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Abstract

An understanding of spatial and thermal factors, two fundamentally intertwined
elements, is essential to the health and welfare of captive reptiles; carers cannot
address one without consideration of its influence on the other. This chapter
highlights the need to recognise the many shortcomings of past practices, and
urges individuals charged with keeping reptiles to become familiar and competent
with new understandings revealed by research into the complex interplay of
spatial and thermal factors. Essential to this issue is recognition that a ‘one-
size-fits-all’ approach is never a good option. However, despite advances in our
understanding of the spatio-thermal requirements of both wild and captive
reptiles, there remains opportunity for abuse, exemplified by the highly restrictive
rack system for housing snakes. In terms of spatio-thermal requirements, the
modern, progressive reptile carer must become familiar, not only with species-
specific requirements, but also the needs of individuals, taking into account the
impact of seasonal and behavioural factors.
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13.1 Introduction

The nature of captivity places constraints on organisms. These constraints can be
multiform as the captive animal is no longer free to perform the same range of
activities and behaviours that it can within the significantly less constrained
environments experienced through living in the wild. These activities and
behaviours include feeding, interactions with conspecifics, courtship, predator
avoidance, wandering, hunting prey and, more specifically in the case of reptiles,
thermoregulation. In captivity, all these expressions of a reptile’s normal biology
must be performed within the conditional limits as established by an artificially
designed environment. In other words, every environmental need of the enclosed
reptile must be met by the captor and, thus, the onus is on the captor to be familiar
with all the species-specific requirements of the species held captive. This consider-
ation is particularly notable in the case of zoos where the opportunity to educate
exists and where some visitors not only appreciate a well-informed exhibition, but
also the opportunity to ask questions of a keeper (Tribe and Booth 2003; Packer and
Ballantyne 2010; Saunders 2013; Woods 1998; Yilmaz et al. 2017). In the case of
reptiles and any other groups of animals that are similarly confined, species-specific
knowledge may be lacking, thus knowing what is normal or abnormal can itself be a
challenge. Also, fundamentally, conditions of captivity are such that expression of a
normal or natural repertoire of behaviours probably becomes impossible; captive
environments simply lack both the space and the stimuli present in nature (Burghardt
2013). There is a myriad of requirements that must be provided within any ‘cage’,
but an enclosure ultimately serves to confine and in broad terms, this means a
restriction of spatial requirements (Gillingham 1995; Greenberg 1995; Warwick
and Steedman 1995; Gillingham and Clark 2023; Warwick 2023; Mendyk and
Augustine 2023; Warwick and Steedman 2023).

As ectotherms, reptiles will orientate their bodies or move around the spatial
environment to optimise the use of a heterothermic environment and thus achieve
their thermal requirements (Lillywhite 2023). Thermal environmental variation itself
requires space; one cannot have much temperature variation in a small area or in an
area that lacks topography. Accordingly, spatial and thermal factors are, for the most
part, inextricably linked to the needs of reptiles to fulfil their activity (and inactivity)
demands so that they may select body temperatures that enable expression of a
‘normal’ repertoire of behaviours (Gillingham 1995). The present chapter explores
spatio-thermal considerations of reptiles, highlighting both the importance of
providing or failure in providing adequate space and temperatures for captive
individuals.

13.2 Historical Approaches

Historically, determination of spatial needs and associated cage sizes largely was
based on the requirements of the most recognised repositories of exotic species—
zoological gardens. It was believed that the most effective way to maintain an
‘intimate’ relationship between the visitor and the animal being exhibited was to
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limit cage size and simulate key aspects of natural habitat (Bacon and Hallett 1981).
Thus, the development of early animal exhibits incorporated major input from
graphic designers in order to present an illusion of space and to satisfy the exhibitory
plans of the institution, as well as the convenience of the keeper. Some of these early
displays may have appeared grandiose, but in fact still provided relatively small
areas for the animals they contained. Nevertheless, such ‘diorama’ displays were
quite successful and became the standard approach in the design of enclosures at
many zoological (and museum) exhibiting worldwide (Bacon and Hallett 1981;
Insley 2007; Holmes 2009; Carter et al. 2015; Reiss 2015).

In those zoos, the size of enclosures provided to the exhibited species was also
determined or influenced by the need to prevent injury or death in wild animals that
were intent on escaping (Hediger 1950). For example, ungulate mammals would
frequently charge against cage boundaries with dire consequences and, according to
Hediger (1950), ‘A practical step to avoid this is to keep such animals in cages so
small that they are quite unable to develop sufficient dynamic energy for fatal
fractures.’ The approach was employed for varying periods that were considered
long enough to enable the animals to ‘adapt’ to imposed physical boundaries.
Following this period of adjustment, the animal could be moved to a more spacious
enclosure. However, reptiles have a long history of confinement in enclosures
(vivaria) that severely limit normal behaviours from the moment they are wild-
captured or captive-born (see Gillingham 1995). In regard to zoological exhibitions,
an early aim was to house the greatest diversity of reptile species possible, largely in
an effort to highlight variation in the animal kingdom (Benbow 2000, 2004). There
was certainly little notion of the role future zoos would play in conservation and
nature education (Hoage and Deiss 1996; Reid and Moore 2014; Minteer et al.
2018). Zoo cage size continued to be restrictive—reptile houses or exhibits would
have deviated substantially from the norm were they to contain just a few individuals
in a few extensive enclosures. That said, spatial conditions and related environmen-
tal thermal variation for privately held reptiles typically will be inferior to that of the
professional zoo. Arguably, throughout the history of reptile-keeping, evidence-
based welfare requirements have characteristically been secondary to practical
housing and spatio-thermal considerations—a situation exemplified by the inappro-
priate housing commonly provided for snakes (Warwick et al. 2019; see also
Mendyk and Warwick 2023).

However, today, more is known of the spatio-thermal requirements of reptiles. As
Warwick (1995) noted in the first edition of this volume, satisfying the spatial
requirements of reptiles involves more than just increasing the physical dimensions
of an enclosure. In the 25 years since this statement, additional research has explored
the complex interplay between spatial requirements and various aspects of a reptile’s
life history such as behaviour (including social interactions and play) and thermal
requirements (e.g. Huey 1991; Lillywhite and Gatten 1995; Burghardt 2013; Noble
et al. 2014; Rose et al. 2017; Lillywhite 2023; Gillingham and Clark 2023).

