
Toru Nakanishi
Ryo Nojima (Eds.)

LN
CS

 1
28

35

Advances in Information
and Computer Security
16th International Workshop on Security, IWSEC 2021
Virtual Event, September 8–10, 2021
Proceedings

Lecture Notes in Computer Science 12835

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Toru Nakanishi · Ryo Nojima (Eds.)

Advances in Information
and Computer Security
16th International Workshop on Security, IWSEC 2021
Virtual Event, September 8–10, 2021
Proceedings

Editors
Toru Nakanishi
Hiroshima University
Hiroshima, Japan

Ryo Nojima
National Institute of Information
and Communications Technology
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-85986-2 ISBN 978-3-030-85987-9 (eBook)
https://doi.org/10.1007/978-3-030-85987-9

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-85987-9

Preface

The 16th International Workshop on Security, IWSEC 2021, was held online (originally
scheduled to be held in Tokyo, Japan), during September 8–10, 2021. The workshop was
co-organized by ISEC (the Technical Committee on Information Security in Engineering
Sciences Society of IEICE) and CSEC (the Special Interest Group on Computer Security
of IPSJ).

This year, we categorized topics of interests into two tracks, namely, Cryptography
Track (Track A) and Cybersecurity and Privacy Track (Track B); each track was formed
by separate Program Committee members. We received 37 submissions, 21 in Track
A and 16 in Track B. After extensive reviews and shepherding, we accepted 11 regular
papers (7 fromTrackAand4 fromTrackB) and3 short papers (2 fromTrackAand1 from
Track B). Each submission was anonymously reviewed by four reviewers on average.
These proceedings contain revised versions of the accepted papers. Track A consists
of the sessions on lattice-based cryptography, multiparty computation, post-quantum
cryptography, and symmetric-key cryptography. Track B consists of the sessions on
system security, machine learning and security, and game theory and security.

The Best Paper Awards were given to “Solving the Problem of Blockwise Isomor-
phism of Polynomials with CirculantMatrices” by Yasufumi Hashimoto and to “KPRM:
Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption” by Hiroki
Kuzuno and Toshihiro Yamauchi. The Best Student Paper Award was given to “Evolv-
ing Homomorphic Secret Sharing for Hierarchical Access Structures” by Kittiphop
Phalakarn, Vorapong Suppakitpaisarn, Nuttapong Attrapadung, and Kanta Matsuura.

Under theCOVID-19 pandemic circumstances, a number of people contributed to the
success of IWSEC 2021.Wewould like to thank all authors for submitting their papers to
the workshop, andwe are also deeply grateful to themembers of the ProgramCommittee
and to the external reviewers for their in-depth reviews and detailed discussions. Last
but not least, we would like to thank the general co-chairs, Tetsuya Izu and Yuji Suga,
for leading the Organizing Committee, and we would also like to thank the members of
the Organizing Committee for ensuring the smooth running of the workshop.

September 2021 Toru Nakanishi
Ryo Nojima

IWSEC 2021
16th International Workshop on Security

Organization

Online, September 8–10, 2021

co-organized by

ISEC in ESS of IEICE
(Technical Committee on Information Security in Engineering Sciences Society of the

Institute of Electronics, Information and Communication Engineers)
and

CSEC of IPSJ
(Special Interest Group on Computer Security of Information Processing

Society of Japan)

General Co-chairs

Tetsuya Izu Fujitsu Laboratories Ltd., Japan
Yuji Suga Internet Initiative Japan Inc., Japan

Program Co-chairs

Toru Nakanishi Hiroshima University, Japan
Ryo Nojima NICT, Japan

Poster Chair

Mitsuaki Akiyama NTT, Japan

Publication Chair

Chen-Mou Cheng Kanazawa University, Japan

viii IWSEC 2021

Local Organizing Committee

Mitsuaki Akiyama NTT, Japan
Chen-Mou Cheng Kanazawa University, Japan
Xuping Huang Advanced Institute of Industrial Technology, Japan
Yasuhiko Ikematsu Kyushu University, Japan
Satoru Izumi National Institute of Technology, Sendai College, Japan
Kaisei Kajita Japan Broadcasting Corporation, Japan
Kazuya Kakizaki NEC, Japan
Noboru Kunihiro University of Tsukuba, Japan
Minako Ogawa Toshiba Corporation, Japan
Toshiya Shimizu Fujitsu Laboratories Ltd., Japan
Yuta Takata Deloitte Tohmatsu Cyber LLC, Japan
Atsushi Takayasu NICT, Japan
Hiroshi Tsunoda Tohoku Institute of Technology, Japan
Sven Wohlgemuth SECOM Co., Ltd., Japan
Masaya Yasuda Rikkyo University, Japan

Program Committee

Track A: Cryptography Track

Chen-Mou Cheng Kanazawa University, Japan
Sherman S.M. Chow The Chinese University of Hong Kong, Hong Kong
Geoffroy Couteau CNRS, IRIF, Université de Paris, France
Bernardo David IT University of Copenhagen, Denmark
Antonio Faonio EURECOM, France
Akinori Hosoyamada NTT, Japan
Yuichi Komano Toshiba Corporation, Japan
Florian Mendel Infineon Technologies, Germany
Kazuhiko Minematsu NEC, Japan
Khoa Nguyen Nanyang Technological University, Singapore
Koji Nuida Kyushu University, Japan
Jae Hong Seo Hanyang University, Republic of Korea
Yannick Seurin Agence Nationale de la Securite des Systemes d’Information,

France
Daniel Slamanig AIT Austrian Institute of Technology, Austria
Willy Susilo University of Wollongong, Australia
Katsuyuki Takashima Waseda University, Japan
Atsushi Takayasu NICT, Japan
Mehdi Tibouchi NTT, Japan
Damien Vergnaud Sorbonne Université/Institut Universitaire de France, France
Yuyu Wang University of Electronic Science and Technology of China,

China
Yohei Watanabe The University of Electro-Communications, Japan
Bo-Yin Yang Academia Sinica, Taiwan
Kazuki Yoneyama Ibaraki University, Japan

IWSEC 2021 ix

Track B: Cybersecurity and Privacy Track

Mitsuaki Akiyama NTT, Japan
Josep Balasch KU Leuven, Belgium
Gregory Blanc Telecom SudParis, France
Herve Debar Telecom SudParis, France
Josep Domingo-Ferrer Universitat Rovira i Virgili, Catalonia
Koki Hamada NTT, Japan
Yuichi Hayashi Nara Institute of Science and Technology, Japan
Hiroaki Kikuchi Meiji University, Japan
Frederic Majorczyk DGA-MI/CentraleSupelec, France
Yuji Suga Internet Initiative Japan Inc., Japan
Giorgos Vasiliadis Qatar Computing Research Institute HBKU, Greece
Takeshi Yagi NTT Security (Japan) KK, Japan
Akira Yamada KDDI Research, Inc., Japan
Takumi Yamamoto Mitsubishi Electric Corporation, Japan

External Reviewers

Behzad Abdolmaleki
Yusuke Aikawa
Ming-Shing Chen
Nariyoshi Chida
Heewon Chung
Valerio Cini
Reo Eriguchi
Daisuke Fujimoto
Jingnan He
Jingwei Hu
Yasuhiko Ikematsu
Toshiyuki Isshiki
Tezuka Masayuki
William H.Y. Mui

Yuto Otsuki
Sebastian Ramacher
Bagus Santoso
Martin Schläffer
Kazumasa Shinagawa
Chuanjie Su
Xiangyu Su
Erkan Tairi
Junko Takahashi
Xiuhua Wang
Takuya Watanabe
Huangting Wu
Takanori Yasuda
Quan Yuan

Contents

Lattice-Based Cryptography

A Trace Map Attack Against Special Ring-LWE Samples 3
Yasuhiko Ikematsu, Satoshi Nakamura, and Masaya Yasuda

Shortest Vectors in Lattices of Bai-Galbraith’s Embedding Attack
on the LWR Problem . 23
Shusaku Uemura, Kazuhide Fukushima, Shinsaku Kiyomoto,
Momonari Kudo, and Tsuyoshi Takagi

System Security

KPRM: Kernel Page Restriction Mechanism to Prevent Kernel Memory
Corruption . 45
Hiroki Kuzuno and Toshihiro Yamauchi

(Short Paper) Evidence Collection and Preservation System with Virtual
Machine Monitoring . 64
Toru Nakamura, Hiroshi Ito, Shinsaku Kiyomoto, and Toshihiro Yamauchi

Multiparty Computation

Evolving Homomorphic Secret Sharing for Hierarchical Access Structures 77
Kittiphop Phalakarn, Vorapong Suppakitpaisarn,
Nuttapong Attrapadung, and Kanta Matsuura

Machine Learning and Security

Understanding Update of Machine-Learning-Based Malware Detection
by Clustering Changes in Feature Attributions . 99
Yun Fan, Toshiki Shibahara, Yuichi Ohsita, Daiki Chiba,
Mitsuaki Akiyama, and Masayuki Murata

Proposal of Jawi CAPTCHA Using Digraphia Feature of the Malay
Language . 119
Hisaaki Yamaba, Ahmad Saiful Aqmal Bin Ahmad Sohaimi,
Shotaro Usuzaki, Kentaro Aburada, Masayuki Mukunoki, Mirang Park,
and Naonobu Okazaki

xii Contents

Post-Quantum Cryptography (1)

Solving the Problem of Blockwise Isomorphism of Polynomials
with Circulant Matrices . 137
Yasufumi Hashimoto

FFT Program Generation for Ring LWE-Based Cryptography 151
Masahiro Masuda and Yukiyoshi Kameyama

Symmetric-Key Cryptography

Optimum Attack on 3-Round Feistel-2 Structure . 175
Takanori Daiza and Kaoru Kurosawa

Post-Quantum Cryptography (2)

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 195
Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

(Short Paper) Analysis of a Strong Fault Attack on Static/Ephemeral CSIDH . . . 216
Jason T. LeGrow and Aaron Hutchinson

(Short Paper) Simple Matrix Signature Scheme . 227
Changze Yin, Yacheng Wang, and Tsuyoshi Takagi

Game Theory and Security

Moving Target Defense for the CloudControl Game . 241
Koji Hamasaki and Hitoshi Hohjo

Author Index . 253

Lattice-Based Cryptography

A Trace Map Attack Against Special
Ring-LWE Samples

Yasuhiko Ikematsu1, Satoshi Nakamura2, and Masaya Yasuda3(B)

1 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
ikematsu@imi.kyushu-u.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
satoshi.nakamura.xn@hco.ntt.co.jp

3 Department of Mathematics, Rikkyo University, Tokyo, Japan
myasuda@rikkyo.ac.jp

Abstract. The learning with errors (LWE) problem is one of the hard
problems supporting the security of modern lattice-based cryptography.
Ring-LWE is the analog of LWE over the ring of integers of a cyclo-
tomic field, and it has provided efficient cryptosystems. In this paper, we
give cryptanalysis against ring-LWE using the trace map over the ring
of integers of a cyclotomic field, without using any reduction to other
structured lattice problems. Since it maps to a ring of a smaller degree,
a trace map attack is expected to be able to decrease the hardness of
ring-LWE. However, the trace map does not necessarily transform ring-
LWE samples to samples over the smaller ring with a common secret. We
give a sufficient and necessary condition on a pair of ring-LWE samples
for which the trace map attack is applicable. We call such a pair of sam-
ples special. We demonstrate how efficiently the trace map attack can
solve ring-LWE when a special pair of samples is given. Specifically, we
compare blocksizes of the Blockwise Korkine-Zolotarev (BKZ) algorithm
required for solving ring-LWE in the trace map attack and a standard
attack. Moreover, we discuss the (in)feasibility of the trace map attack
for random ring-LWE samples to evaluate how the trace map attack can
give a threat against ring-LWE-based cryptosystems on a practical side.

Keywords: Ring-LWE · Trace map · Lattices · Lattice basis reduction

1 Introduction

Recently, lattice-based cryptography has been studied to construct various cryp-
tosystems, including post-quantum cryptography (PQC) and high-functional
encryption such as fully homomorphic encryption. In particular, the National
Institute of Standards and Technology (NIST) has proceeded with a PQC stan-
dardization since 2015 [33]. At the second-round submission in 2019, 26 pro-
posals were accepted, including 12 lattice-based cryptosystems. In July 2020,
NIST selected 15 of the second-round candidates to move onto the third round
of the standardization process [27]. Of 15 advancing candidates, 7 proposals have
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 3–22, 2021.
https://doi.org/10.1007/978-3-030-85987-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_1

4 Y. Ikematsu et al.

been selected as finalists, and 8 as alternate candidates. Regarding lattice-based
cryptosystems, 5 proposals are included in finalists, and 2 in alternate candi-
dates. The security of the lattice-based proposals relies on the hardness of either
LWE or NTRU problem (e.g., see [3] for details). Precisely, 3 module-LWE and
2 NTRU proposals have been selected as finalists. (Module-LWE [11,21] is the
analog of LWE over a module lattice that addresses shortcomings in both LWE
and ring-LWE.) Module-LWE and NTRU are both structured lattice problems,
and they are a central target of algebraic cryptanalysis in lattice-based cryptog-
raphy.

The NTRU problem is the hard problem underlying the NTRU cryptosys-
tem [18]. NTRU and FALCON are the NTRU-based finalists in NIST’s PQC
standardization process. The problem can be reduced to the shortest vector prob-
lem (SVP) in the NTRU lattice, associated with an ideal of the ring Zq[x]/(xn−1)
for two integers n and q. Lattice basis reduction such as LLL [22] and BKZ [32]
is a strong tool to solve lattice problems, and its hybrid with the meet-in-the-
middle, proposed in [19], is the best-known attack to solve the NTRU problem in
practice. For a 2-power integer n, let R = Z[x]/(xn + 1) denote the ring of inte-
gers of the 2n-th cyclotomic field L = Q[x]/(xn + 1). The overstretched NTRU
problem is a variant of NTRU that uses the quotient ring Rq := R/qR with
a large modulus q, and it is available to construct fully homomorphic encryp-
tion [23]. In algebraic cryptanalysis, Cheon et al. in [15] made use of the trace
map to reduce the overstretched NTRU problem to lattice problems in smaller
dimensions. Albrecht et al. in [2] proposed a subfield attack by using the norm
map to break the overstretched NTRU problem with a huge modulus q. The
LWE problem is the hard problem proposed by Regev [31] that asks to find a
solution from a system of linear equations over Zq with errors for a modulus q.
The ring-LWE problem is the ring-based analog of LWE [24] that uses the same
base ring R as in the overstretched NTRU. Informally, given ring-LWE samples
(ai, bi) ∈ R2

q with bi = s · ai + ei, it asks to find its secret s ∈ Rq for a modulus
q. Advantages of ring-LWE are its compactness and efficiency since each ring
element yields an n-dimensional information in its coefficients. In particular,
qTesla, NewHope, and LAC had been ring-LWE-based candidates in the second
round of NIST’s PQC standardization process [33]. In contrast, module-LWE is
less algebraically structured than ring-LWE, and it is at least as hard as ring-
LWE. In NIST’s PQC standardization process, SABER, CRYSTALS-KYBER,
and CRYSTALS-DILITHIUM are based on module-LWE (precisely, SABER is
based on module-LWR, learning with rounding), and they are selected as the
third-round finalists [27]. There are several recent works on reductions between
ring-LWE and module-LWE [4,10,30,34]. However, both ring-LWE and module-
LWE are generally reduced to standard LWE by expressing every ring element
as its coefficient vector in an estimate of security level.

In this paper, we consider cryptanalysis using the trace map against ring-
LWE rather than module-LWE since ring-LWE is more algebraically structured
and it can be regarded as module-LWE with a module of rank 1. For a 2-power
integer n, let R = Z[x]/(xn+1) denote the ring of integers of the 2n-th cyclotomic

A Trace Map Attack Against Special Ring-LWE Samples 5

field L = Q[x]/(xn +1) � Q(ζ2n), where ζ2n is a primitive 2n-th root of unity in
C. Let K denote the maximal real subfield in L, and R′ its ring of integers. The
trace map Tr : R −→ R′ is defined by mapping every element f(x) ∈ R to f(x)+
f(x−1). Since the ranks of R and R′ as Z-modules are respectively equal to n and
n
2 , we expect that the trace map could decrease the degree of ring-LWE. However,
unlike the case of NTRU, it has difficulty to use the trace map for solving ring-
LWE due to that the trace map is linear but not multiplicative over R. Precisely,
given a ring-LWE sample (ai, bi) over Rq with bi = s·ai+ei, a ring-LWE relation
Tr(bi) = Tr(s) · Tr(ai) + Tr(ei) does not hold over R′

q, except for the case where
the secret s ∈ R′

q. In this paper, we give a sufficient and necessary condition on
a pair of ring-LWE samples for which a trace map attack is applicable. We call
such a typical sufficient condition special. We also demonstrate how efficiently
the trace map attack can solve ring-LWE when a special pair of samples is given.
Specifically, we compare blocksizes of BKZ required in both the trace map and
the standard attack for success to recover the secret of ring-LWE. (Here the
standard attack means the canonical reduction of ring-LWE to standard LWE
by coefficient representation. The success probability and the complexity of both
the trace map and the standard attacks depend on blocksizes of BKZ.) Moreover,
we discuss the (in)feasibility of the trace map attack for randomly chosen ring-
LWE samples. Specifically, we estimate the probability that a special pair of
ring-LWE samples is included among randomly chosen samples, to evaluate the
practical impact of the trace map attack.

Notation. The symbols Z, Q, R, and C denote the ring of integers, the field of
rational numbers, the field of real numbers, and the field of complex numbers,
respectively. For an odd prime q, let Zq denote a set of representatives of integers
modulo q as Zq = Z ∩ [− q

2 , q
2

)
. We represent all vectors in row format. For

v = (v1, . . . , vd), w = (w1, . . . , wd) ∈ R
d, let 〈v,w〉 denote the inner product∑d

i=1 viwi. We also let ‖v‖ denote the Euclidean norm defined as ‖v‖ =
√〈v,v〉.

We write by A� the transpose of a matrix A.

2 Preliminaries from Lattices to LWE Problems

In this section, we shall present mathematical and algorithmic background on
lattices, and then recall the LWE and the ring-LWE problems.

2.1 Mathematical and Algorithmic Background on Lattices

In this subsection, we present basic definitions and properties on lattices and
computational lattice problems, which shall be used later for reduction of the
LWE problem and its variants. We also recall lattice basis reduction algorithms,
which are strong tools to solve lattice problems (e.g., see [12,28,36] for details).

6 Y. Ikematsu et al.

Lattices and Their Bases. Let d be a positive integer. For linearly indepen-
dent vectors b1, . . . ,bd in the d-dimensional Euclidean space R

d, the set of all
their integral combinations

L = L(b1, . . . ,bd) :=

{
d∑

i=1

vibi ∈ R
d

∣
∣
∣
∣
∣
vi ∈ Z, 1 ≤ i ≤ d

}

is called a (full-rank) lattice in R
d of dimension d. The set {b1, . . . ,bd} is called

a basis of L, and the matrix B whose i-th row is bi is called a basis matrix. (We
simply write L = L(B), the lattice spanned by the rows of B.) Two matrix bases
B1 and B2 span the same lattice if and only if there exists a unimodular matrix T
satisfying B2 = TB1. The volume of L is defined as Vol(L) := |detB| for a basis
matrix B of L. It is independent of the choice of matrix bases. For each i, the i-th
successive minimum of L, denoted by λi(L), is the minimum of max1≤j≤i ‖vj‖
over all i linearly independent vectors v1, . . . ,vi in L. In particular, the first
minimum λ1(L) means the norm of a non-zero shortest vector in L.

The Gram-Schmidt orthogonalization for an ordered basis {b1, . . . ,bd} is the
orthogonal vectors b∗

1, . . . ,b
∗
d, recursively defined as b∗

1 := b1 and for i ≥ 2

b∗
i := bi −

i−1∑

j=1

μi,jb∗
j , μi,j :=

〈bi,b∗
j 〉

‖b∗
j‖2

(1 ≤ j < i ≤ d).

We expand the Gram-Schmidt coefficients as a square matrix μ = (μi,j), where
let μi,j = 0 for all i < j and μk,k = 1 for all k. Let B∗ denote the matrix
whose i-th row is b∗

i for 1 ≤ i ≤ d. Then it is clear that B = μB∗ and hence
Vol(L) =

∏d
i=1 ‖b∗

i ‖ by the orthogonality of Gram-Schmidt vectors for the lattice
L = L(B). For each 1 ≤ k ≤ d, let πk denote the orthogonal projection from R

d

onto the orthogonal supplement of the R-vector space Vk := 〈b1, . . . ,bk−1〉R as

πk : Rd −→ V ⊥
k = 〈b∗

k, . . . ,b∗
d〉R, πk(v) =

d∑

i=k

〈v,b∗
i 〉

‖b∗
i ‖2

b∗
i .

Main Lattice Problems. Here we introduce main computational problems for
lattices. The most famous lattice problem is the shortest vector problem (SVP);
“Given a basis {b1, . . . ,bd} of a lattice L, find a shortest non-zero vector in L,
that is, a vector s ∈ L such that ‖s‖ = λ1(L).” Ajtai [1] proved that SVP is NP-
hard under randomized reductions. It can be relaxed by an approximate factor;
“Given a basis of a lattice L and an approximation factor f ≥ 1, find a non-zero
vector v in L such that ‖v‖ ≤ fλ1(L).” Approximate-SVP is exactly SVP when
f = 1. For a lattice L of dimension d and a measurable set C in R

d, the Gaussian
Heuristic predicts that the number of lattice vectors in C is roughly equal to
Vol(C)/Vol(L). In particular, if we take C as the ball of radius λ1(L) centered
at the origin in R

d, then we can expect Vol(C)/Vol(L) ≈ #(L ∩ C) ≈ 1. Denote
by ωd the volume of the unit ball in R

d, thus Vol(C) = ωdλ1(L)d. Therefore the

A Trace Map Attack Against Special Ring-LWE Samples 7

norm of a non-zero shortest vector in L is roughly expected as

λ1(L) ≈
(

Vol(L)
ωd

)1/d

∼ GH(L) :=

√
d

2πe
Vol(L)1/d (1)

by using Stirling’s formula for ωd.
Another famous lattice problem is the closest vector problem (CVP); “Given

a basis {b1, . . . ,bd} of a lattice L and a target vector t, find a vector in L closest
to t, that is, a vector v ∈ L such that the distance ‖t − v‖ is minimized.” It is
known that CVP is at least as hard as SVP. (See the textbook [25].) As in the
case of SVP, we can relax CVP by an approximate factor. Approximate-CVP is
at least as hard as approximate-SVP with the same factor. From a practical point
of view, both problems are considered equally hard, due to Kannan’s embedding
technique [20], transforming approximate-CVP into approximate-SVP. (See Sub-
sect. 2.2 below for the embedding for solving the LWE problem.)

The security of modern lattice-based cryptosystems is based on the hardness
of cryptographic problems, such as LWE and NTRU problems. Such problems
are reduced to approximate-SVP or approximate-CVP (e.g., see [3] for details).

Lattice Basis Reduction. Given arbitrary basis of a lattice, lattice basis reduc-
tion aims to find a new basis of the same lattice with short and nearly-orthogonal
vectors. (Such basis is called to be reduced or good.) It is a mandatory tool in
solving lattice problems.

Reduction Algorithms. Below we introduce two typical algorithms. These algo-
rithms output short lattice vectors, not necessarily the shortest ones.

LLL (Lenstra-Lenstra-Lovász). It is the celebrated algorithm by Lenstra,
Lenstra and Lovász [22]. For a reduction parameter 1

4 < η < 1, an ordered
basis {b1, . . . ,bd} is called η-LLL-reduced if it satisfies two conditions; (i)
Size-reduction condition: The Gram-Schmidt coefficients satisfy |μi,j | ≤ 1

2 for
all 1 ≤ j < i ≤ d. (ii) Lovász’ condition: It holds η‖b∗

k−1‖2 ≤ ‖πk−1(bk)‖2 for
all 2 ≤ k ≤ d. The LLL algorithm [22] finds an LLL-reduced basis by swapping
adjacent basis vectors (bk−1,bk) when they do not satisfy Lovász’ condition.
Its complexity is polynomial in dimension d. Moreover, LLL is applicable also
for linearly dependent vectors to remove the linear dependency.

BKZ (Blockwise Korkine-Zolotarev). It is a blockwise generalization of
LLL. For an ordered basis {b1, . . . ,bd} of a lattice L and two indexes j < k,
let L[j,k] denote the lattice spanned by the local projected block basis

{πj(bj), πj(bj+1), . . . , πj(bk)}.

(The projected block lattice depends on the choice of a basis and its order.)
For a blocksize 2 ≤ β ≤ d, an ordered basis {b1, . . . ,bd} of a lattice L is
called β-BKZ-reduced if it is size-reduced and it satisfies ‖b∗

j‖ = λ1

(
L[j,k]

)
for

1 ≤ j < d with k = min(j +β −1, d). The BKZ algorithm [32] finds an almost

8 Y. Ikematsu et al.

β-BKZ-reduced basis, and it calls LLL to reduce every local block lattice L[j,k]

before finding a shortest vector in the block lattice. Since larger β decreases
γ
1/(β−1)
β , it can find a shorter lattice vector. However, the computational cost

is more expensive as β increases, since it is dominant to find a shortest vector
in every block lattice of dimension β. Specifically, the running time of BKZ
depends on algorithms of SVP subroutine (such as ENUM and Sieve), and
hence the complexity of BKZ is at least exponential in β.

The Hermite Factor. It is a good index to measure the practical output quality
of a reduction algorithm. The Hermite factor is defined by δ := ‖b1‖

Vol(L)1/d , where
b1 is a shortest basis vector output by a reduction algorithm for a lattice L of
dimension d. (The first vector of a reduced basis is shorter than other vectors in
general.) Smaller δ means that it can find a shorter lattice vector. It was shown
in [17] by exhaustive experiments that for practical reduction algorithms such as
LLL and BKZ, their root factor δ1/d converges to a constant for high dimensions
d ≥ 100. For example, it achieves around 1.0219 by LLL and 1.0128 by BKZ
with blocksize β = 20 for random lattices, respectively. Moreover, under the
Gaussian Heuristic and some heuristic assumptions, a limiting value of the root
Hermite factor of BKZ (or BKZ 2.0 [14], an improved BKZ) with large blocksize
β is predicted in [13] as

lim
d→∞

δ
1/d
BKZ =

(
ω

− 1
β

β

) 1
β−1

∼
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

. (2)

(Recall that ωβ is the volume of the β-dimensional unit ball.) There are exper-
imental evidences supporting this prediction for β > 50. More precisely, in a
simple form based on the Gaussian Heuristic, the Gram-Schmidt norms of a
β-BKZ-reduced basis {b1, . . . ,bd} of volume 1 is predicted as

‖b∗
i ‖ ≈ α

d−1
2 −i

β , αβ =
(

β

2πe

) 1
β

. (3)

This is reasonably accurate in practice for β > 50 and β
 d (see [13,14,37]).

2.2 LWE and Ring-LWE Problems

In this subsection, we recall the LWE problem and also describe how to reduce
it to main lattice problems such as SVP and CVP. We then recall the ring-LWE
problem, the ring-based analog of LWE.

The LWE Problem. We let [a]q ∈ Zq denote the reduction of an integer a by
modulo q.

Question 1 (LWE). Let n be a dimension parameter, q a modulus parameter,
and χ an error distribution over Z. (The distribution is often taken the discrete

A Trace Map Attack Against Special Ring-LWE Samples 9

Gaussian distribution.) Let s ∈ Z
n
q denote a secret with entries chosen uniformly

at random from Zq. Given d samples with d > n

(ai, ti) ∈ Z
n
q × Zq, ti = [〈ai, s〉 + ei]q , i = 1, 2, . . . , d, (4)

where ai’s are uniformly chosen at random from Z
n
q and ei’s are sampled from

χ. Then two questions are asked; (i) Decision-LWE is to distinguish whether a
given vector t = (t1, . . . , td) ∈ Z

d
q is obtained from (4) for some ai, or uniformly

at random. (ii) Search-LWE is to recover the secret s from LWE samples (4).

It was shown in [31] that Decision- and Search-LWE are equivalent when the
prime modulus q is bounded by some polynomial in n. We focus on Search-LWE
for a practical cryptanalysis, and we do not restrict the number of samples d
for simplicity. From d samples (4), we set an error vector e = (e1, . . . , ed) and a
target vector t = (t1, . . . , td). We set A as the matrix whose i-th row is ai for
1 ≤ i ≤ d. Then samples (4) are written as a pair (A, t) ∈ Z

d×n
q × Z

d
q satisfying

t ≡ sA� + e (mod q). (5)

In other words, Search-LWE asks us to recover the secret s or equivalently the
error vector e from an LWE instance (A, t) satisfying (5).

Reduction to Lattice Problems. There are a number of strategies for solving
Search-LWE. (See the survey work [7].) Here we recall how to reduce Search-
LWE to lattice problems. Given an LWE instance (A, t), we let

Λq(A) :=
{
x ∈ Z

d | x ≡ zA� (mod q), ∃z ∈ Z
n
q

}

denote a q-ary lattice of dimension d. (See [26] for q-ary lattices.) The rows of
the (d + n) × d matrix

C =
(
A�

qId

)

form a system of generators of the lattice, where Id denotes the d × d identity
matrix. A basis matrix B of the lattice is obtained by computing LLL (or Hermite
normal form) for the rows of C. Then we can regard the target vector t as a
vector bounded in distance from sA� ∈ Λq(A). The minimum distance between
t and sA� over Λq(A) is equal to the norm of the error vector ‖e‖ by (5) if it is
sufficiently short. (In general setting, the error vector is considerably shorter than
the modulus prime q.) Technically speaking, this is a reduction of Search-LWE
to the bounded distance decoding (BDD) problem, a particular case of CVP.

There are several methods such as Kannan’s embedding [20] to reduce BDD
to unique-SVP, a particular case of SVP finding a non-zero shortest vector in a
lattice L under λ2(L) > γλ1(L) for some factor γ ≥ 1. The basic procedure of
Kannan’s embedding for an LWE instance (A, t) is as follows; With a d×d basis
matrix B of the q-ary lattice Λq(A), we construct the (d + 1) × (d + 1) matrix

B′ =
(
B 0
t 1

)
. (6)

10 Y. Ikematsu et al.

Set L′ := L(B′). Its dimension is d+1 and volume is equal to Vol(Λq(A)) = qd−n

for almost A. Then the lattice L′ includes a very short vector e′ := (e, 1), since it
satisfies e′ ≡ (t, 1) − (sA�, 0) (mod q) by the condition (5). In general setting,
embedding vectors ±e′ are shortest in L′. By reducing B′ enough by lattice
reduction, we can recover e′, from which the error vector e is obtained.

Known Estimates for Reduction Algorithms. As described above, a suit-
able reduction algorithm is required to find the vector e′ in L′. Below we recall
two known estimates which algorithm is required for succeeding to recover e′.

2008 Estimate. It is the estimate for solving unique-SVP by Gama and
Nguyen [17]. They showed that a reduction algorithm with Hermite factor δ
can recover the shortest vector in unique-SVP with gap factor γ ≥ 1 if γ ≥ τ · δ
for some empirical constant τ . We apply it to Search-LWE. Assume that the
vector e′ is the shortest in the lattice L′. We simply predict that the second
successive minimum of L′ equals to GH(L′) (see Eq. (1) for GH(L′)). Then the
gap factor in unique-SVP over L′ is larger than

λ2(L′)
λ1(L′)

≈ GH(L′)
‖e′‖ .

Therefore, in order to recover e′, the Hermite factor δ is required to satisfy

δ ≤ GH(L′)
‖e′‖ · τ

≈
√

d

2πe
· q

d−n
d

‖e‖ · τ
. (7)

It has been investigated in [5,6] by experiments that the constant τ lies in
between 0.3 and 0.4 in using BKZ. In most cases, an optimal number of samples
d is around 2n or 3n to maximize the right-hand side in (7). (See also [26].) On
the other hand, Search-LWE becomes harder as d approaches n.

2016 Estimate. It is another estimate discussed in [8], in which the evolution of
the Gram-Schmidt lengths is investigated in processing of BKZ. More precisely,
it compares the expected length of the projected shortest vector πk(e′) with the
Gram-Schmidt lengths simulation (3) of BKZ. A recent comparison [9] showed
that this improves the 2008 estimate for high LWE dimensions such as n ≥ 400.

The Ring-LWE Problem. It is parametrized by a ring R over Z of degree
n, a prime modulus q defining the quotient ring Rq := R/qR, and an error
distribution χ over R outputting “small” ring elements. The ring R is often taken
as the ring of integers in the cyclotomic field L = Q(ζ2n) of 2-power degree n
where ζ2n denotes a primitive 2n-th root of unity (that is., R = Z[x]/(xn + 1)),
and χ some kind of discretized Gaussian distribution in the canonical embedding
L −→ C

n, mapping each element z ∈ L to the vector
(
z(ζi

2n)
)
i

∈ C
n for odd

1 ≤ i ≤ 2n. We stress that the canonical embedding and complex numbers
are used mainly for security proofs (e.g., see [29]), and they never need to be
computed explicitly for construction.

A Trace Map Attack Against Special Ring-LWE Samples 11

Question 2 (Ring-LWE). For a secret s(x) ∈ Rq, the ring-LWE distribution As,χ

over Rq × Rq is sampled by choosing a(x) ∈ Rq uniformly at random, choosing
e(x) ← χ, and outputting the pair (a(x), b(x)) ∈ Rq × Rq satisfying

b(x) = s(x) · a(x) + e(x) ∈ Rq. (8)

Then two questions are asked like standard LWE; decision and search versions.
We only introduce the search version; “Given independent samples from As,χ

for a uniformly random s(x) ∈ Rq, find the secret s(x).”

The number of samples can be considered as an additional parameter of ring-
LWE, but we here do not restrict it for simplicity. Sample generators of LWE and
ring-LWE are implemented in the Sage mathematics software SageMath [16].

Reduction to LWE. We describe how to reduce ring-LWE samples to LWE sam-
ples. We express every polynomial f(x) = f0 + f1x + · · · + fn−1x

n−1 of Rq as
its coefficient vector f = (f0, f1, . . . , fn−1) ∈ Z

n
q . Let (a(x), b(x)) be a ring-LWE

sample satisfying (8). For the coefficient vector a = (a0, a1, . . . , an−1) of a(x),
we put the n × n matrix

A =

⎛

⎜
⎜
⎜
⎝

a0 −an−1 · · · −a1

a1 a0 · · · −a2

...
...

. . .
...

an−1 an−2 · · · a0

⎞

⎟
⎟
⎟
⎠

.

Then the condition (8) is expressed as b ≡ sA� + e (mod q) in the coefficient
representation, since the i-th row of A� corresponds to xi−1a(x) for every i.
Namely, one ring-LWE sample corresponds to n LWE samples (A,b).

We consider multiple ring-LWE samples. For example, let (a1(x), b1(x)) and
(a2(x), b2(x)) be two ring-LWE samples with bi(x) = s(x) · ai(x) + ei(x) for i =
1, 2. As above, we obtain LWE condition bi ≡ sA�

i +ei from each (ai(x), bi(x)).
By combining them, we get the condition

(b1 | b2) ≡ s
(
A1

A2

)�
+ (e1 | e2) (mod q).

This condition implies that we have 2n LWE samples from two ring-LWE sam-
ples. To solve ring-LWE, we basically reduce multiple ring-LWE samples to (stan-
dard) LWE samples, from which we recover the coefficient vector s of the secret.
(In general, it is hard to solve ring-LWE from only one sample by lattice attacks.)

Recent Works on Cryptanalysis of Ring-LWE. There are a number of recent
works on reductions among ring-LWE and other structured LWE problems. In
2017, Albrecht and Deo [4] gave a reduction from module-LWE of rank d with
modulus q to ring-LWE with modulus qd over a 2-power cyclotomic field. This
gives a conclusion that module-LWE is polynomial-time equivalent to ring-LWE
over a 2-power cyclotomic field. In 2019, Wang and Wang improved the reduction

12 Y. Ikematsu et al.

of [4] to obtain a reduction from worst-case decision module-LWE to average-case
decision ring-LWE over any cyclotomic field [34]. (See also the recent work [10] for
reductions of module-LWE to lattice problems.) Recently, Peikert and Pepin [30]
unified and simplified various reductions among algebraically structured LWE
variants, including ring-LWE and module-LWE. Different from these works, the
aim of this paper is to give a direct attack against ring-LWE without using any
reduction to other structured LWE problems.

3 A Trace Map Attack Against the Ring-LWE Problem

For a 2-power integer n, we consider R = Z[x]/(xn+1), the basic ring defining the
ring-LWE problem. We regard R as the ring of integers of the 2n-th cyclotomic
field L = Q(x)/(xn + 1) � Q(ζ2n). (Recall that ζ2n denotes a primitive 2n-th
root of unity.) Let K denote the subfield in L generated by x+x−1 over Q. Then
K is the maximal real subfield of L and its ring of integers R′ is the subring of
R generated by x+x−1 (e.g., see [35] for a proof). We now define trace maps as

L
TrL/K−→ K

∪ ∪ , TrL/K : f(x) �−→ f(x) + f(x−1),
R −→

Tr
R′

where ‘Tr’ is the restriction map of TrL/K to the integer ring R. In this section,
we shall make use of the trace map to solve the ring-LWE problem efficiently. In
particular, since the set

{1, x + x−1, x2 + x−2, . . . , xm−1 + x1−m} (9)

gives a Z-basis of the ring R′ with m = n
2 , the trace map enables us to

reduce the degree of the ring-LWE problem over R from n to m (cf., the set
{1, x, x2, . . . , xn−1} is a Z-basis of the ring R).

3.1 Special Pairs of Ring-LWE Samples

For a prime q, let Trq denote the map from Rq = R/qR to R′
q = R′/qR′ induced

by the trace map Tr : R −→ R′. Our basic strategy for attack is to reduce the
ring-LWE problem over Rq to that over R′

q via the trace map. Consider two
ring-LWE samples over Rq

(a1(x), b1(x)) , (a2(x), b2(x)) (10)

with bi(x) = ai(x) · s(x) + ei(x) for i = 1, 2, where s(x) is a secret and ei(x) an
error polynomial. We now apply the trace map for these samples to obtain

{
Trq(b1(x)) = Trq(a1(x)s(x)) + Trq(e1(x))
Trq(b2(x)) = Trq(a2(x)s(x)) + Trq(e2(x))

(11)

A Trace Map Attack Against Special Ring-LWE Samples 13

by the linearity of the trace map. If the secret s(x) is an element of R′
q, it holds

Trq(a(x)s(x)) = Trq(a(x))s(x) for any element a(x) of Rq. Therefore, in this
case, we obtain ring-LWE samples over R′

q from the condition (11) with secret
s(x) ∈ R′

q. However, we cannot obtain such samples over R′
q in general, since

the trace map is not multiplicative.
For general s(x) ∈ Rq \ R′

q, we shall give a condition on (11) so that we can
obtain ring-LWE samples over R′

q having a common secret. We regard the first
equation in (11) as the basic ring-LWE sample (1,Trq(b1(x))) on R′

q associated
with a secret Trq(a1(x)s(x)). We assume that the secret is invertible in R′

q. (The
probability that the secret is invertible is overwhelmingly high for a large prime
q. See Sect. 4 below.) Then we express the second equation in (11) as

⎧
⎪⎨

⎪⎩

Trq(b2(x)) = θ · Trq(a1(x)s(x)) + Trq(e2(x)),

θ =
Trq(a2(x)s(x))
Trq(a1(x)s(x))

∈ R′
q.

(12)

The element θ must be public to publish the pair (θ, Trq(b2(x))) as a ring-LWE
sample over R′

q associated with the secret Trq(a1(x)s(x)), which is common with
the basic sample (1,Trq(b1(x))). For example, if the condition a2(x) = θ′a1(x)
is satisfied for some θ′ ∈ R′

q, then it satisfies

θ =
Trq(θ′a1(x)s(x))
Trq(a1(x)s(x))

=
θ′ · Trq(a1(x)s(x))

Trq(a1(x)s(x))
= θ′,

and hence the element θ can be computed from public ring-LWE samples (10).
Below we summarize the above discussion:

Proposition 1. We consider two ring-LWE samples (10) over Rq.

– We assume that the secret s(x) is an element of R′
q. Then the two pairs

transformed by the trace map

(Trq(a1(x)),Trq(b1(x))) , (Trq(a2(x)),Trq(b2(x)))

can be regarded as two ring-LWE samples over R′
q associated with common

secret s(x) and error polynomials Trq(e1(x)) and Trq(e2(x)), respectively.
– For a general secret s(x) ∈ Rq \ R′

q, we consider

(1,Trq(b1(x))), Trq(b1(x)) = 1 · Trq(a1(x)s(x)) + Trq(e1(x))

as a ring-LWE sample over Rq associated with a secret Trq(a1(x)s(x)) and
an error polynomial Trq(e1(x)). Assume that the secret is invertible in R′

q,
and let

θ =
Trq(a2(x)s(x))
Trq(a1(x)s(x))

∈ R′
q. (13)

Then the pair (θ,Trq(b2(x))) satisfying (12) can be regarded as a ring-LWE
sample with the same secret Trq(a1(x)s(x)) and error Trq(e2(x)) if and only
if the element θ is public. In particular, if a2(x) = θ′a1(x) for some θ′ ∈ R′

q,
then θ′ = θ and it can be recovered from public information a1(x) and a2(x).
We say such pairs of ring-LWE samples “ special”.

14 Y. Ikematsu et al.

3.2 A Trace Map Attack Against Special Pairs of Ring-LWE
Samples

As described in Proposition 1, special pairs of ring-LWE samples over Rq can be
reduced to certain ring-LWE samples over R′

q with a common secret via the trace
map. Here we shall describe the procedure of a trace map attack. We consider
a special pair of ring-LWE samples (10) over Rq, satisfying a2(x) = θa1(x) for
some θ ∈ R′

q. (The element θ is public and it is expressed as (13).) To recover
the secret s(x) of ring-LWE samples (10), we perform the below procedure:

Step 1. From Proposition 1, we first consider two ring-LWE samples over R′
q

{
(1,Trq(b1(x))), Trq(b1(x)) = 1 · Trq(a1(x)s(x)) + Trq(e1(x))
(θ,Trq(b2(x))), Trq(b2(x)) = θ · Trq(a1(x)s(x)) + Trq(e2(x))

(14)

with common secret Trq(a1(x)s(x)) and two error polynomials Trq(e1(x)) and
Trq(e2(x)). In this step, we recover the error polynomials by reducing the ring-
LWE problem to BDD and then to unique-SVP, as described in the previous
section. The main advantage of this attack is that the dimension of the reduced
lattice is m = n

2 , the half size of the standard reduction described in the previous
section. (In general, a lattice problem is much easier as its dimension decreases.)
More precisely, since the set (9) gives a basis of the ring R′

q, every element α of
R′

q is uniquely expressed as

α = α0 + α1(x + x−1) + α2(x2 + x−2) + · · · + αm−1(xm−1 + x1−m)

with αi ∈ Zq, and we then define an isomorphism map

φ : R′
q −→ Z

m
q , φ(α) = (α0, α1, . . . , αm−1).

We also denote by ψ the composition map of φ with Trq. We clearly have

ψ(f) = (2f0, f1 − fn−1, . . . , fm−1 − fm+1)

for any element f(x) = f0 + f1x + · · · + fn−1x
n−1 in Rq. Moreover, we define a

map from the ring R′
q to the set of m × m matrices with entries in Zq as

Φ : R′
q −→ Z

m×m
q , Φ(α) =

⎛

⎜
⎜
⎜
⎝

φ(α)
φ(α(x + x−1))

...
φ(α(xm−1 + x1−m))

⎞

⎟
⎟
⎟
⎠

.

Then we reduce two ring-LWE samples (14) over R′
q to 2m LWE samples of

dimension m associated with the secret ψ(a1s), which satisfies

(ψ(b1) | ψ(b2)) ≡ ψ(a1s) · (Φ(1) | Φ(θ)) + (ψ(e1) | ψ(e2)) (mod q). (15)

A Trace Map Attack Against Special Ring-LWE Samples 15

Step 2. We next take an integer i with 1 ≤ i < n to consider a new pair of ring-
LWE samples

(
xia1(x), xib1(x)

)
and

(
xia2(x), xib2(x)

)
, which clearly satisfy the

special condition xia2(x) = θ · xia1(x). Thus we apply the first step to this pair
in order to recover the error polynomials Trq(xiej(x)) for j = 1, 2. (Note that
the norm of the coefficient vector of xiej(x) is the same as that of ej(x).) Since
for each j = 1, 2 it satisfies

{
Trq(ej(x)) = ej(x) + ej(x−1)

Trq(xiej(x)) = xiej(x) + x−iej(x−1),

we can recover each error ej(x) from Trq(ej(x)) and Trq(xiej(x)) as

ej(x) =
Trq(xiej(x)) − x−iTrq(ej(x))

xi − x−i
.

Then the secret s(x) can be easily recovered from either e1(x) or e2(x).
As described above, the trace map attack requires twice lattice attacks

against different pairs of ring-LWE samples. But the attack reduces samples
over rings from Rq to R′

q via the trace map. It enables us to halve the dimension
of reduced lattices, which would make lattice problems much easier to be solved.

Remark 1. Given any sample (a1(x), b1(x)) with b1(x) = s(x) · a1(x) + e1(x),
we select an element θ ∈ R′

q and make a new sample (a2(x), b2(x)) =
(θa1(x), θb1(x)) to obtain a special pair. However, since b2(x) = s(x) · a2(x) +
θe1(x), the coefficients of the new error polynomial e2(x) = θe1(x) are large for
almost elements θ, and it is very hard to solve ring-LWE with large errors. On the
other hand, the error polynomial e2(x) still has small norm for simple elements
θ ∈ R′

q such as θ = x+x−1. But in this case, since coefficient vectors of a1(x) and
a2(x) are almost linearly dependent over Rq, it is also hard to solve ring-LWE
with such samples by lattice reduction attacks. That is, the trace map attack
is applicable in practice for a special pair of samples with linearly independent
a1(x) and a2(x) over Rq.

Remark 2. As mentioned in Sect. 1, both the trace and the norm maps have
been considered in cryptanalysis against the NTRU problem. Since the norm
map is multiplicative but not additive, it is not straightforward to apply it to
ring-LWE. Specifically, a ring-LWE relation

Nm(b(x)) = Nm(s(x)) · Nm(a(x)) + Nm(e(x))

does not hold in general for any ring-LWE sample (a(x), b(x)) with b(x) = s(x) ·
a(x) + e(x), where ‘Nm’ denotes the norm map. In particular, the small ring
element Nm(e(x)) cannot be extracted from the element Nm(b(x)).

3.3 Comparison with the Standard Attack

In this section, we compare the trace map attack with a standard attack for
concrete ring-LWE parameters. Specifically, we compare required blocksizes for

16 Y. Ikematsu et al.

BKZ to succeed to solve ring-LWE by the trace map and standard attacks against
a special pair of samples (10). Here the standard attack means the canonical
reduction of ring-LWE to standard LWE, which is also reduced to BDD and
then to unique-SVP, as described in Sect. 2.2.

Verification for Small Parameters by Experiments. We verified by exper-
iments the effect of the trace map attack for small parameters. For our experi-
ments, we chose n = 64 and 128 as the degree parameter of ring-LWE, and fixed
q = 257 the prime modulus parameter. We generated a special pair of ring-LWE
samples (10) over Rq as follows; We randomly chose a secret s ∈ Rq, and two
error polynomials e1(x) and e2(x) in R = Z[x]/(xn +1) with binary coefficients.
(That is, we consider binary ring-LWE in our experiments.) Then we chose a1(x)
randomly from Rq, generated the other polynomial a2(x) = θa1(x) for randomly
chosen θ ∈ R′

q, and computed bi(x) = s(x) · ai(x) + ei(x) over Rq to obtain
(ai(x), bi(x)) for i = 1, 2.

All experiments were performed using SageMath [16] on 1.3 GHz Intel core
i5. We also used two reduction algorithms LLL and BKZ with blocksize β = 20
for solving ring-LWE with a special pair of samples. We had experimented 20
times for every parameter set. For the case n = 64 (resp., n = 128), LLL (resp.,
BKZ with β = 20) was sufficient to solve ring-LWE by the trace map attack.
On the other hand, the standard attack could solve the case n = 64 by not
LLL but BKZ with β = 20. With regard to the running time for n = 64, the
trace map attack and the standard attack took about 0.74 and 12.31 seconds
on average, respectively. Furthermore, the standard attack could neither solve
the case n = 128 by LLL nor BKZ with β = 20. We estimate that the standard
attack requires at least β = 60 for BKZ to solve the case n = 128.

Comparison for Large Parameters. The success probability and the com-
plexity of both the trace map and the standard attacks depend on blocksizes
of BKZ (see [3] for estimates of the complexity of BKZ). Here we compare two
attacks on which blocksizes of BKZ are required for solving large ring-LWE
parameters.

In order to succeed to solve ring-LWE, we estimate from (7) that the standard
attack requires the root Hermite factor at most

δ1/d =
(

1
‖e‖τ

√
nq

πe

) 1
2n

, (16)

for which we take d = 2n as the number of LWE samples in the right-hand side
of (7). Recall that e = (e1 | e2) is the combined vector of coefficient vectors
of two error polynomials e1(x) and e2(x). For binary ring-LWE with the above
case (n, q) = (128, 257), the Eq. (16) implies that it requires δ1/d ≈ 1.01142, for
which we set ‖e‖ ≈ √

n and τ = 0.3 for simplicity. (Recall that the empirical
constant τ lies bewteen 0.3 and 0.4.) Furthermore, we estimate from (2) that
around β = 60 is required for BKZ to achieve such δ1/d. In contrast, the trace

A Trace Map Attack Against Special Ring-LWE Samples 17

map attack reduces ring-LWE over Rq to that over R′
q. Thus it requires the root

Hermite factor at most

δ1/d =
(

1
‖Tr(e)‖τ

√
mq

πe

) 1
2m

=
(

1
‖Tr(e)‖τ

√
nq

2πe

) 1
n

, (17)

where Tr(e) denotes the combined vector (ψ(e1) | ψ(e2)) in (15) and we take d =
2m as the number of LWE samples. (Recall that m = n

2 , the degree of polynomial
defining R′

q.) We simply estimate ‖Tr(e)‖ ≈ √
2‖e‖ with an enough merge. For

binary ring-LWE with the above case (n, q) = (128, 257), the trace map attack
requires δ1/d ≈ 1.01744. It is sufficient for BKZ with blocksize β = 20 to achieve
such δ1/d, as shown in above experiments. (Recall that the root Hermite factor
of BKZ with β = 20 is around 1.0128, as mentioned in Subsect. 2.1.)

Table 1. Comparison of required blocksizes of BKZ in standard and trace map attacks
(The standard attack means the canonical reduction from ring-LWE to standard LWE.
Required root Hermite factors δ1/d are estimated from (16) and (17), respectively.)

Ring-LWE parameters Required blocksizes β of BKZ

n log2(q) σ Standard attack Trace map attack

128 11 4 β ≈ 115 (δ1/d = 1.00868) β ≈ 50 (δ1/d = 1.01193)

8 β ≈ 220 (δ1/d = 1.00595) β ≈ 190 (δ1/d = 1.00647)

12 4 β ≈ 85 (δ1/d = 1.01004) β ≈ 20 (δ1/d = 1.01468)

8 β ≈ 155 (δ1/d = 1.00731) β ≈ 100 (δ1/d = 1.00920)

256 13 4 β ≈ 235 (δ1/d = 1.00569) β ≈ 115 (δ1/d = 1.00868)

8 β ≈ 355 (δ1/d = 1.00433) β ≈ 220 (δ1/d = 1.00595)

14 4 β ≈ 195 (δ1/d = 1.00637) β ≈ 80 (δ1/d = 1.01004)

8 β ≈ 285 (δ1/d = 1.00501) β ≈ 155 (δ1/d = 1.00731)

512 15 4 β ≈ 475 (δ1/d = 1.00352) β ≈ 235 (δ1/d = 1.00569)

8 β ≈ 640 (δ1/d = 1.00284) β ≈ 355 (δ1/d = 1.00432)

16 4 β ≈ 420 (δ1/d = 1.00386) β ≈ 195 (δ1/d = 1.00637)

8 β ≈ 550 (δ1/d = 1.00318) β ≈ 285 (δ1/d = 1.00500)

In Table 1, we give a comparison of required blocksizes β of BKZ in the stan-
dard and the trace map attacks for solving several ring-LWE instances (n, q, σ).
We estimate required root Hermite factors δ1/d in both attacks from (16) and
(17), respectively, and we also estimate required blocksizes β of BKZ to achieve
target δ1/d from the Eq. (2). For the sake of simplicity, we consider that every
coefficient of error polynomials in R is sampled from the discrete Gaussian dis-
tribution with standard deviation σ. (We can apply our discussion to other kinds
of distributions.) We roughly estimate ‖e‖ ≈ σ

√
2n and ‖Tr(e)‖ ≈ 2σ

√
n.

We see from Table 1 that the trace map attack requires considerably smaller
blocksizes β than the standard attack. We also see that the difference of required

18 Y. Ikematsu et al.

blocksizes between both attacks increases as the degree parameter n increases.
In particular, the difference of blocksizes is larger than at least 100 for cases
n ≥ 256. Since the complexity of BKZ is at least exponential in β as described
in Subsect. 2.1, the trace map attack is much faster than the standard attack, and
it becomes more efficient for larger n. For example, in the case (n, log2(q), σ) =
(256, 14, 8), the difference of blocksizes is 130 from Table 1, and thus the trace
map attack is at least 2130 times faster than the standard attack.

4 (In)feasibility of Trace Map Attack for Random
Samples

As mentioned in Proposition 1, the trace map attack requires a strong condi-
tion between two ring-LWE samples over Rq. (We recall that such the typi-
cal condition is called special in Proposition 1.) In this section, we discuss the
(in)feasibility of the trace map attack for random ring-LWE samples. Specif-
ically, we investigate the probability that randomly chosen ring-LWE samples
includes a special pair.

Let R×
q denote the group of invertible elements in Rq. Since #Rq ≈ #R×

q for
a large prime q, we assume that any elements are randomly chosen from R×

q for
a simple discussion.

Lemma 1. Let a1, a2 be two randomly chosen elements in R×
q . Then the prob-

ability that there exists an element θ ∈ R′
q satisfying a2 = θa1 or a1 = θa2 is

around q−m with m = n
2 .

Proof. Since a1, a2 ∈ R×
q , the following two conditions are equivalent: (1) There

exists θ ∈ R′
q satisfying a2 = θa1. (2) Conversely, there exists θ ∈ R′

q satisfying
a1 = θa2. In particular, such an element θ is in R′×

q . Thus the probability of the
lemma is equal to the probability that a2 ∈ R×

q is contained in the set R′×
q · a1.

Therefore it is equal to

#R′×
q /#R×

q = (qm − 1)/(qn − 1) = 1/(qm + 1) ≈ q−m.

This completes a proof of this lemma. ��
For a small parameter set (n, q) = (64, 257), the probability that two ring-

LWE samples satisfy the special condition is roughly equal to 257−32 ≈ 2−256.
Thus, it is considered that given two ring-LWE samples of cryptographic size
hardly meet the special condition.

Below we consider how many samples are necessary to find a special pair.

Lemma 2. Given � elements a1, . . . , a� ∈ R×
q with � = qm/2, the probability that

there exists a pair (ai, aj) satisfying the special condition is around 1
2 .

Proof. Let Ψ : R×
q −→ R×

q /R′×
q be the canonical homomorphism. It is clear that

two elements a, a′ ∈ R×
q satisfy the special condition if and only if Ψ(a) = Ψ(a′).

Thus, we would like to find a collision under the map Ψ . Since the number of
R×

q /R′×
q roughly equals to qm, we see from the birthday paradox that qm/2

elements are necessary to find such a collision with the probability around 1
2 . ��

A Trace Map Attack Against Special Ring-LWE Samples 19

Remark 3. A trace map can be defined for a finite extension L/K. Therefore
a trace map attack can be constructed for such an extension. However, as the
extension degree d = [L : K] increases, the probability that special ring-LWE
samples are met becomes much less. Throughout this paper, we have considered
the minimum degree case d = 2 for L = Q(ζ2n) and K = Q(ζ2n + ζ−1

2n). We see
from the discussion in this section that we rarely meet special ring-LWE samples
even in the minimum degree case d = 2.

Remark 4. Module-LWE is the analogue of LWE over modules, introduced
in [11,21], which is between LWE and ring-LWE. Specifically, module-LWE uses
a free Rq-module of rank d for a positive integer d. Like in the case of standard
LWE, a module-LWE sample is a pair of (a, b) ∈ Rd

q × Rq with a = (a1, . . . , ad)
satisfying

b =
d∑

i=1

aisi + e

over the ring Rq, where s = (s1, . . . , sd) ∈ Rd
q is a secret and e ∈ Rq is an

error (cf., Eq. (4)). The particular case d = 1 corresponds to ring-LWE. For
two module-LWE samples (a, b) and (a′, b′) with a = (a1, . . . , ad) and a′ =
(a′

1, . . . , a
′
d), a trace map attack is applicable if there exist elements θ1, . . . , θd ∈

R′
q satisfying ai = θia

′
i for all 1 ≤ i ≤ d. The probability that such condition is

met becomes much less as the rank d increases.

5 Conclusion

We discussed a cryptanalysis for ring-LWE using the trace map over the integer
ring R = Z[x]/(xn + 1) of the 2n-th cyclotomic field for a 2-power integer n.
Specifically, we gave a sufficient and necessary condition on a pair of ring-LWE
samples for which the trace map attack is applicable (Proposition 1). As a typical
case, the trace map attack can efficiently solve ring-LWE with a special pair of
samples. We see from Table 1 that the trace map attack requires much smaller
blocksizes of BKZ than the standard attack for success to recover the secret.
This shows that the trace map attack drastically decreases the hardness of ring-
LWE when a special pair of samples is given. (Note that the complexities of both
the trace map and the standard attacks depend on BKZ, and the complexity
of BKZ is at least exponential in an input blocksize.) However, since a special
pair of samples is rarely included among randomly chosen samples, the trace
map attack is not a threat against ring-LWE-based cryptosystems on a practical
side. On another point of view, this work would be an alert that any ring-LWE
sampler should never generate any special pair of samples for security.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP19K20266 and JP20H04142, Japan.

