on Prestigious Applications of Artificial Intelli-
gence (PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol. 325,
pp. 1395–1402. IOS Press (2020)

33. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 23

34. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36, 139–161 (2003)

35. Rawson, M., Reger, G.: Automated theorem proving, fast and slow. EasyChair
Preprint no. 4433. EasyChair (2020)

https://doi.org/10.1007/978-3-319-62075-6_20
https://github.com/JUrban/deepmath/blob/master/M2k_list
https://github.com/JUrban/deepmath/blob/master/M2k_list
https://github.com/JUrban/deepmath
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-540-71067-7
https://doi.org/10.1007/978-3-540-71070-7_23

The Role of Entropy in Guiding a Prover 235

36. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured
prediction to no-regret online learning. In: Gordon, G., Dunson, D., Dud́ık, M.
(eds.) Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics. Proceedings of Machine Learning Research, Fort Lauderdale,
FL, USA, 11–13 April 2011, vol. 15, pp. 627–635. PMLR (2011)

37. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. Trans. Neur. Netw. 20(1), 61–80 (2009)

38. Schulz, S.: E - a Brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
39. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,

A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49

40. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354 (2017)

41. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed et al. [30], pp.
28–32

42. Suda, M.: New techniques that improve Enigma-style clause selection guidance.
In: International Conference on Automated Deduction, CADE 2021 (2021)

43. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The
MIT Press, Cambridge (2018)

44. Urban, J.: ERC project AI4Reason final scientific report (2021). http://grid01.
ciirc.cvut.cz/∼mptp/ai4reason/PR CORE SCIENTIFIC 4.pdf

45. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
for automated reasoning with semantic guidance. In: IJCAR, pp. 441–456 (2008)

46. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection
prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI),
vol. 6793, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22119-4 21

47. Vulkan, N.: An economist’s perspective on probability matching. J. Econ. Surv.
14(1), 101–118 (2000)

48. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed
et al. [30], pp. 33–38

49. Williams, R.J., Peng, J.: Function optimization using connectionist reinforcement
learning algorithms. Connect. Sci. 3(3), 241–268 (1991)

50. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, Long Beach, California,
USA, 9–15 June 2019. Proceedings of Machine Learning Research, vol. 97, pp.
6984–6994. PMLR (2019)

51. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 489–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 33

https://doi.org/10.1007/978-3-642-45221-5_49
http://grid01.ciirc.cvut.cz/~mptp/ai4reason/PR_CORE_SCIENTIFIC_4.pdf
http://grid01.ciirc.cvut.cz/~mptp/ai4reason/PR_CORE_SCIENTIFIC_4.pdf
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33

The nanoCoP 2.0 Connection Provers for
Classical, Intuitionistic and Modal Logics

Jens Otten(B)

Department of Informatics, University of Oslo, Oslo, Norway
jeotten@ifi.uio.no

Abstract. This paper introduces the full versions of the non-clausal
connection provers nanoCoP for first-order classical logic, nanoCoP-i for
first-order intuitionistic logic and nanoCoP-M for several first-order mul-
timodal logics. The enhancements added to the core provers include sev-
eral techniques to improve performance and usability, such as a strategy
scheduling and the output of a detailed non-clausal connection proof
for all covered logics. Experimental evaluations for all provers show the
effectiveness of the integrated optimizations.

1 Introduction

The non-clausal connection calculus for classical logic [18] generalizes the clausal
connection calculus [3,4,24] to arbitrary first-order formulae. By directly deal-
ing with non-clausal formulae, a translation into a (disjunctive or conjunctive)
clausal form can be avoided. Instead, the structure of the original input formula
is preserved throughout the proof search. The non-clausal calculus combines the
advantages of more natural (non-clausal) sequent and tableau calculi with the
more systematic and goal-oriented proof search of connection calculi. Recently,
the non-clausal connection calculus has been adapted and extended to first-
order intuitionistic logic and several first-order modal logics [22]. This has been
achieved by adding prefixes and a specialized prefix unification algorithm that
captures the Kripke semantics of these non-classical logics.

Automated theorem provers that are based on these non-clausal calculi have
been introduced as well: the nanoCoP (= natural non-clausal Connection Prover)
series of provers for classical logic [20,21], first-order intuitionistic logic and
several first-order modal logics [22]. While already the basic implementations
of the non-clausal core calculi show a decent performance, these basic provers
were missing important features in terms of performance and usability, e.g.,
output of readable connection proofs and further proof search optimizations,
such as strategy scheduling, a technique that consecutively tries a set of different
strategies when searching for a proof.

After a brief introduction of the non-clausal connection calculi (Sect. 2), the
paper presents the most recent versions of the non-clausal connection provers
nanoCoP, nanoCoP-i and nanoCoP-M together with the (minimalistic) source
code of the Prolog core prover (Sect. 3). The main enhancements are the integra-
tion of several lean proof search optimizations, a strategy scheduling, the output
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 236–249, 2021.
https://doi.org/10.1007/978-3-030-86059-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_14

The nanoCoP 2.0 Connection Provers 237

of readable connection proofs, the extension of nanoCoP-M to multimodal logics,
and a better support to run the provers on different Prolog platforms. The paper
also presents a comprehensive practical evaluation of all provers on the standard
problem libraries (Sect. 4).

2 Non-clausal Connection Calculi

A (first-order) formula (denoted by F,G,H) is built up from atomic formulae,
the connectives ¬, ∧, ∨, ⇒, and the standard first-order quantifiers ∀ and ∃. A
(first-order) modal formula might also include the modal operators � and �. An
atomic formula (denoted by A) is built up from predicate symbols (P,Q), function
symbols (f, g) and term variables (x, y). A literal L has the form A or ¬A.

In the clausal connection calculus a matrix is a set of clauses, where a clause
is a set of literals. The non-clausal connection calculus works on non-clausal
matrices, in which a matrix M is a set of clauses and a clause C is a set of
literals L and (sub)matrices. It can be seen as a representation of a formula in
negation normal form.

For a formula F and polarity pol ∈ {0, 1}, the classical non-clausal matrix
M(F pol) of F pol is defined inductively according to Table 1 (: p and the last
two lines are to be ignored). x∗ is a new term variable, t∗ is the Skolem term
f∗(x1, . . . , xn) in which f∗ is a new function symbol and x1, . . . , xn are all free
variables in (∀xG)0 : p or (∃xG)1 : p. The (classical) non-clausal matrix M(F) of
F is the classical non-clausal matrix M(F 0).

In the graphical representation of a non-clausal matrix, its clauses are
arranged horizontally, its literals and matrices are arranged vertically. A connec-
tion is a set {A1

0, A2
1} of literals with the same predicate symbol but different

polarities. A term substitution σT assigns terms to variables. A connection is
σT -complementary iff σT (A1) = σT (A2).

The axiom and the four rules of the non-clausal connection calculus are given
in Fig. 1 (again, : p1 and : p2 are to be ignored). Compared to the formal clausal
connection calculus [23], the extension rule is restricted to certain extension
clauses and a decomposition rule is added that splits subgoal clauses; see [18,20]
for details.

A clause C in a matrix M is an extension clause (e-clause) of M with respect
to a set of literals Path iff either (a) C contains a literal of path, or (b) C is
α-related to (i.e. occurs besides) all literals of path occurring in M , and if C has
a parent clause, it contains a literal of path. In the clause β-clauseL2(C2), the
literal L2 and all clauses that are α-related to (occur besides) L2 are deleted
from C2, as these clauses do not need to be considered in the new subgoal clause
in the premise of the extension rule. A copy of the clause C in the matrix M is
made by renaming all free variables in C. M [C1\C2] denotes the matrix M , in
which the clause C1 is replaced by the clause C2.

238 J. Otten

Table 1. The definition of the (prefixed) non-clausal matrix for classical and modal
logic

type Fpol : p M(Fpol : p)

atomic A0 : p {{A0 : p}}
α (G ∧ H)1 : p {{M(G1 : p)}}, {{M(H1 : p)}}

(G ∨ H)0 : p {{M(G0 : p)}}, {{M(H0 : p)}}
(G ⇒ H)0:p {{M(G1 : p)}}, {{M(H0 : p)}}

β (G ∧ H)0 : p {{M(G0 : p), M(H0 : p)}}
(G ∨ H)1 : p {{M(G1 : p), M(H1 : p)}}
(G ⇒ H)1:p {{M(G0 : p), M(H1 : p)}}

ν (�G)1 : p M(G1 : pV ∗)
(�G)0 : p M(G0 : pV ∗)

type Fpol : p M(Fpol : p)

atomic A1 : p {{A1 : p}}
α (¬G)0 : p M(G1 : p)

(¬G)1 : p M(G0 : p)

γ (∀xG)1 : p M(G[x\x∗]1 : p)

(∃xG)0 : p M(G[x\x∗]0 : p)

δ (∀xG)0 : p M(G[x\t∗]0 : p)

(∃xG)1 : p M(G[x\t∗]1 : p)

π (�G)0 : p M(G0 : pa∗)
(�G)1 : p M(G1 : pa∗)

Fig. 1. The non-clausal connection calculus for classical, intuitionistic and modal logic

The calculus works on tuples “C,M,Path”, where M is a non-clausal matrix,
C is a (subgoal) clause or ε and (the active) path is a set of literals or ε. The rigid
σT is calculated by using term unification whenever a connection is identified.
A non-clausal connection proof of M is a proof of ε,M, ε in the non-clausal
connection calculus.

For intuitionistic and modal logic, the non-clausal matrix and the calculus
are extended by prefixes, representing world paths in the Kripke semantics; see
[22,30,31]. A prefix p is a string consisting of variables (V,W) and constants
(a) and assigned to each literal. The modal non-clausal matrix M(F pol:p) of
a prefixed formula F pol:p is defined according to Table 1. V ∗ is a new prefix
variable, a∗ is a prefix constant of the form f∗(x1, . . . , xn) in which f∗ is a new
function symbol and x1, . . . , xn are all free term and prefix variables in (�G)0 : p
or (�G)1 : p. The modal non-clausal matrix M(F) of F is the modal non-clausal
matrix M(F 0 : ε); see [22] for the intuitionistic case.

A prefix substitution σP assigns strings to prefix variables and is calculated by
a prefix unification that depends on the specific non-classical logic. In intuitionis-
tic and modal logic, a connection {L1:p1, L2:p2} is σ-complementary iff both, its

The nanoCoP 2.0 Connection Provers 239

literals and prefixes can be unified under a combined substitution σ = (σT , σP),
i.e. additionally σP (p1) = σP (p2) must hold. A non-clausal connection proof
of M is a proof of ε,M, ε in the calculus of Fig. 1 (with the underlined text
included) with an admissible σ [22].

Example 1. The formula P (a) ∧ (∀y(P (y) ⇒ P (g(y))) ∨ ¬(�Q ⇒ �Q)) ⇒
P (g(g(a))) has the following (modal) non-clausal matrix (empty prefix strings
are not shown):

{{P (a)1}, {{{P (y)0, P (g(y))1}}, {{Q1 : V }, {Q0 : W}}}, {P (g(g(a)))0}}.
It has the following graphical representation and (graphical) connection proof
with the substitutions σT (y) = a, σT (y′) = g(a) and σP (V) = W ; literals of
each connection are connected with a line. A clausal proof would need eleven
instead of four connections.

3 The Implementations

nanoCoP, nanoCoP-i and nanoCoP-M are theorem provers for first-order classical
logic with equality, first-order intuitionistic logic with equality and several first-
order modal logics, respectively.1 They are very compact Prolog implementations
of the basic non-clausal connection calculi extended by a few basic but effective
optimizations.

3.1 Non-clausal Matrix

In the first step, the input formula F is translated into a non-clausal matrix M
(see Table 1). Every (sub-)clause (I, V, FV) : C and submatrix J : M are marked
with unique indices I and J , sets V of (free) term and prefix variables that
are newly introduced in C and sets FV including pairs x : pre(x) of free term
variables and their prefixes, necessary to check if σ is admissible. In Prolog,
literals with polarity 1 are marked with “-”. In the second step, for every literal
Lit in M the fact lit(Lit,ClaB,ClaC,Grnd) is asserted into Prolog’s database
where ClaC∈ M is the clause in which Lit occurs, ClaB is β-clauseLit(ClaC),
Grnd is g iff the smallest clause in which Lit occurs is ground.

Example 2. The (modal) formula from Example 1 is expressed in nanoCoP syn-
tax as

(p(a) , (all Y: (p(Y) => p(g(Y))) ; ~ (# q => * q)) => p(g(g(a))))

and is translated into the following (modal) non-clausal matrix
1 Provers available under the GNU General Public License at http://leancop.de/

nanocop/, http://leancop.de/nanocop-i/, and http://leancop.de/nanocop-m/.

http://leancop.de/nanocop/
http://leancop.de/nanocop/
http://leancop.de/nanocop-i/
http://leancop.de/nanocop-m/

240 J. Otten

prove(M,U,S,[(I^0)^V:X]) :-

(m(scut,S) -> (a([(I^0)^V^W:F|_],[!|_],M) ; m((I^0)^V^W:C,M),

posC(C,F)) -> true ; (a(Z,[!|_],M) -> m((I^0)^V^W:F,Z) ;

m((I^0)^V^W:C,M),posC(C,F))), prove(F,M,[],[I^0],U,[],P,B,S,X),

a(B,W,D), domain_cond(D), prefix_unify(P).

prove(M,U,S,X) :- retract(p) -> (m(comp(U),S) -> prove(M,1,[],X);

V is U+1, prove(M,V,S,X)) ; m(comp(_),S) -> prove(M,1,[],X).

prove([],_,_,_,_,_,[],[],_,[]).

prove([J^K:M|C],H,P,T,U,Q,A,B,S,X) :- !, m(I^V^W:F,M),

prove(F,H,P,[I,J^K|T],U,Q,D,E,S,Y), prove(C,H,P,T,U,Q,N,O,S,Z),

a(N,D,A), a(W,E,R), a(O,R,B), X=[J^K:I^V:Y|Z].

prove([L:J|C],H,P,T,U,Q,P1,V1,S,X) :-

X=[L:J,I^V:[N:O|Y]|Z], \+ (m(A,[L:J|C]),m(B,P),A==B), (-N=L;-L=N)

-> (m(R,Q), L:J==R, D=[], Y=[], I=l, V=[], O=J, P4=[], V4=[] ;

m(R:O,P), R=N, D=[], Y=[], I=r, V=[], \+ \+ prefix_unify([J=O]),

P4=[J=O], V4=[] ; lit(N:O,E,F,G), (G=g -> true ; length(P,K),K<U

-> true ; \+ p -> assert(p), fail), \+ \+ prefix_unify([J=O]),

pe(E,F,H,T,I^V^W:D,M), prove(D,M,[L:J|P],[I|T],U,Q,P2,V2,S,Y),

P4=[J=O|P2], a(V2,W,V4)), (m(cut,S) -> ! ; true),

prove(C,H,P,T,U,[L:J|Q],P3,V3,S,Z), a(P4,P3,P1), a(V3,V4,V1).

pe((I^K)^V:E,N:C,H,T,D,M) :- a(A,[(I^L)^W:F|B],H), length(T,K),

(E=[J^K:[G]|_], m(J^L,T), V=W, C=[_:[R|_]|_], a(U,[J^L:Y|X],F),

pe(G,R,Y,T,D,Z), a(U,[J^L:Z|X],S), a(A,[(I^L)^W:S|B],M) ;

(\+m(I^L,T);V\==W) -> D=(I^K)^V:E, a(A,[N:C|B],M)).

m(A,B) :- member(A,B). a(A,B,C) :- append(A,B,C).

Fig. 2. Source code of the nanoCoP, nanoCoP-i and nanoCoP-M core provers

[(2^K)^[]^[]: [-p(a): -[]],
(4^K)^[]^[]: [5^K: [(6^K)^[Y]^[Y:[]]: [p(Y):[], -p(g(Y)): -[]]],

12^K: [(13^K)^[V]^[]: [-q: -[V]], (16^K)^[W]^[]: [q:[W]]]],
(18^K)^[]^[]: [p(g(g(a))):[]]]

in which V and W are the prefix variables, the variable K is used to enumerate
clauses.

3.2 nanoCoP for Classial Logic

The (minimalistic) source code of the nanoCoP core prover is shown in Fig. 2.
The underlined code is necessary only for the non-classical provers and is to
be ignored for the (classical) nanoCoP prover. The predicate prove(M,U,S,X)
implements the start rule (lines 1–5). M is the matrix generated in the prepro-
cessing step, U is the maximum size of the active path used for iterative deepen-
ing (lines 6–7), S specifies a strategy (see Sect. 3.5), and X contains the returned
(compact) non-clausal connection proof.

The nanoCoP 2.0 Connection Provers 241

The predicate prove(Cla, Mat, Path, T, U, Q, S, X) implements axiom
(line 8), decomposition rule (lines 9–11), reduction rule (lines 12–15, 20), and
extension rule (lines 12–13, 16–20) of the calculus in Fig. 1. It succeeds iff there
is a proof for the tuple “Cla, Mat, Path” with |Path|< U. The predicate pe
calculates an appropriate extension clause (lines 21–24). σ is stored implicitly
by Prolog. Prolog’s member and append predicates are abbreviated by m and
a, respectively (line 25). The predicate posC(C,F) (invoked in line 3 and 4)
calculates a positive (start) clause F of the clause C. It is implemented in seven
lines of (non-minimalistic) code and is the only predicate of the core prover
that is not included in the code in Fig. 2. The nanoCoP website includes a more
readable version of the full source code.

3.3 nanoCoP-i for Intuitionistic Logic

For intuitionistic logic, prefixes are added to all literals in the non-clausal matrix
(details in [22]) and to the non-clausal connection calculus. For nanoCoP-i, the
underlined text in Fig. 2 is added to the classical nanoCoP prover; no other
changes are done.

A list P1 of prefix equations and a list V1 of term variables (with their prefixes)
are collected during the proof search and are added as arguments to the main
predicate prove(Cla, Mat, Path, T, U, Q, P1, V1, S, X). Two predicates
need to be added to the code: prefix unify(P) implements the prefix unifica-
tion and domain cond(V) checks whether σ is an admissible substitution.

3.4 nanoCoP-M for Multimodal Logics

For modal logic, prefixes are added to all literals in the non-clausal matrix
(according to Table 1) and to the non-clausal connection calculus. The nanoCoP-
M core prover shown in Fig. 2 has the same source code as the intuitionistic
nanoCoP-i prover.

Again, prefix unify(P) implements the prefix unification with respect to
a specific modal logic and domain cond(V) checks whether σ is an admissible
substitution with respect to a specific domain condition. nanoCoP-M supports
the modal logics D, T, S4, and S5 with varying, cumulative and constant domain
condition; terms are considered rigid and local, the logical consequence relation
is local [22,31].

For the modal logics D and T the accessibility condition |σP (V)|=1 and
|σP (V)|≤1, respectively, has to hold for all prefix variables V . There is no such
restriction for the modal logic S4 and only the last prefix character is considered
for the modal logic S5.

nanoCoP-M also supports heterogeneous multimodal logics. For multimodal
logic, an index can be added to the modal operators � and �, i.e. modal oper-
ators from the set {�i ,�i | i ∈ IN} are allowed. Modal operators with different
indices can be assigned to different modal logics. See the nanoCoP-M website for
more details.

242 J. Otten

3.5 Proof Search Optimizations

Following the lean methodology, a few basic but effective techniques are carefully
selected and integrated into the nanoCoP, nanoCoP-i and nanoCoP-M provers.

Regularity and Lemmata. Regularity (line 13) and lemmata (line 14) are
effective techniques for pruning the search space in clausal connection calculi [10]
and were already included in the basic versions of the nanoCoP provers [20,22].

Restricted Backtracking. Restricted backtracking is an effective (but incom-
plete) technique to prune the search space in the (non-confluent) connection
calculus [17]. Besides restricted backtracking for the extension and reduction
rules (“cut”) (line 19), restricted backtracking for the start rule (“scut”) (lines
2–3) is now integrated as well, which cuts off backtracking over alternative start
clauses in the connection calculus.

Conjecture Start Clauses. Conjecture start clauses (“conj”) restricts the
start rule for formulae of the form (A1 ∧ . . . ∧ An) ⇒ C to clauses of the
conjecture C (line 2 and 3), instead of the default positive clauses (line 3 and
4). This technique is in particular effective for formulae with many axioms Ai.
This approach is incomplete for formulae with inconsistent/unsatisfiable axioms
A1, . . . , An and invalid conjecture C.

Reordering Clauses. Reordering clauses (“reo(I)”) is a technique to modify
(indirectly) the proof search order, which is in particular effective in combination
with restricted backtracking. For non-clausal calculi it is important to produce
diverse clause orders even for small sets of clauses, e.g., if a (sub)matrix contains
only two or three clauses. It is done in a preprocessing step using a pseudo-
randomized shuffle algorithm.

Strategy Scheduling. Strategy scheduling is a very effective technique that
uses a sequence of different strategies to prove a formula. A strategy is specified
in the argument S of the prove predicate. It is a list that contains a (possibly
empty) subset of the options {scut,cut,conj, reo(I),comp(J)}, which effect
the proof search as follows:

– scut: switches on restricted backtracking for start clauses,
– cut: switches on restricted backtracking for reduction/extension/lemma rule,
– conj: uses conjecture clauses as start clauses instead of positive clauses,
– reo(I) for I ∈ IN : reorders the clauses I times before the proof search starts,
– comp(J) for J ∈ IN : restarts the proof search using a complete search strategy,

i.e. without scut, cut, and conj, if the path limit U exceeds J (lines 6–7).

The nanoCoP 2.0 Connection Provers 243

A fixed strategy scheduling (sequence) is implemented using a shell script
that invokes the Prolog prover. Comprehensive tests were performed in order
to select a set of 20 strategies for nanoCoP and 12 strategies for nanoCoP-
i and nanoCoP-M, respectively. The first three stategies used by nanoCoP,
nanoCoP-i and nanoCoP-M are [cut,comp(7)]/[reo(22),conj,cut]/[scut],
[cut,comp(6)]/[scut]/[scut,cut], and [cut,comp(6)]/[cut]/[reo(20),
conj,cut], respectively. The empty (and complete) strategy [] is the last one
used by all three nanoCoP provers.

3.6 Proof Output

All three nanoCoP provers can output a detailed non-clausal connection proof.
The nanoCoP core provers return a very compact (and hardly readable) non-
clausal connection proof that has been further optimized in terms of size and
included proof information. It is returned in the last argument X of the prove
predicate in Fig. 2.

Example 3. For the (modal) formula from Example 1 and its non-clausal (modal)
matrix given in Example 2, the nanoCoP-M core prover returns the following
compact (modal) non-clausal connection proof

[(18^0)^[]: [p(g(g(a))): [],

(4^1)^[]: [-p(g(g(a))): -[], 5^1: (6^1)^[g(a)]: [p(g(a)): [],

(6^4)^[a]: [-p(g(a)): -[], p(a): [],

(2^5)^[]: [-p(a): -[]]]],

12^1: (13^1)^[[V]]: [-q: -[[V]],

(16^4)^[V]: [q: [V]]]]]]

in which the literals of the connections have been underlined. In the terms of
the form (I^K)^L:C, I and K are the index and the instance (number) of the
clause C, respectively, and L is a list that contains the substituted term and
prefix variables.

Based on this returned compact proof, a detailed and more readable non-
clausal connection proof is reconstructed in a separate module. As non-clausal
connection proofs are closely related to proofs in Gentzen’s LK/LJ sequent cal-
culi [8] and Schütte’s GS calculus [5], they can (rather) easily be translated into
LK/LJ/GS proofs.

4 Experimental Evaluation

The optimizations described in Sect. 3 were integrated into the nanoCoP 2.0
provers and are evaluated on different benchmark libraries. All evaluations were
conducted on a 2.3 GHz Xeon system with 32 GB of RAM running Linux 2.6.32.
If not stated otherwise, ECLiPSe Prolog 5.10 was used for all provers imple-
mented in Prolog.2

2 ECLiPSe Prolog 5.x is available at https://eclipseclp.org/Distribution/Builds/.
Newer versions of ECLiPSe Prolog are missing important features (e.g. the possibil-
ity to switch on a global occurs check) and have a significantly lower performance.

https://eclipseclp.org/Distribution/Builds/

244 J. Otten

Table 2. Results on the first-order problems of the TPTP library

leanTAP
2.3

leanCoP
2.2

E
2.4

nanoCoP
1.0

nanoCoP
2.0 SWI

nanoCoP
2.0

nanoCoP +
leanCoP

Proved 555 2541 4377 2055 2132 2500 2709

0 to 1 s 520 1643 3152 1543 1325 1573 1590

1 to 10 s 20 369 780 277 317 264 294

10 to 100 s 15 529 445 235 490 663 825

Refuted 0 67 510 133 132 133 133

Total 555 2608 4887 2188 2264 2633 2842

nanoCoP. The classical nanoCoP prover was evaluated on all 8044 first-order (so-
called FOF) problems in the TPTP library v6.4.0 [29]. Table 2 shows the results of
the evaluation for a CPU time limit of 100 s. Besides nanoCoP 2.0, it includes the
following provers: the lean tableau prover leanTAP 2.3 [1], the superposition prover
E 2.4 [27] (using the options “--proof-object -s --satauto”), leanCoP 2.2 [17],
and nanoCoP 1.0 [20]. It also includes the results of nanoCoP running on SWI Pro-
log 7.6.4 and the combined results of nanoCoP 2.0 and leanCoP 2.2.

nanoCoP 2.0 proves 22% more problems than nanoCoP 1.0 and 350% more
problems than leanTAP, the other lean prover that is based on a non-clausal
(tableau) calculus. E proves 75% more problems than nanoCoP 2.0. nanoCoP 2.0
performs significantly better on ECLiPSe Prolog than on SWI Prolog. The num-
bers in the last column indicate that nanoCoP 2.0 proves 168 problems that are
not proven by leanCoP 2.2.

Optimizations. Table 3 shows the effectiveness of the different optimization
techniques implemented in nanoCoP 2.0 on all 8044 FOF problems in the
TPTP library v6.4.0 for a CPU time limit of 10 seconds. The following ver-
sions of nanoCoP are evaluated: a basic version without regularity and lemmata
(“basic”), the standard version using regularity and lemmata (i.e. strategy []), a
version with conjecture start clauses ([conj]), two versions with restricted back-
tracking ([scut] and [cut], respectively), nanoCoP 1.0 (which uses the single
strategy [cut,comp(6)]), a “reo” version with reordering of clauses (using the
strategy [reo(22),conj,cut]), and the full nanoCoP 2.0 prover using all of the
described optimizations including strategy scheduling.

As different optimizations can be combined within the strategy scheduling,
not only the total number of proved problems is given, but also the number of
new problems proved compared to the “basic” or the standard nanoCoP version
(using strategy []).

Table 3. Evaluation of different optimization techniques

“basic” [] [conj] [scut] [cut] 1.0 “reo” 2.0

Proved 1465 1516 1682 1598 1691 1820 1855 2079

New proved – 64 253 248 421 409 260 314

Compared to – “basic” [] [] [] [] 1.0 1.0

The nanoCoP 2.0 Connection Provers 245

Table 4. Results on the first-order problems of the ILTP library

ileanTAP
1.17

ileanCoP
1.2

Slakje
2.14

nanoCoP-i
1.0

nanoCoP-i
2.0

nanoCoP-i +
ileanCoP

Proved 314 782 1019 764 839 848

0 to 1 s 303 612 95 681 676 676

1 to 10 s 7 51 367 44 47 51

10 to 100 s 4 119 557 39 116 121

Refuted 4 78 363 89 89 91

nanoCoP-i. Table 4 shows the results of the evaluation on all 2550 first-order
problems in the ILTP library v1.1.2 [26] for a CPU time limit of 100 s. Included
are the provers ileanTAP 1.17, ileanCoP 1.2, Slakje 2.14, nanoCoP-i 1.0, nanoCoP-
i 2.0 and the combined results of nanoCoP-i 2.0 and ileanCoP 1.2. ileanTAP [14]
implements a prefixed free-variable tableau calculus and is written in Prolog;
ileanCoP [15,16] is a compact Prolog prover that implements the prefixed clausal
connection calculus; Slakje [6] uses a prover for classical logic to search for a clas-
sical proof and the GAPT system [7] to subsequently reconstruct an intuitionistic
proof from the classical one. These are currently the fastest theorem provers for
intuitionistic first-order logic (JProver, ft and ileanSeP prove significantly less
problems than ileanCoP [16,22]).

nanoCoP-i 2.0 proves about 10% more problem than nanoCoP-i 1.0. It also
proves more problem than ileanCoP, currently the fastest connection/tableau
prover for first-order intuitionistic logic. Slakje proves the largest number of
problems, but the proof reconstruction with GAPT shows a significant overhead.
ileanCoP as well as nanoCoP-i prove significant more problems than Slakje within
a time limit of 10 s.

nanoCoP-M. Table 5 shows the results of the evaluation on all 580 unimodal
problems of the QMLTP library v1.1 [25]. Results are shown for the modal logics
D, T, S4 and S5, and for the varying, cumulative, and constant domain variants.
It includes the following provers: MleanTAP 1.3, MleanCoP 1.3, nanoCoP-M 1.0,
and nanoCoP-M 2.0. MleanTAP [2] implements a prefixed tableau calculus; Mlean-
CoP [19] implements a prefixed clausal connection calculus; both provers are
written in Prolog. Up to the authors knowledge, these are currently the only
provers for modal first-order logic (the sequent prover MleanSeP proves about
the same number of problems as MleanTAP [19]).

nanoCoP-M 2.0 proves on average 16%, 4%, 11% and 6% more problems than
nanoCoP-M 1.0 for the modal logics D, T, S4 and S5, respectively. It refutes
about the same number of problems as nanoCoP-M 1.0. nanoCoP-M 2.0 also
proves more problems than MleanCoP, which was so far the most successful
prover on the QMLTP library [28]. The higher-order prover Leo-III [28] uses
an embedding of modal logics into simple type theory in order to deal with a
wide range of different (higher-order) modal logics. Leo-III does not support
the QMLTP syntax, but previous evaluations show that it proves slightly fewer

246 J. Otten

Table 5. Results on the unimodal problems (varying/cumul./constant) of the QMLTP
library

Logic MleanTAP 1.3 —MleanCoP 1.3— nanoCoP-M 1.0 —nanoCoP-M 2.0—

Proved Proved Refuted Proved Proved Refuted

D 100/120/135 184/206/223 274/248/222 167/187/204 193/213/230 265/245/229

T 138/160/175 223/251/271 159/132/114 222/244/263 231/253/273 153/133/119

S4 169/205/220 286/349/363 127/96/83 271/321/336 297/355/370 124/98/85

S5 219/272/272 358/435/435 94/41/41 343/414/414 365/440/440 92/44/44

problems of the QMLTP library than MleanCoP [28]. nanoCoP 2.0 solves 17
of the 20 multimodal problems in the QMLTP library, all of them within one
second.

5 Conclusion

In this paper the nanoCoP 2.0 provers for classical, intuitionistic and modal logics
have been presented. They are very compact and modular Prolog implementa-
tions of the non-clausal connection calculi for classical and non-classical logics.
The integration of a few effective optimization techniques improves performance
significantly. Compared to the previous versions, the classical nanoCoP 2.0 sys-
tem solves about 20% more problems from the TPTP library, the intuitionistic
nanoCoP-i 2.0 and the modal nanoCoP-M 2.0 systems prove about 10% more
problems from the ILTP and QMLTP libraries. Despite the overhead caused by
the more complex non-clausal data structure, nanoCoP-i and nanoCoP-M prove
more problems than the corresponding clausal provers ileanCoP and MleanCoP,
and they are now among the fastest provers for these non-classical logics.

All nanoCoP 2.0 provers can provide detailed non-clausal connection proofs.
Preliminary results show that on the non-clausal problems in the TPTP library,
the non-clausal proofs of nanoCoP have on average only half the number of
connections than the clausal proofs produced by leanCoP. The non-clausal proofs
are also more “natural” as the structure of the original formula is preserved
throughout the whole proof search. This makes them in particular interesting
for applications where a human readable output or interaction is required. For
example, the normative reasoner NAI uses MleanCoP at its backend in order
to reason over legal texts formalized in a multimodal first-order logic [11,12].
nanoCoP-M 2.0, which now also supports heterogeneous multimodal logics, could
be used in order to return a more natural human readable proof.

Future work includes the integration of better refuting techniques into the
nanoCoP provers, which were so far not in the focus of the development. It also
includes the extension to other modal logics, such as the modal logic K , for which
a connection-based proof approach is more difficult as subformulae that are not
involved in any connection might be relevant for a successful proof [31]. More
straightforward is the development of connection calculi and provers for first-
order intuitionistic modal logic. The presented calculi and provers are optimized

The nanoCoP 2.0 Connection Provers 247

for full first-order logic. Combining these with calculi for propositional logic
might be promising as these calculi are entirely different from the first-order
ones. Another future work is the integration of learning techniques into nanoCoP
as already done in many (re-)implementations of leanCoP [9,13,32].

Acknowledgements. The author would like to thank Wolfgang Bibel for his helpful
feedback.

References

1. Beckert, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Rea-
son. 15(3), 339–358 (1995)

2. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for
first-order modal logics. In: De Raedt, L., et al. (eds.) 20th European Conference
on Artificial Intelligence (ECAI 2012), pp. 163–168. IOS Press, Amsterdam (2012)

3. Bibel, W.: Matings in matrices. Commun. ACM 26(11), 844–852 (1983)
4. Bibel, W.: Automated Theorem Proving. Artificial Intelligence, 2nd edn. F. Vieweg

und Sohn, Wiesbaden (1987)
5. Bibel, W., Otten, J.: From Schütte’s formal systems to modern automated deduc-

tion. In: Kahle, R., Rathjen, M. (eds.) The Legacy of Kurt Schütte, pp. 217–251.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49424-7 13

6. Ebner, G.: Herbrand constructivization for automated intuitionistic theorem prov-
ing. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol.
11714, pp. 355–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29026-9 20

7. Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System
description: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 293–301. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40229-1 20

8. Gentzen, G.: Untersuchungen über das Logische Schließen. Math. Z. 39(176–210),
405–431 (1935)

9. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection
prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48899-7 7

10. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–
2112. Elsevier Science, Amsterdam (2001)

11. Libal, T., Pascucci, M.: Automated reasoning in normative detachment structures
with ideal conditions. In: Seventeenth International Conference on Artificial Intel-
ligence and Law, ICAIL 2019, pp. 63–72. Association for Computing Machinery,
New York (2019)

12. Libal, T., Steen, A.: The NAI suite - drafting and reasoning over legal texts. In:
Araszkiewicz, M., Rodŕıguez-Doncel, V. (eds.) 32nd International Conference on
Legal Knowledge and Information Systems (JURIX 2019). Frontiers in Artificial
Intelligence and Applications, vol. 322, pp. 243–246. IOS Press, Amsterdam (2019)

13. Oľsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated
reasoning. In: Giacomo, G.D., et al. (eds.) ECAI 2020. Frontiers in Artificial Intel-
ligence and Applications, vol. 325, pp. 1395–1402. IOS Press, Amsterdam (2020)

https://doi.org/10.1007/978-3-030-49424-7_13
https://doi.org/10.1007/978-3-030-29026-9_20
https://doi.org/10.1007/978-3-030-29026-9_20
https://doi.org/10.1007/978-3-319-40229-1_20
https://doi.org/10.1007/978-3-319-40229-1_20
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7

248 J. Otten

14. Otten, J.: ileanTAP: an intuitionistic theorem prover. In: Galmiche, D. (ed.)
TABLEAUX 1997. LNCS, vol. 1227, pp. 307–312. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0027422

15. Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order
logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–
261. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554 19

16. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 23

17. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010)

18. Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22119-4 18

19. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp.
269–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 20

20. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 302–312. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 21

21. Otten, J.: nanoCoP: natural non-clausal theorem proving. In: Sierra, C. (ed.) Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI-17, Sister Conference Best Paper Track. pp. 4924–4928. IJCAI (2017)

22. Otten, J.: Non-clausal connection calculi for non-classical logics. In: Schmidt,
R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 209–227.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 13

23. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003)

24. Otten, J., Bibel, W.: Advances in connection-based automated theorem proving.
In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably Correct Systems.
NMSSE, pp. 211–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
48628-4 9

25. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 454–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 35

26. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic.
J. Autom. Reason. 38, 261–271 (2007)

27. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 29

28. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108–
116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 8

29. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 59(4), 483–502 (2017)

30. Waaler, A.: Connections in nonclassical logics. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 1487–1578. Elsevier Science, Ams-
terdam (2001)

https://doi.org/10.1007/BFb0027422
https://doi.org/10.1007/11554554_19
https://doi.org/10.1007/978-3-540-71070-7_23
https://doi.org/10.1007/978-3-642-22119-4_18
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/978-3-319-40229-1_21
https://doi.org/10.1007/978-3-319-66902-1_13
https://doi.org/10.1007/978-3-319-48628-4_9
https://doi.org/10.1007/978-3-319-48628-4_9
https://doi.org/10.1007/978-3-642-31365-3_35
https://doi.org/10.1007/978-3-642-31365-3_35
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-319-94205-6_8

The nanoCoP 2.0 Connection Provers 249

31. Wallen, L.A.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge
(1990)

32. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 489–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 33

https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33

Eliminating Models During Model
Elimination

Michael Rawson(B) and Giles Reger

University of Manchester, Manchester, UK
michael@rawsons.uk, giles.reger@manchester.ac.uk

Abstract. We investigate the integration of SAT technology into clausal
connection-tableau systems for classical first-order logic. Clauses present
in tableaux during backtracking search are heuristically grounded and
added to an incremental SAT solver. If the solver reports an unsatisfiable
set of ground clauses at any point, search may be halted and a proof
reported. This technique alone is surprisingly effective, but also supports
further refinements “for free”. In particular we further investigate depth
control of randomised search based on grounded clauses, and a kind of
ground lemmata rule derived from the partial SAT model.

Keywords: Connection tableaux · Boolean satisfiability ·
Instantiation

1 Introduction

The style of heuristic search in backtracking/iterative-deepening theorem provers
for first-order logic, often used in conjunction with connection tableaux, is very
different from the search found in saturation-style systems, often used with
superposition calculi. Both approaches have their strengths and weaknesses, and
typically perform well on different kinds of domains and problems.

One possible weakness of backtracking systems is that very little search effort
expended in failing to find a proof can be reused, and in fact many popular back-
tracking systems “learn” almost nothing as search progresses. Contrast this with
saturation systems, where deduced formulae are typically retained indefinitely,
and even formulae not used in the final proof can aid proof search via mecha-
nisms such as subsumption. Fixing this defect in backtracking systems generally
and efficiently is not easy, and if taken to extremes results in a saturation system.

However, ground reasoning is typically more efficient than full first-order
reasoning. This suggests something of a compromise: first-order search remains
backtracking in nature, but a ground approximation to first-order information is
retained and used to aid future first-order search. More concretely, we heuristi-
cally ground the clauses that make up tableaux constructed during backtracking
search, then insert these grounded clauses into an incremental SAT solver, where
they stay for the entire duration of proof search.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 250–265, 2021.
https://doi.org/10.1007/978-3-030-86059-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_15

Eliminating Models During Model Elimination 251

This extra effort is compensated by the ability to report proofs found at
the ground level (Sect. 4); a good heuristic for controlling a combination of
restricted backtracking, randomisation and iterative deepening (Sect. 5); and a
partial assignment of literals that can be skipped, focussing proof search (Sect. 6).
We build a testbed system (Sect. 3) and experimentally evaluate our approach
against a baseline and other systems (Sect. 8), showing that the overhead of
grounding clauses pays off handsomely in practice.

2 Preliminaries

The following relates to fully-automatic theorem provers for classical first-order
logic (with equality) with the usual syntax and semantics [46]. We focus par-
ticularly on systems implementing connection tableaux calculi and systems that
use ground reasoning tools such as SAT or SMT solvers to accelerate or improve
first-order search.

2.1 Connection Tableau Systems

The connection tableau1 calculus [27] is chiefly a restriction on clausal free-
variable tableaux requiring all additions to tableaux be connected to leaf literals:
that is, extension clauses must contain a unifiable literal of opposite sign. This
is an extremely strong restriction on general clause tableaux, which remains
complete but loses proof confluence, necessitating backtracking search to build
closed connection tableaux. Backtracking may be reduced in exchange for a loss
of completeness with restricted backtracking schemes [32]. Figure 1 shows the
basic rules of the calculus: tableaux begin with a start clause; a leaf may be
closed by reduction if there is a unifiable literal of opposite sign in the current
branch; and extension clauses may be added to the tableau if they are connected
to the current leaf literal.

Competitive connection systems such as the SEquential THEOrem prover
SETHEO [5] and, later, leanCoP [31] typically employ a number of optimising
preprocessing steps, calculus refinements, search heuristics and efficient imple-
mentation techniques to improve performance on problems of interest. We note
here a whole area of research designed to re-use work performed in other areas of
backtracking search, such as failure caching [27], to which our work has similar
aims but a different method.

As well as good performance in exchange for little complexity, such systems
have a number of advantages: they are simple to implement (particularly in Pro-
log), often leading to a relatively small “trusted computing base” which can be
easily certified [23,51]; they cope well with a large number of axioms due to a
goal-directed search style; and their memory use remains low, or even constant.
They can often be adapted for other domains and research areas, such as intu-
itionistic logic [31], modal logic [33], non-clausal reasoning [34], machine learning
for theorem proving [17,22], and low-resource computing [35].
1 also known as, or closely related to, the connection method [6], model elimination [28],

and/or the method of matings [2].

252 M. Rawson and G. Reger

L1 L2 . . . Ln

. . .

L

. . .

L1 . . .

. . .

.

L

L1 L2 . . . Ln

. . .

Fig. 1. The three inference rules of the clausal connection tableau calculus: start, reduc-
tion, and extension. In the start and extension rules, C = L1 ∨ L2 ∨ · · · ∨ Ln is a fresh
copy of a clause. In the reduction and extension rules, the global unifier is refined such
that σ(¬L) = σ(L1). i.e. L and L1 are connected (illustrated by dashed lines).

2.2 Boolean Satisfiability

Boolean satisfiability (SAT) is a well-known NP-complete problem [10]. We will
concisely phrase the problem as “given a set of propositional clauses, find an
assignment of propositional variables such that each clause is satisfied, or report
their unsatisfiability”. Despite the computational difficulty, SAT solvers have
improved rapidly [9] and can now quickly solve SAT instances previously consid-
ered impractically large or hard [3]. Arguably the major driving force behind this
improvement is the realisation that most useful problems are not merely random,
but contain structure that can be exploited by carefully-designed heuristics.

One such heuristic, conflict-driven clause learning (CDCL), in which new
clauses are “learned” from a certain conflicting section of search space, is par-
ticularly effective [29]. It also allows for SAT solvers to become incremental, so
that recomputing satisfiability as new clauses are added to the set is a cheaper
operation. SAT is also often used as an “assembly language” for richer or harder
problems. We discuss SAT for aiding first-order reasoning below, but Satisfi-
ability Modulo Theories (SMT) [14] and bounded model checking [8] are two
well-known applications from other domains.

2.3 Ground Support for First-Order Reasoning

The use of SAT solvers to provide ground support within first-order reason-
ing has been previously explored in various ways. In some approaches the main
reasoning method is by reduction to SAT. For example, finite model finding
methods [12,40] iteratively ground a first-order problem with a growing set
of domain constants in order to find a finite model. Or the Instance Genera-
tion calculus [24,25], which approximates the unsatisfiability problem for sets
of first-order clauses by a sequence of propositional problems: a propositional
abstraction is iteratively refined by the addition of new instances. More näıvely,
there are also cases where near-propositional problems can be decided directly
via grounding [43]. Going beyond first-order reasoning, Satallax [11] is a higher-
order prover that reasons via reduction to a series of SAT problems.

Eliminating Models During Model Elimination 253

The previous approaches use SAT solvers as black boxes, as opposed to the
more fine-grained approach taken by the Model Evolution Calculus [4] which
interleaves instance generation with DPLL-style reasoning. In an unusual twist,
the CHEWTPTP system uses a clever incremental ground encoding [15] of con-
nection tableaux search such that at some point the ground solver may return
propositional assignments representing closed connection tableaux.

Other first-order reasoning methods utilise SAT solvers to aid a separate
proof search method, as in this paper. The AVATAR [37,49] framework imple-
mented within Vampire [26,38] uses a SAT or SMT solver to organise the process
of clause splitting within saturation-based search. The global subsumption sim-
plification technique [24,39] uses a SAT solver to replace a clause by a subclause
if the subclause holds globally, which can be under-approximated by proposi-
tional reasoning.

Finally, the saturation-based E theorem prover [45] has been extended with
a lightweight technique that periodically grounds the search space and checks
for propositional unsatisfiability [44]. This work is closest to what we propose in
this work but in the context of saturation-based methods.

2.4 First-Order Benchmarks

We use several first-order benchmark problem sets to evaluate work experimen-
tally. By “TPTP”, we mean the provable FOF fragment (7,609 problems) of
the Thousands of Problems for Theorem Provers set [47] 7.3.0. The MPTP2078
challenge [1] provides 2078 problems translated from the Mizar Mathematical
Library [18] by the MPTP system [48], in two forms: “bushy”, where problems
are typically smaller and contain only relevant premises; and “chainy” where
problems contain all preceding results. M2k is a slightly-easier set of 2003 related
problems used for development [22], also originating from Mizar and MPTP.

3 Research Vehicle: SATCoP

We require a testbed for our experiments with the techniques outlined. In prin-
ciple we could have modified e.g. leanCoP to take advantage of the “lean Prolog
technology” approach (and we hope to explore this direction in future), but for
these first experiments we found it easier to use an imperative language and our
own system. We refer to the basic system described below as SATCoP0, and to
the system improved with additional SAT-based techniques as SATCoP.

SATCoP0 implements the clausal connection tableau calculus. A simple clause
normal form translation without definitions [32] translates general first-order for-
mulae into clauses, and equality (if present) is then axiomatised in the usual way.
No other preprocessing, such as reordering of clauses, takes place. Search starts
with clauses derived from the conjecture2, and proceeds by iterative deepening

2 Unless there are no such clauses or all clauses stem from the conjecture, in which
case positive clauses are used instead.

254 M. Rawson and G. Reger

Algorithm 1: sketch of the basic SATCoP0 search routine
σU = ∅; // global tableaux-level unifier, modified by unify()

limit = 0; // depth limit for iterative deepening

function start() : bool is
loop

foreach C ∈ start clauses do
if prove-all(ε, C) then return true ;
σU = ∅; // reset σU to try again

limit = limit + 1;

function prove-all(path, clause) : bool is
foreach literal ∈ clause do

if ¬prove(path, literal) then return false ;
return true

function prove(path, goal) is
// apply the reduction rule (restricted backtracking)

foreach L ∈ path do
if sign(goal) �= sign(L) and unify(goal, ¬L) then return true ;

// limit search depth

if |path| ≥ limit then return false ;

// apply the extension rule (restricted backtracking)

σ′
U = σU ;

foreach fresh copy C of a problem clause do
foreach L ∈ C do

if sign(goal) �= sign(L) and unify(goal, ¬L) then
if prove-all(append(path, goal), C \ {L}) then return true ;
σU = σ′

U ; // reset σU to try again

continue

on the length of the path. When trying to close a branch, reduction steps are
tried before extension steps, and backtracking is restricted [32] in the style that
Färber calls REI in his description of backtracking schemes [16]. The regularity
condition [27] is enforced and some clause-level tautologies are eliminated. No
intra-tableau mechanisms for re-use of intermediate results (such as lemmata
or folding up) are implemented as this would overlap somewhat with Sect. 6,
but in principle nothing prevents implementing this for further performance.
For readers not familiar with connection systems and restricted backtracking,
Algorithm 1 provides a sketch of the search routine.

The concrete system owes many implementation techniques to the Bare Metal
Tableaux Prover [21]. In any case, the precise details of the basic system are
not critically important here: we present the effect of each different techniques
and final performance by experimental evaluation in Sect. 8. We expect these
methods to be generally applicable to similar connection systems, at least for
classical first-order logic, given a careful implementation.

Eliminating Models During Model Elimination 255

4 Grounding Clausal Tableaux

A clausal tableaux (not necessarily closed) is built from instances of clauses
derived from the negated input problem. In the first-order case, tableau vari-
ables represent a concrete ground term that is yet to be fully determined. As a
result, any given tableaux represents a multiset of partially-instantiated clauses.
Tableaux operations have pleasant interpretations in this setting: clauses added
to tableaux are added to the set, and unifications within the tableau monotoni-
cally refine the instantiation of clauses in the set.

Backtracking search for closed clausal tableaux can therefore be seen as pro-
ducing a stream of clauses with various instantiations: each inference rule pro-
duces a tableau built from a certain multiset of clauses, each of which can be
fed into the stream. It is a sound deduction to apply any grounding substitution
scheme to each clause, mapping remaining variables to ground terms.

To see this, consider a clause C in the input problem containing variables x̄.
During backtracking search, C is added to the tableau by applying a renaming
substitution σR, mapping x̄ to variables fresh for the tableau. Then, a number
of unification steps results in a tableau-level unifier σU from tableau variables to
arbitrary terms constructed over the signature and tableau variables. Finally, a
grounding substitution σG maps tableau variables to arbitrary members of the
Herbrand universe. Trivially, the composite substitution σ = σG ◦ σU ◦ σR is a
grounding substitution and

(∀x̄.C) ⇒ Cσ

is a tautology, so Cσ is both a ground clause and a valid deduction from ∀x̄.C.
Ground atoms can be bijectively mapped to propositional variables, obtaining

a propositional approximation to the partially-instantiated clause present in the
tableau. In this way, backtracking tableaux search over premises produces a
stream of ground clauses such that if the ground approximation is unsatisfiable,
so are the premises.

4.1 Reporting Unsatisfiability

This stream of ground clauses does not seem immediately useful. However, by
inserting this stream of grounded clauses into a SAT solver, it can report when
the clauses seen so far are unsatisfiable, witnessing a proof. Often this state
occurs significantly before finding a closed connection tableau, which makes the
technique potentially useful. We modify the basic system to perform an iterative
deepening step, generating a large number of clauses from backtracking, and
inserting clauses continuously. Before increasing the depth limit, we first query
the SAT solver to check the current status. This appears to be a good tradeoff
between reporting unsatisfiability early, and wastefully querying the solver.

4.2 Grounding Schemes

There are a large number of possible choices for the grounding scheme σG, and
in fact using a whole family of grounding schemes to ground each clause multiply

256 M. Rawson and G. Reger

is sound, if potentially wasteful. The simplest scheme is to map every variable
to a fresh constant, and in fact this works quite well immediately. Schulz [44]
suggests choosing the most frequent constant from the conjecture, and we use
this suggestion here, achieving a slight increase in performance over the sim-
ple scheme. If there is no constant in the conjecture, we fall back to the fresh
constant.

4.3 SAT Solving

SAT solving, rather than the grounding procedure or backtracking search, is
by far the biggest bottleneck in the resulting system. Additionally, the SAT
instances generated by our approach are quite unusual: there are a large number
of propositional variables, but conflicts are relatively rare until the clause set
becomes unsatisfiable. Further, when new clauses are added, the existing model
can often be extended to satisfy the new clauses without backtracking. When the
clauses do become unsatisfiable, the unsatisfiable core is typically fairly small
compared to the clause space.

After some initial experimentation with an off-the-shelf solver, PicoSAT [7],
we found that in this specific case we can improve performance by implement-
ing a custom SAT routine. We stress that we do not claim to improve on e.g.
PicoSAT’s general SAT performance or any similar claim. The custom routine
is a more-or-less standard CDCL solver, with the following tweaks:

– The only possible mode is incremental.
– The next decision variable is always chosen as the unassigned variable first

produced from proof search. This is both cheap to implement and difficult
to beat with more sophisticated heuristics such as VSIDS, we hypothesise
because variables introduced sooner are “closer to the conjecture”.

– Conflict analysis backtracks through (and possibly resolves with) the entire
trail, effectively restarting after every conflict. Since conflicts happen rarely,
but it is critical that forced variables are assigned as soon as possible to avoid
more conflicts later, this seems to be a good tradeoff in practice.

– The solver does not automatically restart on receiving new clauses. First, it
tries to satisfy the new clauses by extending the current assignment, and only
if a conflict is reached does it restart.

– Since conflicts are rare and the clause space is already huge, no effort is made
to delete the relatively-small number of learned clauses.

4.4 A Note on Proofs

Connection tableau systems have access to an obvious and explicit proof object,
the closed tableau. Typically this is also the smallest such with respect to the
iterative deepening condition. Unfortunately, this is not the case here: to write a
proof we must first obtain an unsatisfiable core (not necessarily minimal, but the
smaller the better) from the SAT solver. By storing both the first-order atom
that corresponds to a propositional variable, and the first-order premise that

Eliminating Models During Model Elimination 257

was instantiated to a propositional clause, an unsatisfiable set of ground instan-
tiations of first-order clauses can be reported in exchange for a small amount of
memory. These can be transformed into a proof by a ground reasoning system.

5 Randomisation and Depth Control

Randomisation of the search order is known to markedly increase performance of
connection systems in the presence of restricted backtracking, exploited to great
effect in the randoCoP system [36]. The idea here is roughly that if restricted
backtracking renders a connection system unable to close a tableau, changing the
order of clauses or the order of literals within those clauses may help as a different
part of search space is explored. We found a modification of this idea particularly
helpful for SATCoP and further allows a powerful depth-control heuristic.

randoCoP randomises both the order of premises and the order of literals
within clauses, then runs the leanCoP-based core uninterrupted on the resulting
problem, restarting from scratch frequently. Restarting from scratch is not so
helpful in our case as we lose the propositional information we have worked so
hard to achieve. It can also be wasteful with very large axiom sets as the entire
set must be shuffled repeatedly, even though most will not be touched.

Instead, we take an ad-hoc randomisation approach: when there is a list of
literals or clauses to be tried, we shuffle them3. We shuffle the order of literals in
start or extension clauses, and also the order in which extensions are tried. The
order in which the path is traversed looking for reductions is another possible
shuffling area, but this does not seem to make much difference in practice.

Randomising search means that it is very likely that after an iterative deep-
ening step generates some propositional clauses, running another iterative deep-
ening step at the same level will still yield more propositional clauses from a
different part of the search space found by randomisation. This feature of search
suggests an optimisation: remain at the same iterative deepening level until no
more new propositional clauses are found. As the next iterative deepening level
has potentially exponentially many more states to explore, only increasing the
search depth when absolutely necessary can be helpful.

6 Model-Based Lemmata

Our final technique is perhaps the most interesting, but easiest to explain. In
order to reach an unsatisfiable set of ground clauses, the SAT solver’s model must
be forced to change until no more models are available. With this in mind, if we
have a goal literal G at the leaf of a connection tableau, and its corresponding
propositional literal is assigned false in the current model, refuting it will not
change the model and is wasted effort from this perspective. To avoid this, we
consider ground literals that are assigned false at the SAT level to be solved and
skip them, in a similar way to the lemmata refinement for connection tableaux.

3 pseudo-random shuffle such that results are reproducible.

258 M. Rawson and G. Reger

. . .

. . .

G . . .

. . .

. . .

P

. . .

G . . .

. . .

. . .

Fig. 2. If the abstraction of a ground goal G is assigned false in the current SAT model,
refuting it can be skipped, as this will not force a change in the model. Generalising,
if any ground path literal P is assigned false, the whole sub-tableau can be skipped.

We call this technique “model-based lemmata” due to this similarity, but the
effect on proof search is not as clear. Literals may change assignment several
times during proof search, although if refuted by a sub-tableau the literal will be
forced false. Further, it is no longer sound to consider closed tableaux as a proof,
as they may contain ground literals that have been skipped and therefore we can
rely only on the SAT solver reporting unsatisfiability. An interesting side-effect
is that iterative deepening steps do not take as long due to skipped literals: this
may well have a positive effect on proof search by itself.

There is also a natural generalisation of this idea which we implement: if there
are path literals P1, P2, . . . Pn available and the goal literal is G, we essentially try
to refute the conjunction P1∧P2∧. . .∧Pn∧G, or to show P1∧P2∧. . .∧Pn ⇒ ¬G
if you prefer. If any of the path literals Pi become ground and assigned false
through unification, these can also be skipped, closing an entire sub-tableau.
The general idea is illustrated in Fig. 2.

7 First Impressions

Algorithm 2 extends that given in Algorithm1 with the additions discussed in
Sects. 4–6. New lines are marked with a →. The resulting system is implemented
in Rust and is available online4.

Initial impressions of the resulting system are positive. Compared to the
baseline system the most obvious change is an increase in memory use (SAT data
and mapping information has to be kept somewhere), but this is not typically
excessive, and is comparable to saturation systems. The majority of problems
that the baseline system solved can now be solved in fewer steps, which typically
also results in a shorter time-to-proof.

Practical performance on other problems also appears improved, particularly
in cases where the SAT approach is very helpful. PUZ010-1, “who owns the
zebra?” from the TPTP library contains a large number of nearly-ground axioms
and a completely ground conjecture formed from a large disjunction of literals.
4 https://github.com/MichaelRawson/satcop commit 65122a99e08648f5b2e331280d0
a0011e73a0836 is discussed here.

https://github.com/MichaelRawson/satcop

Eliminating Models During Model Elimination 259

Algorithm 2: sketch of the exended SATCoP search routine
σU = ∅; // global tableaux-level unifier, modified by unify()

limit = 0; // depth limit for iterative deepening

→ ground = ∅; // set of propositional clauses produced so far

→ new = ∅; // new propositional clauses produced this iteration

→ model = ∅; // partial propositional model of ground

function start() : bool is
// add start clauses to the grounding

→ foreach clause ∈ start clauses do

→ ground = ground ∪ {(clause)σG};

loop

foreach C ∈ start clauses do

→ shuffle C;

→ prove-all(ε, C);
σU = ∅; // reset σU

→ if (new \ ground) �= ∅ then

→ ground = ground ∪ new;
→ new = ∅

else
limit = limit + 1; // only increase limit if no new clauses

→ if there is a model satisfying ground then

→ set model

else
// unsat propositional clauses: found a proof!

→ return true

function prove-all(path, clause) : bool is

foreach literal ∈ clause do
if ¬prove(path, literal) then return false ;

return true

function prove(path, goal) is

// model-based lemmata

→ foreach L ∈ path ∪ {goal} do
→ if (L)σU is ground and assigned false in model then return true;

foreach L ∈ path do

if sign(goal) �= sign(L) and unify(goal, ¬L) then

→ ground all clauses in the tableau and add them to new;
return true

// limit search depth

if |path| ≥ limit then return false ;

σ′
U = σU ;

→ foreach fresh copy C of a problem clause in random order do
→ shuffle C;

foreach L ∈ C do

if sign(goal) �= sign(L) and unify(goal, ¬L) then

→ ground all clauses in the tableau and add them to new;
if prove-all(append(path, goal), C \ {L}) then return true ;
σU = σ′

U ; // reset σU to try again

continue

260 M. Rawson and G. Reger

The unaided system cannot solve this problem in reasonable time5, but the
SAT-assisted system solves it near-instantaneously, producing a proof consisting
of 322 grounded clauses.

It is not only problems tailor-made for SAT, either. GRP001-2 is a unit equal-
ity version of a problem from group theory, “if the square of every element is
identity, the system is commutative”. This problem is much easier for rewrit-
ing systems that specially handle equality: Vampire solves this immediately,
but the baseline system cannot solve it at all. However, with the enhancements
described, SATCoP solves this in 4 s with no specialised equality handling.

8 Experimental Evaluation

We run two experiments to determine the practical effect of the preceding work.
The first runs various configurations of SATCoP to evaluate different techniques
from Sects. 4–6 against each other. The second compares SATCoP against other
systems. All experiments are run on a desktop machine clocked at 3.4 GHz.

8.1 System Configurations

We run the state-of-the-art saturation system Vampire [26] 4.5.1, and the strong
connection system leanCoP [31] 2.16 to provide a comparison. Both of these sys-
tems expose options which can drastically alter proof search, and further both
provide portfolio modes in which a number of different option combinations are
tried in sequence. Inventing and evaluating good portfolios is a hard problem in
itself, which we avoid here by running all systems with a fixed set of options: we
stress that the results presented here do not necessarily reflect the “competition
strength” of a system. Vampire runs in its default mode, which entails a lim-
ited resource strategy [41], AVATAR [49], and a number of other search param-
eters. leanCoP was configured with [cut,conj]—that is, a restricted backtrack-
ing strategy, starting from clauses relating to conjectures—which more closely
reflects SATCoP0’s strategy, but may not be the strongest available.

In the presence of large axiom sets containing extraneous axioms, satura-
tion systems can sometimes choke. SInE [19] heuristically selects some subset of
axioms that may be relevant for proving a conjecture, which can significantly
accelerate proof search, provided that no necessary axiom is removed. Vam-
pire (SInE) runs SInE-style axiom selection with an additional flag.

8.2 Results and Discussion

We use 1-second runs on the M2k set of 2003 problems throughout development
to quickly gauge practical effectiveness. Table 1 shows the effect produced by

5 It is interesting to note that the saturation-based Vampire theorem prover also fails
to solve this problem in reasonable time without support from a SAT solver.

6 run with SWI Prolog 7.6.4 [50].

Eliminating Models During Model Elimination 261

Table 1. Problems from the M2k set solved in 1 s by all possible combinations of
techniques. “grounding” is the method described in Sect. 4, “shuffle” the ad-hoc ran-
domisation described in Sect. 5, “depth control” the modification of iterative deepening
presented in the same section, and “model lemmata” the topic of Sect. 6.

Grounding Shuffle Depth control Model lemmata Solved

886

� 998

� 957

� � 1135

� � � 1173

� � 1061

� � � 1189

� � � � 1252

Table 2. Problems solved in 10 s by existing systems and SATCoP on a variety of first-
order benchmark sets. SATCoP0 is SATCoP without any of the techniques described—
i.e. a more standard connection system—for direct comparison.

TPTP solved Unique solved Bushy solved Unique Chainy solved Unique

Vampire 3650 388 1162 132 402 6

Vampire (SInE) 3013 258 781 34 550 109

leanCoP 1946 22 648 18 272 7

SATCoP0 1837 8 564 0 221 0

SATCoP 3049 282 953 52 505 101

Benchmark size 7609 2078 2078

different combinations of the techniques discussed here. Note that some com-
binations are omitted as nonsensical: for example, it is not possible to control
iterative deepening as in Sect. 5 without grounding clauses, and without ran-
domisation it is possible but provides no benefit.

We are pleased that the union of all techniques described performs the best,
and that all produce some amount of benefit. It is interesting to note that some
combinations are disproportionately effective, suggesting a synergising effect.
Grounding clauses and randomisation gain 112 and 71 problems respectively
over SATCoP0, but combined gain 249. One might conjecture about why this
happens—perhaps randomisation produces a larger number of ground clauses
and thereby increases the likelihood of unsatisfiability—but in any event the
outcome is encouraging.

We now compare our final system SATCoP against SATCoP0 and other rep-
resentative systems. We allow a 10-second time limit and evaluate the TPTP,
“bushy” and “chainy” problem sets discussed in Sect. 2.4. Table 2 shows these
data: the “solved” column is the number of problems solved for a given solver/set

262 M. Rawson and G. Reger

combination, while “unique” is the number of problems in a set only that system
and no other solved.

9 Conclusions and Future Directions

We are pleasantly surprised at the improvement in performance achieved by
very simple application of ground reasoning techniques to a connection tableau
system. Further performance improvements can be obtained for relatively little
effort using the existing ground information, which we demonstrate through final
evaluation on a number of benchmark problem sets.

While the resulting system is not quite as concise as some of the beautiful sys-
tems achieved in Prolog, it is certainly effective and remains compact compared
to state-of-the-art saturation systems. It is also possible that future investiga-
tions could make use of the “lean Prolog technology” approach, combined either
with a Prolog implementation of CDCL [42], Prolog bindings to an existing SAT
solver [13], or even (with some modification) constraint logic programming [20].

The SAT world also merits further investigation: SAT instances generated
by our system are relatively unusual, and are mostly easily-satisfiable, until
very suddenly they are not. A WalkSAT-like solver with some amount of clause
learning [30] may improve SAT-level performance. SMT is another interesting
direction, particularly for the theory of equality and uninterpreted functions.
Application to other logics is a related topic we would like to investigate further:
some seem quite achievable, such as some kind of support for arithmetic theories,
but we acknowledge that intuitionistic logic may present a challenge.

9.1 A Note from the Future

Since submission, we have been busy preparing SATCoP for competition at
CASC-28. Some ideas were found to further improve performance from that
reported here. We report these modifications here both for interest and to doc-
ument them in context for the competition.

– Our custom SAT routine is fast on the type of incremental SAT problems
generated by SATCoP, but is not a good general SAT routine. We implement
a new routine which first tries a few rounds of stochastic local search, then
falls back to PicoSAT if we fail to find a satisfying assignment. This makes
the common case very fast, allows solving the harder SAT problems quickly,
and is much simpler than the approach described above.

– This improved routine allows us to continuously solve the SAT problem as
clauses are added, rather than at each iterative deepening step.

– We restrict application of “model-based lemmata” to ground literals above.
We can relax this restriction, allowing a sort of “literal selection” technique
in which the first goal literal assigned true from a clause is attempted.

– Multiple CPU cores can be usefully occupied by launching multiple proof
search attempts with different pseudo-random seeds.

Eliminating Models During Model Elimination 263

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2),
191–213 (2014). https://doi.org/10.1007/s10817-013-9286-5

2. Andrews, P.B.: Theorem proving via general matings. J. ACM (JACM) 28(2),
193–214 (1981)

3. Balyo, T., Froleyks, N., Heule, M.J., Iser, M., Järvisalo, M., Suda, M.: Proceedings
of SAT Competition 2020: solver and benchmark descriptions (2020)

4. Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45085-6 32

5. Bayerl, S., Letz, R.: SETHEO: a sequential theorem prover for first-order logic. In:
Esprit’87-Achievements and Impacts, part 1, pp. 721–735 (1987)

6. Bibel, W.: Automated Theorem Proving. Springer, Heidelberg (2013)
7. Biere, A.: PicoSAT essentials. J. Satisf. Boolean Model. Comput. 4(2–4), 75–97

(2008)
8. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model

checking (2003)
9. Biere, A., Ganesh, V., Grohe, M., Nordström, J., Williams, R.: Theory and practice

of SAT solving (Dagstuhl Seminar 15171). In: Dagstuhl Reports. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2015)

10. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185, IOS
press (2009)

11. Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT prob-
lems. J. Autom. Reason. 51(1), 57–77 (2013). https://doi.org/10.1007/s10817-013-
9283-8

12. Claessen, K., Sorensson, N.: New techniques that improve MACE-style model find-
ing. In: Model Computation (2003)

13. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. The-
ory Pract. Logic Program. 8(1), 121 (2008)

14. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

15. Deshane, T., Hu, W., Jablonski, P., Lin, H., Lynch, C., McGregor, R.E.: Encoding
first order proofs in SAT. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol.
4603, pp. 476–491. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73595-3 35

16. Färber, M.: A curiously effective backtracking strategy for connection tableaux.
CoRR abs/2106.13722 (2021). https://arxiv.org/abs/2106.13722

17. Färber, M., Kaliszyk, C., Urban, J.: Machine learning guidance for connection
tableaux. J. Autom. Reason. 65(2), 287–320 (2021). https://doi.org/10.1007/
s10817-020-09576-7

18. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom.
Reason. 55(3), 191–198 (2015). https://doi.org/10.1007/s10817-015-9345-1

19. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6 23

20. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pp. 111–119 (1987)

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/978-3-540-45085-6_32
https://doi.org/10.1007/s10817-013-9283-8
https://doi.org/10.1007/s10817-013-9283-8
https://doi.org/10.1007/978-3-540-73595-3_35
https://doi.org/10.1007/978-3-540-73595-3_35
https://arxiv.org/abs/2106.13722
https://doi.org/10.1007/s10817-020-09576-7
https://doi.org/10.1007/s10817-020-09576-7
https://doi.org/10.1007/s10817-015-9345-1
https://doi.org/10.1007/978-3-642-22438-6_23

264 M. Rawson and G. Reger

21. Kaliszyk, C.: Efficient low-level connection tableaux. In: De Nivelle, H. (ed.)
TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 102–111. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24312-2 8

22. Kaliszyk, C., Urban, J., Michalewski, H., Oľsák, M.: Reinforcement learning of
theorem proving. In: Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 8836–8847 (2018)

23. Kaliszyk, C., Urban, J., Vyskočil, J.: Certified connection tableaux proofs for HOL
Light and TPTP. In: Proceedings of the 2015 Conference on Certified Programs
and Proofs, pp. 59–66 (2015)

24. Korovin, K.: Instantiation-based automated reasoning: from theory to practice. In:
Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 163–166. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2 14

25. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37651-1 10

26. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

27. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In:
Handbook of Automated Reasoning, pp. 2015–2114. Elsevier (2001)

28. Loveland, D.W.: Mechanical theorem-proving by model elimination. In: Siekmann,
J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 117–134. Springer, Hei-
delberg (1968). https://doi.org/10.1007/978-3-642-81955-1 8

29. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

30. McDonald, A., et al.: Parallel WalkSAT with clause learning. Data analysis project
papers (2009)

31. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 23

32. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010)

33. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp.
269–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 20

34. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 302–312. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 21

35. Otten, J.: The pocket reasoner – automatic reasoning on small devices. In: Norwe-
gian Informatics Conference, NIK (2018)

36. Raths, T., Otten, J.: randoCoP: randomizing the proof search order in the connec-
tion calculus. In: First International Workshop on Practical Aspects of Automated
Reasoning, pp. 94–103 (2008). http://ceur-ws.org/Vol-373/

37. Reger, G., Bjorner, N., Suda, M., Voronkov, A.: AVATAR modulo theories. In:
Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. 2nd Global Conference
on Artificial Intelligence. EPiC Series in Computing, vol. 41, pp. 39–52. Easy-
Chair (2016). https://doi.org/10.29007/k6tp. https://easychair.org/publications/
paper/7

https://doi.org/10.1007/978-3-319-24312-2_8
https://doi.org/10.1007/978-3-642-02959-2_14
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-81955-1_8
https://doi.org/10.1007/978-3-540-71070-7_23
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/978-3-319-40229-1_21
http://ceur-ws.org/Vol-373/
https://doi.org/10.29007/k6tp
https://easychair.org/publications/paper/7
https://easychair.org/publications/paper/7

Eliminating Models During Model Elimination 265

38. Reger, G., Suda, M.: The uses of SAT solvers in Vampire. In: Kovács, L., Voronkov,
A. (eds.) Proceedings of the 1st and 2nd Vampire Workshops, Vampire@VSL 2014,
Vienna, Austria, July 23, 2014 / Vampire@CADE 2015, Berlin, Germany, 2 August
2015. EPiC Series in Computing, vol. 38, pp. 63–69. EasyChair (2015). https://
easychair.org/publications/paper/ZG9

39. Reger, G., Suda, M.: Global subsumption revisited (briefly). In: Kovacs, L.,
Voronkov, A. (eds.) Vampire 2016. Proceedings of the 3rd Vampire Workshop.
EPiC Series in Computing, vol. 44, pp. 61–73. EasyChair (2017). https://doi.org/
10.29007/qcd7. https://easychair.org/publications/paper/QDj

40. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-
order logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
323–341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 20

41. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem prov-
ing. J. Symb. Comput. 36(1–2), 101–115 (2003)

42. Robbins, E., King, A., Howe, J.M.: Backjumping is exception handling. Theory
Pract. Logic Program. 21, 1–20 (2020)

43. Schulz, S.: A comparison of different techniques for grounding near-propositional
CNF formulae. In: FLAIRS Conference, pp. 72–76 (2002)

44. Schulz, S.: Light-weight integration of SAT solving into first-order reasoners – first
experiments. Vampire, pp. 9–19 (2017)

45. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 29

46. Smullyan, R.M.: First-order logic. Courier Corporation (1995)
47. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.

Reason. 43(4), 337 (2009). https://doi.org/10.1007/s10817-017-9407-7
48. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.

Reason. 37(1–2), 21–43 (2006). https://doi.org/10.1007/s10817-006-9032-3
49. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,

A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 46

50. Wielemaker, J.: SWI-Prolog version 7 extensions. In: Workshop on Implementa-
tion of Constraint and Logic Programming Systems and Logic-based Methods in
Programming Environments, vol. 109. Citeseer (2014)

51. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 489–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 33

https://easychair.org/publications/paper/ZG9
https://easychair.org/publications/paper/ZG9
https://doi.org/10.29007/qcd7
https://doi.org/10.29007/qcd7
https://easychair.org/publications/paper/QDj
https://doi.org/10.1007/978-3-319-40970-2_20
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/s10817-006-9032-3
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33

Learning Theorem Proving Components

Karel Chvalovský1 , Jan Jakub̊uv1,2(B) , Miroslav Oľsák2 ,
and Josef Urban1

1 Czech Technical University in Prague, Prague, Czechia
karel@chvalovsky.cz

2 University of Innsbruck, Innsbruck, Austria
mirek@olsak.net

Abstract. Saturation-style automated theorem provers (ATPs) based
on the given clause procedure are today the strongest general reasoners
for classical first-order logic. The clause selection heuristics in such sys-
tems are, however, often evaluating clauses in isolation, ignoring other
clauses. This has changed recently by equipping the E/ENIGMA sys-
tem with a graph neural network (GNN) that chooses the next given
clause based on its evaluation in the context of previously selected
clauses. In this work, we describe several algorithms and experiments
with ENIGMA, advancing the idea of contextual evaluation based on
learning important components of the graph of clauses.

Keywords: Automated theorem proving · Machine learning · Neural
networks · Decision trees · Saturation-style proving

1 Introduction: Clause Selection and Context

Clause selection is a crucial part of saturation-style [29] automated theorem
provers (ATPs) such as E [32], Vampire [20], and Prover9 [22]. These systems,
implementing the given-clause [21] algorithm, provide the strongest methods
for proving lemmas in large interactive theorem prover (ITP) libraries [4], and
occasionally prove open conjectures in specialized parts of mathematics [19].

Clause selection heuristics have a long history of research, going back to
a number of experiments done with the Otter system [24]. Systems such as
Prover9 and E have eventually developed extensive domain-specific languages for
clause selection heuristics, allowing application of sophisticated algorithms based
on a number of different ideas [13,23,27,31,35] and their automated improve-
ment [15,30,34]. These algorithms are, however, often evaluating clauses in isola-
tion, ignoring other clauses selected in the proof search, and thus largely neglect-
ing the notion of a (proof) state and its obvious importance for choosing the next
action (clause).

This has changed recently with equipping the E/ENIGMA [6,14] system with
a logic-aware graph neural network (GNN) [25], where the next given clause is
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 266–278, 2021.
https://doi.org/10.1007/978-3-030-86059-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_16&domain=pdf
http://orcid.org/0000-0002-0541-3889
http://orcid.org/0000-0002-8848-5537
http://orcid.org/0000-0002-9361-1921
http://orcid.org/0000-0002-1384-1613
https://doi.org/10.1007/978-3-030-86059-2_16

Learning Proving Components 267

chosen based on its evaluation in the context of previously selected clauses [12].
In more details, in GNN-ENIGMA, the generated clauses are not ranked imme-
diately and independently on other clauses. Instead, they are judged by the GNN
in larger batches and with respect to a large number of already selected clauses
(context). The GNN estimates collectively the most useful subset of the con-
text and new clauses by several rounds of message passing. The message-passing
algorithm takes into account the connections between symbols, terms, subterms,
atoms, literals, and clauses. It is trained on many previous proof searches, and
it estimates which clauses will collectively benefit the proof search in the best
way.

In the rest of the paper, we describe several algorithms and experiments with
ENIGMA and GNN-based algorithms, advancing the idea of contextual evalua-
tion. In Sect. 2, we give an overview of the learning-based ENIGMA clause selec-
tion in E, focusing on the recently added context-based evaluation by GNNs.
Section 3 introduces the first variant of our context-based algorithms called
leapfrogging. These algorithms interleave saturation-style ATP runs with external
context-based evaluations and clause filtering. Section 4 introduces the second
variant of our context-based algorithms, based on learning from past interac-
tions between clauses and splitting the proof search into separate components.
Section 5 discusses technical details, and Sect. 6 evaluates the methods.

2 ENIGMA and Learning Context-Based Guidance

This section summarizes our previous Graph Neural Network (GNN) ENIGMA
anonymization architecture [12], which was previously successfully used for a
given clause guidance within E Prover [16]. In this context, anonymization means
guidance independent on specific symbol names.

Saturation-based ATPs, such as E, employ a given-clause loop. The input
first-order logic problem is translated into a refutationally-equivalent set of
clauses, and a search for a contradiction is initiated. Starting with the initial
set of clauses, one clause is selected (given) for processing, and all possible infer-
ences with all previously processed clauses are derived. This extends the set of
clauses available for processing, and the loop repeats until (1) the contradiction
(empty clause) is derived, or (2) there are no clauses left for processing (that
is, the input problem is not provable), or (3) resources (time, memory, or user
patience) are exhausted. As the selection of the right clauses for processing is
essential for a success, our approach is to guide the clause selection within an
ATP by sophisticated machine learning methods.