13 Spatial and Thermal Factors 419



13.3 Space Utilisation, Exploration, and Enrichment

Utilisation of space by reptiles is variable according to habits, ecological niche, and
biological need. Food search, prey biology, reproductive drive, reproductive status,
genetic transient behaviour, social pressure, climate, season, habitat state, environ-
mental neophilia (enthusiasm for novelty), and other factors influence when and how
much an animal needs or ‘wants’ to move around (Warwick 1990a, b; Kerr and Bull
2006; Warwick et al. 2013; Arena et al. 2014; Cunningham et al. 2016). In contrast
to mobile activities are ‘immobile’ activities such as, rest, sleep, brooding, hiding
from predators, sit-and-wait ambush tactics, aestivation, brumation, hibernation,
injury- or disease-related energy conservation, and other factors (Huey 1982;
Warwick and Steedman 1995; Hayes et al. 1998; Barten 2006; Funk 2006; Rossi
2006; Brasfield et al. 2008; Fleming and Skurski 2014; Wilkinson 2015). These
activity profiles may not be reliably determined or set other than by the animal itself;
thus, as expected, a human keeper can only make assessments and assumptions
regarding how much space an animal needs or when it needs it based on their level of
knowledge and understanding. Of course, such a situation is true of every captive
animal scenario. However, one must also consider that the effects of spatially related
stresses are regularly observed in captive reptiles, should one be sufficiently minded
and informed to look for them (Warwick et al. 2013; Warwick 2023).

In general, very few studies have investigated the influence of captivity on any
group of vertebrates, particularly in terms of behaviour, and it is only largely within
the past decade or so that more detailed attention has been applied to examining the
impact of captivity on the behaviour of, for example, mammals, when Ross et al.
(2009) investigated the limitations imposed by captivity on the behaviour of gorillas
(Troglodytes sp.) and chimpanzees (Pan sp.). This study focused on the way a
captive animal utilised its spatial environment, and how such investigations can
facilitate assessment of welfare. Similarly, a study of space utilisation by African
wild dogs (Lycaon pictus) determined that an understanding of how captive animals
use space can reduce the occurrence of stereotypic behaviour in captivity (Hunter
et al. 2014). These studies are based on the premise that in order to most effectively
address the impact of captivity on the welfare of individuals, one must first examine
how the occupant utilises the space of its enclosure. This concept of effective
usability was explored further by Browning and Maple (2019) who developed an
approach (‘metric’) for assessing the quality of zoo animal (pygmy marmoset,
Cebuella pygmaea) enclosures in three dimensions. Again, emphasis was placed
on providing enough space to enable the occupant to have a high degree of choice in
its proximity to conspecifics and resources such as furnishings—preferences that
may be quite variable (Browning and Maple 2019). A study of habitat selection in
the Panamanian grass anole (Anolis auratus) demonstrated the value of conspecific
association in habitat selection whereby anoles of one species chose to associate with
others of the same species rather than individuals of a related species. This behaviour
highlighted the value of conspecifics as ‘cues’ in the selection of suitable habitat
(Kiester 1979).
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Recent years have seen an increase in the number of investigations of the way
reptiles utilise their spatial environment in captivity, and how this can be altered
through provision of adequate space, increased opportunities for exploration, and
other forms of enrichment (e.g. Case et al. 2005; Bashaw et al. 2016; Spain et al.
2020). In terms of enrichment in captivity, this can be defined as providing
opportunities for an animal to express its natural behaviour in a naturalistic environ-
ment (Claxton 2011). Enrichment may include alterations to enclosure design and
various stimuli, and presentation of novel objects (Brent and Belik 1997; Wells
2009). In order to quantify the impact of enrichment and consequently, the welfare of
the captive animal, the presence (and absence) of specific behaviours is often used.
However, again, in reptiles, until recently, this area had been rarely explored (see
Warwick et al. 2013). Paucity of reptile-related research, with particular emphasis on
the lack of enriched stimulating and novel environments was recognised by
Burghardt (2013), who described such conditions as ‘controlled deprivation’
(Burghardt 1996; see also Mendyk and Augustine 2023). However, few recent
studies, have noted that species-specific enrichment requirements of some reptiles
may vary considerably (Rosier and Langkilde 2011). For example, Wheler and Fa
(1995) investigated enclosure utilisation by Round Island day geckos (Phelsuma
guentheri) and found that individual lizards utilised the environment in their
enclosures in specific ways, preferring cage furnishings and hides and avoiding
vertical glass walls. Lizard preference for specific areas within their enclosures
was also influenced by the size of individuals (Wheler and Fa 1995). A study of
captive corn snakes (Pantherophis guttatus) and chuckwallas (Sauromalus ater)
determined that structural and thermal heterogeneity was vital if the captive individ-
ual was to express a normal range of behaviours (Rose et al. 2014).

Elements of enrichment can range from variable substrates to opportunities to
explore, climb, and play (see Mendelson III et al. 2019; Mendyk and Augustine
2023; Warwick and Steedman 2023). Enclosure enrichment led to an improvement
in the welfare (expression of positive behavioural indicators) among leopard geckoes
(Eublepharis macularius) (Bashaw et al. 2016). Interestingly, in this study, greater
levels of engagement were elicited with forms of enrichment that were linked to
normal biological requirements (such as ‘thermal’ and ‘feeding’ enrichment), rather
than to forms of enrichment based on novelty such as toys. This implied that the
animals prioritised their behaviours, preferring forms of enrichment that addressed
their physiological and behavioural needs (Bashaw et al. 2016). In a study of play,
thick-toed geckos (Chondrodactylus turneri) were observed to engage in variable
manipulation of objects in a weightless environment (Barabanov et al. 2015). Spatial
memory and learning were recorded in the side-blotched lizard (Uta stansburiana)
(LaDage et al. 2012) and the eastern water skink (Eulamprus quoyii) (Qui et al.
2018), whilst complex cognitive capabilities such as problem-solving were
demonstrated in the anole (Anolis evermanni) (Leal and Powell 2012) implying
that squamates have the capability to use spatial memory when performing everyday
tasks such as defending territories and food acquisition. Studies such as these are
beginning to highlight the complexity of reptilian behaviour and decision-making,
and thus provide insight into their response to captivity and, by extrapolation, the
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need for greater investigation and understanding of the spatial requirements of
captive animals. However, again, few such investigations exist although significant
approaches to enrichment in reptile enclosures may be more prevalent than reported
in the scientific literature (Eagan 2019). In addition, due to the paucity of data for
reptiles, the mammalian response to captivity continues to inform (see Wolfensohn
et al. 2018) and be applied to the reptilian condition despite largely different sets of
physiological, behavioural, and spatial needs. At a minimum, what such research
shows is that the welfare of captive reptiles extends beyond providing ‘adequate’
space to infer the furnishing of space that promotes opportunities for interaction and
exploration.