20 Y. Ikematsu et al.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Symposium on Theory
of Computing (STOC 1996), pp. 99–108. ACM (1996)

2. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

3. Albrecht, M.R.: Estimate all the LWE, NTRU schemes!. In: Catalano, D., De
Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 19

4. Albrecht, M.R., Deo, A.: Large modulus ring-LWE ≥ module-LWE. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–296. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 10

5. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12160-4 18

6. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

8. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange:
a new hope. In: 25th USENIX Security Symposium, pp. 327–343 (2016)

9. Bai, S., Miller, S., Wen, W.: A refined analysis of the cost for solving LWE via
uSVP. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019.
LNCS, vol. 11627, pp. 181–205. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23696-0 10

10. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical hardness
of module-LWE: The linear rank case. IACR ePrint Archive: Report 2020/1020
(2020)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3),
1–36 (2014)

12. Bremner, M.R.: Lattice Basis Reduction: An Introduction to the LLL Algorithm
and Its Applications. CRC Press, Boca Raton (2011)

13. Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. Ph.D. thesis, Paris 7 (2013)

14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

15. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput.
Math. 19(A), 255–266 (2016)

16. Developers, T.S.: Sagemath (2016). https://www.sagemath.org/
17. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-

CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-642-25385-0_1
https://www.sagemath.org/
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3

A Trace Map Attack Against Special Ring-LWE Samples 21

18. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

19. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 9

20. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

21. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-
014-9938-4

22. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

23. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Symposium on Theory
of Computing (STOC 2012), pp. 1219–1234. ACM (2012)

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

25. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: A cryptographic
perspective, vol. 671. Springer Science & Business Media (2012)

26. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post-Quantum Cryp-
tography, pp. 147–191 (2009)

27. Moody, D., et al.: NISTIR 8309: Status report on the second round of the NIST
Post-Quantum Cryptography standardization process (2020). https://nvlpubs.nist.
gov/nistpubs/ir/2020/NIST.IR.8309.pdf

28. Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: The LLL Algorithm,
pp. 19–69. Springer (2009). https://doi.org/10.1007/978-3-642-02295-1 2

29. Peikert, C.: How (Not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44618-9 22

30. Peikert, C., Pepin, Z.: Algebraically structured LWE, revisited. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 1–23. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36030-6 1

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Symposium on Theory of Computing (STOC 2005), pp. 84–93. ACM
(2005)

32. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

33. The National Institute of Standards and Technology (NIST): Post-quantum
cryptography. https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization

34. Wang, Y., Wang, M.: Module-LWE versus ring-LWE, revisited. IACR ePrint
Archive: Report 2019/930 (2019)

35. Washington, L.C.: Introduction to cyclotomic fields, vol. 83. Springer Science &
Business Media (1997). https://doi.org/10.1007/978-1-4612-1934-7

https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-13190-5_1
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://doi.org/10.1007/978-3-642-02295-1_2
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-030-36030-6_1
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/978-1-4612-1934-7

22 Y. Ikematsu et al.

36. Yasuda, M.: A survey of solving SVP algorithms and recent strategies for solv-
ing the SVP challenge. In: Takagi, T., Wakayama, M., Tanaka, K., Kunihiro, N.,
Kimoto, K., Ikematsu, Y. (eds.) International Symposium on Mathematics, Quan-
tum Theory, and Cryptography. MI, vol. 33, pp. 189–207. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-15-5191-8 15

37. Yu, Y., Ducas, L.: Second order statistical behavior of LLL and BKZ. In: Adams,
C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 3–22. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72565-9 1

https://doi.org/10.1007/978-981-15-5191-8_15
https://doi.org/10.1007/978-3-319-72565-9_1

Shortest Vectors in Lattices
of Bai-Galbraith’s Embedding Attack

on the LWR Problem

Shusaku Uemura1(B), Kazuhide Fukushima2, Shinsaku Kiyomoto2,
Momonari Kudo1, and Tsuyoshi Takagi1

1 Graduate School of Information Science and Technology, The University of Tokyo,
Tokyo, Japan

shusaku uemura@mist.i.u-tokyo.ac.jp
2 KDDI Research, Inc., Saitama, Japan

Abstract. The Learning With Rounding (LWR) problem has attracted
increasing attention as a foundation for post-quantum cryptosystems. It
is known to be a variant of the Learning With Errors (LWE) problem,
and so far the computational hardness of the LWE problem has been
analyzed through various types of attacks using the structure of lattices.
Bai-Galbraith’s embedding attack is one of the most effective attacks
against the LWE problem. Their embedding attack is also applicable to
the LWR problem - through the transformation from the LWR prob-
lem to the LWE problem - and its effect on the LWR problem has been
directly analyzed with the structure of a certain lattice (referred to as a
BG-lattice in this paper) constructed in the LWE problem. However, the
structure of a BG-lattice in the LWR problem is not the same as that in
the LWE problem with this transformation; thus, it requires more con-
crete investigation for the security analysis of LWR-based cryptosystems.
In this paper, we study the structure of a BG-lattice constructed in the
LWR problem through the transformation from the LWR problem to the
LWE problem. Specifically, we explicitly find a certain vector in the lat-
tice that can be the shortest, and formulate the condition where such a
vector is surely the shortest one. The existence of such a shortest vector
causes a situation that the second shortest vector linearly independent
of the shortest vector in a BG-lattice is different from the expected. We
also study the probability that this situation occurs, and obtain a rela-
tion between the probability and parameters of the LWR problem. Our
experimental results confirm the existence of this shortest vector and
the aforementioned relation. Note that the focus of this paper is a the-
oretical analysis, and applying it to the security analysis of LWR-based
cryptosystems will be conducted in future work.

Keywords: Post-quantum cryptography · Lattice-based
cryptography · Learning With Rounding · Bai-Galbraith’s embedding
attack

c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 23–41, 2021.
https://doi.org/10.1007/978-3-030-85987-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_2

24 S. Uemura et al.

1 Introduction

In 2016, the National Institute of Standards and Technology (NIST) initiated a
project called PQC Standardization to determine the post-quantum cryptogra-
phy standards [22]. Among various kinds of post-quantum cryptosystems, four
public-key cryptosystems were selected as the finalists of NIST-PQC Standard-
ization with five as alternative candidates. Three cryptosystems (NTRU [15],
CRYSTALS-KYBER [7], SABER [12]) out of the four finalists and two cryp-
tosystems (FrodoKEM [4], NTRU Prime [13]) out of the five alternative can-
didates are lattice-based. Their security base is the hardness of computational
problems in lattice theory, such as the Learning With Errors (LWE) and the
Learning With Rounding (LWR) problems. In particular, the security of CRYST-
ALS-KYBER and FrodoKEM (resp. SABER) are based on the LWE (resp.
LWR) problem. An LWE-based cryptosystem was first introduced by Regev
[23,24] in 2005, and the LWE problem is parameterized by a triple (m,n, q)
of three positive integers and a pair (χe, χs) of two discrete probability distri-
butions. The LWE problem requires to solve a system of linear equations over
Zq := Z/qZ in the presence of noise. More specifically, for an (m × n)-matrix A
whose entries are uniformly sampled from Zq, and for two vectors s ∈ Z

n
q and

e ∈ Z
m
q , the LWE problem is to find s if A and sA�+e are given (see Definition 3

below). Each entry s (resp. e) of s (resp. e) is sampled from χs (resp. χe), where
|e| is much smaller than q. On the other hand, Banerjee et al. [11] introduced
the LWR problem, which is parameterized by a quadruple (m,n, q, p) and one
discrete probability distribution χs. Given A and

⌊
p
q sA

�
⌉
, the LWR problem is

to determine s (see Definition 4 below). The parameters m, n, q, and χs play the
same roles as in the LWE problem, whereas the parameter p is regarded as an
alternative to χe for the following reason: While the LWE problem transforms
sA� into sA� + e with the error vector e generated by χe, the LWR problem
does it to

⌊
p
q sA

�
⌉

via a rounding operation with p/q scaling.
The computational hardness of the LWE problem has been analyzed through

many attacks, such as Arora-Ge’s algebraic algorithm [6], a combinatorial
method that uses the BKW algorithm [14] and methods transforming the LWE
problem to other known lattice-related problems. Arora-Ge’s algorithm solves
the LWE problem via linearization, and requires the sample number m to be
sufficiently large to solve the LWE problem correctly. The method using the
BKW algorithm also requires a large sample number to solve the LWE problem
properly. On the other hand, two major embedding methods (Kannan’s embed-
ding attack [18] and Bai-Galbraith’s embedding attack [9]), which transform the
LWE problem to the Shortest Vector Problem (SVP), require relatively fewer
samples. More specifically, in Bai-Galbraith’s embedding attack, an (n+m+1)-
dimensional lattice denoted by LBG (which we call a BG-lattice) is constructed
and a vector of the form (s e 1) can be obtained as the shortest vector in LBG

(see Subsect. 3.2 below). Bai-Galbraith’s embedding attack has been regarded
as one of the most efficient attacks on LWE-based cryptosystems (thus, this is
often called the primal attack). Since the LWR problem can be transformed into

Shortest Vector in Bai-Galbraith’s Embedding to LWR 25

the LWE problem for given A and sA� + e with e :=
⌊

q
p

⌊
p
q sA

�
⌉⌉

− sA� (see
Subsect. 2.4 for details), the analysis of this attack against the LWR problem
has been conducted in a manner similar to that for the LWE case. However, the
LWE problem transformed from the LWR problem is a special case of the LWE
problem, and therefore, a specific analysis of the lattice LBG, constructed in Bai-
Galbraith’s embedding attack against the LWR problem, should be provided.

1.1 Contribution

We provide a theoretical analysis of the structure of the lattice LBG constructed
in Bai-Galbraith’s embedding attack against the LWR problem of the parameter
set (m,n, q, p). We shall prove the existence of a certain short vector in LBG of
the form (0 c p) with 0 ∈ Z

n, c ∈ Z
m and p ∈ Z, where the absolute value

of each entry of c is bounded by p/2. Thus, the vector of the form (0 c p) is
shorter than (s e 1) for some small p, where s (resp. e) is a secret (resp. error)
vector in the LWE problem transformed from the LWR problem. This short
vector exists because the error vector e is generated by rounding through the
transformation from the LWR problem to the LWE problem. We determine the
condition in which (0 c p) is the shortest vector in LBG with high probability.

In the case where (0 c p) is the shortest vector in LBG, the vector (s e 1) is
expected to be the second shortest vector that is linearly independent of (0 c p).
Contrary to this expectation, we show that the second shortest vector in LBG

can be (s e 1) ± (0 c p) instead of (s e 1) if p � q. We also discuss the
probability distribution of the norm ‖(s e 1) ± (0 c p)‖, and determine the
lower bound of the probability of ‖(s e 1) ± (0 c p)‖ < ‖(s e 1)‖. Our lower
bound written with the parameters m, q and p implies a deduction; it becomes
more probable that (s e 1) ± (0 c p) is shorter than (s e 1) when q becomes
larger than p2.

Finally, we conduct experiments with small n in order to examine our the-
oretical analysis above. Our experimental results confirm that a vector of the
form (0 c p) is the shortest vector in LBG, and we examine the deduction on
(s e 1) ± (0 c p) described above.

Although we only discuss the case of Bai-Galbraith’s embedding attack,
almost the same discussion can be applied to that of Kannan’s embedding attack.
We also note that this paper focuses only on a theoretical observation of the LWR
problem, and our future work is to analyze realistic attacks against LWR-based
cryptosystems via our observation.

1.2 Organization

In Sect. 2, we recall the definition of lattices, and describe the LWE and LWR
problems. Section 3 provides a brief explanation of how two embedding attacks
(Kannan’s embedding attack [18] and Bai-Galbraith’s embedding attack [9])
work on the LWE problem. In Sect. 4, we prove the existence of an unexpected
short vector in a BG-lattice for the LWR problem, and provide the condition

26 S. Uemura et al.

where it is the shortest with high probability. In Sect. 5, we discuss the second
shortest vector in a BG-lattice and a probability related to the second shortest
vector. Section 6 is the conclusion.

2 Preliminaries

In this section, we define the notation that will be used in the rest of this paper,
and recall the definitions of the LWE and LWR problems.

2.1 Notation

We denote by Z and R the set of integers and that of real numbers respectively.
For a positive integer q, the quotient ring of integers modulo q is denoted by Zq.
For positive integers m and n, the set of m-dimensional vectors over Zq (resp.
the set of (m × n)-matrices over Zq) is denoted by Z

m
q (resp. Z

m×n
q). Bold lower

cases (e.g., s) denote vectors, whereas upper cases (e.g., A) indicate matrices. We
regard vectors as row vectors, and write v� as the transposed vector of a vector
v (matrices as well). For a positive integer m, we denote by Im the (m × m)
identity matrix. For a real number x, the largest integer less than or equal to x
is denoted by �x�, and the closest integer to x is �x� = �x + 1/2�. For an m-
dimensional vector v = (v1, . . . , vm) ∈ R

m, we denote by �v� the vector whose
i-th entry is �vi� for each 1 ≤ i ≤ m. For a random variable X, its expected
value and variance are denoted by E[X] and Var(X), respectively.

2.2 Lattices

In this subsection, we recall the definition and some fundamental properties of
lattices. Next, we also describe the LWE and LWR problems in the following
two subsections.

Definition 1 (Lattices). Let b1, . . . ,bm ∈ R
n be linearly independent vectors.

We define a subset L of R
n as

L := {x1b1 + · · · + xmbm | x1, . . . , xm ∈ Z} .

We call the set L a lattice, and {b1, . . . ,bm} a basis of the lattice L. The car-
dinality m does not depend on the choice of a basis of L, and it is called the
dimension of the lattice L.
With the same notation as in Definition 1, let B be the matrix whose i-th row
is bi for each 1 ≤ i ≤ m. In this case, we denote by L(B) the lattice L defined
by {b1, . . . ,bm} as a basis, and call B a basis matrix of L(B). The volume of
the lattice L(B) is defined as follows:

Vol(L(B)) :=
√

|det(BB�)|. (2.1)

If two matrices B1 and B2 define the same lattice L, then the right-hand side of
(2.1) for B1 is equal to that for B2.

Shortest Vector in Bai-Galbraith’s Embedding to LWR 27

Definition 2 (Successive minima). For each 1 ≤ i ≤ m, the i-th successive
minimum λi(L) is defined as

λi(L) := min
b1,...,bi∈L

max{‖b1‖, . . . , ‖bi‖},

where b1, . . . ,bi run through linearly independent non-zero vectors in L. We call
a vector v in L with ‖v‖ = λ1(L) the shortest vector in L. A vector v in L with
‖v‖ = λ2(L) linearly independent of the shortest vector in L is called the second
shortest vector in L; generally, the i-th shortest vector can be defined similarly.

The first successive minimum λ1(L) is estimated by the Gaussian heuristic.
Specifically, the value λ1(L) is estimated as

λ1(L) ≈
√

m

2πe
Vol(L)1/m.

There exist some computational problems related to lattices such as the
Shortest Vector Problem (SVP), which requires to find the shortest vector in
L for a given basis matrix B defining the lattice L. A typical method for solving
SVP is the lattice basis reduction such as the BKZ (Block Korkin-Zolotarev)
[16,25] algorithm.

Remark 1. The ratio of the norms of the shortest and the second shortest vec-
tors deeply affects the solvability of the SVP. Specifically, Gama and Nguyen
[19] estimated that the (unique-)SVP for an m-dimensional lattice L(B) can be
solved if

λ2(L)
λ1(L)

≥ τδm (2.2)

holds, where τ is a constant less than 1, and where δ is a positive real number
with δm = ‖b1‖/Vol(L(B)1/m. The value of δ depends upon a basis of L, and
it is often used as a parameter to measure the quality of the basis returned by
a basis reduction algorithm. In the case of the BKZ algorithm, Chen (cf. the
formula (4.8) on page 95 of [17]) estimated the value of δ for the output basis as

δ(β) ≈
(

β

2πe
(πβ)1/β

) 1
2(β−1)

,

where β is an input parameter (called the block size) of the BKZ algorithm. If
the left-hand side of (2.2) is larger, the range of values of β satisfying (2.2) with
δ = δ(β) can become wider. In this case β can take smaller values, which implies
that the BKZ algorithm might solve SVP more efficiently.

2.3 Search-LWE and Search-LWR Problems

The LWE problems are lattice-related problems, which have two types: the
Decision-LWE problem and the Search-LWE problem. The Search-LWE problem
is defined in Definition 3 below, and it is a problem parameterized by a triple

28 S. Uemura et al.

(m,n, q) of three positive integers and a pair (χe, χs) of two discrete probability
distributions over Zq. The distributions χe and χs both have mean values of 0,
with standard deviations being σe and σs respectively.

Definition 3 (Search-LWE). Let A ∈ Z
m×n
q be a matrix whose entries are

uniformly sampled over Zq. Let s ∈ Z
n
q and e ∈ Z

m
q be vectors whose entries

are sampled from χs and χe respectively. Given a pair (A,b := sA� + e), the
Search-LWE problem requires to find s.

In the Search-LWE problem, the integers m, q, the vectors e and s are referred
to as the number of samples, a modulo, an error vector and a secret vector
respectively.

Similar to the LWE problems, the LWR problems are lattice-related prob-
lems with two types: the Decision-LWR problem and the Search-LWR problem.
The Search-LWR problem (Definition 4 below) is a variant of the Search-LWE
problem (Definition 3). It is parameterized by a quadruple (m,n, q, p) of four
positive integers and one discrete probability distribution χs over Zq. Unlike the
LWE problem, the LWR problem does not use a probability distribution χe as
a parameter, but instead employs a positive integer p as an alternative.

Definition 4 (Search-LWR). Let A ∈ Z
m×n
q be a matrix whose entries are

uniformly sampled over Zq. Let s ∈ Z
n
q be a vector whose entries are sam-

pled from χs. Given a pair (A,b :=
⌊

p
q sA

�
⌉

mod p), the Search-LWR problem
requires to find the secret s.

In the rest of this paper, we call the Search-LWE problem (resp. the Search-
LWR problem) the LWE problem (resp. the LWR problem) for simplicity.

2.4 Transformation of LWR to LWE

To solve the LWR problem, the most efficient existing method is to solve it as
the LWE problem after the following transformation: Let (A,b) ∈ Z

m×n
q × Z

m
p

be an instance of the LWR problem parameterized by m, n, q, p and χs. Then,
we define a vector b′ ∈ Z

m
q as

b′ :=
⌊

q

p
b
⌉

=
⌊

q

p

⌊
p

q
sA�
⌉⌉

.

Putting e := b′ − sA�, we have b′ = sA� + e. Therefore the pair (A,b′)
can be viewed as an instance of the LWE problem with the parameter set
(m,n, q, χs, χe), where χe is expected to be the uniform distribution over the
set {

−
⌊�q/2�

p

⌉
, . . . ,

⌊�q/2�
p

⌉}
, (2.3)

see [20, Theorem 1]. The standard deviation σe is approximately calculated by

σe ≈
√

q2 + 2pq

12p2
. (2.4)

Shortest Vector in Bai-Galbraith’s Embedding to LWR 29

By this approximate equality, we can also estimate the squared norm of e: It
follows from the law of large number that

‖e‖2 =
m∑

i=1

e2i ≈ mE[e2i] = mσ2
e ≈ m · q2 + 2pq

12p2
. (2.5)

where we used E[ei] ≈ 0.
We remark from [21] that if q = 2up for some u ∈ Z (this is the case of

SABER [12] and Round5 [8]), the distribution χe is expected to be the uniform
distribution over the set {−u + 1, . . . , u}, which is slightly different from (2.3),
and moreover

σe ≈
√

q2 − p2

12p2
. (2.6)

The estimation (2.5) of ‖e‖2 should also be modified, see Appendix for details.
In order to discuss general cases, we use (2.4) in the rest of this paper.

3 Embedding Attacks Against LWE

In this section, we outline the embedding attacks on the LWE problem. In par-
ticular, we describe in detail the two embedding attacks suggested respectively
in [9] and [18]. Both these two attacks transform the LWE problem to SVP.

3.1 Kannan’s Embedding Attack

Kannan’s embedding attack [18] constructs a lattice (LKan below) from an LWE
instance so that an error vector e can be embedded in the shortest vector in
LKan. For an LWE instance (A,b) ∈ Z

m×n
q × Z

m
q , we define a matrix BKan as

BKan =

⎛
⎝

In A′

O qIm−n

0�

0�

b M

⎞
⎠ ∈ Z

(m+1)×(m+1),

where M is a constant and
(

In A′

O qIm−n

)
∈ Z

m×m with A′ ∈ Z
n×(m−n) is the

Hermite normal form of
(

A�

qIm

)
∈ Z

(n+m)×m. A typical choice of M for analyzing

the hardness of the LWE problem is M = 1, see e.g., [1,2,10]. From this and for
simplicity, we take M to be 1 here. We denote by LKan the lattice defined by the
basis matrix BKan. Note that the lattice LKan contains the vector (e 1) ∈ Z

m+1

as its element. It follows from the law of large numbers that

‖(e 1)‖ =

√√√√
m∑

i=1

e2i + 1 ≈
√

mE [e2i] + 1 =
√

mσ2
e + 1

30 S. Uemura et al.

where ei denotes the i-th entry of e for each 1 ≤ i ≤ m. On the other hand, by
the Gaussian heuristic, the norm of the shortest vector in LKan is estimated as

min

{
q,

√
m + 1
2πe

q(m−n)/(m+1)

}
.

Therefore, if the inequality

√
mσ2

e + 1 < min

{
q,

√
m + 1
2πe

q(m−n)/(m+1)

}

holds, the vector (e 1) is expected to be the shortest. In this case, once we find
(e 1) as the shortest vector in LKan, we can obtain the secret s by solving the
equation b = sA� + e.

3.2 Bai-Galbraith’s Embedding Attack

Unlike Kannan’s embedding attack, Bai-Galbraith’s embedding attack [9] con-
structs a lattice (LBG below) containing (s e 1) as its element. For the secret
s with a small norm, the vector (s e 1) can be the shortest one in LBG. In the
following, we describe this attack in detail.

For an LWE instance (A,b) ∈ Z
m×n
q × Z

m
q , we define a matrix BBG as

BBG =

⎛
⎝

νIn −A� 0�

O qIm 0�

0 b M

⎞
⎠ ∈ Z

(n+m+1)×(n+m+1), (3.1)

where ν = σe/σs and M ∈ Z is a constant. For the same reason as in the case
of Kannan’s embedding attack described in Subsect. 3.1, we set M = 1 (cf.
[3,5,10]). Note that for any other choice of M , a discussion similar to that in
the rest of this paper can be conducted. In the following, we set ν = 1 because
many LWE-based protocols set σs almost equal to σe [4,5,7]. Note that even if
ν
= 1, the following discussion can be applied by replacing σs and s with νσs

and νs, respectively.

Definition 5 (BG-lattices). Using the notation as above, we denote by LBG

the lattice with the basis matrix BBG ∈ Z
(m+n+1)×(m+n+1), and we refer to LBG

as a BG-lattice.

From the definition of the LWE problem (see Definition 3), we have b = sA� +e
mod q, and hence there exists a vector u ∈ Z

m that satisfies

b = sA� + e + qu.

Therefore, we have

(s − u 1) BBG =
(
s − sA� − qu + b 1

)
= (s e 1) ,

Shortest Vector in Bai-Galbraith’s Embedding to LWR 31

which implies that the lattice LBG contains (s e 1). As in Kannan’s embedding
attack, it follows from the law of large numbers that

‖(s e 1)‖ ≈
√

nσ2
s + mσ2

e + 1,

and the norm of the shortest vector in LBG is expected to be

min

{
q,

√
n + m + 1

2πe
qm/(n+m+1)

}
.

Therefore, if the inequality

√
nσ2

s + mσ2
e + 1 < min

{
q,

√
n + m + 1

2πe
qm/(n+m+1)

}
(3.2)

holds, the vector (s e 1) is expected to be the shortest vector in LBG. Hence,
under the inequality (3.2), we can find the secret s (with high probability) by
obtaining the shortest vector in LBG.

4 Our Analysis of Shortest Vectors in BG-Lattices

In this section, we show the existence of a certain short vector in a lattice con-
structed in Bai-Galbraith’s embedding attack against the LWR problem of the
parameter set (m,n, q, p). We use the same notation as in Sect. 3. Recall from
Subsect. 3.2 that the BG-lattice LBG (see Definition 5) constructed in the LWE
problem has the shortest vector of the form (s e 1) with high probability if
(3.2) holds, where s ∈ Z

n (resp. e ∈ Z
m) is a secret (resp. an error) vector in the

LWE problem transformed from the LWR problem. Unlike the LWE problem,
we will prove in Theorem 1 below that the BG-lattice LBG constructed in the
LWR problem contains a vector of the form (0 c p) which can be shorter than
(s e 1), where 0 ∈ Z

n and c ∈ Z
m. After proving Theorem 1, we will also

determine the condition in which (0 c p) is shorter than (s e 1) with high
probability. Note that in the rest of this paper, we only discuss Bai-Galbraith’s
embedding attack, but the same discussion can be applied to the case of Kan-
nan’s embedding attack. For details, see Remark 2 at the end of this section.

Here, we prove Theorem 1 which shows the existence of a certain short vector
described above.

Theorem 1. Let (A,b) ∈ Z
m×n
q × Z

m
p be an instance of the LWR problem. We

set b′ := �(q/p)b� ∈ Z
m
q , and

c := pb′ − qb ∈ Z
m.

Denoting by ci the i-th entry of c for each 1 ≤ i ≤ m, we then have

−p

2
< ci ≤ p

2
.

We also have that the vector (0 c p) ∈ Z
n+m+1 is contained in the BG-lattice

LBG constructed from (A,b′). If p divides q, we can take c = 0 ∈ Z
m.

32 S. Uemura et al.

Proof. The vector c can be written as

c = p

⌊
q

p
b
⌉

− qb = p

(⌊
q

p
b
⌉

− q

p
b
)

.

Since the absolute value of each entry of the vector
⌊

q
pb
⌉

− q
pb is bounded by

1/2, we have
−p

2
< ci ≤ p

2
for each 1 ≤ i ≤ m.

Assume that p divides q, i.e., q = kp for some integer k. In this case, we have

c = p

⌊
q

p
b
⌉

− qb = p (�kb� − kb) = p (kb − kb) = 0.

Let BBG be the matrix defined in (3.1) constructed from the LWE instance
(A,b′). Then one has

(0 − b p) BBG = (0 pb′ − qb p) = (0 c p) ∈ LBG.

�

Next, we discuss the condition under which the vector (0 c p) constructed in
Theorem 1 is the shortest vector in the BG-lattice LBG. Note that each entry
of c is expected to be uniformly distributed over the set of all integers in the
interval (−p

2 , p
2]. It follows from the law of large numbers that

‖c‖2 ≈
(
2
⌊

p
2

⌉
+ 1
)2 − 1

2
m ≈ p2 + 2p

12
m. (4.1)

If the inequality
‖(0 c p)‖ < ‖(s e 1)‖

holds, the shortest vector in LBG has the form (0 c p) with high probability.
From the law of large numbers together with (4.1), this inequality can be written
as

p2 + 2p

12
m + p2 < σ2

sn + σ2
em + 1.

By approximating the value σe by (2.4), we have

p2 + 2p

12
m + p2 < σ2

sn +
q2 + 2pq

12p2
m + 1. (4.2)

Thus, if (4.2) holds, the vector of the form (0 c p) is the shortest vector in
LBG with high probability.

Shortest Vector in Bai-Galbraith’s Embedding to LWR 33

Remark 2. Recall from Subsect. 3.1 that Kannan’s embedding attack can be
applied to the LWE problem, and that we can obtain the vector of the form
(e 1) as the shortest vector in the lattice LKan. However, for the LWE problem
which is transformed from the LWR problem, Kannan’s embedding attack might
find a vector of the form (c p) instead of (e 1).

Similar to the derivation of the inequality (4.2), the condition in which (c p)
is the shortest vector in LKan is obtained as

p2 + 2p

12
m + p2 <

q2 + 2pq

12p2
m + 1. (4.3)

This inequality is stricter than the inequality (4.2) because the first term on the
right-hand side of (4.2) does not appear in that of (4.3).

5 Second Shortest Vectors in BG-lattices

In this section, we explain that the second shortest vector in the BG-lattice for
the LWR problem of the parameter set (m,n, q, p, χs) can be (s e ± c 1 ± p)
instead of (s e 1), where s ∈ Z

n, e ∈ Z
m and c ∈ Z

m will be described below.
This implies that there exists a vector in the BG-lattice with the information
of the secret vector which is shorter than expected. We use the same notation
as in Sects. 3 and 4. In Theorem 1 of Sect. 4, we prove the existence of a vector
in the BG-lattice LBG of the form (0 c p) with 0 ≤ |ci| ≤ p/2 for each 1 ≤
i ≤ m. Recall also from Subsect. 3.2 that LBG contains a vector of the form
(s e 1), where s (resp. e) is the secret (resp. error) vector in the LWE problem
transformed from the LWR problem. Even if (0 c p) is the shortest vector in
LBG, the vector (s e 1) is still a short vector, provided that (3.2) holds. Since
the vectors (s e 1) and (0 c p) are linearly independent, the vector (s e 1)
can be the second shortest vector (Definition 2) in LBG. Furthermore, (s e 1)
as well as a vector in LBG of the form

(s e 1) + k (0 c p) (5.1)

for some integer k ∈ Z � {0} can be the second shortest vector, since both
(s e 1) and (0 c p) are short vectors.

The aim of this section is to discuss the probability that

‖ (s e + kc 1 + kp) ‖ < ‖ (s e 1) ‖ (5.2)

holds. For simplicity, we consider only the case of k = ±1, that is,

‖ (s e ± c 1 ± p) ‖ < ‖ (s e 1) ‖ (5.3)

which is equivalent to ‖e± c‖2 + (1 ± p)2 < ‖e‖2 + 1. Since p is constant, in the
following two subsections, we focus on the relation between ‖e ± c‖2 and ‖e‖2,
and estimate the probability of (5.3) by that of

‖e ± c‖ < ‖e‖. (5.4)

34 S. Uemura et al.

In the rest of this section, we assume that p does not divide q since otherwise
we can take c = 0, as stated in Theorem 1. This means that (5.2) does not hold
for any integer k.

If the inequality (5.2) holds, then the second shortest vector in LBG is shorter
than expected. Owing to the existence of such an unexpected vector, the ratio of
the norms of the second shortest vector and the third shortest vector is expected
to become large, compared to the case where (s e 1) is the second shortest
vector. This might affect the solvability of the SVP of BG-lattices for the LWR
problem if a discussion similar to that in Remark 1 is applicable.

5.1 Probability Distribution of ‖e ± c‖2

To simplify the notation, we first set r
2 :=
⌊

�q/2�
p

⌉
. Note that for each 1 ≤ i ≤ m,

the i-th entry ei of e follows the uniform distribution over {−r/2, . . . , r/2}, and
ci follows that over {− �p/2� , . . . , �p/2�}. Thus we have 0 ≤ |ei + ci| ≤ r+p

2 .
To estimate the probability of (5.4), we calculate the probability distribution

of ‖e±c‖2 by assuming that q > p2 (for the case of q < p2, see Remark 3 below).
The reason why we mainly consider the case of q > p2 is the following: It follows
from {− �p/2� , . . . , �p/2�} ⊂ {−r/2, . . . , r/2} that ‖c‖ < ‖e‖ holds with high
probability, by which we expect that the probability of (5.4) would be much
higher compared to the case of q < p2.

Since the distribution of each entry of c is symmetrical to the origin, the
distribution of ‖e + c‖2 is the same as that of ‖e − c‖2. Hence it suffices to
consider the distribution of ‖e + c‖2. Moreover, the probability distribution of
‖e + c‖2 is calculated as the product of the probabilities of the entries of e + c
since the i-th entries ei and ci are independently and identically distributed
respectively for each 1 ≤ i ≤ m. In the following, we calculate the probability of
ei + ci = k for each integer k, by considering two cases of |k|.

First, for the case of 0 ≤ |k| ≤ r−p
2 , the probability of ei + ci = k coincides

with that of ei = k − ci because −r/2 ≤ k − ci ≤ r/2 for any ci. Therefore we
have

Prob(ei + ci = k) =
�p/2�∑

d=−�p/2�
Prob(ei = k − d)Prob(ci = d)

≈
�p/2�∑

d=−�p/2�

1
r + 1

· 1
p + 1

≈ 1
r + 1

.

Second, in the case of r−p
2 < |k| ≤ r+p

2 , the probability of ei+ci = k coincides
with that of |k − ci| ≤ r

2 and ei = k − ci. The conditions |k − ci| ≤ r/2 and
ei = k − ci imply that

k − p

2
≤ k − ci ≤ k +

p

2
. (5.5)

If k is positive, the left-hand side of (5.5) is larger than − r
2 because of our

assumption that q > p2, whereas the right-hand side is larger than r
2 because

Shortest Vector in Bai-Galbraith’s Embedding to LWR 35

k > r−p
2 . Therefore the number of integers d in {− �p/2� , . . . , �p/2�} which

satisfy |k − d| ≤ r
2 is approximately r

2 − (k − p
2

)
= r+p

2 − k. Similarly, if k

is negative, the number is approximately r+p
2 + k. Hence, the probability of

ei + ci = k for each integer k with r−p
2 < |k| ≤ r+p

2 is

Prob(ei + ci = k) =
r+p
2 − |k|

(r + 1)(p + 1)
=

r + p − 2|k|
2(r + 1)(p + 1)

.

Combining the above two cases for |k|, we have

Prob(ei + ci = k) ≈

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
r + 1

if 0 ≤ |k| ≤ r−p
2 ,

r + p − 2|k|
2(r + 1)(p + 1)

if r−p
2 < |k| ≤ r+p

2 ,

0 otherwise.

We finally have

Prob(‖e + c‖2 = k) =
∑

(k1,...,km)∈S(k)

m∏
i=1

Prob(ei + ci = k), (5.6)

where

S(k) :=
{
(k1, k2, . . . , km) ∈ Z

m
∣∣ |ki| < r+p

2 ,
∑m

i=1 k2
i = k
}

.

Note that the right-hand side of (5.6) is not an analytical expression because of
the appearance of the set S(k).

Remark 3. If p2 is larger than q, we have the same discussion as above with p and
r swapped. This is because ci and ei are symmetric in the above discussion, and
they are uniformly distributed over {− �p/2� , . . . , �p/2�} and {−r/2, . . . , r/2},
respectively.

5.2 Lower Bound of Probability

In this subsection, we investigate the lower bound of the probability of (5.4).
For the lower bound of this probability, we have the following:

Theorem 2. Let a pair (A,b) ∈ Z
m×n
q ×Z

m
p be an instance of the LWR problem.

Set e :=
⌊

q
pb
⌉

− sA�. Let c ∈ Z
m be the vector as in Theorem 1. Then, we have

Prob

⎛
⎝

‖e + c‖ < ‖e‖
or

‖e − c‖ < ‖e‖

⎞
⎠ ≥ 2

(
1
2

− p2

8(q + p)

)m

. (5.7)

36 S. Uemura et al.

Proof. For each 1 ≤ i ≤ m, we denote by ei and ci the i-th entry of e and
c, respectively. To obtain the lower bound, we first calculate the probability of
|ei + ci| < |ei|. Putting r

2 :=
⌊

�q/2�
p

⌉
, we have

Prob(|ei + ci| < |ei|) = Prob(−2ei < ci < 0, ei < 0)
+ Prob(0 < ci < −2ei, ei < 0)

=
1

r + 1

r/2∑
ei=−r/2

min
{

2|ei|
p + 1

,
1
2

}

=
1

r + 1

⎧
⎨
⎩

�p/4�∑
ei=−�p/4�

2|ei|
p + 1

+
∑

�p/4�<|ei|<|r/2|

1
2

⎫
⎬
⎭

≈ p + 4
8(r + 1)

+
2r − p

4(r + 1)
=

1
2

− p

8(r + 1)

≈ 1
2

− p2

8(q + p)
.

Since the values ei and ci are independently and identically distributed respec-
tively, we have

Prob(‖e + c‖ < ‖e‖) ≥
m∏

i=1

Prob(|ei + ci| < |ei|)

≈
m∏

i=1

(
1
2

− p2

8(q + p)

)
=
(

1
2

− p2

8(q + p)

)m

.

Similarly, we also have

Prob(‖e − c‖ < ‖e‖) ≥
(

1
2

− p2

8(q + p)

)m

.

As ‖e+ c‖ < ‖e‖ and ‖e− c‖ < ‖e‖ do not hold simultaneously, we finally have
(5.7). �

This theorem implies that when the ratio p2/q becomes smaller, it becomes
more likely that ‖e ± c‖2 < ‖e‖2.
Remark 4. If the sample number m is larger, the lower bound—the right-hand
side of the inequality (5.7)—becomes smaller. This implies that the second short-
est vector in LBG is (s e 1) with high probability if m is sufficiently large; it
follows from the law of large numbers that

‖e ± c‖2 ≈ mE[e2i] + mE[c2i] ≥ mE[e2i] ≈ ‖e‖2

holds asymptotically. Therefore, (5.3) does not hold for m � 0.

Shortest Vector in Bai-Galbraith’s Embedding to LWR 37

5.3 Experimental Results

We conducted experiments to obtain the probability that the second shortest
vector in LBG is (s e ± kc 1 ± kp) for some non-zero integer k. In this case,
(5.2) definitely holds.

Our experiments was set as follows. We set n = 20, q = 401 and χs a
rounded Gaussian distribution with σs =

√
(q2 + 2pq)/12p2, and generated

LWR instances for several values of m and p. To obtain the shortest vectors,
we applied the BKZ algorithm [16] with the parameter β = 30 as a lattice basis
reduction. We also obtained the second shortest vectors in the BG-lattices for the
LWR problem. We conducted this experiment 1000 times for each parameter set
(m, p). We used Python 3.7.6 to generate LWR instances and fpylll (version 0.4.0)
for the BKZ algorithm on a computer with macOS Catalina 10.15.7. whose CPU
is 2.3GHz Intel Core i7 (quad core) CPU with the 32GB of RAM. The source
codes are available at our GitHub repository [26].

Table 1. The number that vectors of the form (s e + kc 1 + kp) for some non-
zero integer k are obtained as the second shortest vectors in BG-lattices for the LWR
problem with the parameters (n, q) = (20, 401), where we take the rounded Gaussian
distribution with σs =

√
(q2 + 2pq)/12p2 as χs.

m p (0 ± c ± p) is the shortest (s e + kc 1 + kp) is the 2nd shortest

40

9 1000 72 (7.2%)

12 1000 66 (6.6%)

15 1000 9 (0.9%)

45

9 1000 142 (14.2%)

12 1000 58 (5.8%)

15 1000 8 (0.8%)

In Table 1, we summarize our experimental results. Table 1 illustrates that the
shortest vectors in BG-lattices are (0 ±c ±p) in all the cases we experimented.
We also confirmed from Table 1 that when the ratio p2/q becomes smaller, it
becomes more likely that the second shortest vector is (s e + kc 1 + kp) for
some non-zero integer k as expected from Theorem 2. This shows that a BG-
lattice for the LWR problem with p2
 q contains (with high probability) a
shorter vector with the information of the secret vector s than expected.

6 Conclusion

In this paper, we presented a theoretical analysis of the structure of lattices
(referred to as BG-lattices) that appear in Bai-Galbraith’s embedding attack
applied to the LWR problem. In particular, we proved the existence of a certain
vector of the form (0 c p) which can be the shortest in a BG-lattice. We also

38 S. Uemura et al.

determined the condition of the parameters of the LWR problem under which
such a vector is the shortest one in the BG-lattice with high probability. The
second shortest vector in the BG-lattice for the LWR problem is expected to
be a vector of the form (s e 1) with the secret vector s and the error vector
e. However, because of the existence of the shorter vector of the form (0 c p),
a vector of the form (s e 1) + k(0 c p) for some non-zero integer k can be
the second shortest vector in the BG-lattice instead. We determined the lower
bound of the probability that this occurs. In addition, we confirmed from our
experimental results that (0 c p) are exactly the shortest ones in BG-lattices.
The experimental results also show a relation between the ratio p2/q (q and p
are parameters of the LWR problem) and the probability that (s e 1)+ k(0 c p)
is obtained as the second shortest vector in a BG-lattice.

From the results in this study, we show that the LWR problem of a parameter
set with the condition p � q and p2
 q have vectors shorter than those expected
in BG-lattices. Since the parameter sets of SABER and Round5 do not satisfy
the above condition, the analysis of these cryptosystems is not affected by our
findings.

While this work focuses on a theoretical observation, our future work is to
precisely analyze how our results in this paper influence the security of LWR-
based cryptosystems. For this, we need to obtain an analytical expression of the
probability distribution of the second successive minimum of a BG-lattice, or to
find a stricter lower bound of the probability.

Appendix: Expected Norm of Error Vector

Let e be an error vector of the LWE problem transformed from the LWR problem
of the parameter set (m,n, q, p, χs) (see Subsect. 2.4 for details). In this appendix,
we shall modify the estimation (2.5) of ‖e‖2 in general case to that in the case
where q = 2up for some u ∈ Z, as pointed out in Subsect. 2.4.

Assume that q = 2up for some u ∈ Z. Recall from Subsect. 2.4 that for
each 1 ≤ i ≤ m, the i-th entry of the vector e approximately follows a uniform
distribution over the set {−u + 1, . . . , u}, and thus we have the approximate
equality (2.6): Var(ei) = σ2

e ≈ q2−p2

12p2 . Since E[ei] ≈ 1
2 , we can estimate the value

of ‖e‖2 as follows:

‖e‖2 =
m∑

i=1

e2i ≈ mE[e2i] = m
(
Var(ei) + E[ei]2

)
= m

(
σ2

e +
1
4

)

= m · q2 + 2p2

12p2
.

We conducted an experiment to confirm this by the following method: We
generated one million LWR instances with m = 768, n = 256, q = 213 = 8192
and p = 210 = 1024. The distribution χs is a centered binomial distribution with
μ = 8. This is the parameter set of SABER-KEM; as SABER-KEM is Module-
LWR based, this is the parameter set of the LWR problem transformed from

Shortest Vector in Bai-Galbraith’s Embedding to LWR 39

the Module-LWR problem. We obtained error vectors e by transforming the
generated LWR instances to LWE instances. We create a histogram of the value
‖e‖2, and depict it in Fig. 1. Our experimental results show that the expected
value of ‖e‖2 is close to m · q2+2p2

12p2 .

Fig. 1. Histogram of the value of ‖e‖2

References

1. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12160-4 18

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

4. Alkim, E., et al.: FrodoKEM Learning With Errors Key Encapsulation Algorithm
Specifications and Supporting Documentation (2020). https://frodokem.org/files/
FrodoKEM-specification-20200930.pdf

5. Alkim, E., et al.: NewHope Algorithm Specifications and Supporting Documenta-
tion (2020). https://newhopecrypto.org/data/NewHope 2019 07 10.pdf

https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://frodokem.org/files/FrodoKEM-specification-20200930.pdf
https://frodokem.org/files/FrodoKEM-specification-20200930.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf

40 S. Uemura et al.

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

7. Avanzi, R., et al.: CRYSTALS-KYBER Algorithm Specifications and Support-
ing Documents (version 3.0) (2020). https://pq-crystals.org/kyber/data/kyber-
specification-round3.pdf

8. Baan, H., et al.: Round5: KEM and PKE based on (Ring) Learning with Rounding
(2020). https://round5.org/doc/Round5 Submission042020.pdf

9. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

10. Bai, S., Miller, S., Wen, W.: A refined analysis of the cost for solving LWE via
uSVP. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019.
LNCS, vol. 11627, pp. 181–205. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23696-0 10

11. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

12. Basso, A., et al.: SABER: Mod-LWR based KEM (Round 3 Submission) (2020).
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/SaberRound3Package.
zip

13. Bernstein, D.J., et al.: NTRU Prime: round 3 (2020). https://ntruprime.cr.yp.to/
nist/ntruprime-20201007.pdf

14. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

15. Chen, C., et al.: NTRU Algorithm Specifications and Supporting Documents
(2020). https://ntru.org/release/NIST-PQ-Submission-NTRU-20201016.tar.gz

16. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

17. Chen, Y.: Réduction de Réseau Et Sécurité Concrète Du Chiffrement
Complètement Homomorphe, Dissertation for Ph.D. Degree. Ecole Normale
Supérieure, Paris (2013)

18. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

19. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

20. Le, H.Q., Mishra, P.K., Duong, D.H., Yasuda, M.: Solving LWR via BDD strategy:
modulus switching approach. In: Camenisch, J., Papadimitratos, P. (eds.) CANS
2018. LNCS, vol. 11124, pp. 357–376. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00434-7 18

21. Nguyen, P.: Comment on PQC forum (2018). https://groups.google.com/a/list.
nist.gov/g/pqc-forum/c/nZBIBvYmmUI/m/J0pug16CBgAJ. Accessed 16 June
2021

22. NIST: Post-Quantum Cryptography. https://csrc.nist.gov/projects/post-
quantum-cryptography. Accessed 16 June 2021

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing (STOC 2005), pp. 84–93 (2005)

https://doi.org/10.1007/978-3-642-22006-7_34
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://round5.org/doc/Round5_Submission042020.pdf
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/SaberRound3Package.zip
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/SaberRound3Package.zip
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://ntru.org/release/NIST-PQ-Submission-NTRU-20201016.tar.gz
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-030-00434-7_18
https://doi.org/10.1007/978-3-030-00434-7_18
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/nZBIBvYmmUI/m/J0pug16CBgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/nZBIBvYmmUI/m/J0pug16CBgAJ
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Shortest Vector in Bai-Galbraith’s Embedding to LWR 41

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) Article 34 (2009)

25. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994). https://
doi.org/10.1007/BF01581144

26. https://github.com/shusakuU/analysis of BG lattice IWSEC 2021

https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://github.com/shusakuU/analysis_of_BG_lattice_IWSEC_2021

System Security

KPRM: Kernel Page Restriction
Mechanism to Prevent Kernel Memory

Corruption

Hiroki Kuzuno1(B) and Toshihiro Yamauchi2

1 Intelligent Systems Laboratory, SECOM Co., Ltd., Tokyo, Japan
kuzuno@s.okayama-u.ac.jp

2 Graduate School of Natural Science and Technology, Okayama University,
Okayama, Japan

yamauchi@cs.okayama-u.ac.jp

Abstract. An operating system (OS) comprises a mechanism for sharing
the kernel address space with each user process. An adversary’s user pro-
cess compromises the OS kernel through memory corruption, exploiting
the kernel vulnerability. It overwrites the kernel code related to security
features or the kernel data containing privilege information.

Process-local memory and system call isolation divide one kernel
address space into multiple kernel address spaces. While user processes
create their own kernel address space, these methods leave the kernel code
vulnerable. Further, an adversary’s user process can involve malicious code
that elevates from user mode to kernel mode.

Herein, we propose the kernel page restriction mechanism (KPRM),
which is a novel security design that prohibits vulnerable kernel code exe-
cution and prevents writing to the kernel data from an adversary’s user
process. The KPRM dynamically unmaps the kernel page of vulnerable
kernel code and attack target kernel data from the kernel address space.
This removes the reference of the unmapped kernel page from the ker-
nel page table at the system call invocation. The KPRM achieves that
an adversary’s user process can not employ the reference of unmapped
kernel page to exploit the kernel through vulnerable kernel code on the
running kernel. We implemented KPRM on the latest Linux kernel and
showed that it successfully thwarts actual proof-of-concept kernel vulner-
ability attacks that may cause kernel memory corruption. In addition, the
KPRM performance results indicated limited kernel processing overhead
in software benchmarks and a low impact on user applications.

1 Introduction

The operating system (OS) thwarts kernel vulnerability attacks that aim to
subvert the kernel security features and then modify privilege information to
compromise computer devices. Kernel vulnerability attacks rely on the user pro-
cesses that share the kernel address space in the kernel mode; then, an adver-
sary’s user process can execute the kernel memory corruption available kernel
code (vulnerable kernel code).
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 45–63, 2021.
https://doi.org/10.1007/978-3-030-85987-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_3&domain=pdf
http://orcid.org/0000-0003-2686-2541
http://orcid.org/0000-0001-6226-5715
https://doi.org/10.1007/978-3-030-85987-9_3

46 H. Kuzuno and T. Yamauchi

To prevent kernel memory corruption, the kernel adopts a verification of ker-
nel control flow integrity (CFI) [1], the kernel uses kernel address randomization
(KASLR) [2], or a CPU privilege mechanism for accessing and execution permis-
sion between the user mode and the kernel mode [3]. Additionally, process-local
memory (Proclocal) allocates a specific kernel address space for a user process
[4], and system call isolation (SCI) creates a dedicated kernel address space for
the processing system call’s routines [5].

While these approaches can effectively prevent the kernel memory corruption,
they leave two issues remain unaddressed. First, the OS kernel still requires full
kernel page mapping of kernel code, where vulnerable kernel code and attack tar-
geted kernel code or remaining kernel data are potentially share the same kernel
address space. Second, Proclocal can protect kernel data of specific kernel com-
ponents without user process-related information, and SCI creates a statically
duplicated kernel address space for each user process owing to stable behavior
for kernel processing. These follow the idea that the vulnerable kernel code can
be invoked to escalate privileges and evade security features [6,7].

In this paper, we propose the kernel page restriction mechanism (KPRM),
which is a novel security capability that mitigates memory corruption through
kernel vulnerabilities. The design of KPRM can extend the controlling of vulner-
able kernel code execution and kernel data access of an adversary’s user process
on the running kernel. KPRM uses two types of kernel pages, namely, normal
kernel pages and restricted kernel pages, to run the kernel and user processes.
KPRM assigns vulnerable kernel code and protected kernel data (e.g., user iden-
tifiers) to a restricted kernel page; then, KPRM stores the remaining kernel code
and kernel data in normal kernel pages. KPRM can manually employ the already
known kernel vulnerability (e.g., common vulnerabilities and exposures (CVE)
information or online available proof-of-concept code) to identify the vulnera-
ble kernel code. KPRM achieves two objectives. First, the kernel page handling
assures that the adversary’s user process can not access restricted kernel page
references in their own kernel address space to mitigate memory corruption. Sec-
ond, KPRM dynamically unmaps restricted kernel page references for the adver-
sary’s user process at the system call invocation. KPRM applies this mechanism
to all user processes without benign identification are manually registered to the
benign user process list on the running kernel. KPRM ensures that kernel can
reduce instances where the kernel address space is shared by both vulnerable
kernel code and attack target kernel code or kernel data.

We implemented two types of KPRM prototypes on the latest Linux ker-
nel. The first implementation aims to adopt a security capability that requires
an additional kernel address space. It reserves vulnerable kernel code and pro-
tected kernel data for restricted kernel pages for the adversary’s user process.
KPRM prepares process-context identifiers (PCID) of the translation lookaside
buffer (TLB) for switching page tables of kernel address spaces to reduce the
TLB flushing cost. The second implementation aims to lower the overhead. It
is possible to reserve protected kernel data for restricted kernel pages owing to
user processes sharing kernel address space. KPRM only handles kernel page

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 47

references of kernel code related to the adversary’s user process and related
information for reducing kernel misuse during interruption processing.

Fig. 1. Page table management of virtual address and physical address with attack
regions

The primary contributions of this study are summarized as follows:

1. The proposed KPRM is a novel approach for kernel memory corruption mit-
igation for an adversary’s user process in the kernel layer. We consider the
key requirements for restricting the execution of vulnerable kernel code and
access to kernel data on KPRM implementations. The threat model, capabil-
ity, limitations, portability, and hardware consideration are also discussed.

2. We evaluate the efficacy of the implemented KPRM based on how well it pre-
vents the vulnerable kernel code invocation and illegal modification of the ker-
nel data through PoC user processes. We measure KPRM’s performance using
software benchmarks and actual applications such as the Apache web server
and compiler. The results of our experiment indicate that KPRM implemen-
tations have low latency overhead effects for the kernel and acceptable cost
for user application processing.

2 Background

2.1 Address Space and Page Table

Modern kernels support the virtual memory mechanism that provides a virtual
address space that is larger than the physical memory for each user process.
Linux x86 64 stores the virtual address of the page table in the CR3 register.
As depicted in Fig. 1, the virtual address space is separated into two regions for
the user and kernel modes.

Linux has a multiple-page table structure that creates virtual address spaces.
It can be used to change a virtual address (48 bits on x86 64) to a physical
address on the page table. The smallest set is a page (4 KB on x86 64). The
kernel page stores the kernel code and kernel data in the specific virtual address
space for the kernel mode.

48 H. Kuzuno and T. Yamauchi

2.2 Kernel Memory Corruption Vulnerability

Kernel memory corruption is a type of kernel vulnerability that leads to the
privilege escalation attack [8]. The list of CVE registers 130 Linux kernel memory
corruption vulnerabilities [9]. The attack regions of Fig. 1 demonstrate that a
vulnerable kernel code directly modifies the kernel code or kernel data in the
kernel address space.

To achieve a privilege escalation attack through kernel memory corruption,
an adversary’s user process requires the overwriting of the UID variable that is
the user identifier in the kernel address space. Linux adopts mandatory access
control of the Linux security module (LSM) to restrict the privilege capability of
the administrator. The adversary’s user process has to also replace LSM’s kernel
code of security hook list with the non-checking access control kernel code.

3 Threat Model

We postulate that a threat model of the kernel that contains an adversary’s
environment and kernel vulnerability is as follows:

– Adversary: An adversary takes normal user privileges and controls the shell
command with the PoC kernel vulnerability code.

– Kernel: It provides the sharing of the kernel address space for every user
process. The kernel address space contains the vulnerable kernel code, attack
target kernel code, and kernel data.

– Kernel vulnerability: This is identified as a known piece of vulnerable
kernel code. The adversary’s user process executes the vulnerable kernel code
to modify any kernel code or kernel data that is present in the kernel address
space.

– Attack target: It contains the security feature of the kernel code (i.e.,
mandatory access control) and privilege information of kernel data (i.e., user
identifier). These are the key points of the administrator’s privilege restriction
on the kernel.

From this point, to achieve kernel memory corruption, the adversary’s user
process must access and execute the kernel vulnerability code at the attack’s
starting point. The adversary’s process can access any kernel virtual address
from the vulnerable kernel code in the same kernel address space. Therefore, the
adversary’s user process alters the security features of the kernel code. Subse-
quently, it forcibly invokes the kernel code that modifies the privilege information
of the kernel data for privilege escalation.

Building the KPRM’s resilience requires the protection of security features
and privilege information from the adversary’s environment. KPRM has pre-
pared a list of vulnerable kernel code, attack target of kernel code and kernel
data at the KPRM kernel booting. Additionally, KPRM covers all user processes
that contain the adversary’s user process. To reduce the performance overhead,
KPRM manages a benign user process list. It manually registers the flag of
benign to avoid the restriction of KPRM for each user process on the running
kernel.

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 49

Fig. 2. Comparison of kernel page restriction mechanism

4 Design and Implementation

4.1 Design Requirements of the KPRM

We designed KPRM to achieve the primary requirements of preventing the invo-
cation of the vulnerable kernel code and the illegal modification of kernel data.

– Requirement for restriction of kernel page reference
User processes share the kernel address space as the kernel page table, which
manages all the kernel code and data. User processes employ kernel features
and store privilege information in the kernel address space (e.g., mandatory
access control, user identifiers). The requirement is to prevent vulnerable
kernel code invocation, followed by illegal kernel data modification. It prevents
malicious behavior from the adversary’s user process on the running kernel.

4.2 Design Overview

To satisfy the requirements of KPRM to enhance the kernel capability, the fol-
lowing design requirements must be fulfilled:

– Dynamic kernel page reference management
The KPRM design provides normal and restricted kernel pages. KPRM
relies on two types of pages and assigns vulnerable kernel code and privi-
lege information of kernel data to restricted kernel pages for controlling the
kernel address space. KPRM unmaps the restricted page references before the
adversary’s user process can execute vulnerable kernel code. This mechanism

50 H. Kuzuno and T. Yamauchi

ensures that restricted pages and normal pages are not in the same kernel
address space. KPRM maintains kernel resilience by keeping the adversary’s
user process from causing memory corruption in the kernel address space.

Figure 2 depicts the adversary’s user process X on the KPRM kernel. The
restricted kernel pages are assigned to vulnerable kernel code, the kernel code,
and kernel data of the adversary’s user process. The KPRM handles the kernel
page references for controlling the execution privilege and data access privilege
on the restricted kernel page using unmapping management from the kernel
address space. The adversary’s user process cannot invoke the vulnerable kernel
code and access the kernel data on restricted pages.

4.3 Kernel Page Types

KPRM provides two types of page structures, the restricted kernel page list, and
benign user process list for the kernel.

– Normal kernel page: This is shared by every user process and kernel task.
It contains the kernel code and kernel data.

– Restricted kernel page: This is assigned to an adversary’s user process.
KPRM unmaps restricted kernel page references during kernel execution.

To create a restricted kernel page list, KPRM can automatically calculate a
valid page frame number from the virtual address of kernel code and kernel data.
KPRM specifies restricted kernel pages when all the vulnerable kernel code and
kernel data are identified at the kernel booting. Additionally, KPRM manages
the restricted kernel page list that stores and deletes a restricted kernel page and
the benign user process list that manually contains benign user process identifiers
to avoid the restricted kernel page management at the running kernel.

4.4 Restricted Kernel Page Object

KPRM supports the following kernel code and kernel data for protection with a
restricted kernel page.

– Kernel code: It is a component of the kernel features
– Kernel data: It is a variable of privilege information

Specifically, KPRM assumes that kernel code is already known, and that the
kernel vulnerability and kernel data are credential variables of the running user
process.

4.5 Timing of Restricted Kernel Page Management

The KPRM requires handling of the user process and kernel for accessible ker-
nel pages. The timing of the KPRM in the kernel layer assumes that KPRM
interrupts the user process behavior to handle a kernel page reference before the
system call invocation. Moreover, the KPRM manages all the page table entries
of the page table to check whether a kernel page matches with the restricted
kernel page.

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 51

Fig. 3. Implementation 1 of kernel page restriction mechanism

4.6 Attack Situations

KPRM manages vulnerable kernel code to protect the kernel from memory cor-
ruption in the following attack situations.

– Situation 1: The vulnerable kernel code and attack target kernel code or
kernel data are on a normal kernel page. The adversary’s user process can
execute the vulnerable kernel code that can override any kernel code or data
on the normal kernel page.

– Situation 2: The vulnerable kernel code is on a restricted kernel page. The
adversary’s user process cannot access any restricted kernel page. If the adver-
sary’s user process attempts to execute the vulnerable kernel code, the kernel
issues a page fault; KPRM does not allow execution of the vulnerable kernel
code for the adversary’s user process, which is killed after completion of the
page fault handler.

– Situation 3: The vulnerable kernel code is on a normal kernel page and
the attack target kernel code or kernel data is on a restricted kernel page. If
the adversary’s user process executes the vulnerable kernel code that tries to
override the target kernel code or kernel data, the kernel issues a page fault;
KPRM catches this page fault, and then kills the adversary’s user process
owing to access of the restricted kernel page.

4.7 Implementation

We implemented KPRM on a Linux kernel with x86 64 CPU architecture. Linux
with KPRM manages the kernel page table that controls the visible kernel pages
for an adversary’s user process.

52 H. Kuzuno and T. Yamauchi

Fig. 4. Implementation 2 of kernel page restriction mechanism

Table 1. Implementations of KPRM (◦: covered; •: non-covered;).

Item Implementation 1 Implementation 2

Kernel data protection ◦ ◦
Kernel code restriction ◦ •
Stability effect Low High

Performance effect High Low

Table 1 illustrates the KPRM implementations, comparing their different
characteristics and effects. Figure 3 shows that KPRM implementation 1 can pre-
vent invocation of vulnerable kernel code and protect kernel data with restricted
kernel pages on the additional kernel address space of kernel page table for the
adversary’s user process. Figure 4 shows that KPRM implementation 2 can pre-
vent kernel data memory corruption. It requires complex restricted kernel page
handling on the shared kernel address space of one kernel page table.

Restricted Kernel Page Management. Linux with KPRM handles benign
identification benign flag on the struct task struct to user process. KPRM
enables benign flag to refer application binary’s absolute path within the benign
user process list benign user process list. This list is manually created in the
kernel source code. Linux with KPRM also manages the restricted kernel page
list restricted page list that stores the restricted kernel page information
including the virtual address. A virtual address is related to the kernel code or
kernel data.

Implementation 1. It adopts an additional kernel page table with the Linux
kernel page table structure (Fig. 3). The KPRM kernel creates the kernel address

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 53

Fig. 5. KPRM for the adversary’s user process

space of the page table for the kernel and it is restricted to system calls. The
additional kernel page table is the variable kprm of mm strct on the struct
task struct.

The additional kernel page table duplicates the initial value pgd of init mm
to kprm for the user process creation. During the running of the kernel, the
KPRM kernel prepares the PCID of TLB and then writes kprm in current to
the CR3 register for system call invocation. KPRM also applies the timing of
restricted kernel page handling.

The Linux kernel executes a task under the kernel address space constructed
from variable pgd of current when the kernel receives an asynchronous interrup-
tion. To overcome the issue of interruption, implementation 1 of KPRM kernel
switches to the kernel address space from the additional kernel address space.
This requires the writing of the CR3 register with the kernel page tables as the
variable pgd of current with PCID of TLB.

Implementation 2. It adopts the directory management of the Linux kernel
page table (Fig. 4). The KPRM kernel uses the variable pgd of current at the
system call invocation for the timing of restricted kernel page handling.

The KPRM kernel directory modifies the original kernel page table, which
leads to unstable behavior during interruption processing. For handling an inter-
ruption, implementation 2 of KPRM kernel affixes the restricted kernel page
references to the original kernel page table.