For the clause selection with ENIGMA Anonymous, we train a GNN classifier
for symbol-independent clause embeddings from a large number of previous suc-
cessful E proof searches. From every successful proof search, we extract the set
of all processed clauses, and we label the clauses that appear in the final proof as
positive while the remaining (unnecessarily processed) clauses as negative. These
training data are turned into a tensor representation (one- and two-dimensional
variable-length vectors), which encapsulate clause syntax trees by abstracting

268 K. Chvalovský et al.

from specific symbol names while preserving information about symbol relations.
Each tensor represents a set of clauses as a graph with three types of nodes (for
terms/subterms, clauses, and symbols), and passes initial embeddings through
a fixed number of message-passing (graph convolution) layers. Additionally, the
conjecture clauses of the problem to be proved are incorporated into the graph
to allow for conjecture-dependent clause classification.

Once a GNN classifier is trained from a large number of proof searches, it is
utilized in a new proof search to evaluate the clauses to be processed and to select
the best given clause as follows. Instead of evaluating the clauses one by one, as
is the case in the alternative ENIGMA Anonymous decision tree classifiers, we
postpone clause evaluation until a specific number of clauses to be evaluated is
collected. These clauses form the query part and the size of the query is passed to
the prover as a parameter. The query clauses are extended with clauses forming
a context, that is, a specific number of clauses already processed during the
current proof search. In particular, we use the first n clauses processed during
the proof search as the context. The context size n is another parameter passed
to the prover. After adding the conjecture and context clauses to the query, their
tensor representation is computed and sent to the GNN for evaluation. The GNN
applies several graph convolution (message passing) layers getting an embedding
of every clause. Each clause is combined through a single fully connected layer
with an embedding of the conjecture, and finally transformed into a single score
(logit), which is sent back to the prover. The prover then processes the clauses
with better (higher) scores in advance. For details, see [12,25].

3 Leapfrogging

The first class of algorithms is based on the idea that the graph-based eval-
uation of a particular clause may significantly change as new clauses are pro-
duced and the context changes. It corresponds to the human-based mathematical
exploration, in which initial actions can be done with relatively low confidence
and following only uncertain hunches. After some amount of initial exploration
is done, clearer patterns often appear, allowing re-evaluation of the approach,
focusing on the most promising directions, and discarding of less useful ideas.

In tableau-based provers such as leanCoP [26] with a compact notion of state,
such methods can be approximated in a reinforcement learning setting by the
notion of big steps [18] in the Monte-Carlo tree search (MCTS), implementing the
standard explore/exploit paradigm [10]. In the saturation setting, our proposed
algorithm uses short standard saturation runs at the exploration phase, after
which the set of processed (selected) clauses is reevaluated and a decision on
its most useful subset is made by the GNN. These two phases are iterated in a
procedure that we call leapfrogging.

In more detail, leapfrogging is implemented as follows (see also Algorithm 1).
Given a clausal problem consisting of a set of initial clauses S = S0, an initial
saturation-style search (in our case E/ENIGMA) is run on S with an abstract
time limit. We may use a fixed limit (e.g., 1000 nontrivial processed clauses)

Learning Proving Components 269

Algorithm 1: The Leapfrogging algorithm with a fixed saturation limit
Input: AxiomClauses, NegConjectureClauses, SaturationLimit,

IterationLimit, PremiseSelector;
1 S0 = AxiomClauses ∪ NegConjectureClauses;
2 for i = 0 to IterationLimit do
3 (Li+1, Result) = Saturate(Si, SaturationLimit);
4 if Result = Unsatisfiable then return Unsatisfiable;
5 else if Result = Satisfiable then
6 if i=0 then return Satisfiable;
7 else return Unknown;

8 else // Result = Unknown
9 Si+1 = PremiseSelector(Li+1, NegConjectureClauses) ;

10 Si+1 = Si+1 ∪ NegConjectureClauses;

11 return Unknown;

for all runs, or change (e.g. increase) the limits gradually. If the initial run
results in a proof or saturation within the limit, the algorithm is finished. If not,
we inspect the set of clauses created in the run. We can inspect the set of all
generated clauses, or a smaller set, such as the set of all processed clauses. So
far, we used the latter because it is typically much smaller and better suits our
training methods. This (large) set is denoted as L0. Then we apply a trained
graph-based predictor to L0, which selects a smaller most promising subset of
L0, denoted as S1. We may or may not automatically include also the initial
negated conjecture clauses or the whole initial set S0 in S1. S1 is then used as an
input to the next limited saturation run of E/ENIGMA. This process is iterated,
producing gradually sets Si and Li.

A particularly simple version of leapfrogging uses GNN-guided ENIGMA for
the saturation “jumps”, and omits the external selection, thus setting Si+1 := Li.
This may seem meaningless with deterministic clause selection heuristics that
do not use context: the next saturation run may be selecting the same clauses
and ending up with Si+1 = Si. Already in the standard ATP setting this is,
however, easy to make less deterministic, as done, for example, in the randoCoP
system [28]. The GNN-guided ENIGMA will typically also make different choices
with the new input set L0 than with the input set S0.

A more involved version of leapfrogging, however, makes use of a nontrivial
trained graph-based predictor that will reduce Li to Si+1 such that Si+1 � Li.
For this, we use an external evaluation run of a GNN, which has been trained in
the same way as the GNN used inside ENIGMA: on sets of positive and negative
processed clauses extracted from many successful proof runs. Here, the positive
clauses are those that end up being part of the proof, and the negative ones are
the remaining processed clauses. This is also very similar to an external premise
selection [2] done with the GNNs [25], with the difference that the inputs are
now clauses instead of formulas.

270 K. Chvalovský et al.

4 Learning Reasoning Components

The second class of algorithms is based on learning important components in the
graph of clauses. This is again motivated by an analogy with solving mathemati-
cal problems, which often have well-separated reasoning and computational com-
ponents. Examples include numerical calculations, computing derivatives and
integrals, performing Boolean algebra in various settings, sequences of standard
rewriting and normalization operations in various algebraic theories, etc. Such
components of the larger problem can be often solved mostly in isolation from
the other components, and only their results are then used together to connect
them and solve the larger problem.

Human-designed problem solving architectures addressing such decomposi-
tion include, e.g., SMT systems, systems such as MetiTarski [1], and a tactic-
based learning-guided proof search in systems such as TacticToe [9]. In all these
systems, the component procedures or tactics are, however, human-designed and
(often painstakingly) human-implemented, with a lot of care both for the com-
ponents and for the algorithms that merge their results. This approach seems
hard to scale to the large number of combinations of complex algorithms, deci-
sion procedures and reasoning heuristics used in research-level mathematics, and
other complex reasoning domains.

Our new approach is to instead start to learn such targeted components,
expressed as sets of clauses that perform targeted reasoning and computation
within the saturation framework. We also want to learn the merging of the results
of the components automatically. This is quite ambitious, but there seems to be
growing evidence that such targeted components are being learned in many iter-
ations of GNN-guided proving followed by retraining of the GNNs in our recent
large iterative evaluation over Mizar.1 In these experiments, we have signifi-
cantly extended our previously published results [12],2 eventually automatically
proving 73.5% (more than 40k) of the Mizar theorems. In particular, there are
many examples shown on the project Github page demonstrating that the GNN
is learning to solve more and more involved computations in problems involving
differentiation, integration, boolean algebra, algebraic rewriting, etc. Our initial
approach is therefore to (i) use the GNN to learn to identify interacting reasoning
components, (ii) use graph-based and clustering-based algorithms to split the set
of clauses into components based on the GNN predictions, (iii) run saturation
on the components independently, (iv) possibly merge the most important parts
of the components, and (v) iterate. See the Split and Merge Algorithm 2.

5 Clustering Methods

Here we propose two modifications of our previous GNN architecture, described
in Sect. 2, for the identification of interacting reasoning components, and we

1 https://github.com/ai4reason/ATP Proofs.
2 The publication of this large evaluation is in preparation.

https://github.com/ai4reason/ATP_Proofs

Learning Proving Components 271

Algorithm 2: The Split and Merge algorithm
Input: AxiomClauses, NegConjectureClauses, SaturationLimit,

IterationLimit, PremiseSelector, ClusteringAlgo;
1 S0 = AxiomClauses ∪ NegConjectureClauses;
2 for i = 0 to IterationLimit do
3 (Li, Result) = Saturate(Si, SaturationLimit);
4 if Result = Unsatisfiable then return Unsatisfiable;
5 else if Result = Satisfiable then
6 if i=0 then return Satisfiable;
7 else return Unknown;

8 else // Result = Unknown
9 (C1

i , ..., C
K
i) = ClusteringAlgo(Li) ; // Split to components

10 for j = 1 to K do

11 (Lj
i , Resultj) = Saturate(Cj

i , SaturationLimit) ; // Run each

12 if Resultj = Unsatisfiable then return Unsatisfiable;

13 Si+1 = PremiseSelector(
K⋃

j=1

Lj
i , NegConjectureClauses) ; // Merge

14 Si+1 = Si+1 ∪ NegConjectureClauses;

15 return Unknown;

describe their intended use. The overall methodology to detect and utilize rea-
soning components is as follows. To produce the training data, we run E with a
fixed limit of N given clause loops. For each solved problem, we output not only
the proof, but the full derivation tree of all clauses generated during the proof
search. These will provide training data to train a GNN classifier. For unproved
problems, we output the N given clauses processed during the search. These data
from unsuccessful proof searches are then used for the prediction of interacting
components. This is the start of the Split and Merge Algorithm 2.

The training data are extracted from successful proof searches as follows.
From each derivation tree, we extract all clause pairs Ci and Cj which interacted
during the proof search, that is, the pairs which were used to infer another clause.
All pairs (Ci, Cj) which were used to infer a proof clause are marked as positive
while the remaining clause pairs as negative. Such clauses with the information
about their positive/negative pairing are used to train a GNN predictor.

The trained GNN predictor will guide the construction of clusters, where
clauses resembling positively linked clauses should end up within the same
cluster. We obtain the data for predictions from the above unsuccessful proof
searches (with the fixed limit of N processed clauses), and they contain N pro-
cessed clauses for every problem. We want to assign each pair of clauses (Ci, Cj)
a score li,j which describes the likelihood of inferring a useful clause from Ci and
Cj . These scores are the basis for the clustering algorithms.

We experiment with two slightly different GNN architectures for the iden-
tification of reasoning components. Let d be the dimension of the final clause

272 K. Chvalovský et al.

embedding, and let ci, cj be the embeddings of clauses Ci, Cj respectively. Then
the two architectures—differently computing the score li,j—are as follows:

1. We pass both ci, cj through a linear layer (with biases, without an activation
function) with the output dimension n, resulting in di, dj . Then we calculate
li,j = di · dj/

√
n.

2. We pass both ci, cj through a linear layer with the output dimension 2n,
resulting in d′

i, d
′
j . Then we calculate li,j = di · rev(dj)/

√
n where rev repre-

sents reversing the vector.

Mathematically, this corresponds to li,j = cTi Acj + vT (ci + cj) + b where vT

are n-dimensional vectors for clause evaluation, b is a scalar bias, and A is an
n×n matrix which is symmetric and positive definite in architecture 1, and just
symmetric in architecture 2. For training, we pass the value li,j through sigmoid
and binary cross entropy loss.

5.1 Clustering

To split the clauses into separate components, we use standard clustering algo-
rithms. However, in our case, it is likely that some clauses should be shared
among various components, and hence we are also interested in methods capa-
ble of such overlapping assignments.

Of course, the crucial precondition for splitting clauses into components
is defining the similarity between clauses, or even better, a distance between
them. We have at least two straightforward options here—to define the distance
between two clauses as the distance between their embeddings (vectors) or use
the matrix L = (lij) as a similarity measure, which approximates the likelihood
that clauses i and j interact in the proof. A simple way to produce distances
from L is to treat each row of L as a vector and define the distance between two
clauses as the (Euclidean) distance between the corresponding rows of L.

Another approach is to use directly the intended meaning of matrix L, the
likelihood that two given clauses appear in a proof, and to produce a weighted
graph from L, where vertices are clauses and edges are assigned weights according
to L. Moreover, we can remove edges that have weights below some threshold,
expressing that such clauses do not interact. In this way, we obtain a weighted
graph that can be clustered into components. The following paragraphs briefly
describe the clustering algorithms used in the experiments.

k-Means. A widely used clustering method is k-means. The goal is to separate
vectors into k clusters in such a way that their within-cluster variance is minimal.
Although k-means is a popular clustering method, it suffers from numerous well-
known problems. For example, it assumes that we know the correct number of
clusters in advance, the clusters are of similar sizes, and they are nonoverlapping.
Although these assumptions are not satisfied in our case, we used k-means from
SciPY [36] as a well-known baseline.

Learning Proving Components 273

Table 1. Four leapfrogging runs with different GNN-ENIGMAs

GNN-strategy Original-60s-run Leapfrogging
(300-500-60s)

Union Added-by-lfrg

G1 2711 2218 3370 659

G2 2516 2426 3393 877

G3 2655 2463 3512 857

G4 2477 2268 3276 799

Soft k-Means. It is possible to modify k-means in such a way that overlapping
clusters (also called soft clusters) are allowed.3 An example is the Fuzzy C-
Means (FCM) algorithm [3] that generalizes k-means by adding the membership
function for each point. This function scores how much each point belongs to a
cluster, and it is possible to adjust the degree of overlap between the clusters.
We used the fuzzy-c-means package [7] for our experiments.

Graph Clustering. We have experimented with the cluster application from
the popular Graphviz visualisation software [8], which can split a graph into
clusters using the methods described in [5]. The graphs are clustered based on
the modularity measure which considers the density of links inside a cluster
compared to links between clusters. It is possible to either directly specify the
intended number of clusters (soft constraint), or base the number of clusters
on their modularity. We also experimented with clustering using the modularity
quality.4 Moreover, by removing some highly connected vertices (clauses) before
clustering and adding them into all clusters, we can produce overlapping clusters.

6 Evaluation

6.1 Leapfrogging

The first leapfrogging experiment is done as follows:

1. We stop GNN-ENIGMA after 300 processed clauses and print them.
2. We restart with the 300 clauses used as input, stop at 500 clauses and print

the 500 clauses.
3. We restart with the 500 clauses, and do a final run for 60 s.

This is done on a set of 28k hard Mizar problems that we have been trying
to prove with many different methods in a large ongoing evaluation over the full
Mizar corpus.5 We try with four differently trained and parameterized GNNs,
denoted as G1, . . . , G4. The summary of the runs is given in Table 1.
3 Another popular way how to generalize k-means (and assign a point to more than

one cluster) is to use Gaussian mixture models.
4 https://gitlab.com/graphviz/graphviz/-/blob/main/lib/sparse/mq.h.
5 Details are at https://github.com/ai4reason/ATP Proofs.

https://gitlab.com/graphviz/graphviz/-/blob/main/lib/sparse/mq.h
https://github.com/ai4reason/ATP_Proofs

274 K. Chvalovský et al.

Table 2. Clustering 3000 problems for evaluation

Method #clusters Newly solved problems

k-means 2 67

k-means 3 78

Soft k-means 2 63

Soft k-means 3 93

Graphviz ≤4 111

We see that the methods indeed achieve high complementarity to the original
GNN strategies. This is most likely thanks to the different context in which the
GNN sees the initial clauses in the subsequent runs.

6.2 Splitting and Merging

The initial experimental evaluation6 is done on a large benchmark of 57880
Mizar40 [17] problems7 exported to first-order logic by MPTP [33]. We use
a subset of 52k Mizar40 [17] problems for training. To produce the training
data, we run E with a well-performing GNN guidance, and with the limit of
1000 given clause loops. Within this limit, around 20k of the training prob-
lems are solved. For the 32k unproved training problems, we output the 1000
given clauses processed during the search. As described in Sect. 5, we train a

Fig. 1. Differentiation – T16 FDIFF 5

6 On a server with 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz
cores, 755 GB of memory, and 4 NVIDIA GeForce GTX 1080 Ti GPUs.

7 http://grid01.ciirc.cvut.cz/∼mptp/1147/MPTP2/problems small consist.tar.gz.

http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz

Learning Proving Components 275

Fig. 2. Associativity of gcd by many rewrites – T48 NEWTON

GNN predictor on the 20k successful runs, and use it to predict the interactions
between the processed clauses of the unsuccessful runs. Since the evaluation
on the full set of the 32k unsolved problems would be too resource-intensive,
we limit this to its randomly chosen 3000-big subset. Table 2 shows the perfor-
mance of the clustering methods in solving the problems in the first Split phase.
The strongest method is the Graphviz-based graph clustering. In more detail,
the cluster tool gives us on the GNN graph predictions up to four graph com-
ponents. We run again with a 1000-given clause limit on them newly solving
altogether 111 problems inside the components of the 3000. Then we choose
this clustering for an experiment with the Merge phase. We merge the compo-
nents of the remaining unsolved 2889 problems and use our GNN for a premise-
selection-style final choice of the jointly best subset of the clauses produced by
all the components (line 13 of Algorithm 2). We use four thresholds for the
premise selection, and run again with a 1000-given clause limit on each of such
premise selections (line 3 of Algorithm 2). This run on the merged components
yields another 66 new proofs. Many of the newly found proofs indeed show fre-
quent computational patterns. Examples include the proofs of Mizar problems
T16 FDIFF 5 (Fig. 1),8 T48 NEWTON (Fig. 2),9 T10 MATRIX 4,10 T11 VECTSP 2,11

T125 RVSUM 1,12 T13 BCIALG 3,13 and T14 FUZZY 2.14

8 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/fdiff 5.html#T16.
9 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/newton.html#T48.

10 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/matrix 4.html#T10.
11 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/vectsp 2.html#T11.
12 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/rvsum 1.html#T125.
13 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/bcialg 3.html#T13.
14 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/fuzzy 2.html#T14.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/fdiff_5.html#T16
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/newton.html#T48
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/matrix_4.html#T10
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/vectsp_2.html#T11
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/rvsum_1.html#T125
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/bcialg_3.html#T13
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/fuzzy_2.html#T14

276 K. Chvalovský et al.

7 Conclusion

We have described several algorithms advancing the idea of contextual evalua-
tion based on learning important components of the graph of clauses. The first
leapfrogging experiments already show very encouraging results on the Mizar
dataset, providing many complementary solutions. The component-based algo-
rithm also produces new solutions and there are clearly many further methods
and experiments that can be tried in this setting. We believe that this approach
may eventually lead to using large mathematical libraries for automated learn-
ing of nontrivial components, algorithms, and decision procedures involved in
mathematical reasoning.

Acknowledgments. Supported by the ERC Consolidator grant AI4REASON
no. 649043 (JJ, JU), by the Czech project AI & Reasoning CZ.02.1.01/0.0/
0.0/15 003/0000466 and the European Regional Development Fund (KC, JU), by the
ERC Starting grant SMART no. 714034 (JJ, MO), and by the Czech MEYS under the
ERC CZ project POSTMAN no. LL1902 (JJ).

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reasoning 44(3), 175–205 (2010)

2. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2),
191–213 (2013). https://doi.org/10.1007/s10817-013-9286-5

3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means cluster-
ing algorithm. Comput. Geosci. 10(2), 191–203 (1984). https://doi.org/10.
1016/0098-3004(84)90020-7. https://www.sciencedirect.com/science/article/pii/
0098300484900207

4. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reason. 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-
5787/4593. http://dx.doi.org/10.6092/issn.1972-5787/4593

5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

6. Chvalovský, K., Jakub̊uv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 197–215. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 12

7. Dias, M.L.D.: fuzzy-c-means: an implementation of fuzzy c-means clustering
algorithm. (2019). https://doi.org/10.5281/zenodo.3066222. https://git.io/fuzzy-
c-means

8. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz and
dynagraph - static and dynamic graph drawing tools. In: Jünger, M., Mutzel, P.
(eds.) Graph Drawing Software, pp. 127–148. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-642-18638-7 6

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1016/0098-3004(84)90020-7
https://doi.org/10.1016/0098-3004(84)90020-7
https://www.sciencedirect.com/science/article/pii/0098300484900207
https://www.sciencedirect.com/science/article/pii/0098300484900207
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.5281/zenodo.3066222
https://git.io/fuzzy-c-means
https://git.io/fuzzy-c-means
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1007/978-3-642-18638-7_6

Learning Proving Components 277

9. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4
tactics. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–
12 May 2017. EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair (2017).
http://www.easychair.org/publications/paper/340355

10. Gittins, J.C.: Bandit processes and dynamic allocation indices. J. Roy. Stat. Soc.
Ser. B (Methodol.) 148–177 (1979)

11. Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.): Global Conference on Artificial
Intelligence, GCAI 2015, Tbilisi, Georgia, 16–19 October 2015. EPiC Series in
Computing, vol. 36. EasyChair (2015). http://www.easychair.org/publications/
volume/GCAI 2015

12. Jakub̊uv, J., Chvalovský, K., Oľsák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA anonymous: symbol-independent inference guiding machine (system
description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51054-1 29

13. Jakub̊uv, J., Urban, J.: Extending E prover with similarity based clause selection
strategies. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F.
(eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 151–156. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42547-4 11

14. Jakub̊uv, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6 20

15. Jakub̊uv, J., Urban, J.: Hierarchical invention of theorem proving strategies. AI
Commun. 31(3), 237–250 (2018). https://doi.org/10.3233/AIC-180761

16. Jakub̊uv, J., Urban, J.: Hammering Mizar by learning clause guidance. In: Harri-
son, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive
Theorem Proving, ITP 2019, 9–12 September 2019, Portland, OR, USA. LIPIcs,
vol. 141, pp. 34:1–34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.ITP.2019.34

17. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256
(2015). https://doi.org/10.1007/s10817-015-9330-8

18. Kaliszyk, C., Urban, J., Michalewski, H., sák, M.O.: Reinforcement learning of the-
orem proving. In: Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8
December 2018, Montréal, Canada, pp. 8836–8847 (2018). http://papers.nips.cc/
paper/8098-reinforcement-learning-of-theorem-proving

19. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups:
an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.)
Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 151–164.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8 8

20. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

21. McCune, W.: Otter 2.0. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp.
663–664. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7 131

22. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9/

http://www.easychair.org/publications/paper/340355
http://www.easychair.org/publications/volume/GCAI_2015
http://www.easychair.org/publications/volume/GCAI_2015
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-319-42547-4_11
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.3233/AIC-180761
https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://doi.org/10.1007/s10817-015-9330-8
http://papers.nips.cc/paper/8098-reinforcement-learning-of-theorem-proving
http://papers.nips.cc/paper/8098-reinforcement-learning-of-theorem-proving
https://doi.org/10.1007/978-3-642-36675-8_8
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/3-540-52885-7_131
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

278 K. Chvalovský et al.

23. McCune, W.: Semantic guidance for saturation provers. In: Calmet, J., Ida, T.,
Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 18–24. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11856290 4

24. McCune, W.: Otter 3.3 reference manual. Technical report ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA (2003)

25. Oľsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated
reasoning. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Conference
on Artificial Intelligence, 29 August–8 September 2020, Santiago de Compostela,
Spain, 29 August–8 September 2020 - Including 10th Conference on Prestigious
Applications of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelli-
gence and Applications, vol. 325, pp. 1395–1402. IOS Press (2020). https://doi.
org/10.3233/FAIA200244

26. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003)

27. Quaife, A.: Automated Development of Fundamental Mathematical Theories.
Kluwer Academic Publishers (1992)

28. Raths, T., Otten, J.: randocop: randomizing the proof search order in the con-
nection calculus. In: Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of
the First International Workshop on Practical Aspects of Automated Reasoning,
Sydney, Australia, 10–11 August 2008. CEUR Workshop Proceedings, vol. 373.
CEUR-WS.org (2008). http://ceur-ws.org/Vol-373/paper-08.pdf

29. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press (2001)

30. Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms.
In: Gottlob et al. [11], pp. 263–274. http://www.easychair.org/publications/paper/
Breeding Theorem Proving Heuristics with Genetic Algorithms

31. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
32. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,

A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49

33. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

34. Urban, J.: BliStr: the blind strategymaker. In: Gottlob et al. [11], pp. 312–319.
http://www.easychair.org/publications/paper/BliStr The Blind Strategymaker

35. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning
program: case studies. J. Autom. Reason. 16(3), 223–239 (1996)

36. Virtanen, P., et al.: SciPy 1.0 contributors: SciPy 1.0: fundamental algorithms for
scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/
10.1038/s41592-019-0686-2

https://doi.org/10.1007/11856290_4
https://doi.org/10.3233/FAIA200244
https://doi.org/10.3233/FAIA200244
http://ceur-ws.org/Vol-373/paper-08.pdf
http://www.easychair.org/publications/paper/Breeding_Theorem_Proving_Heuristics_with_Genetic_Algorithms
http://www.easychair.org/publications/paper/Breeding_Theorem_Proving_Heuristics_with_Genetic_Algorithms
https://doi.org/10.1007/978-3-642-45221-5_49
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

Formalized Proofs

A Formally Verified Cut-Elimination
Procedure for Linear Nested Sequents

for Tense Logic

Caitlin D’Abrera1 , Jeremy Dawson1(B) , and Rajeev Goré2

1 School of Computing, The Australian National University, Canberra, Australia
{caitlin.dabrera,Jeremy.Dawson}@anu.edu.au

2 Vienna University of Technology, Vienna, Austria

Abstract. We port Dawson and Goré’s general framework of deep
embeddings of derivability from Isabelle to Coq. By using lists instead
of multisets to encode sequents, we enable the encoding of genuinely
substructural logics in which some combination of exchange, weakening
and contraction are not admissible. We then show how to extend the
framework to encode the linear nested sequent calculus LNSKt of Goré
and Lellmann for the tense logic Kt and prove cut-elimination and all
required proof-theoretic theorems in Coq, based on their pen-and-paper
proofs. Finally, we extract the proof of the cut-elimination theorem to
obtain a formally verified Haskell program that produces cut-free deriva-
tions from those with cut. We believe it is the first published formally
verified computer program for eliminating cuts in any proof calculus.

Keywords: Formalised proof theory · Cut-elimination · Linear nested
sequent calculus · Tense logic · Coq · Extraction · Program synthesis

1 Introduction

Traditional styles of proof calculi for capturing the notion of logical derivations
include Hilbert calculi, natural deduction [19], sequent calculi [19] and tableau
calculi [7]. More recent and elaborate styles include display calculi [1,3], labelled
sequents [14] and nested sequent calculi [10]. Each style has strengths and weak-
nesses: expressivity, complexity, ease of use, and philosophical motivations.

Consider the interesting case of systems for tense logics. After previously pub-
lished failed attempts at providing sequent calculi that satisfy cut-elimination,
more complex systems were produced in the forms of display calculi, nested
sequents and labelled sequents. Goré and Lellmann [8] provide a simpler calcu-
lus, LNSKt, using linear nested sequents (LNS) for the minimal tense logic Kt that

C. D’Abrera—Supported by an Australian Government Research Training Program
Scholarship.
R. Goré—Work supported by the FWF projects I 2982 and P 33548.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 281–298, 2021.
https://doi.org/10.1007/978-3-030-86059-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_17&domain=pdf
http://orcid.org/0000-0002-0103-7134
http://orcid.org/0000-0003-2308-8706
https://doi.org/10.1007/978-3-030-86059-2_17

282 C. D’Abrera et al.

does not require the heavy machinery found in the other more complex systems.
Their LNS calculus is a cut-free system and they proved cut-admissibility.

But, as is well-known, proofs of cut-admissibility are notoriously “case
heavy” with many similar cases which are often “left to the reader”. The cut-
admissibility proof of Goré and Lellmann [8] is no exception and involves a
complicated simultaneous induction over four sub-cases. One way of verifying its
correctness is to formalise it in a modern interactive proof assistant, as explained
next.

Dawson and Goré [6] gave an elegant embedding of a general framework for
derivability in Isabelle/HOL, applicable to many styles of proof calculi, includ-
ing many extensions of the sequent calculus [4]. But they used Isabelle/HOL
2007 and it would require a complete rewrite of that material to use it in mod-
ern Isabelle, which may indeed not be possible. So we ported this work to Coq
and adapted it to allow the handling of genuinely substructural notions such
as exchange, which the aforementioned Isabelle/HOL formalisation lacked. We
extended this Coq framework to encode linear nested sequents and LNSKt, and
proved in Coq the standard structural proof-theoretic theorems up to and includ-
ing cut-admissibility, based on the original pen-and-paper proofs [8].

Constructively proving cut-elimination in Coq permits us to extract the pro-
cedure into a Haskell program that computes cut-free derivations from those
with cut. The full proof of cut-elimination in a pen-and-paper setting is already
large because it involves so many cases, and adding the extra cases that emerge
as part of the task of formalising has made this theorem a good candidate for
verification, particularly as multiple mistakes were found. As far as we know,
ours is the first published extracted program for performing cut-elimination.

Our Coq code was developed with Coq 8.8.2 (October 2018) and tested with
Coq 8.10.2 (Nov 2019): https://github.com/caitlindabrera/LNS-for-Kt.

2 Preliminaries

Formulae of normal modal tense logics are built from a given set Atm of atomic
formulae via the following BNF grammar where p ∈ Atm: A := p | ⊥ | A → A |
�A | �A. We assume that the reader is familiar with their associated Kripke
semantics or their standard Hilbert calculus [8].

We define linear nested sequents as in [8] before giving the full calculus.

2.1 A Linear Nested Sequent Calculus for Kt

Definition 1. A sequent is an expression Γ ⇒ Δ where the antecedent Γ and
the succedent Δ are finite, possibly empty, multisets of formulae. We write ε to
stand for an empty antecedent or succedent to avoid confusion. A linear nested
sequent is a sequence of sequents where each adjacent pair is connected by ↗ or
↙. The sequents that occur within such a linear nested sequent are components.

https://github.com/caitlindabrera/LNS-for-Kt

Cut-Elimination for LNSKt 283

Γ ⇒ Δ, A Σ ⇒ Π, A Γ ⇒ Δ Σ ⇒ Π, A ⇒ A

Γ ⇒ Δ Σ ⇒ Π, A
1
R

Γ ⇒ Δ, A Σ ⇒ Π, A Γ ⇒ Δ Σ ⇒ Π, A ⇒ A

Γ ⇒ Δ Σ ⇒ Π, A
1
R

Γ ⇒ Δ, A ⇒ A

Γ ⇒ Δ, A
2
R

Γ ⇒ Δ, A ⇒ A

Γ ⇒ Δ, A
2
R

Γ, A ⇒ Δ Σ, A ⇒ Π

Γ, A ⇒ Δ Σ ⇒ Π
1
L

Γ, A ⇒ Δ Σ, A ⇒ Π

Γ, A ⇒ Δ Σ ⇒ Π
1
L

Γ, A ⇒ Δ

Γ ⇒ Δ Σ, A ⇒ Π
2
L

Γ, A ⇒ Δ

Γ ⇒ Δ Σ, A ⇒ Π
2
L

Γ, p ⇒ p, Δ
(id)

Γ, ⊥ ⇒ Δ
⊥L

G
Γ ⇒ Δ

EW

Γ, A ⇒ Δ, A → B, B

Γ ⇒ Δ, A → B
→R

Γ, A → B, B ⇒ Δ Γ, A → B ⇒ Δ, A

Γ, A → B ⇒ Δ
→L

Fig. 1. The system LNSKt where � stands for either ↗ or ↙

We use lower case letters (p, q, r) for atomic formulae, upper case letters
(A,B,C) for formulae, capital Greek letters (Γ,Δ,Σ,Π) for finite multisets
of formulae and calligraphic capital letters (G,H) for LNSs, unless otherwise
stated. We often write G for a possibly empty context : e.g., G ↗ Γ ⇒ Δ stands
for Γ ⇒ Δ if G is empty, and for Σ ⇒ Π ↙ Ω ⇒ Θ ↗ Γ ⇒ Δ if G is the LNS
Σ ⇒ Π ↙ Ω ⇒ Θ.

The rules of LNSKt [8] are in Fig. 1. Each rule has a number of premisses above
the line and a single conclusion below it. The single formula in the conclusion is
the principal formula and the formulae in the premisses are the side-formulae.

Intuitively, each component of a linear nested sequent corresponds to a world
of a Kripke model, and the structural connectives ↗ and ↙ between components
corresponds to the relations R and R−1 that connect these worlds. We can then
think of a Kripke model forcing a LNS G if for every connected sequence of worlds
corresponding to the structure of G, one of those worlds forces its corresponding
sequent component. See [8] for the formal detail.

Every instance of the (id) and ⊥L rules is a derivation of depth 1. If
(ρ) is an n-ary rule and there are n premiss derivations D1, · · · ,Dn, each of
depth d1, · · · , dn, with respective conclusions c1, · · · , cn, and c1, · · · , cn/c0 is an
instance of (ρ) then D1, · · · ,Dn/c0 is a derivation of depth 1+max{d1, · · · , dn}.
We use dp(D) for the depth of derivation D.

We generalise “derivations” to allow for “unfinished leaves”, by which we
simply mean leaf sequents from a given set that are considered separate to any
zero-premiss rules in the system. We write D �prems

rls G to mean that D is a
derivation of the LNS G in the calculus with rule set rls, allowing for unfinished
leaves prems. We further write D �rls G when prems is empty and thus D must
be a finished proof with no unfinished leaves. In both cases, we may omit the

284 C. D’Abrera et al.

D to mean that there exists a derivation D such that D �prems
rls G or D �rls G,

respectively. We simply write D � G if D is a derivation in LNSKt of the linear
nested sequent G, and � G if there is a derivation D with D � G.

Example 1. Consider the LNS ε ⇒ r → �¬�¬r where r → �¬�¬r is the
formula r → �♦r with the definition of ♦ expanded. The following is a non-
trivial derivation that demonstrates the use of some of the box rules to move
formulae between different components. Note that it uses the provably admissible
rules ¬L, ¬R and weakening.

(id)
r,¬r ⇒ r,�¬�¬r ¬L
r,¬r ⇒ �¬�¬r �2

Lr ⇒ �¬�¬r ↙ �¬r ⇒ ¬�¬r ¬R
r ⇒ �¬�¬r ↙ ε ⇒ ¬�¬r �2

Rr ⇒ �¬�¬r weak
r ⇒ r → �¬�¬r,�¬�¬r →R

ε ⇒ r → �¬�¬r

3 Encoding Formulae, Sequents and LNSs

Having seen the pen-and-paper definition of the calculus, we turn to our Coq
formalisation. We start with a set of proposition variables, V : Set, which cor-
responds to Atm, over which we build our formulae, PropF V:
Inductive PropF (V : Set) : Type :=

| Bot : PropF V
| Var : V -> PropF V
| WBox : PropF V -> PropF V
| BBox : PropF V -> PropF V
| Imp : PropF V -> PropF V -> PropF V.

Here we are creating a new type called PropF, and so we would encode, for
example, the infix formula �(p → q) → (�p → �q) using prefix notation by
the term Imp (WBox (Imp (Var p) (Var q))) (Imp (WBox (Var p)) (WBox
(Var q))).

Recall our sequents consist of multisets. To model this we chose lists and
later proved exchange lemmas that enable us to move formulae around in any
order without compromising derivability. See Sect. 6 for further details. Thus
the multiset Γ of formulae is encoded as a term with type list (PropF V) and
sequents, which have the form Γ ⇒ Δ, have type seq:
Definition rel (W : Type) : Type := W * W. (* ie, prod W W *)
Definition seq {V : Set} := rel (list (PropF V)).

Here, prod W W, also written W * W, is the Cartesian product W ×W , and so an
s of type seq is a pair of lists of formulae such as pair Γ Δ, also written (Γ,Δ).

In Coq, list comes pre-defined as expected, where a :: b :: c :: nil
encodes the list [a, b, c]. We can append list l1 to list l2 by the ++ operator.
For a function f : A -> B, and a list l : list A, the result of map f l is got

Cut-Elimination for LNSKt 285

by applying f to each member of l. We use these extensively throughout our
formalisation, as can be seen in the definitions for nslclext and nslclrule in
Sect. 4.

Coq allows “implicit arguments” where certain arguments for some functions
can usually be inferred and are not given. Typical examples are the first argu-
ments of the list operators ++ and ::, which state the type of the list members.
The symbol @ preceding a function name, as in @seq V, indicates that all argu-
ments are given explicitly. In the code above, braces as in {V : Set}, as opposed
to parentheses as in (W : Type), indicates V is to be an implicit argument.

We defined the type LNS to encode LNSs as lists of pairs of sequents and
directions, where the latter is defined to have two inhabitants corresponding to
the ↗ and ↙ arrows:
Inductive dir : Type := | fwd : dir | bac : dir.
Definition LNS {V : Set} := list ((@seq V) * dir).

There is an extra direction in the type for LNS: for n components there should
only be n − 1 directions. We ignore the first direction: so Γ ⇒ Δ ↗ Σ ⇒ Π is
encoded by [(Γ , Δ, fwd), (Σ, Π, fwd)] and [(Γ , Δ, bac), (Σ, Π, fwd)].

4 Encoding the LNSKt Calculus

A rule instance couples a list ps of premises with a conclusion c. We define a
type rlsT W := list W -> W -> Type so that rlsT ps c is the type of all rule
instances with list of premises ps and conclusion c. Our aim then is to encode
a collection of permissible rule schemas – in our case the rules of LNSKt – by
defining the type LNSKt_rules which has type rlsT (@LNS V).

To do so, we encoded sub-collections of rules called b2rrules, b1rrules,
b2lrules, b1lrules, EW_rule and rs_prop which correspond to the boxed rules,
external weakening and the remaining propositional rules, respectively.

Consider b2lrules with WBox2Ls corresponding to �2
L and BBox2Ls to �2

L:

Inductive b2lrules (V : Set) : rlsT (@LNS V) :=
| WBox2Ls : forall A d Γ1 Γ2 Σ1 Σ2 Δ Π, b2lrules

[[((Γ1 ++ A :: Γ2), Δ, d)]]
[((Γ1 ++ Γ2), Δ, d) ; ((Σ1 ++ WBox A :: Σ2), Π, bac)]

| BBox2Ls : forall A d Γ1 Γ2 Σ1 Σ2 Δ Π, b2lrules
[[((Γ1 ++ A :: Γ2), Δ, d)]]
[((Γ1 ++ Γ2), K1, d) ; ((Σ1 ++ BBox A :: Σ2), Π, fwd)].

The first WBox2Ls says that any rule instance that has one premise (encoded as
a singleton list of LNSs) of the form Γ1, A, Γ2 ⇒ Δ and conclusion of the form
Γ1, Γ2 ⇒ Δ ↙ Σ1,�A,Σ2 ⇒ Π is permitted. Thus although the official rule has
an antecedent multiset Γ,A, we present it as the list Γ1, A, Γ2 instead to align
the pen-and-paper presentation and Coq presentation.

Note that we encode only those components containing principal or side
formulae i.e. the last two components of the conclusion. So WBox2Ls encodes the
rule instance below left. Ultimately we want the full context version below right.

Γ1, A, Γ2 ⇒ Δ

Γ1, Γ2 ⇒ Δ ↙ Σ1,�A,Σ2 ⇒ Π

G 	 Γ1, A, Γ2 ⇒ Δ

G 	 Γ1, Γ2 ⇒ Δ ↙ Σ1,�A,Σ2 ⇒ Π
�2

L

286 C. D’Abrera et al.

To obtain the right one from the left, we define nslcext and nclcrule, where
nslcext extends an LNS ls with a given context G to the left. We use nclcrule
to extend the collection of rule instances defined by b2lrules to allow for the
uniform adding of contexts with nslcext into premises and conclusions.
Definition nslclext W (G ls : list W) := G ++ ls.

Inductive nslclrule W (sr : rlsT (list W)) : rlsT (list W) :=
| NSlclctxt : forall ps c G, sr ps c ->

nslclrule sr (map (nslclext G) ps) (nslclext G c).

If r is of type nslclrule W sr then it must be obtained by adding a (possibly
empty) context to all the premises and conclusion of a rule instance of sr.

So nslclrule (@b2lrules V) ps c captures that the premise list ps and
conclusion c form an instance of an extended version of a rule from b2lrules
via uniform context addition, giving the full version of �2

L on the right above.
We can then define the full LNSKt rule set with b2rrules and the other

corresponding subcollections by the following LNSKt_rules definition:
Inductive LNSKt_rules {V : Set} : rlsT (@LNS V) :=
| b2r : forall ps c, nslclrule (@b2rrules V) ps c ->

LNSKt_rules ps c
| b1r : forall ps c, nslclrule (@b1rrules V) ps c ->

LNSKt_rules ps c
| b2l : forall ps c, nslclrule (@b2lrules V) ps c ->

LNSKt_rules ps c
| b1l : forall ps c, nslclrule (@b1lrules V) ps c ->

LNSKt_rules ps c
| nEW : forall ps c, nslclrule (@EW_rule V) ps c ->

LNSKt_rules ps c
| prop : forall ps c, nslcrule (seqrule (@rs_prop V)) ps c ->

LNSKt_rules ps c.

The b2l case reads: if the premise list ps and conclusion c form an extended
instance of b2lrules, then ps/c is also a rule instance of LNSKt_rules. The other
rules work in much the same way. The exceptions are the prop rules as rs_prop

captures an even more refined rule skeleton for →L, →R, ⊥L and (id) and
requires the addition of a sequent level context (Γ s and Δs) via seqrule [6]. We
leave it to the reader to see the original code for details of the remaining rules.

5 Encoding Derivability

Our notion of derivability follows Dawson and Goré’s formalisation in Isabelle [6]:

Inductive derrec X (rules : list X -> X -> Type) (prems : X -> Type) :
X -> Type :=
| dpI : forall concl , prems concl -> derrec rules prems concl
| derI : forall ps concl , rules ps concl ->

dersrec rules prems ps -> derrec rules prems concl
with dersrec X (rules : list X -> X -> Type) (prems : X -> Type) :
list X -> Type :=
| dlNil : dersrec rules prems []
| dlCons : forall seq seqs , derrec rules prems seq ->

dersrec rules prems seqs ->
dersrec rules prems (seq :: seqs).

Cut-Elimination for LNSKt 287

The X is the type of objects about which we are reasoning: formulae in natural
deduction calculi, sequents in sequent calculi, etc. In our case, we will instantiate
X with the type LNS of LNSs. Then D : derrec X rules prems concl encodes
D �prems

rules concl. But, by a complication of Coq, X is an “implicit argument” and
must be omitted in the line above. Think of prems as a characteristic function
for set membership. Likewise rules, where the set is a set of pairs (each pair
being a list of premises and a conclusion).

A conclusion concl is derivable from a set prems of premises if

dpI: concl is a member of the set prems, or
derI: there is a rule inferring concl from a list ps, and each p in ps is derivable

The notion derrec is defined mutually with dersrec which asserts that
a list of conclusions is derivable instead of just one as in derrec. Thus
dersrec X rules prems concls, using constructors dlNil and dlCons, holds
if all members of concls are derivable via derrec.

In contrast to encodings that define both derivability and calculus rules in
the one definition (for example [2,21]), derrec gives a modular framework where
X, rules and prems can be arbitrary. Thus derrec can be used for a variety of
calculi where we can prove lemmas which are generic to multiple calculi satisfing
certain conditions, rather than having to prove the same lemmas over and over
for different calculi.

Interlude: Doing this in Coq Versus Isabelle/HOL. We can contrast how this
works out in Coq compared with our previous work in Isabelle/HOL. In Coq,
as derrec ... concl is a Type, it represents the derivation tree showing that
concl is derivable. This means we can define the height or size of a derivation
tree, as needed to do proofs by induction on height or size of a derivation.
(We note that doing this specifically requires using Type, not Prop, for derrec,
dersrec, etc.)

By contrast, in Isabelle we had to define a separate data structure to describe
a derivation tree (essentially a rose tree of sequents), specify the condition of its
validity (that each node is a rule of the system), and prove that such a tree exists
iff the endsequent concl satisfies derrec ... concl.

However the derivation tree that Coq gives us for free has problems not
shared by the Isabelle/HOL derivation tree: namely, the derivation trees next
up from the endsequent (ie the trees deriving the premises of the bottom rule
of the tree) do not form a list, because they are not of the same type, as their
conclusions are all different. Navigating around such difficulties was not easy.

In our cut-elimination context we were mostly working with Coq proofs that
required all leaves to be obtained via the (id) or ⊥L rules, and so we regularly
instantiated prems : X -> Type with the empty characteristic function (fun _

=> False). The “wrappers” pf (proof) and pfs (proofs) encode such derivations:

Definition pf {X : Type} rules concl :=
@derrec X rules (fun _ => False) concl.

Definition pfs {X : Type} rules concls :=
@dersrec X rules (fun _ => False) concls.

288 C. D’Abrera et al.

Then, pf_LNSKt and pfs_LNSKt are the “proofs” with rules being LNSKt_rules:
Definition pf_LNSKt {V : Set} ns :=

derrec (@LNSKt_rules V) (fun _ => False) ns.

Definition pfs_LNSKt {V : Set} lns :=
dersrec (@LNSKt_rules V) (fun _ => False) lns.

6 Proof Theoretic Properties of LNSKt

We proved LNSKt_exchL and LNSKt_exchR as the admissibility of left and right
internal exchange of formulae but show only left exchange for brevity:

Lemma 1 (Left internal exchange of LNSKt). If � G 	1 Γ1, Γ2, Γ3, Γ4 ⇒
Δ 	2 K then � G 	1 Γ1, Γ3, Γ2, Γ4 ⇒ Δ 	2 K.

Definition can_gen_swapL {V : Set} (rules : rlsT (@LNS V)) ns :=
forall G K s d Γ 1 Γ 2 Γ 3 Γ 4 Δ,
ns = G ++ (s, d) :: K ->
s = pair (Γ 1 ++ Γ 2 ++ Γ 3 ++ Γ 4) Δ ->
pf rules (G ++ (pair (Γ 1 ++ Γ 3 ++ Γ 2 ++ Γ 4) Δ, d) :: K).

Lemma LNSKt_exchL: forall (V : Set) ns (D : @pf_LNSKt V ns),
can_gen_swapL (@LNSKt_rules V) ns.

Thus if LNS ns is derivable, then so is any LNS which permutes two adjacent
sublists Γ2 and Γ3 on the left – all within LNSKt with no unfinished leaves.

On paper, Lemma 1 is immediate as the Γ s and Δs are multisets so that
Γ2, Γ3 is identical to Γ3, Γ2. In our Coq formalisation however, we chose to encode
the Γ s and Δs instead by lists and prove left and right internal exchange so
LNSKt_exchL was not immediate.

Our proof is a standard induction on the structure of D using the inductive
hypothesis automatically generated by Coq that the required result holds for
the premises of the final (bottom) rule application. This is a weaker principle
than induction on the depth of D with an inductive hypothesis that the required
result holds for the conclusions of any derivation of lesser depth.

The remaining proof theoretic properties, internal weakening and contrac-
tion, are stated in the original paper as Lemma 13. As with left-exchange, we
used a“can_gen” conclusion and a standard induction. See the code for details.

We are now ready to tackle cut-elimination.

7 Cut-Elimination via Cut-Admissibility

Goré and Lellmann [8] proved cut-admissibility in their cut-free calculus and we
follow suit. Using cut-admissibility, we additionally prove cut-elimination. To
state cut-admissibility for LNSs, we must merge two LNSs in the following way:

Cut-Elimination for LNSKt 289

Definition 2. The merge of two linear nested sequents is defined via the fol-
lowing, where we assume G and H to be non-empty:

(Γ ⇒ Δ) ⊕ (Σ ⇒ Π) := Γ,Σ ⇒ Δ,Π

(Γ ⇒ Δ) ⊕ (Σ ⇒ Π 	 H) := Γ,Σ ⇒ Δ,Π 	 H
(Γ ⇒ Δ 	 H) ⊕ (Σ ⇒ Π) := Γ,Σ ⇒ Δ,Π 	 H

(Γ ⇒ Δ ↗ G) ⊕ (Σ ⇒ Π ↗ H) := Γ,Σ ⇒ Δ,Π ↗ (G ⊕ H)
(Γ ⇒ Δ ↙ G) ⊕ (Σ ⇒ Π ↙ H) := Γ,Σ ⇒ Δ,Π ↙ (G ⊕ H) .

Our Coq encoding of merge is as follows:
Inductive merge {V : Set} :
(@LNS V) -> (@LNS V) -> (@LNS V) -> Type :=
| merge_nilL ns1 ns2 ns3 : ns1 = [] -> ns3 = ns2 -> merge ns1 ns2 ns3
| merge_nilR ns1 ns2 ns3 : ns2 = [] -> ns3 = ns1 -> merge ns1 ns2 ns3
| merge_step Γ Δ Σ Π d ns1 ns2 ns3 ns4 ns5 ns6 s1 s2 s3 :

s1 = (Γ ,Δ,d) -> s2 = (Σ,Π,d) -> s3 = (Γ ++ Σ, Δ ++ Π,d) ->
merge ns1 ns2 ns3 -> ns4 = s1 :: ns1 ->
ns5 = s2 :: ns2 -> ns6 = s3 :: ns3 ->
merge ns4 ns5 ns6.

Thus merge ns1 ns2 ns3 encodes that ns3 is the merge of ns1 and ns2. Our
Coq definition allows either the left or right LNS to be empty.

Note also that both pen-and-paper and Coq definitions are only well-defined
for LNSs that are in some sense structurally equivalent, where the arrows of
the two LNSs correspond. The original paper allowed LNSs of possibly differing
lengths to be structurally equivalent. We instead used a strong version for only
equal length LNSs as this was all that was needed. Doing so simplified some
of the proofs. Alternatively we could define merge to hold only for structurally
equivalent sequents. But where convenient, we conform to the original paper.

Definition 3. Two LNSs S1 	S
1 ... 	S

n−1 Sn and T1 	T
1 ... 	T

n−1 Tn are struc-
turally equivalent if we have 	S

i = 	T
i for every i.

Inductive struct_equiv_str {V : Set} : (@LNS V) -> (@LNS V) -> Type :=
| se_nil2 : struct_equiv_str [] []
| se_step2 Γ 1 Δ1 d Γ 2 Δ2 ns1 ns2 ns3 ns4 :
ns3 = ((Γ 1, Δ1, d) :: ns1) -> ns4 = ((Γ 2, Δ2, d) :: ns2) ->
struct_equiv_str ns1 ns2 -> struct_equiv_str ns3 ns4.

Our cut-admissibility theorem is called cut-elimination in the original paper.

7.1 Cut-Admissibility

The cut rule, where the premiss and conclusion LNSs are structurally equivalent:

G 	 Γ ⇒ Δ,A H 	 A,Σ ⇒ Π

G ⊕ H 	 Γ,Σ ⇒ Δ,Π
Cut

Theorem 1 (Cut-admissibility). For structurally equivalent LNSs G and H,
if � G 	 Γ ⇒ Δ,A and � H 	 A,Σ ⇒ Π, then also � G ⊕ H 	 Γ,Σ ⇒ Δ,Π.

290 C. D’Abrera et al.

Definition can_gen_cut {V : Set} (rules : rlsT (@LNS V)) ns1 ns2 :=
forall G1 G2 G3 s1 s2 d Γ Δ1 Δ2 Σ1 Σ2 Π A,
ns1 = G1 ++ [(s1, d)] -> s1 = pair Γ (Δ1++[A]++Δ2) ->
ns2 = G2 ++ [(s2, d)] -> s2 = pair (Σ1++[A]++Σ2) Π ->
merge G1 G2 G3 -> struct_equiv_str G1 G2 ->
pf rules (G3 ++ [(Γ ++Σ1++Σ2, Δ1++Δ2++Π, d)]).

Theorem LNSKt_cut_admissibility : forall (V : Set) ns1 ns2
(D1 : pf_LNSKt ns1) (D2 : pf_LNSKt ns2),
can_gen_cut (@LNSKt_rules V) ns1 ns2.

So LNSKt_cut_admissibility states that if two structurally-equivalent LNSs are
(cut-free) derivable from LNSKt_rules then so is the structurally-equivalent LNS
obtained by applying the cut rule to their conclusions (i.e. no cut in the rules).

Our Coq code follows the original paper where cut-admissibility is a corollary
of the huge Lemma_Sixteen, thus transfering all heavy lifting to this mega lemma.

7.2 The Main Lemma: “Lemma Sixteen”

The so-called Lemma Sixteen is defined as follows.

Lemma 2. The following statements hold for every n,m where we always
assume that G and H are structurally equivalent:

(SR�(n,m)) Suppose that all of the following hold:
– D1 � G 	1 Γ ⇒ Δ,�A with �A principal in the last rule in D1

– D2 � H 	1 �A,Σ ⇒ Π 	2 I
– there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π ↗ ε ⇒ A
– dp(D1) + dp(D2) ≤ m
– |�A| ≤ n.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
(SR�(n,m)) Suppose that all of the following hold:

– D1 � G 	1 Γ ⇒ Δ,�A with �A principal in the last rule in D1

– D2 � H 	1 �A,Σ ⇒ Π 	2 I
– dp(D1) + dp(D2) ≤ m
– there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π ↙ ε ⇒ A
– |�A| ≤ n.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
(SRp(n,m)) Suppose that all of the following hold:

– D1 � G 	1 Γ ⇒ Δ,A with A principal in the last applied rule in D1

– D2 � H 	1 A,Σ ⇒ Π 	2 I
– dp(D1) + dp(D2) ≤ m
– |A| ≤ n
– A not of the form �B or �B.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
(SL(n,m)) Suppose that all of the following hold:

– D1 � G 	1 Γ ⇒ Δ,A 	2 I
– D2 � H 	1 A,Σ ⇒ Π

Cut-Elimination for LNSKt 291

– dp(D1) + dp(D2) ≤ m
– |A| ≤ n.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
We show only the encoding corresponding to one of the parts, SR�(n,m).

Definition SR_wb_pre (n m : nat) := forall {V : Set}
G Γ Δ1 Δ2 H Σ1 Σ2 Π I GH (A : PropF V) d
(D1 : pf_LNSKt (G ++ [(Γ , Δ1 ++ [WBox A] ++ Δ2,d)]))
(D2 : pf_LNSKt (H ++ [(Σ1 ++ [WBox A] ++ Σ2, Π, d)] ++ I))
(D3 : pf_LNSKt

(GH ++ [(Γ ++ Σ1 ++ Σ2, Δ1 ++ Δ2 ++ Π, d)] ++
[([] ,[A],fwd)])),

principal_WBR D1 (WBox A) Γ Δ1 Δ2 ->
((dp D1) + (dp D2))%nat <= m ->
struct_equiv_str G H ->
merge G H GH ->
fsize (WBox A) <= n ->
pf_LNSKt (GH ++ [(Γ ++ Σ1 ++ Σ2, Δ1 ++ Δ2 ++ Π, d)] ++ I).

Definition SR_wb (nm : nat * nat) :=
let (n,m) := nm in SR_wb_pre n m.

Lemma Lemma_Sixteen : forall (nm : nat * nat),
SR_wb nm * SR_bb nm * SR_p nm * SL nm.

We had to state that �A is principal in the last rule in D1. That is, although
there may be other occurrences of �A in G 	1 Γ ⇒ Δ,�A, it is that particular
displayed occurrence that is principal. To capture this, we defined principal_WBR

which is specifically designed for white box formulae that occur on the right
side of the sequent in the last component (hence WBR standing for White Box
Right). Moreover, the statement principal_WBR D1 (WBox A) Γ Δ1Δ2 carries
all required information of where the principal WBox A sits, in particular that it
sits between Δ1 and Δ2. This is a requirement specific to our implementation
based on lists. We have analogous definitions for the other cases: principal_BBR
and principal_not_box_R. The full code contains these definitions and others we
have omitted here, including depth of derivation dp and formula size fsize.

The Coq Lemma_Sixteen uses * as a Type-level conjunction as in the earlier
example to enable extraction. All four parts of Lemma Sixteen are proved simul-
taneously by induction on the pair (n,m) in the lexicographic ordering, as in the
original proof. Please refer to the code for our definitions of this lexicographic
ordering lt_lex_nat and our induction principle wf_lt_lex_nat_induction.

The need to prove all four components of Lemma Sixteen simultaneously is of
course because the different parts depend on induction hypotheses of the other
components. The proof works through a lot of different cases, often multiple
layers of cases going at once. Given that there are already four sublemmas to
prove as well as the copious number of cases, the pen-and-paper proof is large
and the Coq proof is, understandably, even larger.

Coq is useful to check the subtle details for each case, and it is unsurprising
that our work highlighted multiple mistakes in the original proof. These ranged
from incorrect arrow directions, incorrect rule applications, to omissions of con-
ditions such as structural equivalence and same length of LNSs. Fortunately all
were easily resolved. We have confirmed these with the original authors.

292 C. D’Abrera et al.

For example, in SR�(n,m) (SR�(n,m)), where we have 	1 the original paper
had ↗ (↙), but there were indeed cases which require our more general version.

Cut-admissibility follows from (SL(n,m)), and leads easily to cut-elimination.

7.3 Cut-Elimination

We encoded the cut rule in Coq as follows where we don’t encode the skeleton of
cut and then fill in contexts using nslclrule because the premises do not share
linear nested sequent level contexts i.e. G and H may differ:
Inductive Cut_rule {V : Set} : rlsT (@LNS V) :=
| Cut : forall G H GH s1 s2 s3 ns1 ns2 ns3 d Γ Δ1 Δ2 Σ1 Σ2 Π A,

ns1 = G ++ [(s1, d)] -> s1 = (Γ , (Δ1++[A]++Δ2)) ->
ns2 = H ++ [(s2, d)] -> s2 = ((Σ1++[A]++Σ2), Π) ->
ns3 = GH ++ [(s3, d)] -> s3 = ((Γ ++Σ1++Σ2), (Δ1++Δ2++Π)) ->
merge G H GH -> struct_equiv_str G H ->
Cut_rule [ns1 ; ns2] ns3.

We then defined the calculus LNSKt+Cut as LNSKt plus Cut in Coq:
Inductive LNSKt_cut_rules {V : Set} : rlsT (@LNS V) :=
| LNSKt_rules_woc :

forall ps c, LNSKt_rules ps c -> LNSKt_cut_rules ps c
| LNSKt_rules_wc :

forall ps c, (@Cut_rule V) ps c -> LNSKt_cut_rules ps c.

The first constructor (_woc for “without cut”) includes all LNSKt_rules and
the second constructor (_wc for “with cut”) adds the cut rule. We then specialised
LNSKt_cut_rules to have no unfinished leaves as for LNSKt_rules:
Definition pf_LNSKt_cut {V : Set} ns :=

derrec (@LNSKt_cut_rules V) (fun _ => False) ns.

The cut-elimination theorem allows us to eliminate Cut applications:

Theorem 2. For every LNS G, if �LNSKt+Cut
G then �LNSKt

G.

Theorem LNSKt_cut_elimination :
forall {V:Set} (ns:@LNS V), pf_LNSKt_cut ns -> pf_LNSKt ns.

The original paper stopped at cut-admissibility (though they called it cut-
elimination), so we produced our own proof in the standard way by induction on
the depth of the derivation with cut. As usual, we start with a derivation with
cuts, eliminate the cut application with smallest depth using cut-admissibility,
and repeat the procedure in the resulting (transformed) derivation!

8 Extraction

The form of the cut-elimination theorem in Coq enables us to utilise Coq’s
extraction facility to synthesise a Haskell program that computes cut-free deriva-
tions from those with cut. Specifically, we can use Coq to distill the algorith-
mic content of our cut-elimination theorem in order to automatically produce a
Haskell function that computes cut-free derivation from those without cut.

The file cut elimination theorem.v imports the necessary libraries and sets the
language to Haskell, after which we extract into separate Haskell modules:

Cut-Elimination for LNSKt 293

Require Import cut.
Require Import Extraction.
Extraction Language Haskell.

Separate Extraction LNSKt_cut_elimination.

This process automatically produces 47 Haskell modules, with the final cut-
elimination function, coq_LNSKt_cut_elimination, specified in the Cut.hs module.

To use coq_LNSKt_cut_elimination, we have to specify how the required
objects should be printed, and so we hand-coded a simple printing module
that can be easily checked, called Main thm.hs, which imports Cut.hs. Once
Main thm.hs is loaded, one can then use the cut-elimination function by call-
ing coq_LNSKt_cut_elimination with the appropriate input.

Given that coq_LNSKt_cut_elimination requires inputs that are fairly large
and can be difficult to write, our preferred method is to encode the desired
examples in Coq before extraction, and then use extraction on both the cut-
elimination theorem as well as that example derivation. That way, we benefit
from Coq’s type checker on the example derivation as well as the cut-elimination
function. Let us illustrate with an example.

Consider the following derivation that uses the cut rule:

(id)�p ⇒ ε ↗ p ⇒ p �1
L�p ⇒ ε ↗ ε ⇒ p

(id)
ε ⇒ ε ↗ p, q ⇒ p, q → p →R

ε ⇒ ε ↗ p ⇒ q → p
Cut�p ⇒ ε ↗ ε ⇒ q → p

In file cut extraction example pre.v, we hand-coded this derivation in about
100 lines. Each rule instance requires an easy Coq proof to identify the rule, its
principal and side-formulae and their locations in the premises and conclusion.
For example, lemma pf3_000 tells us how concl3_000 follows from no premisses,
where concl3_000 corresponds to the conclusion of the left (id) instance above:
Definition concl3_000 :=
[([WBox (Var 0)], [], fwd) ; ([Var 0], [Var 0], fwd)].

Lemma pf3_000 : LNSKt_cut_rules [] concl3_000.

This proof term is required by the cut-elimination function because it makes
decisions depending on the form of pf3_000: thus we cannot elide it during extrac-
tion. The need for the user to specify these proof terms while specifying the full
derivation is why we prefer to encode them on the Coq side. So Coq checks their
type and the extraction mechanism converts everything to Haskell code.

Then we build up the final derivation, example3, by putting together these
proof terms, premisses and conclusions. See the full code for details of how this
is done. We then define cut_example3 to perform cut-elimination on example3:
Definition cut_example3 := LNSKt_cut_elimination example3.

Extracting using cut elimination theorem.v extracts the cut-elimination function
only. Instead, we ask users to compile cut elimination example.v, thereby extract-
ing both the cut-elimination function and the example derivation example3:
Separate Extraction cut_example3.

294 C. D’Abrera et al.

This produces a Haskell module containing the example derivation code: extract-
ing example3 will not produce Haskell code for the cut-elimination procedure.

Beside the Main thm.hs printing file, we have written Main example.hs which
is identical except for an import statement that gives access to the example
derivation. Once this is loaded, we can call cut_example3 (or the longer version
coq_LNSKt_cut_elimination example3) which outputs the cut-free derivation:
derI

(derI
(derI (dlNil)

([(([[.] p 0], []), fwd) ::
(([p 0 :: p 1], [p 1 --> p 0 :: p 0]), fwd)])

(Id))
([(([[.] p 0], []), fwd) :: (([p 0], [p 1 --> p 0]), fwd)])
(ImpR))

([(([[.] p 0], []), fwd) :: (([], [p 1 --> p 0]), fwd)])
(WBox1Ls)

Adding line breaks and indentation, the code above is the cut-free derivation:

(id)�p ⇒ ε ↗ p, q ⇒ q → p, p →R�p ⇒ ε ↗ p ⇒ q → p �1
L�p ⇒ ε ↗ ε ⇒ q → p

Each derI in the above code is a rule application that takes in three arguments:
the subderivation of the premise, the conclusion and the name of the rule.

Clearly, the linear representation is not easy to read and a tree style repre-
sentation would be better. See Sect. 10 for more discussion on this. Note that our
printing instructions for the output derivation in the Main files exclude the print-
ing of the proof terms like pf3_000. We did this because 1) logicians read this
information off naturally from concrete derivations without it being explicitly
stated; and 2) it gives a cleaner, easier to read derivation.

By consulting README.txt, readers can input their own deriva-
tions, extract, and behold the verified cut-free output derivations from
coq_LNSKt_cut_elimination.

9 Related Work

Chaudhuri et al. [2] cover the related work well, so we concentrate only on work
which formalises meta-theory, as opposed to formalised proof-search.

The work of Pfenning [16], Graham-Lengrand [9], Simmons [17] and
Urban [20] all represent sequents as formulae of the meta-logic where, for exam-
ple, a sequent A,B ⇒ ϕ becomes the meta-logical formula hyp A -> hyp A ->

conc phi [16]. Since the meta-logic is intuitionistic, the sequent calculi inherit
exchange, weakening and contraction.

Arbitrary contexts follow by encoding rule skeletons using -> to encode the
horizontal line separating premises and conclusions. These methods cannot han-
dle calculi that lack some combination of weakening, contraction and exchange,
nor do they include extraction.

Cut-Elimination for LNSKt 295

At the next level are encodings which build sequents out of multisets. Daw-
son and Goré [6] prove mix-elimination for the provability logic GL using
Isabelle/HOL. Xavier et al. [21] prove cut-elimination and other meta-theoretic
properties of (commutative) linear logic in Coq by extending the standard
library for multisets with additional theorems and tactics. Multisets preclude
non-commutativity. There is no extraction in either.

At the next level is work where sequents are built from lists, but with extra
machinery added to regain commutativity. Tews [18] uses setoids, while Chaud-
huri et al. [2] and Larchey-Wendling [11,12] build-in “permutability” explicitly.
All these could be extended to handle non-commutative logics, but none do. Only
Larchey-Wendling [11] allows extraction, though this has not been published.

Miller and Pimentel [13] explored embedding various object logics into linear
logic, and gave “cut-coherence” conditions for the cut-admissibility of linear logic
to carry over to an object logic. Olarte et al. [15] extended this work to allow
object logics with modalities using a LNS presentation of SLL (a linear logic with
subexponentials). A Coq encoding of this work would require us to first encode
the syntax of (subexponential) linear logic, and then encode our object logic
(sequents) as formulae of linear logic. Encoding into linear logic cannot handle
non-commutative substructural logics but does allow us to omit weakening and
contraction, which can then be regained via (sub)exponentials.

Our work has numerous advantages: (1) our notion of derivability is paramet-
ric on a set of objects X which could be formulae, sequents, or other structures;
(2) using lists allows us to handle genuinely substructural logics in which some
combination of weakening, contraction and exchange (commutativity) are miss-
ing, with Dawson and Goré’s previous work [5] allowing us to even capture non-
associativity if required; and (3) our use of Type, rather than Prop, in Coq allows
us to extract a formally verified computer program to perform cut-elimination.

10 Conclusion and Future Work

We have transported and extended from Isabelle to Coq Dawson and Goré’s [6]
encodings of general notion of derivability which is usable for many different
kinds of proof systems. We applied this to the linear nested sequent calculus
LNSKt that was given by Goré and Lellmann [8] for tense logic and formalised the
calculus along with all structural proof theoretic properties up to and including
their proof of cut-admissibility (called cut-elimination in the original paper).

We uncovered multiple small mistakes but none were major and all were
easily amended. The original authors accepted the corrections.

We proved cut-elimination from cut-admissibility and extracted a formally
verified Haskell program that computes cut-free derivations from those with cut.
We hand-coded Haskell Main files to provide requisite printing instructions in
order to display the outputs.

Our Coq encodings are modular and allow us to prove meta-theoretic lemmas
for arbitrary rules that satisfy certain conditions, which can then be applied
to specific calculi. For example, in the proof of left internal exchange, the case

296 C. D’Abrera et al.

where the last rule applied was a rule in rs_prop was proved not restricted to just
LNSKt_rules but more generally for any rules provided that the last rule skeleton
applied satisfied the rules_L_oeT condition, those for which every conclusion has
at most one formula on the left. Thus our work has the potential to lead to a Coq
library for proof theory that is applicable to a broad range of logics and calculi
with results proved in the aforementioned generic way. Most formalisations that
we have encountered do not enjoy such modularity (e.g. [2,21]).

This modularity of our encodings is in part due to our capturing not just
derivability but derivations as first class citizens with corresponding proof terms.
The deep embedding of derivations also enables extraction of the cut-elimination
procedure into Haskell, and as such an alternative approach using a shallow
embedding (e.g. [16]) would not suffice.

Recall that we encoded multisets in our context with lists and then proved
exchange. First, our framework can then handle noncommutative logics and,
secondly, gives us access to the libraries of basic reasoning about lists where
other multiset libraries seemed to be lacking. The trade-off of this general
framework is that in our specific LNSKt context where exchange is admitted
we faced needless difficulties relating to where a particular formula is located
in a sequent. It is worth exploring a formalisation where list is replaced
in Definition seq := rel (list (PropF V)) to an encoding of multisets
(e.g. [21]), or which utilises the Permutation library (e.g. [12]). In that case, we
would expect to see simpler proofs and less complex and more efficient tactics.
This may also translate to a more efficient extracted cut-elimination function
which would not need to perform rearrangements on lists of formulae.

Related, we haven’t yet performed any tests on efficiency of the extracted
function nor attempted to make significant improvements in this area. While
we consider this interesting, it is also part of a bigger picture of comparing effi-
ciencies of verified and unverified implementations, which contributes to answer-
ing how realistic it is to prefer the former kind over the latter. We are still in
early stages of program synthesis of formalised proof-theory and consider this
an avenue worthy of further investigation.

Another aspect in this bigger picture of usability is the readability of the
extracted function. The printing instructions in the Haskell Main files employ a
linear representation to type-check and display the output, which is difficult to
read. Alternatively, we could write tree-style printing instructions, import pre-
existing Haskell libraries, use a format such as the LATEX package bussproofs,
or even develop a nice graphical user interface. The further down the spectrum
of readability you move, the more you compromise on trustworthiness. In its
current form, our work adopts a conservative approach on the trustworthy end
of the spectrum but we do acknowledge there is scope here to improve usability.

We believe that our work has the potential to lead to a Coq library for deeply
embedded and extractable proof theory for the huge number of truly substruc-
tural logics in the literature where some combination of weakening, contraction
and exchange are not admissible.

Cut-Elimination for LNSKt 297

References

1. Belnap, N.: Display logic. J. Philos. Log. 11, 375–417 (1982)
2. Chaudhuri, K., Lima, L., Reis, G.: Formalized meta-theory of sequent calculi for

linear logics. TCS 781, 24–38 (2019)
3. Dawson, J.E., Brotherston, J., Goré, R.: Machine-checked interpolation theorems

for substructural logics using display calculi. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 452–468. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 31

4. Dawson, J.E., Clouston, R., Goré, R., Tiu, A.: From display calculi to deep nested
sequent calculi: formalised for full intuitionistic linear logic. In: Diaz, J., Lanese, I.,
Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 250–264. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44602-7 20

5. Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic. In: Carreño,
V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 131–147.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45685-6 10

6. Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi applied
to provability logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS,
vol. 6397, pp. 263–277. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16242-8 19

7. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D., Haehnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, Kluwer,
pp. 297–396 (1999)

8. Goré, R., Lellmann, B.: Syntactic cut-elimination and backward proof-search
for tense logic via linear nested sequents. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 185–202. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9 11

9. Graham-Lengrand, S.: Polarities & focussing: a journey from realisability to auto-
mated reasoning, Habilitation Thesis, Université Paris-Sud (2014)

10. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53(1), 119–
136 (1994)

11. Larchey-Wendling, D.: Semantic cut elimination. https://github.com/.
DmxLarchey/Coq-Phase-Semantics/blob/master/coq.type/cut elim.v

12. Larchey-Wendling, D.: Constructive decision via redundancy-free proof-search. J.
Autom. Reason. 64(7), 1197–1219 (2020)

13. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof
systems. Theor. Comput. Sci. 474, 98–116 (2013)

14. Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
15. Olarte, C., Pimentel, E., Xavier, B.: A fresh view of linear logic as a logical frame-

work. In: LSFA 2020. ENTCS, vol. 351, pp. 143–165. Elsevier (2020)
16. Pfenning, F.: Structural cut elimination. In: LICS 1995, pp. 156–166. IEEE Com-

puter Society (1995)
17. Simmons, R.J.: Structural focalization. ACM Trans. Comput. Log. 15(3), 21:1–

21:33 (2014)
18. Tews, H.: Formalizing cut elimination of coalgebraic logics in Coq. In: Galmiche,

D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol. 8123, pp.
257–272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40537-
2 22

19. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Number 43 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press (1996)

https://doi.org/10.1007/978-3-319-40229-1_31
https://doi.org/10.1007/978-3-662-44602-7_20
https://doi.org/10.1007/3-540-45685-6_10
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-030-29026-9_11
https://github.com/
https://doi.org/10.1007/978-3-642-40537-2_22
https://doi.org/10.1007/978-3-642-40537-2_22

298 C. D’Abrera et al.

20. Urban, C., Zhu, B.: Revisiting cut-elimination: one difficult proof is really a proof.
In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 409–424. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-70590-1 28

21. Xavier, B., Olarte, C., Reis, G., Nigam, V.: Mechanizing focused linear logic in
Coq. In: LSFA 2017. ENTCS, vol. 338, pp. 219–236. Elsevier (2017)

https://doi.org/10.1007/978-3-540-70590-1_28

Cut-Elimination for Provability Logic
by Terminating Proof-Search: Formalised

and Deconstructed Using Coq

Rajeev Goré3, Revantha Ramanayake2, and Ian Shillito1(B)

1 Australian National University, Canberra, ACT, Australia
ian.shillito@anu.edu.au

2 University of Groningen, Groningen, The Netherlands
d.r.s.ramanayake@rug.nl

3 Technische Universität Wien, Vienna, Austria

Abstract. Recently, Brighton gave another cut-admissibility proof for
the standard set-based sequent calculus GLS for modal provability logic
GL. One of the two induction measures that Brighton uses is novel: the
maximum height of regress trees in an auxiliary calculus called RGL.
Tautology elimination is established rather than direct cut-admissibility,
and at some points the input derivation appears to be ignored in favour of
a derivation obtained by backward proof-search. By formalising the GLS
calculus and the proofs in Coq, we show that: (1) the use of the novel
measure is problematic under the usual interpretation of the Gentzen
comma as set union, and a multiset-based sequent calculus provides a
more natural formulation; (2) the detour through tautology elimination
is unnecessary; and (3) we can use the same induction argument without
regress trees to obtain a direct proof of cut-admissibility that is faithful
to the input derivation.

Keywords: Provability logic · Cut admissibility · Interactive theorem
proving · Proof theory

1 Introduction

Propositional modal provability logics extend the basic normal modal logic K
with axioms which interpret the � connective as the mathematical notion of
being “provable” in Peano Arithmetic [1,16]. There are several variants with
characteristic axioms named after Gödel, Löb and Grzegorczyk:

Name Characteristic Axiom
GL �(�p → p) → �p
Go �(�(p → �p) → p) → �p
Grz �(�(p → �p) → p) → p

While the “provability” interpretation is now well-understood, the proof-
theory of these logics is intricate and somewhat controversial as we explain next.
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 299–313, 2021.
https://doi.org/10.1007/978-3-030-86059-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_18

300 R. Goré et al.

Following Gentzen [5,6], the literature abounds with proofs of cut-
admissibility for various sequent calculi based on the size of the cut-formula
and the height of the premise derivations. But these measures looked, at first
sight, inadequate for proving cut-elimination for the standard set-based sequent
calculus GLS for provability logic GL so Valentini introduced a third novel mea-
sure called width, and showed that cut-elimination for GLS could be obtained
via a triple induction over size, height and width [17].

Controversy arose when it was (erroneously) claimed that Valentini’s proofs
contained a gap and various authors provided alternative proofs of cut-
elimination in response [2,10–12,14]. The question was resolved in Valentini’s
favour [7], with all proofs later verified using an interactive theorem prover
Isabelle/HOL [4].

The cut-elimination proof for the logic Go (due to Goré and Ramanayake
[8] via a deeper analysis of the structure of derivations, and subsequently by
Savateev and Shamkanov [15] via non-well founded-proofs) is even more intricate.
The proof-theory of provability logics can therefore be described as complex.

Recently, Brighton [3] provided yet another proof of cut-admissibility for GLS
which is significantly simpler than any of the existing proofs of cut-admissibility
in the literature. It uses a double induction with the traditional size of the cut-
formula as primary measure. The secondary measure is called the “maximum
height of regress trees” and it is a novel measure defined using a backward proof-
search procedure for GLS called RGL, based on regress trees/regressants.

Backward proof-search can often be employed to obtain cut-free completeness
with respect to the Kripke semantics of a logic. However, cut-elimination is not
a result directly obtained by the use of backward proof-search. For this reason
Brighton’s method is intriguing from a structural proof theoretic perspective.
Even more so because, from a tableaux perspective, the RGL calculus is nothing
but the backward proof-search decision procedure for GL that is well-known to
be cut-free complete with respect to the Kripke semantics of GL. Unfortunately,
Brighton’s arguments is clouded by various issues that become apparent when
studying them in detail.

We first explain why Brighton’s use of a set-based sequent calculus leads to
confusion, and explain how this can be clarified using multisets. We then show
that the special calculus RGL on regress trees can be replaced by a standard
proof-search procedure PSGLS on GLS itself. Putting this all together, we replace
Brighton’s detour through tautology elimination [9] with a direct proof of cut-
admissibility for GL making use of the maximum height of a derivation (the
existence of the latter follows from the termination of backward proof-search).
Noting that Brighton’s proof seems to ignore the structure of the given cut-
free derivations of the premises, and since such a shortcoming undermines cut-
elimination as a procedure that manipulates the given derivations to produce a
cut-free derivation, we take particular care to highlight the local nature of our
transformations. All of our claims have been formally verified in the interactive
theorem prover Coq (https://github.com/ianshil/CE GLS.git).

https://github.com/ianshil/CE_GLS.git

Cut-Elimination for Provability Logic Formalised and Deconstructed 301

2 Various Issues with the Method Used by Brighton

Although Brighton’s work is extremely appealing, we have already mentioned
that the argument and the proof technique supporting it require further clari-
fications. Let us exhibit the two main elements that appeared through the for-
malisation process to be responsible for this unclarity.

