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Abstract. The paper presents a study on modelling a rubber cylindrical tube in
the finite element method software. It begins with a definition of stored energy
functions of considered hyperelastic models. The main part of the paper concerns
the problem under the plane deformation assumption, which physically may accu-
rately approximate a sufficiently long tube. It is modelled in ABAQUS using two
approaches. The first one consists of a quarter of the cross-section with boundary
conditions that impose symmetry. The other FEMmodel involves an axially sym-
metric stress formulation. Results are compared with values obtained analytically.
The paper ends with an example of numerical solutions for a short cylindrical tube
without plane strain assumption.
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1 Introduction

In the case of rubber-like materials, the volumetric compressibility modulus is a few
orders of magnitude larger than the shear modulus K0 >> µ0 [1–3]. Therefore, when
interpreting typical experimental results of uniaxial and biaxial stretching and simple
shear, universal relationships resulting from the adoption of incompressible hyperelastic
constitutive relationships are used [3, 4]. A significant number of papers proposed con-
stitutive equations for rubber-like materials, see for examples [3] and extensive source
literature cited there.

In the case of hyperelasticity, many different constitutive relations are used to
describe the nonlinear, elastic properties of a given material, with their similar agree-
ment with experimental data. These tests usually concern the analysis of homogeneous
deformations of the tested material samples. Based on the comparison of the results of
these tests with the theoretical formulas resulting from the constitutive relation, mate-
rial parameters are determined. Therefore, the validation of hyperelasticity models also
requires the interpretation of the results of experiments where non-uniform deforma-
tions occur. Then it is necessary to obtain solutions to some boundary value problem
of hyperelasticity. In this paper, we focus on modelling a rubber cylindrical tube in the
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finite element method software ABAQUS [5]. This problem is known as an excellent
example of a benchmark problem in an evaluation of numerical results [6–9].

In the work, we follow the standard tensor notation of the mechanics of continuous
media and the theory of hyperelasticity [10, 11].

2 Hyperelastic Incompressible Material Models

A large number of hyperelastic incompressible rubber-like material models are consid-
ered in the literature [3, 4]. For the sake of clarity, we present relevant stored energy
functions here as well.

A five-parameter polynomial model (called MV) is given by
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where I1, I2 denote the invariants of the modified right and left Cauchy-Green defor-
mation tensors. The model states a third-order consistent polynomial expansion of the
stored energy function. The Mooney model is a special case of Eq. (1) such that
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which reduces to the neo-Hookean model if a4 = 0. Another considered model called
EXP-PL one [4], which is not of polynomial type, reads

�

WEXP−PL
(
I1, I2

) = μ

2a

(
ea

(
I1−3

)
− 1

)
+ b

(
I1 − 3

) + c
(
I2 − 3

)
. (3)

The function Eq. (3) is polyconvex if the parameters are positive. For more details, we
refer the reader to [4].

Table 1. Parameters for Alexander’s data [12] (neoprene)

Figure 1 presents nominal stress vs principal stretch for Alexander’s experimental
data on neoprene [12]. Parameters are shown in Table 1. It should be noted that MV
and EXP-PL models accurately describe the data for large deformations which is not the
case for NH or MR material models. However, the range of small deformations is not
sufficiently accurate predicted especially in the case of biaxial tension mode.
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Fig. 1. Nominal stress vs principal stretch plots for uniaxial (UT) and biaxial (BT) tension modes
in the case of Alexander’s data [12] – a) Neo-Hooekan model, b) Mooney model, c) MV model,
d) EXP-PL model. Parameters are presented in Table 1.

3 Finite Element Method Modelling of the Cylindrical Tube
Problem in ABAQUS

A cylindrical tube of unit length (plane-strain state) is modelled in ABAQUS using two
approaches. The first one consists of a quarter of the cross-section with boundary condi-
tions that impose symmetry. Finite elements of type CPE4H are applied (seven elements
of the tube’s thickness). The internal surface is subjected to a prescribed displacement
ui. It is worth noticing that the model does not impose an axially symmetric solution
(Fig. 2).
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Fig. 2. A cylindrical tube of unit length represents a plane stain problem.

The other FEM model involves an axially symmetric stress formulation [5, 11]. To
this end, we use CAX4H elements (seven elements in the section). Similarly to the
previous case, the internal surface is subject to a prescribed displacement ui. Material
models are implemented via UHYPER user-subroutines (Fig. 3).

ui

Fig. 3. The mesh with the boundary conditions for the axially symmetric model – CAX4H
elements.

3.1 The Neo-Hookean and Mooney Models

Thefirst test for verification numerical results concerns the neo-Hookean and theMooney
material models with the axially symmetric stress formulation. It is known that these
material models produce the same in-plane stresses if the initial shear moduli match [9].

Figure 4 presents plots of the normalised Cauchy stress tensor components through
the thickness of the tube. The values obtained showhigh accuracy as presented in Table 2,
where the analytical results computed employing MATHEMATICA [13] are collected.
Moreover, ABAQUS produce the outer radius ro = 50.4381 which fully coincides with
the analytical result.