Page Fault. Both the implementations of the KPRM kernels catch the page
fault with the do page fault or the do double fault function. These functions

54 H. Kuzuno and T. Yamauchi

indicate the virtual address of the cause of the page fault. Subsequently, the
KPRM kernel inspects whether the virtual address is available for the user pro-
cess. It further determines the access decision and maps the restricted kernel
page to the kernel page table when the user process is valid. Otherwise, it uses
force sig info to send SIGKILL to the user process.

Restricted Kernel Page Handling. The KPRM kernel automatically adopts
the restricted kernel page handling for the adversary’s user process. The handling
timing is that the KPRM kernel adopts the handling steps before system call
invocation in the entry SYSCALL 64 function.

The page handling mechanism identifies the page number from the virtual
address and subsequently unmaps the restricted kernel page from the target
kernel page table with the remove pagetable function. The restricted kernel
page is also unmapped from the direct mapping region.

KPRM manages the page fault and trap handling related to a restricted
kernel page. Figure 5 shows the handling mechanism for an adversary process,
and the process is described below.

1. KPRM creates and stores restricted kernel pages to the restricted kernel page
list and the benign user process list at kernel booting.

2. An adversary’s user process starts the system call execution, following which
the KPRM traps the system call routing and moves to KPRM processing.

3. KPRM determines adversary’s user process identifies with benign flag is off,
and then KPRM restores the restricted kernel pages from the restricted kernel
page list and subsequently unmaps all of them in the kernel page table.

4. The system call is invoked along with access to the kernel code of the system
call routine, following which the kernel issues the page fault and KPRM traps
the page fault.

5. KPRM identifies the virtual address of the page fault that indicates the virtual
address of kernel code is on the restricted kernel page.
(a) In case of an invalid accesses of the restricted kernel page, KPRM denies

access from the user process.
(b) If the access is valid, KPRM maps the restricted kernel page of the kernel

code to the kernel page table for the user process to continue.
6. The system call routine’s kernel code accesses kernel data; then, the kernel

also issues the page fault, and KPRM traps the page fault.
7. KPRM identifies the virtual address of the page fault that indicates the virtual

address of kernel data is on the restricted kernel page.
(a) In case of an invalid access of kernel data on the restricted kernel page,

KPRM denies access from the user process.
(b) If the access is valid, KPRM maps the restricted kernel page of kernel

data to the kernel page table for the user process to continue.
8. If KPRM determines an adversary’s process, access is not allowed on the

restricted kernel page, and KPRM sends a signal to the user process.

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 55

Fig. 6. Handling of restricted kernel page reference for the actual kernel vulnerability

4.8 Case Study

Vulnerable Kernel Code Invocation and Memory Corruption: As a
case study of actual kernel memory corruption vulnerability, Fig. 6 shows that
CVE-2017-16995 [10] PoC code invokes the vulnerable kernel code at the eBPF
system call. The vulnerable kernel code is the map update elem function of
kernel/bpf/syscall.c. The adversary’s user process tries to modify the virtual
address of the privilege information of kernel data on the kernel address space
to execute the shell with administrator privileges.

To prevent such attacks, both implementations of the KPRM kernel specify
privilege information to the restricted kernel page. The adversary’s user pro-
cess of the PoC code cannot modify the restricted kernel page. Additionally,
implementation 1 of the KPRM kernel specifies the vulnerable kernel code as
map update elem function to the restricted kernel page. Then, the adversary’s
user process cannot invoke the vulnerable kernel code. Next, a page fault of the
restricted kernel pages occurs. Both the implementations of the KPRM kernel
can catch this page fault to determine whether to send SIGKILL to the attack
process in the page fault handler.

5 Evaluation

5.1 Purpose and Environment

The evaluation objectives are to identify security capabilities and overhead mea-
surements for the user process and KPRM with the kernel. The evaluation topics
are as follows:

56 H. Kuzuno and T. Yamauchi

Fig. 7. Attack prevention case of vul-
nerable kernel code invocation

Fig. 8. Attack prevention case of kernel
data access

1. Prevention of vulnerable kernel code access and kernel memory cor-
ruption: The evaluation of whether the KPRM kernel can prevent vulnerable
kernel code execution and protect kernel data of privilege information when
an adversary’s user process tries to exploit an actual kernel vulnerability at
system call invocation.

2. Measurement of system call overhead: To measure the implementation
effect for kernel feasibility, a benchmark software was used to calculate the
overhead of system call invocation latency.

3. Measurement of application overhead: The performance overhead for
the application was measured using a web benchmark software and kernel
compilation of Linux kernel on the KPRM kernel.

The KPRM was evaluated on the Linux kernel 4.4.114 with CVE-2017-16995
kernel vulnerability in terms of practical security capability and the Linux kernel
5.0.0 for performance measurement. The performance overhead is not different
between Linux kernel 4.4.114 and 5.0.0. The evaluation environment for the sys-
tem performance and a web server was executed on a physical machine equipped
with an Intel (R) Core (TM) i7-7700HQ (2.80 GHz, x86 64) processor with 16
GB memory. The web client machine was equipped with an Intel (R) Core (TM)
i5 4200U (1.6 GHz) processor with 8 GB of memory, running Windows 10. The
Linux distribution used was Debian 9.0; the CVE-2017-16995 PoC code [10]
was modified to handle any kernel address space. The KPRM implementation
required 40 source files and 1,832 lines in the Linux kernels.

5.2 Prevention of Vulnerable Kernel Code Access and Kernel
Memory Corruption

The prevention of vulnerable kernel code invocation and the protection of priv-
ilege kernel data on the KPRM kernel is achieved through the eBPF kernel
attack with CVE-2017-16995 [10]. The PoC code invokes the map update elem
function to execute the malicious code to try to modify the cred variable of
the privilege kernel data of the running user process at the sys bpf system call.
The KPRM kernel prepares the restricted kernel page containing the vulnerable
kernel code and targeted privilege kernel data.

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 57

Table 2. One time system call invocation overhead of KPRM kernel (µs)

System call Vanilla kernel Implementation 1 Implementation 2

open/close 0.532 1.187 (0.655) 1.119 (0.587)

read 0.276 0.896 (0.620) 0.838 (0.562)

write 0.238 0.856 (0.617) 0.796 (0.557)

stat 0.547 1.251 (0.703) 1.173 (0.626)

fstat 0.291 0.938 (0.647) 0.873 (0.582)

Figure 7 shows that the adversary’s user process tries to invoke the
map update elem function during the sys bpf system call processing at line
5. The KPRM kernel proceeds with the restricted kernel page handling at line
6; thereafter, it can catch the page fault that contains the virtual address of
the vulnerable kernel code. In this situation, the KPRM kernel determines the
running process that requests invalid access to the restricted kernel page and
then sends SIGKILL to stop the adversary’s user process.

Figure 8 shows the prevention success case of memory corruption. The user
www-data with user id 33 also executes the PoC code at line 1. The adversary’s
user process tries to modify the cred struct of the privilege kernel data to the
root with user id 0 at lines 9 to 11. The KPRM kernel automatically restricts the
access of the adversary’s user process to the privilege kernel data on the restricted
kernel page. Finally, the adversary’s user process runs the shell program without
administrator privilege at line 14.

From the results, the KPRM kernel can prohibit vulnerable kernel code invo-
cation and protect the privilege kernel data to prevent memory corruption from
an actual kernel vulnerability attack with the stable behavior for running the
kernel and user process.

5.3 Measurement of System Call Overhead

For the measurement of the performance overhead, we compare the Linux kernel
using the KPRM measurement with a vanilla kernel. The benchmark software
LMbench was executed 10 times to determine the average system call overhead.
The result was the overhead time of kernel with KPRM that incurs a page
handling cost for each system call invocation.

Table 2 summarizes the lmbench result for each system call invocation. Imple-
mentation 1 and 2 had the highest overhead is for stat (0.703 µs and 0.626 µs),
whereas the lowest overhead was for write (0.617 µs and 0.557 µs).

58 H. Kuzuno and T. Yamauchi

Table 3. ApacheBench overhead of KPRM kernel (µs).

File size (KB) Vanilla kernel Implementation 1 Implementation 2

1 599.143 623.667 (4.093%) 617.167 (3.008%)

10 764.250 784.250 (2.617%) 773.333 (1.188%)

100 2,443.714 2,509.167 (2.678%) 2502.667 (2.412%)

Table 4. Kernel building overhead of KPRM kernel (s)

Vanilla kernel Implementation 1 Implementation 2

5926.644 (s) 6072.413 (2.459%) 6056.629 (2.193%)

5.4 Measurement of Application Overhead

We measured the web application process overhead and kernel compiling over-
head for the vanilla kernel and KPRM kernel. The web application process used
was an Apache 2.4.25 web server. The benchmark software was ApacheBench
2.4 for the web client. The network environment was 1 Gbps. The benchmark
environment of ApacheBench was a download request average of 100,000 HTTP
accesses to file sizes of 1 KB, 10 KB, and 100 KB in one connection.

Table 3 indicates that implementation 1 of the KPRM kernel has an average
overhead of 2.617%–4.093% and the implementation 2 of the KPRM kernel has
an average overhead of 1.188%–3.008% for each file download access.

The kernel compiling overhead measures the processing time of specific appli-
cations (i.e., compiler and linker). The compile target was Linux kernel 5.0.0
source code with Debian 9.0 kernel configuration (e.g., default .config file) that
was compiled five times to determine the average kernel processing time.

Table 4 indicates that implementation 1 and 2 of the KPRM kernel had kernel
compiling overhead of 2.459% and 2.193%, respectively.

6 Discussion

6.1 Kernel Resilience

During the evaluation, the KPRM kernel successfully prevented access to the
restricted kernel page from the PoC of the eBPF kernel vulnerability attack.
The KPRM kernel can protect the kernel data and disable invocation of the
vulnerable kernel code by the malicious program. Therefore, the KPRM realizes
kernel resilience such that the kernel address space isolates the vulnerable kernel
code from the attack target kernel code or kernel data for the execution of the
adversary’s user process. It addresses actual kernel vulnerabilities to maintains
kernel integrity before the occurrence of memory corruption by kernel subverting.

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 59

6.2 Performance Evaluation

From the performance cost, the benchmark measurement results indicate that
the KPRM implementations require additional processing in the kernel layer. We
consider that LMbench, ApacheBench, and kernel compile correctly calculate the
cost of the overhead. KPRM implementations search restricted kernel pages of
the kernel page table while page table walk and unmapping require additional
processing time for the kernel mode. Moreover, the performance cost depends
on the page table size, the number of restricted kernel pages, and the system
call invocation count. We are continuing to inspect property of multiple points
of KPRM for better performance.

In addition, the page table switching requires the CR3 register update and
TLB flush cost. KPRM implementation 1 adopts the PCID of TLB for the
overhead reducing, which only requires the CR3 update without TLB flush.
We consider that the improvement of implementations removes restricted kernel
pages from the kernel page table at a process creation to avoid the page table
walk at the time of the system call invocation timing.

6.3 Limitation

We consider two limitations of KPRM. The first limitation is that the KPRM
kernel delivers the already known kernel vulnerability prevention that requires
a specific vulnerable kernel code to be registered as a restricted kernel page for
the adversary’s user processes. The second limitation is the benign user process
list is statically managed in the kernel code. It requires the modification of the
kernel for the updating of the benign user process list. The KPRM adopts the
registering capability of vulnerable kernel code and the dynamically controlling
of the benign user process that is in progress. These deliver to quick response
for the kernel vulnerability disclosure.

For KPRM implementations, the implementation 1 requires the performance
overhead by adopting an additional kernel address space with page table switch-
ing for restricted kernel page handling. Additionally, PCID covers 4,096 IDs for
the performance improvement owing to hardware limitation. We apply the least
recently used algorithms for the user process creation. The implementation 2
might cause misbehavior in terms of kernel stability with page access restriction
when the kernel manages interruption. The benchmark software cannot cover all
the kernel features. It is necessary to verify the kernel feasibility when the kernel
code and kernel data are protected on the KPRM kernel.

6.4 Portability

Here, we consider the applicability of the KPRM to other OSs. The Linux imple-
mentation of KPRM ported to the kernel of another OS adopts the page table
approach to manage virtual memory. Moreover, FreeBSD manages the page table
entries and page table combination for handling the user and kernel virtual mem-
ory region [11].

60 H. Kuzuno and T. Yamauchi

7 Related Work

Memory Isolation at Hardware. The CPU features support a memory iso-
lation mechanism. A trusted execution environment executes the kernel in the
secure memory region to mitigate kernel attacks from a non-secure memory
region [12–14]. IskiOS adopts a memory protection key that restricts a specific
memory region related to the kernel virtual memory [15]. In addition, hardware
virtualization is available for the separation of the kernel virtual memory [16].

Memory Isolation at Software. Memory isolation is also supported in the
kernel layer. KPTI provides dedicated page tables for the user and kernel modes
to mitigate meltdown side-channel attacks [17]. XPFO protects the kernel to
manage the page attribution distinction between the user and the kernel modes
through direct mapping region attacks [18]. Moreover, Proclocal allocates ded-
icated pages of the kernel data for each user process [4] and SCI creates an
isolated page table to execute system calls during kernel processing [5].

Kernel Memory Protection. Kernel memory protection is another aspect
of a kernel resilience approach that realizes mitigation of memory corruption.
The randomization of the kernel page table position protects the entire page
table structure from malicious activity in the kernel layer [19]. kRˆX provides
the exclusive mechanism between access and execution of the kernel code and
kernel data [20]. Moreover, KHide restricts the granularity of software diversity
techniques for kernel code and kernel data with hardware virtualization [21].
xMP provides switching of the visible virtual memory region between the user
and the kernel modes for the guest OS with the hypervisor [22].

Reducing Kernel Attack Surface. Reducing the kernel attack surface
restricts the visible virtual memory region for user processes. PerspicuOS allows
minimum privilege assignment for kernel isolation mechanism [23]. kRazor and
KASR prepare a set of kernel code and kernel data for each user program exe-
cution [24,25]. Moreover, Multik profiles the necessary kernel code generated for
a customized kernel image for each application [26].

7.1 Comparison with Related Work

We compare the security features of the KPRM kernel with those of four kernel
memory protection mechanisms (Table 5) [4,5,20–23]. KPRM supports a major-
ity of security features for the running kernel.

PerspicuOS [23] provides a privilege deduction design to ensure isolation
between trusted and untrusted kernels. KHide [21] enforces the granularity of
diversification for kernel code and kernel data at kernel deployment with hard-
ware virtualization. Moreover, kRˆX [20] provides an exclusive privilege man-
agement method that directly protects the kernel code and kernel data. These
approaches provide static customized kernel page tables, whereas KPRM dynam-
ically manages the kernel page reference to isolate the vulnerable kernel code and
attack target kernel code or kernel data for the adversary’s user processes.

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 61

Table 5. Granularity of kernel memory protection comparison (�: supported; �: par-
tially supported).

Feature PerspicuOS

[23]

KHide [21] kRˆX [20] xMP [22] Proclocal

[4]

SCI [5] KPRM

Kernel data

protection

� � � � � �

Kernel code

restriction

� � � � �

Page reference

management

� � � �

Access restriction for

user process

� � � � �

Another approach, xMP [22] provides dynamic switching of the customized
visible virtual memory region between the user mode and the kernel mode for
the guest OS with hypervisor. KPRM provides more granularity for a region of
kernel address space for the adversary’s user processes as well as easy porting to
other OSs in the kernel layer.

Proclocal [4] reserves the kernel page to allocate the dedicated kernel memory
region at the kernel layer and SCI [5] prepares additional page tables to execute
the kernel code during system call processing. The combination of Proclocal and
SCI is similar to the supporting capabilities of KPRM. Proclocal can protect
kernel features’ variable of kernel data and despite SCI’s memory isolation, full
kernel page mapping is required. We believe that the design and architecture of
KPRM provide more granularity for the control of the kernel address space. It
is possible to focus on completely isolating kernel page mapping of vulnerable
kernel code from attack target kernel code or kernel data at the starting point
of the kernel attacking flow to the adversary’s user process.

8 Conclusion

The OS kernel focuses on mitigating the effect of kernel memory corruption that
leads to privilege escalation or defeats security features. The kernel adopts several
countermeasures, including stack monitoring, CFI, KASLR, KPTI, Proclocal,
and SCI, for attack surface reduction and prevention. However, vulnerable kernel
code, and kernel code or kernel data still share the kernel address space.

The novel security design of KPRM presents the restriction of kernel code
and kernel data for an adversary’s user process. The KPRM assigns vulnerable
kernel code and attack target kernel code to the restricted kernel pages, and then
dynamically unmap restricted kernel pages from the kernel page table for the
adversary’s user process. This ensures that vulnerable kernel code and remaining
kernel code or kernel data are isolated in the kernel address space to reduce
the kernel attack surface. An evaluation of the latest Linux kernel showed that
KPRM can prevent vulnerable kernel code invocation and protect privilege data
from memory corruption. The maximum overhead was 0.703 µs in terms of each

62 H. Kuzuno and T. Yamauchi

system call invocation; the overhead of the web client program was 1.188%–
4.093 % for HTTP download sessions. Moreover, the implementations of KPRM
indicate 2.459% and 2.193% as the kernel compiling time overhead.

Acknowledgment. This work was partially supported by Japan Society for the Pro-
motion of Science (JSPS) KAKENHI Grant Number JP19H04109.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, pp. 340–353. ACM (2005). https://
doi.org/10.1145/1609956.1609960

2. Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 298–307. ACM (2004).
https://doi.org/10.1145/1030083.1030124

3. Intel: 8th and 9th Generation Intel R©CoreTMProcessor Families and Intel R©
Xeon R©E Processor Families Datasheet. Volume 1 of 2. Revision 006 (2020).
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/
8th-gen-core-family-datasheet-vol-1.pdf. Accessed 8 Dec 2020

4. Hillenbrand, M.: Process-local memory allocations for hiding KVM secrets (2019).
https://lwn.net/Articles/791069/. Accessed 8 Aug 2019

5. Rapoport, M.: x86: introduce system calls address space isolation (2019). https://
lwn.net/Articles/786894/. Accessed 8 Aug 2019

6. Exploit Database, Nexus 5 Android 5.0 - Privilege Escalation. https://www.
exploit-db.com/exploits/35711/. Accessed 21 May 2019

7. grsecurity: super fun 2.6.30+/RHEL5 2.6.18 local kernel exploit. https://
grsecurity.net/∼spender/exploits/exploit2.txt. Accessed 21 May 2019

8. Chen, H., Mao, Y., Wang, X., Zhow, D., Zeldovich, N., Kaashoek, F.M.: Linux
kernel vulnerabilities - state-of-the-art defenses and open problems. In: Proceedings
of the Second Asia-Pacific Workshop on Systems, pp. 1–5. ACM (2011). https://
doi.org/10.1145/2103799.2103805

9. Linux Vulnerability Statistics. https://www.cvedetails.com/vendor/33/Linux.
html. Accessed 8 Dec 2020

10. CVE-2017-16995. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-
16995. Accessed 10 June 2019

11. The FreeBSD documentation project.: FreeBSD architecture handbook
(2006). https://www.freebsd.org/doc/en US.ISO8859-1/books/arch-handbook/.
Accessed 8 Aug 2019

12. Ge, X., Vijayakumar, H., Jaeger, T.: Sprobes: enforcing kernel code integrity on the
trustzone architecture. In: Proceedings of the Third Workshop on Mobile Security
Technologies. ACM (2014)

13. Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: Proceedings of the
Fifteenth European Conference on Computer Systems, pp. 1–16. ACM (2020).
https://doi.org/10.1145/3342195.3387532

14. Marcela, S.M., Michael, J.F., Mic, B.: EnclaveDom: privilege separation for large-
TCB applications in trusted execution environments. https://arxiv.org/abs/1907.
13245. Accessed 8 Dec 2020

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1030083.1030124
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf
https://lwn.net/Articles/791069/
https://lwn.net/Articles/786894/
https://lwn.net/Articles/786894/
https://www.exploit-db.com/exploits/35711/
https://www.exploit-db.com/exploits/35711/
https://grsecurity.net/~spender/exploits/exploit2.txt
https://grsecurity.net/~spender/exploits/exploit2.txt
https://doi.org/10.1145/2103799.2103805
https://doi.org/10.1145/2103799.2103805
https://www.cvedetails.com/vendor/33/Linux.html
https://www.cvedetails.com/vendor/33/Linux.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/
https://doi.org/10.1145/3342195.3387532
https://arxiv.org/abs/1907.13245
https://arxiv.org/abs/1907.13245

Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption 63

15. Gravani, S., Mohammad, H., Criswell, J., Scott, L.M.: IskiOS: lightweight
defense against kernel-level code-reuse attacks. https://arxiv.org/abs/1903.04654.
Accessed 8 Dec 2020

16. Hua, Z., Du, D., Xia, Y., Chen, H., Zang, B.: EPTI: efficient defence against
meltdown attack for unpatched VMs. In: Proceedings of the 2018 USENIX Annual
Technical Conference, pp. 255–266. USENIX (2018). https://dl.acm.org/doi/10.
5555/3277355.3277380

17. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: KASLR
is dead: long live KASLR. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.)
ESSoS 2017. LNCS, vol. 10379, pp. 161–176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62105-0 11

18. Kemerlis, P.V., Polychronakis, M., Kemerlis, D.A.: ret2dir: rethinking kernel iso-
lation. In: Proceedings of the 23rd USENIX Conference on Security Symposium,
pp. 957–972. USENIX (2014). https://dl.acm.org/doi/10.5555/2671225.2671286

19. Davi, L., Gens, D., Liebchen, C., Sadeghi, A.-R.: PT-Rand: practical mitigation
of data-only attacks against page tables. In: Proceedings of the 23rd Network and
Distributed System Security Symposium. Internet Society (2016)

20. Pomonis, M., Petsios, T.: kR̂ X: comprehensive kernel protection against just-in-
time code reuse. In: Proceedings of the Twelfth European Conference on Computer
Systems, pp. 420–436. ACM (2017). https://doi.org/10.1145/3064176.3064216

21. Gionta, J., Enck, W., Larsen, P.: Preventing kernel code-reuse attacks through dis-
closure resistant code diversification. In: Proceedings of the 2016 IEEE Conference
on Communications and Network Security, pp. 189–197. IEEE (2016). https://doi.
org/10.1109/CNS.2016.7860485

22. Sergej, P., Marius, M., Seyedhamed, G., Vasileios, P.K., Michalis, P.: xMP: selec-
tive memory protection for kernel and user space. In: Proceedings of the 41st
IEEE Symposium on Security and Privacy, pp. 563–577. IEEE (2020). https://
doi.ieeecomputersociety.org/10.1109/SP40000.2020.00041

23. Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., Adve, V.: Nested kernel:
an operating system architecture for intra-kernel privilege separation. In: Proceed-
ings of the 20th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 191–206. ACM (2015). https://doi.
org/10.1145/2694344.2694386

24. Kurmus, A., Dechand, S., Kapitza, R.: Quantifiable run-time kernel attack sur-
face reduction. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 212–234.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08509-8 12

25. Zhang, Z., Cheng, Y., Nepal, S., Liu, D., Shen, Q., Rabhi, F.: KASR: a reliable and
practical approach to attack surface reduction of commodity OS kernels. In: Bailey,
M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol.
11050, pp. 691–710. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00470-5 32

26. Kuo, H.C., et al.: MultiK: a framework for orchestrating multiple specialized ker-
nels. https://arxiv.org/abs/1903.06889v1. Accessed 16 May 2019

https://arxiv.org/abs/1903.04654
https://dl.acm.org/doi/10.5555/3277355.3277380
https://dl.acm.org/doi/10.5555/3277355.3277380
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://dl.acm.org/doi/10.5555/2671225.2671286
https://doi.org/10.1145/3064176.3064216
https://doi.org/10.1109/CNS.2016.7860485
https://doi.org/10.1109/CNS.2016.7860485
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00041
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00041
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.1007/978-3-319-08509-8_12
https://doi.org/10.1007/978-3-030-00470-5_32
https://doi.org/10.1007/978-3-030-00470-5_32
https://arxiv.org/abs/1903.06889v1

(Short Paper) Evidence Collection
and Preservation System with Virtual

Machine Monitoring

Toru Nakamura1,3(B) , Hiroshi Ito2, Shinsaku Kiyomoto1,
and Toshihiro Yamauchi2,3

1 KDDI Research, Inc., 2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan
{tr-nakamura,kiyomoto}@kddi-research.jp

2 Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

ito-hiroshi@s.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp
3 Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai,

Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

Abstract. In a system audit and verification, it is important to securely
collect and preserve evidence of execution environments, execution pro-
cesses, and program execution results. Evidence-based verification of
program processes ensures their authenticity; for example, the pro-
cesses include no altered/infected program library. This paper proposes
a solution for collection of evidence on program libraries based on Vir-
tual Machine Monitor (VMM). The solution can solve semantic gap by
obtaining library file path names. This paper also shows a way to obtain
hash values of library files from a guest OS. Furthermore, this paper
provides examples of evidence on program execution and the overhead
of the solution.

Keywords: Virtual Machine Introspection · Forensics · OS security

1 Introduction

1.1 Background

Audit and verification based on log files as digital evidence of program execu-
tion environments, execution processes, and execution results are important for
trustworthiness. In particular, a secure collection and preservation mechanism
for the evidence should be implemented on the system in order to ensure the
validity of the evidence. There are two types of logs for verifying execution; logs
of application programs (APs) such as a web server program and “system level”
logs such as those of operating systems. Sufficient logs for verification might not
be always collected due to the design of the APs. Thus, collection of system level
logs of execution processes is required for amending evidence as well.

c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 64–73, 2021.
https://doi.org/10.1007/978-3-030-85987-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_4&domain=pdf
http://orcid.org/0000-0003-2530-648X
http://orcid.org/0000-0001-6226-5715
https://doi.org/10.1007/978-3-030-85987-9_4

Evidence Collection and Preservation System with VMM 65

1.2 Attack Model

Our target is a system based on virtual machine (VM). The threat considered in
this paper is defined as executing illegal processing while concealing the wrong-
doing. Our assumed adversary is a user of a guest OS, who has neither an
administrator account of the guest OS nor any account of the host OS, while we
assume that an administrator of host OS is trusted. One example of an attack
scenario is to run a program with malicious and different library files from those
usually used by employing an illegal and malicious method. For example, it is
possible for a user by modifying LD PRELOAD. In this case, we subsequently
need to obtain the path names of the library files and the hash values for proof
that such attack has occurred. From existing studies, it is not clear if this is
possible.

1.3 Related Work

Linux Audit [1] is a mechanism for collecting system level logs in the Linux sys-
tem. In Linux Audit, a collection mechanism in kernel space collects information
about events occurring on a system based on a preliminary set of rules, and an
audit daemon process in the user space stores the information in log files [2,3].
Pfoh et al. [4] proposed a hardware-based system call tracing function for VMs.
The function on the virtual hardware of the guest VM obtains information from
the guest VM using Virtual Machine Monitor (VMM) and monitors system calls.
Yan et al. [5] presented a method for recording events on the VM and repro-
ducing in order to analyze malware behaviors. The method records the initial
state and processes of state changes in an environment, reproducing them in
another environment. The method includes both hardware virtualization sup-
port technology and software emulation technology. In addition, the initial state
is recorded and changing states are processed by an instruction unit of the CPU
and a program function unit. Hassan et al. [6] proposed a method of generating
provenance graphs based on logs by APs and an operating system. The graphs
are useful for analyzing malicious behaviors perpetrated by an attacker.

1.4 Our Contribution

The goal of our study is to realize a system, called an Evidence Collection and
Preservation System (ECoPS), for collecting and preserving evidence without
any restrictions of information on collecting evidence for program execution. In
this paper, we focus on collection of evidence on program libraries as a first step
of our study. From the viewpoint of security, it is more desirable to obtain the
evidence from a VMM than from a guest OS. To obtain evidence from a VMM
the issue of semantic gap needs to be solved. We show a solution to this issue
by obtaining the library file path names. We also show how to obtain the hash
values of library files from a guest OS. We evaluate the solution by performing
an implementation, and provide examples of evidence on program execution for
proof of concept. We also evaluate the overhead of system calls incurred by the
solution.

66 T. Nakamura et al.

2 Issues on Existing Evidence Collection Systems

Pfoh et al. [4] proposed a method whereby information on system call can be
obtained via Virtual Machine Introspection (VMI) [7]. VMI is a monitoring
mechanism for the guest OS that works by obtaining a memory statement on
virtual hardware through VMM. In their scheme, the information related to the
guest OS is not stored in the guest OS, but in the host OS, and no adversary can
gain influence over VMM at all from the guest OS. Their scheme suffers from the
semantic gap issue [8]; VMM does not interpret data on memory in the virtual
hardware of the guest OS due to the lack of information on data structure in
the guest OS. Pfoh et al. considered a solution only on standard inputs/outputs
and command line arguments; it does not include the path name of executable
files, or executed library files because it is not for auditing.

In this paper, we propose an effective method to fill semantic gaps not only
on standard inputs/outputs and command line arguments, but also on path
name of executed files, environment variables, and OS type and its version for
collecting evidence for auditing. Furthermore, our method calculates hash values
in guest OS, after that they are stored to host OS, in order to collect hash values
of executable files, executed library files, and accessed files.

3 Evidence Collection and Preservation System (ECoPS)

3.1 Requirements

The requirements for ECoPS are shown as follows.

System requirement 1: prevents alteration of evidence.
System requirement 2: prevents attacks from infiltrating monitoring func-

tions.
System requirement 3: collects appropriate information related to program

execution.

For system requirements 1 and 2, we adopt a VMM based architecture for
ECoPS. Regarding system requirement 3, we need to identify the type of pro-
gram execution for extracting the list of information related to program execu-
tion for use as evidence. We show the assumed program process flow in Fig. 1.
We assume that a program is executed in a shell. The user first inputs a path
name and arguments of the execution file to a shell. A shell process creates a
duplicate process of itself via a fork system call. A child process issues an execve
system call, loads the specified program, and initializes the state of the process.
Next, it runs the program process. In addition, program libraries are mapped
to a virtual memory space before the process begin in the case of a dynamically
linked program. In this paper, we regard program processes as processes with a
file, standard input and output, and standard error output.

For the assumed program processes previously shown, an evidence collection
system should obtain the following information.

Evidence Collection and Preservation System with VMM 67

Fig. 1. Program process flow

– Information to identify the executable files
1. Path name of an executable file
2. Hash value of an executable file

– Information to identify the executed library files
3. Path names of executed library files
4. Hash values of executed library files

– Information to identify the user’s inputs and outputs
5. Contents of standard input, standard output and standard error output

– Information to identify used files
6. Path names of used files
7. Hash values of used files

– Information to identify the execution environment
8. Command line arguments
9. Environment variables

10. OS type and its version

3.2 Design Criteria for ECoPS

An overview of ECoPS is shown in Fig. 2. In ECoPS, we assume that the moni-
tored OS is a guest OS on the VM. We adopt a Kernel-based Virtual Machine
(KVM) that supports full virtualization as the VMM because if using full vir-
tualization VMM, the source codes of the guest OS do not need to be modified.
Note that we assume that the VMM is secure and the administrator of the VMM
does not perform any illegal actions.

In ECoPS, both the monitoring function in the guest OS and that in the
KVM of the host OS obtain information by executing a hooking system call
from a user process in the guest OS. The reason for using two different moni-
toring functions is due to the issue of semantic gap. It is comparatively easy to
obtain OS information from the monitoring function in the guest OS. However,
the monitoring function is not so tolerant. The processes involved in obtaining
information from the KVM can also obtain OS information by referring virtual
hardware such as the memory of the guest OS directly. The monitoring function

68 T. Nakamura et al.

Fig. 2. Overview of ECoPS

in the KVM is tolerant to attacks against the OS because they are isolated from
the guest OS. However, the data structure of the guest OS needs to be analyzed
to solve the semantic gap. Therefore, to minimize the security risk, we decided
that the only information for which it is difficult to solve the semantic gap should
be obtained from guest OS.

The monitoring function in the guest OS is realized by implementing a kernel
module. The monitoring function in the KVM obtains information by executing
a hooking system call and tracing variables on the memory in the guest OS
and members of structures. We use a system call hook method described in [9]
for the hooking system call in the guest OS with the KVM. This method uses
a hardware breakpoint. ECoPS can obtain information about the guest OS by
setting a hardware breakpoint and executing a hooking system call. In the case of
x86-64 architecture, we use hardware debug registers for setting the breakpoint.
ECoPS can set the breakpoint to an instruction which is run just before the
system call process by setting the address of the instruction into the hardware
debug register. If the instruction, which exists in the breakpoint address, is
executed, a debug exception occurs. Therefore, a system call in the guest OS
can be hooked because the KVM can capture the occurrence of VMexit by the
debug exception.

The following design criteria were considered in the design of ECoPS.

Criterion 1: Specific methods to obtain information on a system call with
taking semantic gap into consideration

Criterion 2: Specific methods for securely transferring information obtained
from the guest OS to the KVM

Criterion 3: Specific methods for securely storing the information in the KVM

In the later sections, we focus on only the Criterion 1 and regard the Criteria
2 and 3 as outside the scope. We provide the specific method for obtaining the
information in the case of identifying executed libraries as an example in the
next section. In particular, we present a method for obtaining the path name
and the hash values of libraries.

Evidence Collection and Preservation System with VMM 69

4 Evidence Collection Mechanism

In this section, we describe the method for obtaining the information on executed
library files. The following information are required for auditing;

(a) Library file path name
(b) Hash values of library files

In many Linux distributions, the mechanism of dynamic link is widely used
because it contributes to reducing the amount of memory. In using dynamic links,
linked libraries are mapped on a virtual memory space for program execution.
Storing the path names of linked libraries is not sufficient to regard them as
evidence of program execution because we cannot determine whether the linked
libraries have replaced with illegal ones. Therefore, we need not only the path
names of library files, but also the hash values of the files. openat and mmap are
system calls for dynamically linked libraries. The openat system call opens a
library file that is dynamically linked. The mmap system call maps the library
file on a virtual memory space. We adopt the use of the openat system call for
hooking because this system call is used earlier than mmap. It helps to reduce
the possibility of statements on memory being altered by adversaries. We show
methods for identifying the path names and the hash values of libraries. We
assume that both the guest OS and host OS are Linux 4.15.18 and a KVM is
used as the virtualization environment.

4.1 Library File Path Names

We use the dentry structure for obtaining the library file path names because
although the arguments of the openat system call include the file path names,
they may be a relative path or symbolic links by which it is difficult to identify
the absolute path. The dentry structure is a data structure holding file names,
directory names and the address of the parent dentry structure in virtual file
systems. The relationships among structures related to file path names are shown
in Fig. 3. To obtain a path name of the target library, we need to refer to the
d name in the dentry structure. Though the d name stores a file name or direc-
tory name, we need to trace the parents’ dentry structures recursively in order
to obtain the absolute path of the target.

First, we explain the method used to identify a dentry structure of the tar-
get library. We assume that a CPU based on the x86-64 architecture is used.
We obtain the contents of IA32 GS BASE register, which is an MSR (Model
Specific Register) in the architecture. MSR is a group of registers for CPU con-
trol. The register stores the initial addresses of CPU variables, including the
current task variable. The current task variable stores the initial address of
the task struct structure which stores the files variable. The files vari-
able stores the initial address of the files struct structure which stores the
fdt variable. The fdt variable stores the initial address of the fdtable struc-
ture which stores the fd variable. The fd variable stores the initial address of

70 T. Nakamura et al.

Fig. 3. Relations of structures from MSR to dentry structure

the fd array. The fd array stores the initial addresses of the file structures
which stores the f path variable. In openat system call, the file descriptor is
received as the return value. The file descriptor is the index of the fd array for
the target library. Therefore, we identify the initial address of the file structure
of the target library by the file descriptor. The f path variable is the path struc-
ture, which stores the initial dentry address. We identify the dentry structure
of the target from the address.

Next, the method used to obtain the absolute path of a target library will be
explained. By the above method, we identify the dentry structure of the target
library. The dentry structure stores the d name variable and d parent variable.
The d parent variable stores the address of the dentry structure of the parent
directory. We repeatedly refer to the dentry structure of the parent and obtain
the directory name until the root directory is reached. Finally, we construct the
absolute path of the target library from the file name and directory names.

4.2 Hash Values of Library Files

In this paper, we show a way to obtain the hash values of libraries not in KVM,
but in the guest OS. As mentioned in Sect. 3, it is desirable to obtain the hash
values in KVM if this is possible. However, we need to append additional routines
to analyze the file system of the guest OS to solve the semantic gap. We must
implement different routines for each file system. This is not practical because it
causes an increase in the cost for the modification as well as an increased risk of
vulnerabilities. Therefore, we install a module into the guest OS to obtain the
hash values of libraries.

The module is installed into a guest Linux kernel as a Linux Kernel Modules
(LKM). It also hooks into openat system calls to obtain the hash value of a
library file specified with the argument of openat. It uses Integrity Measure-
ment Architecture (hereinafter called IMA) [10], which is one of the integrity
verification frameworks that are adopted in the Linux kernel, to calculate the
hash values of libraries. IMA has the ima calc file hash function to calculate
file hash values. We can also use Linux Kernel Crypto API [11] instead of IMA.

Evidence Collection and Preservation System with VMM 71

Fig. 4. Logs of processes of getting a path-name of a file

4.3 Consideration of Ways to Collect Other Information

We discuss mechanisms to obtain other information as follows;

Standard inputs, standard outputs, and standard error outputs. These
are obtained by hooking write/read system call and referring to the argument
of the system call storing the address of the buffer storing the contents. In a
similar way, we may also be able to obtain evidence on command line arguments
and environment variables with execve system call.

Path names of files and OS types. These are obtained using the same app-
roach described in Sect. 4.1, to trace dentry structures. For the hash values
of executable files and executed files, these may be obtainable using the way
described in Sect. 4.2, to calculate hash values.

Path names of executable files. Though not difficult to obtain from a guest
OS, it is desirable to obtain these from KVM for reasons of security. A candidate
of system call for obtaining path names of executable files is execve system call.
However, the returned variable is different from openat; hence we cannot directly
apply the concept proposed in this paper. This is still an open issue.

5 Evaluation

The evaluation environment consists of Intel(R) Core(TM) i5-6500 @ 3.20 GHz,
4 GB memory for the Guest OS, 32 GB memory for the Host OS, and Ubuntu
18.04 LTS (Linux 4.15.18, 64bit) for both the Guest OS and Host OS. In the
implementations, we assigned one vCPU to a monitored guest OS. We show a
part of the kernel logs in the host OS related to the process of obtaining the path
name of a library in Fig. 4. We can find that an inode number of a target library
and the corresponding path name of the target library. Figure 5 shows the kernel
logs in the guest OS related to the processes of obtaining the hash value of a
library. We used SHA-256 as the hash algorithm. We can find that an inode
number of a target library, the corresponding path name, and the corresponding
hash value of the target library. We used the Linux sha256sum command for
validating the operation, and confirmed that the hash value obtained from our
implementation matched the hash value with the Linux sha256sum.

We evaluated the overhead of system calls incurred by the collection mech-
anism for path names. We measured the number of clock cycles for repeating
openat system calls and getpid system calls 100 times, and repeated this trial
10 times. Table 1 shows the result. From this result, the overhead for openat
system call was 121,880 clock cycles per system call and that in another system

72 T. Nakamura et al.

Fig. 5. Logs of processes of getting a hash value of a file

Table 1. Result of evaluating openat and getpid system calls (clock)

openat getpid

Max. Min. Ave. Med. Max. Min. Ave. Med.

Normal 310,976 3,688 9,756 9,313 3,632 1,312 2,348 2,504

Ours 13,409,152 66,596 131,636 67,438 9,445,120 34,324 69,583 34,528

call such as getpid was 67,235 clock cycles. The substance between these over-
heads of 54,645 clock cycles is a result of obtaining the path names in the openat
system call. If it is assumed that a 3.0 GHz processor is used, the overhead of
system calls without openat is about 22.4 µs. The overhead of an applications
is increased in proportion to the number of system calls which the application
issues. Therefore, the influence on performance from the overhead caused by
the collection mechanism is acceptable unless the application issues system calls
too frequently. Note that the overhead is not included the calculations of hash
values, hence it remains as future work.

Table 2 shows a comparison with our perspective of ECoPS and other existing
techniques. Note that it is just our perspective as described in Sect. 4.3, we have
not implemented and evaluated all collection functions. While existing techniques
did not provide any way to collect the path names and hash values of executed
libraries. In our perspective, ECoPS is capable of collecting all the information
required for evidence of program executions as shown in Sect. 3.

Table 2. Comparison with our perspective of ECoPS and existing work

Collected evidence ECoPS (this paper) Linux Audit [1] Pfoh et al. [4]

Path names of executable files �(Guest OS) �
Hash values of executable files � (Guest OS)

Path names of executed libraries �
Hash values of executed libraries � (Guest OS)

Standard I/O and error output � � �
Path names of used files �
Hash values of used files � (Guest OS)

Command line arguments � � �
Environment variables � �
OS Type and its version �

Evidence Collection and Preservation System with VMM 73

6 Conclusion

In this paper, we showed a solution to solve the semantic gap in obtaining the
library file path names as a first step of realizing ECoPS. We also showed a way to
obtain hash values of library files from a guest OS. We evaluated the solution by
performing an implementation, and provided examples of evidence on program
execution for proof of concept. We also evaluated the overhead of system calls
incurred by the solution and showed that the overhead can be acceptable. In
future work, we will try to find a way of obtaining the path names of executable
files in VMM. Though the Criteria 2 and 3 shown in Sect. 3 are regarded as
outside the scope, we will discuss and attempt to realize a method capable of
securely transferring evidence from the guest OS to KVM and a method to
securely store evidence in KVM.

Acknowledgements. This work was partially supported by JSPS KAKENHI Grant
Numbers 19H04109 and 19H05579.

References

1. Linux Audit. https://people.redhat.com/sgrubb/audit/. Accessed 02 Dec 2020
2. Latzo, T., Freiling, F.: Characterizing the limitations of forensic event reconstruc-

tion based on log files. In: Proceedings of 2019 18th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications/13th
IEEE International Conference on Big Data Science and Engineering (Trust-
Com/BigDataSE), pp. 466–475 (2019)

3. Ma, S., Zhai, J., Kwon, Y., et al.: Kernel-supported cost-effective audit logging for
causality tracking. In: Proceedings of 2018 USENIX Annual Technical Conference
(USENIX ATC 2018), pp. 241–253 (2018)

4. Pfoh, J., Schneider, C., Eckert, C.: Nitro: hardware-based system call tracing for
virtual machines. In: Proceedings of 6th International conference on Advances in
Information and Computer Security, pp. 96–112 (2011)

5. Yan, L.K., Jayachandra, M., Zhang, M., Yin, H.: V2E: combining hardware virtual-
ization and softwareemulation for transparent and extensible malware analysis. In:
Proceedings of 8th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2012), pp. 227–237 (2012)

6. Hassan, W.U., Noureddine, M.A., Datta, P., Bates, A.: OmegaLog: high-fidelity
attack investigation via transparent multi-layer log analysis. In: Proceedings of
the Network and Distributed System Security Symposium (NDSS 2020), pp. 1–16
(2020)

7. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of Network and Distributed Systems Secu-
rity Symposium (NDSS 2003) (2003)

8. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of 8th
Workshop on Hot Topics in Operating Systems, pp. 133–138 (2001)

9. Fujii, S., Sato, M., Yamauchi, T., Taniguchi, H.: Evaluation and design of func-
tion for tracing diffusion of classified information for file operations with KVM. J.
Supercomput. 72(5), 1841–1861 (2016)

10. Linux Integrity Subsystem. http://linux-ima.sourceforge.net/. Accessed 04 Dec
2020

11. Linux Kernel Crypto API. https://www.kernel.org/doc/html/v4.15/crypto/index.
html. Accessed 04 Dec 2020

https://people.redhat.com/sgrubb/audit/
http://linux-ima.sourceforge.net/
https://www.kernel.org/doc/html/v4.15/crypto/index.html
https://www.kernel.org/doc/html/v4.15/crypto/index.html

Multiparty Computation

Evolving Homomorphic Secret Sharing
for Hierarchical Access Structures

Kittiphop Phalakarn1(B), Vorapong Suppakitpaisarn1,
Nuttapong Attrapadung2, and Kanta Matsuura1

1 The University of Tokyo, Tokyo, Japan
{kittipop,kanta}@iis.u-tokyo.ac.jp, vorapong@is.s.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
n.attrapadung@aist.go.jp

Abstract. Secret sharing is a cryptographic primitive that divides a
secret into several shares, and allows only some combinations of shares
to recover the secret. As it can also be used in secure multi-party compu-
tation protocol with outsourcing servers, several variations of secret shar-
ing are devised for this purpose. Most of the existing protocols require
the number of computing servers to be determined in advance. However,
in some situations we may want the system to be “evolving”. We may
want to increase the number of servers and strengthen the security guar-
antee later in order to improve availability and security of the system.
Although evolving secret sharing schemes are available, they do not sup-
port computing on shares. On the other hand, “homomorphic” secret
sharing allows computing on shares with small communication, but they
are not evolving. As the contribution of our work, we give the definition of
“evolving homomorphic” secret sharing supporting both properties. We
propose two schemes, one with hierarchical access structure supporting
multiplication, and the other with partially hierarchical access structure
supporting computation of low degree polynomials. Comparing to the
work with similar functionality of Choudhuri et al. (IACR ePrint 2020),
our schemes have smaller communication costs.

Keywords: Secure multi-party computation · Evolving secret
sharing · Homomorphic secret sharing · Hierarchical secret sharing

1 Introduction

Secret sharing is a cryptographic primitive that divides a secret into several
shares, and different shares will be given to different parties. The authorized
sets of parties can recover the secret from their shares, while the unauthorized
sets cannot. A collection of authorized sets is called as an access structure. In
one type of the access structures, called as threshold structures, a set of parties
is in the collection if the size of the set is larger than a particular number.

This basic primitive can be used as a building block to construct secure multi-
party computation protocols [3,13]. We will consider the model of outsourcing
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 77–96, 2021.
https://doi.org/10.1007/978-3-030-85987-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_5

78 K. Phalakarn et al.

servers [10,15]. In this model, there are three roles, namely, several input clients
(dealers), several computing servers, and one output client. We have several
secrets from several input clients. Each input client divides its secret into shares,
and distributes them to computing servers. The goal of the scheme is to let
only the output client know some functions of the secret inputs. We want to
use multiple servers to calculate a function of those secrets without having them
know the secrets. To achieve the goal, the computing servers calculate some
functions on the shares, may communicate to other servers, and send their results
to the output client. The output client then reconstructs the final result using
partial results from participating servers. We note again that the protocol may
require several communications back and forth between computing servers.

To achieve a smaller communication cost, a variation of secret sharing called
as “homomorphic” secret sharing is introduced by Boyle et al. in [6]. Func-
tions can be calculated on shares homomorphically without any communication
between computing servers. Homomorphic secret sharing has been widely stud-
ied recently with multiple constructions from different assumptions, such as deci-
sional Diffie–Hellman assumption (DDH) [7] and learning with errors (LWE) [8].
Furthermore, evaluation of low-degree polynomials in homomorphic secret shar-
ing setting was also considered in [22,24]. Homomorphic secret sharing is shown
in [7] to imply a useful related primitive called server-aided secure multi-party
computation [16,17].

In most of the existing multi-party computation protocols from secret shar-
ing, including homomorphic secret sharing, number of outsourcing servers must
be determined in advance, and the access structure has to be fixed. This prevents
us from adding more servers in order to improve availability of the system, or
changing the access structure in order to improve security. Some recent works
[4,9,14] allow new servers to join during the protocol, but they use resharing
which requires interactions and communications. In addition, these works only
support threshold structures.

There are some cryptographic schemes that allow us to add more servers
without resharing. We call such schemes as “evolving” schemes. Those include
evolving secret sharing proposed by Komargodski et al. [20]. Some improvements
in this research area were proposed in [1,2,21]. Although we can construct secure
multi-party computation protocols for outsourcing servers from secret sharing,
it is not trivial to construct an evolving version from the evolving secret sharing.
The construction is stated as a future work in [20], and is still an open problem.

1.1 Our Contributions

To provide a solution for the open problem, we give the definition of “evolving
homomorphic” secret sharing. For “evolving”, the schemes allow us to increase
the number of outsourcing servers without resharing, and for “homomorphic”,
the schemes support computing on shares without any communications between
servers. Thus, our schemes provide protocols for evolving outsourcing servers
with smaller communication cost than previous works.

Evolving HSS for Hierarchical Access Structures 79

Table 1. Our contributions compared to evolving secret sharing schemes

Homomorphic Correctness Security Access structure

Evolving secret
sharing [1,2,20,21]

✗ Perfect Perfect (Dynamic)
threshold or ramp

Our warm-up
scheme

✓ Degree-d Almost perfect Perfect Fixed threshold

Our scheme 1 ✓ Multiplication Almost perfect Perfect Dynamic
threshold

Our scheme 2 ✓ Degree-d Perfect Computational Partially dynamic
threshold

Our proposed evolving homomorphic secret sharing schemes focus on hier-
archical access structures, where threshold values can be changed for different
number of servers. These “hierarchical access structures” allow us to adjust the
security level when new servers are added.

We construct our schemes from combinations of homomorphic secret shar-
ing and cryptographic primitives, namely hash functions and pseudo-random
functions. This work focuses on the schemes that support low degree polynomial
computation. Our two proposed schemes support hierarchical structure and par-
tially hierarchical structure. We relax some constraints in order to get simple
schemes. The first scheme is perfectly secure, but almost perfectly correct. This
scheme is quite simple, uses only one share per secret, and has flexible access
structure. However, the supported function here is just multiplication. In the
second scheme, the supported function is improved to degree-d polynomials, but
the access structure is a little more restricted, and it requires a few more shares
per secret. This scheme is perfectly correct, but computationally secure. Table 1
compares our work to the existing evolving secret sharing schemes.

There exists a concurrent and independent work by Choudhuri et al. [9], who
consider a secret sharing scheme that involves dynamic sets of servers and can
securely compute on shares. However, their scheme requires interactions among
servers, and thus, is different from our evolving secret sharing setting, which
does not require interaction among servers. We will compare their scheme with
our work in Sect. 1.3.

1.2 Our Approach

As a warm-up, we introduce our idea here. If we allow the secret sharing scheme
to be almost perfectly correct, the scheme can be simpler than the existing evolv-
ing secret sharing scheme. From the homomorphic property of the Shamir’s secret
sharing [25], we would like to extend it to evolving homomorphic secret sharing.
Normally, each input client in the Shamir’s scheme generates a polynomial over a
specified prime field. However, the degree of the polynomial has to be fixed. This
means the security threshold of the scheme cannot be change without resharing.
In addition, the number of computing servers is limited due to the size of the
underlying field.

80 K. Phalakarn et al.

Our idea is that, it is possible to use a collision-resistant hash function to
map the ID of each server, which can be infinite, to an element in the finite prime
field. Informally, the share of the original Shamir’s scheme is the polynomial P of
the ID of each server, P (ID), while our idea uses P (h(ID)) where h is the hash
function. Using this technique, the scheme can support infinite number of servers,
with negligible collision probability from the hash function. The reconstructions
and homomorphic property immediately follow from the Shamir’s scheme. The
overview of the warm-up scheme can be shown as in Fig. 1.

Fig. 1. The overview of our warm-up evolving homomorphic secret sharing scheme.

Shamir’s scheme supports only one fixed threshold value k, i.e., any combi-
nations with more than k servers can reconstruct the secrets. We may want to
change the threshold when we add new servers to the system. To address this
issue in the first proposed scheme, we elaborate the hash function idea into the
hierarchical secret sharing of [26]. However, it is not straightforward to see which
polynomials will be used in this case. Originally, the work of [26] used deriva-
tives of polynomials. To realize evolving hierarchical access structure, which is
equivalent to dynamic threshold structure in [21], our proposed scheme will use
integrals. This scheme is correct with overwhelming probability. As shown in
Table 2, share size of this scheme is poly(λ) where λ is the security parameter.

To improve the scheme to be perfectly correct and support more general
functions, we trade-off the share size, the security, and the generality of the
access structure in the second proposed scheme. Based on the Shamir’s scheme,
instead of using only one fixed prime field, we try to expand the field during
the sharing phase. We change the tool to pseudo-random function in order to
maintain the consistency between several shares of different prime fields. Each
computing server will get two or three values as its shares instead of one. In our
second scheme, we can divide the protocol into two phases. In the setup phase,
random values with size O(λ) can be distributed in advance before secret inputs
are determined. And in the online phase, when the secret inputs are ready, the
t-th party that join the protocol will get a share with size O(log t). Share size of
each phase is also shown in Table 2.

Evolving HSS for Hierarchical Access Structures 81

Table 2. Quantitative comparison of evolving secret sharing schemes

Scheme |Unauth. Set| |Auth. Set| Share size

Komargodski et al. [20] k k + 1 O(k log t)

Komargodski et al. [21] f(t) f(t) + 1 O(t4 log t)

Beimel and Othman [1] αt βt O(1)

Beimel and Othman [2] γt − tβ γt O(t4−log−2(1/β) log t)

Our warm-up scheme k k + 1 O(λ)

Our scheme 1 f(t) f(t) + 1 poly(λ)

Our scheme 2 See Sect. 5 O(λ) for setup phase
O(log t) for online phase

1.3 Related Works

We consider two types of secret sharing that involve dynamic sets of servers.

Schemes that only Support Storage and Retrieval of Secrets. Evolving
secret sharing is a secret sharing scheme that supports infinite number of parties.
The input clients will secretly share their inputs to the computing servers, and
only authorized subsets of servers can reconstruct the secrets. The idea was firstly
proposed by Komargodski et al. in [20]. Their scheme has one fixed threshold
value k, i.e., subsets with more than k servers can reconstruct the secrets. The
scheme is improved to dynamic threshold by Komargodski et al. in [21]. In this
case, when the t-th party arrives, the threshold is changed to f(t), which can be
any non-decreasing function of t.

The next two schemes are based on ramp access structure. For some integers
x and y, subsets with at most x parties will not be able to reconstruct the secret,
and subsets with at least y parties will be able to reconstruct the secret. The
key of the ramp schemes is that x and y do not have to be adjacent in order to
reduce the share size, and there is no condition for subsets with size between x
and y. In the work of Beimel and Othman [1], x = αt and y = βt for some value
0 ≤ α < β ≤ 1. The same authors proposed closer bounds in [2], with x = γt
and y = γt − tβ for some value 0 ≤ γ, β ≤ 1. Table 2 shows the maximum size of
unauthorized sets, the minimum size of authorized sets, and the share sizes.

None of the previous works claimed an application to multi-party computa-
tion. In these works, several generations of secret sharing are used, and some are
additive secret sharing. If we build multi-party computation protocol from these
schemes, the multiplication operation will require a lot of communication. Thus,
we want to construct a better protocol which has no communication between
computing servers at all.

For our proposed scheme, with security parameter λ, the access structure
of the warm-up scheme is equivalent to [20], and that of the first scheme is
equivalent to [21]. The access structure of the second scheme is less general, and
details will be presented in the later section.

82 K. Phalakarn et al.

Schemes that also Support Computation on Shares. Apart from evolving
secret sharing, there exist some other works that achieve a somewhat similar
evolving functionality by using blockchain. These works allow a set of partic-
ipating servers to change during the protocol. The work of Goyal et al. [14]
used a technique called “dynamic proactive secret sharing”, and the work of
Benhamouda et al. [4] used a similar idea called “evolving-committee proac-
tive secret sharing”. Although the main objective of both works is to store and
retrieve secrets on blockchain, an application to MPC is also suggested. A notable
work that directly focuses on MPC in the setting where dynamic sets of servers
securely computing functions on shares is a recent protocol called “Fluid MPC”
by Choudhuri et al. [9], which can be considered as a “fluid” version of the classic
BGW protocol [3].

In these three papers, a set of participating servers is changed during the
protocol by resharing the secrets from one set of servers to the other set. This
point increases the numbers of communication and interaction in the protocol,
and is obviously different from our work. In addition, these works only support
threshold access structures, and hence all computing servers have the same role.
On the other hand, our schemes support hierarchical access structures [26], where
some parties can be assigned with different roles and powers in accessing the
shared secret, and thus can be more flexible.

1.4 Organization

In Sect. 2, we review the background on secret sharing and some cryptographic
primitives. Combining these definitions, we propose the definition of the evolving
homomorphic secret sharing in Sect. 3. The first evolving protocol with hierar-
chical access structure is proposed in Sect. 4. The second proposed scheme, which
improve the first one with some trade-offs, is proposed in Sect. 5. We compare
our schemes to the work with similar functionality [9] in Sect. 6. Finally, Sect. 7
concludes the papers.

2 Preliminaries

In this section, we review the definitions of secret sharing, homomorphic secret
sharing, and evolving secret sharing. We then review two cryptographic primi-
tives, including collision-resistant hash function and pseudo-random function.

2.1 Secret Sharing

Our setting includes n input clients, t computing servers, and one output client
(see Fig. 1). For now, t will be fixed. In the next subsection, t can be “evolving”
or increased during the protocol.

Evolving HSS for Hierarchical Access Structures 83

For the i-th input client, who has secret input xi, a pack of t shares will be
generated as si,1, . . . , si,t, and the share si,j is forwarded to the j-th computing
server. To reconstruct the secret, the authorized subset of servers will send the
given shares to the output client. The output client then reconstructs the desired
value from these shares. We refer to the definitions on access structure and secret
sharing from [20]. Let P = {1, . . . , t} = [t] be the set of t computing servers.

Definition 1. An access structure A ⊆ 2P contains all subsets of computing
servers that can reconstruct the secret. The set A must be monotone, i.e., if
A ∈ A and A ⊆ A′ ⊆ P, then A′ ∈ A. Subsets in A are called authorized, while
subsets not in A are called unauthorized.

Definition 2. Secret sharing scheme for an access structure A consists of two
probabilistic algorithms Share and Recon. The properties are:

1. Secret Sharing. As in the earlier description, the i-th input client uses
Share(xi) = (si,1, . . . , si,t) to randomly generate shares of xi. The share si,j

is given to the j-th computing server.
2. Correctness. For every authorized set A ∈ A and every secret xi in the

domain, we have Pr[Recon((si,j)j∈A) = xi] = 1.
3. Security. Consider the following game.

– The adversary chooses two different secrets x
(0)
i and x

(1)
i , and sends to

the challenger.
– The challenger randomly chooses b ∈ {0, 1}, and generates shares from

Share(x(b)
i) = (s(b)i,1 , . . . , s

(b)
i,t).

– The adversary chooses an unauthorized subset B ∈ 2P \ A, and sends to
the challenger.

– The adversary receives (s(b)i,j)j∈B, and outputs b′.
We say that the scheme is secure if b′ = b with probability 1

2 .

There exists several well-known secret sharing schemes. Here, we introduce
the work of Shamir [25] and Tassa [26]. Shamir’s secret sharing supports thresh-
old access structures. The definition and the scheme are as follows.

Definition 3. The access structure A = {A ∈ 2P : |A| > k} of P = [t] is called
(k, t)-threshold access structure.

Let the desired access structure be (k, t)-threshold. To share the secret input
xi using the Shamir’s scheme, the i-th input client generates degree-k polynomial
Pi over a prime field with size larger than t such that Pi(0) = xi. Then, si,j =
Pi(j) is distributed to the j-th computing server. From Lagrange interpolation,
secrets can be reconstructed by using a system of linear equations si,j = Pi(j)
where j is the server in the authorized set A ∈ A.

Tassa’s secret sharing supports hierarchical access structures. (In this paper,
we only focus on disjunctive type.) The definition and the scheme are as follows.

84 K. Phalakarn et al.

Definition 4. In disjunctive hierarchical access structure, the computing servers
are divided into disjoint partitions P1 ∪ . . . ∪ P� = P = [t]. Let k1 ≤ . . . ≤ k�

be threshold for each hierarchical level. The (k1, . . . , k�,P1, . . . ,P�)-hierarchical
access structure is defined as

A =

{
A ∈ 2P : ∃j ∈ [�],

∣∣∣∣∣A ∩
j⋃

m=1

Pm

∣∣∣∣∣ > kj

}
.

In other words, the hierarchical access structure can be viewed as a disjunc-
tion of several threshold structures, namely, (k1, |P1|)-threshold, (k2, |P1 ∪ P2|)-
threshold, . . ., and (k�, |

⋃�
m=1 Pm|)-threshold.