The greater the knowledge base regarding the welfare of reptiles in captivity, the
more obvious it becomes that spatio-thermal requirements are not being adequately
met. Stress responses are often expressed as abnormal behaviours such as
hypoactivity, hyperactivity, and interactions with transparent boundaries (Warwick
1995; Warwick et al. 2013; Rose et al. 2017; Gangloff and Greenberg 2023;
Warwick 2023; Arena et al. 2023). Key investigations to propose the use of
behavioural responses to assess the welfare of captive reptiles listed over
30 behaviour-related signs of stress, over half of which were attributed to deficient
and inappropriate environments, highlighting the potential impact of restricted
spatio-thermal environments (Warwick 1990a, 1995; Warwick et al. 2013).

13.3.1 Home Ranges

It is virtually impossible to provide an enclosure that replicates an animal’s natural
habitat (Zwart 2001; Mendyk and Augustine 2023) or fully satisfies the innate (hard-
wired) psychological and behavioural requirements of a wild animal, but if captivity
is to be considered acceptable, then the appropriate size of an enclosure is one where
the desire or tendency to escape no longer exists (Warwick 1995, 2023). In reality,
this may never be attainable because captivity in and of itself (as stated earlier)
implies confinement and restriction. Furthermore, many species regularly include
naturally long-distance wanderers and others include individual population
transients whose home ranges may vary by size, habitat, sex, and reproductive status
(such as males wandering in search of females) and energy requirements (Kiester
et al. 1982; Rose 1982; Perry and Garland 2002; Sillero and Gonçalves-Seco 2014).
Here, ‘home range’ refers to the area through which an animal moves in order to
satisfy its normal requirements such as acquiring food, mates, and shelter (Powell
and Mitchell 2012). Even strategic sedentary sit and wait or ambush species, such as
alligator snapping turtles (Macrochelys temminckii) and viperid snakes that employ
caudal-luring (e.g. Cerastes vipera) are known to occupy large home ranges (Riedle
et al. 2006; Subach et al. 2009). Furthermore, seasonal wandering and significant
home range extension occur in many species in the search for mammalian prey or
mates (Gardiner et al. 2013; Mata-Silva et al. 2018), whilst proximity to den sites is a
crucial factor influencing home ranges and the distances that northern latitude snakes
will travel (Edkins et al. 2018; Shonfield et al. 2019).

422 P. C. Arena and C. Warwick



Under natural conditions, reptiles occupy space in terms of regularly traversed
home ranges. These are areas that an animal regularly roams in order to fulfil its
requirements for foraging, hunting, reproduction, basking, and other behaviours. In
the case of arboreal, semi-aquatic, aquatic, or fossorial species that climb, swim, or
burrow, respectively, such environments can be measured in three fuller dimensions.
Contrary to statements such as ‘herpetofauna’ do not move frequently (Row and
Blouin-Demers 2006), field studies indicate that reptile home ranges are commonly
extensive, and many animals regularly travel large distances (e.g. up to several
kilometres) in search of prey, mates, and shelter (Baeckens et al. 2017). Furthermore,
even these estimates of home range size are quite miniscule compared to the
transoceanic migratory behaviour of, for example, loggerhead sea turtles (Caretta
caretta) (Polovina et al. 2004; Boyle et al. 2009) and male estuarine crocodiles
(Crocodylus porosus), which are known to travel many kilometres in a single day
(Campbell et al. 2013). Table 13.1 provides examples of home range estimates for
reptiles from representative orders as determined by minimum convex polygon
method in relation to average snout to vent length.

As indicated in Table 13.1, the home ranges of even comparatively small reptiles
vastly extend beyond the dimensions of enclosures typically used to house them and
even though more modern institutions may provide enclosures that far exceed
previously acceptable norms, spatial provisions in such institutions commonly
equate to a fraction of natural home ranges. Merely providing basic presumed
environmental, physiological, behavioural, and psychological elements within an
enclosure does not negate innate, hard-wired, drivers for greater space (Warwick
1990a, 1995; Warwick et al. 2013; Warwick 2023).

A common view among reptile keepers is that because an animal’s essential needs
are met (as perceived by its caregiver), then this reduces or eliminates requirements for
them to engage in an array of normal behaviours common to their wild counterparts.
This perspective, at its roots and within a spatio-thermal context, follows the thinking
that an animal in nature essentially roams large areas because ‘it has to’ in order to
secure what it needs. Some studies have shown that spatial need is influenced by
habitat quality—what the environment provides (Christian and Waldschmidt 1984;
Perry and Garland 2002; Verwaijen and Van Damme 2008; Stellatelli et al. 2016;
Patterson 2018); thus, home ranges may be larger within poorer habitats (Perry and
Garland 2002). Theoretically, this argument suggests that if captivity has provided all
relevant requirements, corresponding drive states become redundant, and the animal
does not need and does not ‘miss’ the natural world.

If correct, an animal contained within a high-quality enclosure—i.e. one that is
abundant in terms of, for example, provisions regarding thermal range, food, water,
habitat diversity, opportunities for key normal positive behaviours, social
conspecifics where relevant, and general enrichment, ought not attempt to escape
nor even harbour a drive to do so. However, if this were true, then there would be
absolutely no need to utilise restrictive boundaries in an artificial environment,
because the occupant would simply have no interest in exploring beyond the
immediate provisions. This perception is essentially discounted by numerous obser-
vational and other evaluations concluding that, for example, many animals with
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naturally large home ranges are less able to adapt to zoo environments, resulting in
compromised welfare, often expressed as stereotyped behaviours such as pacing
(Clubb and Mason 2003).