First, as the sequents that are used are based on sets, the rule for implication
on the right, presented below on the left, is just a notation for the rule on the
right where the comma is interpreted as set union.

A,X ⇒ Y,B

X ⇒ Y,A → B

{A} ∪ X ⇒ Y ∪ {B}
(→R)

X ⇒ Y ∪ {A → B}
However, it is well-known that (→R) contains an implicit contraction [7].

As a consequence, (→R) could be reapplied as many times as one wants above
⇒ p → q on the formula p → q. That implies the existence of derivations of all
heights for this sequent, as shown below.

{p} ∪ ∅ ⇒ ∅ ∪ {q} ∪ {p → q}
(→R){p} ∪ ∅ ⇒ ∅ ∪ {q} ∪ {p → q}
(→R)∅ ⇒ ∅ ∪ {p → q}

Brighton’s argument requires (and proves) that all sequents have a derivation of
maximum height - this would contradict our observation above. For his argu-
ment to hold, it must therefore be the case that Brighton is not using the usual
interpretation for the rules (→R) and (→L).

The only reasonable option seems to be that Brighton intends for the comma
to be interpreted as disjoint union. This amounts to the following rule.

{A} ∪ X ⇒ (Y \ {A → B}) ∪ {B}
(→RDis)

X ⇒ Y ∪ {A → B}
If that was the case, a proof that the calculus is complete for GL under this
interpretation is required. Moreover, further issues arise with this interpretation.

For example, it is not true in general that the premise of the sequent Γ ⇒
Δ,B → C via the rule (→RDis) is B,Γ ⇒ Δ,C (Case 2 of Theorem 1 of
Brighton’s article). Indeed, if B → C ∈ Δ then B,Γ ⇒ Δ,C and B,Γ ⇒
(Δ \ {B → C}), C would be different. This issue seems repairable. However the
situation is undesirable given the sensitivity of structural proof theory to small
syntactic details, and especially given the history of cut-elimination for GL.

Second, Brighton provides an unusual argument for the admissibility of cut.
In order to obtain a proof of the latter, Brighton proves a result equivalent to it
in the case of classical calculi: tautology elimination. More precisely, this lemma
has the following shape: if A → A,X ⇒ Y is provable then so is X ⇒ Y . On
inspection, it is clear that a procedure for tautology elimination can easily be
turned into a procedure for cut-elimination, and vice versa. Given the proximity
between these results, arguing for the admissibility of cut by proving tautology
elimination seems to be an unnecessary detour.

302 R. Goré et al.

3 Preliminaries

Let V = {p, q, r . . . } be an infinite set of propositional variables. Modal formulae
are defined by the following grammar.

A ::=p ∈ V | ⊥ | A → A | �A

We use a minimal set of connectives since it is well-known that the other con-
nectives can be defined from these.

We define the size of a formula by the number of symbols it contains. We
say that a formula A is a boxed formula if it has � as its main connective. A
boxed multiset contains only boxed formulae. For a set X = {A1, . . . , An}, define
�X = {A1,�A1, . . . , An,�An}. We denote the set of subformulae of a formula
A by Sub(A). We abuse the notation to designate the set of subformulae of all
formulae in the set X by Sub(X). In what follows we use the letters A,B,C, . . .
for formulae and X,Y,Z, . . . for multisets of formulae.

The Hilbert calculus for the basic normal modal logic K extends a Hilbert-
calculus for classical propositional logic with the axiom �(p → q) → (�p → �q)
and the inference rule of necessitation: from A infer �A. Gödel-Löb logic GL is
obtained by the addition of the axiom �(�p → p) → �p to K.

A sequent is a pair of multisets of formulae, denoted X ⇒ Y . For multisets X
and Y , the multiset sum X � Y is the multiset whose multiplicity (at each
formula) is a sum of the multiplicities of X and Y . We write X,Y to mean
X � Y . For a formula A, we write A,X and X,A to mean {A} � X.

A sequent calculus consists of a finite set of sequent rule schemas. Each rule
schema consists of a conclusion sequent and some number of premise sequents.
If a rule schema has no premise sequents, then it is called an initial sequent.
The conclusion and premises are built in the usual way from propositional-
variables, formula-variables and multiset-variables. A rule instance is obtained
by uniformly instantiating every variable in the rule schema with a concrete
object of that type. This is the standard definition from structural proof theory.

Definition 1 (Derivation/Proof). A derivation of a sequent s in the sequent
calculus C is a finite tree of sequents such that (i) the root node is s; and (ii)
each interior node and its direct children are the conclusion and premise(s) of a
rule instance in C.

A proof is a derivation where every leaf is an instance of an initial sequent.

In what follows, it should be clear from context whether the word “proof”
refers to the object defined in Definition 1, or to the meta-level notion. We say
that a sequent is provable in C if it has a proof in C.

Definition 2 (Height). The height of a derivation δ, noted h(δ), is the maxi-
mum number of nodes on a path from root to leaf.

The sequent calculus GLS is given in Fig. 1.

Cut-Elimination for Provability Logic Formalised and Deconstructed 303

(IdP)
p,X ⇒ Y, p

(⊥L)⊥,X ⇒ Y

X ⇒ Y,A B,X ⇒ Y
(→L)

A → B,X ⇒ Y

A,X ⇒ Y,B
(→R)

X ⇒ Y,A → B

X, B ⇒ B
(GLR)

W, X ⇒ B, Y, Z

Fig. 1. The sequent calculus GLS. Here, W and Z do not contain any boxed formulae.

In a rule instance of (→L) or (→R), the formula instantiating the fea-
tured A → B is the principal formula of that instance. In (IdP), a proposi-
tional variable instantiating either featured occurrence of p is principal. In a rule
instance of (GLR), the formula �B is called the diagonal formula [13].

Example 1. The following are examples of derivations in GLS. Note that while
the first and second examples are derivations, the third is a proof.

p ⇒ q → r
p, q ⇒ r

(→R)p ⇒ q → r

(IdP)�p, p,�p ⇒ p
(GLR)�p ⇒ �p

Example 2. A special example of derivation in GLS is the following:

�A → A, �(�A → A), A,A, �A, �A, �A ⇒ A
(GLR)

�(�A → A), A, �A, �A ⇒ A, �A �(�A → A), A,A, �A, �A ⇒ A
(→L)

�A → A, �(�A → A), A, �A, �A ⇒ A

By noticing the identity modulo formula multiplicities between the topmost and
the lowest sequents, it appears that the sequence of application of rules in the
above could be iterated indefinitely on the topmost sequent.

Finally, we consider the additive cut rule.

X ⇒ Y,A A,X ⇒ Y
(cut)

X ⇒ Y

In the above, we call A the cut-formula. It easily follows that GLS + (cut) is a
sequent calculus for GL [13].

Theorem 1. For all A we have: A ∈ GL iff ⇒ A is provable in GLS + (cut).

4 Properties Of GLS

We need some lemmas that are commonly used in proof theory. Straightforward
inductions on the structure of formulae or derivations are used to prove them.

Lemma 1. For all X, Y and A, the sequent A,X ⇒ Y,A has a proof.

304 R. Goré et al.

Lemma 2 (Height-preserving admissibility of weakening).
For all X,Y,A and B:

(i) If X ⇒ Y has a proof π in GLS, then X ⇒ Y,A has a proof π0 in GLS such
that h(π0) ≤ h(π).

(ii) If X ⇒ Y has a proof π in GLS, then A,X ⇒ Y has a proof π0 in GLS such
that h(π0) ≤ h(π).

Lemma 3 (Height-preserving invertibility of the implication rules).
For all X,Y,A and B:

(i) If A → B,X ⇒ Y has a proof π in GLS, then X ⇒ Y,A and B,X ⇒ Y
have proofs π0 and π1 in GLS such that h(π0) ≤ h(π) and h(π1) ≤ h(π).

(ii) If X ⇒ Y,A → B has a proof π in GLS, then A,X ⇒ Y,B has a proof π0

in GLS such that h(π0) ≤ h(π).

Lemma 4 (Height-preserving admissibility of contraction).
For all X,Y,A and B:

(i) If X ⇒ Y,A,A has a proof π in GLS, then X ⇒ Y,A has a proof π0 in GLS
such that h(π0) ≤ h(π).

(ii) If A,A,X ⇒ Y has a proof π in GLS of height n, then A,X ⇒ Y has a
proof π0 in GLS such that h(π0) ≤ h(π).

In the following section we will introduce a proof-search procedure for GLS which
terminates. This will allow us to define the maximum height of a derivation of a
sequent with respect to this procedure. Later on this will constitute the secondary
induction measure in the proof of admissibility of cut.

5 PSGLS: A Terminating Proof-Search

Given a sequent calculus C, one can define a proof-search procedure on C by
imposing further constraints on the applicability of the rules of C. This procedure
captures a subset of the set of all derivations of C, i.e. those which are built using
the restricted version of the rules of C. Consequently, a proof-search procedure
can be identified with the calculus PSC consisting of these restricted rules of C,
under the condition that PSC allows to decide the provability of sequents in C.

The sequent calculus PSGLS restricts the rules of GLS in the following way.

1. An additional identity rule (IdB), derivable in GLS as shown in Lemma 1, is
introduced.

(IdB)�A,X ⇒ Y,�A

2. The conclusion of the rule (GLR) is not permitted to be an instance of either
(IdP) or (⊥L) or (IdB). This restriction ensures that repetitions (even in the
weak sense of Example 2) of a sequent along a branch are forbidden.

Cut-Elimination for Provability Logic Formalised and Deconstructed 305

By inspection, a sequent is provable in PSGLS if and only if it is provable in
GLS. The remainder of this section is devoted to showing that each sequent has
a derivation of maximum height in PSGLS (something that does not hold of
GLS). This crucial result is not thoroughly proved in Brighton’s work.

It is easy to prove that if there is a measure that decreases, given a well-
founded order, upwards through the rules of PSGLS, then each sequent has a
derivation of maximum height in PSGLS. We need the following definition.

Definition 3. For a sequent X ⇒ Y :

1. Let ι(X ⇒ Y) be the number of occurrences of “→” in X ⇒ Y .
2. Let β(X ⇒ Y) be the usable boxes of X ⇒ Y where:

β(X ⇒ Y) := {�A | �A ∈ Sub(X ∪ Y)} \ {�A | �A ∈ X}

3. The tuple (Card(β(X ⇒ Y)), ι(X ⇒ Y)), where Card(U) is the cardinality of
the set U , is denoted Θ(X ⇒ Y).

The notion of usable boxes of a sequent X ⇒ Y is the set of boxed formulae
of X ⇒ Y minus the boxed formulae in X. Intuitively, this notion captures the
set of boxed formulae of a sequent s which might be the diagonal formula of an
instance of (GLR) in a derivation of s in PSGLS.

We proceed to prove that the measure Θ decreases on the usual component-
wise ordering on n-tuples, which is well-known to be well-founded, upwards
through the rules of PSGLS.

Lemma 5. Let s0 and s1, ..., sn be sequents. If there is an instance of a rule r
of PSGLS of the following form, then Θ(si) < Θ(s0) for 1 ≤ i ≤ n.

s1 . . . sn
s0

r

Proof. We reason by case analysis on r:

1. If r is (IdP) or (IdB) or (⊥L), then we are done as there is no premise.
2. If r is (→R), then it must have the following form.

X,A ⇒ Y,B
(→R)

X ⇒ Y,A → B

Then we distinguish two cases. If A is boxed, then {�B | �B ∈ X} ⊆ {�B |
�B ∈ X ∪ {A}}. As a consequence, we have that β(X,A ⇒ Y,B) ⊆ β(X ⇒
Y,A → B) hence Card(β(X,A ⇒ Y,B)) ≤ Card(β(X ⇒ Y,A → B)). If
Card(β(X,A ⇒ Y,B)) < Card(β(X ⇒ Y,A → B)) then we are done. If
Card(β(X,A ⇒ Y,B)) = Card(β(X ⇒ Y,A → B)), then we can see that
ι(X,A ⇒ Y,B) = ι(X ⇒ Y,A → B) − 1 hence Θ(X,A ⇒ Y,B) < Θ(X ⇒
Y,A → B). If A is not boxed, then obviously we get that Card(β(X,A ⇒
Y,B)) = Card(β(X ⇒ Y,A → B)) but also ι(X,A ⇒ Y,B) = ι(X ⇒ Y,A →
B) − 1 hence Θ(X,A ⇒ Y,B) < Θ(X ⇒ Y,A → B).

306 R. Goré et al.

3. If r is (→L), then it must have the following form.

X ⇒ Y,A B,X ⇒ Y
(→L)

A → B,X ⇒ Y

We can easily establish that Θ(X ⇒ Y,A) < Θ(A → B,X ⇒ Y) as one
implication symbol is deleted while the cardinality of usable boxes stays the
same. To prove that Θ(B,X ⇒ Y) < Θ(A → B,X ⇒ Y) we reason as in (2).

4. If r is (GLR) then it must have the following form.

�X,�B ⇒ B
(GLR)

W,�X ⇒ �B,�Y,Z

Clearly, we have that {�A | �A ∈ Sub(�X ∪ {�B} ∪ {B})} ⊆ {�A |
�A ∈ Sub(W ∪ �X ∪ {�B} ∪ �Y ∪ Z)}. Also, given that we consider a
derivation in PSGLS, we can note that (IdB) is not applicable on W,�X ⇒
�B,�Y,Z by assumption, hence �B �∈ �X. Consequently, we get {�A |
�A ∈ W ∪�X} ⊂ {�A | �A ∈ �X∪{�B}}. An easy set-theoretic argument
leads to β(�X,�B ⇒ B) ⊂ β(W,�X ⇒ �B,�Y,Z). As a consequence we
obtain Card(β(�X,�B ⇒ B)) < Card(β(W,�X ⇒ �B,�Y,Z)), hence
Θ(�X,�B ⇒ B) < Θ(W,�X ⇒ �B,�Y,Z).

Q.E.D.

The previous lemma implies the existence of a derivation in PSGLS of maxi-
mum height for all sequent. We present the formalisation of that theorem, called
PSGLS_termin in Coq:

Theorem PSGLS_termin :
forall (s : rel (list (MPropF V))),
existsT2 (DMax: derrec PSGLS_rules (fun _ => True) s),
(is_mhd DMax).

We first universally quantify (forall) over the sequent s: a pair (rel) of lists
(list) of formulae (MPropF V) obtained from the set V (V). Note that while our
pen-and-paper proof defines sequents using multisets, our formalisation defines
them using lists. The equivalence of these approaches is witnessed by our proof
of the derivability of exchange given in our formalisation. Second, we specify that
there exists (existsT2) an inhabitant DMax of the type derrec PSGLS_rules (
fun _ => True) s. This is the type of all derivations of s in PSGLS. The ternary
function derrec outputs a type of finite trees, i.e. derivations in our case, taking
as input a set of rules (PSGLS_rules), a function describing the set of allowed
leaves ((fun _ => True)), and the sequent at the root s. Third, we state that
DMax satisfies the property is_mhd: it is a derivation of maximum height for the
sequent s. This formalisation thus corresponds to the following:

Theorem 2. Every sequent s has a derivation in PSGLS of maximum height.

Proof. We reason by strong induction on the ordered pair Θ(s). As the applica-
bility of the rules of PSGLS is decidable, we distinguish two cases:

Cut-Elimination for Provability Logic Formalised and Deconstructed 307

(I) No PSGLS rule is applicable to s. Then the derivation of maximum height
sought after is simply the derivation constituted of s solely, which is the only
derivation for s.
(II) Some PSGLS rule is applicable to s. Either only initial rules are appli-
cable, in which case the derivation of maximum height sought after is simply
the derivation of height 1 constituted of the application of the applicable
initial rule to s. Or, some other rules than the initial rules are applicable.
Then consider the finite list Prems(s) of all sequents s0 such that there is an
application of a PSGLS rule r with s as conclusion of r and s0 as premise of r.
By Lemma 5 we know that every element s0 in the list Prem(s) is such that
Θ(s0) < Θ(s). Consequently, the induction hypothesis allows us to consider
the derivation of maximum height of all the sequents in Prem(s). As Prem(s)
is finite, there must be an element smax of Prem(s) such that its derivation of
maximum height is higher or of same height than the derivation of maximum
height of all sequents in Prem(s). It thus suffices to pick that smax, use its
derivation of maximum height, and apply the appropriate rule to obtain s as
a conclusion: this is by choice the derivation of maximum height of s.

Q.E.D.

As the previous lemma implies the existence of a derivation δ of maximum
height in PSGLS for any sequent s, we are entitled to let mhd(s) denote the
height of δ. Similarly to Brighton, we later use mhd(s) as the secondary induction
measure used in the proof of admissibility of cut.

Before proving the only property we need from mhd(s), let us interpret the
previous lemma from the point of view of the proof-search procedure underlying
PSGLS. The existence of a derivation of maximum height for each sequent in
PSGLS shows that in the backward application of rules of PSGLS on a sequent,
i.e. the carrying of the proof-search procedure, a halting point has to be encoun-
tered. As a consequence, the proof-search procedure is terminating.

While this is the essence of the content of the previous lemma, we effectively
only use the fact that mhd(s) decreases upwards in the rules of PSGLS.

Lemma 6. If r is a rule instance from PSGLS with conclusion s0 and s1 as one
of the premises, then mhd(s1) < mhd(s0).

Proof. Suppose that mhd(s1) ≥ mhd(s0). Let δ0 and δ1 be the derivations of,
respectively, s0 and s1 witnessing Theorem 2. Then the following δ2 is deriva-
tion of s0 of height mhd(s1) + 1.

... d
s1 · · ·

rs0

Because of the maximality of δ0, we get that the height of δ0 is greater than the
height of δ2, i.e. mhd(s1) + 1 ≤ mhd(s0). As our initial assumption implies that
mhd(s1) + 1 > mhd(s0), we reached a contradiction. Q.E.D.

308 R. Goré et al.

Coq is constructive, so how does it allow a proof by contradiction? It can
do a proof by contradiction (without having to introduce classical axioms) when
dealing with an expression of the decidable fragment. Here, mhd(s1) < mhd(s0)
can be decided because mhd is computable.

6 Cut-Elimination for GLS

We are ready to state and prove our main theorem. It is formalised in Coq in
the following way:

Theorem GLS_cut_adm : forall A X0 X1 Y0 Y1,
(derrec GLS_rules (fun _ =>False) (X0++X1,Y0++A::Y1))->
(derrec GLS_rules (fun _ =>False) (X0++A::X1,Y0++Y1))->
(derrec GLS_rules (fun _ =>False) (X0++X1,Y0++Y1)).

The usual operations on lists “append” and “cons” are respectively repre-
sented by ++ and ::. Sequents are pairs of lists, so e.g. (X0++X1,Y0++Y1) corre-
sponds to X0,X1 ⇒ Y0, Y1. This time derrec takes the set of rules GLS_rules
and the characteristic function (fun _ => False) as arguments. So, each line
states the existence of a proof in GLS. The additive cut rule is formalised in Coq
as follows.

(X0++X1,Y0++A::Y1) (X0++A::X1,Y0++Y1)
(X0++X1,Y0++Y1)

It is now clear that this statement formalises the following theorem:

Theorem 3. The additive cut rule is admissible in GLS.

Proof. Let d1 (with last rule r1) and d2 (with last rule r2) be proofs in GLS of
X ⇒ Y,A and A,X ⇒ Y respectively, as shown below.

d1 r1
X ⇒ Y,A

d2 r2
A,X ⇒ Y

It suffices to show that there is a proof in GLS of X ⇒ Y . We reason by strong
primary induction (PI) on the size of the cut-formula A, giving the primary
inductive hypothesis (PIH), and strong secondary induction (SI) on mhd(s) of
the conclusion of a cut, giving the secondary inductive hypothesis (SIH).

There are five cases to consider for r1: one for each rule in GLS. We separate
them by using Roman numerals. The SIH is invoked in all of the following cases:
(III-a), (III-b-1), (III-b-2), (IV) and (V-a-2).

(I) r1 =(IdP): If A is not principal in r1, then the latter must have the following
form.

(IdP)
X0, p ⇒ Y0, p, A

Cut-Elimination for Provability Logic Formalised and Deconstructed 309

where X0, p = X and Y0, p = Y . Thus, we have that the sequent X ⇒ Y is of
the form X0, p ⇒ Y0, p, and is an instance of an initial sequent. So we are done.

If A principal in r1, i.e. A = p, then X ⇒ Y is of the form X0, p ⇒ Y . Thus,
the conclusion of r2 is of the form X0, p, p ⇒ Y . We can consequently apply
Lemma 4 (ii) to obtain a proof of X0, p ⇒ Y .

(II) r1 =(⊥L): Then r1 must have the following form.

(⊥L)
X0,⊥ ⇒ Y,A

where X0,⊥ = X. Thus, we have that the sequent X ⇒ Y is of the form
X0,⊥ ⇒ Y , and is an instance of an initial sequent. So we are done.

(III) r1 =(→ R): We distinguish two cases.

(III-a) If A is not principal in r1, then the latter must have the following form.

X,B ⇒ Y0, C,A
(→R)

X ⇒ Y0, B → C,A

where Y0, B → C = Y . Thus, we have that the sequent X ⇒ Y and A,X ⇒ Y
are respectively of the form X ⇒ Y0, B → C and A,X ⇒ Y0, B → C. We can
apply Lemma 3 (ii) on the proof of the latter to get a proof of A,X,B ⇒ Y0, C.
Thus proceed as follows.

X,B ⇒ Y0, C,A A,X,B ⇒ Y0, C SIH
X,B ⇒ Y0, C (→R)

X ⇒ Y0, B → C

Note that the use of SIH is justified here since the last rule in this proof is
an instance of (→R) in PSGLS and hence mhd(X,B ⇒ Y0, C) < mhd(X ⇒
Y0, B → C) by Lemma 6.

(III-b) If A principal in r1, i.e. A = B → C, then r1 must have the following
form.

B,X ⇒ Y,C
(→R)

X ⇒ Y,B → C

The conclusion of r2 must be of the form B → C,X ⇒ Y . In that case, we distin-
guish two further cases. In the first case, B → C is principal in r2. Consequently
the latter must have the following form.

X ⇒ Y,B C,X ⇒ Y
(→L)

B → C,X ⇒ Y

Proceed as follows.

X ⇒ Y,B

B,X ⇒ Y,C

C,X ⇒ Y
Lem.2 (ii)

C,B,X ⇒ Y
PIH

B,X ⇒ Y
PIH

X ⇒ Y

310 R. Goré et al.

In the second case, B → C is not principal in r2. In the cases where r2 is one
of (IdP) and (⊥L) proceed respectively as in (I) and (II) when the cut-formula
is not principal in the rule considered. We are left with the cases where r2 is one
of (→R), (→L) and (GLR).

(III-b-1) If r2 is (→R) then it must have the following form.

B → C,D,X ⇒ Y0, E (→R)
B → C,X ⇒ Y0,D → E

where Y0,D → E = Y . In that case, note that the provable sequent X ⇒ Y,B →
C is of the form X ⇒ Y0,D → E,B → C. We can use Lemma 3 (ii) on the
proof of the latter to get a proof of D,X ⇒ Y0, E,B → C. Proceed as follows.

D,X ⇒ Y0, E,B → C B → C,D,X ⇒ Y0, E SIH
D,X ⇒ Y0, E (→R)

X ⇒ Y0,D → E

Note that the use of SIH is justified here as the last rule in this proof is effectively
an instance of (→R) in PSGLS, hence mhd(X,D ⇒ Y0, E) < mhd(X ⇒ Y0,D →
E) by Lemma 6.

(III-b-2) If r2 is (→L) then it must have the following form.

B → C,X0 ⇒ Y,D B → C,E,X0 ⇒ Y
(→L)

B → C,D → E,X0 ⇒ Y

where X0,D → E = X. In that case, note that the provable sequent X ⇒
Y,B → C is of the form X0,D → E ⇒ Y,B → C. We can use Lemma 3
(i) on the proof of the latter to get proofs of both X0 ⇒ Y,D,B → C and
X0, E ⇒ Y,B → C. Thus proceed as follows.

X0 ⇒ Y,D,B → C B → C,X0 ⇒ Y,D
SIH

X0 ⇒ Y,D

X0, E ⇒ Y,B → C B → C,E,X0 ⇒ Y
SIH

X0, E ⇒ Y
(→L)

X0, D → E ⇒ Y

Note that both uses of SIH are justified here as the last rule in this proof is effec-
tively an instance of (→L) in PSGLS, hence mhd(X0 ⇒ Y,D) < mhd(X0,D →
E ⇒ Y) and mhd(X0, E ⇒ Y) < mhd(X0,D → E ⇒ Y) by Lemma 6.

(III-b-3) If r2 is (GLR) then it must have the following form.

�X0,�D ⇒ D
(GLR)

W,B → C,�X0 ⇒ �D,�Y0, Z

where W,�X0 = X and �D,�Y0, Z = Y . In that case, note that the sequent
X ⇒ Y is of the form W,�X0 ⇒ �D,�Y0, Z. To obtain a proof of the latter,
we apply the rule (GLR) on the premise of r2 without weakening B → C:

�X0,�D ⇒ D
(GLR)

W,�X0 ⇒ �D,�Y0, Z

(IV) r1 =(→ L): Then r1 must have the following form.

Cut-Elimination for Provability Logic Formalised and Deconstructed 311

X0 ⇒ Y,B,A C,X0 ⇒ Y,A
(→L)

B → C,X0 ⇒ Y,A

where B → C,X0 = X. Thus, we have that the sequents X ⇒ Y and A,X ⇒ Y
are respectively of the form B → C,X0 ⇒ Y and A,B → C,X0 ⇒ Y . It thus
suffices to apply Lemma 3 (i) on the proof of the latter to obtain proofs of both
A,X0 ⇒ Y,B and A,C,X0 ⇒ Y , and then proceed as follows.

X0 ⇒ Y,B,A A,X0 ⇒ Y,B
SIH

X0 ⇒ Y,B

C,X0 ⇒ Y,A A,C,X0 ⇒ Y
SIH

C,X0 ⇒ Y
(→L)

B → C,X0 ⇒ Y

Note that both uses of SIH are justified here as the last rule in this proof is
effectively an instance of (→L) in PSGLS, hence mhd(X0 ⇒ Y,B) < mhd(B →
C,X0 ⇒ Y) and mhd(C,X0 ⇒ Y) < mhd(B → C,X0 ⇒ Y) by Lemma 6.

(V) r1 =(GLR): Then we distinguish two cases.

(V-a) A is the diagonal formula in r1:

�X0,�B ⇒ B
(GLR)

W,�X0 ⇒ �B,�Y0, Z

where A = �B and W,�X0 = X and �Y0, Z = Y . Thus, we have that the
sequents X ⇒ Y and A,X ⇒ Y are respectively of the form W,�X0 ⇒ �Y0, Z
and �B,W,�X0 ⇒ �Y0, Z. We now consider r2. If r2 is one of (IdP), (⊥L),
(→R) and (→L) then respectively proceed as in (I), (II), (III) and (IV) when
the cut-formula is not principal in the rules considered by using SIH. We are
consequently left to consider the case when r2 is (GLR). Then r2 is of the
following form:

B,�B,�X0,�C ⇒ C
(GLR)

W,�B,�X0 ⇒ �C,�Y1, Z

where �C,�Y1 = �Y0. In this situation, we distinguish two sub-cases.

(V-a-1) One of the rules (IdP), (⊥L) or (IdB) is applicable to W,�X0 ⇒
�C,�Y1, Z, then we are done for the two first cases as it suffices to apply the
corresponding rules to obtain a proof of the conclusion of the cut-rule. For the
case of (IdB) it suffices to apply Lemma 1.

(V-a-2) None of these rules is applicable to W,�X0 ⇒ �C,�Y1, Z (NoInit).
Then, proceed as follows.

�X0,�B ⇒ B
(GLR)�X0 ⇒ �B

Lem.2�X0,�C ⇒ C,�B

�X0,�B ⇒ B
Lem.2�X0,�B,�C ⇒ C,B B,�B,�X0,�C ⇒ C

PIH�X0,�B,�C ⇒ C
SIH�X0,�C ⇒ C

(GLR)
W,�X0 ⇒ �C,�Y1, Z

Note that the use of SIH is justified here as the assumption NoInit ensures that
the last rule in this proof is effectively an instance of (GLR) in PSGLS, hence
mhd(�X0,�C ⇒ C) < mhd(W,�X0 ⇒ �C,�Y1, Z) by Lemma 6.

312 R. Goré et al.

(V-b) A is not the diagonal formula in r1:

�X0,�C ⇒ C
(GLR)

W,�X0 ⇒ �C,A,�Y0, Z

where W,�X0 = X and �C,�Y0, Z = Y . In that case, note that the sequent
X ⇒ Y is of the form W,�X0 ⇒ �C,�Y0, Z. To obtain a proof of the latter,
we apply the rule (GLR) on the premise of r1 without weakening �B:

�X0,�C ⇒ C
(GLR)

W,�X0 ⇒ �C,�Y0, Z

Q.E.D.

The proof of cut-admissibility given here establishes that any topmost cut in
a proof in GLS + (cut) is eliminable. By iterating this argument we obtain also
cut-elimination for GLS + (cut).

7 Conclusion

We have seen how the termination of backward proof-search can be exploited to
obtain cut-elimination. The proof technique used in this paper was first described
by Brighton. It is particularly interesting because the termination of backward
proof-search is close to a semantic proof of completeness, and the latter is typ-
ically much simpler to achieve than a proof of cut-elimination. This makes it
particularly interesting to investigate the applicability of this technique to other
logics such as Go or intuitionistic GL (using the Dyckhoff calculus for intuition-
istic logic since it has terminating backward proof-search).

Our work may appear to beg the following question: if we first need to show
semantic cut-free completeness to use this technique, then we already know that
every instance of cut is admissible, so, what is the point? Note that this misses
the mark. We chose to introduce PSGLS in order to clarify the role of terminating
proof-search in the argument, and to demonstrate that the additional notion of
regress tree was not essential. In particular, we did not have to show that PSGLS
was complete for our purposes.

However, note that it is possible to establish cut-elimination directly without
relying on an auxiliary proof calculus such as PSGLS. By isolating the subset
of GLS derivations that are also PSGLS derivations, one can use the maximum
height on that subset to define the induction measure, and adapt the proofs
accordingly.

Acknowledgements. Work supported by the FWF project P33548, CogniGron
research center, and the Ubbo Emmius Funds (University of Groningen). Work sup-
ported by the FWF projects I 2982 and P 33548.

Cut-Elimination for Provability Logic Formalised and Deconstructed 313

References

1. Boolos, G.: The Unprovability of Consistency: An Essay in Modal Logic. Cam-
bridge University Press, Cambridge (1979)

2. Borga, M.: On some proof theoretical properties of the modal logic GL. Stud.
Logica. 42(4), 453–459 (1983)

3. Brighton, J.: Cut elimination for GLS using the terminability of its regress process.
J. Philos. Log. 45(2), 147–153 (2016)

4. Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi applied
to provability logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS,
vol. 6397, pp. 263–277. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16242-8 19

5. Gentzen, G.: Untersuchungen über das logische schließen. II. Math. Zeitschrift 39,
176–210, 405–431 (1935)

6. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, volume 55 of Studies in Logic and the Founda-
tions of Mathematics, pp. 68–131. Elsevier (1969)

7. Goré, R., Ramanayake, R.: Valentini’s cut-elimination for provability logic resolved.
Rev. Symb. Log. 5(2), 212–238 (2012)

8. Goré, R., Ramanayake, R.: Cut-elimination for weak Grzegorczyk logic Go. Stud.
Log. 102(1), 1–27 (2014)

9. Indrzejczak, A.: Tautology elimination, cut elimination, and S5. Logic Log. Philos.
26(4), 461–471 (2017)

10. Mints, G.: Cut elimination for provability logic. In: Collegium Logicum 2005: Cut-
Elimination (2005)

11. Negri, S.: Proof analysis in modal logic. J. Philos. Log. 34(5–6), 507–544 (2005)
12. Negri, S.: Proofs and countermodels in non-classical logics. Log. Univers. 8(1),

25–60 (2014)
13. Sambin, G., Valentini, S.: The modal logic of provability: the sequential approach.

J. Philos. Log. 11, 311–342 (1982)
14. Sasaki, K.: Löb’s axiom and cut-elimination theorem. Acad. Math. Sci. Inf. Eng.

Nanzan Univ. 1, 91–98 (2001)
15. Savateev, Y., Shamkanov, D.: Cut elimination for the weak modal Grzegorczyk

logic via non-well-founded proofs. In: Iemhoff, R., Moortgat, M., de Queiroz, R.
(eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 569–583. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-662-59533-6 34

16. Solovay, R.: Provability interpretations of modal logic. Israel J. Math. 25, 287–304
(1976)

17. Valentini, S.: The modal logic of provability: cut-elimination. J. Philos. Log. 12,
471–476 (1983)

https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-662-59533-6_34

Non-Wellfounded Proofs

Complexity of a Fragment of Infinitary
Action Logic with Exponential
via Non-well-founded Proofs

Stepan L. Kuznetsov(B)

Steklov Mathematical Institute of RAS, Moscow, Russia
sk@mi-ras.ru

Abstract. Infinitary action logic (ACTω) can be viewed as an exten-
sion of the multiplicative-additive Lambek calculus (MALC) with itera-
tion (Kleene star) governed by an omega-rule (Buszkowski, Palka 2007).
An alternative formulation utilizes non-well-founded proofs instead of
the omega-rule (Das, Pous 2017). Another unary operation commonly
added to MALC is the exponential. We consider a system which has
both Kleene star and the exponential. In general, this system is of a very
high complexity level: it is Π1

1 -complete (Kuznetsov, Speranski 2020),
while ACTω itself is Π0

1 -complete. As a reasonable intermediate logic,
we consider the fragment where Kleene star is not allowed to appear in
the scope of the exponential. For this fragment we manage to construct a
formulation based on non-well-founded proofs, with an easily checkable
correctness criterion. Using this formulation, we prove that this frag-
ment indeed has strictly intermediate complexity, namely, we prove a
Π0

2 lower bound and a Δ1
1 upper bound. We also prove a negative result

that this fragment does not enjoy Palka’s *-elimination property, which
would have given a Π0

2 upper bound as well.

Keywords: Infinitary action logic · Exponential modality ·
Non-well-founded proofs

1 Introduction

The concept of action lattice, which combines the lattice structure, the struc-
ture of a residuated monoid, and iteration operation (Kleene star), goes back to
Pratt [19] and Kozen [11]. Infinitary action logic [4], denoted by ACTω, axiom-
atizes the atomic (equational) theory of a specific class of action lattices, namely
the *-continuous ones. In a *-continuous action lattice, iteration is defined as a
limit: a∗ = sup{an | n ≥ 0}, rather than a fixpoint.

On the logical side, *-continuity is reflected by infinitary proof mechansims
in calculi for ACTω. Thus, the original calculus by Buszkowski and Palka [4]

The work was supported by the Russian Science Foundation, in cooperation with the
Austrian Science Fund, under grant RSF–FWF 20-41-05002.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 317–334, 2021.
https://doi.org/10.1007/978-3-030-86059-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_19&domain=pdf
http://orcid.org/0000-0003-0025-0133
https://doi.org/10.1007/978-3-030-86059-2_19

318 S. L. Kuznetsov

uses an ω-rule, and a more recent system by Das and Pous [5] is a calculus with
non-well-founded derivations (that is, proofs may have infinitely long branches,
obeying certain correctness conditions). The usage of such infinitary mechansims
is inevitable, since the set of theorems of ACTω is not recursively enumerable.
Namely, it is Π0

1 -hard [3].
Calculi for ACTω are based on the sequential axiomatization of the inequa-

tional theory of residuated lattices without iteration. This calculus is a well-
known substructural logic, namely, the multiplicative-additive (“full”) Lambek
calculus, MALC [6]. In its turn, MALC can be viewed as a non-commutative
intuitionistic variant of the multiplicative-additive fragment of Girard’s [7] lin-
ear logic. Following the ideas of linear logic, MALC can be extended with the
exponential modality. In this paper, we continue the line of research of [15] and
consider a system with both Kleene star and exponential, that is, the extension of
ACTω with the exponential modality. This system will be denoted by !ACTω.

As a matter of notation, Kleene star is written in the postfix form, A∗, while
exponential is prefix, !A.

The full !ACTω system, combining two powerful modalities, has a very high
complexity level. Namely, it is Π1

1 -complete [15]. The interesting lower bound,
Π1

1 -hardness, is proved by encoding the Horn theory of *-continuous Kleene
algebras, Π1

1 -completeness of which was proved by Kozen [12]. (The upper bound
is established by a general argument valid for a wide class of systems.)

On the other hand, fragments of !ACTω including only one modality, being
undecidable, have quite modest complexity. Namely, ACTω (includes ∗, but
not !) is Π0

1 -complete [3,18] and !MALC, the extension of MALC with !,
being a variant of linear logic, is Σ0

1 -complete [16]. The Π0
1 upper bound also

extends to a system which includes !, but allows its application only to very
simple formulae [14].

This huge complexity gap between the bimodal !ACTω and its unimodal
subsystems, ACTω and !MALC, motivates searching for reasonable fragments
of !ACTω which make use of both ∗ and ! and enjoy an intermediate complexity
level, i.e., strictly between Δ0

2 (which is above both Π0
1 and Σ0

1) and Π1
1 .

In this paper we study such a fragment of !ACTω, which is delimited by the
following restriction:

no subformula of the form B∗ appears inside a subformula of the form !A.

(For cut-free derivations, it does not matter whether we impose this restriction
only on the goal sequent or on all sequents in its derivation.)

In what follows, we call this restriction the independence constraint, meaning
“independence” of ∗ from the structural rules offered by ! (most importantly,
the contraction rule). The corresponding fragment of !ACTω will be denoted by
!ACT−

ω .
For !ACT−

ω , we develop a calculus with non-well-founded proofs, extend-
ing the system introduced by Das and Pous [5] for ACTω. Using this system,
we establish a Σ1

1 upper bound for !ACT−
ω . Being a conservative fragment of

!ACTω, however, this system is also Π1
1 -bounded. Thus, it belongs to Δ1

1, which

Non-well-founded Proofs for Infinitary Action Logic 319

is strictly below Π1
1 . On the other hand, we prove a Π0

2 -hardness result, and Π0
2

is strictly above Δ0
2. Thus, !ACT−

ω is indeed the desired example of an inter-
mediate system. Its exact complexity, however, is still an open question, and we
show how some natural approaches to solving this question fail.

2 Formulation of !ACTω

Let us start with a traditional formulation of !ACTω as a calculus with an
ω-rule [15].

Formulae of !ACTω are built from a countable set of variables p1, p2, p3, . . .
(we also use letters p, q, r, s, t for variables) and constants 1 and 0 using the
following connectives: ·, \, /, ∨, ∧ (binary connectives), and ∗ and ! (unary
connectives, also called modalities). As a matter of notation, ∗ is written in the
postfix form: A∗, while ! is written in the prefix one: !A. Sequents are expressions
of the form Π � B, where B is a formula and Π is a finite (possibly empty)
sequence of formulae. (Due to the non-commutative nature of our calculi, the
ordering in Π matters.) In what follows, capital Latin letters denote formulae
and capital Greek letters stand for sequences of formulae.

The core subsystem of !ACTω is MALC, a finitary calculus with the fol-
lowing axioms and rules of inference:

A � A
Id

Γ,0,Δ � B
0L

Γ,Δ � B

Γ,1,Δ � B
1L � 1

1R

Π � A Γ,B,Δ � C

Γ,Π,A \ B,Δ � C
\L

A,Π � B

Π � A \ B
\R

Γ,A,B,Δ � C

Γ,A · B,Δ � C
·L

Π � A Γ,B,Δ � C

Γ,B / A,Π,Δ � C
/L

Π,A � B

Π � B / A
/R

Π � A Δ � B
Π,Δ � A · B

·R

Γ,A,Δ � C

Γ,A ∧ B,Δ � C
∧L1

Γ,B,Δ � C

Γ,A ∧ B,Δ � C
∧L2

Π � A Π � B
Π � A ∧ B

∧R

Γ,A,Δ � C Γ,B,Δ � C

Γ,A ∨ B,Δ � C
∨L

Π � A
Π � A ∨ B

∨R1
Π � B

Π � A ∨ B
∨R2

Π � A Γ,A,Δ � C

Γ,Π,Δ � C
Cut

320 S. L. Kuznetsov

Kleene star is axiomatized by the following rules, which yield ACTω. Here and
further An = A, . . . , A

︸ ︷︷ ︸

n times

; A0 is the empty sequence.

(

Γ,An,Δ � C
)∞
n=0

Γ,A∗,Δ � C
∗Lω

Π1 � A . . . Πn � A

Π1, . . . , Πn � A∗ ∗Rn

Here ∗Lω is a ω-rule, it has countably many premises; ∗Rn is an infinite series of
finitary rules, one for each n ≥ 0. In particular, ∗R0 is the axiom � A∗.

Finally, the following logical and structural rules control the exponential:

Γ,A,Δ � C

Γ, !A,Δ � C
!L

!A1, . . . , !An � B

!A1, . . . , !An � !B
!R

Γ,Δ � C

Γ, !A,Δ � C
!W

Γ,B, !A,Δ � C

Γ, !A,B,Δ � C
!P1

Γ, !A,B,Δ � C

Γ,B, !A,Δ � C
!P2

Γ, !A, !A,Δ � C

Γ, !A,Δ � C
!C

The cut rule is eliminable by a standard technique combining Gentzen’s mix
rule and transfinite induction; see [15] for details. Cut elimination yields the
subformula property: any formula used in a cut-free derivation is a subformula
of the goal sequent.

Remark 1. As in [15], the choice of rules for the exponential follows Girard’s
linear logic [7], adapted to the non-commutative setting. Since we heavily use
results from [15] (cut elimination, complexity bounds), it is important to keep
the rules the same. For infinitary action logic extended by other variants of
exponential modalities, complexity and structural proof theory questions are
left open for future research. A particularly interesting variant is the system
with multiplexing instead of contraction [10], that is, !A gets decomposed into
several copies of A rather than split into two copies of !A.

As for permutation rules (!P1 and !P2), it is crucial that only !-formulae
are allowed to commute. This keeps the system non-commutative and allows
encoding of Kleene algebras and thus yields the lower complexity bounds. For
fully commutative systems, with A·B � B ·A for any A and B, the corresponding
complexity questions are open.

Remark 2. While the present paper is purely syntactical, let us make a short
remark on semantics for the given systems. Infinitary action logic without the
exponential, ACTω, enjoys a natural algebraic interpretation on *-continuous
residuated Kleene lattices [4]. Standard examples of such lattices include alge-
bras of formal languages (language models) and the ones of binary relations
(relational models). These natural examples do not yield complete semantics
even for MALC, because the distributivity law for ∨ and ∧ is not derivable in
such substructural systems (see [17]). There exists, however, a generalization of
language models based on so-called syntactic concept lattices [21]. These models
give completeness for MALC, and it is probably easily extendable to ACTω.

Non-well-founded Proofs for Infinitary Action Logic 321

For the exponential modality, possible kinds of semantics are more involved.
For !MALC, let us notice phase semantics [8] and quantale semantics [20]; the
latter needs the distributivity law for ∨ and ∧. Extending these (or other) kinds
of semantics to !ACTω is an open issue; that is why in this paper we use only
syntactic arguments, even where semantic ones could seem more appropriate.

3 Non-well-founded Proofs

Now let us follow Das and Pous [5] and define a system which uses non-well-
founded proofs instead of the ω-rule. Let us denote this formulation by !ACT∼

∞.
The tilde in the notation reflects the fact that in the full language this system is
not sound w.r.t. !ACTω, see Example 1 below. This is due to the fact that the
correctness condition used in !ACT∼

∞ is too weak. However, for sequents obeying
the independence constraint we shall prove equivalence (Theorem 1 below); the
corresponding fragment will be denoted by !ACT−

∞.
In whole, the relations between systems which appear in this paper can be

depicted by the following diagram:

ACTω
�������

��

MALC

��������

������
� !ACT−

ω = !ACT−
∞ �� !ACTω

����� !ACT∼
∞

!MALC

���������

Here solid arrows mean conservative extensions: that is, the smaller system is
obtained from the bigger one by a proper restriction of the formula language.
In contrast, the dashed arrow is non-conservative: both !ACTω and !ACT∼

∞
operate in the same language, but !ACT∼

∞ has strictly more derivable sequents.
In order to define !ACT∼

∞, we replace (in the ruleset of !ACTω) ∗Lω and
∗Rn with the following three finitary rules:

Γ,Δ � C Γ,A,A∗,Δ � C

Γ,A∗,Δ � C
∗L � A∗ ∗R0

Π � A Δ � A∗
Π,Δ � A∗ ∗R

In ∗R, one can always suppose that Π is non-empty: otherwise the conclusion
coincides with the right premise, and the rule is meaningless. We also remove
the cut rule; our system is cut-free by construction.

As a tradeoff for having only finitary rules, infinite derivation branches are
now allowed, which makes proofs possibly non-well-founded. Thus, the proof tree
is now “high” rather than “wide.”

Remark 3. Let us emphasize that we do not restrict ourselves to cyclic (regular)
non-well-founded proofs, and our derivations are really infinite. This is inevitable
due to complexity considerations: even ACTω is outside Σ0

1 , so finite (in par-
ticular, circular) proofs are insufficient. Thus, the fragment allowing only cyclic
proofs is a proper one, and, complexitywise, it is Σ0

1 -complete, since it includes
Pratt’s inductive action logic, which is already Σ0

1 -hard [13].

322 S. L. Kuznetsov

Not all possible non-well-founded proof trees are correct, but only those which
satisfy the following correctness condition which is called *-fairness. A non-well-
founded proof is *-fair, if every infinite path includes an infinite number of ∗L
applications on which the path turns to the right premise. A finite proof is always
considered *-fair.

Notice that in our setting, unlike the one of [5], *-fairness is indeed essential.
Without !, in the absence of cut, the only possible source of a non-*-fair proof is
the usage of ∗R with an empty Π. As noticed above, however, such applications
can be just globally disallowed. In contrast, structural rules for !, namely, !P1,
!P2, and !C allow developing infinite proof branches which do not use ∗L. The
usage of !P1 and !P2 could be somehow normalized, in order to prevent such
effects, but for !C it is unavoidable.

A sequent is provable in !ACT∼
∞ if and only if it has a *-fair proof.

The system defined above operates in the full language without any restric-
tions. However, as we have already mentioned, the equivalence between !ACT∼

∞
and !ACTω is going to be valid only for sequents which obey the independence
constraint. The corresponding fragment of !ACT∼

∞ will be naturally denoted as
!ACT−

∞.

Theorem 1. A sequent obeying the independence constraint is provable (has a
*-fair proof) in !ACT∼

∞ if and only if it is provable in !ACTω.

Before proving this theorem, let us show that the independence constraint
is essential for the “only if” direction (the “if” one, from !ACTω to !ACT∼

∞,
holds for arbitrary sequents).

Example 1. The sequent s, !
(

s \(

p∗ · ((p+ \1) ∧ q) · s)) � q · s, where p+ = p · p∗,
has a *-fair proof in !ACT∼

∞, but it is not derivable in !ACTω. Here is the *-fair
non-well-founded proof, in which A stands for s \(

p∗ · ((p+ \1) ∧ q) · s
)

:

s � s

q � q s � s

q, s � q · s
·R

(p+ \1) ∧ q, s, !A � q · s
!W, ∧L2

p � p p∗ � p∗

p, p∗ � p+
·R

...
s, !A � q · s

1, s, !A � q · s
1L

p, p∗, p+ \1, s, !A � q · s
\L

p, p∗, (p+ \1) ∧ q, s, !A � q · s
∧L1

p∗, (p+ \1) ∧ q, s, !A � q · s
∗L

s, s \(
p∗ · ((p+ \1) ∧ q) · s

)
, !A � q · s

·L, \L

s, !A � q · s
!L, !C

In order to prove that this sequent is not derivable in !ACTω, let us first
take p � p∗ (which is easily derivable) and obtain !

(

s \(

p · ((p+ \1)∧ q) · s)) � !A
by monotonicity of the corresponding operations. Next, if s, !A � q · s were
derivable, we could have derived s, !

(

s \(

p · ((p+ \1) ∧ q) · s
)) � q · s using cut.

The latter sequent does not include negative occurrences of ∗ (that is, those
which could be introduced by ∗Lω, not ∗Rn). Thus, after cut elimination we get
a finite derivation.

Non-well-founded Proofs for Infinitary Action Logic 323

Now let us notice that the “branching” rules ∨L and ∧R cannot be applied
due to the (polarized) subformula property: there are no occurrences of ∨, and
the only one of ∧ is introduced by ∧L. Therefore, the occurrence of q in the
right-hand side gets uniquely propagated upwards, and there is a unique axiom
q � q in the derivation. Hence, while there could be several copies of (p+ \1) ∧ q
(due to !C), exactly one such copy gets decomposed using ∧L2 yielding q. Let
us call the corresponding copy of the formula A′ = s \(

p · ((p+ \1) ∧ q) · s
)

the
principal one.

Moreover, the q � q axiom leaf is the end of the “rightmost path,” that is,
the path which always goes to the right premise of \L. Now let us take a look at
the leftmost occurrence of p from the principal copy of A′. We claim that this
occurrence also follows the “rightmost path,” that is, always goes to the right
premise of \L.

Indeed, this p could go to the left premise only in the case when a copy of !A′

penetrates between p and q and gets decomposed there. But in this case we get
a left premise of the form Γ, p � s, which could not be derivable, since Γ does
not contain / which could take p apart from s.

This argument yields contradiction: the occurrence of p in question traces
upwards along the “rightmost path” until its end, but in the end there is no p,
just q � q. ��
Remark 4. The reason why !ACT∼

∞ is not sound (that is, equivalent to !ACTω)
without the independence constraint is the fact that *-fairness, in general, is
too weak a correctness condition for non-well-founded proofs. Das and Pous [5]
present another correctness condition: for each infinite path, there should be a
trace of the same formula of the form A∗, which undergoes ∗L infinitely many
times. We leave it as an open question whether imposing this stronger cor-
rectness condition on !ACT∼

∞ yields a system equivalent to !ACTω. For our
purposes, however, this is not needed: we already know that the full !ACT∼

∞
is Π1

1 -complete, so there is no hope to obtain better complexity upper bounds
using non-well-founded proofs. (In particular, checking existence of valid traces
requires quantification over infinite paths, which is already at least Π1

1 .) In con-
trast, the easily checkable *-fairness condition will allow us to obtain such upper
bounds for !ACT−

ω , which we are going to do in the next section.

Our proof of Theorem 1 basically reuses the ideas of Das and Pous [5]. How-
ever, in the presence of the exponential with its !C rule, we have to use different
induction parameters. Namely, now one cannot just say that for each rule, except
∗L, the premises are structurally simpler than the conclusion.

In what follows, we essentially use the fact that there is no cut rule in
!ACT∼

∞. This is by design. Cut elimination issues (that is, whether one can
add cut without altering theoremhood) for non-well-founded proofs are quite
subtle and therefore left beyond the scope of this paper.

In order to prove Theorem 1, let us introduce several useful notions.
Let π be a proof in !ACT∼

∞. Cutting off its branches immediately below the
lowermost applications of ∗L yields its 0-fragment, denoted by π0. Notice that if

324 S. L. Kuznetsov

π is *-fair, then π0 is a finite tree: otherwise π includes an infinite path without
applications of ∗L. The height of π0 will be denoted by h0.

Next, let us define the *-rank for formulae and sequents. A *-rank will be a
sequence of natural numbers (r0, r1, r2, . . .), which is infinite, but only a finite
number of ri’s are non-zero. On such sequences, we define two operations, sum
and lifting, and constants:

(r0, r1, . . .) ⊕ (s0, s1, . . .) = (r0 + s0, r1 + s1, . . .) o = (0, 0, 0, 0, . . .)
(r0, r1, r2, . . .)↑ = (0, r0, r1, r2, . . .) ι = (1, 0, 0, 0, . . .)

For a formula A or a sequent Π � B, its *-rank, denoted by σ(A) or σ(Π � B)
respectively, is defined recursively:

σ(pi) = σ(0) = σ(1) = o

σ(A \ B) = σ(B / A) = σ(A · B) = σ(A ∧ B) = σ(A ∨ B) = σ(A) ⊕ σ(B)
σ(!A) = σ(A)
σ(A∗) = σ(A)↑ ⊕ ι

σ(A1, . . . , An � B) = σ(A1) ⊕ . . . ⊕ σ(An) ⊕ σ(B)

Notice that if we are under the independence constraint, then σ(!A) = o.
Finally, we define the strict anti-lexicographical (that is, lexicographical ‘from

right to left’) order on ranks: (r0, r1, r2, . . .) ≺ (s0, s1, s2, . . .), if there exists such
an i that ri < si and rj = sj for all j > i. It is easy to see that this order is
linear. Moreover, on *-ranks (but not on arbitrary infinite sequences) it is also
well-founded. Thus, transfinite induction on *-ranks is legal.

We start proving Theorem 1 by establishing invertibility of the ω-rule, ∗Lω,
in the system with non-well-founded proofs.

Lemma 1. If Γ,A∗,Δ � C is derivable in !ACT∼
∞ (that is, it has a *-fair

proof), then so are sequents Γ,An,Δ � C for all n ≥ 0.

Proof. Recall that our derivation is an infinite tree, not a graph with cycles. We
proceed by induction on n. For n = 0, we trace the “active” occurrence of A∗

upwards along the proof tree and remove it, until we reach applications of ∗L
which introduce it. At such application, we just take the left premise (which,
after removing A∗, coincides with the conclusion) and cut off the whole subtree
which derives the right premise. The resulting tree is still *-fair, since its infinite
branches do not contain the “active” A∗.

For the induction step, again, we replace “active” occurrences of A∗ with
An+1, up to applications of ∗L which introduce the “active” A∗:

Φ,Θ � B Φ,A,A∗, Θ � B

Φ,A∗, Θ � B
∗L

Now we cut off the left subtree and apply the induction hypothesis to the right
one. This yields derivability of Φ,A,An, Θ � B, which is exactly Φ,An+1, Θ �

Non-well-founded Proofs for Infinitary Action Logic 325

B. The *-fairness condition is again preserved: infinite paths either end up in
subtrees deriving formulae of the form Φ,A,An, Θ � B, which are *-fair by
induction hypothesis, or do not include the “active” A∗. ��

Now we are ready to prove Theorem 1.

Proof (of Theorem 1). The interesting direction is the “only if” one, from
!ACT−

∞ to !ACT−
ω . Let Ψ � C be a sequent derivable in !ACT∼

∞ and obeying
the independence constraint. We proceed by nested induction. The outer induc-
tion parameter is σ(Ψ � C), the *-rank of the sequent in question. The inner
one is h0, the height of the 0-fragment of its proof in !ACT∼

∞.
Consider two cases.

Case 1. Ψ � C is of the form Γ,A∗,Δ � C. Lemma 1 yields derivability of
Γ,An,Δ � C for any n ≥ 0. Notice that the latter sequents have a smaller *-
rank. Indeed, An contributes σ(A) ⊕ . . . ⊕ σ(A) to the *-rank of the sequent,
and this is always strictly less than σ(A∗). (If σ(A) �= o, then the last non-
zero element of σ(A)↑ has a bigger index than that of σ(A). For σ(A) = o, the
“ ⊕ ι” in the definition of σ(A∗) helps.) Thus, by induction hypothesis sequents
Γ,An,Δ � C are derivable in !ACTω, and by ∗Lω we derive Γ,A∗,Δ � C.

Case 2. Ψ � C is not of the form Γ,A∗,Δ � C. If it is an axiom, then it is
also an axiom of !ACTω, and we finish the proof. Otherwise, the lowermost rule
applied in the proof of Ψ � C is not ∗L, and its premises have proofs with a
smaller h0. We also notice that the premises could not have bigger *-ranks. Here
the independence constraint is crucial: σ(!A) = o, so !C could not increase the
*-rank. Other rules just use subformulae of Ψ � C. By induction hypothesis, the
premises of the lowermost rule are derivable in !ACTω. If the lowermost rule is
not ∗R, then it is also valid in !ACTω, and we finish the proof by applying it.
The ∗R rule is simulated using cut (where Ψ = Π,Δ and C = A∗):

Π � A Δ � A∗
Π,Δ � A · A∗ ·R

(

An+1 � A∗)∞
n=0

A,A∗ � A∗ ∗Lω

A · A∗ � A∗ ·L
Π,Δ � A∗ Cut

(Here each An+1 � A∗ is derived using the appropriate ∗R(n+1).) Cut can be
then eliminated using the cut-elimination theorem for !ACTω [15].

The “if” direction, from !ACTω to !ACT∼
∞, is easier. The ∗Rn rule is simu-

lated by a finite series of ∗R, followed by ∗R0. The ∗Lω rule gets replaced by an
infinite path of ∗L applications (which yields *-fairness). Other rules and axioms
of !ACTω are valid in !ACT∼

∞ as well. ��

4 Complexity

Being an easily checkable correctness condition, *-fairness allows us to obtain a
non-trivial complexity upper bound on !ACT−

∞, and thus on !ACT−
ω .

326 S. L. Kuznetsov

Theorem 2. The derivability problem for !ACT−
ω (that is, derivability in

!ACTω for sequents which obey the independence constraint) belongs to the Σ1
1

complexity class.

Proof. Recall that Σ1
1 allows one second-order existential quantifier. We shall

quantify over functions which map natural numbers to finite derivation trees
(fragments of a proof). Such functions can be encoded as sets of natural numbers
in a standard way.

Let us call a finite derivation tree πn a subproof of level n, if it is constructed
according to the rules of !ACT∼

∞, and each path from the root either reaches
an axiom, or undergoes ∗L, turning to the right premise, at least n times. In the
second case, the leaf node at which the path terminates may contain an arbitrary
sequent. Let Sn denote the set of all subproofs of level n.

We claim that a sequent Ψ � C is provable in !ACT∼
∞ if and only if there

exists a function F : N → ⋃

n∈N
Sn, F : n �→ πn, such that:

1. each πn = F (n) is a subproof of level n;
2. each πn+1 is an extension of πn (that is, πn is a subtree in πn+1).

Indeed, for the “only if” part one just takes the *-fair non-well-founded proof
of Ψ � C, denoted by π, and lets F (n) = πn be its n-fragment. The n-fragment
is defined similarly to the 0-fragment: each infinite path gets cut off immediately
below the (n+1)-st of the applications of ∗L where the path turns right. Since π
is *-fair, each πn is finite, and indeed π0, π1, π2, . . . is a growing chain of subproofs
of corresponding levels.

For the “if” part, let π be the union of πn’s. This is of course a possibly non-
well-founded tree which is constructed according to inference rules of !ACT∼

∞.
Each leaf holds an axiom: otherwise the finite path to this leaf includes, for
some k, at most k applications of ∗L, and this path could not belong to πk+1.
Finally, each infinite path should traverse all πn’s (since each of them is finite).
Therefore, for any n it includes a least n applications of ∗L on which the path
turns right. This gives *-fairness.

Conditions 1–2 on the function F (that is, on the sequence π0, π1, π2, . . .) are
arithmetical.

If the sequent Ψ � C obeys the independence constraint, then its derivability
in !ACT∼

∞ is equivalent to derivability in !ACTω (Theorem 1). Thus, we get
the desired complexity upper bound for the fragment !ACT−

ω . ��
Corollary 1. The derivability problem for !ACT−

ω belongs to the Δ1
1 complex-

ity class. Thus, this fragment is hyperarithmetical, unlike the complete system
!ACTω.

Proof. Δ1
1 = Σ1

1 ∩ Π1
1 . The Σ1

1 upper bound has just been proved. On the other
hand, !ACT−

ω is a conservative fragment of !ACTω, and therefore inherits its
Π1

1 complexity upper bound [15]. ��
Thus, !ACT−

ω is a fragment whose complexity is strictly less than that of the
full system !ACTω. Now let us prove a lower bound which shows that !ACT−

ω

Non-well-founded Proofs for Infinitary Action Logic 327

is strictly harder than ACTω, the system without !, and !MALC, the system
without ∗.

Theorem 3. The derivability problem for !ACT−
ω is Π0

2 -hard.

The proof of Theorem 3 is based on the idea that the exponential modality,
!, allows internalizing derivability from a finite number of hypotheses (“extra
axioms”) in the style of deduction theorem. (For MALC itself, the deduction
theorem does not hold due to the lack of structural rules, which are restored
under !.) Thus, encoding the Lambek calculus with extra axioms [2] allows prov-
ing Σ0

1 -completeness of the Lambek calculus with exponential [16]. For ACTω,
derivation from hypotheses is Π1

1 -hard, so we get the same lower bound for the
“pure” derivation problem for !ACTω [15].

In !ACT−
ω , however, the usage of ! is restricted to formulae without

Kleene star. Thus, we could only encode derivations from hypotheses which
do not include Kleene star (are *-free). Kozen [12] proves exactly the result
we need, for *-continuous Kleene algebras. The language of Kleene algebras
includes only the following connectives1: ·, ∨, ∗, and constants 0 and 1. Let
A1, B1, . . . , An, Bn, C,D be formulae in the language of Kleene algebras, and let
A1, B1, . . . , An, Bn be *-free. Under these assumptions, deciding whether a Horn
clause of the form

(

A1 = B1 & . . . & An = Bn

) ⇒ C = D is generally true in all
*-continuous Kleene algebras is a Π0

2 -complete problem.
We can consider inequations instead of equations, that is, clauses of the

form
(

A1 � B1 & . . . & An � Bn

) ⇒ C � D, where � will be reflected by the
sequential arrow �. For such clauses, the problem is also Π0

2 -complete, which can
be shown by an inspection of Kozen’s proof [12]. Namely, Kozen’s construction
uses such formulae that C = D is equivalent (if the Horn premises hold) to
C � D. The premises,

(

A1 = B1 & . . . &An = Bn

)

, can be equivalently replaced
by

(

A1 � B1 & B1 � A1 & . . . & An � Bn & Bn � An

)

.
Kozen’s result, however, is formulated semantically. Thus, in order to transfer

it to our syntactical formulations, we shall need a soundness-and-completeness
result. Moreover, the language in Kozen’s setting is smaller, so we have to care
for conservativity. Below we explain the proof accurately. We follow the line of
the Π1

1 -hardness proof from [15], imposing *-freeness of the premises (Ai � Bi).
Let KAω denote a calculus defined by the following axioms and rules, taken

from ACTω: Id, ∨L, ∨R1, ∨R2, ·L, ·R, ∗Lω, ∗Rn, 1L, 1R, 0L, and Cut. Sequents
of KAω are naturally interpreted on partially ordered algebraic structures in the
language ·, ∨, ∗, 0, 1. Indeed, connectives are interpreted as corresponding oper-
ations, and � corresponds to the partial order, �. By definition, a *-continuous
Kleene algebra is such an algebraic structure, in which all theorems of KAω are
generally true.

Let E = {A1 � B1, . . . , An � Bn}, where Ai and Bi are *-free formulae in
the language of Kleene algebras, and let C and D be arbitrary formulae in this
language.

1 Kozen uses a different notation.

328 S. L. Kuznetsov

Lemma 2. The following are equivalent.

1. The sequent C � D is true under any interpretation in a *-continuous Kleene
algebra, under which all sequents from E are true. In other words, the Horn
clause

(

A1 � B1 & . . . & An � Bn

) ⇒ C � D is generally true in all *-
continuous Kleene algebras.

2. C � D is derivable in KAω from the set of hypotheses E.
3. The sequent !(A1 \ B1), . . . , !(An \ Bn), C � D is derivable in !ACTω.

This lemma immediately yields Theorem 3: checking statement 1 is a Π0
2 -

hard problem due to Kozen [12], and statement 3 is actually a statement of
derivability in !ACT−

ω , since Ai and Bi are *-free.

Proof (of Lemma 2). 1 ⇒ 2 Suppose that C � D is not derivable in KAω

from E . Construct the Lindenbaum–Tarski algebra LTE in the following way.
For formulae F and G let F ≈E G, if F � G and G � F are both derivable in
KAω from E . This is indeed an equivalence relation. The elements of LTE are
equivalence classes of the form [F]≈E . Operations are defined in a natural way:
[F]≈E · [G]≈E = [F · G]≈E and similarly for others. Finally, [F]≈E � [G]≈E if
F � G is derivable in KAω from E . Correctness of these definitions is checked in
a routine way. (Notice that the cut rule in KAω is crucial here. In the presence
of hypotheses, namely E , the cut rule is in general not eliminable.)

Now, LTE is a *-continuous Kleene algebra. Let us interpret each formula F
as [F]≈E . Correctness, again, is checked routinely. Under this interpretation, all
sequents from E are true, while C � D is not. Contradiction.

2 ⇒ 3 Let us take the proof of C � D from E in KAω and add the prefix
!(A1 \ B1), . . . , !(An \ Bn) to each sequent. The rule applications remain valid,
provided we add !P1 and !C applications to rules with several premises. Sequents
from E now become derivable: for !(A1 \ B1), . . . , !(An \ Bn), Ai � Bi, one just
weakens all !(Aj \ Bj) for j �= i, moves !(Ai \ Bi) to the right of Ai and removes
the !. This yields a derivable sequent Ai, Ai \ Bi � Bi.

3 ⇒ 1 Given a proof of !(A1 \ B1), . . . , !(An \ Bn), C � D in !ACTω, let
us eliminate cuts. In the cut-free proof, we erase all formulae including \. In
the resulting tree, all formulae are in the language of Kleene algebras. All rules
operating ! have trivialized, and applications of \L turn into:

Π � Ai Γ,Bi,Δ � F

Γ,Π,Δ � F

(Ai \ Bi was erased). This is simulated in KAω using cuts and formulae from
E :

Π � Ai

Ai � Bi Γ,Bi,Δ � F

Γ,Ai,Δ � F
Cut

Γ,Π,Δ � F
Cut

Thus, C � D is derivable in KAω from E . ��

Non-well-founded Proofs for Infinitary Action Logic 329

5 Issues with *-Elimination

In this section we discuss why attempts to prove better upper bounds for !ACT−
ω

(namely, Π0
2), based on extending proofs for the Π0

1 upper bound for ACTω,
fail.

Das and Pous [5] prove the Π0
1 upper bound for ACTω using the following

argument: a sequent is derivable if and only if for any n there exists a partial
derivation tree of height n. This argument is valid for the system without !,
since it can be formulated as a non-well-founded system without any correctness
conditions. For !ACT−

∞, however, *-fairness is crucial, since otherwise we could
get infinite paths built using !C instead of ∗L.

Thus, analysis of subproofs yields only a Σ1
1 upper bound, as explained in the

previous section. Notice that in the proof of Theorem 2 it is crucial to require
that each next πn+1 is an extension of πn. One could try to relax this condition
and require just the existence, for any n, of a valid subproof πn of level n. This
condition is a Π0

2 one. However, construction of the infinite proof π from these
subproofs will not work. Indeed, for each subproof of level n there are infinitely
many “successor” subproofs of level n + 1 (due to !C). Thus, Kőnig’s lemma is
not applicable here. In fact, the sequent in Example 2 below has subproofs of all
levels, but is not derivable.

Palka’s [18] proof of the upper Π0
1 complexity bound on ACTω is based

on the following *-elimination technique. Let A•m = A · . . . · A
︸ ︷︷ ︸

m times

and A•0 = 1.2

For each sequent, we define its n-th approximation by replacing each negative
occurrence of A∗ with a finite disjunction 1∨ A ∨ A•2 ∨ . . . ∨ A•n. Formally, this
is done by the following recursive definition:

Nn(pi) = pi Pn(pi) = pi

Nn(0) = 0 Pn(0) = 0
Nn(1) = 1 Pn(1) = 1
Nn(A \ B) = Pn(A) \ Nn(B) Pn(A \ B) = Nn(A) \ Pn(B)
Nn(B / A) = Nn(B) / Pn(A) Pn(B / A) = Pn(B) / Nn(A)
Nn(A · B) = Nn(A) · Nn(B) Pn(A · B) = Pn(A) · Pn(B)
Nn(A ∧ B) = Nn(A) ∧ Nn(B) Pn(A ∧ B) = Pn(A) ∧ Pn(B)
Nn(A ∨ B) = Nn(A) ∨ Nn(B) Pn(A ∨ B) = Pn(A) ∨ Pn(B)
Nn(A∗) = 1 ∨ Nn(A) ∨ (Nn(A))•2 ∨ . . . ∨ (Nn(A))•n

Pn(A∗) = (Pn(A))∗

The n-th approximation of A1, . . . , Ak � B is Nn(A1), . . . , Nn(Ak) � Pn(B).
Palka has proved the *-elimination theorem: a sequent is derivable in ACTω

if and only if so are all its approximations. The non-trivial direction here is
the “if” one. This yields the desired Π0

1 upper bound, since derivations of n-th
approximations never include the ω-rule, and the derivability problem for such
sequents is algorithmically decidable.

2 For accuracy, we distinguish Am as a sequence from A•m as one formula. In fact,
they are of course equivalent.

330 S. L. Kuznetsov

One could try to extend the notion of n-th approximation to !ACTω:

Nn(!A) = !Nn(A) Pn(!A) = !Pn(A).

Now the derivability problem for sequents of the form Nn(A1), . . . , Nn(Ak) �
Pn(B) becomes undecidable (since it includes !MALC), but it is still in Σ0

1

(recursively enumerable). Thus if the *-elimination lemma could have been
extended to !ACTω, we would enjoy a Π0

2 upper bound, which coincides with
the lower one (Theorem 3).

However, the following example shows that it is not the case.

Example 2. The sequent

s, !
(

s \((1 ∧ q) · s)
)

, s \ t, t \(q \1)∗ � 1

is not derivable in !ACTω, but all its approximations are.
The idea behind this example is as follows: the “key and lock” variables s

and t enforce decomposing of (q \1)∗ (using ∗Lω) after performing contractions
and decomposing all copies of !

(

s \((1 ∧ q) · s)
)

. Since ! is roughly ∃ and ∗ is
roughly ∀, this yields the order of quantifiers ∃∀, which is Σ0

2 , not Π0
2 .

The “key and lock” technique goes back to Lincoln et al. [16].
The n-th approximation of the sequent in question is as follows:

s, !
(

s \((1 ∧ q) · s)
)

, s \ t, t \(

1 ∨ (q \1) ∨ (q \1)2 ∨ . . . ∨ (q \1)n
) � 1

Its proof is routine. We start as follows:

s � s

s � s

t � t (1 ∧ q)n,1 ∨ (q \1) ∨ . . . ∨ (q \1)n � 1

(1 ∧ q)n, t, t \(
1 ∨ (q \1) ∨ . . . ∨ (q \1)n

) � 1
\ L

(1 ∧ q)n, s, s \ t, t \(
1 ∨ (q \1) ∨ . . . ∨ (q \1)n

) � 1
\ L

...

1 ∧ q, s,
(
s \((1 ∧ q) · s)

)n−1
, s \ t, t \ . . . � 1

(1 ∧ q) · s,
(
s \((1 ∧ q) · s)

)n−1
, s \ t, t \ . . . � 1

·L

s,
(
s \((1 ∧ q) · s)

)n
, s \ t, t \(

1 ∨ (q \1) ∨ (q \1)2 ∨ . . . ∨ (q \1)n
) � 1

\ L

s,
(
!
(
s \((1 ∧ q) · s)

))n
, s \ t, t \(

1 ∨ (q \1) ∨ (q \1)2 ∨ . . . ∨ (q \1)n
) � 1

!L n times

s, !
(
s \((1 ∧ q) · s)

)
, s \ t, t \(

1 ∨ (q \1) ∨ (q \1)2 ∨ . . . ∨ (q \1)n
) � 1

!C n − 1 times

Now, after decomposing the ∨’s in the topmost sequent, we need to derive all
sequents of the form

(1 ∧ q)n, (q \1)k � 1,

where k = 0, . . . , n. We decompose the ∧’s, taking k times q and (n − k) times
1. The resulting sequent,

1n−k, qk, (q \1)k � 1,

is easily derivable using \L and 1L.

Non-well-founded Proofs for Infinitary Action Logic 331

In order to prove non-derivability of the original sequent,

s, !
(

s \((1 ∧ q) · s)
)

, s \ t, t \(q \1)∗ � 1,

let us trace occurrences of the main \ connective in t \(q \1)∗ up to its decom-
position (using \L). Below this decomposition, the only rules which could be
applied are \L, ∧L, and rules for !. Thus, the trace does not branch.

Also notice that at each application of \L the formula t \(q \1)∗ should go to
the right premise. (Notice that these applications of \L decompose other formu-
lae, not t \(q \1)∗, since we are still below the decomposition of this formula.)
This follows from the fact that in any sequent in our derivation the numbers
of s and t occurrences should both be even. Indeed, such pairs of occurrences
originate in axioms, and since in s \((1 ∧ q) · s) there are no t’s and two s’s,
applying !W and !C does not alter this parity invariant. Now, if t \(q \1)∗ goes
to the left premise of \L, then this left premise either includes only one t, or an
odd number of s’s, contradiction.

Thus, the application of \L which decomposes t \(q \1)∗ looks as follows:

Π � t Γ, (q \1)∗,Δ � 1
Γ,Π, t \(q \1)∗,Δ � 1

\L

Here formulae in Γ , Π, and Δ can be of the following forms: s, !
(

s \((1∧ q) · s)),
s \((1 ∧ q) · s), (1 ∧ q) · s, 1 ∧ q, 1, q, s \ t and t. Moreover, there could be
only one s \ t or t (since it cannot be replicated by !C), and we could remove
occurrences of 1, since 1L is invertible (by cut with � 1). Next, we also could
immediately decompose (1 ∧ q) · s, by invertibility of ·L (again, using cut).

More interestingly, the occurrence of s (as a separate formula) also has to
be unique. The reasoning for this is as follows. In order to get a new s, we have
had to decompose s \((1 ∧ q) · s) by \L. Let us introduce a counter for s which
takes care of polarity: in s \ A, s is counted as −1, in other cases as +1. Such a
counter for s should always be zero. Thus, when one decomposes s \((1∧ q) · s),
the previous lonely s should go to the left premise, and in the right premise we
again have only one (1∧ q) · s, and, immediately applying ·L, get a unique lonely
s.

Consider two cases.

Case 1. There is an occurrence of s \ t. (And, see above, it is unique.) Since the
number of t’s should be even, this occurrence goes to left premise, Π � t. Since
the number of s’s should be even, the unique occurrence of s also goes to Π � t.
Thus, Γ and Δ could include only copies of !

(

s \((1 ∧ q) · s)
)

, s \((1 ∧ q) · s),
1 ∧ q, and q. Due to the parity condition on s, we could not now decompose
s \((1 ∧ q) · s). Therefore, there are actually no formulae of this form in Γ,Δ,
and all formulae of the form !

(

s \((1 ∧ q) · s)
)

should be eventually weakened.
Thus, Γ and Δ include only copies of 1 ∧ q and q.

However, the ∗Lω rule is invertible (cut with An � A∗), therefore, all sequents
of the form Γ, (q \1)m,Δ � 1 should be derivable. Now let Γ and Δ include k
formulae, each of the form 1 ∧ q or q. Taking m > k yields a non-derivable
sequent.

332 S. L. Kuznetsov

Case 2. There is a (unique) occurrence of t. In this case, there is no s \ t, and,
by the parity condition for s, no lonely s. Thus, Γ and Δ could again include
only copies of !

(

s \((1 ∧ q) · s)
)

, s \((1 ∧ q) · s), 1 ∧ q, and q. Now we proceed
exactly as in Case 1. ��

In general, the “key and lock” technique allows imposing arbitrary prior-
ity on decomposition of ! and ∗. Since these connectives are in effect ∃ and
∀ quantifiers, this leads to a conjecture that our Π0

2 -hardness result can be
strengthened to a higher, arithmetical lower bound. The important consid-
eration here is that the independence constraint does not prevent us from
simulating quantifier alternation. For example, ∃∀∃ could be simulated as to
s, !(s \(A · s)), s \ t, (t \(B · t))∗, t \ q, !(q \(C · q)), q \1 � D, which roughly corre-
sponds to ∃n∀m∃k

(

An, Bm, Ck � D
)

.

6 Concluding Remarks

In this paper, we have considered infinitary action logic extended with exponen-
tial, that is, a bimodal extension of the multiplicative-additive Lambek calculus
with both Kleene star with an ω-rule and the exponential modality from linear
logic. The full system is Π1

1 -complete, while its unimodal fragments are below
Δ0

2: Π0
1 -complete and Σ0

1 -complete. This complexity gap motivates us to find
a natural intermediate system, whose complexity is strictly in between. Such
system, denoted by !ACT−

ω , is naturally achieved by imposing the so-called
independence constraint: the Kleene star is not allowed to appear in the scope
of the exponential modality.

The independence constraint allows us to construct a well-behaved non-well-
founded proof system, extending the one by Das and Pous [5]. This non-well-
founded proof system has a very simple correctness condition, *-fairness, which
gives a Σ1

1 complexity upper bound. Together with the Π1
1 upper bound for the

full system, we get Δ1
1.