Let P = [t], and the desired access structure be (k1, . . . , k�,P1, . . . ,P�)-
hierarchical. To share the secret input xi, the i-th input client generates degree-k�

polynomial Pi over a prime field with size p > t such that the coefficient of the
term with the highest degree is xi. Then, si,j = Pi(j) is distributed to the j-th
computing server in P�. For the j-th computing server in Pm where m < �, the
share si,j = P

(k�−km)
i (j) is given, where P

(k�−km)
i is the (k� − km)-th deriva-

tive of Pi. Note that P
(k�−km)
i has degree km, and the coefficient of the term

with the highest degree includes xi. From Birkhoff interpolation, secrets can be
reconstructed by using a system of linear equations si,j = P

(k�−km)
i (j) where

j ∈ Pm is the server in the authorized set. Although the equations may not have
a unique solution in some settings, it is unique with overwhelming probability,
as stated in the following theorem.

Proposition 1. [18,26]. For random allocation of participant identities, the
above scheme from [26] realized the access structure in Definition 4 with proba-
bility at least 1 − ε′ where

ε′ ≤
(

t+1
k�+1

)
k�(k� − 1)

2(p − k� − 1)
.

2.2 Homomorphic Secret Sharing

We continue considering the same setting as in the previous subsection. In multi-
party computation, we want to do more than reconstructing the secrets. The
goal of multi-party computation is to let the output client learns the result
of a function of secret inputs. Unauthorized subsets of servers must not learn
the secret inputs or the results. Multi-party protocols can be constructed from
garbled circuits [28], homomorphic encryption [11], secret sharing [13], etc.

In this paper, we focus on multi-party computation protocols that are based
on homomorphic secret sharing. Each server can locally calculate some functions
of the shares, but communication with other servers is not allowed. We refer to
the definition of homomorphic secret sharing from [7] as follows.

Definition 5. A degree-d homomorphic secret sharing is a secret sharing
scheme with one additional algorithm Eval. The property for Eval is that, for

Evolving HSS for Hierarchical Access Structures 85

every degree-d polynomial f of secret inputs, every secret inputs x1, . . . , xn, and
some authorized subset A ∈ A′ ⊆ A, the j-th computing server which j ∈ A
can locally compute yj = Eval(A, f, j, (si,j)i∈[n]) such that Recon((yj)j∈A) =
f(x1, . . . , xn).

In addition to the previous subsection, Shamir’s scheme has the following
homomorphic property.

Proposition 2. [3]. Shamir’s scheme with (k, t)-threshold is degree-d homomor-
phic when A′ = {A ∈ 2P : |A| > d · k}. The value f(x1, . . . , xn) where f is a
degree-d polynomial can be reconstructed from f(s1,j , . . . , sn,j) for the j-th server
in an authorized set with at least d · k + 1 servers.

It is also proved in [18] that Tassa’s scheme is 2-multiplicative for some
specified settings, i.e., value f(xi, xi′) = xixi′ can be reconstructed from si,jsi′,j
for the j-th server in some authorized subsets. The scheme can also be strongly
2-multiplicative in some stronger settings, i.e., value f(xi, xi′) = xixi′ can be
reconstructed from si,jsi′,j where j comes from “any” authorized subsets.

2.3 Evolving Secret Sharing

In contrast to the previous subsections, evolving secret sharing allows infinite
number of participated servers. We then have P = Z

+. The following definitions
for evolving access structure and evolving secret sharing are from [20].

Definition 6. An evolving access structure A ⊆ 2P is defined in the same way
as Definition 1, except that P is infinite and A can be infinite. At = A ∩ 2[t] is
a finite access structure of the first t servers.

Definition 7. Let A = {At}t∈P be an evolving access structure. An evolving
secret sharing scheme for A contains two algorithms Share and Recon such that

1. Secret Sharing. To share the secret input xi, the share si,t randomly gener-
ated from Share(xi, si,1, . . . , si,t−1) is given to the t-th computing server when
it arrives. This share cannot be modified later after it is given.

2. Correctness. For every secret input xi and t ∈ P, an authorized subset
A ∈ At can reconstruct the secret. That is Pr[Recon((si,j)j∈A) = xi] = 1.

3. Security. Consider the following game.
– The adversary chooses two different secrets x

(0)
i and x

(1)
i , and sends to

the challenger.
– The challenger randomly chooses b ∈ {0, 1}, and generates s

(b)
i,j from x

(b)
i

using Share algorithm.
– The adversary chooses t ∈ P and an unauthorized subset B ∈ 2[t] \ At,

and sends to the challenger.
– The adversary receives (s(b)i,j)j∈B, and outputs b′.

We say that the scheme is secure if b′ = b with probability 1
2 .

86 K. Phalakarn et al.

2.4 Cryptographic Primitives

We refer to the definition of collision-resistant hash function from [5, Chapter 8].

Definition 8. Let λ be the security parameter. A collision-resistant hash func-
tion h : S1 → S2 is a function such that for all probabilistic polynomial time
algorithm Λ, the following probability is negligible in λ.

Pr[x1, x2 ← Λ(h);x1
= x2 : h(x1) = h(x2)]

In the real-world implementation, one normally uses the current standard
hash function, namely, SHA-3 [23]. Heuristically, it can be said that outputs
from SHA-3 look almost uniformly distributed [5, Chapter 8]. We will use this
latter property to attain the random allocation, as required by Proposition 1 in
our first construction.1

The other tool that we review is pseudo-random function [12].

Definition 9. Let λ be the security parameter, and S1, S2, and S3 be collections
of sets indexed by λ. A pseudo-random function g : S1 × S2 → S3 is a function
such that for all probabilistic polynomial time algorithm Λ, the following proba-
bility is negligible in λ.

| Pr[s ← S1 : Λ(g(s, ·)) = 1]−Pr[a random map g from S2 to S3 : Λ(g(·)) = 1] |

3 Evolving Homomorphic Secret Sharing

In this section, we propose the definition of evolving homomorphic secret sharing.
We combine Definition 5 and Definition 7 as follows. We also allow the scheme
to be almost perfectly correct and computationally secure.

Definition 10. An evolving degree-d homomorphic secret sharing is an evolv-
ing secret sharing scheme with three algorithms Share,Recon, and Eval. Security
parameter λ can be used as necessary. Properties of the three algorithms include:

1. Secret Sharing. This is the same as in Definition 7.
2. Correctness. Pr[Recon((si,j)j∈A) = xi] equals to 1 for perfect correctness,

or equals to 1 − ε for almost perfect correctness where ε is negligible in λ.
3. Security. Consider the following game.

– The adversary chooses two different secrets x
(0)
i and x

(1)
i , and sends to

the challenger.
– The challenger randomly chooses b ∈ {0, 1}, and generates s

(b)
i,j from x

(b)
i

using Share algorithm.

1 We could also go all the way by using the random oracle model. However, the random
oracle model usually allows us to do more: a reduction algorithm can simulate an
output of any queried input to the hash function. We do not use this property, and
hence do not directly assume the random oracle.

Evolving HSS for Hierarchical Access Structures 87

– The adversary chooses t ∈ P and an unauthorized subset B ∈ 2[t] \ At,
and sends to the challenger.

– The adversary receives (s(b)i,j)j∈B, and outputs b′.
We say that the scheme is perfectly secure if b′ = b with probability 1

2 , and is
computationally secure if b′ = b with probability 1

2 + ε, where the advantage ε
is negligible in λ.

4. Homomorphism. For every degree-d polynomial f , every secret inputs
x1, . . . , xn, every t ∈ P, and some authorized subset of servers A ∈ A′

t ⊆
At, the j-th computing server which j ∈ A can locally compute yj =
Eval(A, f, j, (si,j)i∈[n]) such that Recon((yj)j∈A) = f(x1, . . . , xn).

This definition will be applied for our first scheme in Sect. 4 and our second
scheme in Sect. 5.

4 Our Scheme 1: From Hierarchical Secret Sharing

In the first proposed scheme, we combine the hierarchical secret sharing from [26]
and [18] with a collision-resistant hash function. The purpose of hash function
here is similar to the warm-up scheme in Sect. 1.2.

4.1 Access Structure

The evolving disjunctive hierarchical access structure is similar to the disjunctive
hierarchical access structure in Definition 4. In addition, the computing servers
may be infinite, and the partition of servers may also be infinite.

Definition 11. In evolving disjunctive hierarchical access structure, the com-
puting servers are divided into disjoint partitions (Pm)m∈Z+ such that⋃

m∈Z+ Pm = P = Z
+. Let (km)m∈Z+ be threshold for each hierarchical level

where km ≤ km+1 for all m ∈ Z
+. The evolving ((km)m∈Z+ , (Pm)m∈Z+)-

hierarchical access structure is defined as

A =

{
A ∈ 2P : ∃j ∈ P,

∣∣∣∣∣A ∩
j⋃

m=1

Pm

∣∣∣∣∣ > kj

}
.

Note that the number of partitions and number of thresholds are unbounded.
This evolving disjunctive hierarchical access structure is equivalent to the
dynamic threshold structure in [21]. We have dynamic threshold f(t) = km

for t ∈ Pm. Here, the computing servers in Pm must come before those in Pm+1.

4.2 Construction

Secret Sharing. We propose the first scheme based on the idea of hierarchical
secret sharing. In [26], the work realized the access structure by using the idea of
derivatives. Our work will use the idea of integrals, since the number of servers
can not be determined in advance. In this way, our scheme can support the
evolving setting while preserving the properties of [18].

88 K. Phalakarn et al.

1. All input clients agree on a collision-resistant hash function h with uniformly
distributed output. The domain and range of h are {0, 1}∗ and Zp\{0} where
p (will be specified later) is a prime number greater than 2λ, and λ is the
security parameter. We also assume that each t-th computing server has a
unique random identity, IDt, over {0, 1}∗.2

2. To share the secret input xi to the computing servers in P1, the i-th input
client generates a degree-k1 polynomial Pi,1(χ) =

∑k1
j=0 ajχ

j over Zp with
random coefficients aj , and the coefficient ak1 = xi. When the t-th computing
server in P1 arrives, it gets its share as si,t = Pi,1(h(IDt)). It can be seen that
the hash function h is used in order to map from infinite set of IDs ({0, 1}∗)
to the finite prime field Zp.

3. For m ≥ 2, when the first server in Pm arrives, the input client generates a
degree-km polynomial

Pi,m(χ) = P
[km−km−1]
i,m−1 (χ) +

km−k(m−1)−1∑
j=0

ajχ
j

with random coefficients aj , where the term P
[km−km−1]
i,m−1 (χ) is defined as the

(km − km−1)-th integral of Pi,m−1(χ). For t ∈ Pm, when the t-th computing
server arrives, it gets its share as si,t = Pi,m(h(IDt)).

Reconstruction. Assume that a subset A ∈ At for some t is going to reconstruct
the secret. The linear system described in Sect. 2.1 can be constructed from
the equations si,t = Pi,m(h(IDt)) for all t ∈ A. According to Proposition 1,
the secret can be reconstructed by using Birkhoff interpolation. Recall that the
coefficient of the term with the highest degree of Pi,m(χ) is akm

. Then, the secret
is akm

× (km!/k1!).

Evaluation. From the multiplicative property shown in [18], to calculate the
multiplication of two secret inputs xi and xi′ , each j-th computing server can
locally compute its partial result yj = si,jsi′,j . Suppose that we share the secrets
using polynomials Pi,m(χ) and Pi′,m(χ), and the coefficients of the terms with
the highest degree are akm

and a′
km

. We will obtain akm
a′

km
from the reconstruc-

tion. To obtain the multiplication result, which is (akm
km!/k1!)(a′

km
km!/k1!), we

multiply the value from the reconstruction with (km!/k1!)2.

Example 1. Assume that the thresholds are k1 = 1, k2 = 2, and k3 = 3. (The
setting for other levels are omitted.) To share a value 12, the i-th input client
randomly chooses a polynomial Pi,1(χ) = 12χ+2, and uses it to generate shares
for servers in the first level.

To generate shares for other levels, we calculate the integration result of
Pi,1(χ) as 6χ2+2χ. We add the result with a random constant to obtain Pi,2(χ).
Suppose that the constant is 3. We then have Pi,2(χ) = 6χ2 + 2χ + 3. Similarly,
we have Pi,3(χ) = 2χ3 + χ2 + 3χ + 4.
2 A public bulletin board can be used for keeping the record and checking the unique-
ness of all IDs.

Evolving HSS for Hierarchical Access Structures 89

In reconstruction process, after recovering Pi,3(χ) from Birkhoff interpola-
tion, we know that the coefficient of the term with the highest degree (a3) is 2.
The secret is then a3 × (k3!/k1!) = 12.

Compare to [26], there exists a scheme using the same sequence of poly-
nomials. To share a value 2, the input client randomly chooses Pi,3(χ) =
2χ3 + χ2 + 3χ + 4 for the third level. From derivatives, the polynomials for
the second and the first levels are Pi,2(χ) = 6χ2 + 2χ + 3 and Pi,1(χ) = 12χ + 2.
Thus, the correctness from [26] and [18] can be applied to ours.

4.3 Properties

In this subsection, we are interested in correctness, security, and share size of
the scheme. We summarize the properties of the first scheme in the following
theorem, and give a brief explanation.

Theorem 1. If km ≤ poly(λ), there exists p with poly(λ) bits such that the
evolving homomorphic secret sharing scheme over Zp proposed in Sect. 4.2 is
almost perfectly correct and perfectly secure.

Correctness. From the construction in Sect. 4.2, the sequence of polynomi-
als (Pi,1(χ), Pi,2(χ), . . . , Pi,m(χ)) from integrals is the same as (Pi,m(χ), . . . ,
P

(km−k2)
i,m (χ), P (km−k1)

i,m (χ)) from derivatives, but the order is reversed. Using the
correctness of [26] and [18], the combinations according to the access structure
A in Definition 11 can reconstruct the secret by using Birkhoff interpolation.

Although we have km+1 servers from the first m levels, we cannot reconstruct
the polynomial only when 1) the solution of Birkhoff interpolation is not unique,
or 2) some of the parties holds the same point in the polynomial.

Since IDt is random and the output of h is uniformly distributed, Propo-
sition 1 can be applied. The probability that the interpolation solution is not
unique is no more than ε′. And because h is collision-resistant, h(IDt) and
h(IDt′) from two servers are equal with negligible probability ε′′. The proba-
bility that there is at least one collision in km + 1 servers is at most

(
km+1

2

)
ε′′.

Therefore, the probability that we cannot have the polynomial is no more than
ε′ +

(
km+1

2

)
ε′′.

There is p with poly(λ) bits that makes ε′ in Proposition 1 negligible. Also,
if we assume that km ≤ poly(λ), the value of

(
km+1

2

)
ε′′ will be also negligible.3

Thus, the probability that we cannot have the polynomial is negligible.
From [18], if there exists m ∈ P such that |Pm| > 2km, then the scheme is

2-multiplicative, i.e., all the servers together can calculate multiplication of two
inputs. If |Pm| > 3km for some m, then the scheme is strongly 2-multiplicative,
any authorized subsets can calculate multiplication of two inputs. (See Sect. 7

3 It is important to note that the correctness of our protocol does not depend on
the number of all parties, but the minimum number of parties involving in the
reconstruction, denoted by km. Therefore, although km must be polynomial of the
security parameter, our protocol can support infinite number of parties.

90 K. Phalakarn et al.

for more discussion.) The scheme that can calculate more general functions will
be proposed in the next section.

Security. From Proposition 1, our scheme realizes evolving disjunctive hierar-
chical access structure, and is perfectly secure with overwhelming probability. We
know from [26] and [18] that, even when the adversary knows exactly kj pieces
of different Pi,m(h(IDt)) for any m ≤ j, they cannot recover the secrets from
those values. When the adversary can collect shares from at most kj servers from⋃j

m=1 Pm, they will know at most kj pieces of different Pi,m(h(IDt)). Therefore,
they cannot recover the secrets from those values.

Share Size. From the description, the t-th computing server in Pm will get only
one share si,t = Pi,m(h(IDt)) for each secret input xi, which is an element in Zp.
In this scheme, we can trade-off the share size with correctness. If we increase
λ, the share size will be larger, but the probability that the hashed values will
be collided is reduced.

5 Our Scheme 2: Multi-generation of Shamir’s Scheme

From the previous section, it can be seen that the first proposed scheme has
negligible error probability from the hash function, so it is not perfectly correct.
The computable function is also limited. We will address these issues in this
section. Here, we combine the Shamir’s secret sharing [25] with pseudo-random
functions, and allow the computing servers to store more than one shares. A
variant of this scheme is also proposed.

5.1 Access Structure

We describe the partially hierarchical structure as follows. This structure is sim-
ilar to, but less general than the hierarchical one introduced in the previous
section. Parameters for the access structure are (km)m∈N where each km is a
non-negative integer. The authorized sets that can reconstruct the secret are
the combination of km + 1 servers from the first km+2 servers, or (km, km+2)-
threshold, for any m ∈ N. The authorized sets that can compute degree-d poly-
nomials are the combination of d · km + 1 servers from the first km+2 servers, or
(d · km, km+2)-threshold, for any m ∈ N. We call the set of all servers 1 ≤ j ≤ k1
as the 1st generation, and the set of all servers km−1 < j ≤ km as the m-th gen-
eration for m ≥ 2. Note that the number of thresholds here is also unbounded.

5.2 Construction

Secret Sharing. In this scheme, we use pseudo-random functions with security
parameter λ. The usage is different from hash functions in the previous section.

1. When the first server arrives, the i-th input client generates a degree-k0 poly-
nomial Pi,1 of prime field p1 > k2, where Pi,1(0) = xi.

Evolving HSS for Hierarchical Access Structures 91

2. For 1 ≤ t ≤ k2, the share si,t, which includes Pi,1(t) and a random bit
string ri,t of size λ, is given to the t-th computing server in the 1st and 2nd
generations when it arrives. Note that the random value ri,t can be distributed
in the setup phase before the value of xi is known.

3. For all j ≥ 2, when the (kj−1 + 1)-th server (which is the first server of the
j-th generation) arrives, the input clients agree on a pseudo-random function
gj : {0, 1}λ × Zpj−1 → Zpj

, where pj > kj+1 is a prime number. Then,
generate a degree-kj−1 polynomial Pi,j of prime field pj , where Pi,j(0) = xi

and Pi,j(t) = gj(ri,t, Pi,j−1(t)) for all 1 ≤ t ≤ kj−1.
4. For all j ≥ 2 and kj−1 + 1 ≤ t ≤ kj+1, the share si,t which includes Pi,j(t)

and a random bit string ri,t of size λ is given to each server in the j-th and
the (j + 1)-th generations when it arrives. Intuitively, the pseudo-random
functions in this second scheme are used to maintain the consistency of the
shares from different prime fields.

Table 3 summarizes the share values related to the i-th input client. In addi-
tion to ri,t, each server will get only bold values in the corresponding row which
is at most two elements per secret input. Other values that are not given can be
generated from ri,t, Pi,j(t), and the pseudo-random functions.

Table 3. Values need for reconstruction in the second scheme.

Polynomial Pi,1 Pi,2 Pi,3 Pi,4 . . .

Prime field p1 > k2 p2 > k3 p3 > k4 p4 > k5 . . .

Degree k0 k1 k2 k3 . . .

Threshold (dk0, k2) (dk1, k3) (dk2, k4) (dk3, k5) . . .

Gen. 1: Server 1 to k1 Pi ,1(t) g2(ri,t, Pi,1(t)) g3(ri,t, Pi,2(t)) g4(ri,t, Pi,3(t)) . . .

Gen. 2: Server k1 + 1 to k2 Pi ,1(t) Pi ,2(t) g3(ri,t, Pi,2(t)) g4(ri,t, Pi,3(t)) . . .

Gen. 3: Server k2 + 1 to k3 Pi ,2(t) Pi ,3(t) g4(ri,t, Pi,3(t)) . . .

Gen. 4: Server k3 + 1 to k4 Pi ,3(t) Pi ,4(t) . . .

.

Reconstruction. According to Shamir’s scheme [25], if the subset satisfies the
access structure, Lagrange interpolation can be used to reconstruct the cor-
responding polynomial. The values in Table 3 will be used in the reconstruc-
tion process corresponding to the specified polynomial. For example, suppose
(k0, k1, k2, k3) = (1, 2, 5, 9). When we have information from server 1, 6, and 7,
we can reconstruct Pi,2 using Pi,2(1) = g2(ri,1, Pi,1(1)), Pi,2(6), and Pi,2(7).

Evaluation. From the property of Shamir’s scheme, to calculate a degree-d
polynomial f of the secret inputs, each computing server can locally compute f
on its given shares corresponding to the satisfied threshold level (see Table 3).

5.3 Properties

Similar to the previous section, the properties of the second scheme are summa-
rized in the following theorem with a brief explanation.

92 K. Phalakarn et al.

Theorem 2. The evolving homomorphic secret sharing scheme proposed in
Sect. 5.2 is perfectly correct and computationally secure.

Correctness. Each polynomial Pi,j can be uniquely generated from pseudo-
random value of the first j − 1 generations. According to Proposition 2, a set of
computing servers satisfied the conditions in the defined access structure will be
able to compute degree-d polynomials. The Eval algorithm can be performed by
calculating the function f on the corresponding share of each secret input.

The correctness of scheme 2 should not be confusing with scheme 1. In scheme
1, the “input” of the polynomial may be collided from the use of hash function.
Thus, the scheme is almost perfectly correct. However, in scheme 2, the “output”
of the polynomial may be collided from the use of pseudo-random function, but
this does not affect the perfect correctness of the scheme. That is because in the
original Shamir’s scheme, shares for different servers can have the same value.

Security. We prove the security of the scheme with a sequence of games. It starts
from the first setting with values from pseudo-random functions, and ends with
the final setting with totally random values.

Game 0. This game is based on the exact construction in Sect. 5.2. Assume that
the adversary collects at most kj shares for all level j, and q ≤ poly(λ) of them
are shares from pseudo-random functions. The adversary tries to distinguish
between shares of any two secrets.

Game 1. The setting is same as Game 0 except that one share from pseudo-
random function is changed to random value.

We continue changing one pseudo-random share to random value for each
game. In the final game, Game q, all shares are totally random values.

The security of the final game follows the security of the Shamir’s scheme.
The advantage of the adversary to distinguish the shares is εq = 0. Let us
consider the following lemma.

Lemma 1. Assume that there is an adversary with advantages εg and εg+1 in
Game g and Game g + 1, respectively. Then, we can construct an adversary
against pseudo-random function with advantage AdvPRF = 1

2 (εg − εg+1).

Proof. We define Game g based on the secret sharing setting with the usage
of q − g pseudo-random functions. The difference between Game g and Game
g+1 is only at the g-th part of the share; the former comes from pseudo-random
function while the latter comes from random function. The other parts of the
shares are exactly the same. Assume that we have an adversary Ψ such that the
advantage to distinguish shares in Game g and Game g + 1 are εg and εg+1,
respectively. We will construct an adversary Φ against the security of pseudo-
random function as follows.

The challenger flips coin a ∈ {0, 1} which represents pseudo-random and
random function, respectively. Adversary Φ wins if it can make a guess a′ equals
to a. Adversary Φ firstly let the adversary Ψ generate two secrets x0 and x1.
Next, Φ flips coin b ∈ {0, 1}, and generates shares of xb according to the scheme

Evolving HSS for Hierarchical Access Structures 93

in Sect. 5.2, using one query to the challenger and its own q − g − 1 pseudo-
random functions. Φ then forwards the shares to Ψ . After receiving b′ in return
from Ψ , if b′ = b, Φ guesses a′ = 0, and guesses a′ = 1 otherwise.

If the challenger has a = 0, the setting is Game g, which Ψ has advantage of
εg. On the other hand, if the challenger has a = 1, the setting is Game g + 1,
which Ψ has advantage of εg+1. Hence by the definition, we have

Pr[b′ = b | a = 0] − 1
2

= εg

Pr[b′ = b | a = 1] − 1
2

= εg+1.

Let the advantage to break pseudo-random function is AdvPRF . In the other
words, Pr[a′ = a] − 1

2 = AdvPRF . And from the explanation above, Pr[a′ =
0] = Pr[b′ = b] and Pr[a′ = 1] = 1 − Pr[b′ = b]. We will show that εg − εg+1 =
2AdvPRF . Consider the probability that a′ = a as follows.

Pr[a′ = a] = Pr[a′ = 0 | a = 0]Pr[a = 0]
+ Pr[a′ = 1 | a = 1]Pr[a = 1]

= (
1
2

+ εg)(
1
2
) + (

1
2

− εg+1)(
1
2
)

=
1
2

+
1
2
εg − 1

2
εg+1

Substitute this probability to the advantage of pseudo-random function, we
have AdvPRF = 1

2 (εg − εg+1). �

Put everything together, the advantage to break our scheme is ε0 = ε0−εq =

(ε0−ε1)+· · ·+(εq−1−εq) = 2qAdvPRF which is negligible if AdvPRF is negligible.

Share Size. Since the random values ri,t are not related to the secrets, these
values can be distributed in the setup phase. The communication complexity
here is O(λ) for each pair of input client and server. After the secret inputs are
determined in the online phase, the t-th computing server will get at most two
shares per secret input. The share size depends on the value kj in the access
structure. One possible way is to choose kj ≈ d(j+1)/2. If t ≈ dj , it will receive
two field elements, where the size of the field is at most dj+1. The share size is
then approximately 2(j + 1) log d. Thus, the share size of the t-th server in the
online phase is approximately O(log t).

5.4 Variant of the Scheme

The scheme in this section can be generalized so that each server receives at
most α shares, where α is a positive integer. In this case, the combinations of
computing servers that can compute degree-d polynomials are (d · km, km+α)-
threshold, for any m ∈ N. Compare to Table 3, the parts with pseudo-random
functions are the same, but more cells of bold shares will be added. It can be seen
that these combinations are more generalized than the scheme in Sect. 5.2 when
α is increased. This is a trade-off between the generality of the access structure
and the share size.

94 K. Phalakarn et al.

6 Comparison to a Recent Scheme

In this section, we briefly compare communication costs of our schemes to Fluid
MPC [9]. Note that the cost of our works is a result from Definition 10, and does
not depend on the construction.

Assume that there are n input clients. For computing servers, at first we use
m1 servers. Later, we increase the number of servers to m2, and then m3, . . . ,m�.
In [9], there are nm1 messages sent from n input clients to the first set of m1

computing servers. Since resharing between servers is required, mimi+1 messages
are sent from the i-th set of servers to the (i+1)-th set. Thus, the total number
of messages sent is nm1 + m1m2 + · · · + m�−1m�. In contrast, our schemes do
not use resharing, shares are only sent from the input clients to newly added
servers. With some restrictions on computing functions, our schemes only require
nm1 + n(m2 − m1) + · · · + n(m� − m�−1) = nm� communications. Furthermore,
servers which already received shares do not have to be online when new servers
are added.

7 Concluding Remarks

In this paper, we propose two evolving homomorphic secret sharing schemes. By
relaxing the conditions to be almost perfectly correct or computationally secure,
our schemes are simpler than the existing ones. Users can choose the appropriate
schemes and trade-off between several parameters. We suggest some interesting
issues that are left for future studies.

For the first scheme, the number of shares for each computing server is small,
but the share size may be large, since the prime p has to be large. If we can
increase the size of the prime field later during the protocol (similar to the
second scheme), then the share size can be reduced. In order to do this, we may
integrate the polynomial to a different prime field, and then solve multi-variable
Chinese remainder theorem, which is studied in [19], instead of simple linear
system. However, the multi-variable CRT is not thoroughly understood.

As the other issue, the paper [18] mentioned the access structure of type Qd

(union of any d sets in the access structure cannot cover all parties), but not
the multiplicativity of d secret inputs when d > 2. This issue should be further
investigated. The other work [27] can perform unlimited number of multiplica-
tions by using precomputed multiplicative triples. This requires some interac-
tions between computing servers.

For the second scheme, the appropriate value of threshold km for all m ∈
N should be suggested, but these values may depend on the applications. We
may try to extend the idea of this construction to more general class of access
structures.

Acknowledgments. Nuttapong Attrapadung was partly supported by JST CREST
Grant Number JPMJCR19F6, and by JSPS KAKENHI Kiban-A Grant Number
19H01109. Kanta Matsuura was partially supported by JSPS KAKENHI Grant Num-
ber 17KT0081.

Evolving HSS for Hierarchical Access Structures 95

References

1. Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 313–332. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 17

2. Beimel, A., Othman, H.: Evolving ramp secret sharing with a small gap. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, pp. 529–555 (2020)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)

4. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 10

5. Boneh, D., Shoup, V.: A graduate course in applied cryptography (2020). https://
toc.cryptobook.us/book.pdf

6. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

7. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: 9th Innovations in Theoretical Computer Science Conference
(2018)

8. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 1

9. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: Secure
multiparty computation with dynamic participants. IACR Cryptology ePrint
Archive 2020/754 (2020)

10. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation. In: Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
pp. 554–563 (1994)

11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178
(2009)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229 (1987)

14. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retriev-
ing secrets on a blockchain. IACR Cryptology ePrint Archive 2020/504 (2020)

15. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

16. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
IACR Cryptology ePrint Archive (2011)

17. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure func-
tion evaluation. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pp. 797–808 (2012)

https://doi.org/10.1007/978-3-319-98113-0_17
https://doi.org/10.1007/978-3-030-64375-1_10
https://toc.cryptobook.us/book.pdf
https://toc.cryptobook.us/book.pdf
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8

96 K. Phalakarn et al.

18. Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold
secret sharing. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 148–168.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10230-1 13

19. Knill, O.: A multivariable chinese remainder theorem. arXiv preprint
arXiv:1206.5114 (2012)

20. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 19

21. Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresh-
olds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678,
pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-
3 12

22. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low
degree polynomials. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11274, pp. 279–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03332-3 11

23. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication 202 (2015)

24. Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K.: Constructive
t-secure homomorphic secret sharing for low degree polynomials. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
763–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 34

25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
26. Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004.

LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24638-1 26

27. Traverso, G., Demirel, D., Buchmann, J.: Performing computations on hierarchi-
cally shared secrets. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2018. LNCS, vol. 10831, pp. 141–161. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89339-6 9

28. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-642-10230-1_13
http://arxiv.org/abs/1206.5114
https://doi.org/10.1007/978-3-662-53644-5_19
https://doi.org/10.1007/978-3-319-70503-3_12
https://doi.org/10.1007/978-3-319-70503-3_12
https://doi.org/10.1007/978-3-030-03332-3_11
https://doi.org/10.1007/978-3-030-03332-3_11
https://doi.org/10.1007/978-3-030-65277-7_34
https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-319-89339-6_9
https://doi.org/10.1007/978-3-319-89339-6_9

Machine Learning and Security

Understanding Update
of Machine-Learning-Based Malware
Detection by Clustering Changes

in Feature Attributions

Yun Fan1, Toshiki Shibahara2, Yuichi Ohsita1(B), Daiki Chiba2,
Mitsuaki Akiyama2, and Masayuki Murata1

1 Osaka University, Osaka, Japan
{h-un,y-ohsita,murata}@ist.osaka-u.ac.jp

2 NTT, Tokyo, Japan
toshiki.shibahara.de@hco.ntt.co.jp, {daiki.chiba,akiyama}@ieee.org

Abstract. Machine learning (ML) models are often adopted in malware
detection systems. To ensure the detection performance in such ML-based
systems, updating ML models with new data is crucial for minimizing the
influence of data variation over time. After an update, validating the new
model is commonly done using the detection accuracy as a metric. How-
ever, the accuracy does not include detailed information, such as changes
in the features used for prediction. Such information is beneficial for avoid-
ing unexpected updates, such as overfitting or noneffective updates. We,
therefore, propose a method for understanding ML model updates in mal-
ware detection systems by using a feature attribution method called Shap-
ley additive explanations (SHAP), which interprets the output of an ML
model by assigning an importance value called a SHAP value to each fea-
ture. In our method, we identify patterns of feature attribution changes
that cause a change in the prediction. In this method, we first obtain the
feature attributions for each sample, which change before and after the
update. Then, we obtain the patterns of the changes in the feature attri-
butions that are common for multiple samples by clustering the changes
in the feature attributions. In this study, we conduct experiments using an
open dataset of Android malware and demonstrate that our method can
identify the causes of performance changes, such as overfitting or noneffec-
tive updates.

Keywords: Malware detection · Machine learning · Feature
attribution

1 Introduction

Machine learning (ML) has been used to detect malware. Such ML-based mal-
ware detection systems adopt ML models trained on previously collected data
to perform predictions on new data. Owing to a phenomenon called concept
drift [22], the detection performance in an ML-based system gradually degrades
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 99–118, 2021.
https://doi.org/10.1007/978-3-030-85987-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_6

100 Y. Fan et al.

as the statistical characteristics of data change over time [10]. In this situation,
updating the ML model using new data can effectively improve the detection
performance of the systems.

After an update, the new model is validated using validation data in terms
of detection performance [11]. Once the model is successfully validated, it can
be deployed in a real detection system. Thus far, the detection accuracy of the
validation data has been used as a metric to validate the model after an update.
However, the accuracy does not reflect detailed information, such as changes
in the features used for prediction. Such information is beneficial for avoiding
unexpected updates, such as overfitting or noneffective updates.

To obtain detailed information about model updates, we propose a method
for identifying patterns of feature attribution changes that cause a change in
the prediction. Feature attributions represent the extent of contribution that
features have made to model predictions in a system. When a model is retrained
using a dataset updated with newly collected data, important features that were
overlooked or did not appear before the update may be found. The attributes
of such features change significantly. In other words, by analyzing significant
changes in feature attributions, we can identify model changes in detail. In the
proposed method, we first obtain the feature attributions for each sample that
change before and after the update. Then, we obtain the patterns of the changes
in the feature attributions, which are common for multiple samples, by clustering
the changes of the feature attributions using the similarities of the features whose
attributions changed significantly.

In our experiments, we use Android application samples and build models to
detect malicious samples. We evaluate the effectiveness of the proposed method
by analyzing model changes while the training dataset is updated with differ-
ent biased data, and as time goes by, we demonstrate that our method can
identify the unexpected model changes caused by the biased data. The experi-
mental results show that updates with severely biased data can lead to an over-
fitting or noneffective update, causing the performance to deteriorate or remain
unchanged. The results also indicate that our method can identify the important
features relevant to the performance change, which are difficult to find by using
a method that calculates only the feature attributions. Some important features
found by our method cannot be found unless by checking more than 100 features
if the features are checked in the order of the feature attributions.

The remainder of this paper is organized as follows: Sect. 2 introduces related
works, especially the feature attribution method. Section 3 presents the proposed
method. Section 4 introduces the experimental setup and Sect. 5 presents our
experimental results. Finally, Sect. 6 discusses our observations and Sect. 7 con-
cludes the paper.

2 Background and Related Work

We propose a method for analyzing updates to determine the cause of the per-
formance changes. Before presenting our method, in this section, we introduce
other methods to evaluate the appropriateness of models. We also introduce a
method for determining features that contribute to classification.

Understanding Updates of Machine-Learning-Based Malware Detection 101

2.1 Evaluation Methods

Model Evaluation Metric. There are several common metrics, such as accu-
racy, precision, recall, F-measure, true positive rate (TPR), and false positive
rate (FPR), for evaluating the classification performance of ML models. These
are used to calculate a value that indicates the model performance. In binary
classification—distinguishing between positive and negative classes—samples are
divided into four different categories based on their predicted and true classes:
true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). TPs and TNs are samples correctly predicted as positive and negative,
respectively. FPs and FNs are samples incorrectly predicted as positive and neg-
ative, respectively. In malware detection, positive and negative samples refer to
malicious and benign samples, respectively. For example, the FPs are benign
samples which are incorrectly predicted as malicious.

The accuracy metric simply computes the ratio of the correct prediction
number to the total sample number, TP+TN

TP+TN+FP+FN . Precision is the ratio of
the correct positive prediction number to the total positive prediction number,

TP
TP+FP . The recall (also known as the TPR) is the ratio of the correct positive
prediction number to the total positive sample number, TP

TP+FN . The FPR is
the ratio of the incorrect positive prediction number to the total negative sample
number, FP

FP+TN . The F-measure (or F1-score) is the harmonic mean of precision
and recall: 2 × precision×recall

precision+recall .
The model performance is also shown in the receiver operating characteristic

(ROC) curves. ROC curves have true and false positive rates as the vertical
and horizontal axes, respectively. ROC curves and the area under the curve
(AUC) are commonly used to evaluate the performance of the ML model in
cybersecurity.

In addition to these metrics, there are also some criteria to evaluate the model
from other perspectives. Typically, the Akaike information criterion (AIC) [2]
and the Bayesian information criterion (BIC) [20], are widely used to avoid
overfitting. They are defined as

AIC = −2 ln(L) + 2K, (1)
BIC = −2 ln(L) + K ln(n), (2)

where K is the number of learnable parameters in the model, L is the maximum
likelihood of the model, and n is the number of samples.

Cross-Validation. Cross-validation evaluates ML models by dividing a dataset
into several subsets. To estimate the model classification performance, one sub-
set is used for validation and the others are used for training. In k-fold cross-
validation, a dataset D is randomly split into k mutually exclusive subsets D1,
D2, ..., Dk. The model is then trained and tested over k rounds. In each round
i ε {1, 2, ..., k}, training is performed on subset D \ Di and testing on subset Di.
In validation, evaluation metrics such as accuracy and AUC score are typically

102 Y. Fan et al.

used to estimate the classification performance. To reduce variability, the valida-
tion results are combined or averaged over all rounds to obtain a final estimate
of the classification performance. In stratified cross-validation, subsets are strat-
ified such that they contain approximately the same proportions of labels as the
original dataset.

Although these evaluation methods can compute indicators reflecting model
performance, they cannot provide sufficient details of the model updates.

2.2 Feature Attribution Methods

To explain predictions by ML models, importance values are typically attributed
to each feature to show its impact on predictions. The importance values of
features can be output by some popular ML packages, such as scikit-learn [17],
wherein permutation importance is frequently used. Permutation importance
randomly permutes the values of a feature in the test dataset and observes a
change in error. If a feature is important, then permuting it should significantly
increase the model error [13].

Another method for interpreting ML models is the partial dependence plots
(PDPs) [8]. A PDP can show how a feature affects model predictions by the
relation between the target prediction and features (e.g., linear, monotonic, or
more complex). However, a PDP can compute two features at most, and it
assumes that these features are not correlated with other features. Thus, it is
unrealistic to use PDP for models trained on data containing numerous features.

Another popular approach is the local interpretable model-agnostic expla-
nations (LIME) [19]. LIME explains a given prediction by learning a model
around that prediction. By computing the feature importance values of a single
prediction, we can easily analyze what made the classifier output that predic-
tion. Instead of explaining the whole model, LIME explains only a single sam-
ple prediction result. However, LIME still uses permutation to compute feature
importance values, making LIME an inconsistent method.

Although these methods are intended to provide insight into how features
affect model predictions, the feature attribution methods described above are all
inconsistent, meaning that when the model has changed and a feature impact on
the model’s output has increased, the importance of that feature can actually
be lower. Inconsistency makes comparison of attribution values across models
meaningless because it implies that a feature with a large attribution value
might be less important than another feature with a smaller attribution.

2.3 SHAP

The inconsistency of the methods in Sect. 2.2 makes it meaningless to compare
feature attributions across models, which necessitates a consistent method for
analyzing feature attribution changes in different models.

SHAP [14] is a method that explains individual predictions based on Shapley
values from game theory. The Shapley value method is represented as an additive

Understanding Updates of Machine-Learning-Based Malware Detection 103

Fig. 1. SHAP values explaining model output as a sum of the attributions of each
feature

feature–attribution method (demonstrated in Fig. 1) with a linear explanation
model g, described as

g(z) = φ0 +
M∑

i=1

φizi, (3)

where z ε (0, 1)M , M is the number of input features, and φi εR. zi is a binary
decision variable that represents a feature being observed or unknown and φi is
the feature attribution value.

Currently, SHAP is the only consistent and locally accurate individualized
feature attribution method. According to Ref. [14], SHAP has three desirable
properties: local accuracy, missingness, and consistency. Local accuracy means
that the sum of feature attributions equals the output of the model that we want
to explain. Missingness means that missing features are assigned no importance,
i.e., 0. Consistency means that the attribution assigned to a feature will not be
decreased when we change a model such that the feature has a larger impact on
the model. Consistency enables comparison of attribution values across models.

When explaining a model f , SHAP assigns φi values to each feature [13] as

φi =
∑

S⊆A\{i}

|S|!(M − |S| − 1)!
M !

[fx(S ∪ {i}) − fx(S)], (4)

where fx(S) = f(hx(z)) = E [f(x)|xS], E [f(x)|xS] is the expected value of a
function conditioned on a subset S of the input features, S is the set of nonzero
indices in z, and A is the set of all input features. hx maps the relationship
between the pattern of binary features z and the input vector space.

Because SHAP is the only consistent, locally accurate method for measur-
ing missingness, there is a strong motivation to use SHAP values for feature
attribution. However, there are two practical problems remaining to be solved,
namely,

1. efficiently estimating E [f(x)|xS], and
2. the exponential complexity of Eq. (4).

When estimating the predictions of tree models, Lundberg and Lee [13]
designed a fast SHAP value estimation algorithm specific to trees and tree ensem-
bles. This algorithm runs in polynomial time instead of exponential time, reduc-
ing the computational complexity of exact SHAP value computations for trees
and tree ensembles.

104 Y. Fan et al.

Fig. 2. Changes in SHAP values of features after update

3 Proposed Method

When updating an ML model for real-world deployment, detailed information
about model updates is beneficial for preventing unexpected predictions. To
obtain detailed information, we propose a method to identify common patterns
of feature attribution changes that cause prediction changes. More precisely,
the pattern is a combination of features whose attributions changed drastically
after the update. Using such information, the operators of the ML model can
understand common reasons for prediction changes. Our method consists of two
steps. The first step is to calculate feature attribution changes based on SHAP.
The second is to identify typical change patterns by clustering samples based on
their features whose attributions have drastically changed.

3.1 Calculating Feature Attribution Changes

Because SHAP is a consistent attribution method—meaning that SHAP values
are invariant regardless of models—we use SHAP values to measure the attribu-
tion changes of features across different models. We investigate changes in the
models in detail by analyzing changes in the SHAP values of the features.

Figure 2 shows an example of the changes in SHAP values before and after
an update regarding predictions of the same sample. A SHAP value is assigned
to each feature to show how important it is. A high SHAP value means that the
corresponding feature has a large effect on the prediction and a SHAP value close
to 0 means that the corresponding feature has almost no effect on the prediction.
The SHAP values for Features 2 and 4 decreased to near 0, and the SHAP value
of Feature 1 increased greatly from a value near 0 after the update, indicating
that the model significantly changed with respect to these features. On the other
hand, the SHAP values of Feature 3 showed no significant change, indicating that
the model did not change with respect to this feature. By analyzing features
whose SHAP values have significantly changed, we can infer the cause of model
updates and their effect on classification performance.

Our method defines an increasing rate that indicates the significance of
changes in feature attributions after a model update. Specifically, we compute
the SHAP values for different models and then calculate the significance of the

Understanding Updates of Machine-Learning-Based Malware Detection 105

increase in each feature’s SHAP value due to the update. This increasing rate
also indicates whether changes in SHAP values increase or decrease. As shown in
Fig. 2, Feature 1 exhibits a significant increase, whereas Features 2 and 4 show
significant decreases after updating. Unlike these features, the increasing rate of
Feature 3 is close to 0 because its SHAP value has no significant change after
the update.

The following describes our definition of the increasing rate. Let D1 be the
dataset on which the model was trained before the update and D2 be the dataset
after the update. Then, let the model be trained on D1 and D2 be f1 and f2,
respectively. When predicting a label for data x with model fm, we denote the
SHAP value of the i-th feature xi as vmxi

.
We define the rate of increase Ixi

of a feature xi as the ratio of the SHAP
value increase to the smallest absolute SHAP value. Let v1xi

be the SHAP value
of feature xi in the old model and let v2xi

be the SHAP value of feature xi in
the new model. The rate of increase is high only if the absolute value of one
SHAP value (v1xi

or v2xi
) is large and the other is close to zero. In other words,

if the absolute values of both SHAP values are either large or small, the rate of
increase is small. We add constant terms c1 and c2 to make the increasing rate
small when both SHAP values are close to zero.

The increasing rate for feature xi is defined as

Ixi
=

v2xi
− v1xi

+ c1
min(|v1xi

|, |v2xi
|) + c2

,

where c2 > 0, c1 =
{

c2, when v2xi
− v1xi

≥ 0,
−c2, when v2xi

− v1xi
< 0.

(5)

In this paper, we set the constant term c2 = 0.01.
The SHAP value of a sample x is an array of size N , where N is the number

of features.
vmx = [vmx1 , vmx2 , ..., vmxi

, ..., vmxN
].

The increasing rate of a sample is also an array of size N :

Ix = [Ix1 , Ix2 , ..., Ixi
, ..., IxN

].

3.2 Clustering Based on Feature Attribution Changes

To make the output more concise and clearer for the operators, we divide the
samples into clusters based on their feature attribution changes. By analyzing
samples in each cluster in terms of prediction changes and feature attribution
changes, the operators can understand common reasons for prediction changes
and infer the performance change in real-world deployment.

We use Jaccard similarity [9] to measure the similarity based on feature
attribution changes. Specifically, we define the set A as the set of features whose
SHAP rate of increase exceeds k or under −k in sample xA. In this way, we
can represent the sample xA based on features that significantly changed after
the update. If A is empty, we do not use sample xA for clustering. The Jaccard

106 Y. Fan et al.

similarity between samples xA and xB is defined as the size of the intersection
divided by the size of the union of sets A and B:

J(A,B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A| + |B| − |A ∩ B| . (6)

Note that 0 ≤ J(A,B) ≤ 1.
Based on the Jaccard similarity matrix, we conducted clustering via density-

based spatial clustering of applications with noise (DBSCAN) [17]. The maxi-
mum distance between two samples to be considered as the same cluster was
0.5. In other words, samples in which half of the significantly changed features
are common are considered similar and assigned to the same cluster. We used
the default set of the software for other parameters, which means the minimum
number of samples in a neighborhood for a point to be considered as a core point
was five.

After clustering, we calculated the average prediction of each cluster and
selected the clusters whose average predictions changed after the update. Then,
we calculated each feature’s average rate of increase in each cluster and output
the top 10 features in terms of the rate of increase (for the cluster having less
than 10 features, output all). Based on the output, the operators can understand
which features cause prediction changes and infer the performance change in
real-world deployment.

4 Experimental Setup

In this section, we introduce the experimental setup for our evaluation using
Android applications.

4.1 Dataset

We used samples from AndroZoo [3] to conduct the experiments. AndroZoo is
a collection of Android applications from several sources, including the official
Google Play app market and VirusShare. It contains over ten million Android
application package (APK) files. Each file was analyzed by over 70 antivirus
software packages, providing knowledge of malware. We selected files that were
not detected as malware by any antivirus software for use as benign samples.
For malicious samples, we selected files that were detected as malware using at
least four antivirus software packages.

We collected over 1,000 samples per month from AndroZoo between 2016 and
2018. In total, we gathered 61,724 benign samples and 11,160 malicious sam-
ples. We used applications collected from 2016 to 2018 because Miller etal. [16]
empirically showed that antivirus detection became stable after approximately
one year. We followed Ref. [18] when adjusting the ratio of malicious samples to
benign ones. Specifically, we set the percentage of malicious samples to 10% and
benign samples to 90% in the dataset.

Understanding Updates of Machine-Learning-Based Malware Detection 107

Fig. 3. Sliding window setup. a represents the first half of the year. b represents the
second half of the year.

4.2 Model Update

In real-world applications, ML models are often updated based on a sliding
window setup [5], which means that new data are added to the pre-update
dataset, and old data are removed. Thus, we evaluated our method thrice under
this setup, as shown in Fig. 3. In each update, the data from the next period of
six months were added to the pre-update training dataset, and the older half
in the pre-update training dataset was removed. Each training dataset had a
similar size of approximately 3,800 benign samples and 420 malicious samples.
The number of samples in each dataset is listed in Table 9 in Appendix A. We
used the data from the following period of the post-update training dataset
as the test dataset to evaluate the model ROC curve and AUC in real-world
deployment. Each test dataset contained approximately 5,000 benign samples
and 550 malicious samples. The number of samples is also shown in Table 9.

To simulate successful and failed updates, we used biased and unbiased
post-update training datasets. For pre-update training datasets, we always used
unbiased datasets because we assumed that the pre-update models are success-
fully trained and validated in real-world deployment. Consequently, post-update
training datasets were composed of the first half of the unbiased dataset and
the second half of the differently biased dataset. For example, the post-update
training dataset of update 1 consisted of the unbiased dataset of 2016b and the
biased dataset of 2017b. Using such datasets, the models updated differently
depending on the bias. We evaluated whether operators can distinguish different
updates based on the output of our method. The unbiased and biased datasets
were prepared as follows:

1. Unbiased: We randomly selected an equal number of samples from every
month.

2. Biased-Time: We randomly selected all samples from the latest month of the
period.

3. Biased-Family: We randomly selected malicious samples from 3 major fami-
lies; there were more than 40 small families in total. The benign samples were
the same as those in the unbiased dataset.

108 Y. Fan et al.

(a) Update 1 (b) Update 2 (c) Update 3

Fig. 4. ROC curves of models trained on different biased datasets

4. Biased-Antivirus: We randomly selected malicious samples from samples eas-
ily detected. Samples were determined as easily detected if they were detected
by more than 20 antivirus software in VirusTotal [21]. The benign samples
were the same as those in the unbiased dataset.

4.3 Features and Models

We use Drebin [4], which is a lightweight method for detecting malicious APK
files based on broad static analyses, to extract features from APK files. Features
were extracted from the manifest and disassembled dex codes of the APK file.
From these, Drebin collected discriminative strings, such as permissions, API
calls, and network addresses. To build a machine learning model, we used random
forest [6], a method well known for its excellent classification performance and
applicability to many tasks, including malware detection. For a detailed setup
of the features, models, and hyper parameters, please refer to Appendix A.

5 Experimental Results

We conducted experiments with three updates using the four biased datasets
described in Sect. 4. First, we show which models are successfully updated by
using test datasets. Then we describe results of quantitative and qualitative eval-
uation. In these evaluations, we investigate whether the output of our method is
beneficial to ML system operators in understanding model updates. As a quanti-
tative evaluation, we investigate the extent to which our method can reduce the
number of features that operators must consider to understand model updates.
This evaluation shows that operators can easily understand model updates using
our method. As a qualitative evaluation, we investigate whether operators can
infer the classification performance of the updated models in real-world deploy-
ment by using the output of our method with a post-update training dataset.
This evaluation shows how useful our method is.

Understanding Updates of Machine-Learning-Based Malware Detection 109

Table 1. AUC in cross-validation and AUC on test dataset

Update 1 Update 2 Update 3

Pre-update Unbiased CV 0.9673 0.9722 0.9522

Test 0.9095 0.8932 0.9163

Post-update Unbiased CV 0.9722 0.9522 0.9573

Test 0.9425 0.9273 0.9493

Biased-Time CV 0.9729 0.9538 0.9693

Test 0.9509 0.9513 0.9439

Biased-Family CV 0.9809 0.9687 0.9739

Test 0.9313 0.8976 0.9296

Biased-Antivirus CV 0.9812 0.9727 0.9696

Test 0.9157 0.8731 0.9320

5.1 Classification Performance of Updated Models

We show which models are successfully updated by using test datasets. In addi-
tion, we show that inferring the classification performance on test datasets and
understanding changes in models are difficult based on the conventional model
validation method, i.e., cross-validation (CV) with post-update training datasets.
We use AUCs and ROC curves to evaluate classification performance. The AUC
on test datasets and in CV are shown in Table 1. The AUC in CV were much
better than the AUC on test datasets, indicating that the cross-validation is inap-
propriate because its result may be over-optimistic under concept drift. More-
over, operators cannot understand why model updates cause prediction changes
and infer whether the updates are reasonable.

To investigate the classification performance more precisely, we show the
ROC curve of each model in each update in Fig. 4. In general, the performance
improved after updates of “Unbiased” and “Biased-Time” datasets, and deterio-
rated or almost stayed unchanged after updates of “Biased-Family” and “Biased-
Antivirus” datasets.

5.2 Quantitative Evaluation

We investigate the number of features that operators must analyze to understand
model updates. The smaller the number, the less effort the operators need to make
for the analysis. Without our method, operators analyze features important to
classification. In other words, operators look into features in descending order of
SHAP values, i.e., from the most important to the least important. For this reason,
we investigate the maximum order of the SHAP value (the least important) in each
cluster’s features. Table 2 shows the number of clusters, the number of features in
each cluster, and the maximum order of SHAP values. The number of features with
our method is much smaller than that without our method.

More detailed results are shown in Table 3; it shows the output features of
the two clusters when using the Unbias dataset in Update 1. In cluster 1, the

110 Y. Fan et al.

Table 2. Number of cluster/features and maximum order of SHAP

clusters # features in
each cluster

Max. order of
SHAP

Update 1 Unbiased 5 7–10 39–487

Biased-Time 4 1–10 39–142

Biased-Family 3 2–8 22–110

Biased-Antivirus 3 3–9 53–218

Update 2 Unbiased 1 6 64

Biased-Time 6 3–8 24–190

Biased-Family 3 4–10 24–428

Biased-Antivirus 0 – –

Update 3 Unbiased 5 2–10 31–371

Biased-Time 6 3–10 55–371

Biased-Family 2 3–10 371

Biased-Antivirus 1 2 198

Table 3. Output features of two clusters using Unbiased dataset in Update 1

Features Order of
increasing rate

Order of SHAP

Cluster 1 android.location.locationmanager.getproviders 1 49

android.nfc.tech.ndefformatable.format 2 86

android.nfc.tech.ndefformatable.connect 3 109

android.nfc.tech.ndef.connect 4 81

android.nfc.tech.ndef.writendefmessage 5 100

Cluster 2 android.permission.vibrate 1 30

android.widget.videoview.setvideopath 2 7

android.widget.videoview.pause 3 13

android.widget.videoview.stopplayback 4 6

android.widget.videoview.start 5 14

features causing prediction change are mainly relevant to nfc.tech because four
out of five features are relevant to nfc.tech. Similarly, in cluster 2, the features
relevant to widget.videoview mainly caused the prediction changes. However,
these features are difficult to identify if only SHAP values are used because the
maximum order of SHAP is 109.

5.3 Qualitative Evaluation

As shown above, the classification performance on the test dataset depends on
the bias in the training dataset, and our method can reduce the number of
features that operators must analyze to understand a model update. Here, we
investigate whether operators can infer that a model update is successful or failed
using the output of our method with a post-update training dataset. Specifically,
the main cause of a failed model update is overfitting and noneffective update.

Understanding Updates of Machine-Learning-Based Malware Detection 111

Table 4. Example of similar clusters

Features Mean rate

Cluster 1 android.permission.write external storage 4.77

android.permission.read external storage 4.11

Cluster 2 android.intent.action.main 6.5

android.permission.read external storage 4.81

android.widget.videoview.setvideopath 4.76

android.permission.internet 4.47

android.permission.write external storage 4.12

android.permission.internet 3.29

android.permission.access network state 3.2

Overfitting involves learning the training dataset too much and not generalizing
it to the test dataset. More precisely, an overfitted model learns only a few
families or overlooks some families. The noneffective update is that a model
update does not change predictions, even though a model update is expected to
change some predictions under concept drift. The noneffective update is mainly
caused by noninformative newly added data.

We describe how to analyze the output of our method from the aforemen-
tioned three perspectives: learning a few families, overlooking some families,
and noneffective updates. Note that our method does not output any cluster of
benign data, which means that the performance changes are mainly caused by
malicious data. For this reason, we only show results of malicious data.

Learning a Few Families. To confirm whether a model learns only a few
families, we focus on a variety of changes caused by the model update. Using our
method, data with similar attribution changes are assigned to the same cluster.
The number of clusters reflects the variety of changes. The lack of variety can
result in an overfitting model because the model can only learn features related
to some types of data, causing a performance degradation after the update. The
number of clusters can be used to evaluate whether the model is overfitted.

Table 2 shows the number of clusters in each update. When the dataset is
biased, for example, it only contains major families with a large number of
malicious samples, and the lack of variety may cause the model to only learn
features related to certain families, resulting in overfitting. As can be seen in
Table 2, the cluster numbers of “Biased-Family” are always less than the results
of other updates, and the results of “Biased-Antivirus” are also low in some
cases, which indicates that the bias of the dataset causes a lack of variety and
influences the update as a result.

We can more precisely identify the lack of variety by investigating the sim-
ilarity of features between clusters. For example, Table 4 shows the features of
two of the clusters using “Biased-Family” in Update 1. All features in Cluster 1
are included in Cluster 2, meaning that the variety of data is low.

112 Y. Fan et al.

Table 5. The number of clusters whose predictions become false

Unbiased Biased-Time Biased-Family Biase-Antivirus

Update 1 0 0 0 0

Update 2 0 0 1 0

Update 3 0 0 2 0

Table 6. Cluster with false prediction change in Update 2. “None” means SHAP value
is 0 after update and ranked in the last.

Features Mean rate Order of SHAP

com.qihoo.util.appupdate.appupdateactivity −25.66 None

com.qihoo.util.startactivity −25.06 None

com.switfpass.pay.activity.qqwappaywebview −17.20 None

com.alipay.sdk.auth.authactivity −15.54 None

blue.sky.vn.api −14.66 None

landroid/telephony/smsmanager.sendtextmessage −14.23 33

blue.sky.vn.mainactivity −11.85 None

blue.sky.vn.webviewactivity −10.42 None

blue.sky.vn.gamehdactivity −10.33 None

com.qihoo.util.commonactivity −8.09 None

Table 7. Difference values used to measure the extent of improvement

Unbiased Biased-Time Biased-Family Biased-Antivirus

Update 1 103 122 31 25

Update 2 70 104 −17 0

Update 3 78 131 −27 12

Overlooking Some Families. To confirm whether a model overlooks some
families, we focus on clusters with predictions going false from true. For example,
the shortage of certain data, such as minor malware families, can prevent the
model from learning features related to those data. When the model is unable
to learn some data after the update, the predictions of such data become false.
Thus, we investigate the clusters with predictions changing from true to false.

Table 5 shows the number of clusters whose predictions change from true
to false. As we can see, only the results of “Biased-Family” have such clusters.
We can also obtain further information about the failure related to these clus-
ters by showing their features of a high rate of increase. For example, Table 6
shows the cluster whose prediction changes from true to false in update 2. The
false predictions are mainly caused by the lack of features com.qihoo.util and
blue.sky.vn, because their SHAP values decreased to zero after the update.

Understanding Updates of Machine-Learning-Based Malware Detection 113

Noneffective Update. To identify noneffective updates mainly caused by non-
informative newly added data, we focus on cluster size, i.e., the number of sam-
ples in each cluster. The cluster size shows how many samples have a different
prediction after the update. The more the prediction results change from false
to true, the better the model performance will improve. If the performance does
not improve sufficiently after the update, the update is ineffective. In a malware
detection system, a change in the prediction results from false to true means that
the prediction of malicious samples becomes positive, or the prediction of benign
samples becomes negative. Therefore, the size of the output clusters indicates
the extent of the performance change during the update. We use the number
of samples whose prediction changes from false to true to evaluate whether the
model has been updated effectively. Specifically, we measure the extent of per-
formance improvement by the difference value between the number of samples
whose predictions become true and the number of samples whose predictions
become false. Table 7 presents the results for each difference value. The minus
number in Table 7 indicates that the samples whose predictions change from true
to false are more than those whose predictions change from false to true.

Table 7 indicates that for a dataset of approximately 220 samples, the perfor-
mance of “Unbiased” and “Biased-Time” improve after update, whereas the per-
formance of “Biased-Family” and “Biased-Antivirus” have very limited change
or no change after update, which is consistent with the results of the ROC and
AUC but more clear. When the difference value of the data becomes true and
the data becoming false is large, we can conclude that the model performance
has improved after the update, and the update is effective. When the difference
value is relatively small, the performance remains almost unchanged, and the
update is ineffective.