As indicated earlier, almost all captive scenarios, from reptiles kept as pets in
private homes to those in the highest-quality zoological facilities, typically rely on
barriers to forcibly confine animals to the human perceived ‘all-providing’
conditions. Therefore, a simple test could be applied to ascertain the degree of
acceptability of enclosures to reptiles, which would be to remove all limiting barriers
from captive situations—open the cages 24/7. Of course, opening such barriers
would likely result in most, if not all, of the occupants exiting the areas. Accordingly,
there is more to the issue of spatio-environmental needs than meets the eye of the

Table 13.1 Examples of home range estimates for reptiles from representative orders as deter-
mined by minimum convex polygon method in relation to average snout to vent length (SVL)

Order
Common
name Scientific name

SVL
(average)

Home range
estimate Source

Testudines Green turtle Chelonia
mydas

90 cm 1662 ha Seminoff et al.
(2002)

Red-eared
slider

Trachemys
scripta

21 cm 23.35 ha Slavenko et al.
(2016)

Gopher
tortoise

Gopherus
polyphemus

28 cm 3.2 ha
(m)a1.24 ha
(f)a

Castellon et al.
(2018)

Crocodylia Nile
crocodile

Crocodylus
niloticus

410 cm 2200.7 ha
(m)

Calverley and
Downs (2015)

Estuarine
crocodile

Crocodylus
porosus

700 cm b23.9 ha (m)
5.9 ha (f)

Brien et al.
(2008)

Lacertilia Round Island
day gecko

Phelsuma
guentheri

12 cm 73 m2 (m)
31 m2 (f)

Gerner (2008)

Australian
sleepy lizard

Tiliqua rugosa 35 cm 4 ha Bull and Freake
(1999)

Black-headed
monitor

Varanus tristis 70 cm 40.3 ha (m)
3.7 ha (f)

Thompson
et al. (1999)

Komodo
dragon

Varanus
komodoensis

300 cm 278–530 ha Ciofi et al.
(2007)

Serpentes Stephens’
banded snake

Hoplocephalus
stephensii

100 cm 20.2 ha (m)
5.4 ha (f)

Fitzgerald et al.
(2002)

Milk snake Lampropeltis
triangulum

150 cm 24 ha Row and
Blouin-Demers
(2006)

Eastern
indigo snake

Drymarchon
couperi

220 cm 201.7 (m)
75.6 (f)

Breininger et al.
(2011)

South
western
carpet python

Morelia spilota
imbricata

230 cm 17.6 ha Pearson et al.
(2005)

m male, f female
aData for scrub habitat
bData for late dry/mid-wet season
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caregiver’s belief that basic provisions negate need for space. Indeed, as previously
stated, it is a common phenomenon among animals that activity patterns and home
range use are significantly influenced by hard-wired drive states (whether for
additional space, novel territory, reproduction, and other factors), as well as the
biological need to control their own space (Dawkins 1990; Broom 1991; Owen et al.
2005; Ross 2006; Morgan and Tromborg 2007; Alligood and Leighty 2015;
Kroshko et al. 2016; see also Warwick 2023), and these influences are not eliminated
by ‘abundant’ captive provisions.

The evidence regarding home ranges stands contrary to the over-simplified
assumptions by many (in particular hobbyist) herpetologists who wrongly claim
(and frequently report in online reptile-keeping forums) that reptiles are stressed or
‘agoraphobic’ in open spaces on the basis that they may seek shelter or cover (see
Mendyk and Warwick 2023). Indeed, the belief that agoraphobia (which is a human
anxiety disorder) exists in reptiles is used as frequent justification for overly and
severely restrictive enclosures (Warwick et al. 2013). Few studies have examined the
impact of confinement on the welfare of reptiles. However, one such investigation of
ball pythons (Python regius) found a significant rise in plasma corticosterone (i.e. a
stress response) when animals were confined to a narrow container (a PVC—
polyvinyl chloride) tube that prevented the snake from turning around) (Kreger
and Mench 1993). Similarly, reptiles that are restrained in collection bags show
increases in corticosterone levels (Tyrell 1998; Mathies et al. 2001). Although these
are extreme examples of reduced space, they demonstrate that an elevated stress
response is likely if a confined reptile (or likely, any other animal) is restricted to the
extent that it is unable to express normal behaviours and exercise control over its
environment.

In snakes, vindication for the approach of adopting highly restrictive enclosures is
partly fueled by a long held erroneous belief that snakes do not need to stretch out,
making them the only captive vertebrates denied by flawed information the ability to
straighten their bodies at will (Warwick et al. 2019; Mendyk and Warwick 2023).
Moreover, snakes regularly adopt near rectilinear postures during daily activity and
this need to fully stretch should be a prime consideration in both the design and
enrichment of enclosures (Warwick 1995; Warwick et al. 2018a, 2019). In the case
of semi-arboreal and arboreal species, this requirement applies to both horizontal and
vertical dimensions. The need to wander, explore, and problem solve are no longer
traits of endothermic vertebrates alone (see Warwick 2023). It would perhaps be
more honest of reptile keepers to acknowledge that typical vivaria are designed for
human convenience rather than for the welfare of their charges.

13.3.2 Rack Systems

Considerations (and the lack thereof) regarding the spatio-thermal requirements of
reptiles are arguably exemplified in reference to the rack systems used to house large
numbers of reptiles (commonly snakes) within a limited area (Warwick et al. 2019;
Cadenas and Martínez-Silvestre 2020). Rack systems, which effectively disregard
basic principles of reptile biology and responsible husbandry, typically involve
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individual drawers or tubs, each commonly containing an individual snake. In many
cases, a single rack of uniformly sized containers will house snakes of different sizes,
indicative of the application of a naïve standardisation of care in regard to species-
specific or indeed ontogenetic variation in needs.

The extreme spatial restriction of rack systems results in a myriad of basic
husbandry deficiencies. Opportunities for important and effective thermal selection
by individuals according to variable physiological need simply do not exist. Instead,
occupants are subjected to a largely uniform temperature that is governed and
influenced by the physical design of the system, the position of the tub, and the
estimates of the manager (Davis 2008). In many cases, the complete rack system is
maintained at or close to the ambient temperature of the room with little variation;
and both tropical and temperate species may be housed in the same room and subject
to the same thermal regime (Davis 2008). Constant temperatures across all
enclosures within a single facility or room are not only poor practice, but may result
in stress with both short- and long-term welfare issues (Warwick et al. 2018a;
Gillingham and Clark 2023). Although localised heating in the form of heat pads,
tapes, wires, or probes may be installed, spatial restriction simply does not provide
the animals with opportunities to willfully and diversely thermoregulate in order to
match normal physiological variation or requirements (Arena and Warwick 1995;
Gillingham 1995; Mendyk 2018).