For a lower bound, we get Π0
2 -hardness, by encoding the Horn theory for

*-continuous Kleene algebra with *-free premises [12]. An attempt to apply
Palka’s [18] approach to prove a Π0

2 upper bound, however, fails.
We conclude with several directions of further research.

1. The actual complexity of !ACT−
ω remains open, and we suppose that tighter

lower bounds could be achieved. Namely, we conjecture an arithmetical lower
bound, but still have no idea whether the system is in fact arithmetical or
hyperarithmetical.

2. The non-well-founded proof system described in this paper is sound for
!ACT−

ω , but not for the full !ACTω. The question of developing a good
non-well-founded proof system which is equivalent to the full !ACTω and
studying its proof-theoretic properties (mainly cut elimination), though not
needed for complexity purposes, is interesting on its own right.

3. It should be not hard to extend our results to systems with several subexpo-
nential modalities instead of one exponential, see [9].

Non-well-founded Proofs for Infinitary Action Logic 333

4. Finally, transferring the results of the present paper to the commutative case
is also an open issue. Being interesting on its own, it is also motivated by
related work. Namely, the μMALL system [1] allows encoding of both Kleene
star and exponential, but in a commutative setting. Thus, porting our results
to the commutative setting would also say something about infinitary exten-
sions of μMALL.

Acknowledgments. The author is grateful to Anupam Das and Stanislav Speranski
for fruitful discussions. The author also thanks the reviewers for thorough consideration
of the paper and many valuable suggestions.

References

1. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput.
Log. 13(1), 2:1–2:44 (2012)

2. Buszkowski, W.: Lambek calculus with nonlogical axioms. In: Casadio, C., et al.
(eds.) Language and Grammar, Studies in Mathematical Linguistics and Natural
Language, pp. 77–93. CSLI Publications (2002)

3. Buszkowski, W.: On action logic: equational theories of action algebras. J. Log.
Comput. 17(1), 199–217 (2007)

4. Buszkowski, W., Palka, E.: Infinitary action logic: complexity, models and gram-
mars. Stud. Logica 89(1), 1–18 (2008)

5. Das, A., Pous, D.: Non-well-founded proof theory for (Kleene+action) (alge-
bras+lattices). In: 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 119,
pp. 19:1–19:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.19

6. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathe-
matics, vol. 151. Elsevier (2007)

7. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987)
8. de Groote, P.: On the expressive power of the Lambek calculus extended with a

structural modality. In: Casadio, C., et al. (eds.) Language and Grammar. Studies
in Mathematical Linguistics and Natural Language, CSLI Lecture Notes, vol. 168,
pp. 95–111 (2005)

9. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Subexponentials in non-
commutative linear logic. Math. Struct. Comput. Sci. 29(8), 1217–1249 (2019)

10. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Soft subexponentials and
multiplexing. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 500–517. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9 29

11. Kozen, D.: On action algebras. In: van Eijck, J., Visser, A. (eds.) Logic and Infor-
mation Flow, pp. 78–88. MIT Press (1994)

12. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inf. Comput. 179,
152–162 (2002)

13. Kuznetsov, S.: Action logic is undecidable. ACM Trans. Comput. Log. 22(2), 10:1–
10:26 (2021)

https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1007/978-3-030-51074-9_29
https://doi.org/10.1007/978-3-030-51074-9_29

334 S. L. Kuznetsov

14. Kuznetsov, S.L.: A Π0
1 -bounded fragment of infinitary action logic with exponen-

tial. In: Nigam, V., et al. (eds.) Logic, Language, and Security. LNCS, vol. 12300,
pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62077-6 1

15. Kuznetsov, S.L., Speranski, S.O.: Infinitary action logic with exponentiation. arXiv
preprint arXiv:2001.06863 (2020, submitted)

16. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Logic 56(1–3), 239–311 (1992)

17. Ono, H., Komori, Y.: Logics without contraction rule. J. Symb. Log. 50(1), 169–201
(1985)

18. Palka, E.: An infinitary sequent system for the equational theory of *-continuous
action lattices. Fund. Inform. 78(2), 295–309 (2007)

19. Pratt, V.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990.
LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0018436

20. Rogozin, D.: Quantale semantics of Lambek calculus with subexponential modali-
ties. arXiv preprint arXiv:1908.01055 (2019)

21. Wurm, C.: Language-theoretic and finite relation models for the (full) Lambek
calculus. J. Logic Lang. Inform. 26(2), 179–214 (2017)

https://doi.org/10.1007/978-3-030-62077-6_1
http://arxiv.org/abs/2001.06863
https://doi.org/10.1007/BFb0018436
https://doi.org/10.1007/BFb0018436
http://arxiv.org/abs/1908.01055

Uniform Interpolation from Cyclic
Proofs: The Case of Modal Mu-Calculus

Bahareh Afshari1,2(B), Graham E. Leigh2, and Guillermo Menéndez Turata1

1 Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands

{b.afshari,g.m.t.menendezturata}@uva.nl
2 Department of Philosophy, Linguistics and Theory of Science,

University of Gothenburg, Gothenburg, Sweden
graham.leigh@gu.se

Abstract. We show how to construct uniform interpolants in the con-
text of the modal mu-calculus. D’Agostino and Hollenberg (2000) were
the first to prove that this logic has the uniform interpolation property,
employing a combination of semantic and syntactic methods. This arti-
cle outlines a purely proof-theoretic approach to the problem based on
insights from the cyclic proof theory of mu-calculus. We argue the app-
roach has the potential to lend itself to other temporal and fixed point
logics.

Keywords: Modal mu-calculus · Sequent calculus · Uniform
interpolation · Cyclic proofs

1 Introduction

Uniform interpolation is frequently listed among the most desirable properties
a logic may have. Let Voc(ϕ) denote the non-logical vocabulary of a formula
ϕ.1 A logic has the uniform interpolation property if given any formula ϕ and
vocabulary V ⊆ Voc(ϕ), there exists a formula I with Voc(I) ⊆ V , the uniform
interpolant, such that for every ψ with Voc(ψ) ∩ Voc(ϕ) ⊆ V we have

ϕ → ψ is valid iff I → ψ is valid.

Upon inspection one sees that uniform interpolation is tightly knitted to deeper
semantic considerations. Uniform interpolants simulate quantification. For exam-
ple, in the case of propositional logic, if Voc(ϕ) \ V is a set of propositional con-
stants {p1, . . . , pk} then the formula I above expresses ∃p1 · · · ∃pkϕ. This also
1 This definition depends on the choice of underlying logic. For example, in the case

of polymodal logic, Voc(ϕ) is the set of propositional constants and modal actions
occurring in ϕ.

Supported by the Knut and Alice Wallenberg Foundation [2015.0179] and the Swedish
Research Council [2016-03502 & 2017-05111]. The authors would like to thank the
anonymous referees for their valuable comments.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 335–353, 2021.
https://doi.org/10.1007/978-3-030-86059-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_20

336 B. Afshari et al.

somewhat goes to explain why it is a challenging question: it does not reside
entirely in the realm of syntax or semantics, thereby limiting the techniques
available to tackle the problem.

A considerable body of research has been devoted to studying interpolation
properties of logics, and the landscape is moderately clear [13,24]. Nevertheless,
though perhaps not so surprising, proofs of uniform interpolation differ wildly
from one system to another, leaving the question yet open for a number of
interesting logical systems. There have been efforts to find general frameworks
to attack the problem. Iemhoff [25,26] identifies sufficient (but not necessary)
conditions on the form of proof systems that entail uniform interpolation. In
modal logics, uniform interpolation is intimately connected to the definability of
bisimulation quantifiers [16,43].

From a proof-theoretic perspective, the idea that uniform interpolation is
tied to provability is a natural one. Thinking about Craig interpolation for the
moment, if a ‘nice’ proof of a valid implication ϕ → ψ is available, one may
succeed in defining an interpolant by induction on the proof-tree, starting from
leaves and proceeding to the implication at the root. This method has recently
been applied even to fixed point logics admitting cyclic proofs [2,38]. In contrast,
for uniform interpolation, there is no single proof to work from but a collection
of proofs to accommodate: a witness to each valid implication ϕ → ψ where the
vocabulary of ψ is constrained. Working over a set of prospective proofs and
relying on the structural properties of sequent calculus is the essence of Pitts’
seminal result on uniform interpolation for intuitionistic logic [35].

In this article, we adapt Pitts’ technique to the modal μ-calculus, a fixed
point modal logic with an elegant mathematical theory that holds a prominent
place among temporal logics. Uniform interpolation for the modal μ-calculus
was established by D’Agostino and Hollenberg [14]. Their proof utilises modal
automata [27] to show definability of bisimulation quantifiers in modal μ-calculus
[35,43] (see also [15,16]). With this form of second-order quantification, uniform
interpolants can be readily defined.

One may wonder why Pitts’ method has not been exploited for the modal μ-
calculus. A notable appeal of such a syntactic method is the direct construction
of interpolants, without recourse to intermediate structures such as automata.
One possible answer is that the method applies only in a setting where one
can argue inductively over the cut-free derivations of a finitary system. In other
words, the approach is helpless in the context of non-analytic or infinitary proofs.

While it is feasible to design analytic (complete) tableaux systems for many
fixed point logics, they are often infinitary, i.e., the proof-tree can have infinite
branches. The first deductive system for the μ-calculus for which completeness
was established is indeed a system of ill-founded (cut-free) derivations, due to
Niwiński and Walukiewicz [34]. With the advance of cyclic proof theory in recent
years, it has been possible to obtain finite proof graphs that can witness validity.
For modal μ-calculus specifically, an annotated goal-oriented system was given
by Jungteerapanich [28] and Stirling [41] and it is a reformulation of that system
which is utilised in the present work. A different cyclic proof system based on the

Uniform Interpolation from Cyclic Proofs 337

Jungteerapanich–Stirling system was exploited to establish Lyndon interpolation
for the modal μ-calculus [2], a strengthening of Craig interpolation not implied by
uniform interpolation. It is unclear whether the argument in [2] can be applied to
uniform interpolation as the proof system employed lacks the requisite uniformity
for a Pitts-style treatment.

The main ideas and concepts we present are not specific to modal μ-calculus
but do rely on two of its essential features: the existence of (cyclic) analytic
tableaux and expression of fixed points. As such we anticipate that the main
argument is applicable to other logics admitting regular proof trees. That project,
however, is reserved for future investigation.

Outline. In the next section we give a brief account of the syntax of μ-
calculus and its equivalent formulation in terms of systems of equations which
greatly facilitate defining interpolants. Section 3 presents our version of the
Jungteerapanich–Stirling calculus and related concepts including that of a proof
invariant and proofs in normal form. In Sect. 4 we describe the overall idea of
the method and a key ingredient of our approach: construction of an interpo-
lation ‘template’ for a formula encoding information about prospective proofs
involving this formula. Section 5 is dedicated to the definition of the uniform
interpolant and the verification of the main theorem is carried out in the subse-
quent section. In the conclusion we expand on some points already touched on
in the introduction and further research questions of interest.

2 The Modal µ-calculus

Fix a countably infinite set Var of variables X,Y, . . . and a set Act of modal
actions a, b, The formulas of the modal μ-calculus are given by the following
grammar:

ϕ := � | ⊥ | X | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | μXϕ | νXϕ,

where X ranges over Var and a over Act. The language does not contain propo-
sitional constant symbols as these may be encoded by additional modal actions.

Formulas are denoted by lower-case Greek letters ϕ,ψ, χ, . . . , and finite sets
of formulas by upper-case Greek letters Γ,Δ,Σ, An atom is either � or
⊥. A quantifier-free formula is one built from atoms and variables via modal
operators [a], 〈a〉 and connectives ∧ and ∨. A [a]-formula is one of the form
[a]ϕ. A [·]-formula is a [a]-formula for any a ∈ Act. 〈a〉- and 〈·〉-formulas are
defined analogously. A modal formula is either a [·]- or a 〈·〉-formula. Define
[a]Γ = {[a]γ | γ ∈ Γ} and 〈a〉Γ similarly.

An occurrence of a variable X in a formula ϕ is bound if it is within the
scope of a quantifier σX for some σ ∈ {μ, ν}, and it is free otherwise. A formula
is closed if no variable occurs free in it. A set of formulas is closed if every
element is closed. We say that ϕ is well-named if no variable in ϕ occurs both
free and bound and no variable is bound more than once. Each bound variable
X of a well-named formula ϕ uniquely identifies a subformula σXXϕX of ϕ.
When no ambiguity arises we express this association as X =σX

ϕX . A formula

338 B. Afshari et al.

ϕ is guarded if, for any subformula σXψ of ϕ, every occurrence of X in ψ is
within a modal subformula of ψ. It is well known that every formula of the
modal μ-calculus is equivalent to a guarded one. A finite set of formulas Γ is
closed/guarded/well-named if and only if the conjunction of elements

∧
γ∈Γ γ is.

It will be convenient to utilise a more succinct notation for μ-calculus for-
mulas. Modal/hierarchical equational systems provide an expressively equivalent
formalism meeting our needs. For the purpose of this article, a modal equational
system is a pair (ϕ, E) where ϕ is a quantifier-free formula over a set of variables
VE and E is a set of equations {X =pX

ϕX | X ∈ VE} where ϕX is a quantifier-
free formula over VE and pX ∈ N for each X ∈ VE . The system (ϕ, E) uniquely
determines a μ-calculus formula ϕE given as follows. Let VE = {X0, . . . , Xn}
where pXi

≤ pXj
for each i < j ≤ n. The formula ϕE is specified by recursively

substituting σiXiϕXi
for Xi in all equations starting from i = n where σi = μ

iff pXi
is odd. In other words, the equations Xi =pXi

ϕXi
of (ϕ, E) correspond to

associations Xi =σi
ϕ̂Xi

in ϕE where ϕ̂Xi
is a substitution instance of ϕXi

, and
the ordering of the priorities corresponds to the subsumption order of ϕE . We
refer the reader to [21, §8.3.4] for details. In the following, whenever a system
(ϕ, E) is referred to as a formula we mean the formula ϕE described above.

We assume the reader is familiar with denotational semantics for formulas of
μ-calculus over, for example, labelled transition systems (see, e.g. [21, §8.1.2]).
A formula whose denotation over every labelled transition system is the set of
states of the system is called valid.

3 The JS proof system

Based on tableaux for satisfiability by Jungteerapanich [28], Stirling [41] intro-
duces a sound and complete tableau-style proof system for the modal μ-calculus
in which formulas are enriched with annotations that keep track of fixed point
unfoldings. In this section we present a Gentzen-style, two-sided version of the
Jungteerapanich–Stirling system.

A (plain) sequent is a pair (Γ,Δ), henceforth written Γ ⇒ Δ, where Γ and
Δ are finite sets of formulas. A sequent Γ ⇒ Δ is closed/guarded/well-named
iff Γ ∪ Δ is closed/guarded/well-named. A closed sequent Γ ⇒ Δ is valid if the
induced formula

∧
γ∈Γ γ → ∨

δ∈Δ δ is valid, where the connective → is defined in
terms of disjunction and negation (the latter expressed via de Morgan duality).
When working with sequents we shall frequently abbreviate Γ ∪ Δ to Γ,Δ and
Γ, {ϕ} to Γ, ϕ.

For every X ∈ Var let a countably infinite set NX = {x0, x1, . . . } of names
for X be fixed such that NX ∩ NY = ∅ if X �= Y . We denote names for
variables X,Y,Z, . . . by x, y, z, . . . respectively (possibly with indices) and let
N =

⋃
X∈Var NX . An annotation is a finite sequence of pairwise distinct names

in N. Given an annotation u we denote by |u| the length of u. An annotated
formula is a pair (u, ϕ), henceforth written ϕu, where ϕ is a formula and u is an
annotation for variables occurring in ϕ. A name x occurs in Γ if x occurs in the
annotation of some formula in Γ . An (annotated) sequent is a triple (Θ,Γ,Δ),
henceforth written Θ : Γ ⇒ Δ, where Θ is an annotation in names for variables

Uniform Interpolation from Cyclic Proofs 339

in Γ ∪ Δ, and Γ and Δ are finite sets of annotated formulae such that every
name in Θ occurs in Γ ∪Δ. The annotation Θ is called the control of Θ : Γ ⇒ Δ.
We identify annotated sequents whose control is empty with plain sequents.

Let ϕ be closed and well-named. Fix an arbitrary linear ordering of the
variables in ϕ, say X1 X2 · · · Xn, compatible with the subsumption ordering
on ϕ, i.e., such that i < j implies ϕXi

is not a subformula of ϕXj
. If ϕ is given

as an equational system, can be chosen as any linear order such that pX < pY

implies X Y . Given an annotation u for variables in ϕ, we denote by u�Xi the
result of removing from u all names for Xi+1,. . . ,Xn.

We now define the JS sequent calculus. The system operates on annotated
sequents, i.e., expressions Θ : Γ ⇒ Δ defined above. The axioms and rules of JS
are given in Fig. 1. Applications of the rules are subject to three restrictions:

• Θ′ is the subsequence of Θ given by removing any name which does not occur
in the sequent whose control is Θ′. This applies to the rules LW, RW, Lμ, Rμ,
Lν, Rν, LMod, RMod, LReset and RReset.

• In Lμ and Rν x is a name for the variable X not occurring in Θ, and Θ′x is
the concatenation of Θ′ and the annotation consisting of the single name x.

• In LResetz and RResetz the names z, z1, . . . , zk all name the same variable;
the other annotations (u, u1, . . . , uk) are arbitrary.

• In LResetz the name z may not occur in Γ and in RResetz the name z may
not occur in Δ.

By Mod (Reset) we denote either LMod or RMod (resp., LReset or RReset).

Definition 1. A derivation of a closed and well-named sequent Γ ⇒ Δ is a
finite tree P of annotated sequents in accordance with the rules of JS (subject
to the restrictions above) with root Γ ⇒ Δ, together with a map l �→ cl which
assigns to every non-axiomatic leaf l ∈ P a vertex cl <P l, where <P denotes
the ancestor relation of P , such that the sequents at l and cl are identical. We
refer to cl as the companion of l and to l as a repeat.

A proof in the JS calculus is a derivation for which all repeat leaves fulfil a
correctness condition that we now define.

Definition 2 (Invariant; Successful repeat). Let P be a JS derivation and
l a repeat leaf of P with companion cl. Let Θ be the longest common prefix of all
controls on the path [cl, l]P from cl to l. The invariant of l, in symbols invP (l),
is the shortest prefix of Θ of the form ux where Resetx occurs on the path [cl, l].
If no such prefix exists, define invP (l) = Θ. The repeat leaf l is successful iff
invP (l) is of the first form above.

The notion of an invariant for a repeat leaf does not feature in the presentations
of the calculus in [28,41]. However, it is an easy exercise to show that a repeat
is successful in the sense above if and only if it is successful in the sense of [41].

Definition 3 (JS proof). A proof is a JS derivation P such that every non-
axiomatic leaf is a successful repeat.

340 B. Afshari et al.

Ax⊥
Θ : Γ, ⊥u ⇒ Δ

Θ : Γ ⇒ ΔLW
Θ : Γ, Π ⇒ Δ

Θ : Γ, ϕu, ψu ⇒ Δ
L∧

Θ : Γ, ϕ ∧ ψu ⇒ Δ

Θ : Γ, ϕu ⇒ Δ Θ : Γ, ψu ⇒ Δ
L∨

Θ : Γ, ϕ ∨ ψu ⇒ Δ

Θ x : Γ, ϕ(u X)x ⇒ Δ
Lμ X =μ ϕ

Θ : Γ, Xu ⇒ Δ

Θ : Γ, ϕu X ⇒ Δ
Lν X =ν ϕ

Θ : Γ, Xu ⇒ Δ

Θ : Γ, ϕu ⇒ Δ
LMod

Θ : [a]Γ , Π, a ϕu a Δ, Σ

Θ : Γ, ϕuz
1 , . . . , ϕuz

k ⇒ Δ
LResetz

Θ : Γ, ϕuzz1u1
1 , . . . , ϕuzzkuk

k ⇒ Δ

Ax
Θ : Γ ⇒ u, Δ

Θ : Γ ⇒ ΔRW
Θ : Γ ⇒ Σ, Δ

Θ : Γ ⇒ ϕu, ψu, Δ
R∨

Θ : Γ ⇒ ϕ ∨ ψu, Δ

Θ : Γ ⇒ ϕu, Δ Θ : Γ ⇒ ψu, Δ
R∧

Θ : Γ ⇒ ϕ ∧ ψu, Δ

Θ : Γ ⇒ ϕu X , Δ
Rμ X =μ ϕ

Θ : Γ ⇒ Xu, Δ

Θ x : Γ ⇒ ϕ(u X)x, Δ
Rν X =ν ϕ

Θ : Γ ⇒ Xu, Δ

Θ : Γ ⇒ ϕu, Δ
RMod

Θ : [a]Γ , Π ⇒ [a]ϕu, a Δ, Σ

Θ : Γ ⇒ ϕuz
1 , . . . , ϕuz

k , Δ
RResetz

Θ : Γ ⇒ ϕuzz1u1
1 , . . . , ϕuzzkuk

k , Δ

Fig. 1. Rules of the JS system.

The role of the annotations is to keep track of unfoldings of fixpoint variables.
Figure 2 shows a proof of the valid formula νZμX([a]Z ∨〈a〉X) with correspond-
ing modal equational system (Z, {Z =0 X, X =1 [a]Z ∨ 〈a〉X}). The name z
is preserved and reset in between the companion node and the repeat, so the
repeat is successful.

We write P � Γ ⇒ Δ to express that P is a proof of the (closed, well-named)
sequent Γ ⇒ Δ, and JS � Γ ⇒ Δ if and only if there exists a proof of Γ ⇒ Δ.
The following can be proved by reduction of the two-sided calculus JS to its
one-sided fragment and appealing to the main result of [41].

Theorem 1. JS is sound and complete with respect to validity for closed, well-
named and guarded sequents.

Before turning to the statement and proof of uniform interpolation, we present
some important restrictions on applications of the rules of JS which does not
affect the completeness theorem above. Following these observations, we estab-
lish a property of JS proofs which plays a crucial role in our proof of the uniform
interpolation property. The property in question is that a finite unfolding of a
JS proof – given by identifying repeat leaves with their companions – is a JS
proof, and an invariant for a leaf in the unfolding is the invariant of some leaf in
the original proof.

Uniform Interpolation from Cyclic Proofs 341

z : ∅ ⇒ Xz

RResetz
zz : ∅ ⇒ Xzz

RW
zz : ∅ ⇒ Xzz , Xz

Rν
z : ∅ ⇒ Zz, Xz

RMod
z : ∅ ⇒ [a]Zz, a Xz

R∨
z : ∅ ⇒ ([a]Z a X)z

Rμ
z : ∅ ⇒ Xz

Rν : ∅ ⇒ Z

Fig. 2. A JS proof of νZμX([a]Z ∨ 〈a〉X).

The structural rules of weakening are also implicit in our formulation of the
modal rules LMod and RMod. Any JS proof can be converted into a proof without
LW or RW. Although the argument is straightforward, some care is required as
altering sequents in a JS proof can result in leaves and companions no longer
being identical sequents. Weakening, however, serves a special purpose in the
Jungteerapanich–Stirling calculus as a rule for maintaining a bound on the size
of sequents in proof-search. To show completeness for JS a proof is constructed
in which the left and right weakening rules are utilised in a specific form for
eliminating (reading the rule from conclusion to premise) an occurrence of a
formula if it occurs with two (distinct) annotations:

Θ′ : Γ, ϕu ⇒ Δ
LThin u �Θ v

Θ : Γ, ϕu, ϕv ⇒ Δ

Θ′ : Γ ⇒ ϕu,Δ
RThin u �Θ v

Θ : Γ ⇒ ϕu, ϕv,Δ

LThin and RThin are referred to as thinning rules. As before, in both inferences
Θ′ denotes the result of removing from Θ any name which does not occur in
Γ ∪ Δ ∪ {ϕu}. The relation �Θ is a total ordering on subsequences of Θ defined
as follows. If Θ is an annotation and u, v are subsequences of Θ, set u <Θ v iff
u precedes v in the lexicographic ordering induced by Θ. Then define u �Θ v as
either u <Θ v or there is some variable X such that v�X is a proper prefix of
u�X. We refer the reader to [29, §4.3] for the proof that �Θ is a total order on
subsequences of Θ.

In the presence of the thinning rules, Stirling’s completeness proof for the one-
sided system shows it is possible to dispense entirely with weakening, both in the
explicit form of LW and RW and implicitly in the modal inferences. Moreover,
provided sequents are guarded it suffices that the conclusion to the modal rules
LMod and RMod is a sequent of modal formulas and atoms only.

Further restrictions can be imposed on proofs in JS. These are outlined by the
next definition. The first three restrictions mirror standard conditions that can
be imposed on analytic sequent calculi for basic modal logic. Conditions 4 and 5
enforce uniformity on the rules manipulating annotations. The final condition
places a similar condition on the logical inferences, with the effect that two
incomparable vertices of a normal proof which are labelled by the same annotated

342 B. Afshari et al.

sequent have identical sub-proof up to repeat leafs. The requirement is trivial
for proofs of quantifier-free formulas; for quantified formulas it is a corollary of
the fact that JS proofs are closed under unravelling repeat leaves.

Definition 4 (Normal proof). A JS proof P is normal if the following con-
ditions hold of P.

1. The only applications of weakening are the thinning rules.
2. LMod or RMod is permitted only in cases where (referring to the form of the

rule in Fig. 1) Π consists of only �, 〈·〉-formulas and [c]-formulas for c �= a,
and Σ of only ⊥, [·]-formulas, and 〈c〉-formulas for c �= a.

3. Any sequent which is an instance of an axiom is a leaf.
4. In instances of Lμ and Rν, x is the first name in NX not occurring in Θ.
5. If a sequent Θ : Γ ⇒ Δ in P can be realised as the conclusion of an instance

of LThin, RThin, LReset or RReset then the sequent is the conclusion of this
rule in P , with the thinning rules having precedence over reset rules.

6. Any two non-repeat vertices of P labelled by the same sequent are instances
of the same rule instantiation.

The following is a direct consequence of the completeness theorem for the one-
sided fragment of JS by Stirling [41].

Theorem 2. A closed, well-named and guarded sequent Γ ⇒ Δ is valid iff there
exists a normal JS proof of Γ ⇒ Δ.

We conclude this section with two results concerning the definition of invariant
of a repeat leaf.

Fix a JS derivation P and let RepP be the set of repeat leaves of P . We
define two relations on elements of RepP . The first is a reflexive and transitive
relation � given by setting l � l′ if invP (l) is a prefix of invP (l′). The second
relation � is defined as reachability between repeat vertices: l � l′ iff cl <P l′,
i.e., there is a (simple) path in P from the companion of l to l′. Note that �
need not be symmetric or transitive.

The following two observations link invariants to the ‘unfolding’ of JS proofs.
Both results are immediate consequences of our notion of invariant.

Proposition 1. For every infinite �-chain l0 � l1 � · · · there exists k ≥ 0
such that lk � lj for all j ≥ k.

Proposition 2. Let P be a proof and l ∈ RepP . The result of inserting a copy
of the sub-derivation of P with root cl at the leaf l is a JS proof. Any invariant
of a repeat in the resulting proof is an invariant of a repeat in P .

4 Uniform Interpolation

With the proof system now fixed, we present the statement of uniform interpo-
lation that will be proved. The vocabulary of a formula ϕ, in symbols Voc(ϕ), is
the set of modal actions occurring in ϕ. The vocabulary of a set of formulas Φ
is Voc(Φ) =

⋃
ϕ∈Φ Voc(ϕ). In the following � Γ ⇒ Δ expresses JS � Γ ⇒ Δ.

Uniform Interpolation from Cyclic Proofs 343

Theorem 3. Let Γ be a finite well-named set of modal μ-calculus formulas and
V ⊆ Voc(Γ). There exists a formula I such that: (i) Voc(I) ⊆ V , (ii) � Γ ⇒ I,
and (iii) for every Δ such that Γ ⇒ Δ is a well-named sequent and Voc(Δ) ∩
Voc(Γ) ⊆ V, if � Γ ⇒ Δ, then � I ⇒ Δ.

We call the formula I of Theorem 3 the (uniform) interpolant of Γ relative to
V . Mention of the fixed vocabulary V will be suppressed when it can be inferred
from context. Note that the statement of uniform interpolation in Theorem 3 is
equivalent to the version on page 1.

The Craig interpolation property is a special case of uniform interpolation.

Corollary 1. If � Γ ⇒ Δ and Γ ⇒ Δ is well-named then there exists a formula
I such that Voc(I) ⊆ Voc(Γ) ∩ Voc(Δ), � Γ ⇒ I and � I ⇒ Δ.

Proof. Let Γ ⇒ Δ be given and set V = Voc(Γ) ∩ Voc(Δ). The uniform inter-
polant I for this choice of Γ and V satisfies the desired properties.

The remainder of this article is concerned with the proof of Theorem 3. Section 5
covers the construction of the interpolant in detail; the verification is the focus
of Sect. 6. In the present section we overview the basic strategy in the simple
case Γ is quantifier-free. In what immediately follows, sequents are expressions
Θ : Π ⇒ Δ where Π is a finite set of unannotated formulas and Θ only names
variables in Δ. In particular, Θ is empty if Δ is empty, in which case the control
will not be mentioned.

Let V ⊆ Voc(Γ) be fixed. The uniform interpolant IΓ for Γ and V is con-
structed by recursion on the syntactic complexity of Γ . Preempting the incorpo-
ration of fixed points into Γ , we take a slightly less direct approach to the defini-
tion of IΓ than necessary. Indeed, for quantifier-free sequents the construction of
interpolants is among the simplest examples of obtaining uniform interpolants
from a terminating proof system, as presented in [26].

We consider a derivation tree for the sequent Γ ⇒ ∅ according to the rules
Ax⊥, L∧, L∨ and a modification of the modal inferences which we detail shortly.
A derivation tree with root Γ ⇒ ∅ that is maximal in the sense that every leaf
is an instance of Ax⊥ or a sequent ∅ ⇒ ∅ is called an interpolation template
for Γ . The modal inference we utilise is an amalgamation of the left and right
modal inferences, named the global modal rule, GMod:

{Γi, π ⇒ ∅ | i ≤ n ∧ π ∈ Πi} {Γi ⇒ ∅ | i ≤ n ∧ ai ∈ V } ∅ ⇒ ∅

GMod
[a0]Γ0, 〈a0〉Π0, . . . , [an]Γn, 〈an〉Πn, Σ ⇒ ∅

Applications of the rule are subject to the restriction that a0, . . . , an are distinct
actions and Σ ⊆ {�}. The sets Γi and Πi are permitted to be empty.

Unlike LMod and RMod, the GMod rule is branching and involves three forms
of premise: sequents Γi, π ⇒ ∅ for i ≤ n and π ∈ Πi, called active premises;
sequents Γi ⇒ ∅ for i ≤ n and ai ∈ V , called passive premises; and the trivial
premise ∅ ⇒ ∅. The active and passive premises encode maximal instances of
LMod and RMod respectively assuming an appropriate (but unspecified) instan-
tiation of the consequent in both premise and conclusion. The trivial premise

344 B. Afshari et al.

corresponds to an instance of RMod for an action label in Act \ V , as any such
application of RMod yields a premise with empty antecedent. In practice, the
trivial premise may be safely ignored because it takes no part in the construc-
tion of the uniform interpolant; its presence is merely a technical convenience
for tracing paths in a proof of Γ ⇒ Δ onto the interpolation template.

The desired connection between the three modality rules is formally expressed
by the next lemma, the proof of which is straightforward. Restricting to the case
Δ = ∅, the lemma shows that a proof of a sequent Γ ⇒ ∅ (if one exists) is
encoded within an interpolation template for Γ .

Lemma 1. Let Γ be quantifier-free and V ⊆ Voc(Γ). There exists an inter-
polation template T for Γ such that for every Δ, if Γ ⇒ Δ is valid and
Voc(Δ)∩Voc(Γ) ⊆ V , then there exists a normal proof P � Γ ⇒ Δ satisfying the
following condition. For every path (Γi ⇒ Δi)i<N through P there exists a path
(Γki

⇒ ∅)i<N ′ through T where (ki)i<N ′ is strictly increasing and Γki+j = Γki

for all j < ki+1 − ki.

From an interpolation template TΓ satisfying the above lemma it is possible
to read off a uniform interpolant for Γ and V . We show that each vertex of
u ∈ TΓ can be associated a formula Iu fulfilling the three conditions of Theorem
3 relative to the sequent at u. The construction of Iu begins at the leaves of TΓ .
In the following, u is assumed to be labelled by the sequent Π ⇒ ∅.

If u is a leaf, then either ⊥ ∈ Π or Π = ∅. In the former case set Iu = ⊥,
in the latter Iu = �. Either way, Π ⇒ Iu is an axiom of JS. Now suppose u
is a non-leaf vertex of TΓ . Thus Π ⇒ ∅ together with the labels of immediate
successors to u corresponds to an instance of either L∧, L∨ or GMod. We consider
each case in turn. The simpler of the three inferences is L∧. In this case u has a
unique successor, v say, in TΓ which we may assume is a sequent Π ′, ϕ, ψ ⇒ ∅

where Π = Π ′ ∪ {ϕ ∧ ψ}. Define Iu = Iv. That � Π ⇒ Iu follows immediately
from the induction hypothesis. A more informative case is L∨. Here u has two
immediate successors in TΓ , u0 and u1 say, labelled by Π ′, ϕ ⇒ ∅ and Π ′, ψ ⇒ ∅

respectively where Π = Π ′ ∪{ϕ∨ψ}. Choose Iu = Iu0 ∨Iu1 . From � Π ′, ϕ ⇒ Iu0

and � Π ′, ψ ⇒ Iu1 we deduce � Π ⇒ Iu by applications of RW, L∨ and R∨.
The final case in the construction is an instance of GMod which we may

assume has the form on the previous page, i.e., Π is

Π = [a0]Γ0, 〈a0〉Π0, . . . , [an]Γn, 〈an〉Πn, Σ (1)

where a0, . . . , an are distinct modal actions and Σ ⊆ {�}. Let the actions be
ordered such that V = {a0, . . . , ak} for some k ≤ n. For each i ≤ n and π ∈ Πi

let uπ
i be the immediate successor of u for the active premise Γi, π ⇒ ∅ and

ui the immediate successor for the passive premise Γi ⇒ ∅. We may ignore the
trivial premise. A natural candidate for Iu is the formula

I∗
u =

∧

i≤k

([ai]Iui
∧

∧

π∈Πi

〈ai〉Iuπ
i
) (2)

Uniform Interpolation from Cyclic Proofs 345

Restricting the conjunction to i ≤ k ensures Voc(I∗
u) ⊆ V . Given � Γi, π ⇒ Iuπ

i

for each i ≤ n and π ∈ Πi, an application of LMod yields � Π ⇒ 〈ai〉Iuπ
i
.

Likewise, Π ⇒ [ai]Iui
can be deduced from Γi ⇒ Iui

by RMod. So � Π ⇒ I∗
u.

It is not difficult to show however that requirement (iii) of Theorem 3 can
fail for this choice of interpolant, for example if Π = 〈b〉ϕ where b �∈ V and ϕ is
unsatisfiable. The conjunction in (2) would be empty and I∗

u = �. So � Π ⇒ ⊥
but not � I∗

u ⇒ ⊥. The failure of I∗ to be a uniform interpolant of Π stems from
the possibility of modal actions outside V being relevant in a proof of Π ⇒ Δ.
If Γi, π is unsatisfiable for some π ∈ Πi, then ⊥ suffices as the choice of Iu but
I∗
u may not. With this consideration in mind, define Iu = ⊥ if � Γi, π ⇒ ∅ for

some k ≤ i ≤ n and some π ∈ Πi. Otherwise, set Iu = I∗
u.2

Let us conclude by establishing condition (iii) of the theorem. Let Δ be any
set of guarded formulas such that Voc(Δ) ∩Voc(Γ) ⊆ V and suppose � Γ ⇒ Δ.
Lemma 1 provides a normal proof P � Γ ⇒ Δ and an assignment f : P → TΓ

of vertices in the interpolation template to vertices in P such that u ∈ P and
f(u) ∈ TΓ have the same antecedent. Moreover, paths through P correspond
to paths through TΓ (the latter expanded with repetitions). If Θu : Γu ⇒ Δu

denotes the label of u ∈ P , we claim � Θu : If(u) ⇒ Δu.
Suppose u ∈ P is a leaf. Then Θu : Γu ⇒ Δu is either an instance of an axiom

or is a repeat leaf of P . In the case of an axiom � Θu : If(u) ⇒ Δu holds because
If(u) = ⊥ if ⊥ ∈ Γu. If u is a repeat we observe that since Δ is guarded and Γ
is quantifier-free, Γu = ∅. But then If(u) = ⊥ and � Θu : If(u) ⇒ Δu.

The only non-leaf case which is not straightforward is the modal rules, LMod
or RMod. By the normality of P , the sets Γu and Δu are modal. Suppose

Γu = [a0]Γ0, 〈a0〉Π0, . . . , [an]Γn, 〈an〉Πn, Σ

Δu = [b0]Λ0, 〈b0〉Δ0, . . . , [am]Λm, 〈bm〉Δm, Σ′

where we assume k ≤ min{m,n} is such that ai = bi for each i ≤ k and
{ak+1, . . . , an} ∩ {bk+1, . . . , bn} = ∅. The premise to this inference can take one
of four forms, depending on which formula of Γu ⇒ Δu is principal and which
modal action the rule effected:

1. � Γi, π ⇒ Δi for some i ≤ k and π ∈ Πi.
2. � Γi ⇒ λ,Δi for some i ≤ k and λ ∈ Λi.
3. � Γi, π ⇒ ∅ for some k < i ≤ n and π ∈ Πi.
4. � ∅ ⇒ λ,Δi for some k < i ≤ m and λ ∈ Λi.

If If(u) = ⊥ then Θu : If(u) ⇒ Δu is an axiom. Otherwise, If(u) = I∗
f(u) (where

vertices uπ
i and ui in (2) refer to the active and passive premises of f(u) in TΓ)

and the third scenario does not apply. In the first two cases Θu : If(u) ⇒ Δu is
a consequence of the induction hypothesis; in case 4, by RMod and LW.

Thus, we have shown that the formula Ir where r is the root of the interpo-
lation template TΓ is a uniform interpolant for Γ and V , if Γ is quantifier-free.
2 The case distinction based on the provability of Γi, π ⇒ ∅ brings into question the

computational cost of constructing uniform interpolants. Lemmas 1 and 3, how-
ever, provide that provability of sequents with empty consequent is implicit in the
interpolation template.

346 B. Afshari et al.

5 Constructing the Interpolant

We are, of course, interested in obtaining interpolants for formulas containing
quantifiers. The basic idea behind the interpolation template remains the same
and can be generalised to incorporate the fixed point inferences Lμ and Lν, and
the annotation management rules LThin and LReset. The construction, and sub-
sequent verification, of interpolants from these templates is more subtle how-
ever. In order to ensure interpolation templates remain finite trees – so that
interpolants can be defined recursively from leaf to root – it is necessary to treat
them as we do cyclic proofs by permitting leaves with non-trivial sequent, i.e.,
sequents that are neither empty nor instances of Ax⊥. These leaves will be sub-
ject to path-based repeat condition in the style of JS proofs. Even with a suitable
repeat condition, there remains the question of how to present an interpolant
to a repeat leaf prior to knowing the intended interpolant for the companion
vertex. We return to this question after clarifying the interpolation templates.

Fix a finite well-named set of guarded formulas Γ and vocabulary V ⊆
Voc(Γ). An interpolation template for Γ is a tree of annotated sequents of the
form Θ : Π ⇒ ∅ with root Γ ⇒ ∅ subject to the rules L∨, L∧, Lμ, Lν, LThin,
LReset and GMod. The final rule is adapted to annotated sequents in the nat-
ural way in analogy with the rules LMod and RMod. We require interpolation
templates to be a normal derivation.3 As mentioned, three kinds of leaf are per-
mitted in TΓ : instances of Ax⊥, empty sequents ∅ ⇒ ∅, and ‘repeat’ sequents.
The requirements of a repeat is as follows: A leaf u ∈ TΓ is a repeat if and only if
there exists a vertex cu <TΓ

u (called the companion of u) labelled by the same
(annotated) sequent. Every repeat leaf can be assigned an invariant according
to Definition 2 which is called successful if the invariant ends in a name that is
reset on the path between companion and leaf.

The restriction to normal proofs has the effect that interpolation templates
can be assumed to be finite. The conditions, in especial conditions 4 and 5
concerning annotations, ensure that a maximal path through an interpolation
template reaches either an axiom, empty sequent or a sequent which is repeated
on the path. Such a repeat can be treated as a repeat leaf. The argument is
identical to the proof of termination of proof search in [28,41].

Lemma 2. Every guarded and well-named sequent Γ ⇒ ∅ admits a finite inter-
polation template.

Henceforth we assume a fixed interpolation template TΓ for a set Γ and vocab-
ulary V . The path property of Lemma 1 also generalises to the quantified case.
The result is analogous although now a path through a (normal) proof of Γ ⇒ Δ
will in general trace out a path through the unravelling of TΓ .

Lemma 3. If Γ ⇒ Δ is a valid well-named and guarded sequent and Voc(Γ) ∩
Voc(Δ) ⊆ V , then there exists a normal proof P � Γ ⇒ Δ such that for every

3 We assume Definition 4 is generalised to derivations with GMod. No additional
restrictions are necessary to accommodate this rule

Uniform Interpolation from Cyclic Proofs 347

path (Θi : Γi ⇒ Δi)i≤N through P there is a sequence of vertices (ui)i≤N ′ from
TΓ with labels (Θ′

ki
: Γki

⇒ ∅)i≤N ′ where for every i < N ′:

1. ui+1 is an immediate successor of ui or ui is a repeat and ui+1 is an immediate
successor of the companion of ui.

2. ki < ki+1, and for each j < ki+1 − ki we have Γki+j = Γki
and Θ′

ki
is the

restriction of Θki+j to names for variables in Γki
.

Given an interpolation template TΓ , we now assign an interpolant to each vertex
of TΓ . The definition proceeds in two stages. First, we assign to each u ∈ TΓ a
formula Iu called the pre-interpolant for u. This is defined by recursion through
TΓ following essentially the same construction as before. Second, by considering
the collection of all pre-interpolants it is possible to isolate a uniform interpolant
for Γ .

Once we have decided on pre-interpolants for the repeat leaves of TΓ , the
construction of Iu can proceed by the same process as in the quantifier-free case.
However, it is convenient to deal with trivial interpolants for instances of GMod
as a special case before the more general recursive construction. Recall that if u
is the conclusion of GMod we set Iu = ⊥ if at least one active premise to this rule
is valid (as a plain sequent). Lemma 3 confirms that as in the quantifier-free case,
this question can be answered by inspection of the interpolation template directly
(we omit the details here). With trivial instances of GMod pre-interpolated,
we proceed with the recursive construction. Suppose u ∈ TΓ has not yet been
assigned a pre-interpolant. If u sits above an application of GMod which has
already been assigned (trivial) interpolant, Iu = ⊥. In the case u is a repeat
Iu is chosen to be a fresh variable symbol Xu uniquely associated to the leaf u.
In all other cases, define Iu follows the same construction as before. The ‘extra’
derivation rules not covered before (Lμ, Lν, LThin and LReset) are all unary and
we define Iu = Iu0 where u0 is the immediate successor to u.

Thus we have an interpolation template TΓ and a pre-interpolant Iu for each
u ∈ TΓ , both relative to a choice of vocabulary V ⊆ Voc(Γ). The pre-interpolant
Iu is a quantifier-free formula in variables Xu1 , . . . , Xuk

where u1, . . . , uk lists
the repeat leaves above u. Let RepΓ be the set of repeat leaves of TΓ and set
r to be the root of TΓ . The uniform interpolant for Γ is defined as the formula
represented by the modal equational system

IΓ = (Ir, EΓ) where EΓ = {Xu =pu
Icu

| u ∈ RepΓ }.

It remains to define the priority function u �→ pu on repeats. For this fix an
enumeration {u1, . . . , un} of RepΓ consistent with the relation � introduced in
Sect. 3 and such that if inv(ui) = inv(uj) for i < j then either ui is successful or
uj is unsuccessful. Define pui

= 2i − 1 if ui is successful and puj
= 2i otherwise.

6 Verifying the Interpolant

In this section we present the argument that IΓ fulfils the requirements of Theo-
rem 3. Inspection of the definition confirms that the interpolant is in the appro-
priate language: Voc(IΓ) ⊆ V. We address (ii) and (iii) of the theorem in turn

348 B. Afshari et al.

beginning with the former. Due to constraints of space, we omit the technical
details. Let TΓ be a finite interpolation template satisfying Lemma 3.

Proposition 3. JS � Γ ⇒ IΓ .

Proof. We begin by removing from TΓ all vertices above the instances of GMod
which were assigned trivial pre-interpolant by the construction. Let T ∗ be this
tree. We assume the label of u ∈ T ∗ is Θu : Πu ⇒ ∅. The strategy is to show
� Θu : Πu ⇒ Iu for every u ∈ T ∗ where Iu identifies the formula expressed by
the equational system (Iu, EΓ). For vertices of T ∗ lacking a repeat leaf as a
successor, the claim follows the argument given in Sect. 4. Repeats in T ∗ will be
accounted for via the equations Xl = Icl

and the creation of proof cycles.
The claimed JS proof P � Γ ⇒ IΓ is defined as follows. Begin by identifying

the repeat leaves of T ∗ with their companions to form a graph which we unravel
to an infinite tree Tω. At each sequent in Tω instantiate the consequent by
the assigned pre-interpolant and insert rules from JS between vertices to obtain
an infinite JS derivation. Vertices arising from leaves of T ∗ will have the form
Θl : Πl ⇒ Xl, whereby inserting (unannotated) instances of Rμ or Rν allows
them to be connected with their ‘companion’ sequent Θl : Πl ⇒ Icl

. Applications
of Rν inserted in this way are annotated according to the normality condition 4
of Definition 4 and the names propagate through the derivation according to the
JS rules (with applications of RReset inserted whenever possible). P is formed
by pruning this tree on each path at the first repeated annotated sequent where
a variable Xl of the pre-interpolant is principal provided that l � l′ for every
subsequent variable Xl′ active on the path.

That the process results in a finite JS derivation is straightforward to verify.
To see that P is a proof, consider an arbitrary repeat leaf l ∈ P and its companion
cl ∈ P . The path [cl, l]P , when projected to a sequence of vertices of TΓ , identifies
a �-chain l0 � l1 � · · · � ln of repeat leaves of TΓ . Given that repeats in TΓ

are associated unique variables, l and cl must correspond to the same vertex
of TΓ , meaning ln � l0. Proposition 1 allows us to assume, without loss of
generality, that l0 � li for every i ≤ n and pl0 = min{pli | i ≤ n}. If pl0 is even,
meaning l0 is unsuccessful in TΓ , then Xl0 is of type ν and thus its unfoldings
in P introduce names for Xl0 . Since pl0 ≤ pli for all i ≤ n, the unfoldings of
Xl1 , . . . , Xln preserve the names for Xl0 and each unfolding of Xl0 removes the
names for the other variables, whence we can find a name for Xl0 preserved and
reset in [cl, l]P . And if pl0 is odd, then l0 is successful in TΓ , so, since l0 � li for
every i ≤ n, the name on the antecedent witnessing the success of l0 in TΓ is
preserved and reset in [cl, l]P .

The third clause of Theorem 3 is proved by a similar argument. We transform,
using Lemma 3, a given proof P � Γ ⇒ Δ into a derivation PI � IΓ ⇒ Δ by
replacing the antecedent of each sequent with the chosen pre-interpolant and
observe that any repeat leaf of PI whose success in P is on account of the
variables from Γ is successful by virtue of a variable in IΓ .

Proposition 4. Suppose Γ ⇒ Δ is a well-named and guarded sequent such that
Voc(Γ) ∩ Voc(Δ) ⊆ V. Then � Γ ⇒ Δ implies � IΓ ⇒ Δ

Uniform Interpolation from Cyclic Proofs 349

Proof. Fix Δ satisfying the requirements and a normal JS proof P � Γ ⇒ Δ
given by Lemma 3. A derivation PI � IΓ ⇒ Δ is obtained in two steps. First, P
is converted into an ill-founded ‘derivation’ Pω

I with the desired root sequent by
unravelling P , replacing every antecedent by the corresponding pre-interpolant
formula given by Lemma 3, correcting the ‘left’-rules between vertices and adjust-
ing the control of each vertex accordingly. Observe that the control of a vertex
u ∈ Pω

I and the control of the sequent corresponding to u in P are identical
when restricted to variables from the consequent, i.e., variables in Δ. They dif-
fer, however, in that names of variables from Γ are no longer present in Pω

I and
that names for variables of the pre-interpolant have been inserted. Following the
annotation strategy for normal proofs, it follows that every infinite path in Pω

I

contains a repeated annotated sequent which can be marked as a repeat leaf,
thus obtaining a finite JS derivation PI .

It remains to show that PI is a proof. Let l ∈ PI be a repeat leaf with
companion cl ∈ PI . As in the previous argument, tracing [cl, l]PI

onto TΓ yields
a �-cycle l0 � l1 � · · · � ln � l0 of repeat leaves of TΓ and by Proposition
1 we may assume that l0 � li for every i ≤ n and pl0 = min{pli | i ≤ n}. If pl0

is odd, then l is a successful repeat because the unfoldings of Xl0 remove the
names for any other variable Xli and introduce a new name for Xl0 , whence a
name for Xl0 is preserved and reset in [cl, l]PI

. Therefore, suppose pl0 is even,
meaning that l0 is not a successful leaf of TΓ . But given that P is a proof, it
follows that l is successful due to a name for a variable in Δ being preserved and
reset on the path [cl, l]PI

.

7 Conclusion

We introduced the notion of an interpolation template for formulas of the modal
μ-calculus and showed that these describe uniform interpolants. Interpolation
templates are finite (cyclic) derivation trees in a sequent calculus based on
the Jungteerapanich–Stirling annotated proof system of [28,41]. Uniform inter-
polants arise from encoding the structure of interpolation templates as formulas
of the μ-calculus.

Interpolation templates can be given for a wide range of modal and temporal
logics simply by embedding them into the modal μ-calculus. This holds even
for logics that lack the uniform interpolation property, such as propositional
dynamic logic PDL and the alternation-free fragment of the μ-calculus. Although
uniform interpolants can still be constructed by the method given, these will
be formulas of the μ-calculus that can not be expressed within the syntax of
the logic in question. Nevertheless, it would be informative to investigate the
interpolants that arise from templates for these logics as a way of shedding light
on the complexity and expressivity of fragments of the μ-calculus. A natural
question is whether uniform interpolants generated from, say, alternation-free
formulas are of bounded complexity or exhaust the quantifier hierarchy of the
modal μ-calculus.

We also expect our approach can be directly applied to logics without a
detour via modal μ-calculus. A key requirement is the existence of a sound and

350 B. Afshari et al.

complete cyclic sequent calculus from which one can define interpolation tem-
plates. While there are many examples of cyclic sequent calculi4 not all are
directly amenable to our methods. Our notion of interpolation templates pre-
supposes an analytic calculus satisfying an appropriate sub-formula property.
On the other hand, constructing interpolants from templates assumes a highly
expressive logic, namely the definability of fixed points for the formulas arising
from interpolation templates. From these perspectives, two logics in particular
stand out as interesting candidates for investigation: Gödel–Löb provability logic
GL and bisimulation quantifier logic BQL. The former logic admits an analytic
cyclic sequent calculus which has been utilised to prove Craig interpolation for
GL [38]. Bisimulation quantifier logic is the extension of propositional dynamic
logic PDL with bisimulation quantifiers [15]. Although BQL is expressively equiv-
alent to μ-calculus [14], the reduction is highly complex and a direct treatment
of BQL will be an interesting contribution of cyclic proof theory to modal logic.

Uniform interpolation is intimately connected with quantification [14,35,43].
For modal logics the appropriate notion of quantification is (propositional) bisim-
ulation quantifiers. In the present framework where propositional constants are
replaced by modal actions, it is natural to consider quantifiers ranging over
modal actions. Thus the formula ∃aϕ expresses that ϕ[b/a], the result of sub-
stituting the modal action b for a in ϕ, holds for some b ∈ Act, and similarly
for the universal quantifier ∀aϕ. To basic modal logic we may add the logical
axiom � ϕ[b/a] → ∃aϕ and the rule ‘from � ϕ → ψ infer � ∃aϕ → ψ,’ where
ψ is any formula in which a does not occur free (using the usual definition of
free occurrences of variables). The universal quantifier is treated symmetrically.
Having access to action quantifiers, the formula ∃aϕ is nothing more than a
uniform interpolant for ϕ with respect to the vocabulary Voc(ϕ) \ {a}. As such,
our construction of uniform interpolants provides a new proof of the definability
of bisimulation quantifiers in the modal μ-calculus, a result first established in
[14] via automata theoretic methods.

Another direction of research arises in the area of description logics and
knowledge representation, where uniform interpolation plays an important tool
in reducing the search space for querying ontologies [6,12,33]. In the case of
acyclic TBoxes uniform interpolants often exist but there seems to be no uniform
approach for dealing with cyclic constraints [5]. We have left aside complexity
considerations in the present study but it is an important factor for the method-
ology to have practical applications for tableaux-based algorithms. At this stage,
our expectation is that the complexity may well not be favourable for modal μ-
calculus. Nevertheless we hope the approach can contribute to database-related
reasoning problems in the context of less expressive logics.

4 A non-exhaustive list of cyclic proofs systems include: first-order logic with inductive
definitions [8,9,11], arithmetic [7,17,39], linear logic [3,4,20], modal and dynamic
logics [1,22,23,28,30,38,40,41,44], program semantics [37], automated theorem prov-
ing [10,36,42], higher-order logic [31] and algebras and lattices [18,19,32].

Uniform Interpolation from Cyclic Proofs 351

References

1. Afshari, B., Leigh, G.E.: Cut-free completeness for modal mu-calculus. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-
javik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Society (2017)

2. Afshari, B., Leigh, G.E.: Lyndon interpolation for modal mu-calculus. In: Post-
Proceedings of TbiLLC 2019. (to appear)

3. Baelde, D., Doumane, A., Kuperberg, D., Saurin, A.: Bouncing threads for infini-
tary and circular proofs (2020). https://arxiv.org/abs/2005.08257

4. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative
additive case. In: Talbot, J., Regnier, L. (eds.) 25th EACSL Annual Conference
on Computer Science Logic, CSL 2016, August 29–September 1 2016, Marseille,
France. LIPIcs, vol. 62, pp. 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2016)

5. Benedikt, M.: How can reasoners simplify database querying (and why haven’t
they done it yet)? In: den Bussche, J.V., Arenas, M. (eds.) Proceedings of the 37th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
Houston, TX, USA, 10–15 June 2018, pp. 1–15. ACM (2018)

6. Benedikt, M., ten Cate, B., Vanden Boom, M.: Interpolation with decidable fix-
point logics. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 378–389. IEEE Computer
Society (2015)

7. Berardi, S., Tatsuta, M.: Equivalence of inductive definitions and cyclic proofs
under arithmetic. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Com-
puter Society (2017)

8. Berardi, S., Tatsuta, M.: Classical system of Martin-Löf’s inductive definitions is
not equivalent to cyclic proofs. Log. Methods Comput. Sci. 15(3), 1:1–1:39 (2019)

9. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). https://doi.org/10.1007/11554554 8

10. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2 25

11. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011)

12. ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description
logics. J. Artif. Intell. Res. 48, 347–414 (2013)

13. D’Agostino, G.: Interpolation in non-classical logics. Synthese 164(3), 421–435
(2008)

14. D’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus. J.
Symb. Log. 65(1), 310–332 (2000)

15. D’Agostino, G., Lenzi, G.: An axiomatization of bisimulation quantifiers via the
mu-calculus. Theor. Comput. Sci. 338(1–3), 64–95 (2005)

16. D’Agostino, G., Lenzi, G.: Bisimulation quantifiers and uniform interpolation for
guarded first order logic. Theor. Comput. Sci. 563, 75–85 (2015)

17. Das, A.: On the logical complexity of cyclic arithmetic. Log. Methods Comput.
Sci. 16(1), 10:1–10:25 (2020)

18. Das, A., Pous, D.: A cut-free cyclic proof system for Kleene algebra. In: Schmidt,
R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 261–277.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 16

https://arxiv.org/abs/2005.08257
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-319-66902-1_16

352 B. Afshari et al.

19. Das, A., Pous, D.: Non-wellfounded proof theory for
(kleene+action)(algebras+lattices). In: Ghica, D.R., Jung, A. (eds.) 27th
EACSL Annual Conference on Computer Science Logic, CSL 2018, 4–7 September
2018, Birmingham, UK. LIPIcs, vol. 119, pp. 19:1–19:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018)

20. De, A., Saurin, A.: Infinets: the parallel syntax for non-wellfounded proof-theory.
In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp.
297–316. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9 17

21. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-
State Systems, vol. 58. Cambridge University Press, Cambridge (2016)

22. Docherty, S., Rowe, R.N.S.: A non-wellfounded, labelled proof system for proposi-
tional dynamic logic. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS
(LNAI), vol. 11714, pp. 335–352. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29026-9 19

23. Enqvist, S., Hansen, H.H., Kupke, C., Marti, J., Venema, Y.: Completeness for
game logic. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, 24–27 June 2019, pp. 1–13. IEEE (2019)

24. Gabbay, D.M., Maksimova, L.: Interpolation and Definability. Modal and Intu-
itionistic Logic. Oxford University Press, Oxford (2005) Logic. Oxford University
Press, Oxford (2005)

25. Iemhoff, R.: Uniform interpolation and sequent calculi in modal logic. Arch. Math.
Log. 58(1–2), 155–181 (2019)

26. Iemhoff, R.: Uniform interpolation and the existence of sequent calculi. Ann. Pure
Appl. Log. 170(11), 102711 (2019)

27. Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results.
In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60246-1 160

28. Jungteerapanich, N.: A tableau system for the modal μ-calculus. In: Giese, M.,
Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 220–234.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1 17

29. Jungteerapanich, N.: Tableau systems for the modal μ-calculus. Ph.D. thesis, Uni-
versity of Edinburgh (2010)

30. Kokkinis, I., Studer, T.: Cyclic proofs for linear temporal logic. In: Probst, D.,
Schuster, P. (eds.) Concepts of Proof in Mathematics, Philosophy, and Computer
Science, Ontos Mathematical Logic, vol. 6, pp. 171–192. De Gruyter (2016)

31. Kori, M., Tsukada, T., Kobayashi, N.: A cyclic proof system for HFL N. In: Baier,
C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer
Science Logic, CSL 2021, 25–28 January 2021, Ljubljana, Slovenia (Virtual Con-
ference). LIPIcs, vol. 183, pp. 29:1–29:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021)

32. Kuznetsov, S.: Half a way towards circular proofs for Kleene lattices (2019). circu-
larity in Syntax and Semantics

33. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in
expressive description logics. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalo-
nia, Spain, 16–22 July 2011, pp. 989–995. IJCAI/AAAI (2011)

34. Niwinski, D., Walukiewicz, I.: Games for the mu-calculus. Theor. Comput. Sci.
163(1 & 2), 99–116 (1996)

35. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symb. Log. 57(1), 33–52 (1992)

https://doi.org/10.1007/978-3-030-29026-9_17
https://doi.org/10.1007/978-3-030-29026-9_19
https://doi.org/10.1007/978-3-030-29026-9_19
https://doi.org/10.1007/3-540-60246-1_160
https://doi.org/10.1007/978-3-642-02716-1_17

Uniform Interpolation from Cyclic Proofs 353

36. Rowe, R.N.S., Brotherston, J.: Realizability in cyclic proof: extracting ordering
information for infinite descent. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX
2017. LNCS (LNAI), vol. 10501, pp. 295–310. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66902-1 18

37. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 25

38. Shamkanov, D.: Circular proofs for the Gödel-Löb provability logic. Math. Notes
96, 575–585 (2014)

39. Simpson, A.: Cyclic arithmetic is equivalent to Peano Arithmetic. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 17

40. Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and tree-
shaped proofs in the μ-calculus. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS,
vol. 2620, pp. 425–440. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36576-1 27

41. Stirling, C.: A tableau proof system with names for modal mu-calculus. In:
Voronkov, A., Korovina, M.V. (eds.) HOWARD-60: A Festschrift on the Occa-
sion of Howard Barringer’s 60th Birthday, EPiC Series in Computing, vol. 42, pp.
306–318. EasyChair (2014)

42. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer
programs with cyclic proof. J. Autom. Reason. 64(3), 555–578 (2020)

43. Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic
Group Preprint Series no. 161, Utrecht (1996)

44. Visser, A.: Cyclic Henkin logic (2021). https://arxiv.org/abs/2101.11462v1

https://doi.org/10.1007/978-3-319-66902-1_18
https://doi.org/10.1007/978-3-319-66902-1_18
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://arxiv.org/abs/2101.11462v1

Cyclic Hypersequent Calculi for Some
Modal Logics with the Master Modality

Jan Rooduijn(B)

University of Amsterdam, Amsterdam, Netherlands
j.m.w.rooduijn@uva.nl

https://staff.fnwi.uva.nl/j.m.w.rooduijn/

Abstract. At LICS 2013, O. Lahav introduced a technique to uniformly
construct cut-free hypersequent calculi for basic modal logics charac-
terised by frames satisfying so-called ‘simple’ first-order conditions. We
investigate the generalisation of this technique to modal logics with
the master modality (a.k.a. reflexive-transitive closure modality). The
(co)inductive nature of this modality is accounted for through the use of
non-well-founded proofs, which are made cyclic using focus-style annota-
tions. We show that the peculiarities of hypersequents hinder the usual
method of completeness via infinitary proof-search. Instead, we construct
countermodels from maximally unprovable hypersequents. We show that
this yields completeness for a small (yet infinite) subset of simple frame
conditions.

Keywords: Hypersequent calculi · Modal logic · Master modality ·
Non-well-founded proofs · Cyclic proofs

1 Introduction

Cyclic and non-well-founded proofs have turned out to be highly effective in
the proof theory of modal fixpoint logics. They have been applied to obtain
proof-theoretic proofs of known results, such as the completeness of Kozen’s
axiomatisation of the modal μ-calculus [1], and Lyndon interpolation for Gödel-
Löb logic [12]. Moreover, cyclic proof systems have been constructed for logics
for which until then no proof system was known, e.g. Game Logic [7] and the
hybrid μ-calculus [6]. The key advantage of cyclic proof systems over systems
with explicit (co)induction rules, is that they enjoy a variant of the subformula
property. Among other benefits, this makes them more suitable for proof search.
Although cyclic proof systems have by now been devised for many modal fixpoint
logics, little work has been done on constructing such systems in a uniform way.
In particular, there is no general method to obtain cyclic proof systems for modal
fixpoint logics characterised by various classes of frames. This paper attempts
to take a first step in that direction.

This research has been made possible by a grant from the Dutch Research Council
NWO, project nr. 617.001.857.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 354–370, 2021.
https://doi.org/10.1007/978-3-030-86059-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_21

Cyclic Hypersequent Calculi for Some Modal Logics 355

Already without fixpoints, many modal logics call for a deviation from the
standard sequent calculus. A typical example is the modal logic S5 (charac-
terised by frames whose accessibility relation is an equivalence relation), for
which obtaining a cut-free calculus in the standard sequent system is notori-
ously difficult. Several alternatives have been proposed, most of which equip
ordinary sequents with extra structure, often echoing the Kripke semantics (for
an overview we refer the reader to Chap. 4 of [8]). The alternative that arguably
stays closest to Gentzen’s original approach is that of hypersequents, which are
nothing but finite disjunctions of sequents. Already with this minor modifica-
tion, many more modal logics, including S5, can be given a sound and complete
proof system. In [10], Ori Lahav presents a systematic method for constructing
hypersequent calculi for any extension of one of the modal logics K, K4 or KB,
characterised by frames satisfying any finite number of so-called simple frame
conditions.

In this paper we adapt Lahav’s method to uniformly obtain cyclic proof
systems for a comparatively simple modal fixpoint logic: unimodal logic with
the master modality. This language, denoted ML∗, augments the basic modal
language with a modality �∗ , which is to be thought of as the reflexive-transitive
closure of the basic modality �. For each finite set C of simple frame conditions
we uniformly construct both an infinitary and a cyclic hypersequent calculus
for ML∗ interpreted on the class of C-frames. In the cyclic systems, sequents are
annotated using a focus mechanism originally due to Lange and Stirling (see
e.g. [11]). All systems are proven to be sound, but completeness is only proven
for a subset of the simple frame conditions which we shall call equable. While
many simple frame conditions are not equable, there are infinitely many equable
frame conditions, including: seriality, reflexivity, directedness and universality.
As a corollary, we obtain decidability for each of these logics.

As for related work, a finitary analytic proof system for ML∗ interpreted on
the class of all frames is given in [5]. In [3], a cyclic proof system is presented
for LTL and CTL, two modal fixpoint logics that are interpreted on restricted
frames classes. In [9], a general method is given for constructing sound and
complete Hilbert systems for ML∗ interpreted on various frame classes, but this
concerns non-analytic systems having both a cut-rule and an explicit induction
rule. Another notable example of related work is [4], where, like here, cyclic
proofs are combined with some calculus that extends the ordinary sequent cal-
culus. However, they use labelled sequents rather than hypersequents and do not
consider multiple logics at once.

In Sect. 2 we introduce the syntax and semantics of ML∗ and define simple
and equable frame conditions. In Sect. 3 we introduce our hypersequent cal-
culi. Section 4 proves soundness for all calculi. Finally, in Sect. 5 completeness is
proven for those calculi that contain only rules for equable frame classes.

356 J. Rooduijn

2 Preliminaries

For the rest of this article, we fix a countable set of P of propositional variables.

Definition 1. The syntax ML∗ of modal ∗-formulas over P is generated by:

ϕ ::= p | ⊥ | ϕ → ϕ | �ϕ | �∗ϕ

where p ∈ P.

As usual, formulas will be interpreted in Kripke models. We will refer to modal
∗-formulas as just formulas.

Definition 2. A Kripke frame is a pair (S,R) consisting of a set S of states
together with an accessibility relation R ⊆ S × S. A Kripke model is a triple
(S,R, V), where (S,R) is a Kripke frame and V : P → P(S) a valuation func-
tion.

Formulas are interpreted in Kripke models in the usual way, with the following
additional clause for �∗ :

S, s � �∗ψ :⇔ for all t ∈ S such that sR∗t: S, t � ψ

where R∗ is the reflexive-transitive closure of R. Whenever the intended the
model S is clear from the context, we will simply write s � ϕ instead of S, s � ϕ.

Let L1 be the first-order language with equality and a single relation symbol
R. In contrast to ML∗, we let L1 include the propositional connectives ∧, ∨
and ¬. A frame condition then is nothing but an L1-sentence. For Θ a set of
frame conditions, a Kripke frame (S,R) is said to be a Θ-frame whenever, when
regarded an L1-structure, the frame (S,R) satisfies each sentence ϕ in Θ. A
Kripke model will be called a Θ-model whenever its underlying frame is a Θ-
frame.

The following definitions and proposition are taken from [10].

Definition 3. A frame condition is called n-simple whenever it is of the form
∀s1 · · · sn∃uϕ, where ϕ is built up using the connectives ∨ and ∧ from atomic
formulas of the form siRu and si = u with 1 ≤ i ≤ n.

Definition 4. Given n ∈ ω, an abstract n-simple frame condition is a finite
non-empty set C consisting of pairs (CR, C=) of subsets CR, C= ⊆ {1, . . . , n}
such that at least one of CR and C= is non-empty.

Definition 5. The interpretation of some abstract n-simple frame condition C
is the following first-order formula:

∀s1 · · · sn∃u
∨

(CR,C=)∈C

(
∧

i∈CR

siRu ∧
∧

j∈C=

sj = u).

Using disjunctive normal forms, the following proposition is immediate.

Cyclic Hypersequent Calculi for Some Modal Logics 357

Proposition 1. Any n-simple frame condition is equivalent to the interpreta-
tion of some abstract n-simple frame condition.

In the following, we use the general term (abstract) simple frame condition to
encapsulate every (abstract) frame condition that is n-simple for some n ∈ ω. For
the sake simplicity we will sometimes blur the distinction between an abstract
frame condition C and its interpretation. In particular, for C a finite set of
abstract simple frame conditions and Θ the set of their interpretations, we often
use the terms C-model and C-frame where we mean Θ-model and Θ-frame.

We close this section by defining the subclasses of the class of simple frame
conditions, to which we will restrict most of our attention for the rest of this
paper.

Definition 6. An abstract n-simple frame condition C is called:

– equality-free if C= = ∅ for all (CR, C=) ∈ C;
– disjunction-free if C is a singleton;
– equable if for some U ⊆ {1, . . . , n}, we have U = C= for all (CR, C=) ∈ C.

Clearly if C is equality-free or disjunction-free, then it is equable. It turns out
that the converse is also true (up to logical equivalence). The verification of
this fact is left to the reader. Some examples of equable frame conditions are
reflexivity, given by C = {〈{1}, {1}〉}, and k-bounded top width, which is given
by C = {〈{i, j}, ∅〉 : 1 ≤ i < j ≤ k} for any k ≥ 2. An example of a simple frame
condition which is not equable is C = {〈{1}, {2}〉, 〈{2}, {1}〉}, which in [10]
is called linearity. For more examples of simple frame conditions, we refer the
reader to the aforementioned article.

3 Infinitary and Cyclic Hypersequent Calculi

In this section we introduce families of infinitary and cyclic hypersequent calculi
for ML∗ interpreted on classes of Θ-models, where Θ is an arbitrary set of simple
frame conditions.

3.1 Hypersequents and Pre-proofs

Definition 7. A sequent is an ordered pair (Γ,Δ) of finite sets of formulas,
usually written Γ ⇒ Δ. A hypersequent is a finite set {σ0, . . . , σn} of sequents,
usually written σ0 | · · · | σn.

We adopt the convention of using shorthand notation for singleton formulas and
sequents. For instance, we write Γ, ϕ ⇒ ψ,Δ where we mean {ϕ}∪Γ ⇒ {ψ}∪Δ,
and the hypersequent H ∪ {σ} may be written as H | σ.

(Hyper)sequents are interpreted in Kripke models as follows.

Definition 8. Let S be a Kripke model. Then:

– A sequent Γ ⇒ Δ is said to be satisfied at a state s of S whenever:
If s � ϕ for all ϕ ∈ Γ , then s � ψ for some ψ ∈ Δ.

– A sequent is valid in S if it is satisfied at every state of S.
– A hypersequent H is valid in S if there is a σ ∈ H which is valid in S.

A hypersequent valid in all C-models will be called C-valid.

358 J. Rooduijn

The following hypersequent calculus is an expansion by two additional fix-
point rules of the system HK given in [10] for basic modal logic.

Definition 9. The hypersequent calculus HK∗ has the following axioms and
rules.

id ϕ ⇒ ϕ ⊥ ⊥ ⇒

H | Γ ⇒ Δ
iwL

H | Γ, ϕ ⇒ Δ

H | Γ ⇒ Δ
iwR

H | Γ ⇒ ϕ, Δ

Hew
H | Γ ⇒ Δ

H | Γ, ψ ⇒ Δ H | Γ ⇒ ϕ, Δ→L
H | Γ, ϕ → ψ ⇒ Δ

H | Γ, ϕ ⇒ ψ, Δ→R
H | Γ ⇒ ϕ → ψ, Δ

H | Γ ⇒ ϕ
�

H | �Γ ⇒ �ϕ

H | Γ1, ϕ ⇒ Δ1 H | Γ2 ⇒ ϕ, Δ2
cut

H | Γ1, Γ2 ⇒ Δ1, Δ2

H | Γ, ϕ, ��∗ϕ ⇒ Δ
�∗L

H | Γ, �∗ϕ ⇒ Δ

H | Γ ⇒ ϕ, Δ H | Γ ⇒ ��∗ϕ, Δ
�∗R

H | Γ ⇒ �∗ϕ, Δ

Following [10], we augment HK∗ with rules corresponding to certain simple frame
conditions.

Definition 10. Let C be an abstract n-simple frame condition. The rule rHK
∗

C

induced by C is defined as follows:

{H | ⋃
i∈CR

Γ ′
i ,

⋃
j∈C=

Γj ⇒ ⋃
j∈C=

Δj : (CR, C=) ∈ C}
rHK

∗
C H | �Γ ′

1, Γ1 ⇒ Δ1 | · · · | �Γ ′
n, Γn ⇒ Δn

Given a finite set C of abstract simple frame conditions, we let HK∗ +RC be the
system HK∗ augmented with the rules rHK

∗
C for each C ∈ C.

In any application of some rule of HK∗ +RC , the sequents outside of the con-
text H are called active. Furthermore, the active formulas of an active sequent
are those that occur outside of Γ and Δ. All other formulas and sequents are
called inactive. Note that due to the fact the (hyper)sequents are sets, the con-
texts H might also contain active sequents (and likewise Γ and Δ might contain
active formulas). In the case of rHK

∗
C , the i-th active sequent in the conclusion is

said to have index i and the premiss corresponding to (CR, C=) ∈ C is said to
have index (CR, C=). Here the fact that hypersequents are sets means that one
sequent might have multiple indices.

For the rest of this paper we assume that C is an arbitrary finite set of simple
frame conditions, unless specified otherwise.

Definition 11. An HK∗ + RC-pre-proof is a (possibly infinite) derivation in
HK∗ + RC.

For any HK∗+RC-pre-proof π with root H, we say that π is a HK∗+RC-pre-proof
of H.

This derivation system has a property akin to the subformula property.

Cyclic Hypersequent Calculi for Some Modal Logics 359

Definition 12. The closure of a set Φ of formulas is the least Ψ ⊇ Φ such that:

(i) If ϕ → ψ ∈ Ψ , then ϕ,ψ ∈ Ψ ;
(ii) If �ϕ ∈ Ψ , then ϕ ∈ Ψ ;

(iii) If �∗ϕ ∈ Ψ , then ϕ, ��∗ϕ ∈ Ψ .

We write Cl(Φ) for the closure of Φ. It is easy to see that Cl is a closure operator
and that the closure of any finite set of formulas is finite. The following lemma
can be verified by direct inspection of the rules.

Lemma 1. Let π be a cut-free HK∗ +RC-pre-proof of H. Any formula occurring
in π belongs to the closure of the set of formulas occurring in H.

3.2 Infinitary Proofs with Trace Condition

It is not hard to show that the system HK∗ +RC need not be sound with respect
to all Kripke models based on a C-frame. In fact, already when C is empty
there are infinite pre-proofs of invalid hypersequents. We therefore need a way
to recognize valid infinite proofs. The technical treatment in this section takes
inspiration from [4], which in turn follows [2].

We use �nϕ as a shorthand for the formula ϕ preceded by n instances of �.

Definition 13. A formula ϕ is said to be a trace formula if it is of the form
�i�∗ψ for i ∈ {0, 1}. If i = 1, we say that ϕ is unfolded.

Definition 14. A trace value is either the empty trace value ε, or a pair (ϕ, σ),
where σ is a sequent and ϕ a trace formula in the right-hand side of σ.

If τ is the empty trace value or τ = (ϕ, σ) such that the sequent σ belongs to
some hypersequent H, then τ is said to be a trace value for H.

Definition 15. Let (H,H ′) be a pair consisting of the conclusion and a premiss,
respectively, of an application of a some rule r of HK∗ + RC and let τ and τ ′ be
trace values for H and H ′. The pair (τ, τ ′) is called a trace pair for (H,H ′) if
one of τ and τ ′ is the empty trace value, or one of the following conditions holds
for τ = (ϕ, σ) and τ = (ϕ′, σ′):

1. σ′ is an inactive sequent equal to σ and ϕ = ϕ′.
2. σ and σ′ are active sequents and one of the following holds:

(a) r is among iwL, iwR, cut,→L,→R, �∗L, �∗R and ϕ′ = ϕ.
(b) r ∈ {rHK∗

C | C ∈ C}, the index of σ is in C=, where (CR, C=) is the index
of H ′, and ϕ = ϕ′.

(c) r is � and �ϕ′ = ϕ.
(d) r is �∗R, ϕ is active, H ′ is the right-hand premiss, and ϕ′ = �ϕ.

When (τ, τ ′) is a trace pair by virtue of item 2(d), it will be called an unfolding.

360 J. Rooduijn

Remark 1. There are several subtleties involved with Definition 15:

– Consider the following inference, where every trace value is marked.

p ⇒
τ3︷︸︸︷

��∗p | p ⇒
τ4︷︸︸︷
�∗p | p ⇒ p p ⇒

τ5︷︸︸︷
�∗p | p ⇒

τ6︷︸︸︷
��∗p

�∗R
p ⇒ ��∗p︸︷︷︸

τ1

| p ⇒ �∗p︸︷︷︸
τ2

The trace value τ1 does not form a trace pair with τ6, because the sequent
belonging to τ6 is active, whereas the one belonging to τ1 is not. In contrast,
since the sequent of τ5 is inactive, the pair (τ2, τ5) is a trace value, even though
τ2 is active. The other trace pairs are (τ1, τ3), (τ2, τ4) and (τ2, τ6) is a trace
pair, with the latter being an unfolding.