Summary. In our experiment, we used data with four different types of bias and
three different periods of time to conduct 36 updates to demonstrate our method.
Table 8 shows the evaluation result of each update. As we can see, in most cases,
the results of “Biased-Family” and “Biased-Antivirus” appear to be overfitted
or noneffective, which explains the performance not improving after updates
by those dataset. All the results of “Biased-Time” are neither overfitted nor
noneffective, explaining the performance improvement after updates by “Biased-
Time,” as shown in the ROC curves.

6 Discussion

Application of the Proposed Method. Although this study focuses mainly
on malware detection systems, our method should be applied to all types of
machine learning tasks. The SHAP method provides algorithms for estimat-
ing SHAP values for any ML model, i.e., our method can be applied to any
ML model, regardless of the dataset or model. For example, our method can
be applied to suspicious URL detection [15], malicious website detection [7],

114 Y. Fan et al.

Table 8. Summary of qualitative evaluation. � represents that an undesirable update
is observed, and × represents that an undesirable update is not observed.

Learning a few
families

Overlooking some
families

Noneffective
update

Update 1 Unbiased × × ×
Biased-Time × × ×
Biased-Family � × �
Biased-Antivirus × × �

Update 2 Unbiased � × ×
Biased-Time × × ×
Biased-Family � � �
Biased-Antivirus � × �

Update 3 Unbiased × × ×
Biased-Time × × ×
Biased-Family � � �
Biased-Antivirus � × �

and malware family classification [1]. In multiclass classifications, we can iden-
tify changes in important features by analyzing feature attribution changes by
focusing on each class.

Limitation. In this paper, we demonstrated that our method outputs detailed
information about model updates, such as the important features that are rel-
evant to the performance change during the update. Though we discussed the
importance of the outputted information, we need a user study, which is one of
our future works.

7 Conclusion

ML methods have been widely applied to many tasks. In practical use, it is
necessary to regularly update the model to maintain its classification perfor-
mance. AUC and accuracy are generally used to validate models to confirm their
performance after updates. However, it is difficult to gain sufficiently detailed
information for understanding model updates, such as what causes performance
changes and the influence on a certain type of data.

Therefore, we propose a method for determining samples in which the fea-
tures important for classification have significant changes. By selecting those
samples and clustering them by feature attribution changes, we can know more
about why performance changes or how an update influences a certain type of
data. For the feature attribution computation, we used a consistent importance
value called the SHAP value because SHAP values are comparable across dif-
ferent models. Our proposed method calculates the rates of increase in SHAP

Understanding Updates of Machine-Learning-Based Malware Detection 115

values after updates to reflect changes in feature importance, and clustering the
samples by their feature attribution changes to generate the information given
to the operator.

We conducted experiments using an open dataset of Android malware. We
investigated model changes while the training dataset is updated with different
biased data, and demonstrated that our method can identify the unexpected
model changes such as overfitting or noneffective update caused by the biased
data. The results also indicate that our method can identify the important fea-
tures relevant to the performance change, which are difficult to find by using a
method that calculates only the feature attributions.

Though we discussed the importance of the outputted information, we need
a user study, which is one of our future works.

A Detailed Experimental Setup

Dataset. Each training dataset had a similar size of approximately 3,800 benign
samples and 420 malicious samples, and each test dataset contained approxi-
mately 5,000 benign samples and 550 malicious samples. The number of samples
is shown in Table 9.

Feature. To extract features in our experiments, we used Drebin [4], a
lightweight method for detecting malicious APK files based on broad static anal-
yses. Features are extracted from the manifest and disassembled dex codes of
the APK file. From these, Drebin collects discriminative strings, such as permis-
sions, API calls, and network addresses. Drebin extracts eight sets of strings:
four from manifests and four from dex code.

1. Hardware components
2. Requested permissions
3. App components
4. Filtered intents
5. Restricted API calls
6. Used permissions
7. Suspicious API calls
8. Network addresses

The features are embedded into an N -dimensional vector space, where each
element is either 0 or 1. Each element corresponds to a string, with 1 representing
the presence of the string and 0 representing its absence. The extracted feature
vector x is denoted as

x = (· · · 0 1 · · · 0 1 · · ·) .

The feature vector can be used as input for a machine-learning model.

116 Y. Fan et al.

Classification Models. Our experiments use random forest [6], which is well
known for its excellent classification performance and can be applied to many
tasks, including malware detection. Random forest is an ensemble of decision
trees. Each decision tree is built using a randomly sampled subset of data and
features. By creating an ensemble of many decision trees, random forest achieves
high classification performance even when the dimensions of feature vectors
exceed the dataset size. Furthermore, the SHAP package [12] associated with
Ref. [13] provides a high-speed algorithm called TreeExplainer for tree ensemble
methods, including random forests.

Table 9. Number of samples in each dataset

Malicious Benign

Update 1 Pre-update Unbiased 416 3,732

Post-update Unbiased 416 3,809

Biased-Time 425 3,847

Biased-Family 424 3,809

Biased-Antivirus 417 3,841

Test Unbiased 595 5,322

Update 2 Pre-update Unbiased 416 3,809

Post-update Unbiased 423 3,816

Biased-Time 423 3,850

Biased-Family 423 3,854

Biased-Antivirus 421 3,837

Test Unbiased 598 5,302

Update 3 Pre-update Unbiased 423 3,816

Post-update Unbiased 429 3,814

Biased-Time 432 3,854

Biased-Family 431 3,814

Biased-Antivirus 431 3,843

Test Unbiased 532 4,628

Hyperparameter Optimization. When training random forest models, we
conduct a grid search for each model to determine the best combination of
parameters among the following candidates:

1. Number of trees: 10, 100, 200, 300, 400.
2. Maximum depth of each tree: 10, 100, 300, 500.
3. Ratio of features used for each tree: 0.02, 0.05, 0.07, 0.1, 0.2.
4. Minimum number of samples required at a leaf node: 5, 7, 10, 20.

Understanding Updates of Machine-Learning-Based Malware Detection 117

Each candidate combination is validated using five-fold cross validation. Specif-
ically, we calculated an average of five AUC scores for each combination and
selected the best combination in terms of the average AUC score as the result
of the grid search.

References

1. Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., Giacinto, G.: Novel fea-
ture extraction, selection and fusion for effective malware family classification. In:
Proceedings of the 6th ACM Conference on Data and Application Security and
Privacy, pp. 183–194 (2016)

2. Akaike, H.: Information theory and an extension of the maximum likelihood prin-
ciple. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu
Akaike, pp. 199–213. Springer, New York (1998). https://doi.org/10.1007/978-1-
4612-1694-0 15

3. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: collecting millions of
android apps for the research community. In: Proceedings of the 13th IEEE/ACM
Working Conference on Mining Software Repositories, pp. 468–471 (2016)

4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective
and explainable detection of android malware in your pocket. In: Proceedings of
the 2014 Network and Distributed System Security Symposium (2014)

5. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Single and multi-sequence deep
learning models for short and medium term electric load forecasting. Energies
12(1), 149 (2019)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-

scale detection of malicious web pages. In: Proceedings of the 20th International
Conference on World Wide Web, pp. 197–206 (2011)

8. Friedman, J.H., Meulman, J.J.: Multiple additive regression trees with application
in epidemiology. Stat. Med. 22(9), 1365–1381 (2003)

9. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New Phytologist
11(2), 37–50 (1912)

10. Jordaney, R., et al.: Transcend: detecting concept drift in malware classification
models. In: Proceedings of the 26th USENIX Security Symposium, pp. 625–642
(2017)

11. Karlaš, B., et al.: Building continuous integration services for machine learning. In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2407–2415 (2020)

12. Lundberg, S.M., et al.: From local explanations to global understanding with
explainable AI for trees. Nat. Mach. Intell. 2(1), 2522–5839 (2020)

13. Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribu-
tion for tree ensembles. arXiv preprint arXiv:1802.03888 (2018)

14. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Proceedings of the 31st Advances in Neural Information Processing Systems,
pp. 4765–4774 (2017)

15. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1245–1254 (2009)

https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-1-4612-1694-0_15
http://arxiv.org/abs/1802.03888

118 Y. Fan et al.

16. Miller, B., et al.: Reviewer integration and performance measurement for malware
detection. In: Proceedings of the 13th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pp. 122–141 (2016)

17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

18. Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., Cavallaro, L.: TESSERACT:
eliminating experimental bias in malware classification across space and time. In:
Proceedings of the 28th USENIX Security Symposium, pp. 729–746 (2019)

19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

20. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
21. Sood, G.: virustotal: R Client for the virustotal API (2017). R package version

0.2.1
22. Tsymbal, A.: The problem of concept drift: definitions and related work. Computer

Science Department, Trinity College Dublin, vol. 106, no. 2, p. 58 (2004)

Proposal of Jawi CAPTCHA Using
Digraphia Feature of the Malay Language

Hisaaki Yamaba1(B), Ahmad Saiful Aqmal Bin Ahmad Sohaimi1,
Shotaro Usuzaki1, Kentaro Aburada1, Masayuki Mukunoki1, Mirang Park2,

and Naonobu Okazaki1

1 University of Miyazaki, 1-1, Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
yamaba@cs.miyazaki-u.ac.jp

2 Kanagawa Institute of Technology, 1030, Shimo-Ogino,

Atsugi, Kanagawa 243-0292, Japan

Abstract. This paper proposes a new text-based CAPTCHA using Jawi
script and Latin script, which are both used in the Malay language writ-
ing system. Many web sites have adopted CAPTCHA to prevent bots
and other automated programs from malicious activities such as post-
ing comment spam. Text-based CAPTCHA is the most common and
earliest CAPTCHA. But as optical character recognition (OCR) tech-
nology has improved, the intensity of distortions that must be applied
to a CAPTCHA for it to remain unrecognizable by OCR has increased.
This has reached a point where humans are having difficulty recognizing
CAPTCHA text. The idea of the proposed CAPTCHA is to generate
two identical character strings, one written in Latin script and the other
in Jawi script. Because some of the strings characters are hidden by
obstacles, users need to combine both strings to solve this CAPTCHA.
This idea uses the fact that most Jawi characters have one-to-one cor-
respondence with Latin characters. A series of experiments was carried
out to evaluated the performance of the proposed CAPTCHA. First, a
computer program was developed with various software languages for
the usability evaluation. The results showed that the average time to
solve the CAPTCHA and the accuracy rates were acceptable compared
with the indices reported in existing research. Next, two OCR programs
were applied to the Jawi CAPTCHA, and it was demonstrated that they
could not read the partially hidden Latin and Jawi strings. Lastly, we
discussed the effectiveness of the proposed CAPTCHA by relating to the
priming effect.

Keywords: CAPTCHA · Jawi script · Malay language · Digraphia ·
Priming effect

1 Introduction

CAPTCHA—Complete Automated Public Turing Test to Tell Computers and
Humans Apart—has become quite common on websites and applications.
CAPTCHA is a type of challenge-response test used to distinguish between
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 119–133, 2021.
https://doi.org/10.1007/978-3-030-85987-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_7

120 H. Yamaba et al.

Fig. 1. Example of the proposed Jawi CAPTCHA

Fig. 2. Basic idea of the proposed CAPTCHA

human users and automated programs. It is used to prevent bots and other
automated programs from signing up for email, posting comment spam, violating
privacy, and making brute force login attacks on user accounts. CAPTCHA must
be both highly secure and easy to use. To date, many versions of CAPTCHA
have been proposed and developed so as to be not only difficult to solve by
computer programs but also easy for humans to solve.

Text-based CAPTCHAs are the most common and earliest CAPTCHA. They
request users to enter the string of characters that appears in a distorted form
on the screen. It was easy for human beings to read the distorted strings, but
this was difficult for computer programs when this CAPTCHA was introduced.

However, as optical character recognition (OCR) technology has improved,
the amount of distortion that must be applied to CAPTCHA strings has also
increased. This has reached a point where humans are having difficulty solving
CAPTCHAs. Thus, there is a need to develop a new text-based CAPTCHA that
does not use distortion of letters.

Based on the identified problem, this paper proposes a new CAPTCHA that
uses digraphia (Fig. 1). We adopted Latin script and Jawi script, which is based
on the Arabic script and used for writing the Malay language, on the assumption
that the CAPTCHA system is used in nations using the Malay language, such
as Malaysia. The same word is written in both scripts and some of the strings’
characters are hidden by interference (Fig. 2). Users need to combine the two
fragmented strings to solve this CAPTCHA.

Jawi CAPTCHA for the Malay Language 121

Table 1. 29 Jawi characters similar to Arabic characters

The rest of this paper is organized as follows: Sect. 2 discusses some related
works. Section 3 deals with specific characteristics of Jawi script that are used
for generating CAPTCHAs. The proposed CAPTCHA scheme is presented in
Sect. 4. Next, Sect. 5 describes the usability evaluation experiment process and
the results. The security evaluation experiment process and results are discussed
in Sect. 6. Sections 7 and 8 provide discussion and conclusions, respectively.

2 Jawi Script: An Overview

This section explains the characteristics of Jawi script in terms of origin, writing
direction, and shapes.

Digraphia refers to the use of more than one writing system for the same
language [1]. The Malay language uses two scripts: Latin and Jawi. Historically,
Jawi script, which is based on Arabic script, became one of the first scripts
used among the Malaysians, Indonesians, and Bruneians. After the latter half
of the 20th century, these countries introduced Latin scripts to write the Malay

122 H. Yamaba et al.

Table 2. Six additional Jawi characters

Fig. 3. Conversion of Jawi script to Latin script

language. Malay words spelled in Latin scripts, or the writing system, are called
Rumi. However, Jawi script is still taught in the education system, specifically
in Asian countries such as Malaysia, Indonesia, and Brunei.

Jawi script contains 35 letters, and they are written from right to left like
Arabic script. Further, Jawi script is similar to Arabic script except for six letters
that were added for spelling Malay-specific phonemes. The Jawi characters that
are similar to those in Arabic script are listed in Table 1. The additional six
unique letters of the Jawi alphabet are shown in Table 2. As shown in the tables,
the Jawi letters have different shapes depending on their position in the word,
that is, initial, middle, final, or isolated.

In spelling with the Malay language, almost Jawi characters have one-to-
one correspondence with Latin characters, as shown in Fig. 3. Several characters
in Jawi script represent more than one character in Latin script (underlined
characters in Fig. 3). There are also several Jawi characters that represent the
same Latin characters depending on the word, as shown in Fig. 4 (a)–(d).

This paper proposes an alternative identity verification solution by providing
another text-based CAPTCHA using Jawi and Latin scripts in combination.
Jawi script is expected to provide better security against OCR software due to
its unique characteristics, because many Jawi characters share the same main

Jawi CAPTCHA for the Malay Language 123

Fig. 4. Latin characters that can be converted to multiple Jawi characters

Fig. 5. Examples of Jawi characters that differ only in the number of dots

body and differ only in the number of dots, as shown in Fig. 5. In addition, OCR
software supporting Jawi script has not yet been actively developed, making this
script the best choice.

3 Related Work

This section highlights studies of both text-based Latin CAPTCHA and Arabic
CAPTCHA schemes.

3.1 Latin CAPTCHA Schemes

Latin CAPTCHA, or CAPTCHA that consists of English letters, is the earliest
and most prevalent CAPTCHA, and it typically asks users to correctly identify
distorted words. The CAPTCHA idea was first implemented by Alta Vista to
prevent automated bots from automatically registering web sites [2].

The mechanism behind the CAPTCHA idea was to generate a word with
slightly distorted characters and present it to the user. There are many exam-
ples of Latin script used CAPTCHAs, such as Gimpy CAPTCHA, EZ-Gimpy
CAPTCHA, and Baffle-Text CAPTCHA, as shown in Fig. 6. Gimpy CAPTCHA
selects several words from the dictionary and displays all the distorted words to
the users [3] while EZ-Gimpy only displays one distorted word [4]. Baffle-Text
CAPTCHA [5] is a modified version of Gimpy that generates a random mean-
ingless word as a CAPTCHA.

3.2 Arabic CAPTCHA Scheme

So far, no CAPTCHA has been implemented using Jawi script, but many studies
have been done on Arabic CAPTCHAs. Because Jawi script has some resem-
blance to Arabic script, several Arabic CAPTCHA schemes are explained here.

124 H. Yamaba et al.

(a) Gimpy (b) EZ-Gimpy (c) Baffle-Text

Fig. 6. Examples of Latin CAPTCHA schemes

(a) Persian/Arabic (b) Arabic (c) Nastaliq

Fig. 7. Examples of Arabic CAPTCHA schemes

The first work that employed Arabic script as a CAPTCHA is presented in [6],
where the authors generated random meaningless Arabic words as CAPTCHA.
In particular, the work reported in [6] presents an application of Persian/Arabic
CAPTCHA, while the work in [7] applies Arabic CAPTCHA for verifying spam
SMS. Khan et al. [8] improved on the previous work on typed-text Arabic
CAPTCHA. Specifically, they exploited the limitations of Arabic OCR in reading
Arabic text by adding background noise and using specific Arabic font types for
CAPTCHA generation. The study in [9] proposed advanced Nastaliq CAPTCHA
to provide essentially random meaningless Persian words that are close to Arabic
words in terms of script. Examples of Arabic CAPTCHA schemes are shown in
Fig. 7.

4 Proposed Scheme

This section describes the basic idea of the proposed CAPTCHA, the answer
text generation process, and the obstacle patterns.

4.1 Basic Concept

This paper proposes a new CAPTCHA that uses digraphia. The proposed
CAPTCHA combines two different character scripts, Latin and Jawi, into one
CAPTCHA, as shown in Fig. 1. The idea of this CAPTCHA is to generate the
same word or character string spelled in both the Latin and Jawi scripts. To
solve this CAPTCHA, the users need to combine both the Latin and Jawi strings
because some of each string characters are hidden by obstacles.

It is not difficult to guess the answer word even if a few characters of the word
are hidden, but it becomes harder when more characters are hidden. For example,
although we can understand “ch rac er” may be “character”, it is hard to guess
“character” from “ch te”. However, “rac r” is also given together with “ch te”
the correct answer will come up to our mind because one of the fragment strings
becomes the clue to finding the answer from the other fragment.

Jawi CAPTCHA for the Malay Language 125

Fig. 8. Placement of text in CAPTCHA generation

Fig. 9. Example of database for storing Jawi CAPTCHAs

Guessing the answer from the two fragments is harder than the combined “ch
racter” because composing “ch racter” from the two fragments is not easy. Even
if OCR programs can read each character in the shown string, it is expected that
they cannot understand the word like human beings.

In addition, we added another hurdle for bots to answer the CAPTCHA by
adopting two scripts for spelling the two fragments. But it is not a barrier for
people living in nations using Malay language because they are familiar with
words spelled in Jawi and Latin scripts.

4.2 Answer Text Generation

The proposed scheme has two types of answer text generation methods: (1) A
Malay word is randomly selected from a dictionary or (2) A random meaningless
Latin/Jawi string is composed by a computer program.

For type (1), a database that contains pairs of string images is constructed.
Words are selected from a Malay dictionary and two spellings are obtained, one
in Latin script and the other in Jawi script, for each word. The selected strings
are stored in the table for type (1) of the database.

126 H. Yamaba et al.

(a) Pattern 1 (b) Pattern 2

Fig. 10. Obstacle patterns

For type (2), strings four to eight characters long are randomly generated
using Latin script. Then, the generated Latin string is converted to a Jawi string
letter by letter according to the table shown in Fig. 3. In this case, Jawi characters
that have one-to-one correspondence with Latin characters are used. All the
generated strings are stored in the table for type (2) of the database.

To generate a CAPTCHA, one set of words/strings written in Latin and
Jawi scripts is selected from the created database, converted to images using
JavaScript programming language, and placed on a plain image. First, the Latin
word image is placed at a random coordinate on the screen. Then, the equivalent
Jawi word is placed outside the minimum and maximum heights of the Latin
word, as shown in Fig. 8, to prevent the two words from overlapping. Lastly, a
obstacle pattern explained in the next section is added to the image, and the
image and the obstacle pattern type are stored in the database. A sample of the
database is shown in Fig. 9.

4.3 Obstacle Patterns

In this CAPTCHA scheme, two geometric obstacle patterns are introduced, pat-
tern 1 and pattern 2, as shown in Fig. 10. The primary purpose of obstacle
pattern introduction is to protect the generated CAPTCHA from OCR attacks
while keeping it readable to a human.

These patterns use dashed sine waves as the background because Jawi char-
acters have a cursive shape. In addition, black dots are added to the CAPTCHA
image, as many Jawi characters share the same main body and differ only in
the number of dots, as shown in Fig. 5. It is expected that this kind of back-
ground can confuse OCR software and prevent it from recognizing characters.
Specifically, 7 dashed sine waves and 20 square dots are generated on the image
as a background. The sine waves are generated at a fixed coordinate, while the
square dots are generated at random coordinates on the image.

Then, these obstacle patterns (1 or 2) are added to the image.
For pattern 1, black circles are used to hide different characters in Jawi and

Latin words. This pattern was designed to avoid hiding the same character in
both words, as shown in Fig. 10 (a). Since an answer text of type (2) is randomly
generated string, each character in the answer has to be shown in one of the two
lines to solve the problem. Then we introduced the method shown below and it

Jawi CAPTCHA for the Malay Language 127

Fig. 11. Placement of obstacle circles in pattern 1

was used for both type (1) and type (2) words in this experiment. First, each
word’s width is measured and then divided by the number of characters present
in the word to obtain the average character width. Then, using the coordinates
of the text position and the character’s average width, black circles are added
as shown in Fig. 11. Because this pattern depends on the word length, the text
generation for type 1 only uses words that have the same number of characters
in both Jawi and Latin scripts.

For pattern 2, black circles and squares are used to hide the characters in the
image, as shown in Fig. 10 (b). This pattern implementation is more straightfor-
ward than that for pattern 1, as the black circles and squares are placed at fixed
coordinates.

5 Usability Evaluation

This section describes a usability evaluation experiment of the proposed method
and the results of the experiment.

5.1 Experimental System and Data

The experimental system was built using the HTML, CSS, and PHP program-
ming languages. A screenshot of the start screen of the system is shown in Fig. 12
(a). MySQL was used as the database to organize and store the experiment’s
data.

The evaluation system was designed to display generated CAPTCHA images
to the user. The user then entered an answer, either in Latin or Jawi script,
into a text box and submitted it by clicking the “Submit” button (Fig. 12 (b)).
The system then determined whether the answer was correct or incorrect by
comparison with data in the database. The system was also designed to measure

128 H. Yamaba et al.

(a) Start screen (b) Answer screen

Fig. 12. Screenshots of the experimental system

Table 3. CAPTCHA samples for experiment

Type Pattern 1 Pattern 2

Malay words 10 images 10 images

Meaningless words 10 images 10 images

the time taken for the user to solve the CAPTCHA. Finally, all the data were
retained in the database for further investigation.

20 Malay words and 20 random meaningless Latin/Jawi words with a length
of four to eight characters were prepared for the experiments (Table 3). The
text images and obstacle lines/figures were generated using the HTML canvas
element via Javascript.

5.2 Purpose and Conditions

The experiments were divided into two parts, experiment 1 and experiment 2.
Experiment 1 was conducted to check the users’ accuracy in reading a character
string written in only one script, whether Jawi or Latin. Since some characters
are hidden by obstacle figures, it is supposed to be difficult to recognise correct
answers. Experiment 2, which was the most important part of the experiment,
was conducted to estimate the users’ accuracy in reading the generated character
strings presented in both scripts together. Though some characters are hidden

Jawi CAPTCHA for the Malay Language 129

Table 4. Results of usability evaluation experiment 1

Metric MW RMW

P1 P2 P1 P2

Latin Jawi Latin Jawi Latin Jawi Latin Jawi

Average time 7.5 s 17.9 s 7.0 s 14.8 s 12.0 s 27.3 s 10.0 s 21.2 s

Accuracy rate 91.4% 37.1% 85.7% 54.3% 68.6% 8.6% 65.7% 20.0%

Note: MW = Malay word, RMW = random meaningless word, P1 = pattern 1,
and P2 = pattern 2.

by obstacle figures, it is expected that users can obtain the correct answer by
combining the two fragmented strings.

There was a total of 7 participants for experiment 1 and a total of 13 partic-
ipants for experiment 2. Participants for this experiment were all able to read
Jawi script and speak Malay. The Malaysian co-author recruited overseas stu-
dents whom he knew well for the experiment. They were all native-speakers
of Malay language, could read and speak plain Japanese, and cooperated with
the experiment earnestly without rewards. The number of the participants were
quite small, but we could not hire unknown persons nor people who were not
familiar with Malay language in order to ensure the reliability of the experiment.

The CAPTCHA images used for both experiments were generated using the
scheme described in Sect. 4, with two obstacle patterns (1 and 2) and two types
of strings (Malay words and random meaningless words). The CAPTCHA image
samples are summarized in Table 3.

In the usability study, we measured the following two outcome metrics:

Time taken: The time (in seconds) elapsed between when the CAPTCHA
image was shown to the user and when the “Submit” button was clicked.
Accuracy: The degree of conformity and correctness of typing the presented
CAPTCHA.

Both experiments were carried out according to the following procedure.
First, the general procedure was explained to each participant before starting
the experiment. After that, participants completed a practice section to ver-
ify understanding of the whole experiment process. Then, the main experiment
began, starting with Malay words and followed by random meaningless words.

During the experiments, participants were asked to recognize and type the
words displayed on the screen into the text box and submit their answer by
clicking on the “Submit” button. The system recorded the submitted answers
and the time taken to solve the CAPTCHA. Each participant was also asked
to complete a short survey about their experience, as shown in Fig. 13 (The
questions are written in Japanese).

130 H. Yamaba et al.

Fig. 13. A screenshot of the survey screen

Table 5. Results of usability evaluation experiment 2

Metric MW RMW

P1 P2 P1 P2

Average time 6.8 s 6.0 s 10.1 s 10.0 s

Accuracy rate 97.7% 96.9% 92.3% 88.5%

5.3 Results

For experiment 1, although we expected that it would be difficult to solve the
proposed CAPTCHA by reading only one of the two scripts, the Latin strings
could lead users to the correct answers in many cases. Table 4 shows the average
time taken and accuracy data for each type of CAPTCHA pattern collected from
experiment 1. The results for experiment 1 showed that the accuracy results for
Latin strings were higher than 60.0% for all types of strings and patterns. The
results were quite different from what we expected, that they would be lower
when only one string could be read, and when combined with both strings, the
accuracy rate would be better. The size of obstacle figures and the type of font
used may be the reason for this result, and further studies should account for
this to improve the proposed CAPTCHA. However, it was confirmed that the
two obstacle patterns were both effective, according to the comments from many
participants, especially for Jawi script.

For experiment 2, regardless of the type of string and pattern used for this
experiment, the accuracy results seem promising for all types of strings and
patterns. Table 5 shows the average time taken and accuracy data for each type
of CAPTCHA pattern collected from experiment 2. The previous study in [10]
stated that users’ average time and accuracy rate in solving the current text-
based CAPTCHA image are 9.8 s and 87.0%, respectively. Thus, the average
time taken and accuracy rate to solve the proposed CAPTCHA is acceptable.

Jawi CAPTCHA for the Malay Language 131

Table 6. Results of security evaluation

Program MW RMW

P1 P2 P1 P2

Tesseract OCR 0 0 0 0

ABBYY FineReader 0 0 0 0

Furthermore, the qualitative data collected in post-experiment surveys
revealed interesting results. In experiment 1, many participants indicated that
the dashed sine waves and black dots used as obstacles made the recognition of
various Jawi characters difficult because Jawi characters have a curved shape,
and many characters differ only in the number of dots. However, with the help of
Latin characters in experiment 2, users could recognize the character correctly,
as we expected.

6 Security Evaluation

This section describes a security evaluation experiment for the proposed method
and the results of the experiment.

6.1 Purpose and Conditions

The purpose of security evaluation is to find how secure the method is against
bot attacks. To prove that the proposed CAPTCHA is secure, a security exper-
iment was conducted using two modern OCR software products: Tesseract and
ABBYY FineReader. These software products can recognize both Latin and
Arabic scripts but cannot recognize the six added Jawi characters. Tesseract has
a Rumi dictionary, which includes Malay words spelled in Latin scripts. This dic-
tionary supports the recognition of characters of Malay words spelled in Latin
script.

The CAPTCHA samples for each type of string and each pattern were gen-
erated and tested, as shown in Table 3. For Malay word strings that used Latin
script, the software was set to recognize Latin characters with the support of
the Malay dictionary. In contrast, a random meaningless word written in Latin
script was recognized without using the dictionary support. For words written in
Jawi script, the software was set to recognize Arabic script because neither OCR
program supports Jawi script. For this reason, the experiment was conducted to
use only the 29 Jawi characters that correspond to Arabic characters (Table 1).

6.2 Results

The results for the word recognition accuracies for security evaluation are shown
in Table 6. Both Tesseract OCR and ABBYY FineReader failed to detect words
from the proposed CAPTCHA.

132 H. Yamaba et al.

7 Discussion

It is supposed that the priming effect helps human beings recognize two par-
tially hidden character strings. Priming is a phenomenon whereby exposure to
one stimulus influences a response to a subsequent stimulus, without conscious
guidance or intention [11–13]. Though two Malay strings are presented at the
same time, because a user sees them one after the other, the stimulus of see-
ing the first one leads to recognition of the other string. It is expected that the
same effect can be obtained with other languages that have the characteristic of
digraphia, such as Japanese. The Japanese writing system uses several scripts,
specifically hiragana, katakana, kanji (Chinese characters), and Latin (romaji).
We can develop a similar CAPTCHA system for the Japanese language using
hiragana and kanji. It is also expected that activation of the priming effect is
not limited to two different scripts. For example, a CAPTCHA that pairs a pic-
ture and a word may work well. To improve the performance of CAPTCHAs,
CAPTCHAs should be based on a more advanced human cognitive process-
ing ability. Some studies proposed CAPTCHAs according to this approach: a
CAPTCHA using the human ability to understand humor of four-panel cartoon
[14], a CAPTCHA using phonetic punning riddles found on Knock-Knock Jokes
[15], and a CAPTCHA using the ability of mathematical or logical thinking of
human beings [16]. CAPTCHAs using priming are also expected to satisfy the
condition.

To realize the proposed Jawi CHAPTCHA, some socio-political issues need to
be addressed. For example, the Malaysian population includes people of Chinese
and Indian descent who are not good at reading or writing Jawi script. To
maintain fair access to web sites, an option to choose another CAPTCHA scheme
should be provided. A CAPTCHA using Chinese characters or Tamil script
together with Latin script may be a candidate for such an option. We have to
devise a way to select words and obstacle patterns for the characters, but an
excellent outcome similar to that with the proposed CAPTCHA is expected due
to the effect of priming.

8 Conclusion

Because previous studies have shown that several existing Latin script-based
CAPTCHAs have been defeated by bots, CAPTCHA’s distortion intensity keeps
increasing to strengthen its security, making CAPTCHA more difficult for a
human to recognize.

This paper proposed a method using both Jawi and Latin scripts to generate
CAPTCHA. By combining both scripts, we can keep the CAPTCHA easy for
humans to recognize despite increasing the CAPTCHA distortion intensity to a
level that cannot be recognized by a bot. To the best of our knowledge, this study
is the first to combine Jawi script and Latin script as a CAPTCHA scheme.

The overall results show that the proposed CAPTCHA can be solved by
human users with far better effectiveness compared with modern OCR software.
The efficiency of solving the proposed CAPTCHA is also excellent.

Jawi CAPTCHA for the Malay Language 133

In the future, we intend to modify the proposed method by increasing the
distortion level for Latin script and reducing the distortion level for Jawi script
to improve the performance of the CAPTCHA against bots while maintaining
human usability with larger number of experimental subjects.

References

1. Ian, R.H.: Dale: digraphia. Int. J. Sociol. Lang. 26, 5–13 (1980)
2. Lillibridge, M., Abadi, M., Bharat, K., Broder, A.: Method for Selectively Restrict-

ing Access to Computer Systems, United States Patent 6195698. Applied 1998 and
Approved 2001

3. The CAPTCHA Project. Gimpy. http://www.captcha.net/captchas/gimpy.
Accessed 6 Apr 2021

4. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual
CAPTCHA. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, vol. 1, pp. 134–144 (2003)

5. Baird, H.S., Chew, M.: BaffleText: a human interactive proof. In: Proceedings of
the 10th SPIE/IST Document Recognition and Retrieval Conference, Santa Clara,
CA, pp. 305–316 (2003)

6. Shirali-Shahreza, M.H., Shirali-Shahreza, M.: Persian/Arabic Baffletext
CAPTCHA. J. Univ. Comput. Sci. 12(12), 1783–1796 (2006)

7. Shahreza, M.S.: Verifying spam SMS by Arabic CAPTCHA. In: 2nd IEEE Interna-
tional Conference on Information and Communication Technologies (ICTTA 2006),
pp. 78–83 (2006)

8. Khan, B., Alghathbar, K., Khan, M.K., AlKelabi, A.M., Alajaji, A.: Cyber security
using Arabic captcha scheme. Int. Arab J. Inf. Technol. 10(1), 76–84 (2013)

9. Shirali-Shahreza, M.H., Shirali-Shahreza, M.: Advanced Nastaliq CAPTCHA. In:
7th IEEE International Conference on Cybernetic Intelligent Systems, London, pp.
1–3 (2008)

10. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are
humans at solving CAPTCHAs? A large scale evaluation. In: IEEE Symposium
on Security and Privacy, Berkeley/Oakland, CA, pp. 399–413 (2010)

11. Meyer, D.E., Schvaneveldt, R.W.: Facilitation in recognizing pairs of words: evi-
dence of a dependence between retrieval operations. J. Exp. Psychol. 90(2), 399–
413 (1971)

12. Collins, A.M., Loftus, E.F.: A spreading activation theory of semantic processing.
Psychol. Rev. 82(6), 407–428 (1975)

13. Tulving, E., Schacter, D.L., Stark, H.A.: Priming effects in word-fragment comple-
tion are independent of recognition memory. J. Exp. Psychol. Learn. Mem. Cogn.
8(4), 336–342 (1982)

14. Kani, J., Suzuki, T., Uehara, A., Yamamoto, T., Nishigaki, M.: Four-panel Cartoon
CAPTCHA. Inf. Process. Soc. Jpn. 54(9), 2232–2243 (2013). (in Japanese)

15. Ximenes, P., dos Santos, A., Fernandez, M., Celestino, J.: A CAPTCHA in the text
domain. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006. LNCS, vol. 4277,
pp. 605–615. Springer, Heidelberg (2006). https://doi.org/10.1007/11915034 84

16. Kaur, R., Choudhary, P.: A novel CAPTCHA design approach using boolean alge-
bra. Int. J. Comput. Appl. 127(11), 13–18 (2015)

http://www.captcha.net/captchas/gimpy
https://doi.org/10.1007/11915034_84

Post-Quantum Cryptography (1)

Solving the Problem of Blockwise
Isomorphism of Polynomials

with Circulant Matrices

Yasufumi Hashimoto(B)

Department of Mathematical Science, University of the Ryukyus, Nishihara, Japan
hashimoto@math.u-ryukyu.ac.jp

Abstract. The problem of Isomorphism of Polynomials (IP problem) is
known to be important to study the security of multivariate public key
cryptosystems, one of major candidates of post-quantum cryptography,
against key recovery attacks. In these years, several schemes based on the
IP problem itself or its generalization have been proposed. At PQCrypto
2020, Santoso introduced a generalization of the problem of Isomorphism
of Polynomials, called the problem of Blockwise Isomorphism of Polyno-
mials (BIP problem), and proposed a new Diffie-Hellman type encryption
scheme based on this problem with Circulant matrices (BIPC problem).
Quite recently, Ikematsu et al. proposed an attack called the linear stack
attack to recover an equivalent key of Santoso’s encryption scheme. While
this attack reduced the security of the scheme, it does not contribute to
solve the BIPC problem itself. In the present paper, we describe how to
solve the BIPC problem directly by simplifying the BIPC problem due
to the conjugation property of circulant matrices. In fact, we experimen-
tally solved the BIPC problem with the parameter, which has 256 bit
security by Santoso’s security analysis and has 72.7 bit security against
the linear stack attack, by about 10 min.

Keywords: Isomorphism of polynomials · Blockwise isomorphism of
polynomials · Circulant matrix

1 Introduction

The problem of Isomorphism of Polynomials (IP problem) is the problem to
recover two affine maps S, T satisfying

g = T ◦ f ◦ S

for given polynomial maps g, f over a finite field. This problem was introduced
by Patarin [8] and has been discussed mainly in the context of the security
analyses of multivariate public key cryptosystems, one of major candidates of
post-quantum cryptography [2,4,7], since the public key g of most such cryp-
tosystems are generated by g = T ◦f ◦S with a (not necessarily public) quadratic
map f inverted feasibly, and recovering S, T is enough to break the corresponding
schemes (e.g. [1,5]).
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 137–150, 2021.
https://doi.org/10.1007/978-3-030-85987-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_8

138 Y. Hashimoto

In these years, several schemes based on the IP problem or its generalization
have been proposed. For example, Wang et al. [10] proposed a key exchange
scheme and an encryption scheme based on the IP problem with S, T chosen
in commutative rings of square matrices. While the commutativity for S, T was
required for convenience of these schemes, it yields a vulnerability; in fact, it was
broken by Chen et al. [3] since the numbers of unknowns of the IP problem in
Wang’s schemes is too small. Later, at PQCrypto 2020, Santoso [9] introduced a
generalization of the IP problem, called the problem of Blockwise Isomorphism of
Polynomials (BIP problem), and proposed a new Diffie-Hellman type encryption
scheme based on the BIP problem with Circulant matrices (BIPC problem). It
had been considered that the BIP problem was more difficult against analogues
of known attacks on the original IP problem (see, e.g. [1]) and then it had been
expected that Santoso’s scheme was secure enough under suitable parameter
selections. However, Ikematsu et al. [6] discovered that this scheme is less secure
than expected against the linear stack attack, which is an attack to recover
an equivalent key by studying a special version of sufficiently larger size BIPC
problem than the original BIPC problem. Remark that, while this attack works
to reduce the security of Santoso’s scheme, it does not contribute to solve the
BIPC problem itself.

In the present paper, we describe how to solve the BIPC problem directly.
Since any circulant matrices can be diagonalized or block-diagonalized simul-
taneously, the BIPC problem can be simplified drastically after (block-) diago-
nalization. Our approach is quite effective; in fact, the BIPC problem with the
parameter, which has 256 bit security by Santoso’s security analysis and has 72.7
bit security against the linear stack attack, was experimentally solved by about
10 min.

2 Isomorphism of Polynomials

In this section, we describe the Isomorphism of Polynomials, the Blockwise Iso-
morphism of Polynomials and the encryption scheme proposed by Santoso [9].

2.1 Isomorphism of Polynomials

Let q be a power of prime and Fq a finite field of order q. For integers n,m ≥ 1,
denote by MQ(n,m) the set of m-tuples of homogeneous quadratic polynomials
t(f1(x)), . . . , fm(x)) of n variables x = t(x1, . . . , xn) over Fq. We call that f ,g ∈
MQ(n,m) are isomorphic if there exist two invertible linear maps S : Fn

q → Fn
q ,

T : Fm
q → Fm

q such that

g = T ◦ f ◦ S, (1)

i.e. ⎛
⎜⎝

g1(x)
...

gm(x)

⎞
⎟⎠ = T

⎛
⎜⎝

f1(S(x))
...

fm(S(x))

⎞
⎟⎠ ,

Solving the BIPC Problem 139

where f = t(f1(x), . . . , fm(x)) and g = t(g1(x), . . . , gm(x)). The problem of Iso-
morphism of Polynomials (IP problem) is the problem to recover invertible linear
maps S : Fn

q → Fn
q , T : Fm

q → Fm
q satisfying (1) for given f ,g ∈ MQ(n,m).

2.2 Blockwise Isomorphism of Polynomials

Santoso [9] introduce the blockwise isomorphism of polynomials as a generaliza-
tion of isomorphism of polynomials.

For n,m, k ≥ 1, let f ,g ∈ MQ(n,mk) and divide f ,g by f = (f1, . . . , fk),
g = (g1, . . . ,gk) with f1, . . . , fk,g1, . . . ,gk ∈ MQ(n,m). We call that f and g
are blockwise isomorphic if there exist invertible or zero linear maps S1, . . . , Sk :
Fn

q → Fn
q , T1, . . . , Tk : Fm

q → Fm
q satisfying

gu =
∑

1≤l≤k

Tl ◦ fu+l−1 ◦ Sl (2)

for 1 ≤ u ≤ k, where 1 ≤ a ≤ k is given by a ≡ a mod k, i.e.

g1 = T1 ◦ f1 ◦ S1 + T2 ◦ f2 ◦ S2 + · · · + Tk ◦ fk ◦ Sk,

g2 = T1 ◦ f2 ◦ S1 + T2 ◦ f3 ◦ S2 + · · · + Tk ◦ f1 ◦ Sk,

...
gk = T1 ◦ fk ◦ S1 + T2 ◦ f1 ◦ S2 + · · · + Tk ◦ fk−1 ◦ Sk.

Denote by g = ψ ∗ f for g, f ∈ MQ(n,mk) and ψ = (S1, . . . , Sk, T1, . . . , Tk), if
(2) holds. Santoso [9] defined the following two problems: One is the problem of
blockwise isomorphism of polynomials (BIP problem). It is the problem to recover
ψ = (S1, . . . , Sk, T1, . . . , Tk) with g = ψ ∗ f for given f ,g ∈ MQ(n,mk). The
other is Computational Diffie-Hellman for BIP (CDH-BIP) problem to recover
g(2) ∈ MQ(n,mk) such that g(2) = ψ ∗ f (2) for given g(1), f (1), f (2) ∈ MQ(n,mk)
satisfying g(1) = ψ ∗ f (1) for some ψ = (S1, . . . , Sk, T1, . . . , Tk). It is clear that,
if one can solve the BIP problem, he/she can solve also the CDH-BIP problem.

2.3 Blockwise Isomorphism of Polynomials with Circulant Matrices

Santoso’s encryption scheme is based on BIP problem with circulant matrices.

Let In be the n × n identity matrix and Jn :=

(1

. . .
1

1

)
the n-cyclic per-

mutation matrix. A circulant matrix is a linear sum of In, Jn, J2
n, . . . , Jn−1

n , i.e.
a circulant matrix is given by

a0In + a1Jn + a2J
2
n + · · · + an−1J

n−1
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 · · · an−2 an−1

an−1 a0
. . . an−3 an−2

...
.

...

a2 a3
. . . a0 a1

a1 a2 · · · an−1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

140 Y. Hashimoto

for some a0, . . . , an−1 ∈ Fq. Note that the multiplication between circulant matri-
ces is commutative. Let Circ(n) be the set of n × n circulant matrices and

Ψ(n, m, k) :=

{
(S1, . . . , Sk, T1, . . . , Tk)

∣∣∣ S1, . . . , Sk ∈ Circ(n),
T1, . . . , Tk ∈ Circ(m),

invertible or 0

}
.

Note that ψ,ϕ ∈ Ψ(n,m, k) is commutative for the operator ∗ , i.e. it holds

ϕ ∗ (ψ ∗ f) = ψ ∗ (ϕ ∗ f)

for any f ∈ MQ(n,mk) (see Lemma 1 in [9]).

2.4 Encryption Scheme Based on BIP with Circulant Matrices

Santoso’s El-Gammal-like encryption scheme is constructed as follows [9].

Parameters. n,m, k ≥ 1: integers.

Secret key. Υ ∈ Ψ(n,m, k).

Public key. f ,g ∈ MQ(n,mk) with g = Υ ∗ f .

Encryption. For a plain-text ν ∈ MQ(n,mk), choose ψ ∈ Ψ(n,m, k) randomly
and compute

c0 := ψ ∗ g, c1 := ν + ψ ∗ f .

The cipher-text is (c0, c1) ∈ MQ(n,mk)2.

Decryption. The plain-text is recovered by

ν = c1 − Υ ∗ c0.

Since the operations by ψ and Υ are commutative, the cipher-text can be
decrypted correctly.

2.5 Previous Security Analyses and Parameter Selections

We first note that, if the BIP problem with Circulant matrices can be solved,
the secret key Υ can be recovered from the public key (f ,g). We also note
that this scheme was proven to be secure against one way under chosen plain-
text attack (OW-CPA) under the assumption that the CDH-BIP problem with
Circulant matrices is hard [9]. Furthermore, it was pointed out that this scheme
can be transformed into an IND-CCA secure encryption scheme by an approach
of Fujisaki-Okamoto-like transformation. Until now, the following three attacks
have been studied by Santoso himself [9] and Ikematsu et al. [6].

(1) Attack by Bouillagust et al. Bouillagust et al. [1] proposed an attack to
solve the IP problem to recover S, T with g = T ◦ f ◦S. The basic approach is to
find a pair of vectors a,b ∈ Fn

q such that S̄−1a = b, where S̄ is an linear map
with g = T̄ ◦ f ◦ S̄. Santoso [9] generalized this attack on the BIP problem with
circulant matrices and estimated the complexity by O

(
k2n52n k

k+1

)
.

Solving the BIPC Problem 141

(2) The Gröbner basis attack. This is to solve the BIP problem with circu-
lant matrices directly. The unknown parameters in S1, . . . , Sk ∈ Circ(n) and
T1, . . . , Tk ∈ Circ(m) are nk + mk in the total, and the coefficients of the
quadratic polynomials in g = Υ ∗ f give a system of 1

2n(n + 1)mk equations
over Fq, which are linear for the unknowns in T ’s, quadratic for the unknowns
in S’s and cubic in the total. The Gröbner basis attack is to solve such a sys-
tem equations directly by the Gröbner basis algorithm. Santoso [9] estimated its
complexity by O

(
2k log(nm)/4m

)
.

(3) Linear stack attack. The BIP problem with Circulant matrices is the
problem to recover Υ ∈ Ψ(n,m, k) such that g = Υ ∗ f . The linear stack
attack [6] is not an attack to solve it but to recover Υ1, . . . , ΥN ∈ Ψ(n,m, k)
such that g =

∑
1≤i≤N Υi ∗ f for sufficiently large N . It is easy to check

that, if such Υ1, . . . , ΥN are recovered, the cipher-text (c0, c1) is decrypted by
ν = c1 − ∑

1≤i≤N Υi ∗ c0. The attacker chooses S’s in Υ1, . . . , ΥN randomly to
linearize the equations required in this attack, and reduce the problem of recov-
ering Υ1, . . . , ΥN to that of recovering T ’s in Υ1, . . . , ΥN . Although the existence
of such T ’s is quite heuristic, the authors in [6] claimed that it is applicable if
N 	 1

2n2m and its complexity is O
(
n6m3k3

)
.

Table 1 shows the parameter selections by Santoso [9] based on the security
analyses (1), (2) above, and their security against the attack (3).

Table 1. Parameter selections of Santoso’s encryption scheme and previous security
analyses

(n, m, k) (1), (2) [9] (3) [6]

(84,2,140) 128 bit 62.7 bit

(206,2,236) 256 bit 72.7 bit

(16,2,205) 128 bit 50.0 bit

(16,2,410) 256 bit 53.0 bit

3 Solving the BIP Problem with Circulant Matrices

In this section, we describe how to solve the BIP problem with circulant matrices.
Before it, we study the conjugations of circulant matrices to simplify the problem.

3.1 Conjugations of Circulant Matrices

Let n ≥ 1 be an integer and p the characteristic of Fq. When p � n, denote by
θn an n-th root of 1, i.e. θn is an element of Fq or its extension field satisfying
θn

n = 1 and θl
n
= 1 for 1 ≤ l ≤ n − 1. Define the n × n matrix Θn by

Θn :=
(
θ(i−1)(j−1)

n

)
1≤i,j≤n

=

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 θn · · · θn−1

n
...

...
. . .

...
1 θn−1

n · · · θ
(n−1)2

n

⎞
⎟⎟⎟⎠ .

142 Y. Hashimoto

We also define the n × n matrices Bn by the lower triangular matrix whose
(i, j)-entries (i ≥ j) is

(
i−1
j−1

)
, and Ln by the upper triangular matrix whose

(i, i + 1)-entries are 1 (1 ≤ i ≤ n) and others are 0, i.e.

Bn :=

⎛
⎜⎜⎜⎜⎜⎝

1
1 1
1 2 1
...

...
...

. . .
1 n − 1

(
n−1
2

) · · · 1

⎞
⎟⎟⎟⎟⎟⎠

, Ln :=

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

.
0 1

0

⎞
⎟⎟⎟⎟⎟⎠

.

Note that

L2
n :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 1
.

0 0 1
0 0

0

⎞
⎟⎟⎟⎟⎟⎠

, . . . , Ln−1
n :=

⎛
⎜⎜⎜⎜⎝

1
⎞
⎟⎟⎟⎟⎠

and Ln
n = 0n. We also denote by

diag(a1, . . . , an) :=

⎛
⎜⎝

a1

. . .
an

⎞
⎟⎠ , A ⊗ B :=

⎛
⎜⎝

a11B · · · a1nB
...

. . .
...

an1B · · · annB

⎞
⎟⎠

for scalars or matrices a1, . . . , an and matrices A = (aij)i,j , B. Then the following
lemmas hold.

Lemma 1. Let n be an integer factored by n = n1p
r with p � n1, r ≥ 0. Then

there exists an n × n permutation matrix Kn such that

Q−1
n JnQn = diag

(
1, θn1 , . . . , θ

n1−1
n1

) ⊗ (Ipr + Lpr) ,

where Qn := Kn · (Θn1 ⊗ Bpr).

Proof. (i) When p � n (r = 0), the (i, j)-entries of JnΘn and Θndiag
(
1, θn, . . . ,

θn−1
n

)
are θ

i(j−1)
n for 1 ≤ i ≤ n − 1 and 1 for i = n since θn

n = 1. Then it holds

JnΘn = Θndiag
(
1, θn, . . . , θn−1

n

)
.

(ii) When n = pr (n1 = 1), the (i, j)-entries of JnBn are
(

i
j−1

)
for j − 1 ≤ i ≤

n − 1, 1 for (i, j) = (n, 1) and 0 otherwise. On the other hand, the (i, j)-entries
of Bn (In + Ln) is 1 for j = 1,

(
i−1
j−2

)
+

(
i−1
j−1

)
=

(
i

j−1

)
for 2 ≤ j ≤ i + 1 and 0

otherwise. Since
(

pr

j−1

)
= 0 in Fq for 2 ≤ j ≤ pr, we have

JprBpr = Bpr (Ipr + Lpr) .

Solving the BIPC Problem 143

(iii) We finally study the general case. Since both Jn and Jn1 ⊗ Jpr are of n-
cyclic, these are conjugate to each other in the symmetric group Sn, i.e. there
exists an n × n permutation matrix Kn such that

K−1
n JnKn = Jn1 ⊗ Jpr .

We thus obtain

Q−1
n JnQn = (Θn1 ⊗ Bpr)−1 (Jn1 ⊗ Jpr) (Θn1 ⊗ Bpr)

=
(
Θ−1

n1
Jn1Θn1

) ⊗ (
B−1

pr JprBpr

)

= diag
(
1, θn1 , . . . , θ

n1−1
n1

) ⊗ (Ipr + Lpr) .

�

Lemma 2. Let n be an integer factored by n = n1p

r with p � n1, r ≥ 0 and
Qn := Kn(Θn1 ⊗Bpr). Then, for S ∈ Circ(n), there exist s11, . . . , s1pr ∈ Fq and
s21, . . . , s2pr , s31, . . . , . . . , sn1pr ∈ Fq(θn1) such that

Q−1
n SQn = diag

(
s11Ipr + s12Lpr + · · · + s1prLpr−1

pr ,

s21Ipr + s22Lpr + · · · + s2prLpr−1
pr ,

· · · , sn11Ipr + sn12Lpr + · · · + sn1prLpr−1
pr

)

= diag

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

s11 s12 · · · s1pr

.
...

s11 s12
s11

⎞
⎟⎟⎟⎠ , . . . ,

⎛
⎜⎜⎜⎝

sn11 sn12 · · · sn1pr

.
...

sn11 sn12

sn11

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .

Proof. A circulant matrix S is written by

S = a1In + a2Jn + · · · + anJn−1
n

for some a1, . . . , an ∈ Fq. Then, according to Lemma 1, we have

Q−1
n SQn =a1In + a2 · diag

(
1, θn1 , . . . , θ

n1−1
n1

) ⊗ (Ipr + Lpr)

+ a3 · diag
(
1, θ2n1

, . . . , θ2(n1−1)
n1

)
⊗ (Ipr + Lpr)2

+ · · · + an · diag
(
1, θn−1

n1
, . . . , θ(n1−1)(n−1)

n1

)
⊗ (Ipr + Lpr)n−1

.

Since Lpr

pr = 0, the matrices Ipr , Ipr + Lpr , (Ipr + Lpr)2, . . . , (Ipr + Lpr)n−1 are
linear sums of Ipr , Lpr , L2

pr , . . . , L
pr−1
pr . Thus we can easily check that Lemma 2

holds. �

144 Y. Hashimoto

3.2 Equivalent Keys

Let n,m ≥ 1 be integers factored by n = n1p
a, m = m1p

b with a, b ≥ 0,
p � n1,m1. For 1 ≤ l ≤ k, define

f̄l := Q−1
m ◦ fl ◦ Qn, ḡl := Q−1

m ◦ gl ◦ Qn,

S̄l := Q−1
n ◦ Sl ◦ Qn, T̄l := Q−1

m ◦ Tl ◦ Qm.

Note that, due to Lemma 2, we see that S̄l, T̄l are written by

S̄l =diag

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

s
(l)
11 s

(l)
12 · · · s

(l)
1pa

.
...

s
(l)
11 s

(l)
12

s
(l)
11

⎞
⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎝

s
(l)
n11

s
(l)
n12

· · · s
(l)
n1pa

.
...

s
(l)
n11

s
(l)
n12

s
(l)
n11

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

,

T̄l =diag

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

t
(l)
11 t

(l)
12 · · · t

(l)

1pb

.
...

t
(l)
11 t

(l)
12

t
(l)
11

⎞
⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎝

t
(l)
m11

t
(l)
m12

· · · t
(l)

m1pb

.
...

t
(l)
m11

t
(l)
m12

t
(l)
m11

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

.

(3)

Since

Q−1
m ◦ (Tl ◦ fu ◦ Sl) ◦ Qn = (Q−1

m ◦ Tl ◦ Qm) ◦ (Q−1
m ◦ fu ◦ Qn) ◦ (Q−1

n ◦ Sl ◦ Qn)
= T̄l ◦ f̄u ◦ S̄l,

we have

ḡu =
∑

1≤l≤k

T̄l ◦ f̄u+l−1 ◦ S̄l. (4)

This means that the BIP problem with Circulant matrices is reduced to the
problem recovering S̄1, . . . , S̄k, T̄1, . . . , T̄k in the forms (3) for given f̄ and ḡ.
Furthermore, since

(α2T̄l) ◦ f̄u ◦ (α−1S̄l) = T̄l ◦ f̄u ◦ S̄l

for any α ∈ Fq\{0} and

0 ◦ f̄u ◦ S̄l = T̄l ◦ f̄u ◦ 0 = 0,

we can take s
(l)
11 = 1 for 1 ≤ l ≤ k without loss generality. In the next subsection,

we describe how to recover other parameters in S̄l and T̄l.

3.3 Solving the BIP Problem with Circulant Matrices

For 1 ≤ u ≤ k and 1 ≤ v ≤ m, denote by

f̄u(x) =t(f̄u1(x), . . . , f̄um(x)), f̄uv(x) =
∑

1≤i≤j≤n

α
(uv)
ij xixj ,

ḡu(x) =t(ḡu1(x), . . . , ḡum(x)), ḡuv(x) =
∑

1≤i≤j≤n

β
(uv)
ij xixj .

Solving the BIPC Problem 145

We can recover S̄l and T̄l as follows.

Recovering T̄l. We first study the polynomial ḡum(x) for 1 ≤ u ≤ k. Since
S̄l, T̄l are as in (3) and s

(l)
11 = 1, we see that the coefficient of x2

1 of ḡum(x) in (4)
gives the equation

β
(um)
11 =

∑
1≤l≤k

α
(u+l−1,m)
11 t

(l)
m11

. (5)

Since the set of the Eq. (5) for 1 ≤ u ≤ k is a system of k linear equations of k

variables t
(1)
m11

, . . . , t
(k)
m11

, one can recover t
(1)
m11

, . . . , t
(k)
m11

by solving this system.
Next, the coefficient of x2

1 of ḡu,m−1(x) in (4) gives

β
(u,m−1)
11 =

∑
1≤l≤k

(
α
(u+l−1,m−1)
11 t

(l)
m11

+ α
(u+l−1,m)
11 t

(l)
m12

)
.

Since t
(1)
m11

, . . . , t
(k)
m11

are already given, one can recover t
(1)
m12

, . . . , t
(k)
m12

by solving
the equations above for 1 ≤ u ≤ k. Other parameters in T̄ can be recovered
by the equations derived from the coefficients of x2

1 in ḡu,m−2(x), . . . , ḡu,1(x)
recursively.

Recovering S̄l. Study ḡum(x) again. Since s
(l)
11 = 1, the coefficient of x1x2 of

ḡum(x) gives the equation

β
(um)
12 =

∑
1≤l≤k

(
2α

(u+l−1,m)
11 s

(l)
12 + α

(u+l−1,m)
12

)
t
(l)
m11

. (6)

Since t
(l)
m11

is already given, one can recover s
(l)
12 by solving the system of k linear

equations of k variables s
(1)
12 , . . . , s

(k)
12 derived from the equation (6) for 1 ≤ u ≤ k.

Next, the coefficient of x1x3 in ḡum(x) is

β
(um)
13 =

∑
1≤l≤k

(
2α

(u+l−1,m)
11 s

(l)
13 + α

(u+l−1,m)
12 s

(l)
12 + α

(u+l−1,m)
13

)
t
(l)
m11

. (7)

Since t
(l)
m11

, s
(l)
12 are already given, s

(l)
13 can be recovered from the equation

above for 1 ≤ l ≤ k. It is easy to see that one can recover other parameters
s
(l)
14 , . . . , s

(l)
n1pa by the systems of linear equations derived from the coefficients of

x1x4, . . . , x1xn in ḡum(x) recursively.

Remark 1. If q is even, s
(l)
12 does not appear in the equation (6) and then s

(l)
12

cannot be recovered from the coefficient of x1x2. On the other hand, the equa-
tion (7) derived from the coefficient of x1x3 includes s

(l)
12 but not s

(l)
13 . This

means that s
(l)
12 is recovered from the coefficient of x1x3 instead of x1x2. Simi-

larly, we can easily check that s
(l)
13 , . . . , s

(l)
1pa are recovered from the coefficients of

x1x4, . . . , x1xpa , x2xpa respectively instead of x1x3, . . . , x1xpa .

146 Y. Hashimoto

Remark 2. There is a possibility that the parameters in (S̄1, . . . , S̄k, T̄1, . . . , T̄k)
are not fixed uniquely from the linear equations derived from the coefficients of
x2
1 in ḡu1(x), . . . , ḡum(x) and of x1x2, . . . , x1xn in ḡum(x). If such a case occurs,

recover the parameters in (S̄1, . . . , S̄k, T̄1, . . . , T̄k) as possible, study the coef-
ficients not used to recover such parameters and state the equations for the
parameters not fixed uniquely yet. Then one can expect to fix them uniquely.
For example, the coefficients of x2

2 includes s
(l)
12 quadratically and then it helps

to fix s
(l)
12 .

Complexity. It is easy to see that, to compute f̄ , ḡ totally, we need (at most)
O(n3mk) arithmetics on Fq(θn1 , θm1). However, we use only the coefficients of
x2
1, x1x2, . . . , x1xn and then the number of required arithmetics in this process

is O(n2mk). Furthermore, since the attacker solves the systems of k linear equa-
tions of k variables in m times for recovering T̄l and in n times for recovering S̄l,
the number of required arithmetics for recovering them is (at most) O(k3(n+m))
over Fq(θn1 , θm1). We thus conclude that the total number of arithmetics on
Fq(θn1 , θm1) of our approach is estimated by O(kn2m + k3n + k3m).

