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Abstract. The problem of determining the side regions of dynamic stability of a
rectangular plate, the material of which obeys the linear creep law, is considered.
The solution of the differential equation of vibrations of a plate loaded with con-
stant and variable periodic loads in the plane of the plate is presented as a series
with separated variables, which satisfies the conditions for fixing the plate. As a
result of using the Bubnov-Galerkin method, differential equations of the third
order with variable periodic coefficients are obtained for finding functions that
depend on time. To construct even domains of dynamic instability, a solution in
the form of a trigonometric series was used. As a result, a system of equations
was compiled for the coefficients of the series. To calculate the even regions of
instability of the plate, an equation of critical frequencies was obtained in the form
of a system determinant. This equation allows us to construct the boundaries of
the regions of instability. The study of the influence of the relaxation time and the
ratio of long-term and instantaneous moduli of elasticity on the position of the
second region of dynamic instability has been carried out.
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1 Problem Setting

We load a rectangular plate in its plane with variable compressive forces evenly
distributed along the edges

Nx = Nx0 + Nxt cosθt, Ny = Ny0 + Nyt cosθt, (1)

In [1] the problemoffinding side regions of dynamic instability for a platewas solved,
the material of which obeyed the hereditary law of deformation. There are materials that
obey other laws of viscoelasticity used in the work [2–5]. In this work, we will describe
the properties of the material by a linear creep law, which for a plane stress state has the
form [6]:

σx + nσ̇x = H
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τxy + nτ̇xy = H

2(1 + ν)
γxy + En

2(1 + ν)
γ̇xy, (2)

where n is the relaxation time, H is the long-term modulus of elasticity, E is the
instantaneous modulus of elasticity.

The differential equation of vibrations of a plate, the material properties of which
are described by law Eq. (2), has the form [7]:
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where D = Eh3

12(1−ν2)
- instantaneous cylindrical stiffness of the plate.

The article [7] considered the problem of finding the boundaries of the regions of
instability, forwhichEq. (3) has periodic solutionswith a period of 2T, including themain
regions of dynamic instability. In this paper, we consider the problem of finding solutions
with period T. This will allow us to construct even regions of dynamic instability.

2 Solution Technique

The solution to Eq. (3) kolebani� plactiny will be sought by the Bubnov-Galerkin
method, separating the variables in the form [8]:

w =
∑

fi(t)Xi(x)Yi(y) (4)

where fi(t) - sought time functions, Xi(x) and Yi(y)- functions that satisfy the boundary
conditions along the edges of the rectangular contour with respect to w. Substituting the
solution in the form of a series with separated variables Eq. (4) into Eq. (3) of the plate
vibrations and using the Bubnov-Galerkin method, we obtain differential equations with
variable coefficients, containing derivatives of the third order in time t:

...
f + 1

n
f̈ + �2(1 − 2μ cosθt)ḟ + �

n

2

(ξ − 2μ cosθt + 2μnθ sinθt)f = 0. (5)

where� is the frequency of natural vibrations of a plate loadedwith constant components
of longitudinal forces Nx0 and Ny0, μμ - excitation factor, ξ - dimensionless parameter
depending on the ratio of instantaneous and long-term elastic modulus;

�2 = ω2
(
1 − Nx0N2∗ + Ny0N1∗

N1∗N2∗

)
,

μ = 1

2
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, ξ =
H
E N1∗N2∗ − Nx0N2∗ − Ny0N1∗
N1∗N2∗ − Nx0N2∗ − Ny0N1∗
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N1∗ and N2∗ - critical values of efforts Nx0 and Ny0 at their independent static action, ω-
natural vibration frequency of an unloaded plate,

N1∗ = I1
I3
D, N2∗ = I1

I4
D,
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In this problem, it is necessary to introduce the dimensionless time τ = θt. Then
Eq. (5) for the time-dependent function will take the form:

f ′′′ + 1

nθ
f ′′ + �2

θ2
(1 − 2μcosτ)f ′ + �2

nθ2
(ξ − 2μ cos τ + 2μnθ sin τ)f = 0. (6)

where the prime denotes the derivative with respect to the dimensionless time τ. There
are four dimensionless coefficients in the equationμ, ξ, α = 1

nθ ,φ = �2

θ2
. The solution of

Eq. (6) for the function f (t) will depend on the values of these coefficients. Note that these
equations have unboundedly increasing solutions for some ratios of these coefficients,
which occupy entire regions on the parameter planeμ, θ