– In case (2)(c), the shape of the rule � forces σ′ to be of the form Γ ⇒ ϕ′,
where σ is of the form �Γ ⇒ �ϕ′.

Definition 16. A trace is a sequence of trace pairs. A trace is called good if it
contains finitely many empty trace values and infinitely many unfoldings.

Definition 17. A path (Hi)i∈I in some proof is said to be covered by a trace
(τi)i∈I if (τi, τi+1) is a trace pair for (Hi,Hi+1) for each i ∈ I such that i+1 ∈ I.

Definition 18. An HK∗
inf + RC-proof is an HK∗ + RC-pre-proof of which every

infinite branch is covered by a good trace.

A hypersequent H will be called HK∗
inf + RC-provable if there is an HK∗

inf + RC-
proof whose root is labelled by H.

3.3 Cyclic Proofs

In this section we assume that C is a finite set of equable frame conditions.

Definition 19. An annotated hypersequent is a hypersequent H together with
a trace value τ for H. We call τ an annotation, say that H is annotated by τ
and write τ � H.

In proof trees, we often simplify notation by, instead of writing τ �, putting the
formula designated by τ between square brackets. This formula is then said to
be in focus. When τ is empty, we signify this by putting no formula between
brackets.

Definition 20. The derivation system HK∗
circ + RC is obtained from HK∗ + RC

by making the following adaptations:

1. The basic judgments are annotated hypersequents.
2. If H is derivable from H1, . . . ,Hn by some rule r of HK∗ + RC, then τ � H

is derivable from τ1 � H1, . . . , τn � Hn by r in HK∗
circ + RC if and only if the

pair (τ, τi) is a trace pair for (H,Hi).

Cyclic Hypersequent Calculi for Some Modal Logics 361

3. The following structural rule, called focus change, is added:

τ � H
fc

τ ′ � H

Here τ and τ ′ may be any two trace values for H.

Although the rules of the derivation system HK∗
circ + RC are given in an indi-

rect fashion, it is clearly decidable whether some given inference is a valid rule
application.

Whenever some leaf l of some derivation in HK∗
circ + RC is the conclusion of

an application of id or ⊥, we say that l is an axiomatic leaf.

Definition 21. An HK∗
circ + RC-proof is a finite derivation π in HK∗

circ + RC
together with a back edge map f assigning to each non-axiomatic leaf l of π a
node f(l) such that:

– f(l) is a proper ancestor of l, labelled by the same annotated hypersequent.
– For each step 〈τ � H, τ ′ � H ′〉 on the path between f(l) and l, it holds that

τ ′ is not empty and the surrounding rule application is not fc.
– For some step 〈τ � H, τ ′ � H ′〉 on the path between f(l) and l it holds that

(τ, τ ′) is an unfolding.

An (unannotated) hypersequent H will be called HK∗
circ +RC-provable if there is

an HK∗
circ+RC-proof with root τ � H, where τ may be any annotation. Note that,

by the availability of fc, this is equivalent to there being an HK∗
circ + RC-proof

whose root is annotated by the empty trace value.

Definition 22. Let (T, f) be a finite tree with back edges. The one-step depen-
dency order �1 on ran(f) is given by:

u �1 v :⇔ u lies on the path between v and v′ for some v′ ∈ f−1(v).

The dependency order � on ran(f) is defined as the transitive closure of �1.

For α a sequence, we let Inf(α) denote the set of elements occurring infinitely
often in α. The proof of the following lemma is omitted to conserve space.

Lemma 2. For any infinite path α through some finite tree with back edges
(T, f), the set Inf(α) ∩ ran(f) has a �-greatest element.

Proposition 2. If H is HK∗
circ + RC-provable, then H is HK∗

inf + RC-provable.

Proof. Let (π, f) be an HK∗
circ + RC-proof with root τ � H. We let π0 be the

HK∗
inf + RC-proof obtained by unravelling (π, f) and removing all annotations

and applications of fc. It suffices to show that every infinite branch γ of π0 is
covered by a good trace. To that end, note that any such γ corresponds to an
infinite path ρ through (π, f). Let � be the dependency order on ran(f) given
in Definition 22. For any two u, v ∈ ran(f) such that u � v, it holds that the
focus rule is not applied on the path from v to u, because this path is an initial
segment of the path from v to a leaf l with f(l) = v. By Lemma 2, the set

362 J. Rooduijn

Inf(ρ) ∩ ran(f) must contain a �-greatest element u0. It follows that from some
point in ρ every node has a formula in focus and the focus rule is not applied.
Since, moreover, the node u0 is visited infinitely often, an unfolding happens
infinitely often on the trace corresponding to the formulas in focus on this tail
of ρ. Therefore, the infinite branch γ is covered by a good trace, as required. ��

4 Soundness

This section is devoted to proving the following soundness theorem. Again, our
treatment is based on [4].

Theorem 1. Let C be a finite set of abstract simple frame conditions. If a hyper-
sequent is HK∗

inf + RC-provable, then it is valid in every C-model.

Definition 23. Let H be a hypersequent and S a Kripke model. A countermodel
state assignment (cmsa) of H in S is a function α : H → S assigning to each
sequent σ of H a state α(σ) of S in which σ is not satisfied.

Clearly for every model S in which H is invalid, there is a cmsa of H in S.

Definition 24. Let α be a cmsa of H in S and let τ := (�i�∗ψ, σ) be a non-empty
trace value in H. The weight of τ with respect to α is given by

μα(τ) := min{n ∈ ω : S, α(σ) �� �i�nψ}.

Note that the minimum taken in the above definition always exists by the fact
that α is assumed to be a cmsa.

Lemma 3. Let H be the conclusion of an application of some rule r of HK∗+RC
with premisses H1, . . . , Hn and let S be a C-model. For every cmsa α of H in S,
there is a premiss Hk and a cmsa αk of Hk in S such that for every trace pair
(τ, τk) for (H,Hk) consisting of non-empty trace values, it holds that

μαk
(τk) ≤ μα(τ),

and if (τ, τk) is an unfolding, then this inequality is strict.

Proof. For the choice of Hk and αk we make a case distinction on the rule r of
HK∗ +RC that is applied. We first define αk only on the active sequent of Hk (if
it exists). Because of space issues, we only treat three cases, leaving the others
to the reader.

– r = �. There is a single premiss H1 and there are two active sequents σ ∈ H
and σ1 ∈ H1. Moreover, the sequent σ is of the form �Γ ⇒ �ϕ. Since α is
a cmsa, there must be some state s1 for which it holds that α(σ)Rs1 and
s1 �� ϕ. If ϕ is not of the form �∗ψ, we pick any such s1 and put α1(σ1) := s1.
If, on the other hand, the formula ϕ is of the form �∗ψ, then we need to take a
bit more care in picking the successor s1 of α(σ). By definition, it holds that
α(σ) �� ��μα(σ,�ϕ)ψ. Thus it has a successor s1 such that s1 �� �μα(σ,�ϕ)ψ.
We set α1(σ1) := s1.

Cyclic Hypersequent Calculi for Some Modal Logics 363

– r = rHK
∗

C for some n-simple C ∈ C. Let σ1, . . . , σn be the active sequents in
H. By the fact that S is a C-model, there must be some state s of S and
pair (CR, C=) ∈ C such that for all i ∈ CR it holds that α(σi)Rs and for
all j ∈ C= that α(σj) = s. As premiss we pick the Hk corresponding to this
(CR, C=) ∈ C and we set: αk(

⋃
i∈CR

Γ ′
i ,

⋃
j∈C=

Γj ⇒ ⋃
j∈C=

Δj) := s.
– r = �∗R. Then H has an active sequent σ of the form Γ ⇒ �∗ϕ,Δ, and there are

two premisses H1 and H2, with as active sequent respectively σ1 = Γ ⇒ ϕ,Δ
and σ2 = Γ ⇒ ��∗ϕ,Δ. If α(σ) �� ϕ, we pick H1 and set α1(σ1) := α(σ). If, on
the other hand, we have α(σ) �� ��∗ϕ, then we pick H2 and set α2(σ2) := α(σ).

To complete the definition of αk, for each inactive sequent σk ∈ Hk, we put
αk(σk) := α(σk). We leave it to the reader to verify that in each case αk is a
cmsa of Hk in S.

It remains to verify the condition on trace pairs (τ, τk) for (H,Hk). First note
that if τk is inactive, then τ and τk must have the same underlying sequent. By
definition, it follows that μαk

(τk) = μα(τ).
For trace pairs between active sequents, we only cover the case r = �∗R,

leaving the other cases to the reader. Suppose that 〈(ϕ, σ), (ϕk, σk)〉 is a trace
pair for (H,Hk) such that both σ and σk are active sequents in an application
of �∗R. By the definition of αk given above, it holds that α(σ) = αk(σk). If
ϕk = ϕ, then clearly μα(ϕ, σ) = μαk

(ϕk, σk). If, on the other hand, the trace
pair is an unfolding, then ϕ is active and Hk is the right-hand premiss. It follows
there is some ψ such that ϕ = �∗ψ and ϕk = ��∗ψ. Therefore we have that
μαk

(ϕk, σk) = μα(ϕ, σ) − 1 < μα(ϕ, σ), as required. ��

Proof of Theorem 1. Suppose, towards a contradiction, that some HK∗
inf + RC-

provable hypersequent H is C-invalid. Then there is a cmsa α of H in some model
S. Repeatedly applying Lemma 3, we obtain a branch H = H0,H1,H2 . . . in the
proof of H, with for each Hi a cmsa αi of Hi in S. Note that this branch must be
infinite, for otherwise the final Hi is an axiom, contradicting the fact that it has
a cmsa. Moreover, by the condition of infinite branches it contains a good trace τ
which from some point, say, from the hypersequent Hk, contains no empty trace
values. By construction, we have μαk

(τ0) ≤ μαk+1(τ1) ≤ μαk+2(τ2) ≤ . . . and,
since infinitely many unfoldings occur on τ , this inequality is strict infinitely
often. Clearly we have reached the desired contradiction.

Question 1. Suppose we weaken Condition 2 of Definition 15 to allow σ to be
inactive, provided that it is equal to σ′. The pair (τ1, τ6) of Remark 1 then
becomes a trace pair. Is the system HK∗

inf + RC still sound for any finite C?

5 Completeness
In this section we prove cut-free completeness for HK∗

circ+RC , where C is any finite
set of equable frame conditions. Our method is an adaptation of the one in [10].
We close the section with a brief explanation for why the more common method
of completeness via infinitary proof search is hard to apply to our hypersequent
calculi.

364 J. Rooduijn

5.1 Completeness of HK∗
circ + RC for Equable C

This subsection will be devoted to proving the following theorem, which is the
main theorem of this paper.

Theorem 2. Let C be a finite set of equable frame conditions. If a hypersequent
is valid in every C-model, then it has a cut-free HK∗

circ + RC-proof.

We will prove this theorem by constructing a countermodel for each unprovable
hypersequent. For Γ a set of formulas, we define �−1Γ := {ϕ | �ϕ ∈ Γ}.

Definition 25. Let H be a hypersequent. The canonical model SH for H is the
model (S,R, V) given by:

– S := H.
– Γ1 ⇒ Δ1RΓ2 ⇒ Δ2 :⇔ �−1Γ1 ⊆ Γ2.
– V (p) := {Γ ⇒ Δ | p ∈ Γ}.
The key property of canonical models is that, for certain unprovable hyperse-
quents H, they satisfy a Truth Lemma, with the consequence that H is invalid in
the canonical model SH of H. The bulk of this subsection concerns constructing
such unprovable hypersequents and establishing the Truth Lemma.

Definition 26. Let Σ be a finite closed set of formulas. An (annotated)
(hyper)sequent is said to be a Σ-(annotated) (hyper)sequent if it contains only
formulas from Σ.

For the rest of this section we assume an arbitrary finite closed set of formulas Σ.
First, we want our unprovable hypersequent to satisfy the following saturation
properties.

Definition 27. A sequent Γ ⇒ Δ is said to be propositionally saturated if the
following closure conditions hold:

(i) ⊥ �∈ Γ .
(ii) Γ ∩ Δ = ∅.
(iii) If ϕ1 → ϕ2 ∈ Γ , then ϕ2 ∈ Γ or ϕ1 ∈ Δ.
(iv) If ϕ1 → ϕ2 ∈ Δ, then ϕ1 ∈ Γ and ϕ2 ∈ Δ.
(v) If �∗ϕ ∈ Γ , then ϕ ∈ Γ and ��∗ϕ ∈ Γ .
(vi) If �∗ϕ ∈ Δ, then ϕ ∈ Δ or ��∗ϕ ∈ Δ.

A hypersequent is propositionally saturated whenever each of its sequents is.

Definition 28. Let C be a finite set of abstract simple frame conditions. A
hypersequent H is said to be C-presaturated if SH is a C-model. If, moreover,
the hypersequent H is propositionally saturated, it is be said to be C-saturated.

An annotated hypersequent will be called C-(pre)saturated whenever the under-
lying hypersequent is.

Cyclic Hypersequent Calculi for Some Modal Logics 365

Definition 29. Let Γ1 ⇒ Δ1 and Γ2 ⇒ Δ2 be sequents and let H1,H2 be
hypersequents. We define:

– Γ1 ⇒ Δ1 � Γ2 ⇒ Δ2 if Γ1 ⊆ Γ2 and Δ1 ⊆ Δ2.
– H1 � H2 if for all σ1 ∈ H1, there is some σ2 ∈ H2 such that σ1 � σ2.

If two (hyper)sequents are related by �, we say that the former is encompassed
by the latter.

The following definition and lemmas are based on the notion of a propositional
retract in [5].

Definition 30. Let C be a finite set of simple frame conditions. A retract of
an annotated Σ-hypersequent (ϕ, σ) � H | σ is a finite set H consisting of
annotated Σ-hypersequents of the form (ϕ, σ′) � H | σ′ with σ � σ′, such
that (ϕ, σ) � H | σ is derivable from H in HK∗

circ + RC without using the rules
�, fc, and cut. Moreover, the retract H is said to be C-saturated if for every
(ϕ, σ′) � H ′ ∈ H such that σ′ � H it holds that H ′ is C-saturated.
The following crucial lemma is the only part of the completeness proof where we
rely on the restriction to equable frame conditions.

Lemma 4. Let C be a finite set of equable frame conditions and H a C-saturated
hypersequent. Then any annotated Σ-hypersequent (ϕ, σ) � H | σ has a C-
saturated retract.

Proof. We say that a retract H is C-presaturated (propositionally saturated) if
for every (ϕ, σ′) � H ′ ∈ H such that σ′ � H it holds that H ′ is C-presaturated
(propositionally saturated). The proof rests on the following two claims.

1. Any annotated Σ-hypersequent has a propositionally saturated retract.
2. For C a finite set of equable frame conditions, and H a C-presaturated hyper-

sequent, any annotated Σ-hypersequent (ϕ, σ) � H | σ has a C-presaturated
retract.

The proof of Claim 1 is analogous to the proof of Lemma 6.1 in [5]. For Claim
2, we argue by induction on the number of Σ-formulas not occurring in the
sequent σ. If σ �� H or if H | σ is already C-presaturated, then we simply set
H := {H | σ}.

Now suppose, towards a contradiction, that σ � H and H | σ is not C-
presaturated, that is:

There is an n-simple C ∈ C and a list (Γk ⇒ Δk)1≤k≤n of sequents in
H ∪ {σ} such that for every Γ ⇒ Δ ∈ H ∪ {σ} and (CR, C=) ∈ C there
is an i ∈ CR s.t. �−1Γi �⊆ Γ or a j ∈ C= s.t. Γj ⇒ Δj �= Γ ⇒ Δ.

(1)

For the rest of this proof we fix a condition C ∈ C and a list (Γk ⇒ Δk)1≤k≤n

that witness (1).
Since σ � H, there is a sequent σ ∈ H such that σ � σ. Let (Γk ⇒ Δk)1≤k≤n

be the list obtained by replacing in (Γk ⇒ Δk)1≤k≤n each occurrence of σ by σ.

366 J. Rooduijn

By the C-presaturation of H, there must be some (CR, C=) ∈ C and Γ ⇒ Δ ∈ H
such that it holds for each i ∈ CR that �−1Γi ⊆ Γ and for each j ∈ C= that
Γj ⇒ Δj = Γ ⇒ Δ.

It follows for every i ∈ CR that �−1Γi ⊆ �−1Γi ⊆ Γ . Thus, by the fact that
H | σ is not C-presaturated, there must be some k ∈ C= such that Γk ⇒ Δk �=
Γk ⇒ Δk. By construction this can only be the case if Γk ⇒ Δk = σ.

Now consider the following inference.

{H | ⋃
i∈CR

�−1Γi,
⋃

j∈C=
Γj ⇒ [ϕ],

⋃
j∈C=

Δj : (CR, C=) ∈ C}
rHK

∗
C H | Γk ⇒ [ϕ],Δk

Observe that the right-hand side of each premiss contains ϕ. The reason is that
ϕ belongs to the right-hand side of σ = Γk ⇒ Δk and, by equability, k ∈ C= for
every (CR, C=) ∈ C. We claim that for any (CR, C=) ∈ C, the Σ-sequent

σR :=
⋃

i∈CR

�−1Γi ∪
⋃

j∈C=

Γj ⇒
⋃

j∈C=

Δj

is such that σ � σR, whence contains strictly less Σ-formulas than σ. Note that
no information is lost by indexing σR solely by R, since, by equability, for each
(C1

R, C1
=), (C2

R, C2
=) ∈ C it holds that C1

= = C2
=. Since k ∈ C=, we already have

σ � σR. Now suppose, towards a contradiction, that σ = σR. Then by (1), there
must be some j ∈ C= such that Γj ⇒ Δj �= σ. It follows that

Γj ⇒ Δj = Γj ⇒ Δj (because Γj ⇒ Δj �= σ)

= Γk ⇒ Γk (because j, k ∈ C=)
= σ.

But then σ � σ, so σ = σ and H | σ = H, contradicting the assumption that
H | σ is not C-presaturated.

Finally, the induction hypothesis gives, for each (CR, C=) ∈ C, a suitable
retract HR of (ϕ, σR) � H | σR. We put:

H :=
⋃

(CR,C=)∈C

HR,

which finishes the proof of Claim 2.
The main statement of the lemma can now be proven from claims 1 and 2

by a straightforward induction. ��
Definition 31. Let C be some finite set of abstract simple frame conditions. A
Σ-hypersequent H is called C-maximal if the following hold:

(i) There is no cut-free HK∗
circ + RC-proof of H.

(ii) H is C-saturated.
(iii) H is ⊆-maximal as a Σ-hypersequent satisfying both (i) and (ii).
(iv) For every Σ-sequent σ:

Either σ � H or there is a cut-free HK∗
circ + RC-proof of H | σ.

Cyclic Hypersequent Calculi for Some Modal Logics 367

Because of space limitations the proof of the following lemma is only sketched.

Lemma 5. Let C be some finite set of abstract simple frame conditions. Then
any hypersequent H which has no cut-free HK∗

circ + RC-proof, can be �-extended
to be C-maximal.

Proof (sketch). In the same way as one can prove Lemma 2 of [10], it can be
shown that there is a Σ-hypersequent H0 such that H � H0 and H0 satisfies
conditions (i) and (iv) of C-maximality. Using similar arguments as in the proof
of Theorem 3 of [10], it can then be shown that H0 also satisfies condition (ii).
Finally, taking a ⊆-maximal extension of H0 with respect to conditions (i) and
(ii) breaks neither condition (iv) nor the encompassing of H. ��
We will prove our Truth Lemma for the canonical models of C-maximal hyper-
sequents. We first prove the following existence lemma.

Lemma 6. For C a finite set of equable simple frame conditions, let H be a
C-maximal Σ-hypersequent, and let S be its canonical model. Then for every
sequent σ := Γ ⇒ Δ ∈ H the following hold:

(i) For all �ψ ∈ Σ:
If �ψ ∈ Δ, then there is σ′ := Γ ′ ⇒ Δ′ ∈ H such that σRσ′ and ψ ∈ Δ′.

(ii) For all �∗ψ ∈ Σ:
If �∗ψ ∈ Δ, then there is σ′ := Γ ′ ⇒ Δ′ ∈ H such that σR∗σ′ and ψ ∈ Δ′.

Proof. We leave the proof of item (i) to the reader. For item (ii), define

S := {Γ ′ ⇒ Δ′ ∈ H : σR∗Γ ′ ⇒ Δ′ and, ψ ∈ Δ′ or ��∗ψ ∈ Δ′}.

We must show that S contains a sequent Γ ′ ⇒ Δ′ with ψ ∈ Δ′. Assume that
this is not the case. We will reach a contradiction by constructing a cut-free
HK∗

circ + RC-proof (π, f) of H.
Since σ ∈ S, we have ��∗ψ ∈ Δ by our assumption. We begin the construction

of (π, f) as follows:

(π1, f1)

H | �−1Γ ⇒ ψ

π2

H | �−1Γ ⇒ [��∗ψ]
�∗R

H | �−1Γ ⇒ [�∗ψ]
�

H | ��−1Γ ⇒ [��∗ψ]
iwL

...
iwL

H | Γ ⇒ [��∗ψ]
iwR

...
iwR

H | Γ ⇒ Δ, [��∗ψ]

The cut-free HK∗ +RC proof (π1, f1) is obtained by the C-maximality of H and
the fact that �−1Γ ⇒ ψ �� H. The latter must be the case, for otherwise there
would be a Γ1 ⇒ Δ1 ∈ H such that �−1Γ ⇒ ψ � Γ1 ⇒ Δ1. But that would
mean that Γ1 ⇒ Δ1 ∈ S with ψ ∈ Δ1, which we assumed not to be the case.

368 J. Rooduijn

We invoke Lemma 4 to obtain a retract H of H | �−1Γ ⇒ ��∗ψ and let π2 be
the derivation of this hypersequent from H. By construction, every annotated
hypersequent in H is of the form (��∗ψ, σ′) � H | σ′ where σ′ � �−1Γ ⇒ ��∗ψ.
Furthermore, the sequent σ′ is such that σ′ �� H or H | σ′ is C-saturated. By the
C-maximality of H this means that either H | σ′ has a cut-free HK∗

circ+RC-proof,
or σ′ ∈ H.

To every leaf of π2 that has a cut-free HK∗
circ + RC-proof, we append that

proof. Observe that any other leaf is of the form (��∗ψ, σ′) � H | σ′ for some
σ′ ∈ S. To each such leaf we recursively apply the above procedure. By the
finiteness of S, every branch created in this way must at some point encounter
the same annotated hypersequent (��∗ψ, σ′) � H | σ′ twice, for some in σ′ ∈ S.
Whenever that happens, we add a back edge from the second encounter to the
first and terminate the procedure for this branch. Notice that between target of
the newly added back edge and its source the focus rule is not applied, there is
always a formula in focus, and at least one unfolding happens on the induced
trace.

After finitely many steps this procedure terminates for every branch and we
obtain a cut-free HK∗

circ + RC-proof of H, giving the desired contradiction. ��
The following Truth Lemma is now proven using a straightforward induction,
which we leave to the reader.

Lemma 7. Let SH be the canonical model for some C-maximal Σ-hypersequent
H. Then for all σ := Γ ⇒ Δ ∈ SH and ϕ ∈ Σ the following hold:

(a) If ϕ ∈ Γ , then S
H , s � ϕ.

(b) If ϕ ∈ Δ, then S
H , s �� ϕ.

Proof of Theorem 2. We argue by contraposition. Suppose H has no cut-free
HK∗

circ + RC-proof. Let Σ be a finite closed set such that H is a Σ-sequent. By
Lemma 5, there is a C-maximal Σ-hypersequent H0 encompassing H.

We claim that the canonical model S
H0 for H0 is a countermodel to H.

Indeed, let σ ∈ H, then there is σ0 := Γ0 ⇒ Δ0 ∈ H0 such that σ � σ0. By
Lemma 7, we have for each ϕ ∈ Γ0 that S

H0 , s0 � ϕ and for each ψ ∈ Δ0 that
S

H0 , s0 �� ψ. Thus σ0 is not valid in S
H0 , and the same holds for σ. Since σ was

taken arbitrarily, the hypersequent H is not valid in S
H0 .

Finally, the result follows that fact that, by C-saturation, the model SH0 is a
C-model. ��
Question 2. For which other finite sets C of simple (not necessarily equable)
frame conditions is HK∗

circ + RC cut-free complete?

Corollary 1. For C a finite set of equable frame conditions, the logic obtained
by interpreting ML∗ on the class of C-frames is decidable.

Proof. Let H be an arbitrary hypersequent. Then H is a Σ-hypersequent for
some finite closed set Σ. If H is invalid in some C-model, then, by Theorem 1, it

Cyclic Hypersequent Calculi for Some Modal Logics 369

follows that H cannot have a cut-free HK∗
circ + RC-proof. By the same reasoning

as in the proof of Theorem 2 we obtain a model SH0 in which H is not valid.
Since the size of this model is by construction bounded by the size of Σ, we can
decide the C-validity of H by checking its validity in finitely many models.

Question 3. Is the size of the smallest cut-free HK∗
circ +RC-proof of some C-valid

Σ-hypersequent also bounded by the size of Σ? We conjecture that this question
can be answered positively by showing that for every cut-free HK∗

circ +RC-proof,
there is a cut-free HK∗

circ +RC-proof of the same hypersequent, with the property
that every branch contains at most one annotated hypersequent twice (in which
case these two occurrences are connected by a back edge) and no annotated
hypersequent more than twice.

5.2 Completeness via (Infinitary) Proof Search

A standard method for proving completeness of non-well-founded proof systems
is via infinitary proof search. Roughly, the idea is to find some proof-search
strategy such that a countermodel can be extracted from a failed attempt, i.e.
an attempt that does not yield a proof. Then, since soundness entails that the
proof-search must fail for any invalid hypersequent, completeness follows. This
is also the method used to prove completeness in [4].

In this subsection we briefly sketch a complication that arises when one tries
to apply this method to our hypersequent calculi. Because this already occurs
in the case of HK∗

inf (without additional rules for frame conditions), we restrict
our attention to this system.

Suppose we obtain a pre-proof π from the failure of an application of some
proof-search strategy for HK∗

inf to the hypersequent H. The problem arises in the
case that π is infinite. In this case we wish to use the fact that π has a branch β
which is not covered by a good trace, in order to extract a countermodel. One
might for example try to take the canonical model SH of some hypersequent H
that occurs infinitely often on β. To prove an analogue of part (ii) of Lemma 6
for S

H , we would have to show that any �∗ψ ∈ Δ for some Γ ⇒ Δ in H is not
unfolded infinitely often on β. The proof-search strategy would then ensure that
at some point in the branch β the rule �∗R is applied to �∗ψ in Γ ⇒ Δ and the
branch β continues through the premiss on the left-hand side. This would give
us a state Γ ′ ⇒ Δ′ in S

H such that Γ ⇒ ΔR∗Γ ′ ⇒ Δ′ and ψ ∈ Δ′. The problem
is that we cannot guarantee that �∗ψ is not unfolded infinitely often, because we
might repeatedly lose its trace due to that trace being overtaken by some other
active sequent (cf. Remark 1 and Question 1).

6 Conclusion

In this paper we have constructed sound and complete infinitary and cyclic proof
systems for ML∗ interpreted on any frame class characterised by a finite number
of equable frame conditions.

370 J. Rooduijn

In future work we wish to extend this to non-equable frame conditions. We
conjecture that there are cases in which the single focus-style annotations are
not sufficient, and one must turn a more complex annotating mechanism.

We would also like to extend this work to more expressive fragments of the
modal μ-calculus, such as polymodal logic with the master modality, PDL, the
alternation-free modal μ-calculus, or even the modal μ-calculus itself.

Another avenue for further research is to see whether our hypersequent calculi
can be used to establish Craig interpolation for their respective logics.

Finally, we wish to combine non-well-founded proof theory with other enrich-
ments of ordinary Gentzen sequents, such as nested sequents. It would be inter-
esting to better understand which of such systems combine well with non-well-
founded proof theory and why.

References

1. Afshari, B., Leigh, G.E.: Cut-free completeness for modal mu-calculus. In: Proceed-
ings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS 2017 (2017)

2. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011)

3. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log.
Algebr. Program. 76(2), 216–225 (2008)

4. Docherty, S., Rowe, R.N.S.: A non-wellfounded, labelled proof system for proposi-
tional dynamic logic. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS
(LNAI), vol. 11714, pp. 335–352. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29026-9 19

5. Doczkal, C., Smolka, G.: Constructive completeness for modal logic with transitive
closure. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 224–
239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35308-6 18

6. Enqvist, S.: A circular proof system for the hybrid mu-calculus. arXiv preprint
arXiv:2001.04971 (2020)

7. Enqvist, S., Hansen, H.H., Kupke, C., Marti, J., Venema, Y.: Completeness for
game logic. In: 2019 34th Annual ACM/IEEE Symposium on Logic in computer
Science (LICS), pp. 1–13. IEEE (2019)

8. Indrzejczak, A.: Sequents and Trees: An Introduction to the Theory and Applica-
tions of Propositional Sequent Calculi. Springer Nature, Basingstoke (2020)

9. Kikot, S., Shapirovsky, I., Zolin, E.: Completeness of logics with the transitive
closure modality and related logics. arXiv preprint arXiv:2011.02205 (2020)

10. Lahav, O.: From frame properties to hypersequent rules in modal logics. In: 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 408–417.
IEEE (2013)

11. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of tempo-
ral logic. In: Proceedings 16th Annual IEEE Symposium on Logic in Computer
Science, pp. 357–365. IEEE (2001)

12. Shamkanov, D.S.: Circular proofs for the Gödel-Löb provability logic. Math. Notes
96(3), 575–585 (2014)

https://doi.org/10.1007/978-3-030-29026-9_19
https://doi.org/10.1007/978-3-030-29026-9_19
https://doi.org/10.1007/978-3-642-35308-6_18
http://arxiv.org/abs/2001.04971
http://arxiv.org/abs/2011.02205

A Focus System for the Alternation-Free
µ-Calculus

Johannes Marti and Yde Venema(B)

ILLC, University of Amsterdam,
P.O. Box 94242, 1090 GE Amsterdam, The Netherlands

y.venema@uva.nl

Abstract. We introduce a cut-free sequent calculus for the alternation-
free fragment of the modal μ-calculus. This system allows both for infinite
and for finite, circular proofs and uses a simple focus mechanism to
control the unravelling of fixpoints along infinite branches. We show that
the proof system is sound and complete for the set of guarded valid
formulas of the alternation-free μ-calculus.

Keywords: Alternation-free mu-calculus · Infinitary proof system ·
Circular proof system · Soundness · Completeness

The modal μ-calculus Lμ, introduced in its present form by Kozen [16], is
an extension of basic modal logic with least and greatest fixpoint operators.
In the theory of formal program verification the formalism serves as a general
specification language for describing properties of reactive systems, embedding
many well-known logics such as ltl, ctl, ctl* and pdl. In fact, restricted to
bisimulation-invariant properties, Lμ has the same expressive power as monadic
second-order logic [13], while it still has very reasonable computational proper-
ties, such as an exptime-complete satisfiability problem [9]. Furthermore, the
modal μ-calculus has many attractive logical properties, and interesting connec-
tions with for instance the theory of automata and infinite games. In particular,
Lμ-formulas can be effectively represented as alternating tree automata, and vice
versa [12,26]. We refer to [4,5,10] for some surveys.

In this paper we contribute to the study of the modal μ-calculus by inves-
tigating one of its fragments. The theory of the full language is riddled with
combinatorial intricacies involving the interaction between least- and greatest
fixpoint operators. This interaction also lies at the root of the main drawback
of the formalism, viz., that its formulas are not always easy to decipher. The
alternation-free μ-calculus is the fragment Laf

μ of Lμ in which there is no real
interaction between least and greatest fixpoint operators. This restriction comes
with a decrease in expressive power, but many interesting logics, including ltl,

The authors want to thank the anonymous reviewers for many helpful comments.
J. Marti—The research of this author has been made possible by a grant from the
Dutch Research Council NWO, project nr. 617.001.857.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 371–388, 2021.
https://doi.org/10.1007/978-3-030-86059-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_22

372 J. Marti and Y. Venema

ctl and pdl still embed into Laf
μ . Moreover, the expressive power of the full

μ-calculus collapses to that Laf
μ on some interesting classes of structures, such as

transitive ones [2] or the ones with restricted connectivity [11]. The latter case
generalises the particularly interesting example of the linear time μ-calculus [15].
Other reasons to study the alternation-free μ-calculus are that it corresponds in
expressive power to a natural class of parity automata, viz., the ones with a so-
called weak acceptance condition [19], and to the bisimulation-invariant fragment
of the so-called noetherian variation of monadic second-order logic [6].

The problem that we address here is that of obtaining good proof systems for
the alternation-free μ-calculus. Finding derivation systems for the full μ-calculus
and proving their soundness and completeness is a notoriously difficult task, and
successful applications of proof-theoretic techniques were few and far between
for a long time. Kozen [16] introduced a natural axiomatisation for the full μ-
calculus, and this system was proved to be complete by Walukiewicz [25]; Kozen’s
system, however, is a Hilbert-style axiomatisation. Niwiński & Walukiewicz [21]
introduced some interesting tableau games, but these have a rather infinitary
character. The same applies to the proof systems investigated by Dax et alii [7]
and by Studer [24]. Fairly recently, however, Afshari & Leigh [1] obtained com-
pleteness of Kozen’s axiomatisation using a series of cut-free circular derivation
systems. A crucial ingredient for their results is an earlier proof system, devel-
oped by Jungteerapanich and Stirling [14,23]. This system uses an intricate
mechanism for annotating formulas to detect after finitely many steps when a
branch of a proof may develop into a successful infinite branch in the sense of
Niẃınski & Walukiewicz’ tableaux, thus obtaining a finite but circular proof.

In this paper we show that the approach of [14,23] can be significantly sim-
plified in the setting of the alternation-free μ-calculus. In our proof system it
suffices to annotate formulas with just one bit of information, indicating whether
a formula is in focus or not. This terminology is taken from the focus games for
logics such as ltl and ctl by Lange & Stirling [17]. These are tableau-based
games where every sequent of the tableau contains exactly one formula in focus;
we generalise this so that a proof node may feature a set of formulas in focus.
This focus mechanism is used to detect successful trails of fixpoint formulas in
infinite branches of the proof (and seems to be unrelated to the literature on
focused proof systems starting with [3]).

The bookkeeping of annotations in our system is very simple: as we follow the
trail of a formula when moving up from the root in a Focus proof, we basically
keep the annotation unchanged, with two exceptions. First, when we unfold a
least fixpoint formula, we always drop the focus from its residual unfolding—
whereas unfolding a greatest fixpoint formula has no influence on the annota-
tions. And second, there are focus change rules, which put previously unfocused
formulas into focus, or vice versa; their use however, is very restricted.

In this paper we introduce Focus∞ and Focus as, respectively, an infinite
and a finite but circular version of our focus proof system. We first show the
equivalence of these two systems. Our main result concerns the soundness and
completeness of Focus∞; as an intermediate step in the proof we use a version

A Focus System for the Alternation-Free μ-Calculus 373

of Niwiński & Walukiewicz’ tableau games. Below we summarise the main line
of argumentation in the paper (the number refers to the Theorem)

�Focus Φ
1⇐⇒�Focus∞ Φ

5,6⇐⇒ Φ ∈ WinProver(G(T)) 4⇐⇒ Φ is valid.

Here Φ denotes an arbitrary sequent of guarded alternation-free formulas.
Finally, although it may not be visible at the surface, our approach is heavily

influenced by ideas from automata theory. Here we follow Jungteerapanich [14],
whose annotations can be seen to encode a deterministic ω-automaton that
recognises successful branches of infinite proofs. Where such an encoding in the
setting of the full μ-calculus involves some version of the Safra construction [22],
in the case of alternation-free formulas a much simpler mechanism suffices. Basi-
cally, our one-bit focus mechanism encodes the determisation procedure for weak
ω-automata, as described in e.g. [8, Theorem 15.2.1].

Related versions More background and proof details can be found in our tech-
nical report [18].

1 Preliminaries

The modal μ-calculus. The formulas of the language Lμ of the modal μ-
calculus are generated by the grammar

ϕ ::= p | p | ⊥ | � | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | �ϕ | �ϕ | μxϕ | νxϕ,

where p and x are taken from a fixed set Prop of propositional variables and in
formulas of the form μx.ϕ and νx.ϕ there are no occurrences of x in ϕ. It is well
known that one can define a negation ϕ ∈ Lμ of any formula ϕ ∈ Lμ.

Formulas of the form μx.ϕ (νx.ϕ) are called μ-formulas (ν-formulas, respec-
tively); formulas of either kind are called fixpoint formulas. The operators μ and
ν are called fixpoint operators. We use η ∈ {μ, ν} to denote an arbitrary fixpoint
operator and write η := ν if η = μ and η = μ if η = ν. Formulas that are of the
form �ϕ or �ϕ are called modal. Formulas of the form ϕ ∧ ψ or ϕ ∨ ψ are called
boolean. Formulas of the form p or p for some p ∈ Prop are called literals and the
set of all literals is denoted by Lit; a formula is atomic if it is either a literal or an
atomic constant, that is, � or ⊥. We use standard notation and terminology for
the binding of variables by the fixpoint operators and for substitutions. Given a
fixpoint formula ξ = ηx.χ we define its unfolding as the formula χ[ξ/x].

For every formula ϕ ∈ Lμ we define the set Clos0(ϕ) as follows

Clos0(p) := ∅ Clos0(p) := ∅

Clos0(ψ0 ∧ ψ1) := {ψ0, ψ1} Clos0(ψ0 ∨ ψ1) := {ψ0, ψ1}
Clos0(�ψ) := {ψ} Clos0(�ψ) := {ψ}
Clos0(μx.ψ) := {ψ[μx.ψ/x]} Clos0(νx.ψ) := {ψ[νx.ψ/x]}

If ψ ∈ Clos0(ϕ) we call ψ a residual of ϕ and sometimes write ϕ →C ψ. We
define the closure Clos(ϕ) ⊆ Lμ of ϕ as the least set Σ containing ϕ that is closed

374 J. Marti and Y. Venema

in the sense that Clos0(ψ) ⊆ Σ for all ψ ∈ Σ. We define Clos(Φ) =
⋃

ϕ∈Φ Clos(ϕ)
for any Φ ⊆ Lμ. It is well known that Clos(Φ) is finite iff Φ is finite. A trace
is a sequence (ϕn)n<κ, with κ ≤ ω, of formulas such that ϕn →C ϕn+1, for
all n such that n + 1 < κ. If τ = (ϕn)n<κ is an infinite trace, then there is a
unique formula ϕτ that occurs infinitely often on τ and is a subformula of ϕn

for cofinitely many n. This formula is always a fixpoint formula, and where it is
of the form ϕτ = ηx.ψ we call τ an η-trace.

A formula ϕ ∈ Lμ is guarded if in every subformula ηx.ψ of ϕ all free occur-
rences of x in ψ are in the scope of a modality. It is well known that every
formula can be transformed into an equivalent guarded formula, and one may
verify that all formulas in the closure of a guarded formula are also guarded.

The semantics of the modal μ-calculus is given in terms of (Kripke) models
S = (S,R, V), where S is a set whose elements are called worlds or states,
R ⊆ S × S is a binary relation on S and V : Prop → PS is a function called
the valuation function. The meaning [[ϕ]]S ⊆ S of a formula ϕ ∈ Lμ relative to a
model S is defined by induction on the complexity of ϕ:

[[p]]S := V (p) [[p]]S := S \ V (p)

[[⊥]]S := ∅ [[�]]S := S

[[ϕ ∨ ψ]]S := [[ϕ]]S ∪ [[ψ]]S [[ϕ ∧ ψ]]S := [[ϕ]]S ∩ [[ψ]]S

[[�ϕ]]S := {s ∈ S | R[s] ∩ [[ϕ]]S 	= ∅} [[�ϕ]]S := {s ∈ S | R[s] ⊆ [[ϕ]]S}
[[μx.ϕ]]S :=

⋂{U ⊆ S | [[ϕ]]S[x �→U] ⊆ U} [[νx.ϕ]]S :=
⋃{U ⊆ S | [[ϕ]]S[x �→U] ⊇ U}.

Here, S[x → U] for some U ⊆ S denotes the model (S,R, V ′), where V ′(x) =
U and V ′(p) = V (p) for all p ∈ Prop with p �= x. We say that ϕ is true at s if
s ∈ [[ϕ]]S. A formula ϕ ∈ Lμ is valid if [[ϕ]]S = S holds in all models S and two
formulas ϕ,ψ ∈ Lμ are equivalent if [[ϕ]]S = [[ψ]]S for all models S.

The Alternation-Free Fragment. Following the approach by Niwiński [20],
we call a formula ξ alternation free if it satisfies the following: if ξ has a subfor-
mula ηx.ϕ then no free occurrence of x in ϕ can be in the scope of an η-operator
in ϕ. We let Laf

μ denote the set of all alternation-free formulas. For an inductive
definition of this set we refer to [18].

Example 1. For some examples of alternation-free formulas, observe that Laf
μ

contains all basic modal (i.e., fixpoint-free) formulas, as well as all Lμ-formulas
that use μ-operators or ν-operators, but not both, and all modal and boolean
combinations of such formulas. For a slightly more sophisticated example, con-
sider the formula ξ = μx.(νy.p ∧ �y) ∧ �x. This formula does feature an alter-
nating chain of fixpoint operators, in the sense that the ν-formula ϕ = νy.p∧�y
is a subformula of the μ-formula ξ. However, since the variable x does not occur
in ϕ, this formula does belong to Laf

μ .

The language Laf
μ is closed under taking respectively negations, unfoldings,

subformulas and guarded equivalents of formulas. It follows from this that the

A Focus System for the Alternation-Free μ-Calculus 375

closure operation restricts to alternation-free formulas. The next observation
formulates an essential simplification of traces in the case of Laf

μ -formulas.

Proposition 1. For any infinite trace τ = (ϕn)n<ω of Laf
μ -formulas the fol-

lowing are equivalent: (1) τ is an η-trace; (2) ϕn is an η-formula, for infinitely
many n; (3) ϕn is an η-formula, for at most finitely many n.

2 The Focus System

In this section we introduce our annotated proof system for the alternation-
free μ-calculus. We consider two versions of the system, which we call Focus and
Focus∞, respectively. Focus∞ is a proof system that allows proofs to be based on
infinite, but finitely branching trees. The focus mechanism that is implemented
by the annotations of formulas helps ensuring that all the infinite branches in
a Focus∞ proof are of the right shape. The proof system Focus can be seen as
a finite variant of Focus∞. The proof trees in this system are finite, but the
system is circular in that it contains a discharge rule that allows to discharge
a leaf of the tree if the same sequent is reached again closer to the root of the
tree. As we will see, the two systems are equivalent in the sense that we may
transform proofs in either variant into proofs of the other kind. We generally
take a root-first perspective in proof search.

2.1 The Proof Systems Focus and Focus∞

A sequent (Φ, Ψ, . . .) is a finite set of guarded formulas, intuitively to be
read disjunctively. We use standard notational conventions for sequents, e.g.,
we usually write ϕ1, . . . , ϕi for the sequent {ϕ1, . . . , ϕi}, and ϕ1, . . . , ϕi, Φ for
{ϕ1, . . . , ϕi} ∪ Φ. Given a sequent Φ we write �Φ for the sequent �Φ := {�ϕ |
ϕ ∈ Φ}.

An annotated formula is a pair (ϕ, a) ∈ Laf
μ × {f, u}; we usually write ϕa

instead of (ϕ, a) and call a the annotation of ϕ. Given a ∈ {f, u} we let a be
its alternative, i.e., we define u := f and f := u. Formulas annotated with
f/u are said to be in focus/out of focus, respectively. A finite set of annotated
formulas is called an annotated sequent (Σ,Γ,Δ, . . .). In practice we will often
be sloppy and refer to annotated sequents as sequents. Given a sequent Φ, we
define Φa := {ϕa | ϕ ∈ Φ}. Conversely, we set Σ̃ := {ϕ | ϕa ∈ Σ, for some a}.
We abbreviate Σf := Σ̃f .

The proof rules of our focus proof systems Focus and Focus∞ are given
in Fig. 1. We use standard terminology when talking about proof rules. Every
(application of a) rule has one conclusion and a finite (possibly zero) number
of premises. Axioms are rules without premises. The principal formula of a rule
application is the formula in the conclusion to which the rule is applied. As non-
obvious cases we have that all formulas are principal in the conclusion of the
rule R� and that the rule Dx has no principal formula. In all cases other than

376 J. Marti and Y. Venema

Ax1
pa, pb Ax2a

ϕa, ψa, Σ
R∨(ϕ ∨ ψ)a, Σ

ϕa, Σ ψa, Σ
R∧(ϕ ∧ ψ)a, Σ

ϕa, Σ
R

ϕa, Σ

ϕ[μx.ϕ/x]u, Σ
Rμ

μx.ϕa, Σ

ϕ[νx.ϕ/x]a, Σ
Rν

νx.ϕa, Σ

Σ
W

ϕa, Σ
ϕf , Σ

F
ϕu, Σ

ϕu, Σ
U

ϕf , Σ

[Σ]x

...
Σ

Dx

Σ

Fig. 1. Proof rules of the focus system

the rule W the principal formula develops into one or more residual formulas in
each of the premises. Principal and residual formulas are also called active.

Here are some more specific comments about the individual proof rules. The
boolean rules (R∧ and R∨) are fairly standard; observe that the annotation of the
active formula is simply inherited by its subformulas. The fixpoint rules (Rμ and
Rν) simply unfold the fixpoint formulas; note, however, the difference between
Rμ and Rν when it comes to the annotations: in Rν the annotation of the active
ν-formula remains the same under unfolding, while in Rμ, the active μ-formula
loses focus when it gets unfolded. The box rule R� is the standard modal rule
in one-sided sequent systems; the annotation of any formula in the consequent
and its residual in the antecedent are the same.

The rule W is a standard weakening rule. Next to Rμ, the focus rules F and U
are the only rules that change the annotations of formulas.1 Finally, the discharge
rule D is a special proof rule that allows us to discharge an assumption if it is
repeating a sequent that occurs further down in the proof. Every application Dx

of this rule is marked by a so-called discharge token x that is taken from some
fixed infinite set D = {x, y, z, . . . }. In Fig. 1 this is suggested by the notation
[Σ]x. The precise conditions under which Dx can be employed are explained in
Definition 1 below.

Definition 1. A pre-proof Π = (T, P,Σ,R) is a quadruple such that (T, P) is
a, possibly infinite, tree with nodes T and parent relation P (with Puv meaning
that u is the parent of v). Σ is a function that maps every node u ∈ T to a
non-empty annotated sequent Σu; and

R : T → {
Ax1,Ax2,R∨,R∧,R�,Rμ,Rν ,W,F,U

} ∪ {
Dx | x ∈ D} ∪ D ∪ {�},

is a map that assigns to every node u of T its label R(u), which is either (i) the
name of a proof rule, (ii) a discharge token or (iii) the symbol �.

To qualify as a pre-proof, Π is required to satisfy the following conditions:
1 The rule U is not really needed—in fact we prove completeness without it. We include
U because of its convenience for constructing proofs.

A Focus System for the Alternation-Free μ-Calculus 377

1. If a node is labelled with the name of a proof rule then it has as many children
as the proof rule has premises, and the annotated sequents at the node and
its children match the specification of the proof rules in Fig. 1.

2. If a node is labelled with a discharge token or with � then it is a leaf. We call
such nodes non-axiomatic leaves as opposed to the axiomatic leaves that are
labelled with one of the axioms, Ax1 or Ax2.

3. For every leaf l that is labelled with a discharge token x ∈ D there is exactly
one node u in Π that is labelled with Dx. This node u, as well as its (unique)
child, is a proper ancestor of l and satisfies Σu = Σl. In this situation we
call l a discharged leaf, and u its companion; we write c for the function that
maps a discharged leaf l to its companion c(l).

4. If l is a discharged leaf with companion c(l) then the path from c(l) to l
contains (4a) no application of the focus rules and (4b) at least one application
of R�, while (4c) every node on this path features a formula in focus.

Non-axiomatic leaves that are labelled with � (and thus not discharged), are
called open, as are the associated sequents. We call a pre-proof a proof in Focus
if it is finite and does not have any open assumptions.

A infinite branch β = (vn)n∈ω is successful if there are infinitely many appli-
cations of R� on β and there is some i such that for all j ≥ i the annotated
sequent at vj contains at least one formula that is in focus and none of the focus
rules F and U is applied at vj. A pre-proof is a Focus∞-proof if it does not have
any non-axiomatic leaves and all its infinite branches are successful.

A plain sequent Φ is derivable in Focus, notation: �Focus Φ, if there is a Focus
proof for Φf ; and similarly for Focus∞.

The idea behind the success condition on infinite branches (and the corre-
sponding path condition 4 on finite Focus-proofs) is to force any infinite branch
in a Focus∞-proof (respectively, in the unravelling of a Focus-proof) to contain
an infinite trace of formulas in focus. Since μ-formulas lose their focus when
unfolded, such a trace then must be a ν-trace; and because of Proposition 1,
every ν-trace will be of this form.

As an example of a Focus-proof consider the proof of the formula ϕ ∨ ψ in
Fig. 2, where ϕ = νx.�(p ∧ x) ∨ �(q ∧ x) and ψ = μy.�((p ∧ q) ∨ y). This
example illustrates a crucial difference between our system and the ones from
[17]. Whereas the sequents of [17] have exactly one formula in focus, it is crucial
for us to allow for multiple formulas to be in focus at one single sequent. In the
proof from Fig. 2 both �(p ∧ ϕ) and �(q ∧ ϕ) need to be in focus at the sequent
where R� is applied. It is only above the application of R�, when the conjunction
p∧ q is decomposed, that we know which of p∧ϕ and q ∧ϕ needs to be in focus.

We close this section with a first observation about (pre-)proofs in this sys-
tem. The (completely routine) proof is omitted.

Proposition 2. Let Π = (T, P,Σ,R) be some pre-proof with root r. Then all
formulas occurring in Π belong to Clos(Σ̃r).

378 J. Marti and Y. Venema

Ax1
pf , pu

W
pf , pu, ψu

[ϕf , ψu]x
W

ϕf , pu, ψu

R∧
p ∧ ϕf , pu, ψu

W
p ∧ ϕf , q ∧ ϕf , pu, ψu

Ax1
qf , qu

W
qf , qu, ψu

[ϕf , ψu]x
W

ϕf , qu, ψu

R∧
q ∧ ϕf , qu, ψu

W
p ∧ ϕf , q ∧ ϕf , qu, ψu

R∧
p ∧ ϕf , q ∧ ϕf , p ∧ qu, ψu

R∨
p ∧ ϕf , q ∧ ϕf , (p ∧ q) ∨ ψu

R
(p ∧ ϕ)f , (q ∧ ϕ)f , ((p ∧ q) ∨ ψ)u

Rμ
(p ∧ ϕ)f , (q ∧ ϕ)f , ψu

R∨
(p ∧ ϕ) ∨ (q ∧ ϕ)f , ψu

Rν
ϕf , ψu

Dx

ϕf , ψu

U
ϕf , ψf

R∨
ϕ ∨ ψf

Fig. 2. A Focus-proof

2.2 Circular and Infinite Proofs

We first show that Focus∞ and Focus are the infinitary and circular version of
the same proof system, and derive the same annotated sequents.

Theorem 1. Let Γ be an annotated sequent. Then Γ is provable in Focus iff it
is provable in Focus∞.

Proof. (Sketch) The proof of the implication from left to right is based on
a straightforward construction that (iteratively) unravels a given Focus-proof
around its discharged leaves, creating a Focus∞-proof in the limit.

For the opposite direction, fix a Focus∞ pre-proof Π = (T, P,Σ,R). If Π is
finite we are done, so assume otherwise. A node u in Π is called a successful repeat
if it has a proper ancestor t such that Σt = Σu, R(t) �= D, and the path [t, u] in
Π satisfies condition 1 of Definition 1. It is then obvious by the definitions and
Proposition 2 that every branch β ∈ B∞ contains a successful repeat. Define,
for any τ ∈ B∞, the number l(τ) ∈ ω as the least number n ∈ ω such that τ(n)
is a successful repeat. This means that τ(l(τ)) is the first successful repeat on τ .
It is then possible to show, using König’s Lemma, that the set

Ŷ := {τ(l(τ)) | τ ∈ B∞}
is finite. Every element l ∈ Ŷ is a successful repeat; we may thus define a
companion map c : Ŷ → T by setting c(l) to be the first ancestor t of l witnessing
that l is a successful repeat. The map c takes care of the circular part of the
finite tree (T ′, P ′) that will support the Focus-proof Π ′ of Γ . For a full and
precise definition of Π ′ we have to add all ancestors of nodes in Ŷ , and add a
finite well-founded part, but this is not difficult. ��

A Focus System for the Alternation-Free μ-Calculus 379

2.3 Thin and Progressive Proofs

When we prove the soundness of our proof system it will be convenient to work
with (infinite) proofs that are in a certain normal form.

Definition 2. An annotated sequent Σ is thin if there is no formula ϕ ∈ Laf
μ

such that ϕf ∈ Σ and ϕu ∈ Σ. Given an annotated sequent Σ, we define its
thinning

Σ− := {ϕf | ϕf ∈ Σ} ∪ {ϕu | ϕu ∈ Σ,ϕf �∈ Σ}.

A pre-proof Π = (T, P,Σ,R) is thin if for all v ∈ T with ϕf , ϕu ∈ Σv we have
that Rv = W and ϕu /∈ Σu for the unique u with Pvu.

Note that one may obtain the thinning Σ− from an annotated sequent Σ by
removing the unfocused versions of the formulas with a double occurrence in Σ.
Since Σ− ⊆ Σ, one may derive Σ from Σ− through a series of weakenings.

Definition 3. An application of a boolean or fixpoint rule at a node u in a pre-
proof Π = (T, P,Σ,R) is progressive if for the principal formula ϕa ∈ Σu it
holds that ϕa /∈ Σv for all v with Puv.2 Π itself is progressive if all applications
of the boolean rules and the fixpoint rules in Π are progressive.

Our main result here is the following.

Theorem 2. Let Φ be some sequent. If Φ is derivable in Focus or Focus∞ then
it has a thin and progressive proof, both in Focus and in Focus∞.

3 Tableaux and Tableau Games

To prove soundness and completeness, as an intermediate step we use a (fairly
straightforward) adaptation of Niwiński & Walukiewicz’ tableau games [21].

Tableaux. We first introduce tableaux, which are the graphs over which the
tableau game is played. The nodes of a tableau for some sequent Φ are labelled
with sequents consisting of formulas taken from the closure of Φ. Our system is
based on the rules in Fig. 3, where the tableau rules Ax1, Ax2, R∨, R∧, Rμ and
Rν are direct counterparts of the focus proof rules with the same name.

The modal rule M can be seen as a game-theoretic version of the box rule R�

from the focus system, differing from it in two ways. First of all, the number of
premises of M is not fixed, but depends on the number of box formulas in the
conclusion; as a special case, if the conclusion contains no box formula at all,
then the rule has an empty set of premises, similar to an axiom. Second, the rule
M does allow side formulas in the consequent that are not modal; note however,
that M has as its side condition (†) that this set Ψ contains atomic formulas
only, and that it is locally falsifiable, i.e., Ψ does not contain � and there is no
proposition letter p such that both p and p belong to Ψ . This side condition
guarantees that M is only applicable if no other tableau rule is.
2 Note that since we assume guardedness, the principal formula is different from its

residuals.

380 J. Marti and Y. Venema

Ax1
p, p, Φ

Ax2
, Φ

ϕ, ψ, Φ
R∨

ϕ ∨ ψ, Φ

ϕ, Φ ψ, Φ
R∧

ϕ ∧ ψ, Φ

ϕ1, Φ . . . ϕn, Φ
(†) M

Ψ, ϕ1, . . . , ϕn, Φ

ϕ[μx.ϕ/x], Φ
Rμ

μx.ϕ, Φ

ϕ[νx.ϕ/x], Φ
Rν

νx.ϕ, Φ

Fig. 3. Rules of the tableau system

Definition 4. A tableau is a quintuple T = (V,E, Φ,Q, vI), where (V,E) is a
directed graph, vI ∈ V is the root of the tableau, Φ maps every node v to a
non-empty sequent Φv, and Q : V → {Ax1,Ax2,R∨,R∧,M,Rμ,Rν} associates a
proof rule Qv with each node v in V . Tableaux must satisfy the following:

1. If Q(u) = R then the sequents at the node u and its successors match the
specification of R as in Fig. 3.

2. If Q(u) = M then the side condition (†) of M is met.
3. In any application of the rules R∨,R∧,Rμ and Rν , the principal formula is

not an element of the context Φ.

A tableau T is a tableau for a sequent Φ if Φ is the sequent of the root of T.

The following can easily be proved.

Proposition 3. There is a tree-based tableau for every sequent Φ.

Crucially, one needs to keep track of the development of individual formulas
along infinite paths in a tableau. Fix a tableau T = (V,E, Φ,Q, vI).

Definition 5. For all nodes u, v ∈ V such that Euv we define the active trail
relation Au,v ⊆ Φu × Φv and the passive trail relation Pu,v ⊆ Φu × Φv, via the
following case distinction:

Case Qu = R∨: With Φu = {ϕ ∨ ψ} � Ψ and Φv = {ϕ,ψ} ∪ Ψ , we define
Au,v = {(ϕ∨ψ,ϕ), (ϕ∨ψ,ψ)} and Pu,v = ΔΨ , where ΔΨ = {(ϕ,ϕ) | ϕ ∈ Ψ}.

Case Qu = R∧: With Φu = {ϕ0 ∧ ϕ1} � Ψ and v corresponding to the conjunct
ϕi, we set Au,v = {(ϕ0 ∧ ϕ1, ϕi)} and Pu,v = ΔΨ .

Case Qu = Rη: With Φu = {ηx.ϕ} � Ψ and Φv = {ϕ[ηx.ϕ/x]} ∪ Ψ , we define
Au,v = {(ηx.ϕ, ϕ[ηx.ϕ/x])} and Pu,v = ΔΨ .

Case Qu = M: With Φu = Ψ ∪ {�ϕ1, . . . ,�ϕn} ∪ �Φ and Φv = {ϕv} ∪ Φ, we
define Au,v = {(�ϕv, ϕv)} ∪ {(�ϕ,ϕ) | ϕ ∈ Φ} and Pu,v = ∅.

Finally, we define the general trail relation as Tu,v := Au,v ∪ Pu,v.

Definition 6. A path in T is simply a path in the underlying graph (V,E) of
T. A trail on such a path π = (vn)n<κ is a sequence τ = (ϕn)n<κ of formulas
such that (ϕi, ϕi+1) ∈ Tvi,vi+1 , whenever i+1 < κ. The tightening τ̂ is obtained
from τ by removing all ϕi+1 from τ for which (ϕi, ϕi+1) belongs to the passive
trail relation Pvi,vi+1 .

A Focus System for the Alternation-Free μ-Calculus 381

Because of guardedness, any infinite path π in T witnesses infinitely many
applications of the rule M; and for any trail (ϕn)n<ω on π there are infinitely
many i such that (ϕi, ϕi+1) ∈ Avi,vi+1 . Furthermore, for any two nodes u, v
with Euv and (ϕ,ψ) ∈ Tu,v, we have either (ϕ,ψ) ∈ Au,v and ψ ∈ Clos0(ϕ), or
(ϕ,ψ) ∈ Pu,v and ϕ = ψ. It is then not difficult to see that tightened trails are
traces, and that the tightening of an infinite trail is infinite.

Definition 7. Let τ = (ϕn)n<ω be an infinite trail on the path π = (vn)n<ω in
some tableau T. Then we call τ an η-trail if its tightening τ̂ is an η-trace.

Tableau Games. With each tableau T we associate a tableau game G(T), with
two players, Prover (female) and Refuter (male).

Definition 8. Given a tableau T = (V,E, Φ,Q, vI), the tableau game G(T) is
the (initialised) board game G(T) = (V,E,O,Mν , vI) defined as follows. O is a
partial map that assigns an owner O(v) to some positions v ∈ V . Refuter owns
all positions that are labelled with one of the axioms, Ax1 or Ax2, or with the
rule R∧; Prover owns all position labelled with M; O is undefined on all other
positions. In this context vI will be called the initial position of the game.

The set Mν is the winning condition of the game (for Prover); it is defined
as the set of infinite paths through the graph that carry a ν-trail.

A match of the game consists of the two players moving a token from one
position to another, starting at the initial position, and following the edge rela-
tion E. The owner of a position is responsible for moving the token from that
position to an adjacent one (that is, an E-successor); in case this is impossible
because the node has no E-successors, the player gets stuck and immediately
loses the match. For instance, Refuter loses as soon as the token reaches an
axiomatic leaf labelled Ax1 or Ax2; similarly, Prover loses at any modal node
without successors. If the token reaches a position that is not owned by a player,
that is, a node of T that is labelled with the proof rule R∨, Rμ or Rν , the token
automatically moves to the unique successor of the position. If neither player
gets stuck, the resulting match is infinite; we declare Prover to be its winner if
the match, as an E-path, belongs to the set Mν , that is, if it carries a ν-trail.

Finally, a winning strategy for a player P in G(T) is a way of playing that
guarantees that P wins the resulting match, no matter how P ’s opponent plays.

Remark 1. If T is tree-based we may identify strategies for either player with
subtrees S of T that contain the root of T and, for any node s in S, (1) contain
exactly one successor of s in case the player owns the position s, and (2) contain
all successors of s in case the player’s opponent owns the position s.

The observations below are essentially due to Niwiński & Walukiewicz [21].

Theorem 3 (Determinacy). Let T be a some tableau. Then precisely one of
the players has a winning strategy in G(T).

382 J. Marti and Y. Venema

Theorem 4 (Adequacy). Let T be a tableau for a sequent Φ. Then Refuter
(Prover, respectively) has a winning strategy in G(T) iff the formula

∨
Φ is

refutable (valid, respectively).

Corollary 1. Let T and T
′ be two tableaux for the same sequent. Then Prover

has a winning strategy in G(T) iff she has a winning strategy in G(T′).

4 Soundness

In this section we establish the soundness of our system. Because of Theorem 4
and Theorem 1 it suffices to prove the following.

Theorem 5. Let Φ be some sequent. If Φ is provable in Focus∞ then there is
some tableau T for Φ such that Prover has a winning strategy in G(T).

We will prove the soundness theorem by transforming a thin and progressive
Focus∞-proof of Φ into a winning strategy for Prover in the tableau game asso-
ciated with some tableau for Φ. We first adapt the notion of trail from tableaux
to the setting of Focus∞-proofs.

Definition 9. Let Π = (T, P,Σ,R) be a thin and progressive proof in Focus∞.
For all nodes u, v ∈ V such that Puv we define the active trail relation Au,v ⊆
Σu × Σv and the passive trail relation Pu,v ⊆ Σu × Σv, via the following case
distinction:

Case R(u) = R∨: With Σu = {(ϕ ∨ ψ)a} � Γ and Σv = {ϕa, ψa} ∪ Γ , we
define Au,v := {((ϕ ∨ ψ)a, ϕa), ((ϕ ∨ ψ)a, ψa)} and Pu,v := ΔΓ .

In the cases where R(u) ∈ {R∧,Rμ,Rν ,R�} we proceed analogously.
Case R(u) = W: With Σu = Σv � {ϕa}, we set Au,v := ∅ and Pu,v := ΔΣv

.
Case R(u) ∈ {F,U}: With Σu = {ϕa} ∪ Γ and Σv = {ϕa} ∪ Γ , we define

Au,v = ∅ and Pu,v = {(ϕa, ϕa)} ∪ ΔΓ .
We also define the general trail relation Tu,v := Au,v ∪ Pu,v.

We inductively extend the trail relation Tu,v to any two nodes such that
P ∗uv by putting Tu,u := ΔΣu

, and if Puw and P ∗wv then Tu,v := Tu,w ;Tw,v,
where ; denotes relational composition.

As in the case of tableaux, we will be specifically interested in infinite trails
and their tighentings. These are defined in exactly the same way as for tableaux.

The following observation concerns a central feature of our focus mechanism.

Proposition 4. Every infinite branch in a thin and progressive Focus∞-proof
carries a ν-trail.

Proof. Consider an infinite branch α = (vn)n∈ω in some thin and progressive
Focus∞-proof Π = (T, P,Σ,R). Then α is successful by assumption, so that we
may fix a k such that for every j ≥ k, the sequent Σvj

contains a formula in
focus, and R(vj) is not a focus rule. We claim that

for every j ≥ k and ψf ∈ Σvj+1 there is a χf ∈ Σvj
with (χf , ψf) ∈ Tvj ,vj+1 .

(1)

A Focus System for the Alternation-Free μ-Calculus 383

To see this, let j ≥ k and ψf ∈ Σvj+1 . It is obvious that there is some anno-
tated formula χa ∈ Σvj

with (χa, ψf) ∈ Tvj ,vj+1 . The key observation is now
that in fact a = f , and this holds because the only way that we could have
(χu, ψf) ∈ Tvj ,vj+1 is if we applied the focus rule at vj , which would contradict
our assumption on the nodes vj for j ≥ k.

Now consider the graph (V,E) where

V := {(j, ϕ) | k ≤ j < ω and ϕf ∈ Σvj
},

E :=
{(

(j, ϕ), (j + 1, ψ)
) | (ϕf , ψf) ∈ Tvj ,vj+1

}

This graph is directed, acyclic, infinite and finitely branching. Furthermore, it
follows by (1) that every node (j, ϕ) is reachable in (V,E) from some node (k, ψ).
Then by a (variation of) König’s Lemma there is an infinite path (n, ϕf

n)n∈ω in
this graph. The induced sequence τ := (ϕf

n)n∈ω is a trail on α by definition of
E. By the fact that α features infinitely many applications of R�, the tightening
τ̂ of τ must be infinite, and so τ is either a μ-trail or a ν-trail. But τ cannot
feature infinitely many μ-formulas, simply because the rule Rμ attaches the label
u to the unfolding of a μ-formula. This means that τ cannot be a μ-trail, and
hence it must be a ν-trail. ��

Proof of Theorem 5. Let Π = (T, P,Σ,R) be a Focus∞-proof for Φf . By Theo-
rem 2 we may assume without loss of generality that Π is thin and progressive.
We will construct a tableau T = (V,E, Φ,Q, vI) and a winning strategy for
Prover in G(T). Our construction will be such that (V,E) is a (generally infi-
nite) tree, of which the winning strategy S ⊆ V for Prover is a subtree, as in
Remark 1.

In addition to the tableau T we define a function g : S → T satisfying the
following three conditions, which will allow us to lift the ν-trails from Π to S:

1. If Euv then P ∗g(u)g(v).
2. The sequent Σg(u) is thin, and Σ̃g(u) ⊆ Φu.
3. If Euv and (ψb, ϕa) ∈ TΠ

g(u),g(v) then (ψ,ϕ) ∈ TT
u,v.

The construction of T, S and g is guided by the structure of Π and proceeds
via an induction that starts from the root and in every step adds children to one
of the nodes in the subtree S that is not yet an axiom. Nodes of T that are not
in S are always immediately completely extended using Proposition 3, and thus
need not be taken along in the inductive construction.

At step n ∈ ω of the construction, we are dealing with finite approximating
objects Tn, Sn and gn : Sn → T , and in the limit these will yield T, S and
g. Each Tn will be a pre-tableau, that is, an object as defined in Definition 4,
except that we do not require the rule labelling to be defined for every leaf of the
tree. The basic idea underlying the construction is that step n will take care of
one such undetermined leaf of Tn, say, l; the precise details of the construction
(which are spelled out in [18]) depend on the nature of the proof rule applied in
Π at the node gn(l).

384 J. Marti and Y. Venema

It remains to be seen that S is a winning strategy for Prover in G(T). It is
clear that she wins all finite matches that are played according to S because by
construction all leaves in S are axioms. To show that she wins all infinite matches
too, consider an infinite path β = (vn)n∈ω in S. We need to show that β contains
a ν-trail. Using condition 1 it follows that there is an infinite path α = (tn)n∈ω

in Π such that for every i ∈ ω we have that g(vi) = tki
for some ki ∈ ω, and,

moreover, ki ≤ kj if i ≤ j. By Proposition 4 the infinite path α contains a ν-trail
τ = ϕa0

0 ϕa1
1 · · · . With condition 3 it follows that τ ′ := ϕk0ϕk1ϕk2 · · · is a trail

on β. By Proposition 1, τ contains only finitely many μ-formulas; from this it is
immediate that τ ′ also features at most finitely many μ-formulas. Thus, using
Proposition 1 a second time, we find that τ ′ is a ν-trail, as required. ��

5 Completeness

In this section we show that the focus systems are complete. Because of Theo-
rem 4 and Theorem 1 it suffices to prove the following.

Theorem 6. If Prover has a winning strategy in some tableau game for a
sequent Φ then Φ is provable in Focus∞.

Proof. Let T = (V,E, Φ,Q, vI) be a tableau for Φ and let S be a winning strategy
for Prover in G(T). Because of Proposition 3, Corollary 1 and Remark 1, we may
assume that T is tree based, with root vI , and that S ⊆ V is a subtree of T. We
will construct a Focus∞-proof Π = (T, P,Σ,R) for Φf .

Applications of the focus rules in Π will be very restricted. To start with,
the unfocus rule U will not be used at all, and the focus rule F will only occur in
the form of the following total focus rule Ft which is easily seen to be derivable
as a series of successive applications of F:

Φf

Ft
Φu

We construct the pre-proof Π of Φf together with a function g : S → T in
such a way that the following conditions are satisfied:

1. If Evu then P+g(v)g(u).
2. For every v ∈ S and every infinite branch β = (vn)n∈ω in Π with v0 = g(v)

there is some i ∈ ω and some u ∈ S such that Evu and g(u) = vi.
3. For every ϕ ∈ Φv there is a unique aϕ ∈ {f, u} such that ϕaϕ ∈ Σg(v). In

particular, Σg(v) is thin.
4. If Evu and (ϕ,ψ) ∈ Tv,u then (ϕaϕ , ψaψ) ∈ Tg(v),g(u).
5. If Evu, and s and t are nodes on the path from g(v) to g(u) such that P+st,

(χa, ϕf) ∈ Tg(v),s for some a ∈ {f, u} and (ϕf , ψu) ∈ Ts,t, then χ = ϕ and χ
is a μ-formula.

6. If α is an infinite branch of Π and Ft is applicable at some node on α, then
Ft is applied at some later node on α.

A Focus System for the Alternation-Free μ-Calculus 385

We construct Π and g as the limit of finite stages, where at stage i we have
constructed a finite pre-proof Πi and a partial function gi : S → Πi. At every
stage we make sure that gi and Πi satisfy the following conditions:

7. All open leaves of Πi are in the range of gi.
8. All nodes v ∈ S for which gi(v) is defined satisfy Φv = Σ̃gi(v).

In the base case we define Π0 to consist of just one node r that is labelled
with the sequent Φf . The partial function g0 maps r to vI . Clearly, this satisfies
the conditions 7 and 8.

In the inductive step we consider any open leaf m of Πi, which has a minimal
distance from the root of Πi. This ensures that in the limit every open leaf is
eventually treated, so that Π will not have any open leaves. By condition 7 there
is a u ∈ S such that g(u) = m. Our plan is to extend the proof Πi at the open
leaf m to mirror the rule that is applied at u in T. In general this is possible
because by condition 8 the formulas in the annotated sequent at m = gi(u) are
the same as the formulas at u. All children of u that are in S should then be
mapped by gi+1 to new open leaves in Πi+1. Two technical issues feature in all
the cases.

First, to ensure that condition 6 is satisfied by our construction we will apply
Ft at m, whenever it is applicable. Thus, we need to check whether all formulas
in the sequent of m are annotated with u. If this is the case then we apply the
total focus rule and proceed with its premise n; otherwise we just proceed with
n = m. Note that in either case the sequent at n contains the same formulas
as the sequent at m and if n �= m then the trace relation relates the formulas
at n in an obvious way to those at m. The second technical issue is that to
ensure condition 3 we may need to apply W to the new leaves of Πi+1. For the
details of the construction, which are based on a straightforward case distinction
depending on the rule Q(u), we refer to the technical report [18].

We define Π = (T, P,Σ,R) and the function g : S → T as the limit of the
structures Πi and the maps gi, respectively. The proof that g and Π satisfy the
conditions 1–6, is fairly routine; details can be found in [18].

It is more interesting to see why Π is a correct Focus∞-proof. Leaving the
routine argument as to why Π is a pre-proof to the reader, we concentrate on
the proof that every infinite branch of Π is successful. Let β = (vn)n∈ω be such
a branch. Based on our construction it will not be hard to see that β witnesses
infinitely many application of the box rule R�. Our key claim is that

from some moment on, every sequent on β contains a formula in focus. (2)

By condition 2 we can link β to a branch α = (tn)n∈ω in S such that there
are 0 = k0 < k1 < k2 < · · · with g(ti) = vki

for all i < ω. Because α, as
a match of the tableau game, is won by Prover, it contains a ν-trail (ϕn)n∈ω,
so by condition 4 we obtain an annotated trail τ = (ψan

n)n∈ω on β such that
ϕi = ψki

for all i. Then by Proposition 1 τ is a ν-trail as well; in particular, it
contains no μ-formulas after a certain moment k.

Now distinguish cases. If β has no application of Ft after k, then by condition
6 this rule is not applicable any more, so that by its definition β must witness

386 J. Marti and Y. Venema

a formula in focus at every node vn with n ≥ k indeed. On the other hand, if
R(vn) = Ft for n ≥ k, then at stage n+1 every formula is in focus . In particular,
we find an+1 = f , and since no μ-formula is unfolded on τ after this, we may
show that τ keeps passing through formulas in focus from this moment on.

This proves (2), and, again by condition 6, we may conclude that β features
only finitely many applications of Ft. Since all applications of F in Π are part of
Ft, and the unfocus rule U is not used anywhere in Π, β is successful indeed. ��

6 Conclusion and Questions

In this paper we saw that the idea of placing formulas in focus can be extended
from the setting of logics like ltl and ctl [17] to that of the alternation-free
modal μ-calculus: we designed a very simple and natural, cut-free sequent system
which is sound and complete for all validities in the language consisting of all
(guarded) formulas in the alternation-free fragment Laf

μ of the modal μ-calculus.
In a follow-up paper we use the Focus system to show that the alternation-free

fragment enjoys the Craig Interpolation Theorem. Clearly, these results support
the claim that Laf

μ is an interesting logic with good meta-logical properties.

Below we list questions for future research. To start with, we based our soundness
and completeness proofs on Niwiński & Walukiewicz’ tableau games [21]. A
reviewer suggested that our proofs might be simplified by connecting to the
non-wellfounded proof system of Studer [24]. We leave this for future work.

Probably the most obvious question is whether the restriction to guarded
formulas can be lifted. Note that guardedness is related to the condition that
successful branches in a Focus∞-proof feature infinitely many applications of the
rule R�, which plays a crucial role in the soundness proof (cf. Proposition 4).
Without guardedness, this condition would be too strong since it would disqualify
any proof for a valid formula like νx.x.

Note that our proof systems are cut free, and that it follows from our sound-
ness and completeness results that the cut rule is admissible. It would be of
interest to see whether this can also be proved constructively, corresponding to
a cut elimination procedure for the version of the system with the cut rule.

Another question is whether we may tidy up the focus proof system, in the
same way that Afshari & Leigh did with the Jungteerapanich-Stirling system [1,
14,23]. As a corollary of this it should be possible to obtain an annotation-free
sequent system for the alternation-free fragment of the μ-calculus, and to prove
completeness of Kozen’s axiomatisation for Laf

μ .
It is straightforward to generalise our result to the alternation-free fragment

of variants of the modal μ-calculus, such as the polymodal or the monotone
μ-calculus. Of particular interest is the linear time μ-calculus (i.e., where both
� and � are the next time operator), since in this setting the alternation-free
μ-calculus is known to have the same expressive power as the full language. It
would be interesting to prove a general result for coalgebraic modal μ-calculi.

Moving in a somewhat different direction, we are interested to see to which
degree the focus system can serve as a basis for sound and complete derivation

A Focus System for the Alternation-Free μ-Calculus 387

systems for the alternation-free validities in classes of frames satisfying various
kinds of frame conditions.