Table 2. Parameter selections of the proposed encryption scheme

(n, m, k) (1), (2) [9] (3) [6] Our attack

(42,2,102) — — 4.8 days 9.9 s

(84,2,140) 128 bit 62.7 bit — 34.5 s

(206,2,236) 256 bit 72.7 bit — 619 s

(16,2,205) 128 bit 50.0 bit 10 h 15.5 s

(16,2,410) 256 bit 53.0 bit — 150 s

Experiments. We implemented our attack on Magma ver.2.24-5 under macOS
Mojave ver.10.14.16, Intel Core i5, 3 GHz. In Table 2, we describe the experi-
mental results of our attack for the parameters selected in [9] and studied in [6].
This shows that our approach is quite effective to solve the BIP problem with
Circulant matrices.

4 Conclusion

The present paper shows that solving the BIP problem with Circulant matrices
directly is not difficult since the secret maps S1, . . . , Sk, T1, . . . , Tk are known
to be circulant. We consider that, while the original BIP problem is difficult
enough at the present time, it will be solved similarly if the secret maps to be
recovered have some kind of “special” structures. We thus consider that, to build
a secure scheme based on the BIP problem, one should choose the secret maps
as randomly as possible.

Solving the BIPC Problem 147

Acknowledgments. The author would like to thank the anonymous reviewers for
reading the previous draft of this paper carefully and giving helpful comments. He was
supported by JST CREST no. JPMJCR14D6 and JSPS Grant-in-Aid for Scientific
Research (C) no. 17K05181.

A Toy Example

We now demonstrate how to solve the BIPC problem for (q, n,m, k) = (2, 6, 2, 2)
as a toy example. The public keys f = (f1, f2) = (f11, f12, f21, f22) and g =
(g1,g2) = (g11, g12, g21, g22) are as follows.

f11(x) = tx

⎛
⎜⎜⎝

1 0 0 0 0 0
1 0 0 0 1
0 0 0 0
0 0 0
1 1
0

⎞
⎟⎟⎠x, f12(x) = tx

⎛
⎜⎜⎝

0 0 0 1 1 1
1 1 0 0 1
1 0 1 1
0 0 0
1 1
1

⎞
⎟⎟⎠x,

f21(x) = tx

⎛
⎜⎜⎝

0 0 1 1 1 0
1 1 1 1 1
0 1 0 0
0 1 1
0 0
1

⎞
⎟⎟⎠x, f22(x) = tx

⎛
⎜⎜⎝

1 1 1 0 1 0
0 0 1 1 1
0 1 0 0
0 0 1
1 1
1

⎞
⎟⎟⎠x,

g11(x) = tx

⎛
⎜⎜⎝

1 1 1 1 0 1
0 1 0 0 0
1 0 0 1
0 1 1
1 0
1

⎞
⎟⎟⎠x, g12(x) = tx

⎛
⎜⎜⎝

1 0 0 0 0 0
1 0 0 0 0
0 1 1 1
1 1 1
0 0
1

⎞
⎟⎟⎠x,

g21(x) = tx

⎛
⎜⎜⎝

1 0 1 0 0 0
0 1 1 0 1
1 1 0 1
0 0 1
1 0
1

⎞
⎟⎟⎠x, g22(x) = tx

⎛
⎜⎜⎝

0 1 1 0 0 0
1 1 1 1 0
0 0 0 1
0 0 0
1 0
0

⎞
⎟⎟⎠x,

where the coefficient matrices are expressed by triangular matrices. Our aim is
to recover S1, S2 ∈ Circ(6), T1, T2 ∈ Circ(2) satisfying

(
g11(x)
g12(x)

)
=T1

(
f11(S1(x))
f12(S1(x))

)
+ T2

(
f21(S2(x))
f22(S2(x))

)
,

(
g21(x)
g22(x)

)
=T1

(
f21(S1(x))
f22(S1(x))

)
+ T2

(
f11(S2(x))
f12(S2(x))

)
.

(8)

Let θ be a cubic root of 1 (i.e. θ2 + θ + 1 = 0),

K6 :=

⎛
⎜⎜⎝

1
1
1

1
1

1

⎞
⎟⎟⎠, Θ3 :=

⎛
⎝

1 1 1
1 θ θ2

1 θ2 θ

⎞
⎠ , Q2 = B2 :=

(
1 0
1 1

)

and Q6 := K6 (Θ3 ⊗ B2). Then f̄1 = Q−1
2 ◦f1◦Q6 = (f̄11, f̄12), f̄2 = Q−1

2 ◦f2◦Q6 =
(f̄21, f̄22), ḡ1 = Q−1

2 ◦ g1 ◦ Q6 = (ḡ11, ḡ12), ḡ2 = Q−1
2 ◦ g2 ◦ Q6 = (ḡ21, ḡ22) are as

follows.

148 Y. Hashimoto

f̄11(x) = tx

⎛
⎜⎜⎝

1 1 0 θ 0 θ2

0 θ2 1 θ 1
1 1 0 θ

θ θ2 1
1 1

θ2

⎞
⎟⎟⎠x, f̄12(x) = tx

⎛
⎜⎜⎝

1 0 1 θ2 1 θ
1 0 0 0 0

θ2 1 0 0
θ 0 0

θ 1
θ2

⎞
⎟⎟⎠x,

f̄21(x) = tx

⎛
⎜⎜⎝

0 1 1 1 1 1
1 1 0 1 0

θ θ 0 θ
1 θ2 1

θ2 θ2

1

⎞
⎟⎟⎠x, f̄22(x) = tx

⎛
⎜⎜⎝

0 1 0 θ2 0 θ
1 θ2 0 θ 0

0 1 0 1
θ2 1 0

0 1
θ1

⎞
⎟⎟⎠x,

ḡ11(x) = tx

⎛
⎜⎜⎝

0 0 θ2 θ θ θ2

0 1 θ 1 θ2

θ2 1 0 0
1 0 1

θ 1
1

⎞
⎟⎟⎠x, ḡ12(x) = tx

⎛
⎜⎜⎝

1 1 1 θ2 1 θ
0 1 0 1 0

θ2 θ 0 1
θ 1 0

θ θ2

θ2

⎞
⎟⎟⎠x,

ḡ21(x) = tx

⎛
⎜⎜⎝

1 1 1 0 0 1
0 θ2 0 θ 0

1 0 0 1
θ 1 1
1 0

θ2

⎞
⎟⎟⎠x, ḡ22(x) = tx

⎛
⎜⎜⎝

1 1 θ θ θ2 θ2

0 θ2 θ2 θ θ
θ θ 0 1

θ2 1 0
θ2 θ2

θ

⎞
⎟⎟⎠x.

Then the problem of recovering S1, S2, T1, T2 with (8) is reduced to the problem
of recovering S̄1 = Q−1

6 ◦ S1 ◦ Q6, S̄2 = Q−1
6 ◦ S2 ◦ Q6, T̄1 = Q−1

2 ◦ T1 ◦ Q2,
T̄2 = Q−1

2 ◦ T2 ◦ Q2 satisfying
(

ḡ11(x)
ḡ12(x)

)
=T̄1

(
f̄11(S̄1(x))
f̄12(S̄1(x))

)
+ T̄2

(
f̄21(S̄2(x))
f̄22(S̄2(x))

)
,

(
ḡ21(x)
ḡ22(x)

)
=T̄1

(
f̄21(S̄1(x))
f̄22(S̄1(x))

)
+ T̄2

(
f̄11(S̄2(x))
f̄12(S̄2(x))

)
.

(9)

Due to Lemma 2, we see that S̄1, S̄2, T̄1, T̄2 are written by

S̄1 =diag

((
1 s

(1)
12

1

)
,

(
s
(1)
21 s

(1)
22

s
(1)
21

)
,

(
s
(1)
31 s

(1)
32

s
(1)
31

))
,

S̄2 =diag

((
1 s

(2)
12

1

)
,

(
s
(2)
21 s

(2)
22

s
(2)
21

)
,

(
s
(2)
31 s

(2)
32

s
(2)
31

))
,

T̄1 =

(
t
(1)
1 t

(1)
2

t
(1)
1

)
, T̄2 =

(
t
(2)
1 t

(2)
2

t
(2)
1

)
.

We first study the coefficients of x2
1 in ḡ12, ḡ22. The relation (9) gives the

following equations.

(
1
1

)
=

(
1 0
0 1

)(
t
(1)
1

t
(2)
1

)
.

Solving the BIPC Problem 149

We then get t
(1)
1 = 1 and t

(2)
1 = 1. Similarly, from the coefficients of x2

1 in ḡ11, ḡ21,
we have

(
0
1

)
=

(
1 0
0 1

) (
t
(1)
2

t
(2)
2

)
+

(
1 0
0 1

)(
t
(1)
1

t
(2)
1

)
.

From the equations above, we obtain t
(1)
2 = 1 and t

(2)
2 = 0. We thus have T1, T2

as

T1 = Q2

(
1 1

1

)
Q−1

2 = J2, T2 = Q2

(
1

1

)
Q−1

2 = I2. (10)

Next, we study the coefficient of x1x3 in ḡ12, ḡ22. From (9) and (10), we have
(

1
θ

)
=

(
1 0
0 1

)(
s
(1)
21

s
(2)
21

)
.

We then get s
(1)
21 = 1, s

(2)
21 = θ. Similarly, the following equations are derived

from the coefficients of x1x4, x1x5 and x1x6 in ḡ12, ḡ22.
(

θ2

θ

)
=

(
θ2 θ2

θ2 θ2

)(
s
(1)
21

s
(2)
21

)
+

(
1 0
0 1

)(
s
(1)
22

s
(2)
22

)
,

(
1
θ2

)
=

(
1 0
0 1

)(
s
(1)
31

s
(2)
31

)
,

(
θ
θ2

)
=

(
θ θ
θ θ

)(
s
(1)
31

s
(2)
31

)
+

(
1 0
0 1

)(
s
(1)
32

s
(2)
32

)
.

Then we get s
(1)
22 = 1, s

(2)
22 = 0, s

(1)
31 = 1, s

(2)
31 = θ2, s

(1)
32 = 1 and s

(2)
32 = 0.

To recover the remaining parameters s
(1)
12 , s

(2)
12 , we study the coefficients of x2

2 in
ḡ12, ḡ22 and have

0 = s
(1)
12

2 + s
(2)
12 , 0 = s

(1)
12 + s

(2)
12

2.

Since s
(1)
12 , s

(2)
12 ∈ F2, the solution of the equations above is s

(1)
12 = s

(2)
12 . To fix

s
(1)
12 , s

(2)
12 uniquely, we further study the coefficients x2x3 in ḡ12, ḡ22 and have the

equations

1 = s
(1)
12 s

(1)
21 + θ2s

(2)
21 , θ2 = θ2s

(1)
21 + s

(2)
12 s

(2)
21 .

Since s
(1)
21 = 1, s

(2)
21 = θ, we obtain s

(1)
12 = s

(2)
12 = 0. We thus conclude that

S1 =Q6 · diag
((

1 0
1

)
,

(
1 1

1

)
,

(
1 1

1

))
Q−1

6 = I6 + J6 + J2
6 + J4

6 + J5
6 ,

S2 =Q6 · diag
((

1 0
1

)
,

(
θ 0

θ

)
,

(
θ2 0

θ2

))
Q−1

6 = J4
6 .

(11)

The solution of this BIPC problem is given by (10) and (11). �

150 Y. Hashimoto

References

1. Bouillaguet, C., Faugére, J.-C., Fouque, P.-A., Perret, L.: Isomorphism of
Polynomials: New Results (2009). http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=20524EF65899B40DEE494630B0574F53?doi=10.1.1.156.
9570&rep=rep1&type=pdf

2. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem,
J.: GeMSS: A Great Multivariate Short Signature. https://www-polsys.lip6.fr/
Links/NIST/GeMSS.html

3. Chen, J., Tan, C.H., Li, X.: Practical cryptanalysis of a public key cryptosystem
based on the morphism of polynomials problem. Tsinghua Sci. Technol. 23, 671–
679 (2018)

4. Chen, M.-S., et al.: Rainbow Signature. https://www.pqcrainbow.org/
5. Faugère, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and the-

oretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 3

6. Ikematsu, Y., Nakamura, S., Santoso, B., Yasuda, T.: Security Analysis on an El-
Gamal-like Multivariate Encryption Scheme Based on Isomorphism of Polynomials
(2021). https://eprint.iacr.org/2021/169

7. NIST, Post-Quantum Cryptography, Round 3 submissions. https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

8. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

9. Santoso, B.: Generalization of isomorphism of polynomials with two secrets and its
application to public key encryption. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto
2020. LNCS, vol. 12100, pp. 340–359. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44223-1 19

10. Wang, H., Zhang, H., Mao, S., Wu, W., Zhang, L.: New public-key cryptosystem
based on the morphism of polynomials problem. Tsinghua Sci. Technol. 21, 302–
311 (2016)

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=20524EF65899B40DEE494630B0574F53?doi=10.1.1.156.9570&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=20524EF65899B40DEE494630B0574F53?doi=10.1.1.156.9570&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=20524EF65899B40DEE494630B0574F53?doi=10.1.1.156.9570&rep=rep1&type=pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://www.pqcrainbow.org/
https://doi.org/10.1007/11761679_3
https://eprint.iacr.org/2021/169
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-030-44223-1_19
https://doi.org/10.1007/978-3-030-44223-1_19

FFT Program Generation for Ring
LWE-Based Cryptography

Masahiro Masuda(B) and Yukiyoshi Kameyama

University of Tsukuba, Tsukuba, Japan
masa@logic.cs.tsukuba.ac.jp, kameyama@acm.org

Abstract. Fast Fourier Transform (FFT) enables an efficient implemen-
tation of polynomial multiplication, which is at the core of any crypto-
graphic constructions based on the hardness of the Ring learning with
errors (RLWE) problem. Existing implementations of FFT for RLWE-
based cryptography rely on hand-written assembly code for performance,
making it difficult to understand, maintain, and extend for new architec-
tures.

We present a novel framework to implement FFT for RLWE-based
cryptography, based on a principled program-generation approach. We
start with a high-level, abstract definition of an FFT program, and gen-
erate low-level code by interpreting high-level primitives and delegat-
ing low-level details to an architecture-specific module. Since low-level
details concerning modular arithmetic and vectorization are separated
from high-level logic, we can easily generate both AVX2- and AVX512-
optimized low-level code from the same high-level description of the FFT
program. Our generated code is highly competitive compared to expert-
written assembly code: For AVX2 (and AVX512, resp) it runs 1.13x (and
1.39x, resp) faster than the AVX2-optimized assembly implementation
in the NewHope key-exchange protocol.

1 Introduction

Lattice cryptography has been receiving increasing attention due to its widely
believed resistance against quantum attacks while still allowing efficient imple-
mentations of important cryptographic protocols. A construction based on the
hardness of Ring learning with errors (RLWE) problem [15] is particularly effi-
cient, thanks to its algebraic structure. At the heart of all RLWE-based protocols
is the multiplication of polynomials, whose coefficients are taken from integers
modulo a certain prime. It is well known that the polynomial multiplication can
be computed in O(n log n) time via Fast Fourier transform (FFT)1 [6]. Since the
computational cost for polynomial multiplication is dominated by FFT, there
have been many work on optimized FFT implementations for RLWE-based cryp-
tography [2,7,14,19].

However, we believe that existing implementations have some shortcomings,
in terms of ease of understanding, maintainability, and reusability:
1 FFT in which coefficients are taken from a finite field is often called NTT (Number

Theoretic Transform), but we use the term FFT throughout this paper.
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 151–171, 2021.
https://doi.org/10.1007/978-3-030-85987-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_9

152 M. Masuda and Y. Kameyama

– They support either only one set of security parameters, or multiple sets
of parameters by duplicating code. Duplication makes implementation and
maintenance of code tedious and error prone.

– Precomputed constants are hardcoded in the source code. In the context of
RLWE, the size and modulus parameters are always fixed, making it possible
to precompute all the twiddle factors in an FFT implementation. In addi-
tion, it is common to pre-multiply the twiddle factors by other factors aris-
ing from Montgomery multiplication or negative wrapped convolution [2,14].
Since each implementation does precomputation in slightly different ways and
often comes without explanation of how those constants are computed, it is
difficult to precisely understand what each constant represents.

– Most likely, an optimized implementation is written in assembly. This makes it
extremely difficult to understand the code and be confident in its correctness.
Moreover, since an assembly program is hardcoded using a particular SIMD
instruction set (e.g. AVX2), porting the implementation to new architectures
requires writing another assembly program from scratch. We are not aware of
any FFT implementation that leverages AVX512 instructions in the context
of RLWE-based cryptography.

We address these problems by a principled program-generation approach.
By adopting program-generation techniques developed in programming language
research, it is possible to give an abstract description of an FFT algorithm, from
which we can generate highly optimized low-level code for various instruction
sets, including AVX2 and AVX512. Moreover, the program-generation approach
makes it easy to combine optimization techniques developed in different studies,
which allows us to generate more efficient code than the assembly program in
NewHope2, one of the recent FFT implementations.

Our framework is written in a functional programming language OCaml [12].
A user would write an FFT program in a specialized domain-specific language
(DSL) embedded in OCaml. The DSL program can be evaluated in multiple
ways. For example, we can generate an equivalent C program, including those
optimized with SIMD intrinsics. Since our vectorized DSL programs are written
in a way that is generic with respect to the vector length and not tied to a
particular SIMD instruction set, we can easily generate both AVX2 and AVX512
code from the same high-level DSL program. Supporting a new ISA, such as
ARM Neon, should be straightforward: We only need to provide the mapping
between vectorized primitives in our DSL, such as add, mullo and mulhi, and
corresponding SIMD instructions in the target ISA.

We demonstrate our framework by implementing vectorized FFT code for
RLWE-based cryptography. We start with the reference implementation of
NewHope [2], and incorporate an optimization technique introduced in Kyber
FFT [19]. We demonstrate that our high-level framework allows expressing the
low-level optimization in Kyber FFT that was the key to its performance. On a
recent laptop with Intel Ice Lake CPU, our AVX2- and AVX512-optimized FFT
are 1.13x and 1.39x faster than the NewHope AVX2 implementation respectively.
2 https://github.com/newhopecrypto/newhope-usenix.

https://github.com/newhopecrypto/newhope-usenix

FFT Program Generation for Ring LWE-Based Cryptography 153

We would like to stress that obtaining one FFT implementation that outper-
forms an existing one is not our primary goal. Our goal is to build a program-
generation framework which can be applied to any existing FFT algorithm, to
improve code maintainability, reusability and modularity. To show the effective-
ness of our framework, we chose to start with the NewHope reference imple-
mentation because of its relative simplicity compared to the state of the art
implementation of Kyber [19], and compare and report our results with respect
to the optimized counterpart.

2 Related Work

There is already a large body of work on optimizing FFT or polynomial mul-
tiplication as a whole for RLWE-based cryptography [1,2,7,13,14,18,19]. Here,
we focus on the most relevant work whose optimized AVX2 implementations are
publicly available [2,14,19].

The NewHope key-exchange protocol [2] introduced two implementations
of FFT for RLWE-based key exchange: One is a reference C implementation,
and the other is an AVX2 assembly implementation. The optimized one uses
double-precision floating-point instructions to compute modular reduction by
a mod q = a −

⌊
a 1

q

⌋
q, since they found that the floating-point implementation

is faster than their integer one when vectorization is applied.
The current fastest FFT implementation is the one used in Kyber KEM

[4], described in detail in [19]. For the first time, it outperformed the floating-
point implementation in NewHope using only integer SIMD instructions. It also
incorporates the optimization used in [13,14] to remove the bit reversal step.

All of the existing work above implement FFT in assembly using AVX2
instructions. To the best of our knowledge, there is no AVX512 implementation,
even though an AVX512-capable CPU is becoming widely available. This work
presents an AVX512 implementation of FFT for RLWE-based cryptography.
In particular, we generate both AVX2 and AVX512 code from the same FFT
program.

3 Background

3.1 FFT in the RLWE Context

FFT is an O(n log n) time algorithm to compute Discrete Fourier Transform
(DFT) for an input of size n. Given an input a = (a0, a1, ..., an−1), ai ∈ Zq, its
DFT y = (y0, y1, ..., yn−1), yi ∈ Zq is defined by the following equation [6]:

yk =
n−1∑
j=0

ajω
kj
n

ωn is the nth primitive root of unity modulo q, satisfying ωn
n ≡ 1 (mod q). All

addition and multiplication are done in mod q. In the context of RLWE-based

154 M. Masuda and Y. Kameyama

cryptography, n is a power of two, and q must satisfy q ≡ 1 (mod 2n) for FFT
to be valid3. For example, NewHope uses n = 1024 and q = 12289 [2], while
Kyber uses n = 256 and q = 7681 [4].

All existing implementations of FFT in the context of RLWE-based cryp-
tography compute FFT in an iterative, bottom-up manner [2,14,19]. Moreover,
the output is computed in-place. Although in-place FFT generally requires a bit
reverse step to make an output in the standard order, recent work showed a way
to eliminate it entirely for the two transforms (forward and inverse FFT) used
in polynomial multiplication [13,18]. However, for simplicity we do not imple-
ment the full polynomial multiplication and focus on a standard, self-contained
forward FFT which uses the bit reverse step at the beginning.

Algorithm 1 shows the pseudocode of our FFT implementation. It uses the
standard Cooley-Tukey algorithm [6] and all powers of ωn, called twiddle factors,
are precomputed and stored in an array. Each iteration of the outermost loop
is often called stage, and the number of stages is log2 n. The innermost loop
performs the Cooly-Tukey butterfly with modular arithmetic.

Algorithm 1. The pseudocode for the bottom-up, in-place FFT
1: procedure FFT

Input: a = (a0, a1, ..., an−1) ∈ Z
n
q , precomputed constants table Ω ∈ Z

n
q

2: Output: y = DFT(a), in standard order
3: bit-reverse(A)
4: for (s = 1; s <= log2(n); s = s + 1) do
5: m = 2s

6: o = 2s−1 − 1
7: for (k = 0; k < m; k = k + m) do
8: for (j = 0; j < m/2; j = j + 1) do
9: u = a[k + j]
10: t = (a[k + j + m/2] · Ω[o + j]) mod q
11: a[k + j] = (u + t) mod q
12: a[k + j + m/2] = (u − t) mod q
13: end for
14: end for
15: end for
16: end procedure

An efficient implementation of the modular reduction is the most important
component in FFT for RLWE-based cryptography. We follow existing work for
the choice of algorithms [2,19]: We use Barrett reduction [3] to reduce the results
of addition and subtraction, and Montgomery reduction [16] for multiplication.

3.2 Tagless-Final Style

The tagless-final style is an approach to embed a domain-specific language (DSL)
in a general-purpose host language in a type-safe way. The DSL, embedded in our

3 The requirement on q comes from the fact that in general multiplying two polyno-
mials of degree n requires a transform of size 2n. However, thanks to the property of
negative wrapped convolution, it is enough to do a transform of size n in practice.

FFT Program Generation for Ring LWE-Based Cryptography 155

host language OCaml, allows high-level descriptions of algorithms independent of
security parameters and target architectures. Here, we give its brief introduction
to understand the rest of the paper. For more details, see [5,9].

The following OCaml program vector_add adds two vectors of integers:

let vector_add arr1 arr2 =
for i = 0 to (n - 1) do

arr1.(i) = arr1.(i) + arr2.(i)
done

The variable n is the length of arrays and assumed to be a compile-time
constant. The operator .(i) indexes array elements in OCaml.

In the tagless-final style, a DSL program is implemented using language prim-
itives offered by a signature. In particular, the signature declares language prim-
itives as abstract functions, whose implementations are yet to be defined.

It is easy to rewrite the above program into an abstract one; we only have to
replace all constants and language syntactic constructs by new, abstract func-
tions, for instance, for by for_, the integer constant 0 by zero or int_ 0, and
arr1.(i) by arr_get arr1 i. We can write an abstract program equivalent to
vector_add above in our DSL as follows:

func2 "vector_add" arg_ty arg_ty (fun arr1 arr2 ->
(for_ zero (int_ n) (int_ 1) (fun i ->

arr_set arr1 i (D.add (arr_get arr1 i) (arr_get arr2 i)))))

This is the signature of our C-like language:4.

module type C_lang = sig
type 'a expr type 'a stmt ...
val zero : int expr
val int_ : int -> int expr
val for_ : int expr -> int expr -> int expr -> (int expr -> unit stmt)

-> unit stmt
val arr_set : int array expr -> int expr -> int expr -> unit stmt
...

end

The tagless-final style lets us implement the signature in various ways, and
different implementations give different meanings to the same program.

For example, if we use MetaOCaml [10] for the implementation, the meaning
of the above program would become “OCaml code that adds two arrays”. The
brackets .<>. surround the value representation of the generated OCaml code.

4 It is similar to “interface” in other languages.

156 M. Masuda and Y. Kameyama

.<let vector_add arg0 arg1 =
let num_iter_3 = (1024 - 0) / 1 in
for i_4 = 0 to num_iter_3 - 1 do

let index_5 = 0 + (1 * i_4) in
let t_7 = Array.get arg0 index_5 in
let t_6 = Array.get arg1 index_5 in
Array.set arg0 index_5 ((t_7 + t_6) mod 12289)

done in vector_add>.

Similarly, we can also obtain equivalent C code, using a different interpreta-
tion of the same program. Under this interpretation, a string representation of
the C program is generated.

void vector_add(uint16_t *arg0, uint16_t *arg1) {
for (int v_8 = 0; v_8 < ((1024 - 0) / 16); v_8 += 1) {

arg0[v_8] = arg0[v_8] + arg1[v_8];
}

}

Program transformation can be done by redefining the meaning of language
primitives. For example, in this program the meaning of language primitives are
overwritten to be a “vectorization mode” by Vectorize module (see Appendix A
for more details). Under this new interpretation, integer addition, array access
and assignment are reinterpreted as vector addition, vector load and store,
respectively. The loop bound and index are also recalculated accordingly.

func2 "vector_add" (fun arr1 arr2->
let open Vectorize(AVX2_UInt16(D)) in
for_ (int_ 0) (int_ 1024) (int_ 1) (fun i ->

arr_set arr1 i (D.add (arr_get arr1 i) (arr_get arr2 i))))

Here is the generated code using the AVX2 instruction set. By changing one
line, we can also generate AVX512 code, without modifying the DSL program.

void vector_add(uint16_t *arg0, uint16_t *arg1) {
for (int v_8 = 0; v_8 < ((1024 - 0) / 16); v_8 += 1) {

_mm256_storeu_si256(
(__m256i *)(arg0 + (0 + (v_8 * 16))),
_mm256_add_epi16(

_mm256_loadu_si256((__m256i *)(arg0 + (0 + (v_8 * 16)))),
_mm256_loadu_si256((__m256i *)(arg1 + (0 + (v_8 * 16))))));

}
}

This shows the strength of the tagless-final style: From a high-level, abstract
description of a program, we can generate a variety of low-level code. Although

FFT Program Generation for Ring LWE-Based Cryptography 157

the example above is trivial, the same technique can be applied to vectorize the
innermost loop of FFT, as we will see next.

4 The Proposed Approach

We propose to apply program-generation techniques to an FFT implementation
using the tagless-final style, to obtain highly optimized FFT implementations
tailored to various security parameters and target architectures. The tagless-final
style allows us to give different interpretations of the same abstract program,
which makes it possible to generate both AVX2 and AVX512 vectorized FFT
code from a single, abstract FFT program.

While the approach and the language used are both high-level, that does not
mean we would lose low-level control necessary for the optimal performance. We
show that it is possible to reason and program at very low-level, involving delicate
arithmetic or vector shuffling, for example. A clean separation between high- and
low-level layers is the key to the generality and reusability of our framework.

4.1 Abstract Definition of the FFT Innermost Loop

We begin by translating the pseudocode of bottom up, in-place FFT in Algo-
rithm 1 into our DSL. This is a description of the innermost loop using primitives
defined in our DSL.

for_ (int_ 0) m_half (int_ 1) (fun j ->
let index = k %+ j in
let omega = arr_get prim_root_powers (coeff_begin %+ j) in
let2

(D.mul (arr_get input (index %+ m_half)) omega)
(arr_get input index)
(fun t u ->

seq
(arr_set input index (D.add u t))
(arr_set input (index %+ m_half) (D.sub u t))))

let2 V1 V2 (fun t u -> V3) is an syntax sugar for a doubly-nested let
binding: let t = V1 in let u = V2 in V3. The variable prim_root_powers
stores precomputed twiddle factors in an array. An array and operations on it
are also abstracted using the following signature:

module type Array_lang = sig
include C_lang
type 'a arr = 'a array

val arr_init: int -> (int -> 'a expr) -> 'a arr expr
val arr_get: 'a arr expr -> int expr -> 'a expr
val arr_set: 'a arr expr -> int expr -> 'a expr -> unit stmt

end

158 M. Masuda and Y. Kameyama

Unlike previous implementations where constants are precomputed offline
and embedded in the source code without further information, we compute con-
stants at the code-generation time, in OCaml (not shown). Therefore, our OCaml
source code tells exactly how all constants are precomputed.

The domain our FFT will operate on, which in our case is always integers
modulo q, is abstracted with the following signature. This is not strictly necessary
in the context of this work, but this abstraction increases the reusability of
our FFT program: For example, by implementing this signature for complex
numbers, we would obtain a standard complex valued FFT implementation from
the same FFT program.

module type Domain = sig
type 'a expr type t
val lift: t -> t expr
val add: t expr -> t expr -> t expr
val sub: t expr -> t expr -> t expr
val mul: t expr -> t expr -> t expr

end

4.2 Vectorizing Modular Reductions

Our goal is to vectorize the innermost loop. The first challenge we need to
address is the vectorization of Barrett and Montgomery reductions [3,16]. Even
though the FFT program itself is generic with respect to the choice of parameters
and the data type of inputs and outputs, instantiating the implementation of
modular reductions requires choosing them ahead of time. We follow the setting
of NewHope reference implementation: The input size n is 1024, the modulus
parameter q is 12289, and inputs and outputs are arrays of unsigned 16 bit
integers whose values fit in 14 bits.

Below is the implementation of Barrett and Montgomery reductions from
the NewHope reference implementation, modified slightly for our exposition.
The code does not fully reduce modulo q: the output is correct as long as the
output from reduction fits in 14 bits [2].

static const uint32_t rlog = 18;
static const uint32_t R = 1 << rlog;

uint16_t barrett_reduce(uint16_t a) {
uint32_t u = ((uint32_t) a * 5) >> 16;
return a - (uint16_t)(u * PARAM_Q);

}

uint16_t montgomery_multiply_reduce(uint16_t x, uint16_t twiddle) {
uint32_t a = ((uint32_t)x * (uint32_t)twiddle) & (R - 1);
uint32_t u = (a * PARAM_Q_INV) & (R - 1);
return (a + u * PARAM_Q) >> rlog;

}

FFT Program Generation for Ring LWE-Based Cryptography 159

Suppose that the size of a vector register is 256 bit, so that we can pack 16
unsigned 16 bit integer into one vector register. Since the scalar code uses 32
bit arithmetic, a direct vectorization of these routines requires extracting 8 32
bit values from a 16 element vector, doing 8-way 32 bit integer arithmetic, and
packing reduced 16 bit values back into an output 16 element register. This is
highly inefficient, and not surprisingly the optimized assembly implementation of
NewHope uses floating-point SIMD instructions to compute reduction by a mod
q = a −

⌊
a 1

q

⌋
q.

An idea for efficient vectorization of modular reduction using 16 bit integer
SIMD instructions was introduced in [19]. The key observation is that 32 bit value
is introduced as a result of multiplying two 16 bit integers, and the multiplication
is always followed by division or modulo by a power of two. For example, the
first multiplication in Barrett reduction is immediately followed by a right shift
of 16. Since we immediately discard the lower 16 bits half of the product, we
only have to compute the upper 16 bits half of it. AVX has the mulhi instruction
for this purpose. Similarly, the second 32 bit multiplication can be replaced by
mullo instruction, since the cast to 16 bit discards the upper 16 bits half of the
product.

The case for Montgomery reduction is not as straightforward, since NewHope
uses the constant R = 218 as the divisor. Naively replacing 18 by 16 leads to an
incorrect result, because the result of reduction is not guaranteed to fit in 14 bits
if we right shift a 32 bit value by 16. Fortunately, one conditional subtraction
by q is enough to make the output of the reduction fit in 14 bits. Using R = 216,
we can replace the two occurrences of the multiplication followed by modulo R
(& (R - 1) in the code) by 16 bit mullo instruction.

The last multiplication by q is not followed by either division or modulo by
R, so it seems we cannot replace this 32 bit multiplication by either 16 bit mulhi
or mullo instructions. Here, we can exploit a property of Montgomery reduction:
The result of the last addition is guaranteed to be divisible by R. Since we can
make R to be 216, this means that low 16 bits half of the addition result is 0.
This suggests the possibility to multiply only the high 16 bits half just before
the addition, and do the addition of the high 16 bits. To realize this, we need to
take care of a carry bit from the lower 16 bits half addition that we are going
to omit. We can determine if a carry is necessary by examining the lower 16
bits half of the left hand side of the addition (a in the code). If it is zero, there
is no carry. Otherwise, there must be a carry into the 17-th bit because of the
requirement that lower 16 bits half is zero after addition. In the latter case, we
need to explicitly add a carry bit after the last addition.

Based on the above reasoning, we declare a DSL signature necessary to imple-
ment vectorized reductions as follows:

160 M. Masuda and Y. Kameyama

module type SIMD_Instr = sig
val broadcast: t -> (t, n) vec expr
val add: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr
val sub: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr
val mullo: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr
val mulhi: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr
val bitwise_and: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr
val shift_right_a: (t, n) vec expr -> int -> (t, n) vec expr
val not_zero: (t, n) vec expr -> (t, n) vec expr
module Infix: sig

val (%+): (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr
val (%-): (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

end
end

(t, n) vec is the type of a length-n vector whose element type is t, but
the details are not important. not_zero takes a vector and returns 0x0000 or
0x0001 for each element depending on whether or not the input element is not
zero. shift_right_a does arithmetic right shift and it is used to implement the
constant-time conditional subtraction csub (not shown) [19].

Using the primitives above, we can implement vectorized reductions as fol-
lows. The final line in vmul (for Montgomery modular multiplication) does the
conditional subtraction, to ensure that the result of modular multiplication fits
in 14 bits as required by our specification.

func "barrett_reduce" in_ty (fun v ->
let vec_5 = broadcast 5 in
let v_1 = mulhi v vec_5 in
let vec_q = broadcast Param.q in
return_ (v %- (mullo v_1 vec_q)))

func2 "vmul" in_ty in_ty (fun v1 v2 ->
let_ (mullo v1 v2) (fun mlo ->
let_ (mulhi v1 v2) (fun mhi ->
let_ (broadcast Param.q) (fun vec_q ->
let_ (broadcast Param.qinv) (fun vec_qinv ->
let_ (mullo mlo vec_qinv) (fun mlo_qinv ->
let_ (mulhi mlo_qinv vec_q) (fun t ->
let_ (not_zero mlo) (fun carry ->
let_ (mhi %+ t %+ carry) (fun res ->
return_ (app csub res))))))))))

Here is the generated vectorized Barrett reduction and Montgomery modular
multiplication, using the AVX2 instruction set.

FFT Program Generation for Ring LWE-Based Cryptography 161

__m256i barrett_reduce(__m256i arg0) {
return _mm256_sub_epi16(

arg0, _mm256_mullo_epi16(_mm256_mulhi_epu16(arg0,
_mm256_set1_epi16(5)),

_mm256_set1_epi16(12289)));
}

__m256i vmul(__m256i arg0, __m256i arg1) {
__m256i v_19 = _mm256_mullo_epi16(arg0, arg1);
__m256i v_20 = _mm256_mulhi_epu16(arg0, arg1);
__m256i v_21 = _mm256_set1_epi16(12289);
__m256i v_22 = _mm256_set1_epi16(12287);
__m256i v_23 = _mm256_mullo_epi16(v_19, v_22);
__m256i v_24 = _mm256_mulhi_epu16(v_23, v_21);
__m256i v_25 = _mm256_add_epi16(

_mm256_cmpeq_epi16(v_19, _mm256_set1_epi16(0)),
_mm256_set1_epi16(1));

__m256i v_26 = _mm256_add_epi16(_mm256_add_epi16(v_20, v_24), v_25);
return csub(v_26);

}

Note that the optimizations in this section is generic with respect to the
choice of instruction sets. Indeed, we can generate AVX512 code by changing
only the last part of code generation (see Sect. 4.6).

4.3 Subtraction

Since we use unsigned arithmetic following the reference implementation of
NewHope, we need to be careful with the subtraction in the butterfly operation.
To prevent an unsigned underflow, we need to add a sufficiently large multiple of
q, which we call the bias, to the left hand side of the subtraction. The reference
implementation of NewHope first casts the left-hand side to 32 bit and adds 3q.
However, we would like to avoid the cast to 32 bit, because we want to vectorize
with 16 bit arithmetic. Since 3q = 36867 > 215, and the left hand side of the
subtraction can be 15 bit because of the lazy reduction explained later, naively
adding 3q, using 16 bit arithmetic, could lead to an overflow. Therefore, a more
careful analysis is needed to allow 16 bit vectorized arithmetic without a concern
for overflow or unsigned underflow.

The right hand side of the subtraction is always the result of a modular
multiplication, which is guaranteed to fit in 14 bit. Therefore, the bias needs to
be bigger than the maximum of a 14 bit unsigned integer, 214 − 1. Since the left
hand side can be 15 bit, the bias needs to fit in 15 bits to avoid overflow in the
addition using 16 bit arithmetic. The above considerations leads to the choice of
2q = 24578 as the bias, since 214 − 1 < 24578 < 215 − 1.

162 M. Masuda and Y. Kameyama

The result of the bias addition followed by subtraction in general requires 16
bits. However, the result of a modular subtraction needs to be either 14 or 15 bit,
following the specification we adopted from NewHope. We have chosen to reduce
the result of the subtraction to 14 bits via one Barrett reduction. This means
that the lazy reduction will not be concerned with the result of the subtraction
in the butterfly operation.

This is the implementation of the vectorized modular subtraction in our DSL.
Generated AVX2 code is shown below.

func2 "vsub" in_ty in_ty (fun v1 v2 ->
let bias = broadcast (Param.q * 2) in
return_ (app barrett_reduce ((v1 %+ bias) %- v2)))

__m256i vsub(__m256i arg0, __m256i arg1) {
return barrett_reduce(

_mm256_sub_epi16(_mm256_add_epi16(arg0, _mm256_set1_epi16(24578)),
arg1));

}

We also define a vectorized addition vadd, whose implementation is omitted
because it is simply a wrapper around add (%+ in the infix notation).

4.4 Vectorizing the Innermost Loop

Having decided all the ingredients necessary to vectorize the butterfly operation,
we can now discuss how we vectorize the innermost loop.

Since the number of iterations in the innermost loop is different for each stage,
vectorization needs to be done carefully. Suppose that the width of a vector is 16.
When the input size is 1024, as in NewHope, the number of iterations becomes
greater or equal to 16 after the fifth stage. Therefore, for stages after the fifth
stage, vectorization can be done by just adding one line, thanks to Vectorize
module introduced in the Sect. 3.2.

let open Vectorize(V_lang) in
for_ (int_ 0) m_half (int_ 1) (fun j ->

...

Here is an example of the generated AVX2 code, for the fifth stage. Note the
use of vadd, vsub, and vmul introduced earlier.

FFT Program Generation for Ring LWE-Based Cryptography 163

for (int v_90 = 0; v_90 < ((16 - 0) / 16); v_90 += 1) {
__m256i v_99 =

vmul(_mm256_loadu_si256(
(__m256i *)(arg0 + ((v_89 + (0 + (v_90 * 16))) + 16))),

_mm256_loadu_si256((__m256i *)(v_9 + (64 + (0 + (v_90 * 16))))));
__m256i v_100 =

_mm256_loadu_si256((__m256i *)(arg0 + (v_89 + (0 + (v_90 * 16)))));
_mm256_storeu_si256((__m256i *)(arg0 + (v_89 + (0 + (v_90 * 16)))),

vadd(v_100, v_99));
_mm256_storeu_si256((__m256i *)(arg0 + ((v_89 + (0 + (v_90 * 16))) + 16)),

vsub(v_100, v_99));
}

Vectorizing the earlier stages is more difficult, since the number of iterations
of the loop we want to vectorize is less than the vector width. The situation and
the idea for the solution are illustrated in Fig. 1, for the case where the vector
width is 4. Two butterfly operations on four neighboring elements on the left
correspond to one innermost loop. Since the top two and bottom two elements
undergo different operations, we cannot apply vectorization to the four-element
group. The key to enable vectorization is to operate on two neighboring four-
element groups at the same time. By shuffling elements between two groups,
we can group elements that undergo the same operations into one vector. For
example, the blue elements (2, 3) are first multiplied by twiddle factors, and
added and subtracted with the red elements. By applying the same shuffling to
the result of vectorized butterfly operations, we recover the expected results.

Fig. 1. Shuffling elements between neighboring two vectors enables vectorization

Based on the observation above, we introduce the shuffle primitive in our
language. Since each stage requires different shuffling, this primitive takes an
integer representing the stage as its arguments. Given two vectors, it shuffles
elements between them and returns a new pair of vectors.

val shuffle: int -> t vec expr -> t vec expr -> (t vec expr * t vec expr)

164 M. Masuda and Y. Kameyama

Using the shuffle primitive, we can write the vectorized inner loop for ear-
lier stages as follows. vadd, vsub, and vmul are vectorized modular arithmetic
introduced earlier. vload, vstore are vector load and store respectively.

for_ zero (int_ n) (int_ (vec_len * 2)) (fun k ->
let_ (vload input k) (fun v0 ->
let_ (vload input (k %+ (int_ vec_len))) (fun v1 ->
let2_ (shuffle s v0 v1) (fun v_lo v_hi ->
let_ (vmul v_hi coeff) (fun v_mul ->
let_ (vadd v_lo v_mul) (fun tmp_add ->
let_ (vsub v_lo v_mul) (fun tmp_sub ->
let2_ (shuffle s tmp_add tmp_sub) (fun v0_res v1_res ->
seq

(vstore input k v0_res)
(vstore input (k %+ (int_ vec_len)) v1_res)))))))))))

By abstracting the details of different shuffling into the shuffle primitive,
we are able to write a generic vectorized inner loop that can be specialized to
each stage. Unlike the vectorization of the innermost loop for later stages where
we do not have to change the original sequential FFT program, the vectorization
for earlier stages required rewriting the innermost loop with explicit vectorized
primitives. Although it is not ideal in terms of program reuse, we believe that
the rewriting is necessary to enable low-level optimization involving shuffling.
Our framework is flexible enough to accomodate both the trivial vectorization
via Vectorize module and the explicit vectorization using vectorized primitives.

4.5 Lazy Reduction

The reference implementation of NewHope does not always reduce the result of
addition to 14 bits. Since the result of adding two 14 bit values fits in 15 bits,
in the next stage we can do another addition of 15 bit values without causing
16 bit overflow. Therefore, Barrett reduction is applied every other stage. This
is called lazy reduction [2].

In our implementation, the addition follows the same lazy approach as
NewHope, applying Barrett reduction every other stage. For subtraction, we
always reduce the result to 14 bits as explained earlier. The implementation
detail of our lazy reduction is in Appendix B.

4.6 SIMD Backend Implementation

We have shown “vectorized” programs without specifying which SIMD instruc-
tion sets we use. At the lowest layer of abstraction in our framework, we need a
mapping between our primitives and concrete SIMD instructions.

For the AVX2 backend, we specify the mapping in the following way. The
AVX512 backend is entirely similar, modulo the names of instructions and the
vector length.

FFT Program Generation for Ring LWE-Based Cryptography 165

module AVX2_v16_Instr = struct
let vec_len = 16
let add = "_mm256_add_epi16"
let mullo = "_mm256_mullo_epi16"
let mulhi = "_mm256_mulhi_epi16"
...

end

We also need to specify the implementation of shuffle operations for earlier
stages. For the AVX2 backend, for example, we need to implement different
shuffle operations for the stages between 1 and 4. See Appendix C for more
details.

5 Experiments

We benchmarked our generated code against the optimized AVX2 implemen-
tation of NewHope. We used Clang version 11 with -O3 to compile our code.
Each implementation was run 100000 times on an input of size 1024 and we
recorded average cycles spent using the perf_event feature in the Linux kernel.
Furthermore, we take the median of 100 average cycles measurements, since we
observed some variations in the average cycles count during our experiment.

The result on a desktop machine with Intel Coffee Lake CPU is shown in
Table 1. The efficient vectorization using only 16 bit integer instructions is the
only reason we were able to outperform NewHope: While we are able to pack four
times more elements into a one vector register5, NewHope uses more optimiza-
tions at the assembly level, such as merging multiple stages to compute as much
as possible inside registers [7,19]. In contrast, we compute intermediate outputs
stage by stage following the pseudocode in Algorithm 1 and overall our code is
much simpler and more readable than the NewHope assembly implementation.

Table 1. Cycle counts on Core i7-8700K (Coffee Lake, AVX2)

Cycle counts Speedup over NewHope

NewHope 6903
Our AVX2 result 6099 1.132

AVX512 is becoming widely available in consumer laptops. Since our frame-
work can easily target AVX512 instructions from the same abstract definition
of FFT, we were able to generate an optimized AVX512 FFT implementation
without significant effort after we completed the AVX2 one6. Table 2 shows the
5 Recall that NewHope uses double precision floating-point instructions to compute

reductions.
6 Both of our AVX2 and AVX512 support code are less than 90 lines of OCaml.

166 M. Masuda and Y. Kameyama

benchmark result on a laptop with AVX512-capable Intel Ice Lake CPU. AVX512
gave speedup of 23% over our AVX2 result.

Table 2. Cycle counts on Core i7-1065G7 (Ice Lake, AVX2 and AVX512)

Cycle counts Speedup over NewHope

NewHope 6082
Our AVX2 result 5398 1.127
Our AVX512 result 4381 1.388

The work on Kyber showed that their AVX2 forward NTT implementation,
tailored for the NewHope parameters (n = 1024, q = 12289), achieved 3.5x
speedup against the NewHope AVX2 implementation [19]. Based on the results
from Table 1 and 2, our AVX2 implementation are expected to be significantly
slower than Kyber. A direct comparison is not possible at the moment since the
Kyber implementation that works with the NewHope parameters is not publicly
available and both we and Kyber implement optimizations that are specific to
respective choice of parameters (for example, Kyber does not apply any Barrett
reduction during the forward transform). It would be interesting to apply our
program-generation framework to a Kyber-based implementation: To do so, we
need to analyze the low-level optimizations of Kyber further and provide high-
level descriptions for them, which is left for future work.

6 Conclusion

We have proposed implementing optimized FFT for RLWE-based cryptography
via a program-generation approach. By separating the high-level description of
the FFT program from low-level details concerning arithmetic and vectoriza-
tion, we have achieved a reusable FFT program-generation framework. Gener-
ated code is also efficient, outperforming the NewHope assembly implementation
by non-trivial factors using AVX2 and AVX512 instruction sets. Our implemen-
tation is available at https://github.com/masahi/iwsec21_ntt.

This work opens up several avenues for future work. For the code generation
aspect, we believe further speedup is possible: For example, while both existing
and our work use the simplest formulation of FFT using the radix-2 butterfly
exclusively, we are also interested in exploring the radix-4 or the split-radix
variants which involve fewer multiplications than the dominant radix-2 case [8,
11]. Instantiating the implementation of Kyber FFT [19] in our framework or
adding new targets, such as ARM or RISC-V would also be interesting.

Finally, since the correctness of the code is of paramount importance in cryp-
tography in general, we would like to offer some notion of correctness assurance.
One way is to automatically prove that our implementation does not have the
possibility of overflow: As we have shown in Sect. 4.2 and 4.3, making sure and

https://github.com/masahi/iwsec21_ntt

FFT Program Generation for Ring LWE-Based Cryptography 167

be confident that our implementation of modular arithmetic is free from over-
flow required very careful low-level reasoning. A promising direction has been
demonstrated in the recent work of Navas et al. [17]. We believe starting from
abstract high-level description of the program, as proposed in this work, opens
up many possibilities for such verification effort.

Acknowledgement. We thank Tadanori Teruya for helpful discussion. Feedbacks
from anonymous reviewers helped improve this paper and are greatly appreciated.
The second author is supported in part by JSPS Grant-in-Aid for Scientific Research
(B) 18H03218.

Appendix A Vectorize Module

Vectorize module is used to generate vectorized code for trivially vectorizable
loops. It simply redefines the meaning of language primitives used in a sequential
program so that the same program can evaluated to vectorized loop code. It is
implemented as a OCaml functor, which is often used in the tagless-final style
to extend the meaning of existing DSL.

module Vectorize(Base_lang: Vector_lang): Vec
...

= struct

module D = struct
let add = Vec_D.vadd
...

end

let arr_get = Base_lang.vload
let arr_set = Base_lang.vstore

let vec_len = ...

let for_ lo hi _ body =
let num_loop = (hi %- lo) %/ (int_ vec_len) in
Base_lang.for_ (int_ 0) num_loop (int_ 1) (fun i ->

body (lo %+ (i %* (int_ vec_len))))
end

Appendix B Lazy Reduction Implementation

We implement lazy reduction again as a OCaml functor, extending the original
meanings of vadd and vsub to give semantics of lazy reduction. As explained
in Sect. 4.3, we allow the result of addition to stay in 15 bits and apply Barrett
reduction every other stage, while the result of subtraction is reduced to 14 bits
in every stage by Barrett reduction. We can implement such specification for
lazy reduction as follows:

168 M. Masuda and Y. Kameyama

module Lazy_reduction(V: Vector_lang)(Stage: sig val s: int end) : Vector_lang
(* ... *)

struct
include V
module Vector_domain = struct

let vadd v0 v1 =
let res = V.Vector_domain.vadd v0 v1 in
if Stage.s mod 2 == 0 then barrett_reduce res
else res

let vsub = V.Vector_domain.vsub
end

end

This is used in our FFT code generator as follows. Lazy_reduction is instan-
tiated for each stage s, and by simply wrapping the original meanings of vec-
torized primitives such as vadd and vsub defined in V_lang, the innermost loop
now executes with the lazy reduction enabled. Note that we do not have to
change the code of the innermost loop at all. The tagless-final style allows such
an extension in a highly modular manner.

let fft n =
...
let fft_stage s =

...
let module V_lang_lazy = Lazy_reduction(V_lang)(struct let s = s end) in
func fname input_ty (fun input ->

...
let open V_lang_lazy in
let open V_lang_lazy.Vector_domain in
...

Appendix C Details on SIMD Backend Implementation

This is the full mapping between language primitives used in vectorized reduc-
tions of Sect. 4.2 and corresponding AVX2 instructions.

module AVX2_v16_Instr : SIMD_str = struct
let add = "_mm256_add_epi16"
let sub = "_mm256_sub_epi16"
let mullo = "_mm256_mullo_epi16"
let mulhi = "_mm256_mulhi_epu16"
let broadcast = "_mm256_set1_epi16"
let shift_right_a = "_mm256_srai_epi16"
let bitwise_and = "_mm256_and_si256"
let not_zero v =

sprintf "_mm256_add_epi16(_mm256_cmpeq_epi16(%s, _mm256_set1_epi16(0)),
_mm256_set1_epi16(1))" v

end

FFT Program Generation for Ring LWE-Based Cryptography 169

not_zero primitive is implemented in a cumbersome way, since AVX instruc-
tion returns 0xFFFF or 0x0000 for the result of comparison instructions, while
we need 0x0001 or 0x0000 to represent the presence or absence of the carry bit.
not_zero primitive hides such details specific to a particular ISA and provides
a straightforward interface to a programmer.

Shuffle operations can be implemented by shift, blend, unpack, and
permute instructions. The implementation using AVX2 is shown below. The
AVX512 counterpart is entirely similar but uses different instruction combina-
tions to realize desired permutations.

let shuffle1 v0 v1 =
let v1_left_shift = sprintf "_mm256_slli_epi32(%s, 16)" v1 in
let v0_right_shift = sprintf "_mm256_srli_epi32(%s, 16)" v0 in
let v_lo = sprintf "_mm256_blend_epi16(%s, %s, 0xAA)" v0 v1_left_shift in
let v_hi = sprintf "_mm256_blend_epi16(%s, %s, 0xAA)" v0_right_shift v1 in
v_lo, v_hi

let shuffle2 v0 v1 =
let v1_left_shift = sprintf "_mm256_slli_epi64(%s, 32)" v1 in
let v0_right_shift = sprintf "_mm256_srli_epi64(%s, 32)" v0 in
let v_lo = sprintf "_mm256_blend_epi32(%s, %s, 0xAA)" v0 v1_left_shift in
let v_hi = sprintf "_mm256_blend_epi32(%s, %s, 0xAA)" v0_right_shift v1 in
v_lo, v_hi

let shuffle3 v0 v1 =
let v_lo = sprintf "_mm256_unpacklo_epi64(%s, %s)" v0 v1 in
let v_hi = sprintf "_mm256_unpackhi_epi64(%s, %s)" v0 v1 in
v_lo, v_hi

let shuffle4 v0 v1 =
let v_lo = sprintf "_mm256_permute2x128_si256(%s, %s, 0x20)" v0 v1 in
let v_hi = sprintf "_mm256_permute2x128_si256(%s, %s, 0x31)" v0 v1 in
v_lo, v_hi

let shuffle n v0 v1 = match n with
| 1 -> shuffle1 v0 v1
| 2 -> shuffle2 v0 v1
| 3 -> shuffle3 v0 v1
| 4 -> shuffle4 v0 v1
| _ -> assert false

170 M. Masuda and Y. Kameyama

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8_20

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange: a
new hope. In: Proceedings of the 25th USENIX Conference on Security Symposium,
SEC 2016, pp. 327–343. USENIX Association, USA (2016)

3. Barrett, P.: Implementing the Rivest Shamir and Adleman Public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7_24

4. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM, pp.
353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

5. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated. In: Shao,
Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 222–238. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76637-7_15

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

7. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-
9_5

8. Johnson, S.G., Frigo, M.: A modified split-radix FFT with fewer arithmetic opera-
tions. Trans. Sig. Proc. 55(1), 111–119 (2007). https://doi.org/10.1109/TSP.2006.
882087

9. Kiselyov, O.: Typed tagless final interpreters. In: Gibbons, J. (ed.) Generic and
Indexed Programming. LNCS, vol. 7470, pp. 130–174. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32202-0_3

10. Kiselyov, O.: Reconciling abstraction with high performance: a MetaOCaml app-
roach. Found. Trends Program. Lang. 5(1), 1–101 (2018). https://doi.org/10.1561/
2500000038

11. Kiselyov, O., Taha, W.: Relating FFTW and split-radix. In: Wu, Z., Chen, C., Guo,
M., Bu, J. (eds.) ICESS 2004. LNCS, vol. 3605, pp. 488–493. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535409_71

12. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.11 (2020). https://caml.inria.fr/pub/docs/manual-ocaml/

13. Liu, Z., et al.: High-performance ideal lattice-based cryptography on 8-bit AVR
microcontrollers. ACM Trans. Embed. Comput. Syst. 16(4) (2017). https://doi.
org/10.1145/3092951

14. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0_8

15. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

16. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44, 519–521 (1985)

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-540-76637-7_15
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1109/TSP.2006.882087
https://doi.org/10.1109/TSP.2006.882087
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1561/2500000038
https://doi.org/10.1561/2500000038
https://doi.org/10.1007/11535409_71
https://caml.inria.fr/pub/docs/manual-ocaml/
https://doi.org/10.1145/3092951
https://doi.org/10.1145/3092951
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-13190-5_1

FFT Program Generation for Ring LWE-Based Cryptography 171

17. Navas, J.A., Dutertre, B., Mason, I.A.: Verification of an optimized NTT algo-
rithm. In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.)
NSV/VSTTE -2020. LNCS, vol. 12549, pp. 144–160. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63618-0_9

18. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 371–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3_21

19. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. IACR Cryptology ePrint Archive 2018/39 (2018)

https://doi.org/10.1007/978-3-030-63618-0_9
https://doi.org/10.1007/978-3-662-44709-3_21
https://doi.org/10.1007/978-3-662-44709-3_21

Symmetric-Key Cryptography

Optimum Attack on 3-Round Feistel-2
Structure

Takanori Daiza1 and Kaoru Kurosawa2,3(B)

1 Ibaraki University, Hitachi, Japan
20nm713t@vc.ibaraki.ac.jp

2 Research and Development Initiative, Chuo University, Tokyo, Japan
kaoru.kurosawa.kk@vc.ibaraki.ac.jp

3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Feistel-2 structure is a variant of Feistel structure such that
the ith round function is given by Fi(ki⊕x), where Fi is a public random
function and ki is a key of n/2 bits. Lampe and Seurin showed that 3-
round Feistel-2 structure is secure if D + T � 2n/4 (which is equivalent
to D � 2n/4 and T � 2n/4), where D is the number of queries to the
encryption oracle and T is the number of queries to each Fi oracle. On
the other hand, only the meet-in-the-middle attack is known for 3-round
Feistel-2 structure which works only for (D,T) = (O(1), O(2n/2)) with
O(2n/2) amount of memory.

In this paper, we first show that 3-round Feistel-2 structure is broken
by a key recovery attack if DT ≥ 2n/2 (which requires O(D+T) amount
of memory). Since it works for D = T = O(2n/4), this attack proves
that the security bound of Lampe and Seurin is tight at D = T =
O(2n/4). We next present a memoryless key recovery attack for (D,T) =
(O(1), O(2n/2)). We finally show a memoryless key recovery attack for
D = O(2n/4) and T = O(2n/4).

Keywords: Feistel structure · Key recovery · 3-round

1 Introduction

1.1 Feistel Structure

Feistel structure is a popular design framework of block cipher, and hence it is
important both in practice and theory. The r-round Feistel structure takes a
plaintext P = (a0, b0) as an input, where a0, b0 ∈ {0, 1}n/2. Then it computes

(ai+1, bi+1) = (bi ⊕ Ri(ai), ai)

for i = 0, 1, . . . , r−1, where Ri : {0, 1}n/2 �→ {0, 1}n/2 is a keyed round function.
Finally it outputs a ciphertext C = (ar, br). See the left half of Fig. 1.

Luby and Rackoff [11] considered a construction such that each round func-
tion Ri is an independent random function. Then they showed that
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 175–192, 2021.
https://doi.org/10.1007/978-3-030-85987-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_10

176 T. Daiza and K. Kurosawa

Fig. 1. Feistel Structure and Feistel-2 Structure

– 3-round construction is pseudo-random up to 2n/4 queries against chosen
plaintext attack (CPA), and

– 4-round construction is super pseudo-random up to 2n/4 queries against cho-
sen ciphertexttext attack (CCA).

This construction has been further studied by many researchers extensively
[8,12,14–19].

1.2 Feistel-2 Structure

A problem of Luby-Rackoff construction is how to design Ri in such a way
that it includes a key. Feistel-2 structure, which offers a solution, is a variant of
Feistel structure such that each round function Ri(x) is replaced by Fi(ki ⊕ x),
where Fi : {0, 1}n/2 �→ {0, 1}n/2 is a public independent random function, and
ki ∈ {0, 1}n/2 is a round key. (It is also known as key-alternating Feistel cipher.
This construction is closely related to Even-Mansour cipher [6] and its extension
[1].) See the right half of Fig. 1.

Lampe and Seurin [13] proved the security of Feistel-2 structure as follows.
Suppose that an adversary issues D queries to the encryption/decryption oracles
and T queries to each Fi-oracle. Then it is pseudo-random if D+T � 2tn/2(t+1),
where

– t = �r/3� for non-adaptive CPA, where an adversary can make encryption
queries after issuing all Fi-oracle queries.

– t = �r/6� for CCA.

Their result means that 3-round Feistel-2 structure is pseudo-random against
non-adaptive CPA if D + T � 2n/4.