Regardless of how heat is provided for the rack system, the result is thermal
entrapment, which likely serves to compromise physiological processes within the
individual. A recent study concerning the spatial requirements of snakes itemised
24 signs of captivity-stress (including interactions with transparent boundaries, open
mouth breathing and co-occupant aggression), and 22 signs of clinical illness
(including rostral abrasions, dystocia, and ventral contact dermatitis) associated
with snakes confined to small environments (Warwick et al. 2019).

13.3.3 Space Utilisation: Sociality and Size

For many vertebrates (including fishes) the carrying capacity (stocking density) of
the enclosure is often determined by its size or volume. However, as we have
discussed, the physical dimensions of an enclosure do not necessarily imply holistic
utilisation of every surface or furnishing by the occupant. In addition to satisfying
the various aspects of a reptile’s biology, meeting the spatial requirements of captive
reptiles demands an understanding that these requirements may change as
investigations reveal more of the complex nature of reptilian life histories. One
such factor is sociality and the housing of individuals with conspecifics (see Doody
2023).

Members of the genus Egernia (Family, Scincidae) include highly social species
of lizards that regularly form aggregations such as family groups (Duffield and Bull
2002; Chapple 2003; Masters and Shine 2003; Gardner et al. 2007). In some species
such as Cunningham’s skink (Egernia cunninghami), which occupies rocky
habitat, family groups are common and individual lizards will selectively choose
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specific sites where they defaecate (Chapple 2003). These latrines are not utilised for
any other purpose, but specifically as sites for ‘scat piles’, which may act as spatial
boundaries or social markers. For example, the pygmy blue-tongued skink (Tiliqua
adelaidensis) also uses scat placement as a form of chemosensory marker or social
signal (Bull et al. 1999, 2000; Fenner and Bull 2010) whilst scat placement by the
related Australian sleepy lizard (Tiliqua rugosa) appears to have little social value
(Fenner et al. 2015). In captivity, although the skink (E. cunninghami) may be kept
in groups in order to emulate their natural social aggregations, whenever enclosure
dimensions are provided, they are rarely of a dimension sufficient for latrines. For
example, guidelines provided by Walker (2016) suggested that four adult skinks
(E. cunninghami) can be maintained in an indoor enclosure with a floor area of
approximately 1 m2; dramatically little space for a reptile that regularly utilises rocky
outcrops and crevices and with recorded movements of individuals in the wild of up
to approximately 70 m (Barwick 1965; Stow et al. 2001).

As such, severe spatial constraints may result in a form of social dissonance
where animals are unable to interpret chemosensory cues or are not provided with
enough room to exercise appropriate behavioural responses. Bernheim et al. (2020)
found that restrictive captive conditions had a negative impact on reproductive
behaviours of spur-thighed tortoises (Testudo graeca), proposing that female
tortoises failed to emit the chemical cues necessary for initiation of precopulatory
behaviour in males. At the very least, a more spacious, semi-natural enclosure was
necessary for normal reproductive behaviour in this species (Bernheim et al. 2020).
Furthermore, Mancera et al. (2017) showed that blue-tongued skinks (Tiliqua
scincoides) would try to escape environmental stressors such as noise and cold
and, again, smaller enclosures would restrict expression of appropriate stress avoid-
ance behaviour.

It would be erroneous to assume that smaller species and individuals do not
always require as much space as larger occupants (Warwick 1995). Smaller
individuals may be regularly more active during hunting because of their highly
mobile invertebrate prey as well as the exploratory behaviour necessary to locate
them; also, smaller individuals feed more frequently and engage in greater predator
avoidance and conspecific interactions (see Warwick 1995, 2023). Accordingly, the
spatial needs of smaller species and individuals may be underestimated.

It is possible that larger species and individuals must overcome constraints of
body size (such as frictional forces) when they are required to hunt or escape. Indeed,
it may be energetically costly to accelerate a larger body mass (Higham 2019).
However, one must be cautious when attempting to apply generalisations regarding
the influence of size on the physiological performance and spatial demands across
and within taxonomic groups. For example, within the genus Varanus (family
Varanidae) (that includes species that vary in size of almost four orders of magni-
tude), larger species tend to be foragers whilst smaller species tend to adopt a sit-and-
wait feeding strategy (Clemente 2006; Clemente et al. 2009). Heavier individuals
were also found to have the fastest speed and acceleration although both factors were
related to the topography with faster species occurring within open habitat. The form
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of substrate may also have an influence on performance. For example, Glasheen and
McMahon (1996) found that smaller individual basilisks (Basiliscus basiliscus) were
able to generate greater relative forces that enable them to more effectively run
across water than larger conspecifics. In a similar fashion, hatchling green iguanas
(Iguana iguana) have been observed to ‘run bipedally’ across water, whereas adults
swim (Burghardt et al. 1977). Similar reasoning applies when a lizard is moving
quickly across a surface such as soft sand—larger individuals cannot generate the
force required to oppose the greater gravitational forces and move themselves
efficiently over these surfaces. However, again, within the varanids, substrate type
was shown to have no effect on either speed or acceleration (Clemente 2006).

Accordingly, the impact of body size on spatially associated behaviour may be
quite complex and is also influenced by foraging mode; for example, a sit and wait
predator may not have to move far to acquire prey. Thus, in principle, some sit and
wait predators can afford appropriate increases in body size and reproductive state
(in most cases, pregnant or gravid females are less active than non-gravid
individuals; see Schuett et al. 2013). Therefore, appropriate and adequate space
may in fact, be of proportionately greater importance for smaller species and
individuals if they are to be permitted to express a ‘normal’ repertoire of locomotor
behaviours.