Similar results in terms of accuracy are reported in [8], where ABAQUS is employed
as well to solve several benchmark problems.
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Fig. 4. Comparison of analytical (solid lines) and ABAQUS’s results (markers), Ri = 10, Ro =
12, ri = 50.

Table 2. Results comparison – stress values at the four integration points are equal.

R 10.142 10.4286 10.7143 11 11.2857 11.5714 11.8771

|σr |/μ0 ABQ 0.1678 0.14009 0.11311 0.08684 0.061263 0.036326 0.01200

M 0.1677 0.14009 0.11303 0.08677 0.061194 0.036259 0.01193

σϕ/μ0 ABQ 24.120 22.885 21.748 20.700 19.732 18.835 18.004

M 24.120 22.885 21.748 20.700 19.732 18.835 18.003

σz/μ0
(NH)

ABQ 0.79108 0.81656 0.84124 0.86516 0.88834 0.91083 0.93266

M 0.79116 0.81664 0.84131 0.86523 0.88841 0.91090 0.93272

σz/μ0
(MR)

ABQ 3.0281 2.9277 2.8365 2.7534 2.6777 2.6085 2.5453

M 3.0281 2.9278 2.8366 2.7535 2.6778 2.6086 2.5453

3.2 A Comparison of FEM Models

As it is shown in the previous subsection, the axially symmetric formulation produces
results of excellent accuracy. Here we focus on a comparison of the results produced
by this model with the results obtained with the model involving the quarter of the
cross-section. The latter does not impose the axially symmetric solution.
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For this purpose, we plot the radial stress σr(ri) versus the inner radius in the cur-
rent configuration. First of all, we notice that only the MV model does not produce a
monotonic increasing stress value, i.e., the curve shows a local maximum followed by
a local minimum, see also [10, 14]. Similarly to the previous case, the model involving
the axially symmetric formulation produces highly accurate results. The other one gives
the same accuracy only for the neo-Hookean material model. Comparing the results
of other material models, a deviation from the analytical values is notable as the inner
radius increases, see Fig. 5. However, the error is significant for very large deformations.
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Fig. 5. Comparison of ABAQUS’s results of different FEM models a) the neo-Hooekan model,
b) the Mooney model, c) the MV model, d) the EXP-PL model.

Very similar problems are considered in themonograph [3]. It is reported that besides
the MVmodels, the Yeoh model produces a non-monotonic increase of the stress value.
Besides very large stretches and displacements, a significant rotation takes place in the
final configuration of the body. Thus, it is another aspect of the problem that makes it
an excellent benchmark problem.

4 A Short Cylindrical Tube

The previous sections concern a cylindrical tube problem under the plane deformation
assumption, which physically may accurately approximate a sufficiently long tube. To
show the behaviour of a pressurized short cylindrical tube [13], the problem illustrated
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in Fig. 6 is solved by employing ABAQUS (CAX4H elements). We use theMVmaterial
model.

The equilibrium path concerning the centre of the tube appears to be qualitatively
similar to the one shown in Fig. 7. The different boundary conditions lead to a signifi-
cantly higher value of limit point stress in comparison to the plane deformation problem.
Deformations obtained characterize a typical bulging in the middle of the tube, which
has been confirmed experimentally [15]. As the solution does not produce a monotonic
increasing stress value, the Riks procedure is employed to obtain the path.
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Fig. 6. A short cylindrical tube problem illustration, Ri = 10, H = 2, L = 20.
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Fig. 7. The radial stress σr(ri) versus the inner radius in the current configuration – the centre of
the tube.

Figure 8, Fig. 9, Fig. 10 present intermediate and final configurations of the con-
sidered short cylinder inflation. It should be noted that besides very large stretches and
displacements, a significant rotation takes place in the final configuration of the body.
Thus, the problem should be considered in a regime of large deformations and arbitrary
large rotations.
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Fig. 8. An intermediate configuration of the short cylinder.
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Fig. 9. An intermediate configuration of the short cylinder.
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Fig. 10. The final configuration of the short cylinder.
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5 Conclusion

The cylindrical tube problem is an excellent benchmark problem in an evaluation of a
numerical method. The results obtained show that the axially symmetric stress formu-
lation in the finite element method software ABAQUS provides high accuracy for the
hyperelastic material models considered. The FEM model involving CPE4H elements
produces results that do not fully coincide with the analytical ones, but the formulation
does not impose the axially symmetric solution. In the case of the short cylinder prob-
lem, the equilibrium path concerning the centre of the tube appears to be qualitatively
similar to the one produced by the plane deformation problem’s solution. However,
applied boundary conditions lead to a significantly higher value of limit point stress in
comparison to the previous cases.

References

1. Chadwick, P.: Thermo-Mechanics of Rubberlike Materials. Philos. Trans. Roy. Soc. Math.
Phys. Eng. Sci. 276(1260), 371–403 (1974)

2. Zahorski, S.: A form of the elastic potential for rubber-like materials. Arch.Mater. 5, 613–618
(1959)
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