Optimum Attack on 3-Round Feistel-2 Structure 177

1.3 Our Contribution

Feistel-2 structure is equivalent to Feistel structure if T = 0. Therefore 3-round
Feistel-2 structure is pseudo-random against CPA if D � 2n/4 and T = 0
from the result of Luby and Rackoff [11]. (See Fig. 2.) Further, as mentioned
in Sect. 1.2, Lampe and Seurin [13] showed that 3-round Feistel-2 structure is
pseudo-random against non-adaptive CPA if

D + T � 2n/4 (1)

which is equivalent to D � 2n/4 and T � 2n/4. (See Fig. 2.)
On the other hand, only the meet-in-the-middle attack is known for 3-round

Feistel-2 structure which works only for (D,T) = (O(1), O(2n/2)) [9]. It is a
known plaintext attack (KPA) with memory size O(2n/2) and the time com-
plexity O(2n/2).

In this paper, we first show that 3-round Feistel-2 structure is broken by a key
recovery attack if DT ≥ 2n/2. (See Fig. 2.) Since it works for D = T = O(2n/4),
this attack proves that the security bound of Lampe and Seurin is tight at
D = T = O(2n/4). It is a non-adaptive chosen plaintext attack in the same
sense as that of Lampe and Seurin. (See Sect. 1.2.) The required memory size is
O(D + T) and the time complexity is O(D2 + T 2).

We next present a memoryless key recovery attack for (D,T) =
(O(1), O(2n/2)). (See Fig. 3.) It is a known plaintext attack and the time com-
plexity is O(D+T) = O(2n/2). We finally show a memoryless key recovery attack
for (D,T) = (O(2n/4), O(2n/4)). (See Fig. 3.) It is an adaptive chosen plaintext
attack and the time complexity is O(D + T) = O(2n/4).

See Table 1 for comparison. In what follows, M denotes the size of memory.

Table 1. Key recovery attack on 3-round Feistel-2 structure

(D,T) Memory Time Type

Previous [9] (D,T) = (O(1), O(2n/2)) O(2n/2) O(2n/2) KPA

Our 1st attack DT ≥ 2n/2 O(D + T) O(D2 + T 2) Non-adaptive CPA

Our 2nd attack (D,T) = (O(1), O(2n/2)) O(1) O(2n/2) KPA

Our 3rd attack (D,T) = (O(2n/4), O(2n/4)) O(1) O(2n/4) CPA

1.4 Related Works

Several attacks on Feistel structure have been proposed for 4 or more rounds.
For example, Isobe and Shibutani [10] extended the meet-in-the middle attack
to 4 rounds. Dinur et al. showed a dissection attack [5] and a more memory
efficient attack [4].

Even and Mansour [6] introduced Even-Mansour cipher such that

C = E(P) = π(P ⊕ K1) ⊕ K2,

178 T. Daiza and K. Kurosawa

Fig. 2. Our first attack on 3-round Feistel-2 structure

Fig. 3. Our second and third attacks

where π is a public random permutation, (K1,K2) is a key with K1 ∈ {0, 1}n and
K2 ∈ {0, 1}n, P ∈ {0, 1}n is a plaintext and C ∈ {0, 1}n is a ciphertext. They
then proved that the probability that an attacker A outputs a new (P ∗, C∗) such
that C∗ = E(P ∗) is O(DT/2n), where A makes D queries to E-oracle or E−1

oracle, and T queries to π-oracle or π−1 oracle.
Daemen [2] showed a chosen plaintext key recovery attack such that DT =

O(2n) for any D. Dunkelman et al. [3] showed a known plaintext key recovery
attack such that DT = O(2n) for any D ≤ 2n/2. Dunkelman et al. [3] also showed

Optimum Attack on 3-Round Feistel-2 Structure 179

a memoryless chosen plaintext key recovery attack such that D = T = O(2n/2)
by using Pollard rho algorithm [20][7, Sec.14.2.2].

2 Preliminaries

2.1 3-Round Feistel-2 Structure

Let P = (a0, b0) be a plaintext. Then in 3-round Feistel-2 structure, the cipher-
text C = (a3, b3) is computed as follows.

(a1, b1) ← (b0 ⊕ F0(k0 ⊕ a0), a0) (2)
(a2, b2) ← (b1 ⊕ F1(k1 ⊕ a1), a1) (3)
(a3, b3) ← (b2 ⊕ F2(k2 ⊕ a2), a2) (4)

Therefore it holds that

b3 = a2

= b1 ⊕ F1(k1 ⊕ a1)
= a0 ⊕ F1(k1 ⊕ b0 ⊕ F0(k0 ⊕ a0)) (5)

2.2 Meet in the Middle Attack [9]

Suppose that an attacker A is given two plaintext/ciphertext pairs of 3-round
Feistel-2 structure, (P1, C1) and (P2, C2). Then the meet-in-the-middle attack
works as follows [9]. Let P1 = (a0, b0) and C1 = (a3, b3).

1. For each k0 ∈ {0, 1}n/2, an attacker A computes a1 by querying a0 ⊕ k0 to
F0-oracle.

2. For each k2 ∈ {0, 1}n/2, A computes b2 by querying b3 ⊕ k2 to F2-oracle.
3. A finds all (k0, k2) such that a1 = b2.
4. A selects one of them by using (P2, C2).
5. Finally A finds k1 by exhaustive search.

(See Fig. 4.)
In this attack, D = O(1) and A makes T = O(2n/2) queries to each Fi-oracle.

The memory size is M = O(2n/2) and the time complexity is also O(2n/2).

180 T. Daiza and K. Kurosawa

Fig. 4. Meet in the middle attack

3 Data-Time Tradeoff Attack on 3-Round Feistel-2
Structure

In this section, we show a key recovery attack on 3-round Feistel-2 structure
which works for any (D,T) satisfying DT = O(2n/2) while the previous meet-
in-the middle attack [9] works only for D = O(1) and T = O(2n/2). Further
our attack matches with the security bound given by Lampe and Seurin [13] at
D = T = O(2n/4). This proves that their security bound is tight at D = T =
O(2n/4).

Our attack is a non-adaptive chosen plaintext attack in the same sense as
that of Lampe and Seurin. (See Sect. 1.2.) The required memory size is O(D+T)
and the time complexity is O(D2 + T 2).

In what follows, we consider any (D,T) such that DT = O(2n/2).

3.1 Attack Outline

Let (0n/2, x) be a plaintext and (a3, b3) be the ciphertext of 3-round Feistel-2
structure. Then it holds that

b3 = F1(k1 ⊕ F0(k0) ⊕ x) (6)
a3 = F0(k0) ⊕ x ⊕ F2(k2 ⊕ b3). (7)

(See Fig. 5.)

1. In phase 1, we find k1 ⊕ F0(k0) by applying a birthday attack to Eq. (6).
2. In phase 2, we find F0(k0) and k2 by applying a kind of differential attack to

Eq. (7).
3. We compute k1 from the above two results. Once we obtain k1 and k2, 3-

round Feistel-2 structure is reduced to 1-round. In phase 3, we find k0 by
applying a birthday attack.

Optimum Attack on 3-Round Feistel-2 Structure 181

Fig. 5. Phase 1 and Phase 2

3.2 Offline Phase

For i = 1, . . . , T , do:

1. Choose ci ∈ {0, 1}n/2 randomly.
2. For j = 0, 1, 2, do:

(a) Query ci to Fj-oracle and receive Fj(ci).
(b) Store (Fj(ci), ci, i) in table Lj , sorted by the first coordinate.

Namely

– L0 is a sorted list of (F0(c1), c1, 1), . . . , (F0(cT), cT , T).
– L1 is a sorted list of (F1(c1), c1, 1), . . . , (F1(cT), cT , T).
– L2 is a sorted list of (F2(c1), c1, 1), . . . , (F2(cT), cT , T).

3.3 How to Recover k1 ⊕ F0(k0)

Phase 1

1. For i = 1, . . . , D/2, choose xi ∈ {0, 1}n/2 randomly, and query a plaintext
(0n/2, xi) to the encryption oracle. Then receive the ciphertext (ai,3, bi,3) and
store (bi,3, xi, ai,3, i) in table T1, sorted by the first coordinate.

2. Find all (bi,3,F1(cj)) such that

bi,3 = F1(cj). (8)

by using T1 and L1. Such a tuple suggests

cj = k1 ⊕ F0(k0) ⊕ xi (9)

because
bi,3 = F1(k1 ⊕ F0(k0) ⊕ xi)

182 T. Daiza and K. Kurosawa

from Eq. (6). (Unless (cj , k1⊕F0(k0)⊕xi) is a collision pair for F1, the equality
of Eq. (9) holds.) Namely

k1 ⊕ F0(k0) = xi ⊕ cj .

Store all such κi,j = xi ⊕ cj in table K.
3. Choose (b�,3, x�, a�,3, �) randomly from table T1.

For each κi,j ∈ K, query κi,j ⊕ x� to F1-oracle and receive F1(κi,j ⊕ x�).
Check if F1(κi,j ⊕ x�) = b�,3.
If the check succeeds, then output κi,j as k1 ⊕ F0(k0).

Completeness. Randomly chosen xi and cj satisfy Eq. (9) with probability
1/2n/2. The number of (i, j) is DT/2 = O(2n/2). Therefore it is expected
that there exists (xi, cj) satisfying Eq. (9) in (T1, L1) with some non-negligible
constant probability. Hence we can find k1 ⊕F0(k0) with some non-negligible
constant probability.

Soundness. The number of (i, j) is DT/2 = O(2n/2), and Eq. (8) holds with
probability 1/2n/2 because F1 is a random function. Therefore it is expected
that the number of (i, j) which satisfies Eq. (8) is small. Hence the number of
queries to F1-oracle at step 3 is small.

3.4 How to Recover k2 and F0(k0)

A pair of plaintext/ciphertext satisfies

ai,3 = F0(k0) ⊕ xi ⊕ F2(k2 ⊕ bi,3). (10)

(See the right half of Fig. 5.) Therefore

xi ⊕ ai,3 = F0(k0) ⊕ F2(k2 ⊕ bi,3).

Hence we have

xi1 ⊕ xi2 ⊕ ai1,3 ⊕ ai2,3 = F2(ci1) ⊕ F2(ci2), (11)

where
ci = k2 ⊕ bi,3.

From the above equation, it holds that

bi1,3 ⊕ bi2,3 = ci1 ⊕ ci2 (12)

We find k2 by using Eq. (11) and Eq. (12).
We then find F0(k0) by using Eq. (10).

Phase 2

1. For each distinct i1, i2 ∈ {1, . . . , D/2}, compute

wi1,i2 = xi1 ⊕ xi2 ⊕ ai1,3 ⊕ ai2,3

from table T1 and store (wi1,i2 , i1, i2) in table T2, sorted by the first coordi-
nate.

Optimum Attack on 3-Round Feistel-2 Structure 183

2. For each distinct j1, j2 ∈ {1, . . . , T}, compute

F2(cj1) ⊕ F2(cj2)

from table L2 and store (F2(cj1) ⊕ F2(cj2), j1, j2) in table L′
2, sorted by the

first coordinate.
3. Find all (i1, i2, j1, j2) such that

wi1,i2 = F2(cj1) ⊕ F2(cj2). (13)

4. For each such (i1, i2, j1, j2), check if

bi1,3 ⊕ bi2,3 = cj1 ⊕ cj2 . (14)

5. Each (i1, i2, j1, j2) which satisfies Eq. (13) and Eq. (14) suggests

k2 = ci1 ⊕ bi1,3

F0(k0) = ai1,3 ⊕ xi1 ⊕ F2(cj1)

from Eq. (10). Store all such

(κi1 = ci1 ⊕ bi1,3, Γi1 = ai1,3 ⊕ xi1 ⊕ F2(cj1))

in table K ′.
6. Choose �1, �2 ∈ {1, . . . , D/2} randomly.

For each κi ∈ K ′, query κi ⊕ b�1,3 and κi ⊕ b�2,3 to F2-oracle and receive
F2(κi ⊕ b�1,3) and F2(κi ⊕ b�2,3).
Check if

x�1 ⊕ x�2 ⊕ a�1,3 ⊕ a�2,3 = F2(κi ⊕ b�1,3) ⊕ F2(κi ⊕ b�2,3).

If the check succeeds, then output k2 = κi and F0(k0) = Γi.

Completeness. Random (bi1,3, bi2,3) and (cj1 , cj2) satisfies

cj1 = k2 ⊕ bi1,3

cj2 = k2 ⊕ bi2,3

with probability (1/2n/2)2 = 1/2n. The number of (i1, i2, j1, j2) is
(

D/2
2

)
×

(
T

2

)
≈ D2T 2

16
= O(2n).

Therefore it is expected that there exists such (bi1,3, bi2,3) and (cj1 , cj2) in our
data with some non-negligible constant probability. Hence we can find k2 and
F0(k0) with some non-negligible constant probability.

Soundness. Eq. (13) and Eq. (14) are satisfied with probability 1/2n. The num-
ber of (i1, i2, j1, j2) is O(2n) as shown above. Therefore it is expected that the
number of (i1, i2, j1, j2) which satisfies Eq. (13) and Eq. (14) is small. Hence
the number of queries to F2-oracle at step 6 is small.

184 T. Daiza and K. Kurosawa

3.5 How to Recover k0

We compute k1 from k1 ⊕ F0(k0) (which is obtained by phase 1) and F0(k0)
(which is obtained by phase 2). Then since we know k1 and k2, 3-round Feistel-2
structure is reduced to 1-round. Then it is easy to recover k0 by using a birthday
attack. See Fig. 6.

Phase 3
For i = 1, . . . , D/2, choose xi ∈ {0, 1}n/2 randomly, query (xi, 0n/2) to the
encryption and receive F0(k0 ⊕ xi). By using table L0, find (xi, cj) such that
F0(k0 ⊕ xi) = F0(cj).

Fig. 6. Phase 3

3.6 Complexity

– In the offline phase, the number of queries to each Fi-oracle is T .
– In phase 1, the number of queries to the encryption oracle is D/2, and the

number of queries F1-oracle is small.
– In phase 2, the number of queries F2-oracle is small.
– In phase 3, the number of queries to the encryption oracle is D/2, and the

number of queries F0-oracle is small.

Therefore the total number of queries to the encryption oracle is

D/2 × 2 = D

and the total number of queries to each Fi-oracle is

T + small ≈ T.

Hence
D × (T + small) ≈ DT = O(2n/2).

as desired.
The required memory size is M = O(D + T) and the time complexity is

O(D2 + T 2).

Optimum Attack on 3-Round Feistel-2 Structure 185

4 Memoryless Attack for D = 3 and T = O(2n/2)

In this section, we show a memoryless key-recovery attack on 3-round Feistel-2
structure for D = 3 and T = O(2n/2). It is a known plaintext attack and the
time complexity is O(D + T) = O(2n/2).

The previous meet-in-the-middle attack, on the other hand, needs M =
O(2n) size of memory.

4.1 Attack Outline

Suppose that we are given three plaintext/ciphertext pairs, (P1, C1), (P2, C2) and
(P3, C3). In our attack, (P1, C1) and (P2, C2) are used to compute candidates of
(k0, k1.k2), and (P3, C3) is used to check their validity.

Let Pi = (ai,0, bi,0) and Ci = (ai,3, bi,3) for i = 1, 2.

1. We derive an equation such that k1 ⊕ F0(k0 ⊕ ai,0) is found by exhaustive
search.

2. We derive an equation such that k0 is found by exhaustive search.
3. We compute k1 from the above two results. Then k2 is found by exhaustive

search.

Each step is executed with no memory because exhaustive search needs no
memory.

4.2 Details

For i = 1, 2, it holds that

ai,0 ⊕ bi,3 = F1(k1 ⊕ F0(k0 ⊕ ai,0) ⊕ bi,0).

from Eq. (5). (See the left half of Fig. 5.)
Let

βi = k1 ⊕ F0(k0 ⊕ ai,0). (15)

Then we have
ai,0 ⊕ bi,3 = F1(βi ⊕ bi,0).

We find βi which satisfies the above equation by exhaustive search as follows.

1. For each β1 ∈ {0, 1}n/2, we query β1 ⊕ b1,0 to F1-oracle and check if the
answer is equal to a1,0 ⊕ b1,3.

2. For each β2 ∈ {0, 1}n/2, we query β2 ⊕ b2,0 to F1-oracle and check if the
answer is equal to a2,0 ⊕ b2,3.

Once such (β1, β2) are found, we have

β1 ⊕ β2 = F0(k0 ⊕ a1,0) ⊕ F0(k0 ⊕ a2,0). (16)

186 T. Daiza and K. Kurosawa

1. We find k0 which satisfies the above equation by exhaustive search.
2. We compute k1 by using Eq. (15).
3. Then k2 is found by exhaustive search.
4. If some candidates of (k0, k1, k2) are found, we check their validity by using

(P3, C3).

Since each Fi is a random function, it is expected that there are only a few
candidates at each step. Therefore we need negligible amount of memory. Also
it is easy to see that we make O(2n/2) queries to each Fi-oracle in exhaustive
search. Therefore it holds that DT = O(2n/2) because D = 3.

The required memory size is M = O(1) and the time complexity is O(2n/2).

5 Memoryless Attack For D = O(2n/4) and T = O(2n/4)

In this section, we show a memoryless key-recovery attack on 3-round Feistel-2
structure for D = O(2n/4) and T = O(2n/4). It is a chosen plaintext attack and
the time complexity is O(D + T) = O(2n/4).

We first derive a function f(x) which satisfies

f(x) = f(k0 ⊕ x)

where an attacker A can compute f(x) from a plaintext P = (x,F0(x)) and its
ciphertext C. A can find k0 by applying a birthday attack to the above equation.
Finally we apply Pollard’s rho algorithm to

xi+1 = f(xi)

together with Floyd’s two finger cycle finding algorithm [7, Sec.14.2.2][20]. This
algorithm uses negligible amount of memory.

5.1 Our Idea

Our idea is to choose P = (a0, b0) such that

(a0, b0) = (x,F0(x)).

Let the ciphertext be C = (a3, b3). Then from Sect. 2, we have

a1 = F0(x) ⊕ F0(x ⊕ k0)
b3 = a2

= F1(k1 ⊕ a1) ⊕ x

= F1(k1 ⊕ F0(x) ⊕ F0(x ⊕ k0)) ⊕ x

Optimum Attack on 3-Round Feistel-2 Structure 187

Fig. 7. Our idea

See Fig. 7. Let
f(x) = x ⊕ b3. (17)

Then we have
f(x) = F1(k1 ⊕ F0(x) ⊕ F0(k0 ⊕ x)). (18)

Now we can see that
f(x ⊕ k0) = f(x). (19)

This relation allows mounting the following attack.

1. For i = 1, . . . , 2n/4, choose xi randomly. Query xi to F0-oracle to obtain
F0(xi). Query Pi = (xi,F0(xi)) to the encryption oracle to obtain Ci =
(ai,3, bi,3). Then compute

wi = f(xi) = xi ⊕ bi,3

and store (wi, xi) in a table.
2. Then there exists a collision (wi, wj) such that

wi = wj

with high probability from the birthday paradox.
3. In the above case, we find a collision such that

f(xi) = f(xj). (20)

This collision suggests k0 such that

k0 = xi ⊕ xj (21)

from Eq. (19).

In this attack, D = O(2n/4), T = O(2n/4), M = O(2n/4) and the time
complexity is O(2n/4).

188 T. Daiza and K. Kurosawa

5.2 Memoryless Attack to Recover k0

We can find the collision of Eq. (20) in a memoryless manner by applying Pollard
rho algorithm as follows.

1. Choose x1 randomly from {0, 1}n/2.
2. For i = 1, 2, . . ., do the following.

(a) Query xi to F0-oracle to obtain F0(xi).
(b) Query Pi = (xi,F0(xi)) to the encryption oracle to obtain the ciphertext

Ci = (ai,3, bi,3).
(c) Let

xi+1 = f(xi) = xi ⊕ bi,3 (22)

from Eq. (17),
3. Use Floyd cycle finding algorithm [7, Sec.14.2.2][20] to find (xi, xj) such that

xi = xj . Note that this algorithm needs negligible amount of memory. (See
Fig. 8.)

Fig. 8. Pollard rho algorithm

If xi = xj , then f(xi−1) = f(xj−1). This collision suggests k0 such that

k0 = xi−1 ⊕ xj−1

from Eq. (21).
x1, x2, . . . can be considered as a random sequence because Fi are random

functions in Eq. (18). Therefore we can find a collision in time O(2n/4) with high
probability by the birthday paradox. This means that D = O(2n/4), T = O(2n/4)
and M = O(1). The time complexity is O(2n/4).

5.3 Memoryless Attack to Recover k1

We can similarly recover k1 as in Sect. 5.2. This time, we choose P = (a0, b0)
such that

(a0, b0) = (0n/2, x).

Optimum Attack on 3-Round Feistel-2 Structure 189

Let C = (a3, b3). We have

a1 = x ⊕ F0(k0)
b3 = a2

= F1(k1 ⊕ a1) ⊕ a0

= F1(k1 ⊕ F0(k0) ⊕ x)

from Sect. 2. Then, let

f(x) = F1(x) ⊕ b3 (23)
= F1(k1 ⊕ F0(k0) ⊕ x) ⊕ F1(x)

and let
s = k1 ⊕ F0(k0). (24)

We can see that
f(x ⊕ s) = f(x).

The procedure is as follows.

1. Choose x1 randomly from {0, 1}n/2.
2. For i = 1, 2, . . ., do the following.

(a) Query xi to F1-oracle to obtain F1(xi).
(b) Query Pi = (0n, xi) to the encryption oracle to obtain the ciphertext

Ci = (ai,3, bi,3).
(c) Let

xi+1 = f(xi) = F1(xi) ⊕ bi,3

from above Eq. (23),
3. Use Floyd cycle finding algorithm [7, Sec.14.2.2][20] to find (xi, xj) such that

xi = xj .
If xi = xj , then f(xi−1) = f(xj−1). This collision suggests s = k1 ⊕ F0(k0)
such that

k1 ⊕ F0(k0) = xi−1 ⊕ xj−1

4. Compute k1 by using k0 which is previously obtained.

In this attack, D = O(2n/4), T = O(2n/4) and M = O(1). The time com-
plexity is O(2n/4).

5.4 Memoryless Attack to Recover k2

We can recover k2 similarly. This time, we choose P = (a0, b0) such that

(a0, b0) = (x,F0(k0 ⊕ x)).

190 T. Daiza and K. Kurosawa

Let C = (a3, b3). Then we have

a1 = F0(k0 ⊕ x) ⊕ F0(k0 ⊕ x) = 0n

b1 = x

a3 = b2 ⊕ F2(k2 ⊕ a2)
= a1 ⊕ F2(k2 ⊕ b1 ⊕ F1(k1 ⊕ a1))
= F2(k2 ⊕ F1(k1) ⊕ x)

from Sect. 2. Let

f(x) = F2(x) ⊕ a3 (25)
= F2(k2 ⊕ F1(k1) ⊕ x) ⊕ F2(x)

and let
s = k2 ⊕ F1(k1). (26)

Then we see that
f(x ⊕ s) = f(x)

The procedure is as follows.

1. Choose x1 randomly from {0, 1}n/2.
2. For i = 1, 2, . . ., do the following.

(a) Query k0 ⊕ xi to F0-oracle to obtain F0(k0 ⊕ xi).
(b) Query xi to F2-oracle to obtain F2(xi).
(c) Query Pi = (xi,F0(k0⊕xi)) to the encryption oracle to obtain the cipher-

text Ci = (ai,3, bi,3).
(d) Let

xi+1 = f(xi) = F2(xi) ⊕ ai,3

from above Eq. (25),
3. Use Floyd cycle finding algorithm [7, Sec.14.2.2][20] to find (xi, xj) such that

xi = xj .
If xi = xj , then f(xi−1) = f(xj−1). This collision suggests s = k2 ⊕ F1(k1)
such that

k2 ⊕ F1(k1) = xi−1 ⊕ xj−1.

4. Compute k2 by using k1 which is previously obtained.

In this attack, D = O(2n/4), T = O(2n/4) and M = O(1). The time complexity
is O(2n/4).

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a small
number of public permutations. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 5

https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-29011-4_5

Optimum Attack on 3-Round Feistel-2 Structure 191

2. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 46

3. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the Even-Mansour
encryption scheme. J. Cryptol. 28(1), 1–28 (2015)

4. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel struc-
tures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 21

5. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of bicomposite
problems with cryptanalytic applications. J. Cryptol. 32(4), 1448–1490 (2019)

6. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57332-1 17

7. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

8. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 33

9. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending
meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35999-6 14

10. Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 464–485. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 24

11. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

12. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60865-6 53

13. Lampe, R., Seurin, Y.: Security analysis of key-alternating Feistel ciphers. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243–264. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46706-0 13

14. Maurer, U.M.: A simplified and generalized treatment of Luby-Rackoff pseudoran-
dom permutation generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
47555-9 21

15. Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-
random permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 544–561. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-
9 34

16. Maurer, U., Oswald, Y.A., Pietrzak, K., Sjödin, J.: Luby-Rackoff ciphers from weak
round functions? In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
391–408. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 24

17. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

18. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 7

https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/978-3-662-47989-6_21
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-642-14623-7_33
https://doi.org/10.1007/978-3-642-35999-6_14
https://doi.org/10.1007/978-3-642-35999-6_14
https://doi.org/10.1007/978-3-642-42033-7_24
https://doi.org/10.1007/3-540-60865-6_53
https://doi.org/10.1007/3-540-60865-6_53
https://doi.org/10.1007/978-3-662-46706-0_13
https://doi.org/10.1007/3-540-47555-9_21
https://doi.org/10.1007/3-540-47555-9_21
https://doi.org/10.1007/3-540-39200-9_34
https://doi.org/10.1007/3-540-39200-9_34
https://doi.org/10.1007/11761679_24
https://doi.org/10.1007/978-3-540-28628-8_7

192 T. Daiza and K. Kurosawa

19. Ramzan, Z., Reyzin, L.: On the round security of symmetric-key cryptographic
primitives. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 376–393.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 24

20. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32(143), 918–924 (1978)

https://doi.org/10.1007/3-540-44598-6_24

Post-Quantum Cryptography (2)

An Intermediate Secret-Guessing Attack
on Hash-Based Signatures

Roland Booth1(B), Yanhong Xu1(B), Sabyasachi Karati2,
and Reihaneh Safavi-Naini1

1 Department of Computer Science, University of Calgary, Calgary, Canada
{roland.booth,yanhong.xu1}@ucalgary.ca

2 Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata, India

Abstract. Digital signature schemes form the basis of trust in Internet
communication. Shor (FOCS 1994) proposed quantum algorithms that
can be used by a quantum computer to break the security of today’s
widely used digital signature schemes, and this has fuelled intensive
research on the design and implementation of post-quantum digital sig-
natures. Hash-based digital signatures base their security on one-way
functions that in practice are instantiated by hash functions. Hash-based
signatures are widely studied and are part of NIST’s post-quantum stan-
dardization effort.

In this paper we present a multi-target attack that we call Inter-
mediate Secret-Guessing attack on two hash-based signatures: XMSSMT

(Draft SP 800-208 that was considered by NIST for standardization), and
K2SN-MSS (AsiaCCS 2019). The attack allows an adversary to forge a
signature on an arbitrary message. We describe the intuition behind the
attack and give details of its application on the attacked schemes together
with corresponding theoretical analysis. The attack implies that the effec-
tive security levels of XMSS (a special case of XMSSMT), XMSSMT, and
K2SN-MSS are 10, 39 and 12 bits lower than their designed security lev-
els given access to 220, 260, and 220 signatures, respectively.

We implement the attack for each scheme, and give our results for
reduced security parameters that validate our theoretical analysis. We
also show that the attack can be avoided by modifying the application
of a pseudorandom function for key generation. Our work shows the
subtleties of replacing randomness with pseudo-randomness in the key
generation of hash-based signatures, and the need for careful analysis of
such designs.

Keywords: Post-quantum cryptography · Hash-based signatures ·
Multi-target attacks · XMSSMT · K2SN-MSS · Implementation

1 Introduction

Hash-Based Signatures. Digital signature schemes [21] are used to authen-
ticate the origin of a message and form the basis of trust establishment for
c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 195–215, 2021.
https://doi.org/10.1007/978-3-030-85987-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_11

196 R. Booth et al.

interactions on the Internet. The security of today’s digital signature schemes
relies on the hardness of mathematical problems that have efficient solutions if
a quantum computer exists [41] and so post-quantum digital signatures must
use new computational problems that stay hard when a quantum computer of
sufficient scale is built.

The idea of hash-based signatures (HBS) dates back to the pioneering work of
Lamport [32]. A number of improvements have been proposed by Diffie, Merkle,
and Winternitz [37,38]. All these schemes are one-time, and become insecure if
two messages are signed. To use the signature scheme many-times (2h), a direct
approach is to generate 2h one-time signature (OTS) schemes. However, this
would require 2h public key and secret key pairs, which will be highly impractical
for large h. To construct a many-time signature scheme with short public key,
Merkle [37] proposed what we know as Merkle signature scheme (MSS). The MSS
uses 2h instances of OTS, each with a public and secret key pair (opki, oski), and
builds a Merkle (binary) tree whose leaves are the hashes of the public keys of
the OTS instances, and each internal node is computed as the hash of its two
child nodes. The public key consists of the root of the Merkle tree, and the
secret key contains the secret keys of all the 2h OTS instances. The signature of
a message M consists of an index i that specifies an OTS instance (opki, oski),
the one-time signature σots on M under the key opki, the key opki, and an
authentication path Authi that is used to verify the validity of opki. Since the
pioneering work of Merkle [37,38], a large number of works, e.g. [10–13,17,19],
have been proposed to improve various aspects of MSS.

In 2011, Buchmann et al. [10] proposed an extended MSS (XMSS) together
with a forward-secure [2,6] variant. To reduce the size of the secret key that con-
sists of the secret keys of 2h OTS instances, a pseudorandom function (PRF) is
used with an n-bit master seed to generate an n-bit OTS seed for each OTS
instance, which is in turn used to generate the secret key of that instance.
There have been a number of variants of XMSS [7,8,16,23–26,30,36] that pro-
vide higher security and efficiency. Prominently, Hülsing et al. [24] proposed a
multi-tree variant of XMSS, known as XMSSMT, which greatly improves the key
generation time and can sign virtually unlimited number of messages. This vari-
ant was later selected by NIST as the standard algorithm for stateful HBS [16].
Karati and Safavi-Naini [30] proposed K2SN-MSS scheme, that extends KSN-
OTS [28] to sign multiple messages, and proved its security in the same security
model used by XMSS. The authors gave an implementation of the scheme that
has comparable, and in some cases superior, performance compared to XMSSMT.
KSN-OTS and K2SN-MSS both use SWIFFT [34] as the hash function.

The security of modern digital signature schemes is proved against Existential
Unforgeability against Chosen Message Attack (EU-CMA) where the attacker
must generate a valid signature on some message of their choice, after querying
a signing oracle to obtain q message-signature pairs. The security proof of HBS
assumes truly random keys for OTS, and then shows that replacing truly random
keys with pseudorandom keys, which are obtained by using a PRF with a random
seed, will only reduce the security by a negligible amount. The actual generation

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 197

of the pseudorandom keys, however, is considered an implementation detail and
is not part of the security model and proof. The goal of this paper is to show that
an improper application of PRF can significantly reduce the designed security
of the scheme.

Our Contributions and Techniques. We propose an Intermediate Secret-
Guessing (ISG) attack, which is a multi-target attack, on two many-time sig-
nature schemes: an earlier version of XMSSMT and K2SN-MSS. The attack on
XMSSMT applies to SP 800-208 draft [15,23] but not the final version [16].

The attack breaks the EU-CMA security of the two schemes by outputting
a forgery on an arbitrary message. It exploits a weakness in the way the secret
key of an OTS is generated from its associated seed, without using any other
information unique to this instance such as its index. Concretely, the OTS secret
keys in [15,23,30] are generated as follows. Let seed be a master seed and F
be a secure PRF. The key generation algorithm first generates seeds for OTS
instances as seedots,i = F(seed, i) for i ∈ [0, 2h − 1], and then generates OTS
secret keys as oski = (F(seedots,i, 1), . . . ,F(seedots,i, �)). Note that both seed

and seedots,i are n bits, with n being the designed security level of the scheme.
For concreteness, we outline the attack below.

Attack in a Nutshell. The attack has two phases. In the first Query Phase, the
attacker collects q ∈ [1, 2h] signatures by querying the 2h-time XMSSMT/K2SN-
MSS as a signing oracle1. Next, in the Secret-Guessing Phase, the attacker
repeatedly guesses the value of an n-bit OTS seed.

For each guess the attacker evaluates the PRF and detects if the guessed
value is the seed used for generating one of the OTS signatures. If, for example,
the guess is the seed of the i-th OTS signature, then the secret key of the i-th
OTS instance is revealed. The seed, together with the i-th queried signature,
enables a forgery on an arbitrary message of the attacker’s choice. Since there
are in total q OTS signatures and the probability that the guess will match one
of the q targets is q/(2n), we expect to recover one of the OTS seeds after 2n/q
guesses.

How a Guessed Seed is Matched for XMSSMT. A crucial detail missing
from the aforementioned outline is how to match a guessed seed and the seed
used in the i-th OTS signature. We note that evaluating the PRF on an OTS
seed produces the OTS secret key, which consists of � n-bit strings. In addition,
a signature of the Winternitiz OTS scheme (WOTS+) [22] that is employed in
the XMSSMT reveals some of these � strings directly. A straightforward method
is then to compare the j-th n-bit string generated from the guessed seed, with
the one generated from the authentic one. If they are equal, then one considers
the guess to be correct. This seed guess-verification strategy was also proposed
by ETSI CyberSupport2 in the public comment [1] on SP 800-208 draft. They

1 Note that XMSSMT is slightly more complicated since we have more than q OTS
signatures from q queried signatures. See Sect. 3 for more detail.

2 ETSI CyberSupport only outlined the idea of matching a guessed seed with the real
seed but did not develop the idea into a full attack.

198 R. Booth et al.

further estimated that on average there are q/w WOTS+ signatures that will
reveal the j-th n-bit string. Here, w is the Winternitz parameter. Therefore,
the attack can only have q/w targets to compare with, and will be expected to
succeed after (2nw)/q guesses.

Our attack, that is independently discovered, starts with the same guessing
strategy. However we observe that when the j-th strings derived from the two
seeds match, with a probability around 1/2, the seed may not be the real seed.
This reduces the success chance of the attack by a factor of 1/2. To improve
the success probability of guessing the correct seed, we compare two strings
computed from the guessed seed (instead of one) with those computed from the
real one. We then show that with this tweak, that is when two strings match, the
guess is correct with overwhelming probability. We further show that at least
91% WOTS+ signatures will reveal at least two strings of its secret key. This
improves the expected number of guesses to 2n/(0.91q) by increasing the number
of targets to 0.91q.

How a Guessed Seed is Matched for K2SN-MSS. Verifying a guessed seed
in K2SN-MSS is not as straightforward as in XMSSMT. This is because a KSN-
OTS signature does not directly reveal the strings of the secret key. Rather, the
signature is the sum of a subset of strings in the secret key that is determined by
the message. We therefore go a step further and evaluate the PRF on a guessed
seed, compute a KSN-OTS signature and then compare the computed signature
with q extracted KSN-OTS signatures. If the q messages are distinct, then one
computed KSN-OTS signature can be matched against only 1 target, rendering
the success probability of the ISG attack almost the same as that of a brute-
force attack. However, the success probability increases significantly if the same
message is used for all queries.

Analysis, Implementation and Experiments. We analyze our attack the-
oretically. We derive the success probability and estimate the runtime of the
attack when the number of queries and guesses are q and g, respectively, and
then provide an estimation of the effective security levels3 of the two attacked
schemes. The analysis shows that the ISG attack implies the effective security
levels of XMSS, XMSSMT, and K2SN-MSS are 10, 39, and 12 bits lower than
their designed security levels given access to q = 220, q = 260, and q = 220

signatures, respectively.
To verify our analytical results, we implement the ISG attack on XMSSMTand

K2SN-MSS, that have bit security of 256 and 512 bits, respectively. Even though
the attack diminishes their security levels, the experiment is still infeasible in
practice. We thus perform our experiments on reduced security parameter of 16
bits for both schemes that result in feasible computation, allowing us to verify
our theoretical results.

Discussion. The security implications of bad randomness in cryptosystems is
widely recognized. Numerous cryptographic algorithms that use the output of a
3 Security level is calculated as log2(τ/ε), where τ is the runtime and ε is the success

probability of ISG attack.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 199

PRF that expands a truly random seed have been broken by adversarial control
of the random seed [33,42,43]. There have also been reported weaknesses in the
design of PRF algorithms that have led to predictable outputs [20,40]. Our work
indicates that bad application of a PRF for generating structured randomness
can compromise the security of schemes with proven properties. Modeling and
proving the full security of hash based signatures, including generating random-
ness using a PRF, is an interesting direction for future research.

Related Work. Shor’s algorithm [41] and the prospect of building quantum
computers at scale have fueled research on cryptographic schemes with post-
quantum security. HBS is an attractive approach to construct digital signature
schemes with post-quantum security because OWFs can be instantiated with
hash functions that have been intensively studied in recent years, and avoid
using new and less studied hardness assumptions. The security of HBS schemes
was initially reduced to the collision resistance of the hash functions, and later
to the second preimage resistance using a Merkle-like tree structure that used
random bitmasks for intermediate tree nodes. The schemes, however, become
vulnerable to a new type of attack called a multi-target attack that has been
more recently proposed by Hülsing et al. [26]. To protect against this attack,
Hülsing et al. proposed a new HBS scheme, called XMSS-T (XMSS with tight
security), in which each hash function call is keyed with a different key and uses
a different bitmask.

Leighton-Micali signature (LMS) and its hierarchical system (HSS) for mul-
tiple messages [36] use WOTS [32,37,38] as the underlying OTS scheme. Both
LMS and HSS were also selected as the standard algorithms for stateful HBS [16].
Katz [31] showed that earlier versions [35] of LMS and HSS can be subjected to
a multi-target attack. To strengthen the security of the schemes, any hash com-
putation within LMS and HSS prepends a different prefix to the value that will
be hashed. These prefixes can be seen to have the same role as using different
keys and bitmasks in [26].

All above schemes are stateful and require the signer to maintain a state
and update it after each signature. The security of stateful schemes critically
depends on the correctness of the state update. Bernstein et al. proposed the
first practical stateless HBS scheme SPHINCS [7], which was later improved in
followup works [3–5,8,25]. All versions submitted to the NIST post-quantum
competition4 employ the same addressing scheme as in [26] and are immune to
multi-target attacks.

Stateless signatures have also been constructed based on symmetric key
primitives. Picnic [14] is an example of such a scheme and uses efficient zero-
knowledge protocols based on the “MPC-in-the-head” paradigm [27]. Picnic 1.0
was shown [18] to be vulnerable to multi-target attacks. The more recent version
of Picnic, however, is secure against these attacks.

Organization. The rest of the paper is organized as follows. In Sect. 2 we
briefly describe XMSSMT and K2SN-MSS. Section 3 presents our ISG attack on

4 https://csrc.nist.gov/projects/post-quantum-cryptography.

https://csrc.nist.gov/projects/post-quantum-cryptography

200 R. Booth et al.

XMSSMT and shows its impact on the security level of XMSSMT and Sect. 4
outlines the attack and its impact on K2SN-MSS. We then present our imple-
mentation results in Sect. 5. Finally, we propose countermeasures for the attack
and conclude the paper in Sect. 6 and Sect. 7, respectively.

2 Preliminaries

In this section, we briefly describe XMSSMTand K2SN-MSS.

2.1 Description of XMSSMT

XMSSMT uses a variant of WOTS+ [22] as the underlying OTS scheme. Let
w be the Winternitz parameter, n be the security parameter. The secret key is
osk = (x1, . . . ,x�) that contains � strings of bit size n. The public key is opk =
(y1, . . . ,y�) where each yi is computed from xi by applying a PRF w − 1 times.
To sign a message M ∈ {0, 1}n, one first computes its base-w representation
BM = (b1, . . . , b�) and output a signature σ = (z1, . . . , z�) where zi is computed
from xi by applying the PRF bi times. Specifically, if bi = 0, then zi = xi. The sig-
nature is considered valid if one is able to obtain opk by applying the PRF w−1−bi

times on zi for all i ∈ [1, �]. More details can be found in Appendix A or [23,26].

Fig. 1. A schematic representation of an XMSSMT instance with d = 3 layers (Left)
and the authentication path (yellow nodes) for the leaf 4 in a Merkle Tree of height 3
(Right). (Color figure online)

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 201

An XMSS instance is a Merkle tree whose leaves are the WOTS+ instances.
An XMSSMT instance is essentially a tree of XMSS instances, called a hyper
tree, where the XMSS trees on the lowest layer sign the actual messages, and
the XMSS trees on the upper layers sign the roots of the XMSS trees below
them. In Fig. 1, we give a representation of an XMSSMT instance with 3 layers.
Consider an XMSSMT tree of the total height h that has d layers of XMSS trees
of height h′ = h/d. Let the root value of the sole XMSS tree on layer d − 1
be Root. The public key consists of Root and some other public information,
while the secret key contains seedRand and a master seed ∈ {0, 1}n. The former
is used to compute a randomness R whenever we need to sign a message while
the latter is to compute all the secret keys of the WOTS+ instances. Concretely,
to compute the secret key of an OTS instance, the algorithm first generates seeds
of all XMSS trees as seedxmss = F(seed, s‖t), where s is the layer of the XMSS
tree and t is the index of the tree within that layer. Next, it generates seeds for
all OTS instances within a specific XMSS tree as seedots,i = F(seedxmss, i) for
i ∈ [0, 2h′ − 1]. Finally, the secret strings of the i-th OTS instance computed as
xi,j = F(seedots,i, j) for j ∈ [1, �]. We note that the input to the generation of
xi,j does not depend on the index i and this fact is exploited in our ISG attack.

An XMSSMT signature of a message M is of the form

Σ = (i, R, σ0,Auth0, . . . , σd−1,Authd−1),

where i ∈ [0, 2h − 1] is the index that specifies the ij-th WOTS+ instance
within the i′j-th XMSS tree on the layer j for all j ∈ [0, d − 1] (see Fig. 1),
R = F(seedRand, i), σ0 is the one-time signature on the message digest D =
Hmsg(R‖Root‖i,M) ∈ {0, 1}n with Hmsg being a hash function, and σj is the
one-time signature on the root value Ri′

j
for j ∈ [1, d − 1]. To verify a signature

Σ on M , one first computes D as described above, and proceeds as follows. It
computes the i0-th WOTS+ public key opki0 from the message-signature pair
(D,σ0). Then root Ri′

0
of the i′0-th XMSS tree on the layer 0 is computed from

opki0 and Auth0. This procedure is then repeated for layers 1 to d−1 until root
Ri′

d−1
of the i′d−1-th XMSS tree on the layer d − 1 is obtained. The signature Σ

is valid if Ri′
d−1

= Root.

2.2 Description of K2SN-MSS

We now give a very brief overview of the K2SN-MSS protocol [30]. It is a single-
tree MSS where the underlying OTS is the KSN-OTS scheme [28]. The latter
is an OTS scheme that employs an additive homomorphic hash function family
SWIFFT [34]. The secret key is osk = (x1, . . . ,xt) that consists of t binary strings
of size n̂m̂ while the public key is opk = (y1, . . . ,yt) where yi = SWIFFTk(xi)
for some key k specifying the SWIFFT function. To sign a message M ∈ {0, 1}m,
one first derives a subset BM of {1, 2, . . . , t} from M and then computes the
signature as σ =

∑
j∈BM

(xj). Here |BM | = t/2. The signature is considered
valid if SWIFFTk(σ) =

∑
j∈BM

(yj) mod p and σ has small entries. More details
can be found in [28].

202 R. Booth et al.

In order to sign 2h messages, K2SN-MSS builds a Merkle tree on top of
2h KSN-OTS instances. The public key consists of the root of the tree and
some other public information while secret key is a master seed ∈ {0, 1}n.
The seed is used to generate secret keys of those 2h KSN-OTS instances
as in XMSSMT. Specifically, it first generates seeds for all OTS instances as
seedots,i = F(seed, i) for all i ∈ [0, 2h − 1]. Next, it computes the secret strings
of the i-th OTS instance as xi,j = F(seedots,i, j) for all j ∈ [1, t]. The fact that
xi,j does not depend on the index i is exploited in our ISG attack.

A K2SN-MSS signature of a message M is of the form Σ = (i, σi, opki,Authi),
where i is the index of the used OTS instance, σi is the one-time signature on M
under the public key opki of the i-th OTS instance, and Authi is the authentica-
tion path. The signature is valid if σi is a valid signature on M and that opki is
authenticated against Authi. We observe that the signing algorithm here is not
randomized as in XMSSMT, which makes forging a signature quite straightforward
once we guess correctly the seed of a KSN-OTS instance.

3 ISG Attack on XMSSMT

We first give an overview of our ISG attack on XMSSMT. We assume that the
attacker has access to q ∈ [1, 2h] signatures on the same message MQ

5 and
repeatedly guess WOTS+ seeds for at most g ∈ [1, 2n] times. The goal of the
attack is to output a forgery ΣF on a message MF of the attacker’s choice
with the condition that MF �= MQ. Note that in Step 1, q′ > q since there are
WOTS+ instances on higher layers other than layer 0. In Step 2, we only store
pairs that reveal at least two strings (out of �) of their secret keys. In Step 3, we
simply guess the seed as an n-bit representation of 0 up to g − 1.

1. From the q queried signatures, extract q′ WOTS+ message-signature pairs.
2. Out of q′ pairs, filter out those that contain less data (about their underlying

secret keys) than some threshold. For the remaining pairs, store the data in
some tables for efficient match in the next step.

3. For each guess seed
′ ∈ [0, g − 1], derive a corresponding PRF output and

compare with the stored data.
4. If a match is found for seed

′, output a forgery ΣF on MF using seed
′.

In the following, we show in Sect. 3.1 how to verify the legitimacy of a guessed
seed. Section 3.2 describes how to forge a signature if the guessed seed is legiti-
mate and Sect. 3.3 gives the detailed description of the attack. Lastly, we analyze
the runtime and success probability of the attack in Sect. 3.4.

5 This is not compulsory in our attack on XMSSMT, which randomizes the message
before signing it.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 203

3.1 Verifying a WOTS+ Seed Guess for XMSSMT

Consider an XMSS tree within an XMSSMT hyper tree. Let seedots,i and oski be
the seed and the secret key of the i-th WOTS+ instance in this XMSS tree, and
let σi be a signature on a message M computed from oski. Given only the pair
(M,σi), we want to determine if a guessed seed

′ is equal to the legitimate seed
seedots,i. Recall that the secret key of the i-th WOTS+ instance is computed
as

oski = (xi,1, . . . ,xi,�) = (F(seedots,i, 1), . . . ,F(seedots,i, �)),

To sign a message M , one first computes BM = (b1, . . . , b�) and outputs the
signature σi = (z1, . . . , z�) such that zj = xi,j if bj = 0 for some j ∈ [1, �].

Verifying a Guess Against one WOTS+ Signature. Given a signature
σi = (z1, . . . , z�) and its corresponding message M , find two indices k1 and k2
such that bk1 and bk2 are zero. Then zk1 and zk2 are the k1-th and the k2-th
elements of oski. If there are no such indices, then this test is inconclusive. Next,
we compute osk′ = (x′

1, . . . ,x
′
�) from seed

′ by evaluating PRF F , and check if
x′

k1
= zk1 and x′

k2
= zk2 . If they are equal, we claim that seed

′ = seedots,i

with all but negligible probability. Fix a WOTS+ signature as above and let
seedots,i be the real seed. Then

Pr[seed′ = seedots,i|(x′
k1

= xk1) ∧ (x′
k2

= xk2)]

=
Pr[(seed′ = seedots,i) ∧ (x′

k1
= xk1) ∧ (x′

k2
= xk2)]

Pr[(x′
k1

= xk1) ∧ (x′
k2

= xk2)]

=
E1

E1 + E2
,

where E1 = Pr[(seed′ = seedots,i) ∧ (x′
k1

= xk1) ∧ (x′
k2

= xk2)] = 1
2n ,

E2 = Pr[(seed′ �= seedots,i) ∧ (x′
k1

= xk1) ∧ (x′
k2

= xk2)] = (1 − 1
2n) 1

22n ,
and the probability is taken over seed

′ ∈ {0, 1}n. Note that conditioned on
seed

′ �= seedots,i, distributions of x′
k1

,x′
k2

are indistinguishable from ran-
dom distribution over {0, 1}n due to the security of F . One then sees that
E1/(E1 + E2) is all but negligible.

The reason to compare two elements instead of just one is because a similar
argument shows that Pr[seed′ = seedots,i|x′

k1
= xk1] ≈ 1

2 . In other words,
seed

′ is not seedots,i with probability around 1/2 if the k1-th strings derived
from the guessed seed and the real seed match only.

Verifying aGuessAgainstMultipleWOTS+Signatures.Given q message-
signature pairs (M0, σ0), . . . , (Mq−1, σq−1) from q WOTS+ instances, the goal is
to determine efficiently if a guess seed′ is the seed of one of these instances. For
each pair (Mi, σi), we discard those whose signatures do not reveal at least two
strings of their secret keys. For the remaining ones, we extract exactly two strings
and then construct a tuple that contains these strings and the index i so we know
which pair these strings are extracted from. The tuples will be sorted into tables
that can be efficiently searched.

204 R. Booth et al.

To this end, we build �−1 tables T1, . . . ,T�−1. For k1 ∈ [1, �−1], Tk1 contains
tuples of the form (xk1 , k2,xk2 , i) indexed by xk1 . Here xk1 ,xk2 are two strings
of the secret key revealed in σi.

Next, compute osk′ = (x′
1, . . . , x′

�) from a guessed seed
′ as before. Then

for every k1 ∈ [1, � − 1], use a binary search algorithm to search Tk1 , checking
whether it contains a tuple indexed by x′

k1
. Suppose that, for some index k1, we

find a tuple (x′
k1

, k2, xk2 , i) in Tk1 . Using the index k2, we further compare x′
k2

with xk2 . If equal, we conclude that seed
′ is the underlying seed for computing

σi, as shown in Sect. 3.1.
Note that to uniquely identify the location of a WOTS+ signature σ in an

XMSSMT tree, one must know the index i of the XMSSMT signature that σ is
extracted from and the hyper tree layer j that σ belongs to. To this end, we
store tuples of the form (xk1 , k2, xk2 , i, j) instead.

3.2 Using a WOTS+ Seed to Forge a Signature

Let us now describe how to forge an XMSSMT signature once we guess cor-
rectly the underlying seed of a WOTS+ instance. Let an XMSSMT signature on
message Mi be

Σi = (i, R, σ0,Auth0, . . . , σd−1,Authd−1).

Suppose we have guessed the seed seed
′ of σj from Σi, and now want to forge an

XMSSMT signature on an arbitrary message MF . We proceed as follows. Recall
that the index i specifies that σj is from the ij-th WOTS+ instance in the i′j-th
XMSS tree on layer j of the hyper tree.

Case 1: j = 0. It implies that seed
′ is the seed of the i0-th WOTS+ instance

which is used to sign Di = Hmsg(R‖Root‖i,Mi). To compute a forged signature
ΣF on MF , we first compute a WOTS+ signature on the digest of MF and
then replace σ0 in Σi with the new signature. (Recall that σ0 is a signature on
Di.) Concretely, compute D̂i = Hmsg(R‖Root‖i,MF) and a WOTS+ signature
σ0,F of D̂i using the seed

′. Let ΣF = (i, R, σ0,F ,Auth0, . . . , σd−1,Authd−1) be
obtained by substituting σ0 with σ0,F . It is straightforward to verify the validity
of ΣF .

Case 2: 0 < j ≤ d − 1. It implies that seed
′ is the seed of the ij-th WOTS+

instance that is used to sign the root Ri′
j−1

of the i′j−1-th XMSS tree on layer j−1.
Recall that during the verification process of the pair (Mi, Σi), one computes
WOTS+ public keys and XMSS roots opki0 , Ri′

0
, opki1 , Ri′

1
, . . . , opkid−1

, Ri′
d−1

sequentially and then compares Ri′
d−1

with Root. Since Mi is legitimately
signed, the computed values are the real ones and in particular Ri′

d−1
= Root.

To compute a forged signature ΣF , our strategy is to run the verification
algorithm on (MF , Σi) up to the point that the (fake) root value of i′j−1-th
XMSS tree is computed. Then we compute a WOTS+ signature on this (fake)
root value using the seed

′, and replace σj in Σi with the new signature. Since
the new WOTS+ signature is legitimately signed, one is able to compute the

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 205

real WOTS+ public key opkij
. In fact, from this point on, all the computed

WOTS+ public keys and XMSS roots are the real ones and thus the signature
is considered valid. Concretely, we perform the following steps.

To begin with, compute D̂i = Hmsg(R‖Root‖i,MF). Next, compute a fake
i0-th WOTS+ public key ôpki0 from the pair (D̂i, σ0), and a fake root R̂i′

0
from

ôpki0 and Auth0 as in the verification process of XMSSMT described in Sect. 2.1.
This procedure is repeated for layers 1 to j−1 until a fake root R̂i′

j−1
is obtained.

Then compute the signature σj,F of the root R̂i′
j−1

using seed
′. Finally, replace

σj in Σi with σj,F , we obtain

ΣF = (i, R, σ0,Auth0, . . . , σj,F ,Authj , . . . , σd−1,Authd−1).

3.3 ISG Attack on XMSSMT

Putting everything together, we are ready to describe our ISG attack on
XMSSMT. The inputs of the attack are the number of signature queries q ∈ [1, 2h]
and the number of seed guesses g ∈ [1, 2n], and the output is a forgery (MF , ΣF)
if successful, or empty otherwise.

The attack initializes a set Smss to store the response from the signing oracle,
and �−1 tables T1, . . . ,T�−1 as described in Sect. 3.1 to store the data extracted
from WOTS+ signatures. It operates in two phases.

In the Query Phase, the attacker queries the signing oracle with an arbi-
trarily chosen MQ for q times. On the i-th query, an XMSSMT signature
Σi = (i, R, σ0,Auth0, . . . , σd−1,Authd−1) is obtained and then stored in Smss.
From Σi, d WOTS+ message-signature pairs

(Di, σ0), (Ri′
0
, σ1), . . . , (Ri′

d−2
, σd−1)

are computed. This can be done by running the XMSSMT verification algorithm.
For each σj = (zj,1, . . . , zj,�) with j ∈ [0, d − 1], let zj,k1 , zj,k2 be two strings of
secret key revealed and then insert (zj,k1 , k2, zj,k2 , i, j) to table Tk1 . If no two
such strings exists, discard σj . Note that the WOTS+ signatures on layers 1 to
d − 1 may be repeated and thus are ignored once they appear again.

In the Secret-Guessing Phase, the attacker repeatedly guesses WOTS+ seeds
until it succeeds, or runs out of the g guesses. Let seed′ be the j-th guess. It first
computes osk′ = (x′

1, . . . ,x
′
�) from seed

′ and then searches tables T1, . . . ,T�−1.
If there exists a tuple (zk1 , k2, zk2 , i, j) such that zk1 = x′

k1
, zk2 = x′

k2
, we know

that seed
′ is the underlying seed of the j-th WOTS+ instance from the i-th

queried signature with all but negligible probability. Thus, a forged signature
ΣF on the message MF of the attacker’s choice can be computed (as long as
MF �= MQ) as described in Sect. 3.2. Otherwise, we move to the next guess. If
no forgery is computed after g guesses, return ⊥.

206 R. Booth et al.

3.4 Analysis of ISG Attack on XMSSMT

Number of Targets. To calculate the success probability of our attack, it is
crucial to find out the number of targets NTargets. Recall that we have q′ WOTS+
message-signature pairs. However, not all of them are valid targets to be matched
against. Let P be the probability that a WOTS+ signature on a random message
reveals at least two strings of its secret key. Then NTargets = q′ · P . It is not
hard to verify that q′ =

∑d−1
i=0 	 q

2h′·i
, where h′ = h
d . Furthermore, P is lower

bounded by 1 − (1 − 1
w)�1 − �1

w (1 − 1
w)�1−1. (See Appendix B for details.) Given

parameters w = 16, n = 256, �1 = 64 for WOTS+, P ≥ 0.9153.

Success Probability of the ISG Attack. The success probability of the ISG
attack on XMSSMT and inputs q ∈ [1, 2h], g ∈ [1, 2n] is:

SuccEU-CMA
XMSSMT,A(q, g)(1

n) = 1 −
(2n − g

2n

)NTargets

.

The attack outputs a forgery if and only if a guessed seed
′ equals one of the

NTargets seeds, or equivalently, at least one of the NTargets seeds is in the set
[0, g−1]. Note that these seeds are the outputs of a pseudorandom function whose
output distribution over {0, 1}n is indistinguishable from random. Therefore, the
probability that none of these seeds is in the set [0, g − 1] can be approximated
as (2

n−g
2n)NTargets , and the success probability is thus 1 − (2

n−g
2n)NTargets .

How the Runtime is Measured. We measure the algorithmic time as the
number of hash function evaluations, PRF evaluations, and the comparisons of
O(n)-bit strings. Denote these atomic operations as cHash,cPRF and cComp.

Runtime of the ISG Attack. The runtime of the ISG attack on an instance
of XMSSMT with the inputs q ∈ [1, 2h] and g ∈ [1, 2n] is

τXMSSMT(q, g) ≤ q · τMsgDigest + (q′ − q) · τXMSSRootAvg (1)

+ NTargets · log
(NTargets

� − 1

)
· cComp (2)

+ g ·
(

� · cPRF + (� − 1) · log
(NTargets

� − 1

)
· cComp

)

(3)

+ τComputeForgeryIS. (4)

The time complexity of the attack is dominated by, (1) the time to compute the
q′ WOTS+ message-signature pairs, (2) the time to sort NTargets targets, (3)
the time to search against the � − 1 tables, and (4) the time to compute the
forgery. Details are in the full version of this paper.

Effective Security Level of XMSSMT. Following [17], the bit security of a dig-
ital signature scheme (DSS) is estimated as log2

(
τDSS(q, g)/SuccEU-CMA

DSS,A(q, g)(1
n)

)
.

Using the above formulas, we evaluate the effective security levels of XMSS and
XMSSMT in Table 1. In the calculations, we assume cHash = cPRF = cComp = 1.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 207

Table 1. Effective security level of XMSS and XMSSMT on concrete parameter sets.

Scheme Designed
security
level

Scheme parameters Attack parameters Effective
security
level

XMSS n = 256 w = 16, � = 67, h = 20 q = 220, g = 2205 246.06

XMSSMT n = 256 w = 16, � = 67, h = 60 d = 12 q = 260, g = 2205 216.84

From the table, we see that the effective security levels of XMSS and
XMSSMT are 10 and 39 bits lower than their designed security levels. These
results demonstrate the significant effect of our attack. It is worth noting that
our attack is more effective on XMSSMTdue to significantly more target values.

4 ISG Attack on K2SN-MSS

We now give an outline of the ISG attack on K2SN-MSS. Assume that the
attacker has access to q ∈ [1, 2h] signatures on the same message MQ, and
guesses KSN-OTS seeds for at most g ∈ [1, 2n] times. The aim of the attack is
to output a forged signature ΣF on an arbitrary message MF where MF �= MQ.
It is crucial that all queries use the same message MQ. This is because, unlike
WOTS+, a KSN-OTS signature does not reveal strings of the secret key directly.
Instead, a KSN-OTS signature reveals a sum of t/2 strings of its secret keys where
the choice of the strings used for the sum depends on the message being signed.

1. From the q queried signatures, simply extract q KSN-OTS signatures.
2. Sort the q KSN-OTS signatures by interpreting the signatures as bit strings.
3. For each guess seed′ ∈ [0, g − 1], evaluate the PRF on t/2 inputs determined

by BMQ
and sums the t/2 outputs. (This is equivalent to signing MQ using the

secret key derived from seed
′.) Compare the sum with the stored signatures

using a binary search algorithm.
4. If a match is found for seed

′, output a forgery ΣF on MF using seed
′.

We show how to verify the correctness of a guessed seed in Sect. 4.1, and how to
forge a signature if we guess the seed correctly in Sect. 4.2. Section 4.3 describes
our attack on K2SN-MSS and its runtime and success probability.