References

1. Afshari, B., Leigh, G.: Cut-free completeness for modal mu-calculus. In: Proceed-
ings of the 32nd Annual ACM/IEEE Symposium on Logic In Computer Science
(LICS 2017), pp. 1–12. IEEE Computer Society (2017)

2. Alberucci, L., Facchini, A.: The modal μ-calculus over restricted classes of transi-
tion systems. J. Symb. Log. 74(4), 1367–1400 (2009)

3. Andreoli, J.: Logic programming with focusing proofs in linear logic. J. Log. Com-
put. 2, 297–347 (1992)

4. Arnold, A., Niwiński, D.: Rudiments of μ-calculus. Studies in Logic and the
Foundations of Mathematics, vol. 146. North-Holland Publishing Co., Amsterdam
(2001)

5. Bradfield, J., Stirling, C.: Modal μ-calculi. In: van Benthem, J., Blackburn, P.,
Wolter, F. (eds.) Handbook of Modal Logic, pp. 721–756. Elsevier (2006)

6. Carreiro, F., Facchini, A., Venema, Y., Zanasi, F.: The power of the weak. ACM
Trans. Comput. Log. 21(2):15:1–15:47 (2020)

7. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time μ-calculus. In:
Arun-Kumar, S., Garg, N. (eds.) International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, Lecture Notes in Computer
Science, pp. 273–284 (2006)

8. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-
State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge (2016)

9. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29(1), 132–158 (1999)

10. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logic, and Infinite Games,
volume 2500 of LNCS. Springer, Heidelberg (2002)

11. Gutierrez, J., Klaedtke, F., Lange, M.: The mu-calculus alternation hierarchy col-
lapses over structures with restricted connectivity. Theor. Comput. Sci. 560, 292–
306 (2014)

12. Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results.
In: Wiedermann J., Hájek P. (eds.) Mathematical Foundations of Computer Sci-
ence 1995. MFCS 1995. LNCS, vol. 969, pp. 552–562. Springer, Berlin, Heidelberg
(1995). https://doi.org/10.1007/3-540-60246-1 160

13. Janin D., Walukiewicz I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: Montanari, U., Sassone,
V. (eds.) CONCUR 1996: Concurrency Theory. CONCUR 1996. Lecture Notes
in Computer Science, vol. 1119, pp. 263–277 (1996). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-61604-7 60

14. Jungteerapanich, N.: Tableau systems for the modal μ-calculus. PhD thesis, School
of Informatics; The University of Edinburgh (2010)

15. Kaivola, R.: Axiomatising linear time mu-calculus. In: Lee, I., Smolka, S.A. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 423–437. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60218-6 32

16. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

https://doi.org/10.1007/3-540-60246-1_160
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1007/3-540-60218-6_32
https://doi.org/10.1007/3-540-60218-6_32

388 J. Marti and Y. Venema

17. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal
logic. In: Proceedings of the 16th International Conference on Logic in Computer
Science (LICS 2001), pp. 357–365. IEEE Computer Society (2001)

18. Marti, J., Venema, Y.: Focus-style proof systems and interpolation for the
alternation-free μ-calculus. CoRR, abs/2103.01671 (2021)

19. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata, the weak monadic
theory of trees and its complexity. Theor. Comput. Sci. 97(2), 233–234 (1992)

20. Niwiński, D.: On fixed-point clones. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226,
pp. 464–473. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16761-
7 96

21. Niẃınski, D., Walukiewicz, I.: Games for the μ-calculus. Theor. Comput. Sci. 163,
99–116 (1996)

22. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Symposium
on the Foundations of Computer Science, pp. 319–327. IEEE Computer Society
Press (1988)

23. Stirling, C.: A tableau proof system with names for modal mu-calculus. In:
Voronkov, A., Korovina, M.V. (eds.) HOWARD-60: A Festschrift on the Occa-
sion of Howard Barringer’s 60th Birthday, vol. 42, pp. 306–318 (2014)

24. Studer, T.: On the proof theory of the modal mu-calculus. Stud. Logica 89(3),
343–363 (2008)

25. Walukiewicz, I.: On completeness of the mu-calculus. In: Proceedings of the Eighth
Annual Symposium on Logic in Computer Science (LICS 1993), pp. 136–146. IEEE
Computer Society (1993)

26. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Belgian Math. Soc. 8, 359–391 (2001)

https://doi.org/10.1007/3-540-16761-7_96
https://doi.org/10.1007/3-540-16761-7_96

Intuitionistic Modal Logics

Terminating Calculi and Countermodels
for Constructive Modal Logics

Tiziano Dalmonte1(B) , Charles Grellois2 , and Nicola Olivetti2

1 Technische Universität Wien, Vienna, Austria
tiziano@logic.at

2 Aix-Marseille University, Université de Toulon, CNRS, LIS, Marseille, France
{charles.grellois,nicola.olivetti}@lis-lab.fr

Abstract. We investigate terminating sequent calculi for constructive
modal logics CK and CCDL in the style of Dyckhoff’s calculi for intuition-
istic logic. We first present strictly terminating calculi for these logics.
Our calculi provide immediately a decision procedure for the respective
logics and have good proof-theoretical properties, namely they allow for
a syntactic proof of cut admissibility. We then present refutation calculi
for non-provability in both logics. Their main feature is that they sup-
port direct countermodel extraction: each refutation directly defines a
finite countermodel of the refuted formula in a natural neighbourhood
semantics for these logics.

Keywords: Modal logic · Intuitionistic logic · Constructive modal
logics · Sequent calculus · Refutation · Countermodels

1 Introduction

Intuitionistic modal logic has a long history going back to the pioneering work by
Fitch [8] in the late 40’s and then by Prawitz [20] in the 60’s. It is not possible to
retrace here the whole history. It is now clear that there are two traditions lead-
ing to two distinct families of systems. The first one, called Intuitionistic modal
logics have been introduced by Fischer Servi [7] and Plotkin and Stirling [19] and
then systematised by Simpson [21] whose main goal is to define an analogous
of classical modalities justified from an intuitionistic meta-theory. Simpson’s
basic systems is modal logic IK, intended to be the intuitionistic counterpart
of minimal normal modal logic K. The second one, called Constructive modal
logics, are mainly motivated by their applications to computer science, such as
the type-theoretic interpretations (Curry-Howard correspondence, typed lambda

We thank the reviewers for very accurate comments and corrections that helped us
to improve the first version of this paper. This work has been partially supported by
the ANR-FWF project TICAMORE ANR-16-CE91-0002-01; FWF I 2982. Dalmonte
is supported by a Ernst Mach worldwide grant implemented by the OeAD, Austria
Agency for Education and Internationalisation, and financed by BMBWF.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 391–408, 2021.
https://doi.org/10.1007/978-3-030-86059-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_23&domain=pdf
http://orcid.org/0000-0002-7153-0506
http://orcid.org/0000-0003-0926-7484
http://orcid.org/0000-0001-6254-3754
https://doi.org/10.1007/978-3-030-86059-2_23

392 T. Dalmonte et al.

calculi), verification and knowledge representation, together with their math-
ematical semantics. This second tradition has been developed independently,
first by Wijesekera [23] who proposed the system CCDL (Constructive Concur-
rent Dynamic logic), and then by Bellin, De Paiva, and Ritter [2], among the
others who proposed the logic CK (Constructive K) as the basic system for a
constructive account of modality (see also the survey [22] and the references
therein). Wijesekera’s propositional CCDL was originally motivated as a logic of
partial observations of concurrent actions, whereas CK can be also interpreted
as a logic of contextual reasoning [16]. From an axiomatic point of view all sys-
tems (including Simpson’s IK) share the same �-fragment, but they differ on
the interpretation of diamond and interaction between the two modalities, in
particular CCDL rejects diamond distribution over disjunction:

♦(A ∨ B) → ♦A ∨ ♦B

which is an axiom of IK, in addition CK further rejects its nullary version:

¬♦⊥

which is valid in CCDL.
The system CK has been extensively investigated from a proof-theoretical

point of view: in addition to its Gentzen sequent calculus, a natural deduction
system for it has been proposed [2], which leads to a type-theoretical interpre-
tation of CK within an extended Lambda-calculus. Further proof systems for
CK exist in the form of nested sequent calculus [1] and focused 2-sequent calcu-
lus [17], whereas a tableaux calculus for full CCDL is presented in [24].

From a semantical point of view, both CCDL and CK enjoy a Kripke semantics
in terms of bi-relational Kripke models [16,23], although in order to accommo-
date the failure of ¬♦⊥ Kripke models for CK must be equipped with “incon-
sistent” worlds which force ⊥. The failure of distribution of ♦ over disjunction
makes ♦ a non-normal modality, so that it does not come as a surprise that
the semantic tools for non-normal modal logics can be employed for analysing
these logics. For CCDL Kojima [15] has proposed a semantics in terms of intu-
itionistic neighbourhood models (see also [11] for neighbourhood models of intu-
itionistic logics with only �). More recently an alternative semantics in terms
of neighbourhood models has been provided in [3], in that semantics models
are equipped with two neighbourhood functions for interpreting the two modal-
ities, this semantics accounts uniformly both CCDL and CK without the need
of “inconsistent” worlds. Moreover in both cases finite neighbourhood models
can be transformed into relational models of the corresponding logics (but the
obtained model may be much larger). This is the intended semantics for both
CCDL and CK we consider in this work.

Despite the amount of research on proof systems, decision procedures based
on proof systems have not been studied,1 and there is no work on countermodel

1 Decidability for these logics follows from the finite model property established in
Mendler and de Paiva [16] and Dalmonte et al. [3].

Terminating Calculi and Countermodels for Constructive Modal Logics 393

generation from failed derivations in sequent calculi neither for CK, nor for CCDL,
which is the aim of this work. We are interested here in developing terminating
proof systems that can be used also to extract countermodels from failed proof
search. Our starting point is the calculus G4ip′ proposed by Dyckhoff [4]: his
calculus has the form of a multiple-succedent sequent calculus comprising special
decomposition rules; its main feature is that it is terminating in itself, without
any control on proof-search. This calculus has been extended by Iemhoff [13] to
intuitionistic/constructive modal logic, but only for the �-fragment (on which
all systems, namely Simpson’s IK, CCDL and CK coincide). Extending Iemhoff’s
work, our first contribution is the proposition of terminating calculi for both CK
and CCDL in their full language with both modalities. The two calculi provide
then immediately a decision procedure for the respective logics. Moreover the
calculi have good proof theoretical properties, first of all they allow a syntactic
proof of cut-elimination.

Next we define a refutation calculus which allows for countermodel extrac-
tion. Our starting point is the refutation calculus CRIP for intuitionistic logic
proposed by Pinto and Dyckhoff [18]: in this calculus a derivation, or better a
refutation, directly provides a countermodel of the root-formula. In Pinto and
Dyckhoff’s view: Kripke countermodels are witnesses of refutations, as much as
lambda terms are witnesses of proofs. We propose terminating refutation calculi
for both CK and CCDL. From one refutation in these calculi it can be defined
directly a countermodel of the checked formula/sequent, namely a countermodel
in the neighbourhood semantics mentioned above. In contrast we are not aware of
any calculus for any of these two logics which allows for countermodel extraction
within the original relational semantics.

The fact that a refutation corresponds directly to a neighbourhood counter-
model confirms the significance of the neighbourhood semantics for these logics,
thereby extending Pinto and Dyckhoff’s views: neighbourhood countermodels
are the natural witnesses of refutations for constructive modal logics.

2 Constructive Modal Logics and Their Semantics

In this section we present the constructive modal logics CK and CCDL in the form
of axiomatic systems as well as their neighbourhood semantics. CK and CCDL are
defined in a propositional modal language L based on a set Atm = {p1, p2, p3, ...}
of countably many propositional variables; the well-formed formulas of L are
generated by the following grammar, where pi is any element of Atm:

A ::= pi | ⊥ | A ∧ A | A ∨ A | A ⊃ A | �A | ♦A.

In the following, we call ‘atomic formulas’ the propositional variables and ⊥,
we call ‘atomic implication’ every implication whose antecedent is an atomic
formula, finally we call ‘�-formula’, resp. ‘♦-formula’, every formula whose out-
ermost connective is �, resp. ♦. As usual we define ¬A as A ⊃ ⊥.

394 T. Dalmonte et al.

Definition 1. The logic CK is defined by extending (any axiomatisation of)
intuitionistic propositional logic, formulated in the modal language L, with the
following modal axioms and rules:

A
Nec �A

K� �(A ⊃ B) ⊃ (�A ⊃ �B) K♦ �(A ⊃ B) ⊃ (♦A ⊃ ♦B).

The logic CCDL is defined by extending CK with the additional axiom

N♦ ¬♦⊥.

In the following we denote by C∗ any of the two logics. CK and CCDL have
both relational [16,23] and neighbourhood semantics [3,15]. Independently from
its interest in itself, one of the advantages of the neighbourhood semantics is
that, as we shall see, our refutation calculi directly build a neighbourhood coun-
termodel of every refuted formula, whether the same does not seem to be the
case with relational models. Here we consider a minor variation of the neighbour-
hood semantics of [3] (as explained below) which allows for a more immediate
extraction of countermodels from the calculi.

Definition 2. A neighbourhood model for CK is a tuple M = 〈W,�,
N�,N♦,V〉 where: W is a non-empty set; � is a preorder over W; V is a valu-
ation function Atm → P(W) satisfying the hereditary condition:

if w ∈ V(p) and w � v, then v ∈ V(p);

and N� and N♦ are two neighbourhood functions W −→ P(P(W)) satisfying
the following conditions:

if w � v, then N�(w) ⊆ N�(v) and N♦(w) ⊆ N♦(v) (�- and ♦-monotonicity)
if α ∈ N�(w) and α ⊆ β, then β ∈ N�(w) (�-supplementation)
if α ∈ N♦(w) and α ⊆ β, then β ∈ N♦(w) (♦-supplementation)
W ∈ N�(w) (�-containing the unit)
if α, β ∈ N�(w), then α ∩ β ∈ N�(w) (�-intersection closure)
if α ∈ N�(w) and β ∈ N♦(w), then α ∩ β ∈ N♦(w) (�♦-intersection closure)

A neighbourhood model for CCDL is any neighbourhood model for CK where N♦
satisfies the following additional condition:

∅ /∈ N♦(w) (♦-consistency).

The forcing relation M, w � A is defined as follows, where �B� denotes the set
{v ∈ W | M, v � B} of the worlds forcing B in M:

M, w � p iff w ∈ V(p);
M, w �� ⊥;
M, w � B ∧ C iff M, w � A and M, w � B;
M, w � B ∨ C iff M, w � A or M, w � B;
M, w � B ⊃ C iff for every v � w, M, v � B implies M, v � C;
M, w � �B iff �B� ∈ N�(w);
M, w � ♦B iff �B� ∈ N♦(w).

Terminating Calculi and Countermodels for Constructive Modal Logics 395

init
Γ, p ⇒ p, Δ

L⊥
Γ, ⊥ ⇒ Δ

Γ ⇒ A, Δ Γ ⇒ B, Δ
R∧

Γ ⇒ A ∧ B, Δ

Γ, A, B ⇒ Δ
L∧

Γ, A ∧ B ⇒ Δ

Γ ⇒ A, B, Δ
R∨

Γ ⇒ A ∨ B, Δ

Γ, A ⇒ Δ Γ, B ⇒ Δ
L∨

Γ, A ∨ B ⇒ Δ

Γ, A ⇒ B
R⊃

Γ ⇒ A ⊃ B, Δ

Γ, p, B ⇒ Δ
L0⊃

Γ, p, p ⊃ B ⇒ Δ

Γ, C ⊃ (D ⊃ B) ⇒ Δ
L∧⊃

Γ, (C ∧ D) ⊃ B ⇒ Δ

Γ, C ⊃ B, D ⊃ B ⇒ Δ
L∨⊃

Γ, (C ∨ D) ⊃ B ⇒ Δ

Γ, C, D ⊃ B ⇒ D Γ, B ⇒ Δ
L⊃⊃

Γ, (C ⊃ D) ⊃ B ⇒ Δ

Fig. 1. Rules of G4ip′ [4,5].

In the following we simply write w � A when M is clear from the context.
It is easy to prove that neighbourhood models for CK and CCDL satisfy the
hereditary property (cf. [3]):

for all A ∈ L, if w � A and w � v, then v � A.

Moreover, the equivalence of this semantics with the one of [3] can be easily
shown with model transformations. Given a model M = 〈W,�,N�,N♦,V〉
either as in Definition 2 or of the kind of [3], an equivalent model of the other
kind can be obtained by taking the same W, �, N� and V, and defining N ′

♦(w) =
{α ⊆ W | W \ α /∈ N♦(w)} for every w ∈ W. By relying on the completeness
result of [3] we then have:

Theorem 1. The logics CK and CCDL are sound and complete with respect to
the corresponding neighbourhood models.

3 Sequent Calculi

In this section we present G4-style sequent calculi for the logics CK and CCDL.
The calculi have the property that for every rule the complexity of the pre-
miss(es) is strictly lower than the complexity of the conclusion (with respect
to a suitable notion of complexity). From this it follows that bottom-up proof
search always terminates. We show that the structural rules of weakening, con-
traction, and cut are admissible, and obtain thereby a proof of completeness of
the calculi with respect to the axiomatic systems. As a consequence, bottom-up
proof search in the calculi provides a decision procedure for the logics.

In the following, we denote by capital Greek letters Γ,Δ,Σ,Π possibly empty
multisets of formulas of L. If Γ is the multiset A1, ..., An, we respectively denote
by �Γ and ♦Γ the multisets �A1, ...,�An and ♦A1, ...,♦An (whence �Γ and
♦Γ only contain �-, resp. ♦-, formulas). We call sequent any pair Γ ⇒ Δ of
multisets of formulas. As usual, sequents are interpreted in the language L as

396 T. Dalmonte et al.

Σ ⇒ BK
Γ, Σ ⇒ B, Δ

Σ, B ⇒ C
K♦

Γ, Σ, ♦B ⇒ ♦C, Δ

Σ, B ⇒
N♦

Γ, Σ, ♦B ⇒ Δ

Σ ⇒ C Γ, Σ, B ⇒ Δ
L ⊃

Γ, Σ, C ⊃ B ⇒ Δ

Σ, D ⇒ C Γ, Σ, ♦D, B ⇒ Δ
L♦⊃

Γ, Σ, ♦D, ♦C ⊃ B ⇒ Δ

Fig. 2. Modal rules of G4.CK and G4.CCDL.

initq, p ⇒ q
L0⊃p ⊃ q, p ⇒ q

K
(p ⊃ q), p ⇒ q

R⊃
(p ⊃ q) ⇒ p ⊃ q

R⊃⇒ (p ⊃ q) ⊃ (p ⊃ q)

initq, p ⇒ q
L0⊃p ⊃ q, p ⇒ q

K♦
(p ⊃ q),♦p ⇒ ♦q

R⊃
(p ⊃ q) ⇒ ♦p ⊃ ♦q

R⊃⇒ (p ⊃ q) ⊃ (♦p ⊃ ♦q)

L⊥⊥ ⇒ N♦♦⊥ ⇒ ⊥
R⊃⇒ ♦⊥ ⊃ ⊥

Fig. 3. Derivations of K� and K♦ in G4.C∗ and of N♦ in G4.CK.

∧
Γ ⊃ ∨

Δ if Γ is non-empty, and are interpreted as
∨

Δ if Γ is empty, where∨ ∅ is interpreted as ⊥. We consider the following notions of weight of formulas
and multiset ordering of sequents.

Definition 3 (Weight of formulas and multiset ordering of sequents).
For every formula A of L, its weight wg(A) is defined as follows: wg(⊥) = 0;
wg(pi) = 1 for every pi ∈ Atm; wg(A ⊃ B) = wg(A)+wg(B)+1; wg(A∧B) =
wg(A)+wg(B)+2; wg(A∨B) = wg(A)+wg(B)+3; and wg(�A) = wg(♦A) =
wg(A) + 1. Then we define Γ � Σ iff Γ is the result of replacing one or more
formulas in Σ by zero or more formulas of lower weight; and Γ ⇒ Δ � Σ ⇒ Π
iff Γ,Δ � Σ,Π.

In Fig. 1 it is displayed Dyckhoff’s multi-succedent sequent calculus G4ip′

for intuitionistic logic [4], with the rule L⊃⊃ formulated as in [5]. The main
peculiarity of Dyckhoff’s calculus is that it terminates without need of loop-
checking. This is obtained by considering four left implication rules rather than
a single one, namely one rule for every possible outermost connective in the
antecedent of the principal implication. As a consequence, the resulting calculus
has the property that the premisses of every rule have a smaller complexity than
the conclusion with respect to the multiset ordering of Definition 3.

By extending Dyckhoff’s calculus with suitable rules for the modalities we
now define the calculi G4.CK and G4.CCDL for constructive modal logics.

Definition 4. The calculi G4.CK and G4.CCDL are defined by extending the
calculus G4ip′ in Fig. 1 with the following sets of rules from Fig. 2:

G4.CK := G4ip′ ∪ {K�, K♦, L�⊃, L♦⊃}.
G4.CCDL := G4.CK ∪ {N♦}.

Terminating Calculi and Countermodels for Constructive Modal Logics 397

The rules K�, K♦, and N♦ are the multi-conclusion formulation of the stan-
dard modal rules of sequent calculi for CK and CCDL (see e.g. [23]). In the spirit
of G4ip′, the calculi G4.CK and G4.CCDL also contain two additional left impli-
cation rules, namely L�⊃ and L♦⊃, which take care of the �- or ♦-formulas
occurring in the antecedent of an implication. The rule L�⊃ comes from [13]
where a G4-stlyle calculus for the intuitionistic monomodal �-version of logic K
is presented. Since this logic coincides with the ♦-free fragment of CK and CCDL
the same rule is also adequate for our calculi. Moreover, the rule L♦⊃ reflects the
different behaviour of the modality ♦, which is captured in the calculus by the
rule K♦, and requires the presence of a ♦-formula in addition to the principal
implication. We point out that multi-succedent sequents are not necessary in
order to define sequent calculi for CK, nor for CCDL: indeed analogous calculi
could be formulated extending Dyckhoff’s single-succedent calculus G4ip [4]. The
reason for considering the multi-succedent version of the calculus is that it allows
for a more immediate transformation into a refutation calculus, as we will see in
the next section.

Some examples of derivation in the calculi G4.C∗ are displayed in Fig. 3. It is
easy to see that for every rule of G4.C∗, the premisses have a smaller complexity
than the conclusion with respect to the multiset ordering of Definition 3 (in
particular the premisses of the modal rules only contain subformulas of formulas
in the conclusion). Therefore it holds:

Theorem 2. Backward proof search in G4.C∗ always terminates after a finite
number of steps.

We now prove that the calculi G4.C∗ are equivalent to the corresponding
axiomatic systems. On the one hand, it is possible to show that all the rules of
G4.C∗ are derivable in C∗. As an example, the derivation of the rule L♦⊃ in C∗
is as follows:

1.
∧

Σ ∧ D ⊃ C (assumption)

2.
∧

Σ ⊃ (D ⊃ C) (1, IPL)

3. � ∧
Σ ⊃ �(D ⊃ C) (2, Nec + K�)

4.
∧ �Σ ⊃ �(D ⊃ C) (3, Nec + K�)

5.
∧ �Σ ⊃ (♦D ⊃ ♦C) (4, K♦)

6.
∧ �Σ ∧ ♦D ⊃ ♦C (5, IPL)

7.
∧

Γ ∧ ∧ �Σ ∧ ♦D ∧ (♦C ⊃ B) ⊃∧
Γ ∧ ∧ �Σ ∧ ♦D ∧ (

∧ �Σ ∧ ♦D ⊃ ♦C) ∧ (♦C ⊃ B) (6, IPL)

8.
∧

Γ ∧ ∧ �Σ ∧ ♦D ∧ (
∧ �Σ ∧ ♦D ⊃ ♦C) ∧ (♦C ⊃ B) ⊃∧

Γ ∧ ∧ �Σ ∧ ♦D ∧ B (IPL)

9.
∧

Γ ∧ ∧ �Σ ∧ ♦D ∧ B ⊃ ∨
Δ (assumption)

10.
∧

Γ ∧ ∧ �Σ ∧ ♦D ∧ (♦C ⊃ B) ⊃ ∨
Δ (7,8,9, IPL)

We now prove that G4.C∗ is complete with respect to C∗. We remark that
Dyckhoff’s original completeness proof of G4ip′ [4], as well as Iemhoff’s complete-
ness proof of intuitionistic monomodal calculi [13], are indirect as they rely on
the completeness of G3-style calculi. An alternative proof of the completeness of
G4ip′ with no reference to other kinds of calculi is provided in [5] by showing that
the calculus in itself is syntactically complete with respect to the axiomatiza-
tion: as usual the argument relies on a direct of proof of cut-admissibility within

398 T. Dalmonte et al.

the calculus G4ip′. We follow here this latter approach as it can be modularly
extended to our calculi.

As usual, we say that a rule is admissible in G4.C∗ if whenever the premisses
are derivable, the conclusion is also derivable, and that a single-premiss rule is
height-preserving admissible (hp-admissible for short) if whenever the premiss
is derivable, then the conclusion is derivable with a derivation of at most the

same height. Moreover, we say that a rule
S1 ... Sn

S′ is height-preserving

invertible (hp-invertible) with respect to the premiss Si if the rule S′
Si

is hp-

admissible, and that it is height-preserving invertible (tout court) if it is hp-
invertible with respect to all its premisses. One can easily prove the following:

Lemma 1. The rules L∧, R∧, L∨, R∨, L0⊃, L∧⊃, L∨⊃ are height-preserving
invertible. The rules L⊃⊃, L�⊃, and L♦⊃ are height-preserving invertible with
respect to the right premiss.

We now prove admissibility of the structural rules in G4.C∗.

Proposition 1. The following weakening rules are height-preserving admissible
in G4.C∗, moreover, the following contraction rules are admissible in G4.C∗:

Γ ⇒ Δ
Lwk

Γ, A ⇒ Δ
Γ ⇒ Δ

Rwk
Γ ⇒ A, Δ

Γ, A, A ⇒ Δ
Lctr

Γ, A ⇒ Δ

Γ ⇒ A, A, Δ
Rctr

Γ ⇒ A, Δ

Proof. Hp-admissibility of weakening is straightforward. For contraction the
proof extends the one of [5] for G4ip′ and proceeds by induction on the height
of the derivation of the premiss of contraction and case analysis. The proof is
standard if the contracted formula is not principal in the last rule application
in the derivation of the premiss of contraction. The cases where the contracted
formula is principal and the last rule applied is a rule of G4ip′ are covered in [5],
in particular it is easy to see that the rule in Lemma 7.5 [5] is still admissible
in G4.C∗. Finally, for the modal rules we consider as an example the following
application of contraction to the formula ♦C ⊃ B which is obtained by L♦⊃ (on
the left). The derivation is converted as follows (on the right) with an application
of the hp-invertibilty of L♦⊃ with respect to the right premiss:

Σ,D ⇒ C Γ,�Σ,♦D,B,♦C ⊃ B ⇒ Δ
L♦⊃

Γ,�Σ,♦D,♦C ⊃ B,♦C ⊃ B ⇒ Δ
Lctr

Γ,�Σ,♦D,♦C ⊃ B ⇒ Δ

�
Σ,D ⇒ C

Γ,�Σ,♦D,B,♦C ⊃ B ⇒ Δ
L♦⊃i

Γ,�Σ,♦D,B,B ⇒ Δ
Lctr

Γ,�Σ,♦D,B ⇒ Δ
L♦⊃

Γ,�Σ,♦D,♦C ⊃ B ⇒ Δ

��
Theorem 3 (Cut elimination). The following cut rule is admissible in G4.C∗:

Γ ⇒ A,Δ Γ ′, A ⇒ Δ′
cut

Γ, Γ ′ ⇒ Δ,Δ′

Proof. As usual we proceed by induction on the lexicographically ordered pairs
(c, h), where c is the weight of the cut formulas (cf. Definition 3), and h = h1+h2,
called cut height, is the sum of the heights h1 and h2 of the derivations of

Terminating Calculi and Countermodels for Constructive Modal Logics 399

the premisses of cut. As before, the proof extends the one in [5] for G4ip′, and
distinguishes some cases according to whether the cut formula is or not principal
in the last rules applied in the derivation of the premisses of cut. We only show
a few most relevant cases. (i) The cut formula is not principal in the last rule
applied in the derivation of one premiss. As an example we consider:

Γ ⇒ A, Δ

Σ, B ⇒ C Γ ′, A, �Σ, ♦B, D ⇒ Δ′
L♦⊃

Γ ′, A, �Σ, ♦B, ♦C ⊃ D ⇒ Δ′
cut

Γ, Γ ′, �Σ, ♦B, ♦C ⊃ D ⇒ Δ, Δ′�

Σ, B ⇒ C

Γ ⇒ A, Δ Γ ′, A, �Σ, ♦B, D ⇒ Δ′
cut

Γ, Γ ′, �Σ, ♦B, D ⇒ Δ, Δ′
L♦⊃

Γ, Γ ′, �Σ, ♦B, ♦C ⊃ D ⇒ Δ, Δ′

(ii) The cut formula is principal in the last rule applied in the derivation of
both premisses. We consider the following two cases, where R∗ denotes multiple
applications of the rule R. The other cases are similar and left to the reader.

(R⊃; L♦⊃)

Γ, ♦A ⇒ B
R⊃

Γ ⇒ ♦A ⊃ B, Δ

Σ, C ⇒ A Γ ′, �Σ, ♦C, B ⇒ Δ′
L♦⊃

Γ ′, �Σ, ♦C, ♦A ⊃ B ⇒ Δ′
cut

Γ, Γ ′, �Σ, ♦C ⇒ Δ, Δ′�

Σ, C ⇒ A
K♦ �Σ, ♦C ⇒ ♦A Γ, ♦A ⇒ B
cut

Γ, �Σ, ♦C ⇒ B Γ ′, �Σ, ♦C, B ⇒ Δ′
cut

Γ, Γ ′, �Σ, �Σ, ♦C, ♦C ⇒ Δ′
Lctr∗ + Rwk∗

Γ, Γ ′, �Σ, ♦C ⇒ Δ, Δ′

(K♦; L♦⊃)

Σ, A ⇒ B
K♦

Γ, �Σ, ♦A ⇒ ♦B, Δ

Π, B ⇒ C Γ ′, �Π, ♦B, D ⇒ Δ′
L♦⊃

Γ ′, �Π, ♦B, ♦C ⊃ D ⇒ Δ′
cut

Γ, Γ ′, �Σ, �Π, ♦A, ♦C ⊃ D ⇒ Δ, Δ′�

Σ, A ⇒ B Π, B ⇒ C
cut

Σ, Π, A ⇒ C

Γ, �Σ, ♦A ⇒ ♦B, Δ Γ ′, �Π, ♦B, D ⇒ Δ′
cut

Γ, Γ ′, �Σ, �Π, ♦A, D ⇒ Δ, Δ′
L♦⊃

Γ, Γ ′, �Σ, �Π, ♦A, ♦C ⊃ D ⇒ Δ, Δ′

��
Given the admissibility of cut and the derivability in G4.C∗ of the axioms

and the modal rule of C∗ we obtain the following result:

Theorem 4 (Soundness and completeness). Γ ⇒ Δ is derivable in G4.C∗

if and only if
∧

Γ ⊃ ∨
Δ is derivable in C∗.

Proof. From right to left: For the intuitionistic axioms we refer to [5]. The deriva-
tions of specific instances of the modal axioms are displayed in Fig. 3. Since initial
sequents can be generalised to arbitrary formulas, the same derivations can be
applied to derive any instances of K� and K♦. Finally, the derivability of the

400 T. Dalmonte et al.

rule Nec follows immediately from the rule K�, whereas modus ponens is simu-
lated by cut in the usual way. For the opposite direction: We have shown above
the derivation of the rule L♦⊃ in C∗. The derivation of L�⊃ is similar, whereas
the derivations of K�, K♦, and N♦ are standard and can be found in [23]. ��

4 Refutation Calculi and Countermodel Construction

We shall now present refutation calculi for constructive modal logics CK and
CCDL. These calculi can be seen as dual of the sequent calculi G4.CK and
G4.CCDL of the previous section: instead of deriving all valid formulas, the
refutation calculi allow one to refute all formulas which are non-theorems of
the logics. We will further show that every refutation in these calculi explicitly
constructs a neighbourhood countermodel of the refuted formula.

Refutation calculi handle so-called anti-sequents, which are pairs Γ � Δ of
multiset of formulas of L. Intuitively, the anti-sequent Γ � Δ expresses that∨

Δ does not follow from
∧

Γ , or equivalently that
∧

Γ ⊃ ∨
Δ is not valid.

The refutation calculi Ref.CK and Ref.CCDL of constructive modal logics extend
the refutation calculus for intuitionistic logic by Pinto and Dyckhoff [18] in the
following way.

Definition 5. The refutation calculi Ref.CK and Ref.CCDL are defined by the
following sets of rules from Fig. 4:

Ref.CK := {init, initCK, L∧, R∧1, R∧2, L∨1, L∨2, R∨, L0⊃, L∧⊃, L∨⊃,
L⊃⊃, L�⊃, L♦⊃, nip}.

Ref.CCDL := {init, L∧, R∧1, R∧2, L∨1, L∨2, R∨, L0⊃, L∧⊃, L∨⊃, L⊃⊃,
L�⊃, L♦⊃, nip, nipCCDL}.

Similarly to the refutation calculus in [18], the initial anti-sequents (or
axioms) of Ref.C∗ are all the pairs Γ � Δ such that the corresponding sequent
Γ ⇒ Δ is neither an axiom of G4.C∗, nor the conclusion of any rule of G4.C∗.
Concerning the other rules, every rule different from nip and nipCCDL corresponds
to an invertible premiss of some rule of G4.C∗ (more precisely, to a rule (more

precisely, to a rule S′
Si

such that the G4.C∗ rule (more precisely, to a rule

S1 ... Sn

S′ is invertible with respect to Si), whereas nip and nipCCDL deal at
the same time with all the non-invertible premisses of the rules of G4.C∗. Given
their application conditions, the rules nip and nipCCDL are (bottom-up) applica-
ble only when no invertible rule of G4.C∗ is applicable. Observe that the rules
nip and nipCCDL only differ with respect to the premisses where only ♦-formulas
are principal. In particular, nipCCDL allows one to reduce the anti-sequents where
no ♦-formula occurs in the consequent, which is allowed by the logic CCDL but
is not allowed by CK. The idea is that in Ref.CCDL the rule nip is applied when
Δ contains ♦-formulas, whereas nipCCDL is applied when Δ does not contain ♦-
formulas. Two examples of refutations in Ref.C∗ of formulas which are valid in

Terminating Calculi and Countermodels for Constructive Modal Logics 401

init
Γ, Γ ♦Δ, Δ

initCK
Γ, Γ , ♦Γ Δ

Γ, A, B Δ
L∧

Γ, A ∧ B Δ

Γ A, Δ
R∧1

Γ A ∧ B, Δ

Γ B, Δ
R∧2

Γ A ∧ B, Δ

Γ, A Δ
L∨1

Γ, A ∨ B Δ

Γ, B Δ
L∨2

Γ, A ∨ B Δ

Γ A, B, Δ
R∨

Γ A ∨ B, Δ

Γ, p, B Δ
L0⊃

Γ, p, p ⊃ B Δ

Γ, C ⊃ (D ⊃ B) Δ
L∧⊃

Γ, (C ∧ D) ⊃ B Δ

Γ, C ⊃ B, D ⊃ B Δ
L∨⊃

Γ, (C ∨ D) ⊃ B Δ

Γ, B Δ
L⊃⊃

Γ, (C ⊃ D) ⊃ B Δ

Γ, B Δ
L ⊃

Γ, C ⊃ B Δ

Γ, ♦D, B Δ
L♦⊃

Γ, ♦D, ♦C ⊃ B Δ

{Γ A | A ⊃ B ∈ Γ} {Γ A | A ∈ Δ}
{Γ , C A | ♦A ⊃ B, ♦C ∈ Γ} {Γ , A B | ♦A ∈ Γ, ♦B ∈ Δ}
{Γ , D ⊃ B, C D | (C ⊃ D) ⊃ B ∈ Γ} {Γ, A B | A ⊃ B ∈ Δ}

nip
Γ Δ

{Γ A | A ⊃ B ∈ Γ} {Γ A | A ∈ Δ}
{Γ , C A | ♦A ⊃ B, ♦C ∈ Γ} {Γ , A | ♦A ∈ Γ}
{Γ , D ⊃ B, C D | (C ⊃ D) ⊃ B ∈ Γ} {Γ, A B | A ⊃ B ∈ Δ}

nipCCDL
Γ Δ

where • Γ = Γ \ {(C ⊃ D) ⊃ B}, and
• if A1, ..., An are all the -formulas of Γ , then Γ = A1, ..., An.

Application conditions:

• init and initCK: (i) Γ contains only propositional variables, atomic implications, and
implications of the form ♦A ⊃ B; (ii) Δ contains only atomic formulas;
(iii) if p ⊃ A ∈ Γ , then p ∈ Γ ;
(iv) if Γ contains an implication ♦ A ⊃ B, then♦Γ = ∅; (v) Γ ∩ Δ = ∅.
• nip: (i) Γ does not contain ⊥, conjunctions, disjunctions, and implications of the form
(C ∧ D) ⊃ B or (C ∨ D) ⊃ B; (ii) Δ does not contain conjunctions and disjunctions;
(iii) if p ⊃ A ∈ Γ , then p /∈ Γ ; (iv) if p ∈ Γ , then p /∈ Δ.

• nipCCDL: conditions of nip, plus (v) Δ does not contain ♦-formulas.

• nip and nipCCDL must have at least one premiss.

/

Fig. 4. Rules of Ref.CK and Ref.CCDL.

initp q
nip

p ⊃ q
nip♦p ⊃ q (p ⊃ q)
nip

(♦p ⊃ q) ⊃ (p ⊃ q)

init q p
L∨ p ∨ q p

initp q
L∨p ∨ q q
nip♦(p ∨ q) ♦p,♦q

R∨♦(p ∨ q) ♦p ∨ ♦q
nip♦(p ∨ q) ⊃ ♦p ∨ ♦q

Fig. 5. Examples of refutations in Ref.C∗.

402 T. Dalmonte et al.

intuitionistic modal logics but are not valid in constructive ones are displayed in
Fig. 5.

Note that similarly to G4.C∗, for every rule of Ref.C∗ the premisses have a
smaller complexity than the conclusion with respect to the multiset ordering of
Definition 3. Therefore we have:

Theorem 5. Backward proof search in Ref.C∗ is terminating.

We can prove that the refutation calculi Ref.CK and Ref.CCDL are the dual
of the sequent calculi G4.CK and G4.CCDL, in the sense that an anti-sequent
Γ � Δ is derivable in a refutation calculus if and only if the sequent Γ ⇒
Δ is not derivable in the corresponding sequent calculus. It follows that the
refutation calculi are complete with respect to the sets of non-valid formulas in
the neighbourhood semantics for CK and CCDL.

Theorem 6. Γ � Δ is derivable in Ref.C∗ if and only if Γ ⇒ Δ is not derivable
in G4.C∗.

We now show that every refutation of Γ � Δ provides a neighbourhood
countermodel of Γ ⇒ Δ. We thereby obtain a constructive proof of the com-
pleteness of the refutation calculi Ref.C∗ (and indirectly also of the calculi G4.C∗)
with respect to the neighbourhood semantics of C∗. In order to define the coun-
termodel construction, we enrich the anti-sequents occurring in a refutation with
annotations that represent the worlds of a model in the following manner.

Definition 6. An annotation is a finite sequence of natural numbers
n1.n2.nk. An annotated anti-sequent is an expression Γ �

σ Δ, where
Γ � Δ is an anti-sequent and σ is an annotation. An annotated refutation
is a refutation where all sequents are annotated according to the following pre-
scriptions:

– The root anti-sequent Γ � Δ is annotated with the initial annotation 1.
– If the conclusion of any rule different from nip or nipCCDL is annotated with

σ, then its premiss has the same annotation σ.
– If the conclusion of nip or nipCCDL is annotated with σ, then its premisses are

annotated as follows:
• The premisses obtained from formulas (C ⊃ D) ⊃ B on the left of the

conclusion, or formulas A ⊃ B on the right, are annotated each with a
different annotation σ.n not already occurring in the refutation.

• The premisses obtained from any other formulas are annotated each with
a different annotation k not already occurring in the refutation.

As an example, the annotated versions of the refutations in Fig. 5 are dis-
played in Fig. 6. Note that every refutation in Ref.C∗ can be easily annotated
according to Definition 6.

Terminating Calculi and Countermodels for Constructive Modal Logics 403

For any annotated refutation R of Γ �
1 Δ in Ref.C∗, we denote2

Γ σ =
⋃

{Γ | Γ �
σ Δ ∈ R}and Δσ =

⋃
{Δ | Γ �

σ Δ ∈ R}.

We now show how to extract a countermodel from an annotated refutation
of Γ �

1 Δ. Intuitively, every annotation corresponds to a world of the model.
The rules in which the premiss and conclusion have the same annotation (i.e.,
all the rules but nip and nipCCDL) are “local” as they deal with a single world.
By contrast, bottom-up applications of nip and nipCCDL create new worlds: the
premisses annotated with σ.n (i.e., those generated by non-modal ⊃-formulas
occurring in the conclusion) represent worlds related through � to the world
σ at the conclusion, whereas the other premisses represent worlds belonging to
some neighbourhood of σ. The formal definition is as follows.

Definition 7 (Countermodel extraction). Let R be an annotated refutation
of Γ �

1 Δ. The countermodel determined by R is defined as follows.

– W = the set of annotations occurring in R.
– σ � ρ iff ρ = σ.π for some possibly empty annotation π.
– V(p) = {σ ∈ W | p ∈ Γ σ}.
– For every �A,♦A occurring in R, A+ = {σ ∈ W | A ∈ Γ σ}.
– For every σ ∈ W, N�(σ) and N♦(σ) are defined as follows:

• If there are no �-formulas in Γ σ, then:
* N�(σ) = {W}.
* N♦(σ) = {α ⊆ W | there is ♦B ∈ Γ σ s.t. B+ ⊆ α}.

• Otherwise, if �A1, ...,�An are all the �-formulas in Γ σ, then:
* N�(σ) = {α ⊆ W | A+

1 ∩ ... ∩ A+
n ⊆ α}.

* N♦(σ) = {α ⊆ W | there is ♦B ∈ Γ σ s.t. A+
1 ∩ ... ∩ A+

n ∩ B+ ⊆ α}.

Observe that N♦(σ) = ∅ if there are no ♦-formulas in Γ σ.

Theorem 7. If R is an annotated refutation of Γ �
1 Δ in Ref.C∗, and M is

the model extracted from R according to Definition 7, then M is a neighbourhood
model for C∗ and it is a countermodel of Γ ⇒ Δ.

Proof. We first prove that M is a neighbourhood model for C∗. From the defini-
tion of M it immediately follows that N� and N♦ are supplemented, and N� is
closed under intersection and contains the unit. For Ref.CCDL we also have ∅ /∈
N♦(σ), since if ♦B ∈ Γ σ, then by nipCCDL and the annotation procedure there is
n ∈ W such that n ∈ ⋂{A+ | �A ∈ Γ σ}∩B+, thus for every α ∈ N♦(σ), α �= ∅.
Moreover, if α ∈ N�(σ) and β ∈ N♦(σ), then if Γ σ contains �-formulas we have⋂{A+ | �A ∈ Γ σ} ⊆ α and

⋂{A+ | �A ∈ Γ σ} ∩ B+ ⊆ β for some ♦B ∈ Γ σ.
Then

⋂{A+ | �A ∈ Γ σ} ∩ B+ ⊆ α ∩ β, thus α ∩ β ∈ N♦(σ). Moreover, N� and
N♦ are monotonic with respect to �. For instance, if α ∈ N�(σ) and σ.π ∈ W,

2 To be precise, the sets Γ σ and Δσ depend on the refutation R. In order not to
burden the notation we avoid explicit reference to R as it is clear from the context.

404 T. Dalmonte et al.

then α = W or A+
1 ∩ ... ∩ A+

n ⊆ α, where �A1, ...,�An are all the �-formulas
in Γ σ. In the first case, W ∈ N�(σ.π). In the second case, by nip and nipCCDL

�A1, ...,�An ∈ Γ σ.π. Then
⋂{B+ | �B ∈ Γ σ.π} ⊆ ⋂{A+ | �A ∈ Γ σ} ⊆ α,

thus α ∈ N�(σ.π). Finally V satisfies the hereditary condition: if σ � p, then
p ∈ Γ σ. By the rules and the annotation procedure it follows that p ∈ Γ σ.π for
every σ.π ∈ W, thus σ.π � p. Observe that since M is a neighbourhood model
for C∗ it satisfies the ereditary property for every A ∈ L.

Now we prove that for every formula A and every annotation σ occurring in
R, if A ∈ Γ σ, then σ � A, and if A ∈ Δσ, then σ �� A. In order to carry on the
proof we need the notion of “height of a label”: we consider the forest of labels
FR generated by the labels σ in R with their immediate successors σ.1, ..., σ.n
(the root of each tree is a unitary label); we then define the height of a label σ
as its height in FR . The two claims are proven simultaneously by induction on
the pairs (c, h), where c is the weight of A (Definition 3), and h is the height of
σ.

The basic case (A ≡ p,⊥) is trivial. If Γ or Δ contains a conjuction or a
disjunction, or Γ contains an implication of the form (C ∧D) ⊃ B or (C ∨D) ⊃
B, then the claim easily follows from the i.h. and the structure of refutations.
For instance, if (C ∧ D) ⊃ B ∈ Γ σ, then C ⊃ (D ⊃ B) ∈ Γ σ, and by i.h.,
σ � C ⊃ (D ⊃ B), thus σ � (C ∧ D) ⊃ B.

If B ⊃ C ∈ Δσ, then by the rule nip or nipCCDL and the annotation procedure
there is σ.n ∈ W such that B ∈ Γ σ.n and C ∈ Δσ.n, thus by i.h. σ.n � B and
σ.n �� C, then since σ � σ.n it follows that σ �� B ⊃ C.

If p ⊃ B ∈ Γ σ, then for every chain of worlds starting from σ either there is
no world τ in the chain such that p ∈ Γ τ , or there is a �-minimal world π with
σ � π such that p ∈ Γπ. In the first case, by definition p is false in every world
of the chain. In the second case, ρ �� p for every ρ �= π such that σ � ρ � π,
moreover there is Γ �

π Δ in R such that p ∈ Γ . Furthermore, by nip or nipCCDL

p ⊃ B ∈ Γ , then by L0⊃ and the application conditions there is Γ ′
�

π Δ′

such that B ∈ Γ ′, thus B ∈ Γπ. By i.h. it follows π � B, and by the ereditary
property we have ω � B for every ω such that π � ω. Therefore for every τ such
that σ � τ , τ �� p or τ � B, thus σ � p ⊃ B.

If (C ⊃ D) ⊃ B ∈ Γ σ, then if B ∈ Γ σ, then by i.h. σ � B, and by the
hereditary property ρ � B for every ρ such that ρ � σ. If instead B /∈ Γσ, then
by nip or nipCCDL there is σ.k ∈ W such that D ⊃ B,C ∈ Γ σ.k and D ∈ Γ σ.k,
moreover for every other immediate successor σ.m of σ, (C ⊃ D) ⊃ B ∈ Γ σ.m.
By i.h. σ.m � (C ⊃ D) ⊃ B, that is, for every π such that σ.m � π, π � C ⊃ D
implies π � B. Moreover, by i.h. σ.n � D ⊃ B, σ.n � C, and σ.n �� D.
Thus σ �� C ⊃ B, and by the hereditary property, for every successor τ of σ.n,
τ � C ∧ (D ⊃ B). Then if τ � C ⊃ D we have τ � D, thus τ � B. Therefore for
every ρ such that σ � ρ, ρ � C ⊃ D implies ρ � B. Then σ � (C ⊃ D) ⊃ B.

If �C ⊃ B ∈ Γ σ, then if B ∈ Γ σ, then by i.h. σ � B, and by the hereditary
property ρ � B for every ρ such that ρ � σ. If instead B /∈ Γ σ, then by nip
or nipCCDL for every immediate successor σ.k of σ, �C ⊃ B ∈ Γ σ.k, then by
i.h. σ.k � �C ⊃ B, moreover there is n ∈ W such that C ∈ Δn and for every

Terminating Calculi and Countermodels for Constructive Modal Logics 405

1. Annotated refutation and countermodel for (♦p ⊃ q) ⊃ (p ⊃ q):
init

p 2.1 q
nip

2 p ⊃ q
nip

♦p ⊃ q 1.1 (p ⊃ q)
nip

1 (♦p ⊃ q) ⊃ (p ⊃ q)

W = {1, 1.1, 2, 2.1}. 1 1.1. 2 2.1.
V(p) = {2.1}. V(q) = ∅.
N (w) = {W} for every w ∈ W.
N♦(w) = ∅ for every w ∈ W.

2. Annotated refutation and countermodel for ♦(p ∨ q) ⊃ ♦p ∨ ♦q:
init

q 2 p
L∨

p ∨ q 2 p

init
p 3 q

L∨
p ∨ q 3 q

nip
♦(p ∨ q) 1.1 ♦p, ♦q

R∨♦(p ∨ q) 1.1 ♦p ∨ ♦q
nip

1 ♦(p ∨ q) ⊃ ♦p ∨ ♦q

W = {1, 1.1, 2, 3}. 1 1.1.
V(p) = {3}. V(q) = {2}.
N (w) = {W} for every w ∈ W.
N♦(w) = ∅ for every w ∈ W, w = 1.1.
N♦(1.1) = {α | (p ∨ q)+ ⊆ α} =
{{2, 3}, {2, 3, 1}, {2, 3, 1.1}, {2, 3, 1, 1.1}}.

3. Annotated refutation and countermodel for ♦⊥ ⊃ ⊥ in Ref.CK:
initCK♦⊥ 1.1 ⊥
nip

1 ♦⊥ ⊃ ⊥
W = {1, 1.1}. 1 1.1.
N (1) = {W}. N (1.1) = {W}.
N♦(1) = ∅. N♦(1.1) = P(W).

Fig. 6. Annotated refutations and countermodels.

�D ∈ Γ σ, D ∈ Γn. Then by i.h.
⋂{D+ | �D ∈ Γ σ} �⊆ �C�, thus �C� /∈ N�(σ),

therefore σ �� �C. Then for every ρ such that σ � ρ, ρ �� �C or ρ � B, therefore
σ � �C ⊃ B.

If ♦C ⊃ B ∈ Γσ, then if B ∈ Γ σ, then by i.h. σ � B, and by the hereditary
property ρ � B for every ρ such that ρ � σ. If instead B /∈ Γσ, then by nip
or nipCCDL for every immediate successor σ.k of σ, �D ⊃ B ∈ Γ σ.k, then by
i.h. σ.k � �D ⊃ B. Moreover, if there is no ♦-formula in Γ σ, then N♦(σ) = ∅,
whence σ �� ♦C. Otherwise for every ♦D ∈ Γ σ, by nip or nipCCDL there is
n ∈ W such that D ∈ Γn, C ∈ Δn, and E ∈ Γn for every �E ∈ Γ σ. Then by
i.h.

⋂{E+ | �E ∈ Γ σ} ∩ D+ �⊆ �C�, thus �C� /∈ N♦(σ), therefore σ �� ♦C. Then
for every ρ such that σ � ρ, ρ �� ♦C or ρ � B, therefore σ � ♦C ⊃ B.

If �B ∈ Γ σ (resp. ♦B ∈ Γ σ), then by i.h. B+ ⊆ �B�, and by definition
�B� ∈ N�(σ) (resp. N♦(σ)), so σ � �B (resp. σ � ♦B).

If �B ∈ Δσ, then by the rule nip or nipCCDL there is n ∈ W such that B ∈ Δn

and for every �C ∈ Γ σ, C ∈ Γn. Then by i.h.
⋂{C+ | �C ∈ Γ σ} �⊆ �B�, thus

�B� /∈ N�(σ), therefore σ �� �B.
If ♦B ∈ Δσ, then if there is no ♦C ∈ Γ σ, then N♦(σ) = ∅, thus σ �� ♦B.

If instead there is ♦C ∈ Γ σ, then by the rule nip, for every ♦C ∈ Γ σ there is
n ∈ W such that B ∈ Δn, C ∈ Γn, and D ∈ Γn for every �D ∈ Γ σ. Then by
i.h.

⋂{D+ | �C ∈ Γ σ} ∩ C+ �⊆ �B�, thus �B� /∈ N♦(σ), therefore σ �� ♦B. ��
Some relevant examples of refutations of non-valid formulas and correspond-

ing countermodels are displayed in Fig. 6.

406 T. Dalmonte et al.

As shown in [3], every neighbourhood model for CK or CCDL can be trans-
formed into an equivalent relational model.3 For instance, by applying the trans-
formation to the last model in Fig. 6 we obtain a relational model 〈W ′,�′,R,V ′〉
for CK, where W ′ = {(1, {1, 1.1}), (1.1, {1, 1.1, f}), (f, {f})}; (1, {1, 1.1}) �′

(1.1, {1, 1.1, f}); (1.1, {1, 1.1, f})R(f, {f}); and (f, {f}) � ⊥. Moreover, a sim-
plified transformation is possible for the models where N♦ is empty, whence in
particular for neighbourhood models for the �-fragment of the logics. The sim-
plified transformation generates relational models of the same size as the orig-
inal neighbourhood ones. By contrast, the general transformation can produce
relational models that are exponentially larger than the original neighbourhood
ones. It follows that the 1-1 correspondence between the premisses of the non-
invertible rules in a refutation and the worlds of the extracted countermodel is
not preserved in the relational semantics. For this reason, while it is possible to
directly extract relational models from refutations for the �-fragment of the two
logics,4 the same does not seem possible for CK and CCDL with both � and ♦.
In this sense neighbourhood models are the natural semantics of our refutation
calculi.

5 Conclusion and Future Work

In this paper we have proposed terminating sequent calculi for constructive
modal logics CK and CCDL. First we have presented the calculi G4.CK and
G4.CCDL which extend both Dyckhoff’s calculus for intuitionistic logic and
Iemhoff’s one for the �-fragment of IK. Our calculi provide a decision proce-
dure for the respective logics. They have also good proof-theoretical properties,
as they allow for a syntactic proof of cut admissibility. Then we have proposed
dual refutation calculi for non-provability. The dual calculi are likewise termi-
nating. Their main interest is that they support direct countermodel extraction:
each refutation uniquely determines a finite neighbourhood countermodel of the
refuted formula in the semantics defined in [3].

There are a number of issues that we intend to explore in future work. We
have already mentioned the issue of transforming a neighbourhood counter-
model into a “small” relational countermodel. There are also some computational
issues: although the exact complexity of CK and CCDL has not been explicitly
stated, we strongly conjecture that both are in PSPACE, in this hypothesis,
the calculi G4.CK and G4.CCDL would not be optimal, since a derivation may
have an exponential size, the same happens within Dyckhoff’s G4ip′; this natu-
rally leads to the issue of studying refinements of our calculi, following the line
of [6] which would match (and establish) the PSPACE upper bound. Moreover,
we believe that our terminating calculi are very suitable for implementation: a
theorem prover based on them would expand the realm of intuitionistic modal
3 The transformation in [3] must be slightly modified given the alternative formulation

of the neighbourhood semantics.
4 As an example, an extraction of relational countermodels from failed proofs in a

G4-calculus for Intuitionistic Strong Löb Logic with only � is presented in [9].

Terminating Calculi and Countermodels for Constructive Modal Logics 407

theorem proving, in addition to the recent prover presented in [10]. Following
Iemhoff [14] we also intend to use our terminating calculi to prove constructively
the uniform interpolation property for both CK and CCDL.

Finally, we plan to extend our calculi to other (non-normal) intuitionistic
modal logics in two directions: on the one hand to subsystems of CK and CCDL
defined in [3], and on the other hand their extensions with axioms of the standard
modal cube. To this regard, nested sequents for the standard cube extensions of
CK have been proposed in [1], but terminating calculi of the kind considered here
have not been investigated yet for them. A further direction could be to study
a constructive version of Bi-Intuitionistic Logic with tense modalities [12]. The
investigation of refutation calculi for these logics, along the lines of this work,
would of course presuppose the extension of the neighbourhood semantics itself
to these logics, a non-trivial task which may have an independent interest.

References

1. Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal
logics. Log. Methods Comput. Sci. 11(3), 1–33 (2015)

2. Bellin, G., De Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a
basic constructive modal logic. In: Proceedings of Methods for Modalities, vol. 2
(2001)

3. Dalmonte, T., Grellois, C., Olivetti, N.: Intuitionistic non-normal modal logics: a
general framework. J. Philos. Log. 49(5), 833–882 (2020)

4. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log.
57(3), 795–807 (1992)

5. Dyckhoff, R., Negri, S.: Admissibility of structural rules for contraction-free sys-
tems of intuitionistic logic. J. Symb. Log. 65(4), 1499–1518 (2000)

6. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth sequent calculi
for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. J. Autom. Reason. 51(2), 129–149 (2013)

7. Fischer Servi, G.: Semantics for a class of intuitionistic modal calculi. In: Dalla
Chiara, M.L. (ed.) Italian Studies in the Philosophy of Science. BSPS, vol. 47, pp.
59–72. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-009-8937-5 5

8. Fitch, F.B.: Intuitionistic modal logic with quantifiers. J. Symb. Log. 14(4), 113–
118 (1950)

9. van der Giessen, I., Iemhoff, R.: Proof theory for intuitionistic strong Löb logic.
arXiv preprint arXiv:2011.10383 (2020)

10. Girlando, M., Straßburger, L.: MOIN: a nested sequent theorem prover for intu-
itionistic modal logics (system description). In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 398–407. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51054-1 25

11. Goldblatt, R.I.: Grothendieck topology as geometric modality. Math. Log. Q.
27(31–35), 495–529 (1981)

12. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof search for biintuition-
istic tense logic. In: Shehtman, V., Beklemishev, L., Goranko, V. (eds.) Advances
in Modal Logic 8, pp. 156–177. College Publications (2010)

13. Iemhoff, R.: Terminating sequent calculi for two intuitionistic modal logics. J. Log.
Comput. 28(7), 1701–1712 (2018)

https://doi.org/10.1007/978-94-009-8937-5_5
http://arxiv.org/abs/2011.10383
https://doi.org/10.1007/978-3-030-51054-1_25

408 T. Dalmonte et al.

14. Iemhoff, R.: Uniform interpolation and the existence of sequent calculi. Ann. Pure
Appl. Log. 170(11), 102711 (2019)

15. Kojima, K.: Relational and neighborhood semantics for intuitionistic modal logic.
Rep. Math. Log. 47, 87–113 (2012)

16. Mendler, M., De Paiva, V.: Constructive CK for contexts. Context Representation
and Reasoning (CRR-2005) 13 (2005)

17. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Com-
put. 209(12), 1465–1490 (2011)

18. Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic
propositional logic. In: Symposia Gaussiana, Conference A, pp. 225–232 (1995)

19. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Proceed-
ings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK), pp. 399–406 (1986)

20. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell
(1965)

21. Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic.
PhD thesis, School of Informatics, University of Edinburgh (1994)

22. Stewart, C., de Paiva, V., Alechina, N.: Intuitionistic modal logic: a 15-year retro-
spective. J. Log. Comput. 28(5), 873–882 (2018)

23. Wijesekera, D.: Constructive modal logics I. Ann. Pure Appl. Log. 50(3), 271–301
(1990)

24. Wijesekera, D., Nerode, A.: Tableaux for constructive concurrent dynamic logic.
Ann. Pure Appl. Log. 135(1–3), 1–72 (2005)

Nested Sequents for Intuitionistic Modal
Logics via Structural Refinement

Tim S. Lyon(B)

Computational Logic Group, Institute of Artificial Intelligence,
Technische Universität Dresden, Dresden, Germany

timothy stephen.lyon@tu-dresden.de

Abstract. We employ a recently developed methodology—called struc-
tural refinement—to extract nested sequent systems for a sizable class
of intuitionistic modal logics from their respective labelled sequent sys-
tems. This method can be seen as a means by which labelled sequent
systems can be transformed into nested sequent systems through the
introduction of propagation rules and the elimination of structural rules,
followed by a notational translation. The nested systems we obtain incor-
porate propagation rules that are parameterized with formal grammars,
and which encode certain frame conditions expressible as first-order Horn
formulae that correspond to a subclass of the Scott-Lemmon axioms. We
show that our nested systems are sound, cut-free complete, and admit
hp-admissibility of typical structural rules.

Keywords: Bi-relational model · Intuitionistic modal logic · Labelled
sequent · Nested sequent · Proof theory · Propagation rule ·
Refinement

1 Introduction

Intuitionistic modal logics enable intuitionistic reasoning with the intensional
operators ♦ and �. While a variety of different intuitionistic modal logics have
been proposed [1,9,28,30,31], we focus on those defined in [28], which extend
the intuitionistic modal logic IK with Scott-Lemmon axioms [20]. These logics
were placed on a firm philosophical footing in [31] due to their satisfaction of
certain requirements that one might reasonably impose upon an intuitionistic
version of modal logic. Although such logics are interesting in their own right,
intuitionistic modal logics have proven useful in practical applications: having
been applied in the verification of computer hardware [8], to facilitate reasoning
about functional programs [27], and in defining programming languages [7].

The development of intuitionistic modal logics naturally gave rise to an
accompanying proof theory. Labelled natural deduction and sequent systems

Work supported by the European Research Council (ERC) Consolidator Grant 771779
(DeciGUT).

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 409–427, 2021.
https://doi.org/10.1007/978-3-030-86059-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_24&domain=pdf
http://orcid.org/0000-0003-3214-0828
https://doi.org/10.1007/978-3-030-86059-2_24

410 T. S. Lyon

were provided for IK extended with geometric axioms in [31]. In [13] and [14],
label-free natural deduction systems and tree-sequent calculi were respectively
provided for extensions of IK with combinations of the reflexivity axiom (T), sym-
metry axiom (B), transitivity axiom (4), and Euclidean axiom (5). In [32], nested
sequent systems were proposed for all logics within the intuitionistic modal cube
(i.e. logics axiomatized by extending IK with a subset of the axioms T, B, 4,
5, and the seriality axiom D). Such systems provide a suitable basis for devel-
oping automated reasoning and proof-search methods, having been used—in
particular—to establish the decidability of logics within the intuitionistic modal
cube [14,31].

With the exception of the systems introduced in [31], the drawback of the
aforementioned proof systems is that they are rather limited, only being defined
for a handful of logics. Indeed, in a recent paper on nested systems for intu-
itionistic modal logics [25], the authors leave open the problem of defining rules
within the nested sequent formalism that allow for the capture of logics outside
the intuitionistic modal cube. Accomplishing such a task would prove beneficial,
since systems built within the nested formalism tend to be more economical (viz.
they utilize simpler data structures) than those built within the labelled formal-
ism, and have proven well-suited for the construction of analytic calculi [2,3,19],
for writing decision algorithms [14,33], and for verifying interpolation [12,24].

In this paper, we answer the open problem of [25] to a large extent, and
provide cut-free nested sequent systems for extensions of IK with what we call
Horn-Scott-Lemmon axioms (HSLs), namely, axioms of the form (♦n�A ⊃
�kA) ∧ (♦kA ⊃ �n♦A). We obtain such systems through the recently devel-
oped structural refinement methodology [21], which consists of transforming a
labelled sequent system into a nested system through the introduction of propa-
gation rules (cf. [4,10]) and the elimination of structural rules, followed by a nota-
tional translation. The propagation rules operate by viewing labelled sequents
(which encode binary labelled graphs) as automata, allowing for formulae to be
propagated along a path in the underlying graph of a labelled sequent, so long
as the path is encoded by a string derivable in a certain formal grammar. The
refinement methodology grew out of works relating labelled systems to ‘more
refined’ or nested systems [5,18,23,26]. Also, the propagation rules we use are
largely based upon the work of [17,33], where such rules were used in the setting
of display and nested calculi. These rules were then transported to the labelled
setting to prove the decidability of agency logics [23], to establish translations
between calculi within various proof-theoretic formalisms [6], and to provide a
basis for the structural refinement methodology [21].

This paper accomplishes the following: First, we show that structural refine-
ment can be used to extract nested sequent systems from Simpson’s labelled
sequent systems [31] with proofs in the latter formalism algorithmically translat-
able into proofs of the nested formalism. Second, we provide sound and cut-free
complete nested sequent systems for a considerable class of intuitionistic modal
logics, and show that such systems admit the height-preserving admissibility
(which we refer to as hp-admissibility) of certain structural rules (e.g. forms of

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 411

weakening and contraction). Third, we provide an answer to the open problem
of [25] to a large degree, giving a straightforward procedure for transforming
axioms (viz. HSLs) into propagation/logical rules.

We have organized this paper accordingly: In Sect. 2, we define the intuition-
istic modal logics considered, along with their axiomatizations and semantics. In
Sect. 3, we introduce fundamental concepts in grammar theory that are needed
for the definition of our propagation rules. We then introduce Simpson’s labelled
sequent calculi for intuitionistic modal logics in Sect. 4, and show how to struc-
turally refine them in Sect. 5. Last, in Sect. 6, we translate the refined labelled
systems of the previous section into sound and cut-free complete nested sequent
systems admitting the hp-admissibility of certain structural rules.

2 Logical Preliminaries

In this section, we introduce the language, semantics, and axiomatization for
the intuitionistic modal logic IK [28].1 Moreover, we also introduce extensions of
IK (referred to as intuitionistic modal logics more generally) with the seriality
axiom D and axioms that we refer to as Horn-Scott-Lemmon Axioms (HSLs).

We define our intuitionistic modal language L to be the set of formulae
generated via the following BNF grammar:

A ::= p | ⊥ | A ∨ A | A ∧ A | A ⊃ A | ♦A | �A

where p ranges over the set of propositional atoms Φ := {p, q, r, . . .}. We use
A, B, C, (occasionally annotated) to range over formulae in L, and define
∼A := A ⊃ ⊥ and A ≡ B := (A ⊃ B) ∧ (B ⊃ A). For n ∈ N, we use ♦nA
and �nA to represent the formula A prefixed with a sequence of n diamonds or
boxes, respectively. We interpret such formulae on bi-relational models [28,31]:

Definition 1 (Bi-relational Model [28]). We define a bi-relational model to
be a tuple M := (W,≤, R, V) such that:

– W is a non-empty set of worlds w, u, v, . . . (potentially annotated);
– The intuitionistic relation ≤ ⊆ W × W is reflexive and transitive;
– The accessibility relation R ⊆ W × W satisfies:
(F1) For all w, v, v′ ∈ W , if wRv and v ≤ v′, then there exists a w′ ∈ W such

that w ≤ w′ and w′Rv′;
(F2) For all w,w′, v ∈ W , if w ≤ w′ and wRv, then there exists a v′ ∈ W such

that w′Rv′ and v ≤ v′;
– V : W → 2Φ is a valuation function satisfying the monotonicity condition:

For each w, u ∈ W , if w ≤ u, then V (w) ⊆ V (u).

Formulae from L may then be interpreted over bi-relational models as spec-
ified by the semantic clauses below.

1 See Simpson’s 1994 PhD Thesis [31] for a detailed introduction and discussion of IK.

412 T. S. Lyon

Definition 2 (Semantic Clauses [28]). Let M be a bi-relational model with
w ∈ W of M . The satisfaction relation M,w � A is defined recursively:

– M,w � p iff p ∈ V (w), for p ∈ Φ;
– M,w �� ⊥;
– M,w � A ∨ B iff M,w � A or M,w � B;
– M,w � A ∧ B iff M,w � A and M,w � B;
– M,w � A ⊃ B iff for all w′ ∈ W , if w ≤ w′ and M,w′ � A, then M,w′ � B;
– M,w � ♦A iff there exists a v ∈ W such that wRv and M,v � A;
– M,w � �A iff for all w′, v′ ∈ W , if w ≤ w′ and w′Rv′, then M,v′ � A.

We say that a formula A is globally true on M , written M � A, iff M,u � A
for all worlds u ∈ W of M , and we say that a formula A is valid, written � A,
iff A is globally true on all bi-relational models.

As shown by Plotkin and Stirling in [28], the validities of IK are axiomatizable:

Definition 3 (Axiomatization [28]). We define the axiomatization HIK as:

A0 All theorems of propositional intu-
itionistic logic

A1 �(A ⊃ B) ⊃ (�A ⊃ �B)
A2 �(A ⊃ B) ⊃ (♦A ⊃ ♦B)
A3 ∼♦⊥

A4 ♦(A ∨ B) ⊃ (♦A ∨ ♦B)
A5 (♦A ⊃ �B) ⊃ �(A ⊃ B)

R0 A A ⊃ B (mp)
B

R1 A (nec)�A

We define IK to be the smallest set of formulae closed under substitutions of
the above axioms and applications of the inference rules, and define A to be a
theorem of IK iff A ∈ IK.

We also consider extensions of HIK with sets A of the following axioms:

D : �A ⊃ ♦A HSL : (♦n�A ⊃ �kA) ∧ (♦kA ⊃ �n♦A)

The above left axiom is referred to as the seriality axiom D and axioms of the
form above right are referred to as Horn-Scott-Lemmon axioms (HSLs), which
we use φ(n, k) to denote.2 For the remainder of the paper, we use A to denote
an arbitrary set of the above axioms, that is:

A ⊆ {D} ∪ {(♦n�A ⊃ �kA) ∧ (♦kA ⊃ �n♦A) | n, k ∈ N}

The set of HSLs includes well-known axioms such as:

T : (A ⊃ ♦A) ∧ (�A ⊃ A) 4 : (♦♦A ⊃ ♦A) ∧ (�A ⊃ ��A)

B : (♦�A ⊃ A) ∧ (A ⊃ �♦A) 5 : (♦�A ⊃ �A) ∧ (♦A ⊃ �♦A)
2 We note that the term Horn-Scott-Lemmon axiom arises from the fact that such

axioms form a proper subclass of the well-known Scott-Lemmon Axioms [20] and are
associated with frame conditions that are expressible as Horn formulae [31, Sect. 7.2].

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 413

Axiom Frame Condition
A ⊃ ♦A ∀w∃u(wRu)

(♦n A ⊃ kA) ∧ (♦kA ⊃ n♦A) ∀w, u, v(wRnu ∧ wRkv ⊃ uRv)

Fig. 1. Axioms and their related frame conditions. We note that when n = 0, the
related frame condition is ∀w, v(wRkv ⊃ wRv), when k = 0, the related frame condition
is ∀w, u(wRnu ⊃ uRw), and when n = k = 0, the related frame condition is ∀w(wRw).

The work of Simpson [31] establishes that any extension of HIK with a set A of
axioms is sound and complete relative to a subclass of the bi-relational models.
In particular, the extension of HIK with a set A of axioms is sound and complete
relative to the set of bi-relational models satisfying the frame conditions related
to the axioms of A, as specified in Fig. 1.3 We define axiomatic extensions of HIK
along with their corresponding models below:

Definition 4 (Extensions, Bi-relational A-model, A-valid). The axioma-
tization HIK(A) is defined to be HIK extended with the axioms from A, and we
define the logic IK(A) to be the smallest set of formulae closed under substitu-
tions of the axioms of HIK(A) and applications of the inference rules. Also, a
theorem of IK(A) is a formula A such that A ∈ IK(A). Moreover, we define a
bi-relational A-model to be a bi-relational model satisfying each frame condition
related to an axiom A ∈ A (as specified in Fig. 1). Last, a formula A is A-valid
iff it is globally true on all A-models.

Remark 1. We note that HIK = HIK(∅) and that a bi-relational ∅-model is a
bi-relational model.

Theorem 1 (Soundness and Completeness [31]). A formula is a theorem
of HIK(A) iff it is valid in all A-frames.

Proof. Follows from Theorem 6.2.1 and Theorem 8.1.4 of [31]. ��

3 Grammar Theoretic Preliminaries

As will be seen later on (viz. in Sect. 5 and 6), a central component to our refine-
ment methodology—i.e. the extraction of nested calculi from labelled—is the use
of inference rules whose applicability is determined on the basis of strings gen-
erated by a formal grammar. We therefore introduce grammar-theoretic notions
that are essential to the functionality of such rules.

We let Σ be our alphabet consisting of the characters ♦ and �, that is,
Σ := {♦,�}. The symbols ♦ and � will be used to encode information about
3 We note that the axioms we consider do not characterize the set of frames satisfying

the frame properties related to the axioms as they do in the classical setting. For
more details concerning this point, see [31, p. 56], and for details concerning the
proper characterization results of the above axioms, see [28].

414 T. S. Lyon

the accessibility relation R of a bi-relational model in certain inference rules of
our calculi. In particular, ♦ will be used to encode information about what is
happening in the future of the accessibility relation, and � will be used to encode
information about what is happening in the past of the accessibility relation.
We note that such symbols have been chosen due to their analogous meaning
in the context of tense logics [17,19]. Also, following [17], we let 〈?〉 ∈ Σ and
〈?〉−1 ∈ Σ \ {〈?〉}, i.e. ♦−1 := � and �−1 := ♦; we refer to ♦ and � as converses
of one another. We may define strings over our alphabet Σ accordingly:

Definition 5 (Σ∗). We let · be the concatenation operation with ε the empty
string. We define the set Σ∗ of strings over Σ to be the smallest set such that:

– Σ ∪ {ε} ⊆ Σ∗

– If s ∈ Σ∗ and 〈?〉 ∈ Σ, then s · 〈?〉 ∈ Σ∗

For a set Σ∗ of strings, we use s, t, r, (potentially annotated) to represent
strings in Σ∗. Also, the empty string ε is taken to be the identity element for the
concatenation operation, i.e. s · ε = ε · s = s for s ∈ Σ∗. Furthermore, we will
not explicitly mention the concatenation operation in practice and let st := s · t,
that is, we denote concatenation by simply gluing two strings together. Beyond
concatenation, another useful operation to define on strings is the converse oper-
ation, adapted from [33].

Definition 6 (String Converse). We extend the converse operation to strings
as follows:

– ε−1 := ε;
– If s = 〈?〉1 · · · 〈?〉n, then s−1 := 〈?〉−1

n · · · 〈?〉−1
1 .

We let 〈?〉n denote a string consisting of n copies of 〈?〉, which is ε when
n = 0. Making use of such notation, we can compactly define the notion of an
A-grammar, which encodes information contained in a set A of axioms, and
which will be employed in the definition of certain inference rules (see Sect. 5).

Definition 7 (A-grammar). We define an A-grammar to be a set g(A) such
that:

(♦ −→ �n♦k), (� −→ �k♦n) ∈ g(A) iff (♦n�A ⊃ �kA) ∧ (♦kA ⊃ �n♦A) ∈ A.

We call rules of the form 〈?〉 −→ s production rules, where 〈?〉 ∈ Σ and s ∈ Σ∗.

An A-grammar g(A) is a type of Semi-Thue system (cf. [29]), i.e. it is a string
re-writing system. For example, assuming that 〈?〉 −→ s ∈ g(A), we may derive
the string tsr from t〈?〉r in one-step by applying the mentioned production rule.
As usual, through successive applications of production rules to a string s ∈ Σ∗,
one obtains derivations of new strings, the collection of which, determines a
language. We make such notions precise by means of the following definition:

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 415

Definition 8 (Derivation, Language). Let g(A) be an A-grammar. The one-
step derivation relation −→g(A) holds between two strings s and t in Σ∗, written
s −→g(A) t, iff there exist s′, t′ ∈ Σ∗ and 〈?〉 −→ r ∈ S such that s = s′〈?〉t′
and t = s′rt′. The derivation relation −→∗

g(A) is defined to be the reflexive and
transitive closure of −→g(A). For two strings s, t ∈ Σ∗, we refer to s −→∗

g(A) t
as a derivation of t from s, and define its length to be equal to the minimal
number of one-step derivations needed to derive t from s in g(A). Last, for
a string s ∈ Σ∗, the language of s relative to g(A) is defined to be the set
Lg(A)(s) := {t | s −→∗

g(A) t}.

4 Labelled Sequent Systems

We introduce equivalent variants of Simpson’s labelled sequent systems for intu-
itionistic modal logics [31], which are uniformly presented in Fig. 2. We use the
name L�♦(A) to denote a labelled system as opposed to Simpson’s name L�♦(T)
since we define each system relative to a set A of axioms (cf. [31]). The sole dif-
ference between Simpson’s original systems and the systems presented here is
that we copy principal formulae into the premises of some rules. This minor
change will facilitate our work in the subsequent section.

Simpson’s systems make use of a denumerable set Lab := {w, u, v, . . .} of
labels (which we sometimes annotate), as well as two distinct types of formulae:
labelled formulae, which are of the form w : A with w ∈ Lab and A ∈ L, and
relational atoms, which are of the form wRu for w, u ∈ Lab. We define a labelled
sequent to be a formula of the form R, Γ � w : A, where R is a (potentially
empty) multiset of relational atoms, and Γ is a (potentially empty) multiset
of labelled formulae. Also, we define a sequence of relational atoms wRnu :=
wRw1, w1Rw2, . . . , wn−1Ru, for n ∈ N, and note that wR0u := (w = u).

We refer to the (id) and (⊥l) rules as initial rules, to the (d) and (Sn,k) rules
as structural rules, and to the remaining rules in Fig. 2 as logical rules. Our use
of the term structural rules in reference to (d) and (Sn,k) is consistent with the
use of the term in the literature on proof systems for modal and related logics [2,
6,16,17] and is based on the fact that such rules manipulate the underlying data
structure of sequents as opposed to introducing more complex logical formulae.
Also, we point out that the (Sn,k) rules form a proper subclass of Simpson’s (Sχ)
geometric structural rules (see [31, p. 126]) used to generate labelled sequent
systems for IK extended with any number of geometric axioms. When n = 0
or k = 0 in an HSL, i.e. when φ(0, k) ∈ A, φ(n, 0) ∈ A, or φ(0, 0) ∈ A, the
structural rules (S0,k), (Sn,0), and (S0,0) are defined accordingly:

R, wRkv, wRv, Γ � z : A
(S0,k)

R, wRkv, Γ � z : A

R, wRnu, uRw, Γ � z : A
(Sn,0)R, wRnu, Γ � z : A

R, wRw, Γ � z : A
(S0,0)R, Γ � z : A

Let us now define the semantics for our labelled sequents, and then we state the
soundness and completeness theorem for L�♦(A).