13.3.4 Overcrowding

Overcrowding may manifest overtly or covertly. Overt overcrowding relates to the
plain physically excessive numbers of animals in a given space (Warwick et al.
2013, 2018a; Arena et al. 2014). Overt overcrowding is relatively easy to identify
and may result in, for example, crushing injuries, asphyxiation, co-occupant aggres-
sion, and competition for food and basking sites. Covert (or crypto) overcrowding
may not be as apparent and relates to the inability of all animals in an enclosure to
access any one of its features at any one time (Warwick et al. 2013, 2018a; Arena
et al. 2014). For example, larger, less populated, enclosures may not appear
overcrowded, but may not allow free access for all occupants to use a water container
or basking site at one time (i.e. too few or disproportionately small provisions for the
number of animals); causing an enclosure to be covertly overcrowded. Both overt
and covert overcrowding are often seen at intensive farming facilities of sea turtles
(Arena et al. 2014) and most likely to occur in the freshwater turtle farming schemes
of China where large quantities of turtles are raised in a multibillion dollar industry,
supplying food, medicinal products, and the pet trade (Haitao et al. 2008) and
crocodiles (Tosun 2013), when the carrying capacity of an enclosure results in
reptiles scrambling or perching on top of each other to access a radiant heat source
in order to satisfy thermoregulatory requirements. However, the problem is also
observed in zoos (see Almazan et al. 2005), laboratories, the pet trade, and private
homes where multiple animals share single poorly conceived environments. As a
final point here, when housing more than a single animal, keepers must be familiar
with life history traits of captive species, in particular, with managing sex ratios.
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Male reptiles, for example, copperhead snakes (Agkistrodon contortrix) in the wild
may seasonally engage in agonistic rivalry behaviours towards other males (Schuett
1996; see also Doody 2023), and should not be housed together in captivity (Whiting
and Miles 2019). This principle also applies to females that may display aggression
towards other females (Oonincx and van Leeuwen 2017; Whiting and Miles 2019).

13.3.5 How Much Space Is Enough Space?

It is probable that captive reptiles do not and cannot have enough space to meet their
inherently natural and normal needs. Although space is often emphasised as a
requirement (e.g. in the housing of tortoises (Gopherus spp., Testudo spp.,
Agronemys spp., Centrochelys spp. and box turtles Terrapene spp.)—see Boyer
and Boyer 2019), spatial considerations for housing reptiles (particularly indoors)
are likely to be governed by keeper convenience rather than species-specific
behaviour. Reptiles are commonly maintained in overly restrictive permanent
enclosures, but many species are often sold as novelty items along with small
housing kits that, whilst satisfying market appeal, impose a severely restrictive
environment for the occupant (Warwick et al. 2018b). Of course, there are situations
when a small enclosure may be acceptable and indeed, unavoidable. This includes
short-term confinement of reptiles, such as for essential clinical, quarantine, or
transportation purposes (Warwick 1990a, b; Warwick and Steedman 1995; Warwick
et al. 2019), assuming such confinement is for the benefit of the animal. Minimally,
space should provide opportunities for expression of an appropriate range of normal
behaviours; access to an adequate range of thermal zones; ability to fully extend
bodies and travel in any dimension; ability to accelerate, decelerate, and stop without
injuriously impacting boundaries; ability to make rapid descents without injury and
conditions where spatially related physical injuries and diseases or psycho-
behavioural stress signs are absent.

Where appropriate, enrichment and hiding sites should be provided so that an
alarmed or otherwise stressed animal may take refuge without the need to resort to
uncontrolled flight. An observational study of the spatial requirements of 65 species
of snakes found 31 species regularly stretched to full length and adopted rectilinear
or near rectilinear postures (Warwick et al. 2019). Thus, snakes, which have long
been wrongly assigned especially diminutive enclosures, should, as an absolute
minimum, be able to fully extend their bodies within an enclosure when they choose
to do so.

Warwick et al. (2018a) proposed a method of determining absolute minimal
spatial provision for captive animal (including reptile) enclosure sizes in commercial
situations. This process involves visualising the animal in a coiled or rolled ‘ball
like’ state and multiplying this estimated dimension by a factor of 10. For arboreal or
semi-arboreal species, this same principle would apply to the vertical enclosure
dimension. For small species or individuals, a proposed minimum primary dimen-
sion was 100 cm with all other dimensions no less than 40% of this (Warwick et al.
2018a). However, this algorithm is intended to indicate absolute minimum enclosure
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dimension primarily for commercial establishments in order to improve commonly
overly minimalistic approaches utilised by those sectors. It should not be confused
with aspirational and progressive approaches to accommodation including
requirements previously discussed in this chapter.

Providing meaningful space infers more than marginally expanding small
quarters; it implies allowing substantial room, in association with naturalistic
(or natural) conditions, so that in most cases, the desire or attempt to escape is not
created. The spatial requirements of some reptiles (for example, those that exhibit
migratory tendencies) may never be fulfilled, even with areas measured in hectares
or kilometres. Nevertheless, if allowing sufficient room to cater for animal well-
being seems impossible, then it is their very presence in captivity that requires
review.

13.4 Thermal Considerations

It could be argued that no organism is entirely independent of ambient temperatures,
and as stated earlier in this chapter, for ectotherms, ambient temperature and
individual thermoregulation are key factors defining and governing the lives of
reptiles (Fernandez et al. 2011; de Andrade 2016; Nowakowski et al. 2018; Taylor
et al. 2020). Accordingly, the need for reptiles to express thermal choices is
fundamental to their health and welfare (Heatwole and Taylor 1987; Arena and
Warwick 1995; Lillywhite and Gatten 1995; Lillywhite 2023). For the majority of
reptiles, temperature is regulated primarily through behavioural means, such as
shuttling between warmer and cooler areas and to a minor extent, through physio-
logical processes (Sears et al. 2016).

Within this general scheme of ectothermy, most reptiles may be classified as
either heliotherms (their prime source of heat being derived from sun-basking) or
thigmotherms (their prime source of heat is derived from direct conduction with
warm surfaces) (Carter et al. 2012; Garcia-Porta et al. 2019; Lillywhite 2023).
However, reptiles, at least diurnal species, likely utilise a combination of these
approaches to satisfy their thermoregulatory requirements (Fei et al. 2012), selecting
a range of temperatures at any point in their activity cycles in response to specific
needs whether on land or, in the case of aquatic and semi-aquatic species, in water.
For example, some species of freshwater turtles are able to maintain relatively stable
body temperatures via semi-aquatic basking (exposing the carapace to the air whilst
submerged) or by aquatic basking (altering their position in response to the vertical
temperature stratification within water bodies) (Chessman 2019).

In a similar fashion, sea snakes thermoregulate by ‘tracking’ appropriate
temperatures within the water column, whilst the latter, when on land, utilise
strategies such as basking and kleptothermy (stealing heat) by sharing burrows
with seabirds (Brischoux et al. 2009; Heatwole et al. 2012). The latter behaviour
has also been recorded for the tuatara (Sphenodon punctatus) (Corkery et al. 2018).
In terms of habitat selection, a study of the thermoregulatory behaviour of three
species of sympatric Mediterranean lizards (Podarcis spp.) found that individuals
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were able to maintain their preferred body temperatures within narrow limits by
moving between microhabitats (patches) of variable thermal quality (Sagonas et al.
2017). Sears et al. (2016) also highlighted the importance of the spatial distribution
of ‘thermal microclimates’ in the regulation of body temperature in spiny-tailed
lizards (Sceloporus jarrovi).