2� . One of the central tasks of the
theory of dynamic stability is to determine the position of regions of dynamic instability
[8]. Regions of unboundedly increasing solutions are separated from stability regions
by periodic solutions with periods T and 2T. Two solutions of the same period limit the
region of instability, two solutions of different periods - stability area. Questions related
to the determination of regions of dynamic instability with a period of 2T, including the
main region, are considered in the work [7]. We obtain even stability regions if we seek
the solution of Eq. (6) for the time function in the form of a series with the period T:
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Substitute series Eq. (7) into the differential equation for the time function:
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Transforming Eq. (8) of vibrations of the plate and equating the coefficients for the
same trigonometric functions sin kτ

2 and cos kτ
2 , we obtain a system of linear equations

with respect to b0, ak and bk :
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(k = 2, 4, 6...) (9)

Received a homogeneous systemof linear equations. Let us compose the determinant
from the coefficients of the unknowns b0, ak and bk , equate it to zero:
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Received the equation of critical frequencies. By critical frequencies we mean the
frequencies of the external load θ∗ corresponding to the boundaries of the instability
regions. Using this equation, we construct even domains of dynamic instability lying
near the frequencies θ∗ = 2�

k (k = 2, 4, 6...).
Replace the coefficient φ with p2 = 1
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p , where
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3 Results

To construct the second region of instability, the third approximationwas considered, that
is, the determinant of the seventh order was used. Equation (11) of critical frequencies
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includes coefficients r depending on the relaxation time, and ξ, taking into account the
influence of instant E and long-term H elastic moduli. The values of these coefficients
affect the position of the dynamic regions of instability. To study the influence of the
coefficients on the position of the regions of dynamic instability, we construct the regions
of dynamic instability at constant values ξ and varying from zero to infinity r. In (see
Fig. 1) shows the results of calculating the regions of instability at ξ = 0.5. It can be seen
from the figure that the boundaries of the region with increasing r first move away from
the p axis, and then begin to approach. Simultaneously the graphs move to the axis μ.
This suggests that the minimum value of the excitation coefficient first increases, then
decreases again. This means that with an increase in the minimum excitation coefficient,
the smallest amplitudes of the periodic forces Nxt and Nyt increase, in this case, the
frequency θ of the acting forces decreases. A similar movement of areas can be seen
in (see Fig. 2), where the value ξ = 0.8. In this case, the boundaries of the regions
of instability are located rather close to each other. In both cases, there is a point of
intersection of all boundaries of the regions of dynamic instability. With an increase in
the value, the coordinate of the intersection point decreased from0.37 to 0.29, p increased
from 0.38 to 0.454. At r = 0, for an infinitely long relaxation time, the boundary of the
dynamic instability regions has a point of tangency with the p axis at 0.5 at the accepted
values ξ. In this case, the material works as elastic with an instantaneous modulus of
elasticity E. For an infinitely large value, the point of tangency with the p-axis for a larger
value ξ For an infinitely large value, the point of tangency with the p-axis for more is
higher is higher. The plate material works as elastic with a long modulus of elasticityH.
Comparing the boundaries of the dynamic instability regions on the graphs (see Fig. 1

Fig. 1. The boundaries of the regions of dynamic instability at ξ = 0.5: r = 0; 2; r = 0.2; 3. r =
0.5; 4. r = 1; 5. r = 2; 6. r = ∞.
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et Fig. 2) with the same r, excluding r = 0 and infinitely large values, it should be noted
that a decrease ξ and, therefore, the ratio of the elastic moduli leads to an increase in the
minimum value of the excitation coefficient and reducing the frequency of the buckling
load.

Fig. 2. The boundaries of the regions of dynamic instability at ξ = 0.8: r = 0; 2. r = 0.2; 3. r =
0.5; 4. r = 1; 5. r = ∞.

4 Conclusions

An equation of critical frequencies for even regions of dynamic instability for a rect-
angular plate, the material of which obeys a linear creep law, is obtained in this work.
The influence of the relaxation time and the ratio of the instantaneous and long-term
elastic moduli on the position of the second region of dynamic non-stability are inves-
tigated. It was revealed that an increase in the parameter r at constant leads ξ to the
fact that the minimum value of the excitation coefficient first increases, then decreases
again. Consequently, with an increase in theminimum excitation coefficient, the smallest
amplitudes of the periodic components of the forces Nxt and Nyt increase, in this case,
the frequency θ of the acting forces decreases. In addition, at the same, excluding r =
0 and infinitely large values, a decrease ξ and, therefore, the ratio of the elastic moduli
leads to an increase in the minimum value of the excitation coefficient μ and a decrease
in the frequency of the load causing the loss of stability.

It should be noted that when solving the problem posed in the work, you can use
other dependencies to describe the viscoelastic properties of the material. For example,
use the results presented in [9, 10].
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