416 T. S. Lyon

(id)R, w : p, Γ w : p
(⊥l)R, w : ⊥, Γ u : A

R, Γ, w : A u : C R, Γ, w : B u : C
(∨l)R, Γ, w : A ∨ B u : C

R, Γ w : Ai (∨r) i ∈ {1, 2}R, Γ w : A1 ∨ A2

R, Γ, w : A,w : B u : C
(∧l)RΓ, w : A ∧ B u : C

R, Γ w : A R, Γ w : B
(∧r)R, Γ w : A ∧ B

R, Γ, w : A ⊃ B w : A R, Γ, w : B u : C
(⊃l)R, Γ, w : A ⊃ B u : C

R, Γ, w : A w : B
(⊃r)R, Γ w : A ⊃ B

R, wRu, Γ, u : A v : B
(♦l)†R, Γ, w : ♦A v : B

R, wRu, Γ u : A
(♦r)R, wRu, Γ w : ♦A

R, wRu, Γ u : A
(r)†R, Γ w : A

R, wRu, Γ, w : A, u : A v : C
(l)R, wRu, Γ, w : A v : C

R, wRu, Γ v : A
(d)†R, Γ v : A

R, wRnu, wRkv, uRv, Γ z : A
(Sn,k)R, wRnu, wRkv, Γ z : A

Fig. 2. The labelled calculi L�♦(A). We have (d) as a rule in the calculus, if D ∈ A,
and (Sn,k) as a rule in the calculus, for each φ(n, k) ∈ A. The side condition † states
that u must be an eigenvariable, i.e. u may not occur in the conclusion.

Definition 9 (Labelled Sequent Semantics). Let M := (W,≤, R, V) be a bi-
relational A-model with I : Lab �→ W an interpretation function mapping labels
to worlds. We define the satisfaction of relational atoms and labelled formulae:

– M, I |= wRu iff I(w)RI(u);
– M, I |= w : A iff M, I(w) � A.

A labelled sequent Λ := R, Γ � v : B is satisfied in M with I, written
M, I |= Λ, iff if M, I |= wRu for all wRu ∈ R and M, I |= w : A for all
w : A ∈ Γ , then M, I |= v : B. A labelled sequent Λ is falsified in M with I iff
M, I �|= Λ, that is, Λ is not satisfied by M with I.

Last, a labelled sequent Λ is A-valid, written |=A Λ, iff it is satisfiable in
every bi-relational A-model M with every interpretation function I. We say that
a labelled sequent Λ is A-invalid iff �|=A Λ, i.e. Λ is not A-valid.

Theorem 2 (L�♦(A) Soundness and Completeness). R, Γ � w : A is
derivable in L�♦(A) iff R, Γ � w : A is A-valid.

Proof. Follows from Theorem 7.2.1 and Theorem 8.1.4 of [31]. ��

5 Structural Refinement

We show how to structurally refine the labelled systems introduced in the pre-
vious section, that is, we implement a methodology introduced and applied

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 417

in [6,21–23] (referred to as structural refinement, or refinement more simply)
for simplifying labelled systems and/or permitting the extraction of nested sys-
tems. The methodology consists of eliminating structural rules (viz. the (Sn,k)
rules in our setting) through the addition of propagation rules (cf. [4,10,31]) to
the labelled calculi, begetting systems that are translatable into nested systems.

The propagation rules we introduce are based on those of [6,17,22,23,33], and
operate by viewing a labelled sequent as an automaton, allowing for the propa-
gation of a formula (when applied bottom-up) from a label w to a label u given
that a certain path of relational atoms exists between w and u (corresponding to
a string generated by an A-grammar). We note that Simpson likewise introduced
a variation of these rules, named (♦R)TH

and (�L)TH
(see [31, p. 126]), by clos-

ing the relational atoms of a sequent under the frame conditions related to each
HSL φ(n, k) ∈ A. We opt to use propagation rules based on formal grammars
however because such rules permit the formulation of nested systems outside
the class of HSL extensions of IK, thus setting the stage for the construction of
nested systems for even broader classes of logics in future work.4

The definition of our propagation rules is built atop the notions introduced
in the following two definitions:

Definition 10 (Propagation Graph). The propagation graph PG(R) of a
multiset of relational atoms R is defined recursively on the structure of R:

– PG(∅) := (∅, ∅);
– PG(wRu) := ({w, u}, {(w,♦, u), (u,�, w)});
– PG(R1,R2) := (V1 ∪ V2, E1 ∪ E2) where PGx(Ri) = (Vi, Ei).

We will often write w ∈ PG(R) to mean w ∈ V , and (w, 〈?〉, u) ∈ PG(R) to
mean (w, 〈?〉, u) ∈ E.

Definition 11 (Propagation Path). We define a propagation path from w1

to wn in PG(R) := (V,E) to be a sequence of the following form:

π(w1, wn) := w1, 〈?〉1, w2, 〈?〉2, . . . , 〈?〉n−1, wn

such that (w1, 〈?〉1, w2), (w2, 〈?〉2, w3), . . . , (wn−1, 〈?〉n−1, wn) ∈ E. Given a prop-
agation path of the above form, we define its converse as shown below top and
its string as shown below bottom:

π−1(wn, w1) := wn, 〈?〉−1
n−1, wn−1, 〈?〉−1

n−2, . . . , 〈?〉
−1
1 , w1

sπ(w1, wn) := 〈?〉1〈?〉2 · · · 〈?〉n−1

Last, we let λ(w,w) := w represent an empty path with the string of the empty
path defined as sλ(w,w) := ε.

4 For instance, we could define our propagation rules relative to the formal gram-
mar {♦ −→ ♦�}, which would give a calculus for a logic outside the class of HSL
extensions of IK.

418 T. S. Lyon

R, Γ u : A
(p♦) only if ∃π(w, u) ∈ PG(R)(sπ(w, u) ∈ Lg(A)(♦))R, Γ w : ♦A

R, Γ, w : A, u : A v : B
(p) only if ∃π(w,u) ∈ PG(R)(sπ(w, u) ∈ Lg(A)(♦))R, Γ, w : A v : B

Fig. 3. Propagation rules.

We are now in a position to define the operation of our propagation rules
(p♦) and (p�), which are displayed in Fig. 3. Each propagation rule (p♦) and
(p�) is applicable only if there exists a propagation path π(w, u) from w to u in
the propagation graph PG(R) such that the string sπ(w, u) is in the language
Lg(A)(♦). We express this statement compactly by making use of its equivalent
first-order representation:

∃π(w, u) ∈ PG(R)(sπ(w, u) ∈ Lg(A)(♦))

We provide further intuition regarding such rules by means of an example:

Example 1. Let R := vRu, uRw. We give a graphical depiction of PG(R):

v

♦
��
u

♦
��

�
�� w

�
�� Λ := vRu, uRw,w : �p, u : p � v : p ⊃ q

Let A := {(♦2�A ⊃ �1A) ∧ (♦1A ⊃ �2♦A)}, so that the corresponding
A-grammar is g(A) = {♦ −→ ��♦,� −→ �♦♦}. Then, the path π(w, u) :=
w,�, u,�, v,♦, u exists between w and u. The first production rule of g(A)
implies that sπ(w, u) = ��♦ ∈ Lg(A)(♦). Therefore, we are permitted to (top-
down) apply the propagation rule (p�) to Λ to delete the labelled formula u : p,
letting us derive vRu, uRw,w : �p � v : p ⊃ q .

Remark 2. The (♦r) and (�l) rules are instances of (p♦) and (p�), respectively.

Definition 12 (Refined Labelled Calculus). We define the refined labelled
calculus IK(A)L := L�♦(A) + {(p♦), (p�)} − {(Sn,k) | φ(n, k) ∈ A}.

We show that each calculus IK(A)L is complete by means of a proof transfor-
mation procedure. That is, we show that through the elimination of structural
rules we can transform a proof in L�♦(A) into a proof in IK(A)L. We note that
Simpson proved a similar result, showing that labelled derivations with struc-
tural rules are transformable into derivations with his propagation rules (♦R)TH

and (�L)TH
(see [31, Sect. 7.2]). In our context, the proof of structural rule

eliminability requires more complex methods however due to the use of our new
propagation rules that are parameterized with formal grammars. We first prove
two crucial lemmata, and then show the elimination result.

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 419

Lemma 1. Let R1 := R, wRnu,wRkv, uRv and R2 := R, wRnu,wRkv. Sup-
pose we are given a derivation in L�♦(A) + {(p♦), (p�)} ending with:

R, wRnu,wRkv, uRv, Γ � z : A
(p♦)

R, wRnu,wRkv, uRv, Γ � x : ♦A
(Sn,k)

R, wRnu,wRkv, Γ � x : ♦A

where the side condition ∃π(x, z) ∈ PG(R1)(sπ(x, z) ∈ Lg(A)(♦)) holds due to
(p♦). Then, ∃π′(x, z) ∈ PG(R2)(sπ′(x, z) ∈ Lg(A)(♦)), that is to say, the (Sn,k)
rule is permutable with the (p♦) rule.

Proof. We have two cases: either (i) the relational atom uRv is not active in the
(p♦) inference, or (ii) it is. Since (i) is easily resolved, we show (ii).

Let us suppose that the relational atom uRv is active in (p♦), i.e. uRv occurs
along the propagation path π(x, z). To prove the claim, we need to show that
∃π′(x, z) ∈ PG(R2)(sπ′(x, z) ∈ Lg(A)(♦)). Therefore, we construct such a prop-
agation path by performing the following operations on π(x, z):

– replace each occurrence of u,♦, v in PG(R1) with

u,�, u1, . . . , un−1,�, w,♦, w1, . . . , wk−1,♦, v;

– replace each occurrence of v,�, u in PG(R1) with

v,�, wk−1, . . . , w1,�, w,♦, un−1, . . . , u1,♦, u.

We let π′(x, z) denote the path obtained by performing the above oper-
ations on π(x, z), and note that first half of the first propagation path
and the second half of the second propagation path correspond to the
edges (u,�, u1), . . . , (un−1,�, w) ∈ PG(R1) and (w,♦, un−1), . . . , (u1,♦, u) ∈
PG(R1), respectively, obtained from the relational atoms wRnu ∈ R1, whereas
the second half of the first propagation path and the first half of the second
propagation path correspond to the edges (w,♦, w1), . . . , (wk−1,♦, v) ∈ PG(R1)
and (v,�, wk−1), . . . , (w1,�, w) ∈ PG(R1), respectively, obtained from the edges
wRkv ∈ R1 (by Definition 13). Since the sole difference between PG(R1) and
PG(R2) is that the former is guaranteed to contain the edges (u,♦, v) and
(v,�, u) obtained from uRv, while the latter is not, and since π′(x, z) omits the
use of such edges (i.e. u,♦, v and v,�, u do not occur in π′(x, z)), we have that
π′(x, z) is a propagation path in PG(R2).

To complete the proof, we need to additionally show that sπ′(x, z) ∈
Lg(A)(♦). By assumption, sπ(x, z) ∈ Lg(A)(♦), which implies that ♦ −→∗

g(A)

sπ(x, z) by Definition 8. Since (Sn,k) is a rule in L�♦(A), it follows that
♦ −→ �n♦k and � −→ �k♦n ∈ g(A) by Definition 7. If we apply ♦ −→ �n♦k

to each occurrence of ♦ in sπ(x, z) corresponding to the edge (u,♦, v) (and rela-
tional atom uRv), and apply � −→ �k♦n to each occurrence of � in sπ(x, z)
corresponding to the edge (v,�, u) (and relational atom uRv), we obtain the
string sπ′(x, z) and show that ♦ −→∗

g(A) sπ′(x, z), i.e. sπ′(x, z) ∈ Lg(A)(♦). ��

420 T. S. Lyon

Lemma 2. Let R1 := R, wRnu,wRkv, uRv and R2 := R, wRnu,wRkv. Sup-
pose we are given a derivation in L�♦(A) + {(p♦), (p�)} ending with:

R, wRnu,wRkv, uRv, x : �A, y : A,Γ � z : C
(p�)

R, wRnu,wRkv, uRv, x : �A,Γ � z : C
(Sn,k)

R, wRnu,wRkv, x : �A,Γ � z : C

where the side condition ∃π(x, y) ∈ PG(R1)(sπ(x, y) ∈ Lg(A)(♦)) holds due to
(p�). Then, ∃π′(x, y) ∈ PG(R2)(sπ′(x, y) ∈ Lg(A)(♦)), that is to say, the (Sn,k)
rule is permutable with the (p�) rule.

Proof. Similar to the proof of Lemma 1 above. ��

To improve the comprehensibility of the above lemmata, we provide an exam-
ple of permuting an instance of the structural rule (Sn,k) above an instance of a
propagation rule.

Example 2. Let A := {(♦�A ⊃ �A) ∧ (♦A ⊃ �♦A)} so that the A-grammar
g(A) = {♦ −→ �♦,� −→ �♦}. In the top derivation below, we assume that
(p♦) is applied due to the existence of the propagation path π(u, v) = u,♦, v
in PG(wRu,wRv, uRv), where sπ(u, v) = ♦ ∈ Lg(A)(♦) by Definition 8. The
propagation graph PG(wRu,wRv, uRv) corresponding to the top sequent of
the derivation shown below left is shown below right:

(id)
wRu,wRv, uRv, u : p � u : p

(p♦)
wRu,wRv, uRv, u : p � v : ♦p

(S1,1)
wRu,wRv, u : p � v : ♦p

w

♦

��

♦

��
v

�

��

�		u

�

♦
��

If we apply ♦ −→ �♦ ∈ g(A) to sπ(u, v) = ♦, then we obtain the string
�♦. Hence, ♦ −→∗

g(A) �♦, i.e. �♦ ∈ Lg(A)(♦), meaning that a propagation path
π′(u, v) (= u,�, w,♦, v) exists in PG(wRu,wRv) such that sπ′(u, v) = �♦ ∈
Lg(A)(♦). We may therefore apply (S1,1) and then (p♦) as shown below left; the
propagation graph PG(wRu,wRv) is shown below right:

(id)
wRu,wRv, uRv, u : p � u : p

(S1,1)
wRu,wRv, u : p � u : p

(p♦)
wRu,wRv, u : p � v : ♦p

w

♦

��

♦

��
v

�

��

u

�

Theorem 3. Every derivation in L�♦(A) can be algorithmically transformed
into a derivation in IK(A)L.

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 421

Proof. We consider a derivation in L�♦(A), which is a derivation in L�♦(A) +
{(p♦), (p�)}. By Remark 2, each instance of (♦r) and (�l) can be replaced by
a (p♦) or (p�) instance, respectively, meaning we may assume our derivation
in L�♦(A) + {(p♦), (p�)} is free of (♦r) and (�l) instances. We show that the
derivation can be transformed into a derivation in IK(A)L by induction on its
height, that is, we consider a topmost occurrence of a structural rule (Sn,k) and
show that it can be eliminated. We obtain a derivation in IK(A)L by successively
eliminating topmost instances of (Sn,k) rules.

Base case. Observe that any application of (Sn,k) to (id) or (⊥l) yields
another instance of the rule.

Inductive step. It is straightforward to verify that any instance of (Sn,k)
freely permutes above instances of all rules in L�♦(A) + {(p♦), (p�)} with the
exception of (Sn,k), (p♦), and (p�) (this follows from the fact that all other rules
do not have active relational atoms in their conclusion). Since we are considering
a topmost application of (Sn,k), we need not consider the permutation of (Sn,k)
above another instance of (Sn,k). The last two cases of permuting (Sn,k) above
(p♦) and (p�) follow from Lemma 1 and 2, respectively. ��

Theorem 4 (IK(A)L Soundness and Completeness). R, Γ � w : A is deriv-
able in IK(A)L iff R, Γ � w : A is A-valid.

Proof. The forward direction (soundness) is shown by induction on the height
of the given derivation, and the backward direction (completeness) follows from
Theorem 2 and 3. ��

6 Nested Sequent Systems

In our setting, nested sequents are taken to be trees of multisets of formulae
containing a unique formula that occupies a special status. We utilize the nested
sequents of [32], but note that the data structure underlying such sequents was
originally used in [13], and is similar to the nested sequents for classical modal
logics employed in [2]. Following [32], we mark the special, unique formula with
a white circle ◦ indicating that the formula is of output polarity, and mark the
other formulae with a black circle • indicating that the formulae are of input
polarity. A nested sequent Σ is defined via the following BNF grammars:

Σ:: = Δ,Π Δ:: = A•
1, . . . , A

•
n, [Δ1], . . . , [Δk] Π:: = A◦ | [Σ]

We assume that the comma operator associates and commutes, implying
that such sequents are truly trees of multisets of formulae, and we let the empty
sequent be the empty multiset ∅. We refer to a sequent in the shape of Δ (which
contains only input formulae) as an LHS-sequent, a sequent in the shape of Π
as an RHS-sequent, and a sequent Σ as a full sequent. We use both Σ and Δ to
denote LHS- and full sequents with the context differentiating the usage.

As for classical modal logics (e.g. [2,17]), we define a context Σ{ } · · · { } to
be a nested sequent with some number of holes { } in the place of formulae. This

422 T. S. Lyon

gives rise to two types of contexts: input contexts, which require holes to be filled
with LHS-sequents to obtain a full sequent, and output contexts, which require a
single hole to be filled with an RHS-sequent and the remaining holes to be filled
with LHS-sequents to obtain a full sequent. We also define the output pruning
of an input context Σ{ } · · · { } or full sequent Σ, denoted Σ↓{ } · · · { } and Σ↓

respectively, to be the same context or sequent with the unique output formula
deleted. We note that all of the above terminology is due to [32].

Example 3. Let Σ1{} := p•, [♦q•, { }], Σ2{} := p•, [♦q◦, { }], Δ1 := ⊥•, [q ⊃ r◦],
and Δ2 := ⊥•, [q ⊃ r•]. Observe that neither Σ1{Δ2} nor Σ2{Δ1} are full
sequents since the former has no output formula and the latter has two output
formulae. Conversely, both Σ1{Δ1} and Σ2{Δ2} are full sequents.

Our nested sequent systems are presented in Fig. 4 and are generalizations of
those for the the logics of the intuitionistic modal cube given in [32]. For example,
a nested sequent system for the intuitionistic modal logic IK+{(♦0�A ⊃ �3A)∧
(♦3A ⊃ �0♦A)} incorporating the 3-to-1 transitivity axiom, which falls outside
the intuitionistic modal cube, is obtained by employing the A-grammar g(A) =
{♦ −→ ♦♦♦,� −→ ���} in the propagation rules (p♦) and (p�). As in the
previous section, our propagation rules (p♦) and (p�) rely on auxiliary notions
(e.g. propagation graphs and paths), which we define for nested sequents.

Definition 13 (Propagation Graph/Path). Let w be the label assigned to
the root of the nested sequent Σ. We define the propagation graph PG(Σ) :=
PGw(Σ) of a nested sequent Σ recursively on the structure of the nested sequent.

– PGu(∅) := (∅, ∅, ∅);
– PGu(A) := ({u}, ∅, {(u,A)}) with A ∈ {A•, A◦};
– PGu(Δ1,Δ2) := (V1 ∪ V2, E1 ∪ E2, L1 ∪ L2) where PGu(Δi) = (Vi, Ei, Li);
– PGu([Σ]) := (V ∪{u}, E∪{(u,♦, v), (v,�, u)}, L) where PGv(Σ) = (V,E,L)

and v is fresh.

We will often write u ∈ PG(Σ) to mean u ∈ V , and (u, 〈?〉, v) ∈ PG(Σ) to
mean (u, 〈?〉, v) ∈ E. Also, we define propagation paths, converses of propagation
paths, and the string of a propagation path as in Definition 11.

For input or output formulae A and B, we use the notation Σ{A}w{B}u to
mean that (w,A), (u,B) ∈ L in PG(Σ). For example, if Σ := p ⊃ q◦, [p•, [�p•]]
with PG(Σ) := (V,E,L) and (v, p ⊃ q◦), (u, p•), (w,�p•) ∈ L, then both Σ{p ⊃
q◦}v{�p•}w and Σ{p•}u{p ⊃ q◦}v are valid representations of Σ in our notation.

We now prove that proofs can be translated between our refined labelled
and nested systems. In order to prove this fact, we make use of the following
definitions, which are based on the work of [18,21].

Definition 14 (Labelled Tree Sequent/Derivation). We define a labelled
tree sequent to be a labelled sequent Λ := R, Γ � w : A such that R forms a
tree and all labels in Γ,w : A occur in R. We define a labelled tree derivation
to be a proof containing only labelled tree sequents. We say that a labelled tree
derivation has the fixed root property iff every labelled sequent in the derivation
has the same root.

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 423

(⊥•)
Σ{⊥•} (id)

Σ{p•, p◦}
Σ{A•, B•}

(∧•)
Σ{A ∧ B•}

Σ{A◦} Σ{B◦}
(∧◦)

Σ{A ∧ B◦}

Σ{A•} Σ{B•}
(∨•)

Σ{A ∨ B•}
Σ{A•, B◦}

(⊃◦)
Σ{A ⊃ B◦}

Σ{A◦
i }

(∨◦) i ∈ {1, 2}
Σ{A1 ∨ A◦

2}

Σ↓{A ⊃ B•, A◦} Σ{B•}
(⊃•)

Σ{A ⊃ B•}
Σ{[A◦]}

(◦)
Σ{ A◦}

Σ{[A•]}
(♦•)

Σ{♦A•}
Σ{[∅]}

(d)
Σ{∅}

Σ{Δ1}w{A◦, Δ2}u (p♦) only if ∃π(w,u) ∈ PG(Σ)(sπ(w, u) ∈ Lg(A)(♦))
Σ{♦A◦, Δ1}w{Δ2}u

Σ{ A•, Δ1}w{A•, Δ2}u (p) only if ∃π(w,u) ∈ PG(Σ)(sπ(w, u) ∈ Lg(A)(♦))
Σ{ A•, Δ1}w{Δ2}u

Fig. 4. The nested sequent calculi NIK(A). The (d) rule occurs in a calculus iff D ∈ A.

We now define our translation functions which transform a full nested sequent
into a labelled tree sequent, and vice-versa. Our translations additionally depend
on sequent compositions and labelled restrictions. If Λ1 := R1, Γ1 � Γ ′

1 and Λ2 :=
R2, Γ2 � Γ ′

2, then we define its sequent composition Λ1 ⊗ Λ2 := R1,R2, Γ1, Γ2 �
Γ ′
1, Γ

′
2. Given that Γ is a multiset of labelled formulae, we define the labelled

restriction Γ � w := {A | w : A ∈ Γ}, and we note that if w is not a label in
Γ , then Γ � w := ∅. Moreover, for a multiset A1, . . . , An of formulae, we define
(A1, . . . , An)∗ := A∗

1, . . . , A
∗
n and (∅)∗ := ∅, where ∗ ∈ {•, ◦}.

Definition 15 (Translation L). We define Lw(Σ) := R, Γ � u : A as follows:

– Lv(∅) := ∅ � ∅
– Lv(A•) := v : A � ∅
– Lv(A◦) := ∅ � v : A

– Lv(Δ1,Δ2) := Lv(Δ1) ⊗ Lv(Δ2)
– Lv([Σ]) := (vRu � ∅) ⊗Lu(Σ) with

u fresh

We note that since Σ is a full sequent, the obtained labelled sequent will
contain a single labelled formula in its consequent.

Example 4. We let Σ := p ⊃ q◦, [p•, [�p•]] and show the output labelled sequent
under the translation L.

Lw(Σ) = wRv, vRu, v : p, u : �p � w : p ⊃ q

Definition 16 (Translation N). Let Λ := R, Γ � w : A be a labelled tree
sequent with root u. We define Λ1 ⊆ Λ iff there exists a labelled tree sequent
Λ2 such that Λ = Λ1 ⊗ Λ2. Let us further define Λu to be the unique labelled
tree sequent rooted at the label u such that Λu ⊆ Λ. We define N(Λ) := Nu(Λ)
recursively on the tree structure of Λ:

Nv(Λ) :=

{
(Γ � v)•, (w : A � v)◦ if R = ∅;
(Γ � v)•, (w : A � v)◦, [Nz1(Λz1)], . . . , [Nzn

(Λzn
)] otherwise.

424 T. S. Lyon

Σ (n)
[Σ]

Σ{∅}
(w)

Σ{Δ}
Σ{A•, A•}

(c)
Σ{A•}

Σ{[Δ1], [Δ2]}
(m)

Σ{[Δ1, Δ2]}

Fig. 5. Height-preserving (hp-)admissible structural rules.

In the second case above, we assume that vRz1, . . . vRzn are all of the relational
atoms occurring in the input sequent which have the form vRx.

Example 5. We let Λ := wRv, vRu, v : p, u : �p � w : p ⊃ q and show the output
nested sequent under the translation N.

N(Λ) = Nw(Λ) = p ⊃ q◦, [p•, [�p•]]

Lemma 3. Every proof in IK(A)L of a labelled tree sequent is a labelled tree
proof with the fixed root property.

Proof. The lemma follows from the observation that if any rule of IK(A)L is
applied bottom-up to a labelled tree sequent, then each premise is a labelled
tree sequent with the same root. ��

Theorem 5. Every proof of a labelled tree sequent in IK(A)L is transformable
into a proof in NIK(A), and vice-versa.

Proof. Follows from Lemma 3, and the fact that the rules of IK(A)L and NIK(A)
are translations of one another under the N and L functions. ��

Theorem 6 (NIK(A) Soundness and Completeness). A formula A is deriv-
able in NIK(A) iff A is A-valid.

Proof. Follows from Theorem 4 and 5. ��

Theorem 7. The rules (n), (w), (c), and (m) are hp-admissible in NIK(A).

Proof. By induction on the height of the given derivation; the proofs are similar
to those of [2, Lem. 1] and [32, Lem. 6.4]. For the (m) rule, we note that propa-
gation paths are preserved from premise to conclusion (cf. [17, Fig. 12]), showing
that the rule can be permuted above (p♦) and (p�). ��

7 Conclusion

In this paper, we employed the structural refinement methodology to extract
nested sequent systems for a broad class of intuitionistic modal logics. The
attainment of such systems answers the open problem of [25] to a large extent
by showing how to transform axioms (namely, HSLs) into propagation/logical
rules as well as how to obtain nested sequent systems for logics outside the

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 425

intuitionistic modal cube. We aim to write proof-search algorithms in future
work based on our nested systems which utilize saturation conditions and loop-
checking (cf. [11,22,33]) to provide decision procedures for logics within the class
considered. Our primary concern will be to establish the decidability of transitive
extensions of IK, which has remained a longstanding open problem [15,31].

References

1. Bierman, G.M., de Paiva, V.C.V.: On an intuitionistic modal logic. Stud. Log. Int.
J. Symb. Log. 65(3), 383–416 (2000). http://www.jstor.org/stable/20016199

2. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48(6), 551–
577 (2009). https://doi.org/10.1007/s00153-009-0137-3

3. Bull, R.A.: Cut elimination for propositional dynamic logic without *. Z. Math.
Logik Grundlag. Math. 38(2), 85–100 (1992)

4. Castilho, M.A., del Cerro, L.F., Gasquet, O., Herzig, A.: Modal tableaux with
propagation rules and structural rules. Fundam. Inform. 32(3, 4), 281–297 (1997)

5. Ciabattoni, A., Lyon, T., Ramanayake, R.: From display to labelled proofs for
tense logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp.
120–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72056-2 8

6. Ciabattoni, A., Lyon, T., Ramanayake, R., Tiu, A.: Display to labelled proofs and
back again for tense logics. ACM Trans. Comput. Log. 22(3), 1–31 (2021). https://
doi.org/10.1145/3460492

7. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001). https://doi.org/10.1145/382780.382785

8. Fairtlough, M., Mendler, M.: An intuitionistic modal logic with applications to
the formal verification of hardware. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994.
LNCS, vol. 933, pp. 354–368. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0022268

9. Fitch, F.B.: Intuitionistic modal logic with quantifiers. Portugaliae Math. 7(2),
113–118 (1948). http://eudml.org/doc/114664

10. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. Form. Log.
13(2), 237–247 (1972)

11. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics, vol. 169. Springer
Science & Business Media, Heidelberg (1983)

12. Fitting, M., Kuznets, R.: Modal interpolation via nested sequents. Ann. Pure Appl.
Logic 166(3), 274–305 (2015). https://doi.org/10.1016/j.apal.2014.11.002

13. Galmiche, D., Salhi, Y.: Label-free natural deduction systems for intuitionistic and
classical modal logics. J. Appl. Non-Class. Log. 20(4), 373–421 (2010). https://doi.
org/10.3166/jancl.20.373-421

14. Galmiche, D., Salhi, Y.: Tree-sequent calculi and decision procedures for intu-
itionistic modal logics. J. Log. Comput. 28(5), 967–989 (2015). https://doi.org/
10.1093/logcom/exv039

15. Girlando, M., Straßburger, L.: MOIN: a nested sequent theorem prover for intu-
itionistic modal logics (system description). In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 398–407. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51054-1 25

http://www.jstor.org/stable/20016199
https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1007/978-3-319-72056-2_8
https://doi.org/10.1145/3460492
https://doi.org/10.1145/3460492
https://doi.org/10.1145/382780.382785
https://doi.org/10.1007/BFb0022268
https://doi.org/10.1007/BFb0022268
http://eudml.org/doc/114664
https://doi.org/10.1016/j.apal.2014.11.002
https://doi.org/10.3166/jancl.20.373-421
https://doi.org/10.3166/jancl.20.373-421
https://doi.org/10.1093/logcom/exv039
https://doi.org/10.1093/logcom/exv039
https://doi.org/10.1007/978-3-030-51054-1_25

426 T. S. Lyon

16. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In: Areces, C., Goldblatt, R. (eds.)
Advances in Modal Logic 7, papers from the seventh conference on “Advances
in Modal Logic,” held in Nancy, France, 9–12 September 2008, pp. 43–66. College
Publications (2008). http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.
pdf

17. Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postulates
and deep inference in nested sequent calculi for tense logics. Log. Methods Comput.
Sci. 7(2), 1–38 (2011). https://doi.org/10.2168/LMCS-7(2:8)2011

18. Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested
(deep) sequents. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L.S. (eds.)
Advances in Modal Logic 9, papers from the ninth conference on “Advances
in Modal Logic,” held in Copenhagen, Denmark, 22–25 August 2012, pp. 279–
299. College Publications (2012). http://www.aiml.net/volumes/volume9/Gore-
Ramanayake.pdf

19. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53(1), 119–
135 (1994)

20. Lemmon, E.J., Scott, D.S.: An Introduction to Modal Logic: The Lemmon Notes.
Blackwell, Oxford (1977)

21. Lyon, T.: On the correspondence between nested calculi and semantic systems for
intuitionistic logics. J. Log. Comput. 31(1), 213–265 (2020). https://doi.org/10.
1093/logcom/exaa078

22. Lyon, T.: Refining Labelled Systems for Modal and Constructive Logics with Appli-
cations. Ph.D. thesis, Technische Universität Wien (2021)

23. Lyon, T., van Berkel, K.: Automating agential reasoning: proof-calculi and syntac-
tic decidability for STIT logics. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y.,
Zalila Wenkstern, R. (eds.) PRIMA 2019. LNCS (LNAI), vol. 11873, pp. 202–218.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33792-6 13

24. Lyon, T., Tiu, A., Goré, R., Clouston, R.: Syntactic interpolation for tense log-
ics and bi-intuitionistic logic via nested sequents. In: Fernández, M., Muscholl,
A. (eds.) 28th EACSL Annual Conference on Computer Science Logic, CSL
2020, 13–16 January 2020, Barcelona, Spain. LIPIcs, vol. 152, pp. 28:1–28:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.CSL.2020.28

25. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuition-
istic modal logics. In: Advances in Modal Logic 10, invited and contributed papers
from the Tenth Conference on “Advances in Modal Logic,” held in Groningen, The
Netherlands, 5–8 August 2014, pp. 387–406 (2014). http://www.aiml.net/volumes/
volume10/Marin-Strassburger.pdf

26. Pimentel, E.: A semantical view of proof systems. In: Moss, L.S., de Queiroz,
R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 61–76. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4 3

27. Pitts, A.M.: Evaluation logic. In: Birtwistle, G. (eds.) IV Higher Order Work-
shop, Banff 1990, pp. 162–189. Workshops in Computing. Springer, London (1991).
https://doi.org/10.1007/978-1-4471-3182-3 11

28. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics: Extended
abstract. In: Proceedings of the 1986 Conference on Theoretical Aspects of Rea-
soning about Knowledge, pp. 399–406. TARK 1986, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1986)

29. Post, E.L.: Recursive unsolvability of a problem of Thue. J. Symb. Log. 12(1),
1–11 (1947)

http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf
http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf
https://doi.org/10.2168/LMCS-7(2:8)2011
http://www.aiml.net/volumes/volume9/Gore-Ramanayake.pdf
http://www.aiml.net/volumes/volume9/Gore-Ramanayake.pdf
https://doi.org/10.1093/logcom/exaa078
https://doi.org/10.1093/logcom/exaa078
https://doi.org/10.1007/978-3-030-33792-6_13
https://doi.org/10.4230/LIPIcs.CSL.2020.28
https://doi.org/10.4230/LIPIcs.CSL.2020.28
http://www.aiml.net/volumes/volume10/Marin-Strassburger.pdf
http://www.aiml.net/volumes/volume10/Marin-Strassburger.pdf
https://doi.org/10.1007/978-3-662-57669-4_3
https://doi.org/10.1007/978-1-4471-3182-3_11

Nested Sequents for Intuitionistic Modal Logics via Structural Refinement 427

30. Servi, G.F.: Axiomatizations for some intuitionistic modal logics. Rend. Sem. Mat.
Univers. Politec. Torino 42(3), 179–194 (1984)

31. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh. College of Science and Engineering. School of
Informatics (1994)

32. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics.
In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 14

33. Tiu, A., Ianovski, E., Goré, R.: Grammar logics in nested sequent calculus: proof
theory and decision procedures. In: Bolander, T., Braüner, T., Ghilardi, S., Moss,
L.S. (eds.) Advances in Modal Logic 9, papers from the ninth conference on
“Advances in Modal Logic,” held in Copenhagen, Denmark, 22–25 August 2012,
pp. 516–537. College Publications (2012). http://www.aiml.net/volumes/volume9/
Tiu-Ianovski-Gore.pdf

https://doi.org/10.1007/978-3-642-37075-5_14
http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf
http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf

Game Semantics for Constructive Modal Logic

Matteo Acclavio1(B), Davide Catta2, and Lutz Straßburger3

1 University of Luxembourg, Belval, Luxembourg
2 LIRMM - Université de Montpellier, Montpellier, France

3 INRIA-Saclay and LIX-École Polytechnique, Palaiseau, France

Abstract. In this paper we provide the first game semantics for the constructive
modal logic CK. We first define arenas encoding modal formulas, we then define
winning innocent strategies for games on these arenas, and finally we character-
ize the winning strategies corresponding to proofs in the logic CK. To prove the
full-completeness of our semantics, we provide a sequentialization procedure of
winning strategies. We conclude the paper by proving their compositionality and
showing how our results can be extend to the constructive modal logic CD.

1 Introduction

Modal logics are extensions of classical logic making use of modalities to qualify the
truth of a judgement. According to the interpretation of such modalities, modal log-
ics find applications, for example, in knowledge representation [28], artificial intelli-
gence [19] and formal verification [10]. More precisely, modal logics are obtained by
extending classical logic with a modality operator � (together with its dual operator �),
which are usually interpreted as necessity (respectively possibility).

When we move from the classical to the intuitionistic setting, the modality �
is no longer the dual of the modality � and by consequence the classical k-axiom
�(A ⊃ B) ⊃ (�A ⊃ �B) is no longer sufficient to express the behavior of the modality
�. Depending on the chosen axioms, it is possible to define different flavors of “intu-
itionistic modal logics” (see, e.g., [4,6,8,22–24]). In this paper we consider the minimal
approach obtained by adding only the axiom �(A ⊃ B) ⊃ (�A ⊃ �B), leading to what
in the literature is now called constructive modal logic CK [4,7,9,13,18,23].

The study of the semantics of proofs in this logic is still rough and the only full
complete denotational model for this logic is defined by the quotient of its λ-calculus
with respect to β-reduction [3,4]. The purpose of this paper is to provide a full complete
denotational semantics for CK in terms of a game semantics [1,11,17]. Thereby we
provide a concrete denotational model for this logic, that is, a model whose elements
are not obtained by the quotient on proofs induced by cut-elimination.

In game semantics proofs are denoted by winning strategies for two-player games
played on a graph, called modal arena, that encodes a modal formula. We denote the
players by ◦ (white) and • (black). In the literature the white player is called opponent
(denoted by O) and the black player is called proponent (denoted by P). The motivations
of our choices is due to the correspondence between players’ moves, the parity of the

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 428–445, 2021.
https://doi.org/10.1007/978-3-030-86059-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_25

Game Semantics for Constructive Modal Logic 429

Fig. 1. A derivation D of the formula F = (((�a0 ⊃ �(a2 ⊃ �b)) ⊃ �a) ⊃ c) ⊃ ��b, the
modal arena �F�, and the maximal batched views in the CK-WIS {{D}} of F. We indexed some
occurrences of the atom a to avoid ambiguity in the views.

depth in the corresponding vertex in the modal arena (◦ for even and • for odd), and the
polarities of the corresponding atoms in a polarized sequent calculus [2,15,16] where
◦ and • are usually used respectively for the positive and negative polarities.

Each play consists of an alternation of ◦-moves and •-moves, that is, a play is rep-
resented by a list of occurrences of the vertices in the modal arena. The first move in
a play is a ◦-move selected among the →-roots of the modal arena. Each subsequent
move of a player must be justified by a previous move of the other player, that is, the
selected vertex must be the source of a →-edge with target a vertex previously played
by the other player. The game terminates when one player has no possible moves, losing
the play. A winning innocent strategy (for •) is a set of plays which takes into account
every possible ◦-move, while each •-move is uniquely determined (and justified) by one
of the previous ◦-moves. Intuitively, a winning strategy is a complete description of all
the possible plays always leading to the victory of •. The adjective innocent is referred
to the play-style of ◦ which chooses each of its non-initial moves only according with
the previous •-move in the play.

In [26] it is shown how the syntax of intuitionistic combinatorial proofs, a graphical
proof system for propositional intuitionistic logic, provides intuitive insights about the
winning innocent strategies (or WISs) in a Hyland-Ong arena [11,21]. Following this
intuition, in [2] we developed the syntax of intuitionistic combinatorial proofs for con-
structive modal logics allowing us to characterize the winning innocent strategies for
this logic by extending this correspondence (see Fig. 1).

De facto, the presence of the modal axioms leads to the need of a new notion of
batches1 in a play in order to characterize winning innocent strategies corresponding to
proofs in the constructive modal logic CK. By means of example consider the formulas
�a ⊃ a and (�a ⊃ �b) ⊃ (�(a ⊃ b)) which are not provable in CK. Their corre-
sponding modal arenas are pictured below together with the unique maximal view in
their winning innocent strategies. Instead of representing these views, we represent the
corresponding batched views, which are matrices containing the view together with a
decoration of each move given by the modalities in whose scope they occur.

1 Batches can be interpreted as the nesting of a nested sequent calculi [5,25].

430 M. Acclavio et al.

• ◦
�

a a

(
ε �
a a

) ◦ • ◦
�

2
� �

0

a b b
a

(
�

0
� = � �

2
b b a a

) • ◦
� �

a a

(
� �
a a

)
(1)

The strategies containing these views cannot be considered satisfactory since the modal-
ities are not “properly batched” with respect to the modal rules in the sequent calculus
for CK. In fact, the WIS containing these maximal views correspond to correct proofs
in the intuitionistic propositional logic of the formulas obtained by removing the modal-
ities, that is, a ⊃ a and (a ⊃ b) ⊃ (a ⊃ b).

In order to recover the correspondence between winning strategies and proofs, it
suffices to consider two additional constraints on the accepted •-moves. We observe
that each modality has a parity (the same of the corresponding node in the modal arena)
and a height (defined as the number of the modalities in whose scope it belongs). The
first constraint demands that each •-move must be in the scope of the same number
of modalities of the previous ◦-move, ruling out the leftmost example in Eq. (1). This
constraint allows us to define sub-plays (corresponding to sub-proofs): whenever a ◦-
move is in the scope of a new ◦-modality, that is, a modality whose scope contains no
previous moves of the play, then the successive moves are played in a same sub-play.
A sub-play ends when a ◦-move is in the scope of no modalities or in the scope of a
new ◦-modality with equal or smaller height with respect to the previous •-move. Note
that sub-plays can be nested. This allows us to gather modalities having the same height
and in whose scope there are moves of a sub-play into batches. The second constraint
demands that these batches have a specific shape, that is, the same of the modalities in
the rules of the sequent calculus: only one ◦ modality occurs, and either all modalities
are boxes or there is exactly one •-diamond and one ◦-diamond. These conditions rule
out the existence of winning strategies for the formulas from Eq. (1): in the first one
the •-move has not the same height of the previous ◦-move, in the second one all the
modalities are batched in the same set, which includes two ◦-modalities, in the third
one the �◦ does not have the corresponding �• in its batch.

Contribution of the Paper. In this paper we show a direct correspondence between the
sequent system for CK and our winning innocent strategies (CK-WIS). In particular,
we show that the CK-WISs form a full-complete semantics for this logic. We then
conclude the paper by showing that CK-WISs are a denotational semantics by proving
their compositionality.

Organisation of the Paper. In Sect. 2 we recall the definition of the constructive modal
logic CK, its sound and complete sequent calculus and we recall the results from [2] on
the encoding of modal arenas. In Sect. 3 we recall characterization of winning strate-
gies encoding CK-proofs from [2] by providing a new detailed sequentialization proce-
dure assuring the full-completeness of our model. In Sect. 4 we prove that our winning
strategies compose. In Sect. 5 we collect the results allowing us to prove that we indeed
define a full-complete denotational semantics for CK and we conclude in Sect. 6 where
we discuss related works and some future research directions.

Game Semantics for Constructive Modal Logic 431

Fig. 2. The rules for the sequent system LCK and the cut-rule

2 Background

In this section we recall some basic definition for the constructive modal logic CK
together with some extensions of the definition from [2] allowing to encode formulas
by means of specific directed graphs we call modal arenas.

2.1 Constructive Modal Logic

We consider the (modal) formulas generated by a countable set of (atomic) proposi-
tional variablesA = {a, b, . . . } and the following grammar

A, B ::= a | 1 | A ⊃ B | A ∧ B | �A | �A

We define the size ‖A‖ of a formula A as the number of connectives and modalities
in A and if Γ = A1, . . . , An then ‖Γ‖ = ∑n

i=1 ‖Ai‖. We say that a formula is modality-
free (respectively unit-free) if it contains no occurrences of � and � (respectively no
occurrences of 1). A formula is a ⊃-formula (resp. a ∧-formula) if it is a formula of the
form A ⊃ B (resp. A ∧ B).

We define the formula isomorphism as the equivalence relation f∼ over formulas
generated by the following relations:

A ∧ 1 f∼ A A ⊃ 1 f∼ 1 1 ⊃ A f∼ A �1 f∼ 1
A ∧ B f∼ B ∧ A A ∧ (B ∧C) f∼ (A ∧ B) ∧C (A ∧ B) ⊃ C f∼ A ⊃ (B ⊃ C)

(2)

The constructive modal logic CK is obtained by extending the propositional intu-
itionistic logic [27] with the necessitation rule: “if F is provable, then so is �F”, and
the following two modal axioms:

k1 : �(A ⊃ B) ⊃ (�A ⊃ �B) k2 : �(A ⊃ B) ⊃ (�A ⊃ �B)

The sequent system LCK, given in Fig. 2, is a sound and complete proof system for the

logic CK [14]. We write
LCK

F whenever 	 F is provable in LCK.

Theorem 2.1. A formula F is provable in LCK ∪ {cut} iff is provable in LCK.

2.2 Modal Arenas

A directed graph G = 〈VG,
G
→〉 is given by a set of vertices VG and a set of direct edges

G
→ ⊆ VG × VG. A vertex v is a

G
→-root, denoted v �→ if there is no vertex w such that

432 M. Acclavio et al.

v
G
→w. We denote by

→
RG the set of

G
→-roots of G. A path from v to w of length n is a

sequence of vertices x0 . . . xn such that v = x0, w = xn and xi
G
→xi+1 for i ∈ {0, . . . , n−1}.

We write v
G
→nw if there is a path from v to w of length n. A directed acyclic graph (or

dag for short) is a direct graph such that v
G
→nv implies n = 0 for all v ∈ V.

A two-color directed acyclic graph (or 2-dag for short) G = 〈VG,
G
→,

G
�〉 is given

by a set of vertices VG and two disjoint sets of edges
G
→ and

G
� such that the graph

〈VG,
G
→ ∪

G
�〉 is acyclic. We omit the superscript when clear from context and we

denote by ∅ the empty 2-dag.
If L is a set, a 2-dag is L-labeled if a label �(v) ∈ L is associated to each vertex

v ∈ V . In this paper we fix the set of labels to be the set L = A∪ {�,�}, whereA is the
set of propositional variables occurring in formulas. We use the notation a, � and � to
denote the graphs consisting of a single vertex labeled respectively by a, � and �, and
we denote by VAG , V�G and V�G the set of vertices of a graph G with labels respectively in
A, {�} and {�}.

Definition 2.2. Let G,H and F � ∅ be 2-dags, we denote by RGF the set of edges from

the →-roots of G to the →-roots of F , that is RGF = {(u, v) | u ∈→RG, v ∈
→
RF }.

We define the following operations on 2-dags:

G+H =〈 VG ∪ VH ,
G
→ ∪ H→ ,

G
� ∪ H

� 〉
G−�F=〈 VG ∪ VF ,

G
→ ∪ F→ ∪ RGF ,

G
� ∪ F

� 〉
G∼�F =〈 VG ∪ VF ,

G
→ ∪ F→ ,

G
� ∪ F

� ∪ RGF 〉
G−�∅ = ∅ �∼�∅ = ∅ �∼�∅ = �

which can be pictured as follows, with � representing the →-roots of each graph.

We can associate to each formula F a L-labeled 2-dag �F� as follows:

�a� = a �A ⊃ B� = �A�−��B� �A ∧ B� = �A�+�B� �1� = ∅
��A� = � ∼��A� ��A� = � ∼��A� (3)

Moreover, if Γ 	 A is a sequent, we denote by �Γ 	 A� the modal arena �(
∧

B∈Γ B) ⊃ A�.

Definition 2.3. A modal arena is a L-labeled 2-dag G such that G = �F� for a modal
formula F2.

2 A geometrical characterization of the L-labeled 2-dags which are modal arenas is out of the
scope of this paper and can be found in [2].

Game Semantics for Constructive Modal Logic 433

In this paper we may say that a vertex in �F� corresponds to an occurrence of atom
or modality in a formula F, or we may identify them. An atomic vertex is a vertex
corresponding to an atom, and a modal vertex in a vertex corresponding to a modality.

Definition 2.4. Let G = �F� be a modal arena and v ∈ VG. The address of v is the
unique sequence of modal vertices addv = m1, . . . ,mh in VG which corresponds to the
sequence of modalities in the path in the formula tree of F connecting the node of v to
the root of F. If addv = m1, . . . ,mh, we denote by addk

v = mk its kth element and we
call hv = |addv| the height of v, that is, the length of addv.

Example 2.5. Consider the modal arena and the formula tree of
(
a ⊃ �(b ∧ (c ⊃

�1d))
) ⊃ �2(e ⊃ f), then

If G is a modal arena and v ∈ VG, we define d(v) as the length of the →-paths from

v to a →-root w ∈→RG. Note that the property that all paths in a modal arena from a
vertex to any root have the same length is not trivial, but the proof can be found in [26,
Lemma 9]. The parity of a vertex v is the parity of d(v), which can be either even or
odd. We denote by v◦ and v• if the parity of v is respectively even or odd. Note that the
players ◦ and • can only play vertices of the corresponding parity, but the parity of the
modalities in which the vertex belongs may not be the same as the parity of the move.
By means of example, consider the atom a2 in Fig. 1 which is ◦ but it is in the scope of
two •-modalities.

We conclude the section by remarking that modal arenas identify formulas modulo
the formula isomorphism f∼ defined by the relations in Eq. (2).

Proposition 2.6. If F and G are two formulas, then F f∼ G ⇐⇒ �F� = �G�.

Proof. If follows form the definition of the modal arenas operations +, −� and ∼�. ��

3 Winning Strategies for CK

In this section we recall the definition of winning innocent strategy and we characterize
the ones corresponding to correct CK-proofs. We then provide a direct proof of the
correspondence between our winning innocent strategies and LCK-proofs by giving a
desequentialization and a sequentialization procedure. The first procedure describes
how to inductively define a winning strategy from a sequent calculus derivation. The
second procedure defines a method to reconstruct a derivation in sequent calculus using
the information contained in the winning strategy (and the proven formula).

434 M. Acclavio et al.

Definition 3.1. Let F be a formula. A move is a vertex of �F�. Let p = p0 · · · pn be a
sequence of distinct moves (we denote by ε the empty sequence). If v and w are two

moves in p, we say that w justifies v whenever v
�F�
→w. We call a move pi in p a ◦-move

or •-move if i is respectively even or odd.
We say that p is a view in �F� if the following conditions are fulfilled:

1. p is a play: if p � ε, then p0 ∈
→
R�F�;

2. p is justified: if i > 0, then pi
�F�
→pi−(2k+1) for a k ∈ N;

3. p is ◦-shortsighted: if p◦i+1 and p•i , then pi+1
�F�
→pi;

4. p is •-uniform: if p•i+1 and p◦i , then �(pi+1) = �(pi);
5. p is modal: pi ∈ VA�F� ∪ V��F�.

Moreover, if p is a view, we say that

6. p is well-batched: |addp2k | = |addp2k+1 | for every 2k ∈ {0, . . . , n − 1}.

The predecessor of a non-empty view p is the sequence obtained by removing the last
move in p. The successor is the converse relation. A winning innocent strategy (or WIS
for short) for F (or over �F�) is a finite non-empty set S of views in �F� such that:

a. S is predecessor-closed: if p · v ∈ S then p ∈ S;
b. S is ◦-complete: if p ∈ S has even length, then every successor of p is in S;
c. S is •-deterministic and •-total: if p ∈ S has odd length, then exactly one successor

of p is in S.

A view is maximal in S if it is not prefix of any other view in S. We say that a WIS S
is trivial if S = {ε} and it is well-batched if all its views are.

Note that our definition of WIS on arenas of modality-free formulas is the same
of the one given in [11,21,26] where the modal condition trivially holds. Moreover, it
follows by definition of view (by the fact that is a play, justified and ◦-shortsighted) that
◦-moves and •-moves can only be vertices with the corresponding parity.

Remark 3.2. If G is a non-empty modal arena, then a WIS S on G must contain all

views of the form v with v ∈→RG, that is, S is non-trivial.

Definition 3.3. Let p = p0 · · · pn−1 be a view on a modal arena G. We write hp =
max{hv | v ∈ p} and we define the batched view of p as the hp × n matrix F (p) =(F (p)0, . . . ,F (p)n

)
with elements in VG ∪ {ε} such that each column F (p)i is defined as

follows:

F (p)i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F (p)
hp

i = add
hpi
pi

...

F (p)hi+1
i = add1

pi

F (p)hii = ε
...

F (p)1
i = ε

F (p)0
i = pi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Game Semantics for Constructive Modal Logic 435

Fig. 3. How to desequentialize a LCK-derivation of Γ 	 A into a CK-WIS for Γ 	 A.

where hi = hp − hpi for each i ∈ {0, . . . , n}.
Each view p induces an equivalence relation

Gp∼ over VG generated by the relation:

u
Gp∼ 1w iff

u = F (p)h2k and w = F (p)h2k+1
for a 2k < n − 1 and a h ≤ hp

Figure 1 and Eq. (1) show four examples of batched views.

Definition 3.4. Let S be a strategy on a modal arena G. We say that S is linked if it is

well-batched and for every p ∈ S the
Gp∼ -classes are of the shape {v•1, . . . , v

•
n,w

◦}. This

induces the edge-relation u
Gp
⇀w iff u•

Gp∼w◦.
We say that S is CK-batched if it is linked and if for each modal vertex w◦ occurring

in the address of a move in S the following conditions are fulfilled:

i. if w◦ ∈ V�G and v
Gp
⇀w for a p ∈ S, then v ∈ V�G;

ii. if w◦ ∈ V�G , then there is a unique u ∈ V�G in the set {v ∈ VG | v
Gp
⇀w for a p ∈ S}.

We call a CK-batched WIS a CK-winning innocent strategy (CK-WIS for short).

We can prove that CK-WIS are complete with respect to CK.

Lemma 3.5. If a formula F is provable in LCK, then there is a CK-WIS for F.

Proof. For each LCK-derivationD of F we define the CK-WIS {{D}} by induction over
D according to the rules in Fig. 3. In fact, for each rule if its premiseD′ or both premises
D1 andD2 are CK-WISs, then alsoD is. ��

436 M. Acclavio et al.

In order to provide sequentialization we prove three preliminary lemmas. The first
two lemmas give a way to sequentialize the CK-WISs when a ∧ in the right-hand side
of the sequent or a ⊃ in the left-hand side of the sequent occurs. In the sequent cal-
culus LCK these connective require the use of rules splitting the context. In order to
avoid to reprove the splitting lemmas from [21], we adopt a simpler approach relying
on the presence of W and C in the sequent system. The third result proves that the pres-
ence of the two rules K� and K� can be easily recognized and sequentialized by only
considering the shape of the conclusion sequent and the CK-framing conditions.

Lemma 3.6. Let Γ 	 A1 ∧ A2 such that Γ does not contain ∧-formulas. If S is a CK-
WIS for Γ 	 A1 ∧ A2, then there are CK-WISs S1 and S2 for Γ 	 A1 and Γ 	 A2.

Proof. For i ∈ {1, 2} we let Si be the set of views in S starting form a move in Ai plus

the empty view, that is, Si = {p ∈ S | p0 ∈
→
R�Ai�} ∪ {ε}. By definition of the arena

�Γ 	 A1 ∧ A2� no move in Ai may occur in a view in S j whenever i � j. Hence S1 and
S2 are CK-WISs for Γ 	 A1 and Γ 	 A2 respectively. ��

Lemma 3.7. Let S be a CK-WIS for Γ′ 	 c◦, hence c◦c• ∈ S. If Γ′ contains no ∧-
formulas and Γ′ � Γ, c•, then Γ′ = Γ, A ⊃ B{c•} for a formula A ⊃ B{c•} � c•

containing the occurrence c• of the atom c. Moreover there is a CK-WIS T for Γ 	 A
and a CK-WIS R for Γ, A ⊃ B{c}, B{c} 	 c.

Proof. By •-determinism and •-totality, there is a uniquely determined vertex c• such
that c◦c• ∈ S. Since Γ′ � Γ, c• does not contain ∧-formulas, then Γ′ contains a formula
A ⊃ B{c•} and, by definition of WIS, there is a view c◦c•v ∈ S for any v ∈→R�A�.

We first show that for a v ∈→R�A� there is a maximal σ ∈ S such that v = σ2k and σi
is not a move in B{c•} for any i > 2k. If k = 1 the property holds. Otherwise, let i > 2k

such that σi is the first move in B{c•}, hence σi ∈
→
R�B{c•}�. By ◦-completeness, there is a

σ′ ∈ S such that σ′ = σ0 · · ·σiv. By iterating this reasoning S should contain a view of
infinite length. Hence the property holds.

Now observe that a σv with the previous property exists for a given v ∈→R�A�. Thus,

by ◦-completeness, for each w ∈→R�A� there is a σw with the same property and such that
σv0 · · ·σ

v
2k−1 = σ

w
0 · · ·σ

w
2k−1. We define SplitAS to be the set containing such a view σw

for each w ∈→R�A�. All the σw share the same prefix. We use this SplitAS to define

T =
{
τ | there are σ and τ′ such that σττ′ ∈ SplitAS

}
R =

{
ρ | there is no σ such that ρσ ∈ SplitAS

}

By definition, T is a CK-WIS for Γ 	 A and R is a CK-WIS for Γ, A ⊃ B{c}, B{c} 	 c
strictly smaller than S. ��

Lemma 3.8. Let S be a CK-WISs for Γ′ 	 A′ such that Γ′ contains no ∧-formulas and
at least one move from each formula in Γ′ occurs in a view in S.

– If A′ = �A, then Γ′ 	 A′ is of the form �Γ 	 �A and S is also a CK-WIS for Γ 	 A.
– If A′ = �A, then Γ′ 	 A′ is of the form �Γ,�•B 	 �◦A and S = S′ ∪ {�◦,�◦�•}
where S′ is a CK-WIS for Γ 	 A.

Game Semantics for Constructive Modal Logic 437

Fig. 4. Sequentialization procedure

Proof. By the CK-batched condition, if at least one move from each formula in Γ′

occurs in a view in S, then each principal modality of a formula in Γ′ must occur in
the first row of a batched view of a p ∈ S. Moreover, all the principal modalities of the

formulas in Γ′ must be in
Gp
⇀-relation with the principal modality of A′ for a p ∈ S.

Hence Γ′ 	 A′ is either of the form �Γ 	 �A or �Γ,�B 	 �A. In the first case, we
conclude by remarking that if we remove the first row in any batched view F (p) with
p ∈ S, then we obtain a batched view of the same p, but in Γ 	 A. The second case is
similar, but we here have to consider that the strategy also contains the two views �◦

and �◦�•. ��

We can now prove the following correspondence between CK-proofs and CK-WISs.

Theorem 3.9. Let F be a formula. We have
LCK

F iff there exists a CK-WIS for F.

Proof. It D is a LCK-derivation of F, we can define a CK-WIS SD for F as in
Lemma 3.5. To prove the converse, we define a LCK-derivation DΓ	AS for the sequent
Γ 	 A by induction on the lexicographic order on the triple 〈|S|, ‖A‖, ‖Γ‖〉. We remark
that if in no view in a CK-WIS S for Γ, B 	 A contains moves in B, then S is a CK-WIS
also for Γ 	 A. Observe that in case of �-formulas occurring in Γ, we may have that

438 M. Acclavio et al.

only one of these �s occurring in a view. In this case, we expect to observe in the final
derivation a K�-rule preceded (bottom-up) by a W-rule.

Moreover, since �Γ, B ∧C 	 A� = �Γ, B,C 	 A�, then each CK-WIS for the first
sequent is a CK-WIS for the second one, but the size of the lhs sequent decreases. A
similar reasoning applies to the sequents Γ 	 B ⊃ C and Γ, B 	 C. We conclude by
Lemmas 3.6, 3.7 and 3.8.

In Fig. 4 we give a table resuming the sequentialization step to apply according to
the shape of the sequent and the shape of the CK-WIS. The conditions on the sequent
(first column) can be checked in the given order, triggering the corresponding sequen-
tialization step. ��

4 Compositionality of Winning Strategies

In order to simplify the presentation of our compositionality result, we propose a
slightly different approach to the proof of winning strategies compositionality with
respect to the one normally used in the literature, e.g. [11,17], where proofs are given
by reasoning on specific sequences3 over the arena �A ⊃ (B ⊃ C)� f∼ �A, B 	 C�, such
that these views can be projected on views over the arenas of A 	 B and B 	 C. Instead,
we here reason directly over (non ◦-shortsighted) views over the arena �A, B ⊃ B 	 C�.
This allows us to preserve the parities of vertices when performing the projections.

To obtain an intuition behind the idea, consider the additional rule hide removing
a formula of the shape B ⊃ B occurring in the left-hand side of a sequent in order to
simulate the cut as shown below.

Γ 	 B Δ, B 	 C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
Γ, Δ 	 C

�

Γ 	 B B, Δ 	 C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ, Δ, B ⊃ B 	 C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− hide
Γ, Δ 	 C

This approach complies with the slogan “interaction + hide” often mentioned in the lit-
erature, e.g., [1,17]. Here the interaction is represented by the ⊃L-rule, while the hiding
is performed by erasing the formula A ⊃ A using the hide-rule.

In terms of views, our interaction is defined by composing views from the two
corresponding strategies by “gluing” them using a copycat strategy on the cut-formula
while the hiding consist of ignoring the moves in the hidden formulas.

Notation 4.1. If Δ is a list (of occurrences) of formulas in Γ 	 A and p is a sequence
of moves in �Γ 	 A�, we denote by p|Δ the projection of p on Δ, that is, the sequence
obtained by erasing from p any move not in Δ. By means of example, if A = a ⊃ e,
B = b ∧ d and C = c, then baadcebda|A,C = aacea.

Whenever we consider two distinct occurrences B1 and B2 of the same formula B,
we assume ·⊥ to be the bijection between the vertices in V�B1� and in V�B2� correspond-
ing to the same occurrence of the atom or modality in B. Note that b is a ◦-move (resp.
•-move) in B1 iff b⊥ is an •-move (resp. ◦-move) in B2.

3 Note that these sequences are not views.

Game Semantics for Constructive Modal Logic 439

Definition 4.2. Let T and R be WISs respectively for A 	 B1 and B2 	 C such that B1

and B2 are occurrences of the same formula B, and let τ ∈ T and ρ ∈ R.4

We define the interaction of τ ad ρ over B as the sequence of moves σ = τ
B
ρ over

�A, B1 ⊃ B2 	 C� following ρ (resp. τ) until a •-move b in B2 (resp. B1) is reached; then
it switches to the corresponding ◦-move b⊥ in τ (resp. ρ), if it exists. That is,

σ0=ρ0 and σi+1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τk+1 where σi = τk is a move in A or a ◦-move in B1

ρk+1 where σi = ρk is a move in C or a ◦-move in B2

b⊥ where σi = b is a •-move in B1 and b⊥ occurs in ρ

b⊥ where σi = b is a •-move in B2 and b⊥ occurs in τ

not defined otherwise

We define the composition τ
B∗ ρ of τ and ρ over B as the projection of τ

B
ρ over A

and C, that is, τ
B∗ ρ = (τ

B
ρ)|A,C . We define the composition of T and R over B as the

following set of sequences over �A 	 C�

T B∗ R = {τ B∗ ρ | τ ∈ T , ρ ∈ R}

Intuitively, when defining the interaction , the player ◦ changes way to play: when-
ever the player • plays a move b in B1 (or B2), its successive ◦-move is the correspond-
ing b⊥ in B2 (resp. B1) instead of playing according to ◦-shortsightedness. By definition

(τ
B
ρ)|A,B1 = τ and (τ

B
ρ)|B2,C = ρ, hence (τ

B
ρ) is always finite. The rest of this

section is devoted to prove that if T and R are CK-WISs, then also is T B∗ R.

Example 4.3. Consider the sequents A 	 B1 = (c ⊃ a) ⊃ b 	 (d ∧ (c ⊃ a)) ⊃ b
and B2 	 C = (d ∧ (c ⊃ a)) ⊃ b 	 (d ∧ ((e ⊃ e) ⊃ a)) ⊃ b and the
view τ = bbaacc on �A 	 B1� and the views ρ1 = bbaaee and ρ2 = bbdd on
�B2 	 C�. Note that these views are the unique maximal views in the unique WISs

for these sequents. Then we can picture the construction of τ
B∗ ρ1 as follows,

where on the left-hand side we highlight the two occurrences of �B� on which the
views interact, and the black arrows identify the sequences of moves on the arenas.

Similarly τ
B
ρ2 = bbbbaa and τ

B∗ ρ2 = bba. Note that in this case the definition of

τ
B
ρ2 stops because the successive should be a⊥ but it does not occur in ρ.

Remark 4.4. If A, B1, B2 and C are formulas with B1 and B2 occurrences of the
same formula B, then atoms and modalities in these formulas have the same parity
in �A, B1 ⊃ B2 	 C� and in �A 	 B1� and �B2 	 C�.

4 Note that a CK-WIS for Γ, A 	 B is also a CK-WIS for A 	 (
∧
Γ) ⊃ B. This allows us to

consider only CK-WISs for sequents of the shape A 	 B.

440 M. Acclavio et al.

Our definitions allow us to show that the composition of well-batched WISs is a
well-batched WIS.

Lemma 4.5. Let T and R be well-batched WIS for respectively A 	 B1 and B2 	 C
such that B = B1 = B2. Then S = T

B∗ R is a well-batched WIS for A 	 C.

Proof. We first prove that for each τ ∈ T and ρ ∈ R we have that τ
B∗ ρ is a well-batched

view over �A 	 C� since it verifies all conditions in Definition 3.1. For any σ = τ
B∗ ρ

we have that

1. σ is a play: since σ0 ∈
→
R�B	C� and

→
R�B	C�=

→
R�C�=

→
R�A	C�.

2. σ is justified: if a move in �A� is justified in τ by a move in �A� or if a move in �C�
is justified in ρ by a move in �C�, then we can conclude. By definition of �B 	 C�
no move in �C� can be justified in ρ by a move in B. We conclude by remarking that
if a move in �A� is justified in τ by a move in �B�, then this move must be a root of

�A�, and then v
�A	C�
→ σ0 since u

�A	C�
→ w for all u ∈→R�A� and w ∈→R�C�.

3. σ is ◦-shortsighted: by definition of σ we must have that both σ2k+1 and σ2k+2 are
either in �A� or in �C�. We conclude by hypothesis on ρ and τ.

4. σ is •-uniform: by induction using the •-uniformity of τ and ρ and the fact that

�(v) = �(v⊥). In fact, let σ̃ = τ
B
ρ. If σ̃i is a move in A (in C), σ̃i+1 · · · σ̃i+k−1 are

moves over B1 and B2, and σ̃i+k is a move inC (respectively in A), then we can prove
by induction that �(σ̃i) = �(σ̃i+ j) for all j ∈ {1, . . . , k}.

5. σ is modal: follows by the fact that no move in τ or ρ is a �-vertex.
6. σ is well-batched: it suffices to remark that if addv = m1 · · ·mk, then addv⊥ =

m⊥1 · · ·m
⊥
k . We can conclude similarly to the proof of •-uniformity since in τ

B
ρ

in all moves in a subsequence in B1 and B2 have constant height.

To conclude we show that S is

a. predecessor-closed: it follows by the fact that T B R = {τ B
ρ | τ ∈ T , ρ ∈ R} is

predecessor closed.
b. ◦-complete: if σv• ∈ S then v• appears in a view τ ∈ T or in a view ρ ∈ R as an
•-move. We conclude by the definition of the composition ∗ and by the fact that S
and R are WIS.

c. •-deterministic and •-total: by induction on the length of τ
B
ρ we can prove that

each v◦ ∈ τ B
ρ is followed by a unique •-move since T and R are •-deterministic

and each v⊥ ∈ �B1� and w⊥ ∈ �B2� is uniquely determined respectively by a v ∈
�B2� and a w ∈ �B1�. If •-totality does not hold, then there should be a maximal

view in S of odd length. That is, there should be τ ∈ T and ρ ∈ R such that τ
B

ρ = σ̃ = σ̃′v◦s for a v◦ move in A or C, and a sequence s of moves in B1 or in
B2. By •-totality of T and R we can assume that σ̃ terminates with an •-move σ̃n.
Moreover, σ̃n would be justified by a ◦-move σ̃h in B1 or B2 such that σ̃h−1 = σ̃

⊥
h .

Thus we could find τ′ ∈ T and ρ′ ∈ R such that τ′
B
ρ′ = σ̃1 . . . σ̃nσ̃

⊥
n , contradicting

the maximality of σ̃. ��

We can now prove that the composition of CK-WISs is a CK-WIS.

Game Semantics for Constructive Modal Logic 441

Theorem 4.6. Let T and R be CK-WIS for respectively A 	 B1 and B2 	 C such that

B1 and B2 are occurrences of the same formula B. Then S = T B∗ R is a CK-WIS.

Proof. After Lemma 4.5 it suffices to prove that S is CK-batched5. To improve read-

ability we write τ∼,
ρ∼,
τ
⇀, and

ρ
⇀ instead of

�A	B1�τ∼ ,
�B2	C�ρ∼ ,

�A	B1�τ
⇀ and

�B2	C�ρ
⇀ respectively.

For this purpose we define for each σ = τ ∗ ρ the relation
τ ρ
⇀ on the vertices in

�A, B1 ⊃ B2 	 C� as the transitive closure of the following relation

v
τ ρ
⇀ 1w ⇐⇒ v•

τ
⇀w◦ or v•

ρ
⇀w◦ or v = w or v◦ = (w•)⊥

where we write w
⊥
↼v if v◦ = (w•)⊥.

We use
τ ρ
⇀ to prove the properties of σ∼. In particular, if v τ∼1w in V�A� or v

ρ∼1w in

V�C�, then vσ∼1w. Observe that if T and R are linked, then
τ
⇀ and

ρ
⇀ can be considered

as functions associating a vertex v• a unique vertex w◦. Then also
τ ρ
⇀ can be considered

as a function since
⊥
↼ is a bijection.

If a σ∼-class contains only vertices either in A or in C, then we can conclude by

hypothesis on T and R. Otherwise, we only prove the case when v
τ ρ
⇀w with v ∈ V�A�

and w ∈ V�C� since the case with v ∈ V�C� and w ∈ V�A� is proven symmetrically.

By definition of v
τ ρ
⇀w we have τ ρ = γ0 · · · γiβ0 · · · βkα0 · · ·α j with w = addh

γi
and

v = addh
α0

, and b1 . . . , bn ∈ V�B2� such that in the batched view of τ ρ we have the
columns below, where at the bottom of each column we annotated the player playing
the move and the formula in which the move and the vertices in its address belong.

addh
move w◦

ρ
↼ b•1

⊥
↼ b⊥1

τ∼ b⊥2
⊥
↼ b2

ρ∼ b3
⊥
↼ b⊥4

τ∼ · · · ρ∼ bn
⊥
↼ (b⊥n)◦

τ
↼ v•

...
...

...
...

...
...

...
...

...
...

move γi ← β0
⊥
↼ β1 β2

⊥
↼ β3 β4

⊥
↼ β5 · · · βk−1

⊥
↼ βk ← α0

Player ◦ • ◦ • ◦ • ◦ · · · • ◦ •
Arena of C B2 B1 B1 B2 B2 B1 · · · B2 B1 A

(4)

The proof that Conditions i and ii from Definition 3.4 hold follows by a similar

reasoning on
τ ρ
⇀ using the fact thatT andR are CK-batched. More precisely, if �(v) = �

or �(w) = �, then we have �(v) = �(bi) = �(b⊥i) = �(w) for each i ∈ {1, . . . , n}. ��

Lemma 4.7. Let A, B,C and D formulas. If S is a CK-WIS for A 	 B and T is a

CK-WIS for B 	 C and R is a CK-WIS for C 	 D, then (S B∗ T)
C∗ R = S B∗ (T C∗ R).

Proof. The operation is associative by Definition 4.2. Moreover, for any Δ and Σ
sequences of formulas, the projections on Δ and Σ permute, that is, (s|Δ)|Σ = s|Δ,Σ =
(s|Σ)|Δ. We conclude by observing that for any σ ∈ S, τ ∈ T and ρ ∈ R we have

σ
B∗ (τ

C∗ ρ) = (σ
A

(τ
B∗ ρ))|A,D = (σ

B
((τ

C
ρ)|B,D))|A,D =

= (σ
B

(τ
C
ρ))|A,D = ((σ

B
τ)

C
ρ)|A,D =

= (((σ
B
τ)|A,C)

C
ρ)|A,D = ((σ

B∗ τ) C
ρ)|A,D = (σ

B∗ τ) C∗ ρ
��

5 This proof is similar to the one in [20].

442 M. Acclavio et al.

5 Game Semantics for Constructive Modal Logic

In the previous sections, we provide various results on the correspondence between
proofs in CK and CK-WISs, as well as the compositionality properties of the latter.
This allows us to formally state our full completeness result.

Theorem 5.1. The CK-WISs form a full-complete denotational semantics for CK.

Proof. Let us consider the well-defined map

{{·}} :
{
LCK-derivations of F

}
→

{
CK-WISs for F

}

from the proof of Lemma 3.5. After Theorem 3.9 we know that there is a map

DF
(·) :
{
CK-WISs for F

}
→

{
LCK-derivations of F

}

which guarantees that each CK-WIS is the image of a LCK-derivation. In particular
we have that {{DF

S}} = S, i.e., the map {{·}} is the left-adjoint of DF
(·). In Theorem 4.6

we prove that CK-WISs compose. Moreover, by Lemma 4.7 composition is associative
with neutral element the trivial strategy. ��

5.1 Game Semantics for CD

The results presented in this paper can be straightforwardly extended to the constructive
modal logic CD, which is obtained by extending CK with the modal axiom d shown
below left:

d : �A ⊃ �A
Γ 	 A
−−−−−−−−−−−−−−−−−− D
�Γ 	 �A

A sound and complete (cut-free) sequent system for this logic can be obtained by adding
the sequent rule above on the right to the sequent system for CK.

In order to define WIS capturing proofs in CD we need some additional definitions.

Definition 5.2. Let S be a WIS over an arena G. We say that S is CD-batched if it
is atomic, that is, the views in S contains only atomic vertices, linked, and if for each
modal vertex w◦ occurring in the address of a move in S the following conditions are
fulfilled:

i. if w◦ ∈ V�G and v
Gp
⇀w for a p ∈ S, then v ∈ V�G;

ii. if w◦ ∈ V�G , then there is at most a u ∈ V�G in the set {v ∈ VG | v
Gp
⇀w for a p ∈ S}.

Note that the first condition is the same first condition from Definition 3.4. The rea-
son why we do not need the information about the diamonds in the strategies for CD
depends on a property of the logic (see [2, Theorem 2]). The idea is that an instance of
weakening can permute below K�-rules, transforming it into a an instance of the D-rule,

Game Semantics for Constructive Modal Logic 443

as shown below (while in CK the information about the left-hand side diamond must be
kept in some way):

−
D
∥∥∥∥∥∥∥∥∥∥∥∥

Γ 	 A
−−−−−−−−−−−−−−−−−−−−−− W
B, Γ 	 A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K�
�B,�Γ 	 �A

�

−
D
∥∥∥∥∥∥∥∥∥∥∥∥

Γ 	 A
−−−−−−−−−−−−−−−−−−−−−−−−− D
�Γ 	 �A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− W
�B,�Γ 	 �A

We then define a CD-WIS as a CD-batched WIS. This allows to extend Theorems 3.9
and 4.6 with no effort, that is

Theorem 5.3. The CD-WISs form a full-complete denotational semantics for CK.

6 Conclusion and Future Work

In this paper we have defined a game semantics for the constructive modal logic CK and
have shown how it can be extended for the logic CD. We have proved full completeness
and compositionality of our winning strategies, and thus have shown that our model
provides a full complete denotational semantics for CK and CD.

We are currently investigating the possibility of extending our semantics to the log-
ics CT and CS4, that are obtained by adding the modal axioms

T : (A ⊃ �A) ∧ (�A ⊃ A) and 4 : (��A ⊃ �A) ∧ (�A ⊃ ��A)

However, the problem that arises is that for these logics also the � should be allowed
as move in order to keep track of the rules for T and 4. However, the •-determinism of
winning strategies depends on the fact that atoms and diamonds are paired by the rules
which introduce them. This means that when boxes are allowed as moves, determinism
cannot hold. We have to leave this issue for future work.

It is worth noticing that our result is strongly related to the game semantics for light
linear logic as defined in [21]. In future work we will investigate the relation between
our approach and this latter in order to provide a game semantics for elementary and
light linear logic.

Finally, we conjecture the existence of a one-to-one correspondence between our
CK-WISs and the λ-calculi for constructive modal logics [3,4,12]. This investigation
will also be object of future research.

Acknowledgements. We would like to thank Christian Fermüller, Robert Freiman, Yoni Zohar,
and anonymous referees for the useful feedback which helped us to improve the final version of
the manuscript.