Key to determinations of this thermal heterogeneity has been the use of physical
models in establishing operative temperatures—the temperature to which a
non-metabolising object would equilibrate in a particular environment (Bakken
and Gates 1975). To determine operative body temperature, various physical models
are used to approximate the size, shape, and reflectivity of live animals (Shine and
Kearney 2001; Seebacher et al. 2003; Tracy et al. 2007). These predictions take into
account heat exchange involving radiation, conduction, and convection (Shine and
Kearney 2001).

In captivity, spatial limitations certainly act to reduce this thermal ‘landscape’ and
thus compromise the ability to effectively thermoregulate. As mentioned earlier, the
spatial and thermal environments are inextricably linked, and one cannot have much
temperature variation if there is little space and reduced structural heterogeneity. In
nature, the thermal requirements of a basking reptile in the wild (e.g. heliothermic
lizard) are achieved through a combination of modes of heat transfer, all of which
would be influenced, not only by the nature and temperature of the primary heat
source, but also by the physical nature of the surrounding environment, which acts to
provide secondary sources of heat (Angilletta 2009; Kearney et al. 2009; Battles and
Kolbe 2018; Battles et al. 2018).

13.4.1 Thermal Gradients and Zones

Contrary to popular claims or aspirations (as evident through current practices in
reptile-keeping and fueled by arbitrary husbandry practices; see Mendyk and
Warwick 2023; Warwick et al. 2017), it is practically impossible in most captive
situations to provide thermal heterogeneity that even approximately matches natural
thermal conditions, especially within small enclosures. Even where larger
environments are involved, misinterpretation or misjudgement of space versus
thermal heterogeneity often arises from presumptions that total linear length
(extreme point-to-point within an enclosure) temperature variation provides mean-
ingful variation, whereas total variation in some larger enclosures may register
temperature differences of, for example, 15 �C (which may theoretically suit some
species), actual usable thermal options (the important feature of gradation) may be
diminutive or practically non-existent. Thermal gradation zones (i.e. thermally dis-
tinct and behaviourally relevant useable areas of space) infer that each zone is of
adequate size to enable one or all of the occupants, at any single time of their
choosing, to occupy that zone. Each zone must, therefore, offer a temperature
relative to the next higher or lower temperature zone. Thus, a gradient variation of
15 �C may actually include micro-zones of incremental changes that singly are too
small to physically accommodate an individual for optimal thermoregulation.
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Accordingly, multi-zone thermal environments provide for animals to occupy an
entire region of an enclosure that offers important thermal variation, and all zones
ought to be of sufficient size and enrichment complexity to accommodate normal
behaviour, indeed to encourage normal behaviour. This zonal gradation requires
significant space—for example, as proposed here, five thermal gradation zones may
require at least five square metres of ground area, which may provide essential
thermal conditions for smaller individuals less than 1 m in length (as determined by
the range of desired temperatures and intensity/form of the heat source).

Numerous studies have demonstrated the complexity of temperature selection in
reptiles. For example, ring-necked snakes (Diadophis punctatus) will select
temperatures 3 �C higher than their usual preferred temperature when they share
sites in aggregations of conspecifics, whereas solitary snakes prefer sites where the
temperature is similar to their usual preferred body temperature (Cox et al. 2018).
Some species of python are able to metabolically raise their body temperature during
incubation of eggs (facultative thermogenesis) (Harlow and Grigg 1984;
Stahlschmidt et al. 2011; Brashears and DeNardo 2015), and other reptiles, for
example, leatherback turtles (Dermochelys coriacea) (Bostrom et al. 2010) and
tegu lizards (Salvator merianae) (Tattersall et al. 2016), possess limited but distinct
endothermal capacity. Also, reproductive state can influence thermal preferences in
reptiles, and reproductive success can be dependent on temperature. For example,
oviparous species such as the spiny lizard (Tropidurus spinulosus) will select higher
temperatures when gravid (López et al. 2018). The intensity of courtship in male
red-sided garter snakes (Thamnophis sirtalis parietalis) has been shown to be
directly related to the length of cold temperature dormancy periods (Krohmer 2004).

Finally, it is well known that temperature has a profound effect on reptilian
digestion (Plasman et al. 2019) and reptiles will select higher body temperatures
when fed than when unfed (Regal 1966; Lang 1979; Sievert 1989). Studies such as
these have clear implications for captive animals and require due to consideration of
whether animals are housed individually or with conspecifics in addition to the
provision of appropriate retreats, refugia, and basking sites (these may include
appropriate semi-aquatic sites and sandbanks in the case of turtles and crocodiles).

Despite recognition of the importance of temperature as a key factor governing
the lives of reptiles, in captivity, major transgressions of this basic principle occur,
leading to failure to identify suboptimal or even detrimental conditions. For exam-
ple, one phenomenon seen in captive reptiles involves ‘hyperbasking’, which is a
state where individual reptiles spend excessive portions of their daily activity
budgets basking (Warwick 1995; Warwick et al. 2013). Essentially, hyperbasking
typically occurs in several situations, the most common being when a heat source
does not provide sufficient heat for an animal to elevate its body temperature to a
desired level (Warwick et al. 2013; Benn et al. 2019). Another scenario concerns
large individuals in environments where heat sources do not adequately radiate over
the animal’s body. In nature, radiant sources (such as the sun) are general and thus
can, where required, heat the whole animal. In captivity, heat sources (such as lamps)
often can warm only part of an (especially large) animal causing it to prolong
basking in an endeavour to elevate the temperature of its entire body. However,
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not uncommonly in nature, reptiles will partially expose themselves to sunlight,
i.e. not their entire bodies (Heath 1964; Seebacher 1999; Gibson et al. 2015; Black
et al. 2019).

The logical conclusion from this behaviour is that thermal zones in captive
situations should include both areas where the animal can exposure its entire body
to heat resources within the thermal zone as well as areas where heat within the zone
is more patchy—a ‘thermal mosaic’, enabling selective heating of particular areas of
the body. A further scenario is when an entire thermal zone represents the only
acceptable (even if suboptimal) environmental temperature in an enclosure, thus the
animal occupies that zone for prolonged periods (Warwick 1990a, 1995). Reptiles
may also manifest behavioural fever (elevation of body temperature due to stress or
disease) (Kluger 1979; Frye 1991; Cabanac and Gosselin 1993; Cabanac and
Bernieri 2000; Warwick et al. 2013; Rakus et al. 2017).