References

1. Abramsky, S., Malacaria, P., Jagadeesan, R.: Full abstraction for PCF (extended abstract). In:
Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 1–15. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 87

https://doi.org/10.1007/3-540-57887-0_87

444 M. Acclavio et al.

2. Acclavio, M., Catta, D., Straßburger, L.: Towards a denotational semantics for proofs in con-
structive modal logic, April 2021. https://hal.archives-ouvertes.fr/hal-03201439 (preprint)

3. Bellin, G., De Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a basic con-
structive modal logic. In: Proceedings of Methods for Modalities, May 2001

4. Bierman, G.M., de Paiva, V.C.: On an intuitionistic modal logic. Stud. Logica 65(3), 383–416
(2000)

5. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48(6), 551–577
(2009)

6. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM (JACM) 48(3),
555–604 (2001)

7. Fairtlough, M., Mendler, M.: Propositional lax logic. Inf. Comput. 137(1), 1–33 (1997)
8. Fitch, F.B.: Intuitionistic modal logic with quantifiers. Port. Math. 7(2), 113–118 (1948)
9. Heilala, S., Pientka, B.: Bidirectional decision procedures for the intuitionistic propositional

modal logic IS4. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 116–131.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3 9

10. Horne, R., Ahn, K.Y., Lin, S.W., Tiu, A.: Quasi-open bisimilarity with mismatch is intuition-
istic. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, New York, NY, USA, pp. 26–35. Association for Computing Machin-
ery (2018). https://doi.org/10.1145/3209108.3209125

11. Hyland, J., Ong, C.H.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–
408 (2000). https://doi.org/10.1006/inco.2000.2917. http://www.sciencedirect.com/science/
article/pii/S0890540100929171

12. Kakutani, Y.: Call-by-name and call-by-value in normal modal logic. In: Shao, Z. (ed.)
APLAS 2007. LNCS, vol. 4807, pp. 399–414. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-76637-7 27

13. Kojima, K.: Semantical study of intuitionistic modal logics. Ph.D. thesis, Kyoto University
(2012)

14. Kuznets, R., Marin, S., Straßburger, L.: Justification logic for constructive modal logic *.
In: 7th Workshop on Intuitionistic Modal Logic and Applications, IMLA 2017, July 2017.
https://hal.inria.fr/hal-01614707

15. Lamarche, F.: Proof nets for intuitionistic linear logic: essential nets (2008). https://hal.inria.
fr/inria-00347336

16. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal
logics. In: Advances in Modal Logic 10 (2014)

17. McCusker, G.: Games and full abstraction for FPC. Inf. Comput. 160(1), 1–
61 (2000). https://doi.org/10.1006/inco.1999.2845. http://www.sciencedirect.com/science/
article/pii/S0890540199928456

18. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Comput.
209(12), 1465–1490 (2011)

19. Meyer, J.J., Veltmanw, F.: Intelligent agents and common sense reasoning. In: Blackburn,
P., Van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and
Practical Reasoning, vol. 3, pp. 991–1029. Elsevier (2007). https://doi.org/10.1016/S1570-
2464(07)80021-8. http://www.sciencedirect.com/science/article/pii/S1570246407800218

20. Murawski, A.S.: On semantic and type-theoretic aspects of polynomial-time computability
(2001)

21. Murawski, A.S., Luke Ong, C.-H.: Evolving games and essential nets for affine polymor-
phism. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 360–375. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45413-6 28

22. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Proceedings of the
1st Conference on Theoretical Aspects of Reasoning about Knowledge (TARK), pp. 399–
406 (1986)

https://hal.archives-ouvertes.fr/hal-03201439
https://doi.org/10.1007/978-3-540-73595-3_9
https://doi.org/10.1145/3209108.3209125
https://doi.org/10.1006/inco.2000.2917
http://www.sciencedirect.com/science/article/pii/S0890540100929171
http://www.sciencedirect.com/science/article/pii/S0890540100929171
https://doi.org/10.1007/978-3-540-76637-7_27
https://doi.org/10.1007/978-3-540-76637-7_27
https://hal.inria.fr/hal-01614707
https://hal.inria.fr/inria-00347336
https://hal.inria.fr/inria-00347336
https://doi.org/10.1006/inco.1999.2845
http://www.sciencedirect.com/science/article/pii/S0890540199928456
http://www.sciencedirect.com/science/article/pii/S0890540199928456
https://doi.org/10.1016/S1570-2464(07)80021-8
https://doi.org/10.1016/S1570-2464(07)80021-8
http://www.sciencedirect.com/science/article/pii/S1570246407800218
https://doi.org/10.1007/3-540-45413-6_28

Game Semantics for Constructive Modal Logic 445

23. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Courier Dover Publications,
Mineola (2006)

24. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis,
University of Edinburgh, College of Science and Engineering (1994)

25. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfen-
ning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37075-5 14

26. Straßburger, L., Heijltjes, W., Hughes, D.J.D.: Intuitionistic proofs without syntax. In: 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
Canada, pp. 1–13. IEEE, June 2019. https://doi.org/10.1109/LICS.2019.8785827. https://hal.
inria.fr/hal-02386878

27. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, vol. 43. Cambridge University
Press, Cambridge (2000)

28. Vakarelov, D.: Modal logics for knowledge representation systems. Theor. Comput. Sci. 90,
433–456 (1991)

https://doi.org/10.1007/978-3-642-37075-5_14
https://doi.org/10.1109/LICS.2019.8785827
https://hal.inria.fr/hal-02386878
https://hal.inria.fr/hal-02386878

The Došen Square Under Construction:
A Tale of Four Modalities

Michael Mendler, Stephan Scheele(B), and Luke Burke

University of Bamberg, Bamberg, Germany
stephan.scheele@uni-bamberg.de

Abstract. In classical modal logic, necessity ◻A, possibility ◇A, impos-
sibility ◻¬A and non-necessity ◇¬A form a Square of Oppositions (SO)
whose corners are interdefinable using classical negation. The relation-
ship between these modalities in intuitionistic modal logic is a more del-
icate matter since negation is weaker. Intuitionistic non-necessity ⊟ and
impossibility �, first investigated by Došen, have received less attention
and—together with their positive counterparts ◻ and ◇—form a square
we call the Došen Square. Unfortunately, the core property of construc-
tive logic, the Disjunction Property (DP), fails when the modalities are
combined and, interpreted in birelational Kripke structures à la Došen,
the Square partially collapses. We introduce the constructive logic CKD,
whose four semantically independent modalities ◻, ◇, ⊟, � prevent the
Došen Square from collapsing under the effect of intuitionistic negation
while preserving DP. The model theory of CKD involves a constructive
Kripke frame interpretation of the modalities. A Hilbert deduction sys-
tem and an equivalent cut-free sequent calculus are presented. Sound-
ness, completeness and finite model property are proven, implying that
CKD is decidable. The logics HK⊟, HK◻, HK◇ and HK� of Došen and
other known theories of intuitionistic modalities are syntactic fragments
or axiomatic extensions of CKD.

Being one world away from absurdity is very different from being in an absurd
world. Being one step removed from disaster is often very different, and feels
very different, from the disaster. (Routley 1983)

1 Introduction

The reader may recall the classical square of opposition (SO) [38] seen on the
left side in Fig. 1, whose four corners express the distinction between contra-
dictory and contrary oppositions, that were traditionally labelled with four let-
ters A,E, I,O designating propositions, and connected by means of six edges.
The SO has been applied to concepts in linguistics, mathematics and philos-
ophy and can be generalised in a number of ways. From the vantage point of
classical modal logic, the oppositions can be expressed in terms of the modal
operators ◇ and ◻, which traditionally express possibility and necessity, and
are interdefinable in terms of negation, i.e., ◇A = ¬ ◻ ¬A and ◻A = ¬◇ ¬A. In
c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 446–465, 2021.
https://doi.org/10.1007/978-3-030-86059-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-86059-2_26

The Došen Square Under Construction: A Tale of Four Modalities 447

constructive modal logic this is no longer the case, which results in four inde-
pendent modal operators, complementing ◇ and ◻ with their opposing counter-
parts [10], namely impossibility �and non-necessity ⊟. In this work we construct
the Došen square (DS) seen on the right side in Fig. 1, by investigating the rela-
tionships between the modalities {◇,◻,⊟,�} in a constructive theory, in which
they remain independent under (intuitionistic) negation (∼) in the sense that
they are not interdefinable anymore, unlike in classical logic. We will shortly
discuss the interpretation of the DS.

Fig. 1. The square of oppositions and the Došen Square.

1.1 State of the Art

In classical Kripke semantics, the modal operators ◇ and ◻ are interpreted w.r.t.
frames F=(S,R), consisting of a set of states S and a binary accessibility relation R
on S. The satisfaction of formulas is defined relative to models M= (F, V) extend-
ing a frame by a valuation V : S → P(Var) that associates a set V (s) ⊆ Var of
propositional variables satisfied at a state s. Their interpretation is given by quan-
tifying existentially and universally over states in the image of the relation R

M, s |= ◇A ⇔ ∃x. (sRx & M, x |= A) (1)
M, s |= ◻A ⇔ ∀x. (sRx ⇒ M, x |= A) (2)

where M, s |= A expresses that A is satisfied at state s in M. Standardly, in
modal extensions of intuitionistic propositional logic (IPL), Kripke models are
based on a birelational Kripke frame F = (S, ⊑, R), where the accessibility relation
R and the intuitionistic partial order ⊑ are relations on the same domain. Because
the classical clauses (1) and (2) fail to ensure intuitionistic heredity :

s ⊑ s′ and M, s |= A implies M, s′ |= A,

one common approach is to impose the frame conditions (⊑ ;R) ⊆ (R ; ⊒) and
(⊑ ;R) ⊆ (R ; ⊑), where R ;S =df {(x, z) | ∃y.xR y and y S z} denotes sequential
composition of two binary relations R and S. In the Došen square we enforce

448 M. Mendler et al.

heredity without any frame conditions by the following ‘doubly quantified’ (con-
structive) interpretation:

M, s |= ◇A ⇔ ∀s′
⊒ s.∃x. (s′ R x & M, x |= A) (3)

M, s |= ◻ A ⇔ ∀s′
⊒ s.∀x. (s′ R x ⇒ M, x |= A). (4)

We can pronounce ◇A as “hereditarily, there is an R-accessible state at which
A holds” and ◻A as “hereditarily, for all R-accessible states A holds”, hence
the labelling of the Došen square in Fig. 1, in which such sentences have been
still further abbreviated. The mainstream approach is to either adopt the ‘singly
quantified’ approach (1) and (2) for both ◻ and ◇ [35,40,41] or to ‘mix and
match’, adopting (1) for ◇ and (4) for ◻ [29,34]. The ‘doubly quantified’ app-
roach for both modalities, first introduced by [39] and later used in the logic
CK [3,20,25,33], is far less common, as it leads to non-normal modal logics inval-
idating the axiom ◇(A∨B) → ◇A∨◇B. Computationally, this makes sense (see
[24,33]), and it has the consequence that ⊑ is not required to be antisymmetric
as in standard intuitionistic Kripke frames. In CK, this gives rise to cyclic struc-
tures which are crucial in establishing the Finite Model Property (FMP) [25].
Furthermore, the nullary case ∼ ◇ ⊥ is invalidated as well, because frames for CK
include so-called fallible states which verify all formulas of the language. Fallible
states may be accessible from other states via the modal accessibility relation
in the clause for ◇ and so become ‘visible’ in the form of ◇⊥ statements and ⊑
is no longer reflexive. Constructive modal logics such as CK therefore allow for
truth-value ‘gluts’ (i.e., they allow for the truth of formulas of the form A ∧ ∼A)
as well as truth value ‘gaps’ (i.e., formulas of the form A ∨ ∼A fail to be verified
at a state).

Consider now the impossibility and non-necessity operators [10] � and ⊟
which occupy the right side of the squares in Fig. 1, where�(or ⊟) is the negative
counterpart of the positive modality ◇ (or ◻) and vice versa:1

M, s |= �A ⇔ ∀x. (sRx ⇒ M, x �|= A) (5)

M, s |= ⊟A ⇔ ∃x. (sRx & M, x �|= A). (6)

Classically, these modalities can be expressed in terms of ◇ and ◻ as ¬◇A (or
◻¬A) and ¬◻A (or ◇¬A). Intuitionistically, this is no longer the case, because
intuitionistic negation ∼ is weaker than classical negation ¬ as it fails Excluded
Middle (EM).

To our knowledge, Došen was the first to pay extensive attention to the neg-
ative modalities in intuitionistic logic. For each ⊗∈{◻,◇,⊟,�}, Došen produced

1 Such negative modalities have been considered in the literature on FDE and Routley
semantics as ways of capturing forms of negation [17–19,28,36] often called ‘con-
structible’ or ‘strong’ negation [26,37]. We do not suggest that the role of � and ⊟
in the logic CKD is to capture forms of negation; rather, we are simply interested
in how they behave in a constructive setting (i.e. in which the Disjunction Property
holds) as modal operators.

The Došen Square Under Construction: A Tale of Four Modalities 449

a logic HK⊗, combining ⊗ with IPL. In HK◻, the classical truth conditions
for ◻ in (2) are employed together with the frame condition (⊑;R) ⊆ (R; ⊑),
whilst in HK◇ the classical truth conditions for ◇ in (1) are employed together
with (⊒;R) ⊆ (R; ⊒) [6]. In HK�, the truth conditions (5) are employed for
� and (⊑;R) ⊆ (R; ⊒) are imposed, and in HK⊟ the truth conditions (6) are
employed for ⊟ with the frame condition (⊒;R) ⊆ (R; ⊑) [9–11]. Each HK⊗ for
⊗ ∈ {◻,◇,⊟,�} is a conservative extension of IPL which is sound and com-
plete with respect to birelational frames, subject to the associated frame con-
ditions. The work of Došen was very much out on a limb with respect to the
mainstream in intuitionistic logic, which concentrated on the positive modalities
almost entirely [42], and only in recent years have the negative modalities been
given more attention in the literature on intuitionistic and constructive logic
[15,16,28]. Curiously, Došen did not produce a logic which combines �, ⊟, ◇
and ◻ with IPL on a single birelational frame (S, ⊑, R) in which the modalities
are interpreted with respect to the same R.

Some combinations of the modalities ◻,◇,⊟,�with each other and negation
∼ have been explored. For example, [6] consider a system HK ◻ ◇, combining
◇ and ◻. They give two equivalent axiomatisations of HK ◻ ◇, yet the theory
does not have the DP, nor is it conservative over either HK◇ and HK◻ (see [6]
for discussion). Drobyschevich [15] investigates the properties of the combined
modality ∼�A in an extension N� of IPL he calls HKNR and he studies ∼�A in
HK⊟ in an extension he calls HKN⊟. N� is an extension of HK�but without ⊥,
known as N [11]. In N�, however, ⊟ and �collapse into a single modality, since R
is a functional accessibility relation, called the ‘Routley star’ operation. Addition
of ◇ to HK�plus frame conditions imposed to ensure hereditariness, have the
result that the modalities � and ◇ become interdefinable as ◇A ↔ ∼�A and
�A ↔ ∼◇A via intuitionistic negation. But, from a constructive point of view,
the directions of ∼�A → ◇A and ∼ ◇ A → �A are suspicious. If we can prove
the absurdity of something being impossible (i.e., ∼�A), this doesn’t mean
we have a positive construction which will allow us to show that something
is possible (i.e., ◇A). Likewise, if we can prove that a certain possibility is
absurd (i.e., ∼ ◇A), then we can’t conclude that we have a proof that it is
impossible. Similarly, addition of ◻ to HK⊟ plus frame conditions make ◻ and ⊟
interdefinable (◻B ↔ ∼ ⊟B and ⊟B ↔ ∼ ◻B) and similar reservations regarding
the constructive content of the implications ∼ ⊟B → ◻A and ∼ ◻B → ⊟B can
be made. Adding ◻ and its associated heredity frame condition forces axiom
⊟B ∨ ∼ ◻B without ⊟B or ∼ ◻B being provable by itself. This breaks DP and
thus constructiveness of non-necessity. This is a general side effect of the frame
conditions: Each positive modality ⊕ induces the disjunction ∼ ⊖A ∨ ⊖A, where
⊖ is the corresponding negative modality, and each negative modality ⊖ induces
the disjunction ∼ ⊕A ∨ ⊕A. Similar effects have been observed for N� [13], where
the scheme �A ∨ �∼A is valid and for HK ◻◇, where ◇A ∨ ◻¬A is an axiom,
both in violation of the DP.

450 M. Mendler et al.

1.2 Contributions

The combination of the modalities ◻, ◇, �and ⊟ so as to ensure a constructive
logic is a delicate matter. Can the negative modalities � and ⊟ live happily
side-by-side with their ‘positive’ counterparts ◇ and ◻, within a constructive
setting? According to consolidated tradition, a constructive logic means a logic
in which the Disjunction Property (DP) holds: whenever A∨B is a theorem then
either A is a theorem, or B is a theorem. Constructiveness thus construed is not
a property of operators, but of logics. Our question is therefore whether we can
combine the modalities whilst retaining the DP. In this paper we show that if
we interpret � and ⊟ constructively like ◻ and ◇ in (4) and (3),

M, s |= �A ⇔ ∀s′
⊒ s.∀x. (s′ R x ⇒ M, x �|= A) (7)

M, s |= ⊟A ⇔ ∀s′
⊒ s.∃x. (s′ R x & M, x �|= A) (8)

then we can avoid the collapse of the modalities �, ⊟, ◇ and ◻, abandoning
the frame conditions relating ⊑ and R:2 The logic created by thus adding the
negative modalities to CK [25,33], we dub CKD. CKD is both conservative over
CK and constructive in the sense that it satisfies DP.

The Došen square is not supposed to be analogous to the SO; in fact, only
certain features of the square of oppositions hold in CKD. The logic CKD will
treat the relationships between the modalities in DS as follows. On the one hand,
◇ and �will be contradictories, i.e., ∼(◇A ∧ �A) is valid. Similarly, necessity
◻ and unnecessity ⊟ will be incompatible, i.e., ∼(◻A ∧ ⊟A) is valid. Due to the
absence of the Excluded Middle and fallibility, the modalities ◇ ∼A and ⊟A
are independent in CKD, distinguishing the Došen square from the classical SO.
In CKD ◇ ∼A → ⊟A follows from infallibility, expressed by �⊥. Moreover, we
have ⊟A → ◇ ∼A assuming ◻(A ∨ ∼A), which expresses the necessitation of the
Excluded Middle. Similarly, ◻ ∼A and �A are independent. Again, the connec-
tion hinges on the absence of gluts and gaps: In CKD we have that infallibility
�⊥ entails ◻ ∼ A → �A and similarly ◻(A ∨ ∼A) entails �∼A → ◻A. Unless
every state has an R-successor (seriality) – expressible by ◇⊤ – the modality
pairs ◻, ◇ and �, ⊟ are independent. However, like in the classical SO it holds
that from seriality ◇⊤ follows ◻A → ◇A and �A → ⊟A.

In Sect. 2 the model theory of CKD is introduced and the DP is proven.
In Sect. 3.1, an axiomatic Hilbert system, HCKD, is provided for CKD, and its
conservativity over CK and over N is sketched. In Sect. 3.2, a sequent calcu-
lus, GCKD, for CKD is provided, proving its soundness and completeness with
respect to C-frames , and its translation into HCKD is obtained. As a corollary
of completeness, it follows that the theory of CKD has the FMP, is cut-free and
decidable. In Sect. 4 we end with Conclusions.

2 Our claim is that the doubly quantified truth conditions are a neat way out of the
bind, not that they are necessary in order to provide a logic which combines ◻, ◇,
� and ⊟ interpreted with respect to the same relation.

The Došen Square Under Construction: A Tale of Four Modalities 451

2 The Došen Square CKD of Constructive Modalities

We begin by introducing the frames and models we will make use of.

Definition 1 (C-frame). A C-frame F = (S, ≤, F,R) consists of a set S /= ∅ of
states, a preordering ≤ (reflexive & transitive) on S, a subset F ⊆ S of fallible
states, s.t. s1 ≤ s2 and s1 ∈ F implies s2 ∈ F and a binary relation R on S. On
a C-frame we define the ordering ⊑ =df {(s, s′) | s ≤ s′ & s′ �∈F} and if F = ∅ then
F is called infallible.

C-frames are non-standard in three ways. Firstly, we do not require any frame
property to constrain the interaction of ≤ and R. In this way, we obtain a minimal
logic to fuse the modalities ◇, ◻, � and ⊟ on a single accessibility relation.
Secondly, we only require ≤ to be a preorder rather than a partial ordering, i.e.,
omitting antisymmetry allows for the possibility of cyclic structures which are
crucial in establishing the FMP. Thirdly, by adding the fallibility set F ⊆ S we
can declare frame states as ‘internally exploded’ and make states s ∈S such that
s R s′

∈ F border states “one world away from absurdity”. This is instrumental to
preserve constructiveness for certain extensions of CKD and amounts to working
with an intuitionistic accessibility ⊑ that is not only not antisymmetric but also
not reflexive.

Definition 2 (C-model). A C-model M = (F, V) consists of a C-frame F =
(S, ≤, F,R) together with a valuation function V : S → P(Var) from S to the
subset of propositional variables subject to heredity and explosion conditions: if
s1 ≤ s2 then (i) V (s1) ⊆ V (s2) and (ii) if s ∈ F then V (s) =Var.

The language LCKD of CKD coincides with that of intuitionistic propositional
logic (IPL) extended by the four modalities {◻,◇,�,⊟}.

Definition 3 (Language LCKD). The language LCKD is based on a denumer-
able set of propositional variables Var = {p, q, . . .}. The set of well-formed CKD-
formulas over Var is inductively defined by the following grammar:

A,B :: = p | ⊤ | ⊥ | A ∧B | A ∨B | A → B | ◻A | ◇A | �A | ⊟A

Note that ∼A abbreviates intuitionistic negation A → ⊥, A ↔ B is expressed by
(A → B) ∧ (B → A) and implication → is right-associative.

The interpretation of LCKD is by means of the following satisfaction relation:

Definition 4 (Satisfaction in C-models). Let M = (S, ≤, F,R, V) be a C-
model. The notion of a formula A being satisfied in a C-model M at a state s is

452 M. Mendler et al.

defined inductively, for the modal operators as in (3), (4), (7), (8) and for the
other operators as in IPL.3

M, s |= ⊤,
M, s |= ⊥ iff s ∈ F,

M, s |= p iff p ∈ V (s),
M, s |= A ∧B iff M, s |= A and M, s |= B,

M, s |= A ∨B iff M, s |= A or M, s |= B,

M, s |= A → B iff for all s′
⊒ s, if M, s′ |= A then M, s′ |= B.

The semantics of Definition 4 permits us to assume that each fallible state
f ∈ F is a dead end of the frame, i.e., there is no s with either f R s or f ⊑ s.
Moreover, we may assume without loss of generality that every f ∈F is reachable
by an R-step from a non-fallible state, i.e., there is s � ∈ F with s R f . We call
such frames ⊥-condensed. In ⊥-condensed frames we have M, s |= �⊥ for all s∈S
iff M is infallible, i.e., F = ∅.

Definition 5 (Validity). A formula A is valid in a C-model M, written M |=
A, if M, s |= A for all s ∈S. If M is clear from the context, we will simply write
s |= A. A formula A is valid in a C-frame F, written F |= A, if M |= A for all
models M = (F, V) over F. We lift all the validity relations to sets of formulas Γ
in the usual conjunctive way, for a state M, s |= Γ , a model M |= Γ and frame
F |= Γ .

Lemma 1. Satisfaction is hereditary and explosive, i.e., (i) s |= A iff
∀s′
⊒ s. s′ |= A and (ii) s ∈ F implies s |= A.

We define a semantic consequence relation axiomatising the semantic levels
of the modal satisfaction relation at the frame, model and state level (global
vs. local consequence) [21,31]. It allows us to map the semantic definition of
a logical system to its syntactic axiomatisation in the form a Hilbert calculus,
to be used in the discussion of the correspondences between Došen’s logics and
CKD (see Theorem 3).

Definition 6 (Semantic Entailment). Let Ω (frame hypotheses), Φ (model
hypotheses), Γ (state hypotheses) and Π (state assertions) be sets of formulas.
We write Ω;Φ;Γ |= Π iff for all C-frames F = (S, ≤, F,R) with F |= Ω and all
models M = (F, V) with M |= Φ and all states s ∈ S with M, s |= Γ , we have
M, s |= Π.

Let CKD be the set of all universally valid formulas, i.e., CKD= {A | ∅; ∅; ∅ |=
A}. This set is a logical theory, i.e., closed under Modus Ponens and Substitution.

3 As usual, we can take ⊤=df p → p for a variable p ∈Var . Interestingly, also absurdity
⊥ is representable, viz. as the non-necessity of truth, i.e., ⊥ =df ⊟⊤. First, M, s |= ⊥
implies M, s |= ⊟⊤ since by definition there is no s′ with s ⊑ s′. Second, if M, s |= ⊟⊤
and s �∈F we would have s ⊑ s and so by the truth condition for ⊟ there must be s′′

with s R s′′ and M, s′′
⊭ ⊤. This is impossible, hence s ∈ F and so M, s |= ⊥.

The Došen Square Under Construction: A Tale of Four Modalities 453

The theory CKD does not validate the axiom �A∨�∼A of Drobyshevich nor any
of the axiom schemes ⊗A ∨ ∼ ⊗A for ⊗ ∈ {◇,�,◻,⊟}, as can be readily verified.

One of the hallmarks of constructive logics is the disjunction property (DP),
stating that the proof of a disjunction A ∨ B requires positive evidence in the
form of a proof of either A or B. The absence of frame conditions in CKD admits
of a particularly simple model-theoretic argument for the Disjunction Property
(Theorem 1) that proceeds completely analogously to IPL.

Theorem 1 (Disjunction Property). The theory CKD has the Disjunction
Property.

Fig. 2. Cyclic model.

A striking feature of CKD is that the Finite Model
Property (Theorem 8) depends on permitting ≤-cycles in
C-frames. Consider the cyclic countermodel Mc on the
right in Fig. 2. The states s0, s1 each satisfy ∼ ⊟A,
∼ ⊟B and ⊟(A ∧B), being mutual ⊑-successors shar-
ing the same theory. Yet, they cannot be condensed
into a single state s = {s0, s1}, as s would have
both s′

0 and s′
1 as immediate R-successors, and sat-

isfy s |= ⊟A ∧ ⊟B which is inconsistent with the prop-
erties of s0 and s1. Observe that Mc does not sat-
isfy Došen’s HK⊟ frame condition [10] (⊒ ; R) ⊆ (R ; ⊑)
that generates the constructively disputable scheme
∼ ⊟A → ◻A. Even more, Mc provides a countermodel
for the distribution axioms ⊟(A ∧B) → (⊟A ∨ ⊟B) and
◇(A ∨B) → (◇A ∨ ◇B). Their absence is characteristic
of CKD as a non-normal modal logic, due to the ‘doubly-
quantified’ truth conditions in the existential modalities ⊟ (8) and ◇ (3).

Proposition 1. The scheme (∼ ⊟A ∧ ∼ ⊟B) → ∼ ⊟ (A ∧B) is valid in HK⊟ [10]
but not a theorem of CKD. Every CKD counter model for it is infinite or cyclic.

3 Proof Systems for CKD

We develop the proof theory of CKD, in the form of the Hilbert calculus HCKD and
the Gentzen-style sequent calculus GCKD. The calculus HCKD captures seman-
tic entailment Ω;Φ;Γ |= Π where the set of state hypotheses Γ = ∅ is empty,
which corresponds to the restriction [21] of rule Nec to apply to theorems only.
In contrast, the sequent calculus GCKD works entirely at the state level (i.e.,
Ω = ∅ = Φ).

3.1 CKD Global Reasoning: The Hilbert Calculus HCKD

Definition 7 (Hilbert Deduction and CKDAxioms). Let Ω and Φ be sets of
formulas. We write Ω;Φ
H A if there is a sequence A0, A1, . . . An−1 of formulas
such that An−1 = A and each Ai (i ∈ n) is either a model hypothesis from Φ,

454 M. Mendler et al.

a substitution instance of some frame hypothesis or axiom in Ω, or arises by
the rules of Modus Ponens (MP) or Necessitation (Nec) from formulas Aj

(j < i) appearing earlier. The set of axioms CKDax consist of those for IPL
(see, e.g., [14]) and the modal axioms as depicted in the following. We write
CKD;Φ
H A for CKDax;Φ
H A.

◻K =df ◻ (A → B) → ◻A → ◻B
◇K =df ◻ (A → B) → ◇A → ◇B

�K =df ◻ (A → B) → �B → �A

⊟K =df ◻ (A → B) → ⊟B → ⊟A
◻2 =df �A → ◻(A ∨B) → ◻B
◇2 =df �A → ◇(A ∨B) → ◇B

�2 =df �A → �B → �(A ∨B)
⊟2 =df �A → ⊟B → ⊟(A ∨B)
N 5 =df �(A ∧B) → ◇A → ⊟B
N 6 =df ◻ (A ∨B) → ⊟A → ◇B

N 7 =df ⊟ ⊤→ ⊥

Theorem 2 (Hilbert Soundness). If CKD;Φ
H A then ∅;Φ;∅ |= A.

The axioms ◻K,◇K,�K, ⊟K in combination with Nec ensure that the logic
is extensional, i.e., satisfies the Replacement Principle: If CKD;Φ
H A ↔ B
then CKD;Φ
H φ[A] ↔ φ[B] where φ[.] is an arbitrary formula context. In the
axiomatisation by [10] replacement is achieved with the R-Rules

Ω;Φ
H A → B
R⊕

Ω;Φ
H ⊕A → ⊕B

Ω;Φ
H A → B
R⊖

Ω;Φ
H ⊖B → ⊖A

for ⊕ ∈ {◇,◻} and ⊖ ∈ {�,⊟}. These are derivable from our axioms ◻K, ◇K,
�K, ⊟K, Modus Ponens MP and Necessitation Nec.

The axioms ⊗K (for ⊗ ∈ {◇,◻,�,⊟}) deal with the consequences of a neces-
sary implication ◻(A → B) for statements made under modalities. Analogously,
the axioms ⊗2 express the consequences of an impossible property �A for
modalised statements. The import of axiom ◻2 is that if a disjunction A ∨ B
is necessary and one of the disjuncts is impossible, then the other disjunct is
necessary. The axiom ◇2 says that if a disjunction A ∨ B is possible and one
of the disjuncts is impossible, then the other disjunct is possible. The axiom �2
states that if two properties are impossible, then their disjunction is impossible,
too. The axiom ⊟2 says that if one property is impossible and another is non-
necessary, then its disjunction is non-necessary. N 5 implies that if a conjunction
A∧B is impossible while one of the conjuncts is possible then the other conjunct
is non-necessary. N 6 is the statement that if a disjunction is necessary and one
disjunct non-necessary then the other disjunct is possible. The final axiom N 7
gives a representation of absurdity as non-necessity of truth.

Let us verify that possibility ◇A and impossibility �A are contradictory,
i.e.,
H ∼(◇A ∧ �A). Since
H A ↔ (A ∧ ⊤) we obtain
H (◇A ∧ �A) ↔
(◇A ∧ �(A ∧ ⊤)) by the Replacement Principle. Then, instantiating N 5 as
H

�(A ∧ ⊤) → ◇A → ⊟⊤, we can derive
H (◇A ∧ �A) → ⊟⊤ by IPL. Finally
chaining up in IPL with the implication N 7 this implies
H (◇A ∧ �A) → ⊥.

As explained above, in the standard Kripke model theory, the presence of
frame conditions force a collapse of the modalities and the loss of DP. In CKD

The Došen Square Under Construction: A Tale of Four Modalities 455

where we maintain their independence we can study existing theories as frag-
ments and extensions. Došen’s model theory of HK⊗-frames [10] in the language
L⊗ = {⊥,∧,∨,→,⊗} for fixed ⊗ ∈ {◇,�,◻,⊟} generates the logic called HK⊗.
A HK⊗-frame is an infallible C-frame satisfying the HK⊗ frame condition (see
Sect. 1). On such C-frames our truth conditions for ⊗ collapse to the ones of
Došen for ◇, �, ◻ and ⊟. As a result, CKD is conservative over HK⊗ in the
language fragment L⊗. However, the modalities ⊗∈{�,◇,⊟} of CKD are weaker
than the ones of HK⊗. This is not surprising since we want to avoid the collapses
arising from a naive fusion in the standard model theory. The properties of ⊗ in
HK⊗ can be regained in CKD by imposing frame conditions. Recall that N [11]
is HK� in the language LN = {∧,∨,→,�} without ⊥. Now consider the axiom
schemes:

(⊟1) : ⊟(A ∧B) → (⊟A ∨ ⊟B) (◇1) : ◇(A ∨B) → (◇A ∨ ◇B)
(�2) : �⊥ (◇2) : ∼ ◇ ⊥

(◻◇1) : ◇A ∨ ◻ ∼A (◻◇2) : ∼(◇A ∧ ◻ ∼A).

It can be shown that CKD in L◻ corresponds to HK◻ and in LN to N;
HK� is CKD + �2 restricted to L�; CKD + ⊟1 corresponds to HK⊟ in L⊟
and CKD +◇1 +◇2 generates the theory HK◇ in L◇. Finally, the extension
CKD+�2+◻◇1+◻◇2 coincides with the non-constructive theory HK◻◇ inves-
tigated by Božić & Došen [6] in L◻◇ =df {⊥,∧,∨,→,◻,◇}. In L◻◇ the logic CKD
does not lose constructiveness like HK◻◇ does. In fact, CKD is conservative over
CK [25] that combines the positive modalities ◻, ◇ by extending IPL with the
axioms ◻K and ◇K and the Nec rule.

Theorem 3 (Conservativity). CKD is a conservative extension of N and CK
and HK◻. The theories HK⊗ for ⊗ ∈ {◇,�,⊟} and HK ◻◇ are axiomatic exten-
sions of CKD:

For A in the language L◻◇ : CK;∅ �H A iff CKD;∅ �H A.
For A in the language L◻◇ : HK ◻◇;∅ �H A iff CKD,�2,◻◇1,◻◇2;∅ �H A.
For A in the language L⊟ : HK⊟;∅ �H A iff CKD,⊟1;∅ �H A.
For A in the language L◻ : HK◻;∅ �H A iff CKD;∅ �H A.
For A in the language L� : HK�;∅ �H A iff CKD,�2;∅ �H A.
For A in the language LN : N;∅ �H A iff CKD;∅ �H A.
For A in the language L◇ : HK◇;∅ �H A iff CKD,◇1,◇2;∅ �H A.

3.2 Landing at Došen Square: The Sequent Calculus GCKD

The proof theory of CK has previously been investigated in terms of a Natu-
ral Deduction system [3], multisequent calculi [22–24], nested sequents [2] and a
tableaux-based calculus [33]. Our sequent calculus GCKD is a refinement of the
multisequent calculus of Dragalin [12] for IPL, similar to [22], that is enriched by
additional scopes to cover local and global properties. This is required for the inter-
pretation of the four modalities, and is consonant with Poggiolesi’s remark that

456 M. Mendler et al.

[...] the failures of the search for a sequent calculus for modal logic gave rise to
the idea that the standard Gentzen calculus could only account for classical and
intuitionistic logics and should therefore be enriched. [30][Sec. 2.3, p. 51]

In relation to the many variants explored in the literature (see [30]) GCKD can
be considered a higher-arity extension in the sense of Sato [32] and Blamey and
Humberstone [5]. Notably, following Dragalin, we consider the logical variant of
the Gentzen calculus (in the terminology of [30]) approach to sequents, where
all structural rules are built into the axioms and logical rules. This is justified
as we are dealing with a logical theory that has not been discussed before and
thus are primarily interested in model-theoretic expressiveness, completeness,
constructiveness and finite-model property.

A sequent in CKD is a structure Γ � Δ � Θ
 Π � Σ � Ψ where the sets Γ
and Π express direct truth and falsity at a state, as in a standard sequent. The
sets Δ, Θ, Σ and Ψ are finite (possibly empty) sets of signed formulas each of
which can be strong A+ or weak A−. With this structure, our sequents provide
a formalisation of Došen square as visualised in Fig. 3. Note, that in Γ (Π) all
formulas have no sign. Specifically, Δ and Θ contain positive existential and
universal statements about modally reachable successors, while Σ and Ψ are
negative existential and universal statements. Depending on the scope set, the
sign t ∈ {+,−} of a polarised formula At distinguishes local or hereditary global
properties, where for a set X of signed formulas we write Xt

=df {At | At
∈X}.

For instance, A+
∈Δ expresses the constraint that there exists an immediate R-

successor satisfying A, while A−
∈Δ is the weaker statement that such a successor

is reachable via ⊑;R, i.e., only after an initial intuitionistic step. Analogously,
A−
∈Σ says that A is false along immediate R-successors whereas A+

∈Σ is the
stronger statement that A is false along all ⊑;R. This is captured by the following
Definition 8.

Fig. 3. The Došen square structure of GCKD sequents.

Definition 8 (Refutability). A sequent Γ � Δ � Θ
 Π � Σ � Ψ is refuted in a
state s of a C-model M = (S, ≤, F,R, V) iff the following holds:

The Došen Square Under Construction: A Tale of Four Modalities 457

– ∀A ∈ Γ.M, s |= A.

– ∀B−
∈Δ.∃s′.s ⊑;R s′ & M, s′ |= B;

∀B+
∈Δ.∃s′.s ⊑ s R s′ & M, s′ |= B.

– ∀C−
∈Θ, s′.s ⊑ s R s′ ⇒ M, s′ |= C;

∀C+
∈Θ, s′.s ⊑;R s′ ⇒ M, s′ |= C.

– ∀D ∈Π.M, s �|= D.

– ∀E−
∈Σ, s′.s ⊑ s R s′ ⇒ M, s′ �|= E;

∀E+
∈Σ, s′.s ⊑;R s′ ⇒ M, s′ �|= E.

– ∀F−
∈ Ψ.∃s′.s ⊑;R s′ & M, s′ �|= F ;

∀F+
∈ Ψ.∃s′.s ⊑ s R s′ & M, s �|= F .

A sequent is called refutable, written Γ � Δ � Θ �|= Π � Σ � Ψ if there exists a
C-model M and a state s of M in which it is refuted. A sequent is called valid,
written Γ � Δ � Θ |= Π � Σ � Ψ , if it is not refutable.

Fig. 4. GCKD Sequent Rules. The sets Γ , Π are without sign. In the rules cpLt and cpRt

all signs are dropped in the occurrences of the sets Θ, Θ+ and Σ, Σ+ in the premisses.
Tagged rules (†) require its conclusion to be strict, i.e., |Δ ∪ Π ∪ Ψ | ≥ 1. We treat all
scopes as sets with implicit duplication and permutation.

The sequent rules for CKD are seen in Fig. 4. In the top part, the rules Ax ,
⊥L, ⊤R, ∧L, ∧R, ∨L, ∨R, →L and →R are the left and right introduction
rules for a (multisequent, logical [30]) Gentzen sequent calculus of IPL. These
rules operate in the central Γ
 Π scopes, leaving the corner scopes of the
Došen square untouched. In the bottom part of Fig. 4 we list the left and right
introduction rules ◇L, ◇R, ◻L, ◻R, �L, �R, ⊟L and ⊟R for the modalities.

458 M. Mendler et al.

These modal rules, applied in forward direction, take a signed formula from
one of the corners Δ, Θ, Σ and Ψ of the Došen square (Fig. 3) and introduce
an associated modal operator in the conclusion sequent, instead. From Ψ− and
Θ+ we introduce the ◻ modalities in rules ◻L and ◻R; From Ψ+ and Θ− we
introduce ⊟ via ⊟L and ⊟R. No other rule depends on the presence of formulas
in Ψ or Θ. From Δ− and Σ+ stem all occurrences of � through �R and �L,
while Δ+ and Σ− constitute a reservoir for ◇ introduced via ◇L and ◇R. So
far, GCKD does not present surprises as a Gentzen-style calculus. The speciality
of GCKD lies in the four rules cpL−, cpL+, cpR− and cpR+ seen in the center of
Fig. 4. The sign introduction rules cpLt, cpRt work in opposite direction to the
modal introduction rules ⊗L, ⊗R. Together, they orchestrate the ‘Grand Modal
Dispatch’ of the DS as suggested in Fig. 3.

Definition 9 (Derivability). A derivation of a sequent Γ � Δ � Θ
 Π � Σ � Ψ
is either an axiom (rule Ax), an instance of ⊥L or ⊤R or an application of a
logical rule to derivations concluding its premises, that is built using the rules in
Fig. 4. We say that a sequent is underivable, written Γ � Δ � Θ �
 Π � Σ � Ψ , if
no derivation exists for it.

GCKD is conceived as a refutation system. Its purpose is to establish that a
state specification (based on the six scopes) presented as a sequent is refutable.
Refutability (Definition 8) and derivability (Definition 9) are linked in the sense
that a sequent is underivable iff it is refutable, as established in the soundness
and completeness proofs.

Theorem 4 (GCKDSoundness). If Γ � Δ � Θ �|= Π � Σ � Ψ then Γ � Δ � Θ �

Π � Σ � Ψ .

The proof of Theorem 4 is standard, by showing that for each sequent rule in
Fig. 4 that if the conclusion is refutable then at least one of its premises is
refutable as well.

Fig. 5. A successful GCKD derivation (left) and a non-completable derivation (right).

As examples consider the GCKD derivations in Fig. 5. The left derivation
demonstrates the incompatibility of ◇ and � and the right indicates why a
proof of the distribution ⊟(A ∧B) → (⊟A ∨ ⊟B) is doomed to fail. The appli-
cation (1) of rule ⊟R on the right of Fig. 5, corresponding to an intuitionistic

The Došen Square Under Construction: A Tale of Four Modalities 459

≤-step in backwards direction, must clear the Π-scope and drop the constraint
⊟B. Because of this, the formula B is missing in situation (2) so that the sequent
cannot be derived.

Theorem 5. For each HCKD derivation ∅;∅
H D there is a GCKD derivation
of the sequent ∅ � ∅ � ∅
 D � ∅ � ∅ using the rules of Fig. 4 plus the cut rule:
From Γ�Δ�Θ
 D,Π�Σ�Ψ and D,Γ�Δ�Θ
 Π�Σ�Ψ infer Γ�Δ�Θ
 Π�Σ�Ψ .

A sequent Γ � Δ � Θ
 Π � Σ � Ψ is called strict if |Δ ∪ Π ∪ Ψ | ≥ 1 and
polarised if |Θ− ∪ Σ−| ≤ 1. One can show that every derivable sequent is strict
and that polarised sequents can be proven only using polarised sequents. For
polarised and strict sequents the following ‘hilbertification’ provides a translation
of GCKD back into HCKD.

Definition 10 (Hilbertification). Let each sequent Γ � Δ � Θ
 Π � Σ � Ψ be
translated into the formula

(
Γ̂ ∧◇̂Δ∧�̂Σ∧◻̂Θ∧⊟Ψ

) → (
Π̌∨�̌Δ∨◇̌Σ∨⊟Θ∨◻̌Ψ

)

where
Γ̂ =df

∧
A∈Γ A, Π̌ =df

∨
D∈Π D,

◇̂Δ =df

∧
B+∈Δ◇B, �̌Δ =df

∨
B−∈Δ�B,

�̂Σ =df �
∨

E+∈Σ E, ◇̌Σ =df ◇
∨

E−∈Σ E,
◻̂Θ =df

∧
D+∈Θ ◻D, ⊟Θ =df ⊟̌

∧
D−∈Θ D,

⊟Ψ =df

∧
D+∈Ψ ⊟F, ◻̌Ψ =df

∨
D−∈Ψ ◻F,

and for empty sets we put Γ̂ =df ⊤ if Γ = ∅, Π̌ =df ⊥ if Π = ∅, and for ⊗ ∈
{◻,◇,�,⊟} and X a set of signed formulas: ⊗̂X = ⊤ if X+

= ∅ and ⊗̌X = ⊥
if X−

= ∅.

Theorem 6 Let Γ � Δ � Θ
 Π � Σ � Ψ be a polarised sequent, derivable using
the rules of Fig. 4. Then, there exists a Hilbert derivation of

CKD;∅
H

(
Γ̂ ∧ ◇̂Δ ∧ �̂Σ ∧ ◻̂Θ ∧ ⊟Ψ

) → (
Π̌ ∨ �̌Δ ∨ ◇̌Σ ∨ ⊟Θ ∨ ◻̌Ψ

)
.

Theorem 5 and 6 give us a back-and-forth translation of deductions in the
Hilbert and Gentzen systems for CKD. However, this involves the cut rule, so
neither calculus gives us a decision procedure. We address this by proving com-
pleteness of GCKD and thus completeness of HCKD, leading to our final complete-
ness result that implies cut-elimination. First, let us introduce some technical
definitions.

Definition 11 (Saturation). A sequent Γ �Δ�Θ
 Π�Σ�Ψ is called saturated
if the following closure conditions hold:

1. If M ∧N ∈ Γ then both M,N ∈ Γ
2. If M ∨N ∈ Γ then M ∈ Γ or N ∈ Γ ;
3. If M → N ∈Γ then M ∈Π or N ∈Γ
4. If M ∨N ∈Π then both M,N ∈Π;
5. If M ∧N ∈Π then M ∈Π or N ∈Π

6. If �M ∈ Γ then M+
∈Σ

7. If �M ∈Π then M−
∈Δ

8. If ◻M ∈ Γ then M+
∈Θ

9. If ◻M ∈Π then M−
∈ Ψ

10. If Π = ∅ and Δ = ∅ then ⊥ ∈ Γ .

460 M. Mendler et al.

In a saturated sequent the sets Γ and Π are coupled through the constraints (1)–
(5). Closure conditions (6)–(9) are lower bounds on the presence of positive signs
in Σ and Θ and on the negative signs in Δ and Ψ . If Γ1 � Δ1 � Θ1
 Π � Σ1 � Ψ1

is saturated then any sequent Γ � Δ2 � Θ2
 Π � Σ2 � Ψ2 with Θ+
1 ⊆Θ

+
2 , Σ+

1 ⊆Σ
+
2 ,

Δ−
1 ⊆ Δ−

2 and Ψ−
1 ⊆ Ψ−

2 is saturated, too. In other words, we can add positive
signs, or add and remove negative signs from Θ, Σ without losing saturation.
Analogously, we can add negative signs or add and remove positive signs in Δ,
Ψ and preserve saturation.

Definition 12. A set SF of formulas is subformula closed if for every subfor-
mula A of a formula M ∈ SF it holds that A ∈ SF. Let SF+

= SF ∪ {⊥}. We say
that a sequent Γ � Δ � Θ
 Π � Σ � Ψ is called a SF -sequent if Γ ∪ Δ ∪ Θ ∪ Π ∪
Σ ∪Ψ ⊆SF+. Moreover, a SF sequent is called consistent if it cannot be derived
in the cut-free calculus. It is called SF -complete if for every M ∈ SF+ we have
M ∈ Γ or M ∈Π.

For saturated, consistent and SF -complete sequents the essential information
lies in Γ , in the positive signs B+

∈Δ, F+
∈Ψ and the negative signs E−

∈Σ, C−
∈Θ.

All of these express the existence and properties of immediate R-successors (see
Definition 8).

Definition 13 (Canonical Interpretation). Let SF be a subformula closed
set. We define a basic canonical C-structure Mc

= (Sc, ≤c, F c, Rc, V c) over SF
as follows: The states w ∈ Sc are the saturated and consistent SF sequents
w = 〈Γ � Δ � Θ
 Π � Σ � Ψ〉. Relating these canonical states, we define the intu-
itionistic accessibility relation ≤c and the compatibility relation Rc on Sc as
follows:

〈Γ � Δ � Θ
 Π � Σ � Ψ〉 ≤c 〈Γ ′ � Δ′ � Θ′
 Π ′ � Σ′ � Ψ ′〉
iff Γ ⊆ Γ ′ & Θ+

⊆Θ′ Σ+
⊆Σ′ (9)

〈Γ � Δ � Θ
 Π � Σ � Ψ〉 Rc 〈Γ ′ � Δ′ � Θ′
 Π ′ � Σ′ � Ψ ′〉
iff Σ ⊆Π ′ & Θ ⊆ Γ ′. (10)

Let w=〈Γ � Δ � Θ
 Π � Σ � Ψ〉∈Sc be an arbitrary state. The valuation of propo-
sitional variables p is given by stipulating p ∈ V c(w) iff p ∈ Γ or ⊥ ∈ Γ . The state
w is fallible w ∈ F c iff ⊥ ∈ Γ .

Lemma 1. The canonical structure Mc
=df (Sc, F c, ≤c, Rc, V c) in Definition 13

is a C-model in the sense of Definition 2 such that for every sequent w ∈ Sc the
pair (Mc, w) refutes w according to Definition 8.

The Došen Square Under Construction: A Tale of Four Modalities 461

Theorem 7 (Gentzen Completeness). Every underivable sequent is
refutable, i.e., if Γ � Δ � Θ �
 Π � Σ � Ψ then Γ � Δ � Θ �|= Π � Σ � Ψ .

The completeness proof proceeds in the standard fashion via canonical models
(see Definition 13) constructed by saturation of unprovable end-sequents. Con-
sistent saturation in all scopes Γ , Δ, Θ, Π, Σ and Ψ only involves subformulas
(counting ⊥ as a subformula) of the original sequent. The canonical model does
not require maximal saturation or depends on the cut rule to achieve complete-
ness of canonical states. Hence, the cut rule is admissible in CKD. Moreover,
since all rules of CKD (not using cut) have the subformula property, it follows
that CKD has the Finite Model Property. The Completeness Theorem 7 for our
finite axiomatisation (Gentzen or Hilbert system) implies decidability. Therefore,
we have the following theorem.

Theorem 8. The theory CKD has the Finite Model Property, is cut-free and
decidable.

4 Conclusion

We have introduced a logic CKD, which combines the modalities ◇,◻,�,⊟ with
IPL. CKD is constructive since it has the Disjunction Property, and it is a con-
servative extension of the logics CK [25], N [11] and HK◻ [6]. Technically, this is
a clear contribution, since many extensions of N are not constructive, and com-
bining the modalities ◇,◻,�,⊟ with IPL can easily lead to loss of constructivity.
But, we would add, this is also a contribution on another front: by combining
the modalities ◇,◻,�,⊟ with IPL we have constructed a logic in which all parts
of the Došen square are included. Moreover, Došen’s logics HK⊗ for ⊗∈{◇,�,⊟}
are axiomatic extensions of CKD.

The proof theory of CKD has been given in the form of a Hilbert calculus
HCKD and a sequent calculus GCKD, and a constructive (bidirectional) transla-
tion between both proof systems is established. The soundness and complete-
ness of HCKD and GCKD is proven, relative to a semantics based on C-frames
and C-models. The structural complexity of GCKD sequents arises from the aim
to enforce the subformula property (analyticity) and to enable a Gentzen-style
separation between left and right introduction rules for each operator (orthogo-
nality). Finally, as a corollary of Gentzen completeness, it follows that the theory
of CKD has the finite model property, is cut-free and decidable.

GCKD is the first sequent calculus that combines all four modalities ⊗ ∈
{◻,◇,⊟,�} preserving the disjunction property of intuitionistic logic. It is
instructive to look at special fragments: In the modal-free fragment IPL, i.e.,
without the rules ⊗L, ⊗R for ⊗ ∈ {◻,◇,⊟,�}, all scope sets except Γ and Π
may be assumed empty. Hence, the dispatch rules cpLt, cpRt become obso-
lete and GCKD reduces to the rules {Ax ,⊥L,⊤R,∧L,∧R, ∨L,∨R,→L,→R}
corresponding to Dragalin’s sequent calculus for IPL. In the ◻-fragment of
GCKD (i.e., IPL plus ◻), the modal rules ◻L, ◻R generate only the positive

462 M. Mendler et al.

signs Θ+ and negative signs Ψ− while Δ =Σ = ∅. Hence, from the modal dis-
patch only cpR− remains. The resulting sequents Γ � ∅ � Θ+
 Π � ∅ � Ψ− cor-
respond to an intuitionistic version of the 4-ary sequents Γ ⇒Ψ−

Θ+ Π of Blamey
and Humberstone’s logic4 K4 [5], called H−ask by [30]. These K4 sequents
are translatable as formulas (

∧
Γ ∧

∧
◻Θ+) → (

∨
Π ∨

∨
◻Ψ−) (see [30] and

also Definition 10). The constructive nature of CKD appears in the fact that
the right introduction rules ◇R and ⊟R are not obviously (locally) invert-
ible, due to the restriction of the scopes in their premises. In classical logic,
where ⊑ is the identity relation and there is no difference between positive
and negative signs in the sequent’s scope, the rule ◇R could be replaced by
the sound rule Γ � Δ � Θ
 Π � D,Σ � Ψ ⇒ Γ � Δ � Θ
 ◇D,Π � Σ � Ψ , which
is invertible. Similarly, the rule ⊟R could be relaxed as the invertible rule
Γ � Δ � D,Θ
 Π � Σ � Ψ ⇒ Γ � Δ � Θ
 ⊟D,Π � Σ � Ψ . In such a classical col-
lapse, GCKD might be seen as a 6-ary multi-sequent calculus for the modalities
⊗ ∈ {◻,◇,⊟,�} in the spirit of Blamey and Humberstone.

Two novel features of the semantics for CKD deserve to be highlighted for
those unfamiliar with the literature on constructive logic: C-frames admit fallible
states, and C-models adopt doubly-quantified truth conditions for modal oper-
ators, these latter explaining why ◇ does not distribute over disjunction, just
like in CK [20,25,33]. We note that, fallible states appear to be relevant also in
N. Došen [11] (see also [28,36]) proves completeness of N on HK�-frames in the
language LN which does not contain ⊥. In the proof, however, canonical states
with inconsistent theories must be permitted. As a result, the standard model
theory via HK�-frames is no longer adequate in the extended language LN∪{⊥},
since it would force the axiom �⊥, which is not part of N. This problem does
not re-occur in CKD since the definition of C-models permits fallible states to
reject �⊥. Hence, in CKD the fusion of N and full IPL can be studied.

There are various other logics in the vicinity of CKD which can be studied,
too. For example, the theory of C-frames in which R is a transitive subrelation
of ≤ that is reflexive on infallible states (if s � ∈F then s R s) generates Propo-
sitional Lax Logic PLL [20] also known as Computational Logic CL [4]. Both
negative modalities �A and ⊟A collapse in this case, and become semantically
equivalent to intuitionistic negation ∼A, whilst ◻ collapses since ◻A ↔ A. Only
◇ remains independent, yielding the (only) monadic modal operator ◯ of Lax
Logic, axiomatised by the single axiom (A → ◯B) ↔ (◯A → ◯B), and the
axiom ∼ ◯ ⊥ if additionally R is a subrelation of ⊑.

Other logics arise from CKD when the combined relation ⊑;R is functional. C-
frames in which ⊑;R is functional collapse �A and ⊟A to a form of negation ¬A,
known as Routley negation in the literature on FDE [17–19]. Routley negation
is weaker than intuitionistic negation ∼A in that it satisfies contraposition and
DeMorgan laws while permitting gaps and gluts. In C-frames in which ⊑;R is
functional the theories N� and N�

i of Routley negation [27] can be developed.

4 Blamey and Humberstone also use sets as scopes as we do, avoiding structural rules
of duplication and permutation. However, [5] use an explicit weakening rule, which
is built into the rules of GCKD. Our dispatch rule cpR− is named Switch in [5].

The Došen Square Under Construction: A Tale of Four Modalities 463

Specifically, if ⊑;R is weakly functional5 then we obtain the theory called N′ [28]
that extends IPL by axioms [27]

(N1) : ¬(A∧B) → (¬A∨¬B) (N2) : (¬A∧¬B) → ¬(A∨B) (N3) : ¬⊤→ ⊥
with derivation rules of Modus Ponens and Contraposition (“from A → B
infer ¬B → ¬A”). If we further assume that frames are infallible, the relation
⊑;R becomes functional, and we arrive at Heyting-Ockham logic N� [7,27,28]
(extended by quantifiers in [36]) that extends N′ by the axiom ¬⊥. Note that
CKD on functional frames also collapses the positive modalities ◻A ↔ ◇A into
a single modality ◻ that preserves the properties of ◻. This naturally generates
an extension of N� with modality ◻ in a coherent theory that appears not to
have been considered in the literature.

There are a number of open problems which could be considered in the future.
The Correspondence Theory for CKD could be explored and a sequent calculus
provided for extensions of CKD, such as N� and N�

i in language {◻,◇,¬} where
¬ collapses both � and ⊟ into a single modality ¬. Following [36], the addition
of quantifiers to CKD could be investigated. On the proof-theoretic front, means
for termination control (such as invertibility of rules, duplication elimination,
blocking conditions) of the sequent calculus GCKD could be investigated, and the
algorithmic complexity of the theory CKD determined. Since CKD is construc-
tive, the question naturally arises of what lambda calculus is related to CKD via
the Curry Howard isomorphism, and if there exists a natural deduction calcu-
lus for CKD. Recent work by [1] provides a novel semantics for proofs in CK,
and could form the basis of constructing a semantics of proofs in CKD including
negative modalities. Finally, it would be interesting to investigate if the neigh-
bourhood semantics for CK and other non-normal extensions proposed by [8]
could be used to interpret the negative modalities of CKD.

Acknowledgements. The authors would like to thank the anonymous referees and
the PC, who provided useful and detailed comments on the submission version of the
paper, and Stanislav Speranski, for sharing thoughts on constructive negation as a
modality.

References

1. Acclavio, M., Catta, D., Straßburger, L.: Towards a denotational semantics for
proofs in constructive modal logic. arXiv preprint arXiv:2104.09115 (2021)

2. Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal
logics. Logical Methods in Computer Science 11 (2015)

3. Bellin, G., de Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a
basic constructive modal logic. In: Methods for Modalities II (2001)

4. Benton, N., Bierman, G., de Paiva, V.: Computational types from a logical per-
spective. J. Funct. Program. 8(2), 177–193 (1998)

5 A frame is weakly functional if ∀s ∈ S \ F. ∃s′. s ⊑;R s′ and ∀s, s′
1, s

′
2. s ⊑;R s′

1&
s ⊑;R s′

2 ⇒ s′
1

∼
= s′

2, where s′
1

∼
= s′

2 iff s′
1 ≤ s′

2 and s′
2 ≤ s′

1. The frame is functional if
the existence condition holds in the stronger form ∀s ∈ S. ∃s′. s ⊑;R s′.

http://arxiv.org/abs/2104.09115

464 M. Mendler et al.

5. Blamey, S., Humberstone, L.: A perspective on modal sequent logic. Publ. Res.
Inst. Math. Sci. 27, 763–782 (1991)

6. Božić, M., Došen, K.: Models for normal intuitionistic modal logics. Studia Logica
43(3), 217–245 (1984)

7. Cabalar, P., Odintsov, S.P., Pearce, D.: Logical foundations of well-founded seman-
tics. In: P.D. et al. (ed.) Proceedings of International Conference on Knowledge
Representation and Reasoning (2006)

8. Dalmonte, T., Grellois, C., Olivetti, N.: Intuitionistic non-normal modal logics: a
general framework. J. Philos. Logic 49, 833–882 (2020)

9. Došen, K.: Negation in the light of modal logic. In: Gabbay, D.M., Wansing, H.
(eds.) What is Negation?, pp. 77–86. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-94-015-9309-0 4

10. Došen, K.: Negative modal operators in intuitionistic logic. Publications de
L’Institut Mathématique 35(49), 3–14 (1984)

11. Došen, K.: Negation as a modal operator. Rep. Math. Logic 20(1986), 15–27 (1986)
12. Dragalin, A.G.: Mathematical Intuitionism: Introduction to Proof Theory. Ameri-

can Mathematical Society (1988)
13. Drobyshevich, S.: Double negation operator in logic N�. J. Math. Sci. 205(3)

(2015)
14. Drobyshevich, S.A., Odintsov, S.P.: Finite model property for negative modalities.

Sibirskie Elektronnye Matematicheskie Izvestiia 10 (2013)
15. Drobyshevich, S.A.: Composition of an intuitionistic negation and negative modal-

ities as a necessity operator. Algebra Logic 52, 1–19 (2013). https://doi.org/10.
1007/s10469-013-9235-8

16. Drobyshevich, S.: On classical behavior of intuitionistic modalities. Logic Log.
Philos. 24(1), 79–104 (2015)

17. Dunn, J.M.: Star and perp: two treatments of negation. Philos. Perspect. 7, 331–
357 (1993)

18. Dunn, J.M.: Negation, a notion in focus, vol. 7, chap. Generalized Ortho Negation,
pp. 3–26. Walter de Gruyter Berlin (1996)

19. Dunn, J.M., Zhou, C.: Negation in the context of gaggle theory. Studia Logica
80(2–3), 235–264 (2005). https://doi.org/10.1007/s11225-005-8470-y

20. Fairtlough, M., Mendler, M.: Propositional lax logic. Inf. Comput. 137(1), 1–33
(1997)

21. Fitting, M.: Basic modal logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A.
(eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 1,
pp. 368–448. Oxford University Press, New York (1993)

22. Mendler, M., Scheele, S.: Towards constructive DL for abstraction and refinement.
J. Autom. Reason. 44(3), 207–243 (2010). https://doi.org/10.1007/s10817-009-
9151-8

23. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Com-
put. 209(12), 1465–1490 (2011)

24. Mendler, M., Scheele, S.: On the computational interpretation of CKn. Fundamenta
Informaticae 130, 1–39 (2014)

25. Mendler, M., de Paiva, V.: Constructive CK for contexts. In: Proceedings of
the First Workshop on Context Representation and Reasoning, CONTEXT 2005
(2005)

26. Nelson, D.: Constructible falsity. J. Symb. Logic 14(1), 16–26 (1949)
27. Odintsov, S., Wansing, H.: Routley star and hyperintensionality. J. Philos. Logic

50, 33–56 (2020)

https://doi.org/10.1007/978-94-015-9309-0_4
https://doi.org/10.1007/978-94-015-9309-0_4
https://doi.org/10.1007/s10469-013-9235-8
https://doi.org/10.1007/s10469-013-9235-8
https://doi.org/10.1007/s11225-005-8470-y
https://doi.org/10.1007/s10817-009-9151-8
https://doi.org/10.1007/s10817-009-9151-8

The Došen Square Under Construction: A Tale of Four Modalities 465

28. Odintsov, S.P.: Combining intuitionistic connectives and Routley negation. In:
Siberian Electronic Mathematical Reports (2005)

29. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Halpern, J.
(ed.) Theoretical Aspects of Reasoning About Knowledge, pp. 399–406. Monterey
(1986)

30. Poggiolesi, F.: Gentzen Calculi for Modal and Propositional Logic. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-90-481-9670-8

31. Popkorn, S.: First Steps in Modal Logic. Cambridge University Press, Cambridge
(1994)

32. Sato, M.: A study of Kripke-type models for some modal logics by Gentzen’s
sequential method. Publ. Res. Inst. Math. Sci. 13, 381–468 (1977)

33. Scheele, S.: Model and Proof Theory of Constructive ALC, Constructive Descrip-
tion Logics. Ph.D. thesis, University of Bamberg (2015)

34. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh, Scottland (1994)

35. Sotirov, V.H.: Modal theories with intuitionistic logic. In: Proceedings of the Con-
ference on Mathematical Logic, Sophia, pp. 139–171 (1980)

36. Speranski, S.O.: Negation as a modality in a quantified setting. J, Logic Comput.
(2021)

37. Wansing, H.: On split negation, strong negation, information, falsification, and
verification. In: Bimbó, K. (ed.) J. Michael Dunn on Information Based Logics.
OCL, vol. 8, pp. 161–189. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-29300-4 10

38. Westerst̊ahl, D.: On the Aristotelian square of opposition. Kapten Mnemos Kolum-
barium, en festskrift med anledning av Helge Malmgrens (2005)

39. Wijesekera, D.: Constructive modal logic I. Ann. Pure Appl. Logic 50, 271–301
(1990)

40. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logics as fragments of classical
bimodal logics. Logic at work, pp. 168–186 (1997)

41. Wolter, F., Zakharyaschev, M.: The relation between intuitionistic and classical
modal logics. Algebra Logic 36(2), 73–92 (1997)

42. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logic. In: Cantini, A., Casari,
E., Minari, P. (eds.) Logic and Foundations of Mathematics, pp. 227–238. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-94-017-2109-7 17

https://doi.org/10.1007/978-90-481-9670-8
https://doi.org/10.1007/978-3-319-29300-4_10
https://doi.org/10.1007/978-3-319-29300-4_10
https://doi.org/10.1007/978-94-017-2109-7_17

Author Index

Acclavio, Matteo 428
Afshari, Bahareh 335
Avron, Arnon 112

Bílková, Marta 20
Burke, Luke 446

Catta, Davide 428
Chvalovský, Karel 266
Csiszárik, Adrián 167

D’Abrera, Caitlin 281
Dalmonte, Tiziano 391
Dawson, Jeremy 281
Duarte, André 200

Ferguson, Thomas Macaulay 3
Frittella, Sabine 20

Goré, Rajeev 74, 281, 299
Grätz, Lukas 38
Greati, Vitor 129
Grellois, Charles 391

Indrzejczak, Andrzej 56

Jakubův, Jan 266

Kaliszyk, Cezary 167
Kikkert, Cormac 74
Korovin, Konstantin 200
Kozhemiachenko, Daniil 20

Kürbis, Nils 95
Kuznetsov, Stepan L. 317

Leigh, Graham E. 335
Lellmann, Björn 147
Lyon, Tim S. 409

Marcelino, Sérgio 129
Marcos, João 129
Marti, Johannes 371
Mendler, Michael 446
Menéndez Turata, Guillermo 335
Michalewski, Henryk 167

Olivetti, Nicola 391
Olšák, Miroslav 218, 266
Otten, Jens 236

Ramanayake, Revantha 299
Rawson, Michael 187, 250
Reger, Giles 187, 250
Rooduijn, Jan 354

Scheele, Stephan 446
Shillito, Ian 299
Straßburger, Lutz 428

Urban, Josef 167, 218, 266

Venema, Yde 371

Zawidzki, Michał 56
Zombori, Zsolt 167, 218

	Preface
	Organization
	Abstracts of Invited Talks
	The Strange Career of Interpolation and Definability
	Rational Synthesis
	The Barter Trade in Structure and Cuts
	Comparing Rules for Identity in Sequent Systems and Natural Deduction
	Forgetting and Subontology Generation for the Medical Ontology SNOMED CT
	Contents
	Tableau Calculi
	Tableaux and Restricted Quantification for Systems Related to Weak Kleene Logic
	1 Introduction
	2 Weak Kleene Logic
	2.1 The Propositional Case
	2.2 Adding Restricted Quantifiers
	2.3 Brief Excursus on Quantification
	2.4 Tableau Calculus for Weak Kleene Logic with Restricted Quantifiers

	3 Bilateral Logics Related to Weak Kleene Logic
	3.1 Sfde and AC
	3.2 Adding Restricted Quantifiers
	3.3 Tableau Calculi for Sfde and AC with Restricted Quantifiers

	4 Concluding Remarks
	References

	Constraint Tableaux for Two-Dimensional Fuzzy Logics
	1 Introduction
	2 The Logics for a Two-Dimensional Treatment of Uncertainty
	2.1 Preliminaries
	2.2 The Logics
	2.3 Semantical Properties of ŁŁŁŁ2(x,y)()
	2.4 Semantical Properties of G2()

	3 Tableaux
	3.1 Constraint Tableaux for ŁŁŁŁ2
	3.2 Constraint Tableaux for G2
	3.3 Applications

	4 Conclusions and Further Research
	References

	Analytic Tableaux for Non-deterministic Semantics
	1 Introduction
	2 Non-deterministic Semantics
	3 Tableau System Definition
	4 Rule Construction
	5 Soundness
	6 Completeness
	7 DNF Representations
	7.1 Canonical DNF

	8 Related Work
	8.1 Analytic Tableaux for Many-Valued Logic
	8.2 Dual Tableaux
	8.3 Canonical Calculi
	8.4 Other Calculi
	8.5 Semantic Games

	9 Conclusion
	References

	Tableaux for Free Logics with Descriptions
	1 Introduction
	2 Preliminaries
	2.1 Syntax
	2.2 Semantics

	3 Tableau Calculi
	4 Soundness and CompletenessFull Versions of the Proofs of Lemmas 3 and 4 and Propositions 1 and 2 Can Be Found in ch4IndZaw21.
	4.1 Soundness
	4.2 Completeness

	5 Related Work
	6 Conclusions
	References

	CEGAR-Tableaux: Improved Modal Satisfiability via Modal Clause-Learning and SAT
	1 Introduction
	2 Modal Clausal Tableaux
	3 SAT-solvers and the CEGAR Procedure
	3.1 Counter-Example Guided Abstraction Refinement (CEGAR)

	4 CEGAR Tableaux: Modal Clause-Learning via SAT
	4.1 Termination, Soundness and Completeness of the Strategy

	5 Implementation: Our Modal Satisfiability Tester CEGARBox
	5.1 Initialising a Trie During Normal Forming
	5.2 The Main Algorithm
	5.3 Inputs and Outputs
	5.4 Use of Satisfiability Under Unit Assumptions
	5.5 Modal Clause Learning Modifies the Modal Context at Level i

	6 Extensions to KT and S4
	7 Optimisations Which Made CEGARBox faster
	7.1 Reducing the Number of Dia-Clauses
	7.2 Memoisation of Satisfiable Assumptions
	7.3 Two Phase Caching

	8 Benchmarks and Issues with MOSAIC
	9 Experimental Results
	10 Related Work
	11 Further Work and Conclusions
	References

	Sequent Calculi
	Proof-Theory and Semantics for a Theory of Definite Descriptions
	1 Introduction
	2 A Deductive Calculus for Classical Positive Free Logic with a Binary Quantifier
	3 Consequences of the Formalisation
	4 Cut Elimination for CPFI
	5 Semantics for CPFI
	6 Soundness and Completeness
	7 Tableaux Rules
	8 Conclusion
	References

	Basing Sequent Systems on Exclusive-Or
	1 Introduction
	2 Preliminaries
	3 The Basic Systems
	4 Theorems on Strong Completeness
	5 Enhancing the Expressive Power of the System
	References

	Proof Search on Bilateralist Judgments over Non-deterministic Semantics
	1 Introduction
	2 Preliminaries
	2.1 Languages
	2.2 Two-Dimensional Consequence Relations
	2.3 Two-Dimensional Non-deterministic Matrices
	2.4 Calculi for Two-Dimensional Statements

	3 Axiomatizing Monadic []-matrices
	4 Proof Search in Two Dimensions
	5 Conclusion
	References

	From Input/Output Logics to Conditional Logics via Sequents – with Provers
	1 Introduction
	2 Input/Output Logics and Their Sequent Calculi
	3 Technical Results and Correspondence
	4 Theorem Proving
	5 Conclusion
	References

	Theorem Proving
	Towards Finding Longer Proofs
	1 Introduction
	2 Related Work
	3 The leanCoP Connection Tableau Calculus
	4 FLoP – Main Algorithm
	4.1 Reinforcement Learning Fundamentals
	4.2 Reinforcement Learning in FLoP
	4.3 Curriculum Learning
	4.4 Training Algorithm
	4.5 Implementation Details

	5 Datasets
	6 Experiments
	7 Conclusion and Future Work
	References

	lazyCoP: Lazy Paramodulation Meets Neurally Guided Search
	1 Introduction
	2 Related Work
	3 Unguided System
	3.1 Connection Tableaux
	3.2 Lazy Paramodulation
	3.3 Calculus Refinements

	4 Proof Search
	4.1 Policy-Guided Search
	4.2 Asynchronous Policy Evaluation

	5 Learned Policy
	5.1 Representing Tableaux with Actions
	5.2 Network Architecture
	5.3 Training
	5.4 Integration and Optimisation

	6 Experimental Results
	6.1 Inference Rates
	6.2 Effect of Guidance

	7 Conclusion and Future Work
	References

	AC Simplifications and Closure Redundancies in the Superposition Calculus
	1 Introduction
	2 Preliminaries
	3 Model Construction
	4 Redundancies
	5 Experimental Results
	6 Conclusion and Future Work
	References

	The Role of Entropy in Guiding a Connection Prover
	1 Introduction
	2 Background and Related Work
	2.1 Neural Feature Extraction for Guiding Theorem Provers
	2.2 Systems Guiding the leanCoP Theorem Prover
	2.3 Reinforcement Learning (RL)
	2.4 Monte Carlo Tree Search (MCTS)
	2.5 Maximum Entropy Reinforcement Learning
	2.6 Kullback-Leibler Divergence

	3 Maximum Entropy for MCTS and Theorem Proving
	3.1 Exploration and Entropy in MCTS
	3.2 Normalized Entropy
	3.3 Temperature-Based and Regularization-Based Entropy Control

	4 Entropy Regularized Neural Guidance for plCoP
	4.1 Neural Representation of the State and Inference Steps
	4.2 Training the Policy and Value Guidance for MCTS

	5 Experiments
	5.1 Datasets and Common Settings
	5.2 Experiment 1: Influence of Entropy Regularization
	5.3 Experiment 2: Relative Entropy on the Same Proof States
	5.4 Experiment 3: Order and Entropy Are Largely Sufficient
	5.5 Experiment 4: Temperature vs. Entropy Regularization
	5.6 Experiment 5: Final Large Train/Test Evaluation on Mizar40

	6 Conclusion
	References

	The nanoCoP 2.0 Connection Provers for Classical, Intuitionistic and Modal Logics
	1 Introduction
	2 Non-clausal Connection Calculi
	3 The Implementations
	3.1 Non-clausal Matrix
	3.2 nanoCoP for Classial Logic
	3.3 nanoCoP-i for Intuitionistic Logic
	3.4 nanoCoP-M for Multimodal Logics
	3.5 Proof Search Optimizations
	3.6 Proof Output

	4 Experimental Evaluation
	5 Conclusion
	References

	Eliminating Models During Model Elimination
	1 Introduction
	2 Preliminaries
	2.1 Connection Tableau Systems
	2.2 Boolean Satisfiability
	2.3 Ground Support for First-Order Reasoning
	2.4 First-Order Benchmarks

	3 Research Vehicle: SATCoP
	4 Grounding Clausal Tableaux
	4.1 Reporting Unsatisfiability
	4.2 Grounding Schemes
	4.3 SAT Solving
	4.4 A Note on Proofs

	5 Randomisation and Depth Control
	6 Model-Based Lemmata
	7 First Impressions
	8 Experimental Evaluation
	8.1 System Configurations
	8.2 Results and Discussion

	9 Conclusions and Future Directions
	9.1 A Note from the Future

	References

	Learning Theorem Proving Components
	1 Introduction: Clause Selection and Context
	2 ENIGMA and Learning Context-Based Guidance
	3 Leapfrogging
	4 Learning Reasoning Components
	5 Clustering Methods
	5.1 Clustering

	6 Evaluation
	6.1 Leapfrogging
	6.2 Splitting and Merging

	7 Conclusion
	References

	Formalized Proofs
	A Formally Verified Cut-Elimination Procedure for Linear Nested Sequents for Tense Logic
	1 Introduction
	2 Preliminaries
	2.1 A Linear Nested Sequent Calculus for Kt

	3 Encoding Formulae, Sequents and LNSs
	4 Encoding the LNSKt Calculus
	5 Encoding Derivability
	6 Proof Theoretic Properties of LNSKt
	7 Cut-Elimination via Cut-Admissibility
	7.1 Cut-Admissibility
	7.2 The Main Lemma: ``Lemma Sixteen''
	7.3 Cut-Elimination

	8 Extraction
	9 Related Work
	10 Conclusion and Future Work
	References

	Cut-Elimination for Provability Logic by Terminating Proof-Search: Formalised and Deconstructed Using Coq
	1 Introduction
	2 Various Issues with the Method Used by Brighton
	3 Preliminaries
	4 Properties Of GLS
	5 PSGLS: A Terminating Proof-Search
	6 Cut-Elimination for GLS
	7 Conclusion
	References

	Non-Wellfounded Proofs
	Complexity of a Fragment of Infinitary Action Logic with Exponential via Non-well-founded Proofs
	1 Introduction
	2 Formulation of !ACT
	3 Non-well-founded Proofs
	4 Complexity
	5 Issues with *-Elimination
	6 Concluding Remarks
	References

	Uniform Interpolation from Cyclic Proofs: The Case of Modal Mu-Calculus
	1 Introduction
	2 The Modal mu-calculus
	3 The JS proof system
	4 Uniform Interpolation
	5 Constructing the Interpolant
	6 Verifying the Interpolant
	7 Conclusion
	References

	Cyclic Hypersequent Calculi for Some Modal Logics with the Master Modality
	1 Introduction
	2 Preliminaries
	3 Infinitary and Cyclic Hypersequent Calculi
	3.1 Hypersequents and Pre-proofs
	3.2 Infinitary Proofs with Trace Condition
	3.3 Cyclic Proofs

	4 Soundness
	5 Completeness
	5.1 Completeness of HK*circ + RC for Equable C
	5.2 Completeness via (Infinitary) Proof Search

	6 Conclusion
	References

	A Focus System for the Alternation-Free -Calculus
	1 Preliminaries
	2 The Focus System
	2.1 The Proof Systems Focus and Focus
	2.2 Circular and Infinite Proofs
	2.3 Thin and Progressive Proofs

	3 Tableaux and Tableau Games
	4 Soundness
	5 Completeness
	6 Conclusion and Questions
	References

	Intuitionistic Modal Logics
	Terminating Calculi and Countermodels for Constructive Modal Logics
	1 Introduction
	2 Constructive Modal Logics and Their Semantics
	3 Sequent Calculi
	4 Refutation Calculi and Countermodel Construction
	5 Conclusion and Future Work
	References

	Nested Sequents for Intuitionistic Modal Logics via Structural Refinement
	1 Introduction
	2 Logical Preliminaries
	3 Grammar Theoretic Preliminaries
	4 Labelled Sequent Systems
	5 Structural Refinement
	6 Nested Sequent Systems
	7 Conclusion
	References

	Game Semantics for Constructive Modal Logic
	1 Introduction
	2 Background
	2.1 Constructive Modal Logic
	2.2 Modal Arenas

	3 Winning Strategies for CK
	4 Compositionality of Winning Strategies
	5 Game Semantics for Constructive Modal Logic
	5.1 Game Semantics for CD

	6 Conclusion and Future Work
	References

	The Došen Square Under Construction: A Tale of Four Modalities
	1 Introduction
	1.1 State of the Art
	1.2 Contributions

	2 The Došen Square CKD of Constructive Modalities
	3 Proof Systems for CKD
	3.1 CKD Global Reasoning: The Hilbert Calculus HCKD
	3.2 Landing at Došen Square: The Sequent Calculus GCKD

	4 Conclusion
	References

	Author Index