‘Hyperbasking’may also occur where an animal unsuccessfully attempts to achieve
a higher target temperature, which could incur important reductions in immune
competence and homeostasis. Hyperbasking is extremely common in poor conditions
of captivity, and seems largely unrecognised by keepers. Many may take for granted
seeing reptiles basking for long periods—perhaps on the false presumption that such
behaviour is always normal or healthy. However, hyperbasking is now recognised as
abnormal and a form of maladaptation, rather than normal thermoregulatory behaviour
(Warwick et al. 2013; Mendyk 2018; Warwick 2023). Accordingly, all forms of
hyperbasking may be considered as negative thermoregulatory compensation
behaviours (Warwick et al. 2013; Warwick 2023).

Thermal needs not only vary in response to physiological requirements (e.g. post
feeding), but also seasonally. Here, knowledge of behaviour in the wild becomes
crucial to understanding the requirements of reptiles in captivity. Many reptiles will
experience seasonal periods of reduced activity, in response to fewer natural
resources and metabolic conservatism or as part of their reproductive strategy
(e.g. post mating, when there is no longer a need to seek out potential mates) (Bull
et al. 1991; Christian et al. 1999; Seebacher 2005; Berg et al. 2017). At these times,
provision must be made to enable the captive individual to meet its thermoregulatory
requirements. Therefore, adequate space is needed so that thermal inputs can be
adjusted—there must be enough room provided to enable the individual to escape
heat if required, and this may include the provision of sufficient and appropriate
substrate to enable an animal to bury itself or seek other suitable seclusion.

13.4.2 Subtle Thermal Changes May Be Critical

It is widely accepted that subtle differences in thermal conditions can influence a
variety of physiological and developmental phenomena in reptiles. For example,
immune competence is closely linked to temperature and physiological state, which
can result in protective behavioural fever (e.g. Kluger 1979; Frye 1991) or alterna-
tively, disease-associated voluntary hypothermia (Warwick 1991). Also, in species
that exhibit temperature-dependent sex-determination, ambient temperature
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variation of a few degrees can have a pivotal influence on the sex of offspring
(Mitchell and Janzen 2010, 2019; Singh et al. 2020). Therefore, thermal
environments require gross and subtle variations in order to provide reptiles with
essential temperatures for normal life. Furthermore, the conceptual landscape and
horizon for these gross and subtle variations are extensive and arguably ought to
include relevance to species-specificity, season, physiological state, size, stressors,
and diet—each of which requires multiple considerations. These issues highlight the
need for a detailed understanding of spatio-thermal requirements of reptiles and for
the necessary provision of a wide range of temperatures and multiple thermal zones
extending beyond the commonly narrow limits based on presumed preferred body
temperatures.

13.5 Animal Welfare Conclusions

Despite growing interest in the welfare of captive reptiles, spatial and thermal
considerations for these animals continue to fail to meet biological norms. Whilst
there may appear to be progressive provision of recommended standards and
guidelines for husbandry, in practical terms, much of this information is not
evidence-based, and cannot satisfy all spatio-thermal criteria. Relevantly, when
one drills-down into the rationale and ‘evidence-base’ for both claims and common
practices that promote or result in reptiles being confined to their typical spatially
minimal vivaria, one quickly discovers a paradigm devoid of scientific merit.

Furthermore, regardless of increasing understanding of spatio-thermal
requirements for reptiles, the multimodal influence of space and temperature (and
indeed, water—Kearney et al. 2018), and the value of enrichment in improving the
welfare of captive reptiles (Londoño et al. 2018), there remains an ongoing tendency
among some to disregard important welfare biology—perhaps exemplified by the
impoverished constraints of the snake rack system (see Warwick et al. 2019;
Cadenas and Martínez-Silvestre 2020). In whatever form, smaller spaces offer
fewer opportunities to provide the habitat variation and essential features important
to overall health and welfare, and likely directly impose specific stressors (Martínez-
Silvestre 2014). Thus, a paradigm shift towards consistently providing larger
environments should be a benchmark of best practice. Larger, well-designed
enclosures with known thermal gradient mosaics may also offer greater
opportunities for understanding species-specific spatio-thermal requirements. For
an ectothermic vertebrate, spatial provisions and the physical nature of an enclosure
must aspire to allow the animal to manifest its daily and seasonal cycles of preferred
body temperatures across a diversity of relevant contexts.

Reptiles may be nocturnal, diurnal, or crepuscular; tropical or temperate; fossorial
or arboreal; terrestrial, semi-aquatic, or aquatic with preference for habitats from the
topographically very barren to structurally complex with an abundance of retreats.
Meeting the spatio-thermal requirements for this highly variable class of animals is
particularly difficult given that the biological needs of a large number of species
from this group remain poorly understood or investigated (Oonincx and van
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Leeuwen 2017). Without this knowledge, it is impossible to confidently provide for
spatio-thermal issues in the context of the health and welfare of captive reptiles.
However, home range studies demonstrate that reptiles are considerably, often
dramatically, more active than frequently presupposed, and there are no good
reasons to believe that the wide spaces of nature are not relevant to captive reptile
welfare. Furthermore, even with the promise of enrichment, natural behavioural
responses cannot be expressed if spatio-thermal requirements are not adequately
addressed, and moreover we can be confident that there are many more important
spatio-thermal needs than we currently understand.

Regardless of normal sedentary or nomadic traits, animals in nature move around
expansive habitats in search and location of appealing environments, and this
activity may be regular. Within captivity, the environment is typically predetermined
and set, not by climate or natural features, but by characteristics perceived relevant
by human custodians. Realistically, the chances are remote that conditions being
imposed would match the gross and subtle influences driven by nature. As a result,
captive reptiles are forcibly confined and restricted to environments that they would
unlikely freely select.

Captivity may be most aptly considered as a situation where animals are effec-
tively trapped, rather than accommodated. Options for an individual animal to select
its normal preferences for self-maintenance and well-being are largely removed by
its presence in captivity. As captives isolated from normal contextualised regulatory
activities, reptiles are fundamentally dependent on the knowledge and practices of
their keepers. Accordingly, keepers have an overriding obligation to address all of
their charge’s positive needs regardless of inconvenience to the manager or to refrain
from holding reptiles in captivity.
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