4.1 Verifying a KSN-OTS Seed Guess for K2SN-MSS

Let σi be a signature of the message MQ derived from seedots,i for some i. To test
if seed′ is seedots,i, it is tempting to simply evaluate PRF on two inputs using
seed

′ and then compare with the extracted data as the attack on XMSSMT. As
we observe, however, this is impossible since KSN-OTS signature does not reveal

208 R. Booth et al.

strings of its secret key directly. To solve this issue, we compute a KSN-OTS
signature on MQ as σ′ =

∑
j∈BMQ

F(seed′, j) and then compare it with σi. If
σ′ = σi, we claim that seed

′ = seedots,i with overwhelming probability.
Let

Pr[seed′ = seedots,i|σ′ = σi] =
Pr[(seed′ = seedots,i) ∧ (σ′ = σi)]

Pr[σ′ = σi]

=
E1

E1 + E2
,

where E1 = Pr[(σ′ = σi) ∧ (seed′ = seedots,i)] = 1
2n , E2 = Pr[(σ′ = σi) ∧

(seed′ �= seedots,i)] ≤ (1 − 1
2n) 1

2n̂m̂ , and the probability is taken over seed
′ ∈

{0, 1}n. Note that conditioned on seed
′ �= seedots,i, σ′ is the addition of t/2

pseudorandom elements over {0, 1}n. Therefore, Pr[σ′ = σi|seed′ �= seedots,i] ≤
(
maxj

(
t/2
j

)
1

2t/2

)n̂m̂ ≤ 1
2n̂m̂ . Since t = 262, n̂m̂ = 2n in [30], the probability

E1/(E1 + E2) = 1 − E2/(E1 + E2) is all but negligible. This proves our claim.

4.2 Using a KSN-OTS Seed to Forge a Signature

It is quite easy to forge a signature on MF once we guess seedots,i. Let the i-th
queried signature be Σi = (i, σi, opki,Authi). We simply compute the KSN-OTS
signature σF on MF using seedots,i, and output ΣF = (i, σF , opki,Authi). It
is straightforward to verify the validity of ΣF on MF .

4.3 ISG Attack on K2SN-MSS and Its Analysis

ISG Attack on K2SN-MSS. The inputs of the attack are q ∈ [1, 2h] and
g ∈ [1, 2n] as in Sect. 3.3, and the goal is to output a forgery (MF , ΣF). The
attack initializes a set Smss to store the received signatures from the signing
oracle, and a table Tots to store the extracted KSN-OTS signatures. It operates
in two phases.

In the Query Phase, the attacker queries the signing oracle with an arbitrary
message MQ for q times. On the i-th query, a signature Σi = (i, σi, opki,Authi)
is received and stored in Smss. From Σi, we extract σi and insert (σi, i) in Tots

that is indexed by σi. Note that for all i, σi is a signature on MQ.
In the Secret-Guessing Phase, the attacker guesses the KSN-OTS seeds until

it succeeds, or runs out of the g guesses. Let seed
′ be the j-th guess. The

attacker first computes σ′ =
∑

j∈BMQ
F(seed′, j), and then searches in Tots. If

there is a tuple (σi, i) such that σi = σ′, then the attacker knows seed
′ is the

underlying seed with overwhelming probability as shown in Sect. 4.1. Thus, a
forged signature ΣF on MF can be computed as described in Sect. 4.2. If it did
not return any forgery after g guesses, abort.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 209

Success Probability of the ISG Attack. Note that unlike XMSSMT, the
attack on K2SN-MSS has exactly q valid targets from the q queried signatures.
Thus, following Sect. 3.4, the success probability of the ISG attack on K2SN-MSS
using the inputs q ∈ [1, 2h], g ∈ [1, 2n] is:

SuccEU-CMA
K2SN-MSS,A(q, g)(1

n) = 1 −
(2n − g

2n

)q

.

Runtime of the ISG Attack. The runtime of the ISG attack on an instance
of K2SN-MSS with the inputs q ∈ [1, 2h] and g ∈ [1, 2n] is given as:

τK2SN(q, g) ≤ q · log q · cComp + g · (
t

2
· cPRF + log q · cComp) +

t

2
· cPRF.

The runtime is dominated by (1) the time to sort the q KSN-OTS signatures,
(2) the time to compute a KSN-OTS signature from a guessed seed and compare
it with the sorted signatures, and (3) the time to compute a forgery if the attack
succeeds. In the worst case, we have to run the guesses g times.

Effective Security Level of K2SN-MSS. We estimate the new security level
of K2SN-MSS as log2

(
τK2SN-MSS(q, g)/SuccEU-CMA

K2SN-MSS,A(q, g)(1
n)

)
. As in Sect. 3.4,

we choose cHash = cPRF = cComp = 1. For parameters n = 512, n̂ = 64, m̂ = 16,
t = 262, h = 20, the effective security level of K2SN-MSS is 500.15 for q = 220

and g = 2250. This is 12 bits lower than the designed security level 512.

5 Implementation and Experiments

We implemented the ISG attacks on XMSSMT and K2SN-MSS utilizing imple-
mentations from [39]6 and [29] as the signing oracles. Our implementation can
be found in [9]. In order to make the attack feasible and obtain a meaningful
performance estimate, we reduce the search space of the attack by fixing all but
the least significant n′ = 16 bits of OTS seeds. No other changes are made to
the attacked schemes.

Description of the Experiments. Our two experiments are performed on
Skylake Intel R©CoreTMi7-6700 4-core CPU @ 3.40 GHz running. The system
has 8GB RAM and the timing experiments are performed on a single core. The
OS is 64-bit Ubuntu-18.04 LTS and C codes are compiled by GCC version 7.5.0.
During the experiments, the turbo boost and hyper-threading are turned off.

For each experiment, we performed 1000 trials on each of the possible input
pairs (q, g) where q ∈ {1, 22, 24, 26, 28} and g ∈ {1, 22, 24, . . . , 214, 216}. From
these trials we obtain an average runtime and success probability of the attack.

Results of the Experiments. Figure 2 and Fig. 3 show some of our experimen-
tal results. Figure 2 shows that the theoretical and actual success probabilities
of the ISG attack on XMSSMT and K2SN-MSS are well matched.
6 For XMSSMT, we use the commit “fb7e3f8edce8d412a707f522d597ab3546863202”

that is published on Apr 24, 2019 as the weakness was fixed in later commits.

210 R. Booth et al.

20 24 28 212 216

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

Number of guesses g

Su
cc
es
s
pr
ob

ab
ili
ty

Theor. vs. actual succ. prob. of ISG attack on XMSSMT

Theoretical succ. prob. when q = 20

Actual succ. prob. when q = 20

Theoretical succ. prob. when q = 28

Actual succ. prob. when q = 28

20 24 28 212 216

2−16

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

Number of guesses g

Su
cc
es
s
pr
ob

ab
ili
ty

Theor. vs. actual succ. prob. of ISG attack on K2SN-MSS

Theoretical succ. prob. when q = 20

Actual succ. prob. when q = 20

Theoretical succ. prob. when q = 28

Actual succ. prob. when q = 28

Fig. 2. Theoretical and actual success probability of ISG attack on XMSSMT(Left) and
K2SN-MSS (Right).

We note that the theoretical runtime is a count of the atomic operations while
the actual runtime is in milliseconds. Figure 3 shows that both the theoretical
and the actual runtimes increase at a similar rate as the number of guesses
increase. Also note that the actual runtime begins to grow more slowly as g
gets close to its maximum value due to that our actual attack terminates before
making all the g guesses.

20 24 28 212 216
20

26

212

218

224

Number of guesses g

T
he

or
et
ic
al

ru
nt
im

e
(a
to
m
ic

op
er
at
io
ns
)

Theor. vs. actual runtime of ISG attack on XMSSMT

Theoretical runtime when q = 20

Actual runtime, when q = 20

Theoretical runtime when q = 28

Actual runtime when q = 28

20

26

212

218

224

A
ct
ua

l
ru
nt
im

e
(m

ill
is
ec
on

ds
)

20 24 28 212 216
20

26

212

218

224

230

Number of guesses g

T
he

or
et
ic
al

ru
nt
im

e
(a
to
m
ic

op
er
at
io
ns
)

Theor. vs. actual runtime of ISG attack on K2SN-MSS

Theoretical runtime when q = 20

Actual runtime when q = 20

Theoretical runtime when q = 28

Actual runtime when q = 28

20

26

212

218

224

230

A
ct
ua

l
ru
nt
im

e
(m

ill
is
ec
on

ds
)

Fig. 3. Theoretical and actual runtime of ISG attack on XMSSMT(Left) and K2SN-
MSS (Right).

6 Mitigations Against the ISG Attack

To protect against the ISG attack, the generation of the pseudorandom keys for
OTSs must be revised. Recall that in XMSSMT, oski is generated as

oski = (xi,1, . . . ,xi,�) = (F(seedots,i, 1), . . . ,F(seedots,i, �)).

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 211

To prevent the attack, it suffices to generate oski by having the input to F
dependent on the position of the OTS instance. Specifically, one computes the
secret key of the i-th WOTS+ instance within an XMSS tree as

oski =
(F(seedots,i, s‖t‖i‖1), . . . ,F(seedots,i, s‖t‖i‖�)

)
,

where s is the layer of the XMSS tree and t is the index of that tree within
layer s.

The same strategy can also be used for K2SN-MSS. Specifically, one can
generate oski in the following manner:

oski = (xi,1, . . . ,xi,t) = (F(seedots,i, i‖1), . . . ,F(seedots,i, i‖t)).

ETSI CyberSupport [1] also proposed a fix to prevent the attack by gener-
ating each secret string as

xi,j = F(seedXMSS,Addres),

where seedXMSS is the seed of an XMSS tree and Addres is the unique address
of xi,j within the hyper tree.

7 Concluding Remarks

We proposed a multi-target attack called the ISG attack on XMSSMT and K2SN-
MSS, two hash-based signature schemes with provable security. The attacks,
however, do not contradict the security proofs of the two schemes because the
pseudorandom generation of secret keys is outside the security model and proofs
of these schemes, and is considered an implementation detail of the algorithms.
Thus our attack can be seen as an attack on the implementation. As discussed
above, preventing the attack is straightforward. However, proving the soundness
of using a secure PRF in an MSS structure remains a non-trivial open ques-
tion. Our results show once again the importance of detailed specifications of
cryptographic systems, and not leaving out important details that are needed in
practice.

Acknowledgment. The works of Roland Booth, Yanhong Xu and Reihaneh Safavi-
Naini were supported in part by Alberta Innovates Strategic Chair in Information
Security Grant and Natural Sciences and Engineering Research Council of Canada
Discovery Grant. Roland Booth was also supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), [funding reference number 551629 -
2020]. (Roland Booth a été financé par le Conseil de recherches en sciences naturelles
et en génie du Canada (CRSNG), [numéro de référence 551629 - 2020].)

A Description of WOTS+

We now describe the WOTS+ used in [23,26]. Let w be the Winternitz param-
eter, n be the security parameter, and F : {0, 1}n × {0, 1}n → {0, 1}n be a

212 R. Booth et al.

secure hash function. Define �1 =
⌈

n
log2(w)

⌉
and �2 =

⌊
log2(l1(w−1))

log2(w)

⌋
+ 1, and

� = �1 + �2. The secret key of WOTS+ is osk = (x1, . . . ,x�) ∈ ({0, 1}n)� and
the public key is opk = (y1, . . . ,y�) where yi = cw−1,0(xi,aci

,PubSeed). Here
aci

is the address of the i-th chain within the OTS instance, PubSeed is a pub-
lic seed, and ci,j(x,ac,PubSeed) = F (ki,j , c

i−1,j(x,ac,PubSeed) ⊕ ri,j) and
c0,j(x,ac,PubSeed) = x for all j ∈ Z

+, where ki,j , ri,j are pseudorandomly
computed. To sign a message M , one first computes a base-w representation
M = (M1, . . . ,M�1), then computes the checksum C =

∑�1
j=1(w − 1 − Mj) and

its base-w representation C = (C1, . . . , C�2). Set B = (b1, . . . , b�) = M‖C. The
signature of M is

σ = (z1, . . . , z�) = (cb1,0(x1,ac1 ,PubSeed), . . . , cb�,0(x�,ac�
,PubSeed)).

The signature σ = (z1, . . . , z�) is considered valid if for all j ∈ [1, �]: yj =
cw−1−bj ,bj (zj ,acj

,PubSeed).

B Deferred Details of the ISG Attack on XMSSMT

Lower Bound on P . Consider a WOTS+ signature σ on a random message M ,
let B = (b1, . . . , b�) be its base-w representation. The number of secret strings
revealed in σ is the same as the number of bi such that bi = 0. Given a random
message M , the probability that bi = 0 for i ∈ [1, �1] is 1

w . Unfortunately, there
is no easy way to calculate the probability that bi = 0 for i ∈ [�1 + 1, �]. To this
end, we provide a lower bound for P . Denote E as the number of bi such that
bi = 0 for i ∈ [1, �] and F as the number of bi such that bi = 0 for i ∈ [1, �1],
then we obtain the following:

P = Pr[E ≥ 2] ≥ Pr[F ≥ 2] = 1 − Pr[F = 0] − Pr[F = 1]

= 1 − (1 − 1
w

)�1 − �1
w

(1 − 1
w

)�1−1.

References

1. Public comments on draft sp 800–208. https://csrc.nist.gov/CSRC/media/Publica
tions/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf. Acce-
ssed 12 Oct 2020

2. Anderson, R.: Two remarks on public key cryptology. Unpublished (1997). http://
www.cl.cam.ac.uk/users/rja14

3. Aumasson, J.P., et al.: Sphincs (2020). round 3 Submisstion to NIST Post Quantum
Project

4. Aumasson, J., Endignoux, G.: Clarifying the subset-resilience problem. IACR
Cryptol. ePrint Arch. 2017, 909 (2017)

5. Aumasson, J.-P., Endignoux, G.: Improving stateless hash-based signatures. In:
Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 219–242. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76953-0 12

https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
http://www.cl.cam.ac.uk/users/rja14
http://www.cl.cam.ac.uk/users/rja14
https://doi.org/10.1007/978-3-319-76953-0_12

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 213

6. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

7. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

8. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The sphincs+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) CCS 2019, pp. 2129–2146. ACM (2019)

9. Booth, R., Karati, S.: Isg attack, December 2020. https://github.com/rmbooth2/
isg-attack. Accessed 16 Jun 2021

10. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

11. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 3

12. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3 5

13. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an
improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006). https://doi.org/
10.1007/11941378 25

14. Chase, M., et al.: Picnic: A family of post-quantum secure digital signature algo-
rithms. https://microsoft.github.io/Picnic/

15. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A.: Recommendation for stateful hash-based signature schemes. NIST Special
Publication (SP) 800–208 draft (2019). https://doi.org/10.6028/NIST.SP.800-208-
draft

16. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A.: Recommendation for stateful hash-based signature schemes. NIST Special
Publication (SP) 800–208 (2020). https://doi.org/10.6028/NIST.SP.800-208

17. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88403-3 8

18. Dinur, I., Nadler, N.: Multi-target attacks on the picnic signature scheme and
related protocols. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 699–727. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 24

19. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005). https://doi.org/10.1007/11586821 8

20. Gjøsteen, K.: Comments on dual-ec-drbg/nist sp 800–90, draft December 2005,
April 2006

21. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-662-46800-5_15
https://github.com/rmbooth2/isg-attack
https://github.com/rmbooth2/isg-attack
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/11941378_25
https://doi.org/10.1007/11941378_25
https://microsoft.github.io/Picnic/
https://doi.org/10.6028/NIST.SP.800-208-draft
https://doi.org/10.6028/NIST.SP.800-208-draft
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/11586821_8

214 R. Booth et al.

22. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

23. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: extended
Merkle signature scheme. Technical report, RFC 8391 (2018)

24. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

25. Hülsing, A., Rijneveld, J., Schwabe, P.: ARMed SPHINCS - computing a 41 KB
signature in 16 KB of RAM. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 446–470. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 17

26. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

27. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

28. Kalach, K., Safavi-Naini, R.: An efficient post-quantum one-time signature scheme.
In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 331–351.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6 20

29. Karati, S.: K2sn-mss, June 2019. https://github.com/skarati/K2SN-MSS. Access-
ed 21 Jan 2020

30. Karati, S., Safavi-Naini, R.: K2SN-MSS: an efficient post-quantum signature. In:
Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang, Z. (eds.)
AsiaCCS 2019, pp. 501–514. ACM (2019)

31. Katz, J.: Analysis of a proposed hash-based signature standard. In: Chen, L.,
McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 261–273.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4 12

32. Lamport, L.: Constructing digital signatures from a one way function. Technical
report CSL-98, October 1979. this paper was published by IEEE in the Proceedings
of HICSS-43 in January 2010 (2010)

33. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. IACR Cryptol. ePrint Arch. 2012, 64 (2012)

34. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 4

35. McGrew, D., Curcio, M.: Hash-based signatures. Internet-Draft draft-mcgrew-
hash-sigs-02 (2014). https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-
sigs-02

36. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali hash-based signatures. Tech-
nical report, RFC 8554 (2019). https://doi.org/10.17487/RFC8554

37. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

38. Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis, Stan-
ford University (1979)

https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-662-49384-7_17
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-319-31301-6_20
https://github.com/skarati/K2SN-MSS
https://doi.org/10.1007/978-3-319-49100-4_12
https://doi.org/10.1007/978-3-540-71039-4_4
https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-02
https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-02
https://doi.org/10.17487/RFC8554
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 215

39. Rijneveld, J., Hülsing, A., Cooper, D., Westerbaan, B.: XMSS-reference, April
2019. https://github.com/XMSS/xmss-reference/commit/fb7e3f8edce8d412a707f5
22d597ab3546863202

40. Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. IACR Cryptol. ePrint Arch. 2006, 190 (2006)

41. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994)

42. Strenzke, F.: An analysis of OpenSSL’s random number generator. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 644–669. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 25

43. Yang, G., Duan, S., Wong, D.S., Tan, C.H., Wang, H.: Authenticated key exchange
under bad randomness. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 113–
126. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0 10

https://github.com/XMSS/xmss-reference/commit/fb7e3f8edce8d412a707f522d597ab3546863202
https://github.com/XMSS/xmss-reference/commit/fb7e3f8edce8d412a707f522d597ab3546863202
https://doi.org/10.1007/978-3-662-49890-3_25
https://doi.org/10.1007/978-3-642-27576-0_10

(Short Paper) Analysis of a Strong Fault
Attack on Static/Ephemeral CSIDH

Jason T. LeGrow1(B) and Aaron Hutchinson2

1 Department of Mathematics, University of Auckland, Auckland, New Zealand
jason.legrow@auckland.ac.nz

2 Institute for Quantum Computing and Department of Combinatorics and
Optimization, University of Waterloo, Waterloo, ON, Canada

Abstract. CSIDH is an isogeny-based post-quantum key establishment
protocol proposed in 2018. In this work we analyze attacking imple-
mentations of CSIDH which use dummy isogeny operations using fault
injections from a mathematical perspective. We detail an attack (implicit
in prior works on implementations of CSIDH) by which a static private
key can be learned (up to sign) by the attacker with certainty using∑�log2(bi) + 1� faults using a binary search approach, where b is the
bound vector defining the keyspace. A natural idea for a countermeasure
to this attack is to randomly mix the real degree �j isogenies together
with the dummy ones, so that binary search becomes ineffective. In this
work we evaluate the efficacy of this idea as a fault attack countermea-
sure; in particular, we give bounds (as a function of the bound vec-
tor entries) on the number of fault injections (of a particular relatively
strong, hypothetical type) required for an attacker to have a given success
probability for guessing an unknown key, and present the results of sim-
ulated attacks on keys sampled from 6 keyspaces found in the literature.
We find that the number of faults required to reach any constant suc-
cess probability in guessing a static key is quadratic in the bound vector
entries, rather than logarithmic as in the “real-then-dummy” setting—
concretely, the number of faults required increases from a few hundred to
tens of thousands. Broadly, this behaviour is reflected in our simulations.

Keywords: Isogeny-based cryptography · CSIDH · Fault attacks ·
Key exchange

1 Introduction

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) is a post-quantum
key establishment protocol by Castryck et al. [3]. CSIDH uses isogenies of super-
singular elliptic curves to perform key establishment à la Diffie-Hellman. Specif-
ically, let p = 4�1 · · · �n − 1 be prime, with �1, . . . , �n small odd primes (typically
taken as the first n − 1 odd primes followed by the smallest �n which makes p
prime). The value n depends on the targeted security level. The supersingular

c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 216–226, 2021.
https://doi.org/10.1007/978-3-030-85987-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_12

(Short Paper) Analysis of a Strong Fault Attack 217

Montgomery curve E0/Fp : y2 = x3 + x has the property that the ideal gen-
erated by [�j] in the endomorphism ring O of E0 splits as �iO = lj lj where
lj := ([�j], π − 1) and lj := ([�j], π + 1), where π is the Frobenius endomorphism
of E0; thus in the ideal class group we have [lj]−1 = [lj]. For a vector of integers
e = (e1, . . . , en) and an elliptic curve E with Fp-endomorphism ring isomorphic
to that of E0, we define e∗E := [l1]e1 · · · [ln]en ∗E, where ∗ in the latter expression
denotes the class group action. CSIDH key establishment proceeds as follows.
Alice and Bob choose their private keys eA and eB from

∏n
j=1[−bj , bj] ∩ Z,

respectively (here b is the bound vector : the system parameter which defines
the keyspace). More recent works [7,9] on CSIDH choose private keys from the
non-negative intervals

∏n
j=1[0, bj] ∩Z; we distinguish these two scenarios as the

signed and unsigned settings, respectively. Then, Alice computes her public key
as EA := eA ∗ E0 and similarly Bob computes his as EB := eB ∗ E0. Alice
sends EA to Bob, and Bob sends EB to Alice. To construct the shared secret,
Alice computes EBA := eA ∗ EB , while Bob computes EAB := eB ∗ EA. By the
commutativity of the ideal class group, we have EBA

∼= EAB ; the shared key is
then (derived from) the Fp-isomorphism class of this final curve.

CSIDH has been the subject of many works aimed at optimizing its perfor-
mance [2,7,9–12]. Most works implement constant-time algorithms using dummy
isogeny constructions; that is, for each 1 ≤ j ≤ n, exactly bj isogenies of degree �j

are constructed regardless of the key ej , with |ej | real and bj−|ej | dummy. Nearly
all constant-time implementations of CSIDH so far have used dummy isogeny
constructions in this manner, with the exception of the slower “no-dummy” algo-
rithm of [4]. Dummy operations often leave cryptosystems vulnerable to attack
by means of fault injections, and these constant time implementations of CSIDH
which use dummy isogenies are no exception.

Our contributions in this work can be summarized as follows:

1. We describe a fault attack in a natural model (with a relatively strong
attacker) in which an attacker can achieve a complete break of the system
under ideal conditions by recovering the private key using

∑n
j=1�log2(bj)+1�

faults using binary search.
2. As a potential countermeasure, for a fixed key e we propose randomly mixing

the constructions of the |ej | degree �j real isogenies with the bj −|ej | dummy
isogenies at the time of evaluation of the group action. Working with this
countermeasure in mind, we:
(a) Formalize fault injections targeted at the ith isogeny of degree �j in a

given group action computation as revealing an entry xj
i of the decision

vector xj which is 1 if that isogeny is real, and 0 if it is dummy;
(b) Analyze a näıve attack on the randomized protocol; in particular, we

derive formulas for the distribution on the magnitude |ej | of the key given
a string of outputs xj

i from pairwise different group action evaluations
under the same key e. We present upper and lower bound on the number
of faults required to achieve any desired error threshold ε;

(c) Introduce an optimized approach based on Gray codes to determine the
key signs given their magnitudes (recovered from a fault attack), and;

218 J. T. LeGrow and A. Hutchinson

(d) Present the results of simulated fault attacks for static secret keys from
keyspaces defined by bound vectors present in the literature [3,7,9,12].

This paper is organized as follows. Section 2 introduces decision vectors and
describes the fault attacks we consider concretely and mathematically. In Sect. 3
we derive a probability distribution on the magnitude of the private key given a
sequence of oracle outputs from each index j, and detail an algorithm which most
effectively attacks CSIDH using this distribution. Furthermore Sect. 3 derives
theoretical bounds on the number of attacks needed to reach a desired certainty
threshold about the value of the key, and shows how Gray codes can be used to
efficiently learn the sign of the key given its magnitude. Finally Sect. 4 reports
the results of simulating these ideas on 6 different bound vectors.

2 Preliminaries

Let p = 4�1 · · · �n − 1 be prime with �1, . . . , �n pairwise distinct small odd primes.
For each prime �j we encode the choice of constructing the ith degree �j isogeny ϕi,j

as either a real or dummy into a binary decision vector xj = (xj
1, . . . , x

j
bj

), in which

xj
i = 1 denotes that the ith degree �j isogeny shall be real, and xj

i = 0 denotes
that the ith degree �j isogeny shall be dummy. For correctness of the algorithm the
Hamming weight H(xj) of xj must be equal to |ej |. This vector xj represents only
the choice of the type of isogeny constructed and may be explicitly or implicitly
stored in memory for a given implementation of the group action, and it is this
vector which our attacks target. As an example, Algorithm 1 depicts the constant
time algorithm given by Onuki et al. [12]. Line 12 of Algorithm 1 computes the
boolean value “ei �= 0” which is used as a mask bit to determine the type of isogeny
to be constructed. We consider this boolean as one of the values in the decision
vector xj . The decision vector for other dummy-based constant time algorithms
for CSIDH are defined similarly.

2.1 General Structure of the Attack

Our attacks target the second round of the key establishment, when one party
is computing the action of their private key on the curve they received from the
other party. Our attacker is an enhanced form of [1, Attacker 3]; in particular,
our attacker who can introduce faults into isogenies of chosen degree in a chosen
“round” of computation. We note that an attacker who can determine (but
not choose) the degree of the isogeny they disrupt (like Attacker 3) can simply
introduce O(n) faults (in expectation) to obtain the result of a fault introduced
at a chosen index with constant probability; thus our analysis can be applied
(with some modifications) to the setting of [1, Attacker 3].

For simplicity we consider the scenario that the attacker introduces exactly
one fault per group action evaluation targeting the ith isogeny of degree �j , for
i, j of the attacker’s choice.

(Short Paper) Analysis of a Strong Fault Attack 219

Algorithm 1: Constant time version of CSIDH group action evaluation.
Input : A ∈ Fp, b ∈ N, a list of integers (e1, . . . , en) s.t. −b ≤ ei ≤ b for

i = 1, . . . , n, and distinct odd primes �1, . . . , �n s.t. p = 4
∏

i �i − 1.
Output: B ∈ Fp s.t. EB = (le11 · · · len

n) ∗ EA, where li = (�i, π − 1) for
i = 1, . . . , n, and π is the p-th power Frobenius endomorphism of EA.

1 Set e′
i = b − |ei|.

2 while some ei �= 0 or some e′
i �= 0 do

3 Set S = {i | ei �= 0 or e′
i �= 0}.

4 Set k =
∏

i∈S �i.
5 Generate P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] by Elligator [9, Section 5.3].
6 Let P0 = [(p + 1)/k]P0 and P1 = [(p + 1)/k]P1.
7 for i ∈ S do
8 Set s be the sign bit of ei.
9 Set Q = [k/�i]Ps.

10 Let P1−s = [�i]P1−s.
11 if Q �= ∞ then
12 if ei �= 0 then
13 Compute an isogeny ϕ : EA → EB with ker(ϕ) = 〈Q〉.
14 Let A ← B, P0 ← ϕ(P0), P1 ← ϕ(P1), and ei ← ei − 1 + 2s.

15 else
16 Dummy computation.
17 Let A ← A, Ps ← [�i]Ps, and e′

i ← e′
i − 1.

18 end

19 end

20 end
21 Let k ← k/�i.

22 end
23 Return A

3 Attack Analysis

Here we analyze how attacks from Sect. 2 which target particular isogenies ϕi,j

can be performed together for varying i and j to gain information about the
private key e. Going forward, we use O to refer to an oracle which, on input
(j, i), reveals xj

i for a given group action computation.
Section 3.1 examines the setting in which all real degree �j isogenies are con-

structed first, followed by any remaining degree �j dummy isogenies. The remain-
der of the section analyzes when each xj is chosen uniformly at random at the
time of the group action evaluation with the correct Hamming weight.

3.1 “Real-then-Dummy” Decision Vector

Here we briefly consider the “real-then-dummy” method, which every instantia-
tion of CSIDH in the literature has used so far at the time of this writing. Here,
xj has exactly the form xj = (1, 1, . . . , 1, 0, 0 . . . , 0), where there are |ej | many
1’s. For this scenario the attack is extremely simple: the magnitude of the private

220 J. T. LeGrow and A. Hutchinson

key |ej | corresponds exactly with the position in which the last 1 appears, and
so a simple binary search can determine |ej | with absolute certainty in exactly
�log2(bj)� + 1 queries to the oracle O(j, ·). It follows that the entire key e can
be determined exactly up to sign using

∑n
j=1(�log2(bj)� + 1) calls to O. As the

above shows, the real-then-dummy case is susceptible to a very simple attack.
The most obvious change to make to attempt to counter the binary search attack
is to randomize the value of each xj . In Sect. 3.2, we consider the case when xj

is drawn from the set Xj := {xj ∈ {0, 1}bj : H(xj) = |ej |} uniformly at random,
where H denotes Hamming weight.

3.2 Dynamic Uniformly Random Decision Vector

We consider the setting where the decision vector xj is chosen from Xj =
{xj ∈ {0, 1}bj : H(xj) = |ej |} uniformly at random during every evaluation
(e, E)
→ e ∗ E of the group action. We refer to this setting as having a dynamic
decision vector. If one views the decision vector xj as a means of permuting the
constructions of the real and dummy isogenies, then the oracle calls O(j, i1) and
O(j, i2) for i1 �= i2 on different computations of the group action may actually
correspond to the construction of the “same” isogeny, and so multiple calls to
O(j, ·) informally “yield less information” than in the previous settings.

We require formulas for the probability of a given key (magnitude) value given
oracle outputs. For brevity we will only explicitly give the result in the unsigned
setting. Fix an index 1 ≤ j ≤ n to analyze. For � ∈ N, let β(�) = (β(�)

1 , . . . , β
(�)
�)

(depending on j) denote the string of outputs of the first � queries of O(j, ·),
and let q(β(�))

j denote the adversary’s a posteriori distribution on ej , having seen

β(�). That is, q
(β(�))
j,k := P[ej = k|β(�)] for 0 ≤ k ≤ bj . We compute the value of

this probability explicitly:

Theorem 1. In the setting of unsigned exponents and dynamic decision vectors,
for every 1 ≤ j ≤ n, 0 ≤ k ≤ bj, and binary string β(�) of length � ≥ 1 we have

q
(β(�))
j,k =

(bj − k)�−H(β(�))kH(β(�))

∑bj

t=0(bj − t)�−H(β(�))tH(β(�))
, (1)

where β(0) is the empty string and q
(0)
j,k := P[ej = k] = 1/(bj + 1) for every k.

Proof Idea. Apply Bayes’ Theorem, the Law of Total Probability, and the fact
that the ej are chosen uniformly to get a recursive formula. Then use induction.

Attack Model. Here we detail an attack on CSIDH in the setting of dynamic
decision vectors in both the signed and unsigned settings which makes use of the
probabilities previously computed in this section. In the attack, referred to as
least certainty, the attacker chooses a key index 1 ≤ j∗ ≤ n in which to inject a
fault on each iteration, where in the unsigned setting the index j∗ is chosen as

(Short Paper) Analysis of a Strong Fault Attack 221

j∗ = arg min1≤j≤n{max0≤k≤bj
q

β
(�)
j

j,k }. where β
(�)
j is the string of oracle outputs

for the index j (with � also depending on j). That is, the attacker targets the
index for which they are least certain about the value of the key. The variables
qj are initialized as the uniform distribution on bj + 1 elements (in the unsigned
setting) or qj,0 = 1

2bj+1 , qj,k = 2
2bj+1 for k �= 0 (in the signed setting).

In both settings, the attacker performs some desired number of iterations,
with each iteration choosing the index j∗ to attack based on the index of least
certainty. Once these iterations are complete, the attacker is left with a proba-
bility distribution on the (absolute value of the) key, in which the most likely

value for |ej | is given by arg max0≤k≤bj
q

β
(�)
j

j,k .
The attacker’s probability of correctly guessing the key (magnitudes) is given

by
∏n

j=1 max0≤k≤bj
q
(β(�j))
j,k ; the attacker stops once this quantity is large enough.

Bounds on Naiv̈e Attacks. Here we seek to determine bounds on the number
of faults required to guarantee a given success rate 1 − ε in a fault attack. For
an upper bound, it suffices to consider any particular attack; we consider the
attack we call the “näıve” method (we will also find a lower bound for this
attack). This attack is as follows: choose a vector m ∈ N

n, and for 1 ≤ j ≤ n,
apply mj fault attacks on isogenies of degree �j . This yields a sequence β(mj) of
outputs in which (say) wj such isogenies are revealed to be real; we then guess
that ej = e∗

j := �bj
wj/mj
. This value of ej is what we would obtain by rounding

the maximum likelihood estimate for ej , if the a priori distribution of ej were
uniform on [0, bj] rather than [0, bj] ∩ Z. Our guess at the entire key e is then
e = (e∗

1, e
∗
2, . . . , e

∗
n)T . We obtain the following bounds:

Theorem 2. Let b be a bound vector. For any ε ∈ (0, 1), in order to guarantee
success probability at least 1 − ε in a näıve attack on a key chosen from the
keyspace defined by b, it suffices to inject

min
{∑n

j=1

⌈
2b2j loge

2
1− n

√
1−ε

⌉
,
∑n

j=1

⌈
2b2j loge

(
2 +

2
ε ‖b‖2−2mink{bk}2

b2j

)⌉}

individual faults.

Proof Idea. Apply a Hoeffding bound [6] to obtain the number of faults required
to get a given success probability for one key entry. For the first bound, consider
an attack which achieves success probability n

√
1 − ε for each key entry. For the

second bound, compute the Lagrangian L(m;λ) of

min
∑n

j=1
mj s.t.

∑n

j=1
loge

(
1 − 2e−mj/2b2j

)
≥ loge(1 − ε) (P)

and solve ∇mL(m∗;λ∗) = 0 for m∗ in terms of λ∗. To complete the proof, note
that λ∗ = 2

ε ‖b‖2 − 2mink{bk} is sufficient to satisfy the constraint. ��
Theorem 3. Let b be a bound vector and let ej ∈ {1, 2, . . . , bj − 1}. Let êj =
min{ej , bj − ej}, and 0 ≤ ε ≤ êj

8(bj−êj)
. Then for a näıve attack which targets mj

222 J. T. LeGrow and A. Hutchinson

faults at the jth key entry and which correctly recovers its value with probability

at least 1 − ε when it is equal to ej, we have mj ≥ 1
2 ê2j

(
1 − 2

√
2(bj−êj)

êj
ε
)2

.

Proof Idea. Use the Marcinkiewicz-Zygmund inequality [5,8] to bound the
expected value of |wj − mj

|ej |/bj|, and the Payley-Zygmund inequality [13] to
bound the probability that it is too large. The rest is straightforward.

As a particular consequence of Theorem 3, a näıve attack which succeeds
with probability at least 1 − ε (for ε small enough) for every possible key must
satisfy

∑n
j=1 mj ≥ ∑n

j=1
1
2

(
bj−1
2

)2 (
1 − 2

√
2(bj+1)

bj−1 ε
)2

. (2)

For fixed ε, this lower bound has the same asymptotic behaviour as the upper
bound of Theorem 2, up to logarithmic factors.

3.3 Determining the Signs of the Key

Given key magnitudes |e∗
1|, . . . , |e∗

n|, the standard meet-in-the-middle approach
to find the signs is to split �1, . . . , �n into two batches—say BL = {�1, �2, . . . , �k}
and BR = {�k+1, �k+2, . . . , �n} where k =

⌈
n
2

⌉
. Define the sets

TL =
{

[�(−1)s1 |e∗
1 |

1 · · · �(−1)sk |e∗
k|

k] ∗ E0 : si ∈ {0, 1}
}

,

TR =
{

[�
−(−1)sk+1 |e∗

k+1|
k+1 · · · �−(−1)sn |e∗

n|
n] ∗ EA : si ∈ {0, 1}

}
,

where E0 is the initial curve and EA is the public key. All curves in TL are
computed and stored in a table, and curves in TR are iterated through (but not
stored) until a collision with TL is found. When a match between the sets is
found at s∗

1, s
∗
2, . . . , s

∗
n, the correct key is e∗ = ((−1)s∗

j |e∗
j |)n

j=1.
Näıvely, computing all curves in the above sets TL and TR requires evaluating

the class group action 2k+2n−k times, using ideals whose product decomposition
contains

∑k
i=1 |e∗

i | terms (for TL) or
∑n

i=k+1 |e∗
i | terms (for TR). However, this

can be made more efficient by constructing the curves in a particular order. In
the following we optimize computing all curves in TL, and iteration through TR

can be optimized analogously.
Note that iterating through TL corresponds with iterating through {0, 1}k. If

the tuples (s1, . . . , sk) are ordered according to a length-k binary Gray code C,

we need only apply the class group element l
±2|e∗

j |
j to the previously computed

curve, where j is the index which changes between the previous tuple and the
current one. This reduces the cost to

∑k
i=1 2τi|e∗

i |κi where τ are the transition
numbers of C—that is, τi is the number of times that the ith bit flips in C—and
κi is the cost of evaluating (E, �i)
→ [li] ∗ E.

(Short Paper) Analysis of a Strong Fault Attack 223

To get a better performing partition of the �j , we define the permutation
σ which satisfies |e∗

σ(1)|κσ(1) ≤ |e∗
σ(2)|κσ(2) ≤ · · · ≤ |e∗

σ(n)|κσ(n), order the �j

according to σ, and then alternately assign the �σ(j) to BL and BR so that

BL = {�σ(j) : j ≡ 1 (mod 2) and 1 ≤ j ≤ n},

BR = {�σ(j) : j ≡ 0 (mod 2) and 1 ≤ j ≤ n}.

To iterate through TL and TR, we order the sign vectors s according to the binary
reflected Gray code, whose transition numbers are τ = (2k−1, 2k−2, . . . , 1). Iter-
ating via σ and the reflected binary Gray code (RBGC) is optimal over all
binary Gray codes. In TL (all of whose curves are stored), one can use any curve
already computed to determine the next curve rather than being limited to only
the previously computed curve; such a method of iteration would correspond to
a spanning tree in the hypercube graph Qn. Even allowing such algorithms the
RBGC method is still optimal. We estimate that for the bound vector of [7] the
RBGC method would be approximately 88% faster than the näıve method.

4 Simulation Results

We simulated fault injection attacks on CSIDH-512, using the least certainty
method and various values for the bound vector b. For the unsigned dynamic
setting, we used three bound vectors from previous works: (1) the uniform vector
(10, 10, . . . , 10) given by Castryck et al. in [3], referred to as UD-Uniform; (2)
the vector given by Meyer et al. in [9], labeled UD-MCR; (3) the vector given
by Hutchinson et al. in [7], labeled UD-HLKA. In the signed dynamic setting,
we also used three different vectors: (1) the uniform vector (5, 5, . . . , 5) given
by Castryck et al. in [3], labeled SD-Uniform; (2) the vector of Onuki et al. in
[12], labeled SD-OAYT; (3) the vector given by Hutchinson et al. in [7], labeled
SD-HLKA. We recorded the number of trials required to reach certainty y for
990 values of y between 0.1% and 99.9%, across 1000 randomly-sampled private
keys for each of the six bound vectors we considered. Table 1 reports the mean
number of attacks used in our simulations for each vector to reach a certainty
level of 1%, 50%, 99%, and 99.9%. The number of faults required increased by a

Table 1. Mean number of attacks used to reach specified certainty thresholds for
various bound vectors over 1000 randomly generated private keys.

Certainty: 1% 50% 99% 99.9%
∑�log(bj) + 1�

Unsigned setting HLKA 15921 28865 45561 52062 356

MCR 12067 21872 34855 39738 342

Uniform 10584 19387 30760 35129 370

Signed setting HLKA 3039 5708 9272 10734 263

OAYT 3552 6574 10741 12447 266

Uniform 2484 4667 7686 8890 296

224 J. T. LeGrow and A. Hutchinson

factor between 8 (for 1% certainty for SD-Uniform) and 146 (for 99.9% certainty
for UD-HLKA) over the real-then-dummy setting. The increase is greater in the
unsigned setting than the signed setting since the bound vector entries are larger
in the unsigned setting. Figure 1 gives more detailed experimental results.

Fig. 1. Plots depicting the distribution of the number of faults required to achieve a
given level of certainty in simulated fault attacks for six bound vectors: three in the
unsigned setting and three in the signed setting.

(Short Paper) Analysis of a Strong Fault Attack 225

5 Conclusions

Based on our analysis and simulated fault attacks, randomizing the order of
isogenies in CSIDH does dramatically increase the number of faults required to
learn a static secret key; however, this increase is likely not sufficient to thwart
a fault attack of the (relatively strong) kind we consider.

Acknowledgements. Jason T. LeGrow was funded in part by MBIE fund UOAX1933.

References

1. Campos, F., Kannwischer, M.J., Meyer, M., Onuki, H., Stöttinger, M.: Trouble
at the CSIDH: protecting CSIDH with dummy-operations against fault injection
attacks. In: 2020 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC), pages 57–65, Los Alamitos, CA, USA, September 2020. IEEE Computer
Society (2020)

2. Castryck, W., Decru, T.: CSIDH on the Surface. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 111–129. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 7

3. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

4. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.-J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and Faster Side-Channel Protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7 9

5. Chow, Y., Teicher, H.: Probability Theory: Independence, Interchangeability, Mar-
tingales. Springer, New York (1997)

6. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

7. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations
of CSIDH: a systematic approach to efficient strategies, permutations, and bound
vectors. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 481–501. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57808-4 24

8. Marcinkiewicz, J., Zygmund, A.: Sur les fonctions indépendantes. Fundam. Math.
29(1), 60–90 (1937)

9. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 17

10. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

11. Moriya, T., Onuki, H., Takagi, T.: How to construct CSIDH on edwards curves.
Cryptology ePrint Archive, Report 2019/843 (2019)

https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8

226 J. T. LeGrow and A. Hutchinson

12. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) A Faster constant-
time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.)
IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3 2

13. Paley, R.E.A.C., Zygmund, A.: On some series of functions, (3). Math. Proc. Cam-
bridge Philos. Soc. 28(2), 190–205 (1932)

https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2

(Short Paper) Simple Matrix Signature
Scheme

Changze Yin(B), Yacheng Wang, and Tsuyoshi Takagi

Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan
{yin-changze,wang-yacheng,takagi}@g.ecc.u-tokyo.ac.jp

Abstract. Multivariate cryptography plays an important role in post-
quantum cryptography. Many signature schemes, such as Rainbow
remain secure despite the development of several attempted attack algo-
rithms. However, most multivariate signature schemes use relatively
large public keys compared with those of other post-quantum signature
schemes. In this paper, we present an approach for constructing a mul-
tivariate signature scheme based on matrix multiplication. At the same
security level, our proposed signature scheme has smaller public key and
signature sizes compared with the Rainbow signature scheme.

Keywords: Post-quantum cryptography · Multivariate cryptography ·
UOV · Security

1 Introduction

The field of cryptography is critical for scientific development in general, espe-
cially in emerging social communication technologies. Traditionally, many stan-
dard cryptosystems, such as RSA, ECC, and Diffie-Hellman key exchange have
been widely used in commercial production. Unfortunately, since Shor’s [16] algo-
rithm was proposed in 1994, existing cryptosystems are expected to encounter
significant challenges as quantum computers will be brought into service in the
near future. Therefore, more secure and robust cryptosystems need to be devel-
oped to protect the devices and systems begin used currently. This new type
of cryptosystems has been widely referred to in the recent literature as post-
quantum cryptography.

Among the most popular subjects in post-quantum cryptography, multivari-
ate public key cryptography (MPKC) is based on the difficulty of solving a
multivariate quadratic (MQ) problem. MQ problems are defined by the compu-
tation of solutions to a quadratic polynomial system with n unknowns and m
equations over a finite field Fq. Studies have shown that MQ problems are NP-
complete [11]. This promising result is expected to be beneficial for the creation
of secure cryptosystems such as encryption schemes and signature schemes.

Supported by JST CREST Grant Number JPMJCR14D6, Japan.

c© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 227–237, 2021.
https://doi.org/10.1007/978-3-030-85987-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-85987-9_13

228 C. Yin et al.

Until now, several effective MPKC encryption schemes and signature schemes
have been proposed and have demonstrated good performance. For instance,
Rainbow [8] is an MPKC signature scheme that survived in the 3rd round
of NIST [3] standardization. Other signature schemes such as the unbalanced
oil and vinegar scheme (UOV) [12] and HFEv- [15] are well-known for their
groundbreaking and original trapdoor designs. Moreover, many MPKC encryp-
tion schemes, including hidden field equations (HFE) [15] and simple matrix
encryption scheme (ABC) [18] have been explored recently.

Although numerous MPKC signature schemes and encryption schemes have
been proposed, most of them have been proven to be insecure under various
types of attacks, such as algebraic attacks, rank attacks, differential attacks,
and equivalent key attacks, among others. Most MPKC cryptosystems are also
limited in that the size of their public keys is too large to be utilized in practice.
Considering these developments, some further improvements in such methods
appear to be necessary to decrease the key size without loss of security.

Public keys that are too large to apply to small or low-capacity devices are
among the most significant remaining problems in multivariable cryptosystems.
The fundamental reason behind this is that cryptographers commonly use poly-
nomials with numerous variables as public keys to ensure the security of their
designed schemes. Therefore, the development of a secure signature scheme with
low storage requirements remains an important and meaningful challenge in this
field.

Contributions: We proposed a new method that is inspired by UOV and ABC
for constructing an MPKC signature scheme. The key point of this construction
method is to set some linear and quadratic terms as masks, and simply solve the
remainder with the given mask values.

Furthermore, we selected some basic attacks, namely algebraic attack and
MinRank attack, conducted experiments to test the security of our proposed
scheme, and presented their results. Fortunately, we found that special attacks
such as equivalent key attacks and invariant attacks [14] were ineffective in break-
ing our scheme, which is consistent with theoretical expectations. Based on these
experiments, we propose some parameters that satisfy the requirements of differ-
ent security levels. Compared with the Rainbow signature scheme, for the same
security level, the sizes of the public key and signature used in our proposed
method are smaller. In particular, for 256-bit security, the size of the public key
of our signature scheme was reduced by 63.4%.

This paper is organized as follows. In Sect. 2, the general MPKC structure is
introduced and some popular schemes are described. In Sect. 3, we focus on the
basic outline of our proposed scheme. Then, we test some basic attack algorithms
against our signature scheme in Sect. 4. By applying the computational results
presented in Sect. 4, we will propose some parameters for the different security
levels of our scheme in Sect. 5.

(Short Paper) Simple Matrix Signature Scheme 229

2 Trapdoor Designs for Multivariate Public Key
Cryptosystems

In this section, we describe the construction of multivariate public key cryptosys-
tems (MPKCs). In particular, some popular schemes are introduced as follows.

2.1 Constructions of MPKC

In general, an MPKC scheme has features of the following structure. Given
parameters q, n,m > 0, the public key P : F

n
q → F

m
q of this MPKC scheme

is defined as the composites of a tuple (T, F, S) over the polynomial ring
Fq[x1, . . . , xn] with unknowns (x1, . . . , xn) such that

P := T ◦ F ◦ S.

Especially, T : Fm
q → F

m
q , S : Fn

q → F
n
q are invertible affine transformations and

F : Fn
q → F

m
q which is called the central map, is a set of quadratic polynomials.

For different scenarios, this structure can be used to design encryption schemes
and signature schemes.

Clearly, F is the most essential part of an MPKC signature scheme. Several
excellent encryption and signature schemes have been proposed, with various
unique trapdoor designs. Among these, several schemes such as UOV [12], Rain-
bow [8] and HFEv - [15] stand out as excellent signature schemes. Considering
encryption schemes, ABC [18] and EFC [17] are the representative methods.
These schemes involve some very interesting and unique constructions; in the
following, we focus on several of these schemes to clarify the theoretical founda-
tion of the proposed approach.

2.2 UOV and Rainbow

In the construction of UOV[12], let o, v be positive integers and n = o+v. Then,
the central map F : Fn

q → F
o
q has the following structure.

F = (f1, . . . , fo),

in which

fk =
v∑

i=1

n∑

j=1

α
(k)
ij xixj +

n∑

i=1

β
(k)
i xi + γ(k), α

(k)
ij , β

(k)
i , γ(k) ∈ Fq, k ∈ {1, . . . , o}.

For convenience, we mark the first v variables as vinegar variables, and the
remainder are oil variables. Obviously, we can easily obtain exact values of the
oil variables for given values of the vinegar variables.

In terms of security, except solving the quadratic system of public key
directly, one possible approach is to find an inherent space O = {x ∈ F

n
q |x1 =

· · · = xv = 0} that P (O) = 0. Many special attacks have been designed based on

230 C. Yin et al.

this particular property, for example, reconciliation attacks [4], Kipnis-Shamir
attacks [13], and intersection attacks [1], among others.

Similarly, Rainbow [8] was designed using a multilayer oil and a vinegar
structure. To generate a Rainbow signature scheme with l layers and n unknowns
x = (x1, . . . , xn), we first find an increasing sequence (v1, . . . , vl+1) of l + 1
integers with 0 < v1 < · · · < vl < vl+1 = n. The central map of the Rainbow
scheme F : Fn

q → F
n−v1
q is constructed of l layers. In the k-th layer, a set of

functions are created in the range {fvk−v1+1, . . . , fvk+1−v1}, and each contained
function has the form

fs =
vk+1∑

i=1

vk∑

j=1

α
(s)
ij xixj +

vk+1∑

i=1

β
(s)
i xi + γ(s), s ∈ {vk − v1 + 1, . . . , vk+1 − v1}.

To generate a signature with a given message m ∈ F
n−v1
q , we follow the prop-

erty of UOV in each layer to obtain the values of new variables every stage and
a signature can be generated after l − 1 times iterations. Similar to the UOV
approach, some special attacks have been developed aiming to break the multi-
layer structure, including the MinRank and band separation attacks [4], among
others.

2.3 Simple Matrix Encryption

In the construction of a simple matrix encryption scheme [18], given a pos-
itive integer s, n = s2,m = 2s2, we first define three matrices A,B,C ∈
Fq[x1, . . . , xn]s×s in A := Mats(xi), B := Mats(bi), C := Mats(ci) where the
symbol

Mats : Fs2

q → F
s×s
q ,Mats(xi) :=

⎛

⎜⎝
x1 · · · xs

...
. . .

...
xs2−s+1 · · · xs2

⎞

⎟⎠

and for ∀i ∈ {1, . . . , s2}, bi, ci are linear combinations of (x1, . . . , xn). The central
map F is an enumeration of matrices E1 and E2 where E1 := AB,E2 := AC.
Through decryption, the central map can be transformed into a linear system
of A−1E1 = B,A−1E2 = C when A is invertible. In contrast, decryption failure
occurs with probability 1/q. In addition to applying an algebraic attack to solve
the polynomial system P (x) = m in variables x with a given message m ∈ F

m
q ,

more subtle or sophisticated attacks such as invariant [14] and HOLE attacks
[7] attempt to utilize the trapdoor structure.

3 Proposed Simple Matrix Signature Scheme

In this section, the outline of our proposed scheme is described in detail. Inspired
by UOV and ABC, we present the following recommend structure as our pro-
posed simple matrix signature scheme. Let Fq be a finite field with q elements,
u, v be positive integers, n = u2 + uv,m = u2, and l = � v

2 �. All the polyno-
mials in the following are defined over the polynomial ring Fq[x1, . . . , xn] with
variables x = (x1, . . . , xn).

(Short Paper) Simple Matrix Signature Scheme 231

– Key Generation: Generate matrices A(x) of size u × v, C(x) of size v × u
and E(x) of size u × u, such that

A(x) = (A1 A2), A1 = A1,0 +
n∑

i=1

A1,ixi, A1,i ∈ F
u×(v−l)
q , A2 ∈ F

u×l
q ,

C(x) =
(

C1

C2

)
, C1 = C1,0 +

n∑

i=1

C1,ixi, C1,i ∈ F
(v−l)×u
q , C2 ∈ F

l×u
q ,

E(x) = E0 +
n∑

i=1

Eixi;Ei ∈ F
u×u
q ,

where i ∈ {0, . . . , n}. Then, we generate a tame-like map h : Ful
q → F

ul
q such

that ⎧
⎪⎪⎨

⎪⎪⎩

h1(x) = x1,

hi(x) = xi +
i−1∑

j,k=1

h
(i)
jk xjxk, i = 2, . . . , ul,

where hi
jk ∈ Fq. The matrix B(x) of size v × u is defined as

B(x) =
(

B1

B2

)
, B1 = B1,0 +

n∑

i=1

B1,ixi, B1,i ∈ F
(v−l)×u
q ,

B2 =

⎛

⎜⎝
h1(x) · · · hu(x)

...
. . .

...
hul−u+1(x) · · · hul(x)

⎞

⎟⎠ .

Finally, we randomly choose a constant matrix Q ∈ F
u×u
q with full rank, and

two invertible affine transformations T : Fm
q → F

m
q and S : Fn

q → F
n
q .

– Secret Key:
• The maps S and T .
• The coefficients (A1,i, A2, C1,i, C2, Ei, B1,i, h

(i)
jk) of A(x), C(x), E(x), B(x)

and a constant matrix Q.
– Public Key: Let the matrix F̄ (x) ∈ Fq[x1, . . . , xn] be

F̄ (x) = A(x)B(x) + QB(x)T C(x) + E(x).

The map F = (f1, . . . , fu2) is an enumeration of F̄ (x) = Matu(fi). The public
key is a quadratic map P : Fn

q → F
m
q , in which P = T ◦ F ◦ S.

– Signature Generation: For a given message m ∈ F
m
q , we generate a signa-

ture via the following steps.
• Step 1: Compute y = T−1(m) and rewrite y = (y1, . . . , ym) ∈ F

m
q as a

matrix form Y ∈ F
u×u
q = Matu(yi).

• Step 2: Randomly choose a constant matrix D ∈ F
v×u
q and solve the

equations {
B(x) = D

A(x)D + QDT C(x) + E(x) = Y
(1)

232 C. Yin et al.

If Eq. (1) has no solution, we repeat Step 2 until we find a solution. The
probability that the equation can be solved successfully is 1 − 1

q because
it depends on whether the linear equations are independent.

• Step 3: The solution in Step 2 is denoted by z ∈ F
m
q ; compute s = S−1(z)

as a signature.
– Verification: For a given message m′ ∈ F

n
q and a signature s′ ∈ F

m
q , check

whether the equation P (s′) = m′ holds.

Remark 1. The reason for choosing matrix B with such block a matrix form
instead of using a linear system is that attackers can transform the simple matrix
signature scheme into a well-known broken balanced oil and vinegar system if B
is linear. In this case, because B2 is generated by a set of quadratic polynomials,
it becomes difficult to separate oil variables and vinegar variables by finding an
affine transformation.

4 Security Analysis

In this section, we will discuss various attacks against the simple matrix signature
scheme such as algebraic attack, minrank attack and some special attacks.

4.1 Algebraic Attack

To solve the polynomial system P (x) = y with n variables and m equations,
a natural approach might be to perform reduction, such as a Gaussian elimi-
nation method, in solving linear systems. Presently, many algorithms such as
Buchberger’s algorithm [2] and the XL algorithm [5] have improved the compu-
tation process compared to direct guessing. In our experiments, we used the F4

algorithm [9], which is a variant of computing a Gröbner basis. The complexity
of the F4 algorithm depends on an important parameter representing the degree
of regularity dreg. In F4, dreg is given by the index of the first non-positive coef-

ficients of the Hilbert series Sm,n(z) =
∏m

i=1(1−zdi)

(1−z)n where di is the degree of the
i-th polynomial. Therefore, the complexity of F4 is bounded by

O

((
m

(
n + dreg − 1

dreg

))ω)
,

where the constant ω is in range 2 ≤ ω < 3. Considering the method of solv-
ing underdetermined systems [19], the problem of a quadratic system with n
variables and m equations can be transformed into the problem of a quadratic
system with m − 	 n

m
 + 1 variables and m − 	 n
m
 + 1 equations.

In this case, we performed the F4 algorithm against the rectangular version
of our proposed simple matrix signature scheme. The experiments were all con-
ducted on MAGMA V2.24-8 using a system with an Intel(R) Xeon(R) Gold 6130
2.10 GHz CPU.

From the results presented in Table 1, the parameter dreg is always equal to
m + 1 in different experiment groups and the central map can be assumed to

(Short Paper) Simple Matrix Signature Scheme 233

Table 1. Algebraic attack(F4 algorithm) against simple matrix signature scheme

(q, u, v, n,m, l) dreg Cpu time(s) (q, u, v, n,m, l) dreg Cpu time(s)

(31,2,2,8,4,1) 5 0.010 (31,3,3,18,9,2) 10 1.350

(31,2,3,10,4,2) 5 ≤0.010 (31,3,4,21,9,2) 10 1.600

(31,2,4,12,4,2) 5 ≤0.010 (31,3,5,24,9,3) 10 1.710

(31,2,5,14,4,3) 5 ≤0.010 (31,3,6,27,9,3) 10 1.840

(31,2,6,16,4,3) 5 ≤0.010 (31,4,4,32,16,2) 17 29143.877

be semi-regular. From Fröberg’s conjecture, a random polynomial system can
be assumed to be semi-regular. Therefore, the complexity of the F4 algorithm
against the simple matrix signature scheme is bounded by the following formula:

O

((
(u2 − 1)

(
2u2 − 2
u2 − 1

))ω)
.

4.2 MinRank Attack

The MinRank problem is known to be inherent in almost every MPKC scheme,
and its definition is defined as follows.

Definition 1. Given a finite field Fq and a sequence of n matrices {Mi ∈
F

m×m
q }, for a positive integer r where 1 ≤ r ≤ m, the MinRank problem seeks

to determine a vector (x1, . . . , xn) s.t.

Rank

(
n∑

i=1

xiMi

)
< r.

To find a linear combination with the minimum rank r, one simple app-
roach is to guess its kernel by solving (

∑n
i=1 xiMi)v = 0 with random vector

v ∈ F
m
q . This method, called linear algebraic search, is expected to cost around

O(q�m
n �rm3). Moreover, there are several other methods for solving MinRank

problems, such as the Kipnis-Shamir method [13], Minors method [10] and Sup-
port Minors method [1]. Regardless of which method is selected, the efficiency
of MinRank attack depends on the parameter r, given by the rank sequence of
the central map.

Specifically, each element in the central map contains 2(v − l) terms of the
multiplication of linear functions and one term of linear combinations of elements
in B2. Each term of the first part contributes at most rank 2 and the rank of
the quadratic term bounds by the maximum rank in B2. Therefore, the rank of
the central map is bounded by 4(v − l)+ul − 1, and the complexity of the linear
algebraic search method is approximately

O(q�m
n �rm3) = O(q4(v−l)+ul−1u3).

234 C. Yin et al.

Table 2. Computational complexity of algebraic attack (alg.) and several MinRank
attack (MR.) s under different parameters(q, u, v, n,m, l)

Parameters(q, u, v, n,m, l) alg. MR. (linear search) MR. (minors)

(28, 5, 5, 50, 25, 3) 2112.2 2182.9 2121.0

(28, 6, 6, 72, 36, 3) 2164.9 2239.7 2168.1

(28, 6, 8, 84, 36, 4) 2319.7 2195.4

(28, 7, 7, 98, 49, 4) 2227 2320.4 2228.9

(28, 8, 8, 128, 64, 4) 2299.2 2385.0 2287.9

4.3 Other Attacks

In addition, we considered some other special attacks against the proposed simple
matrix signature scheme.

Equivalent Key Attack: The main idea of this attack is to forge secret key
pairs by using another secret key tuple (T ′, F ′, S′) with P = T ◦ F ◦ S = T ′ ◦
F ′ ◦ S′. If the attacker can find some invertible transformations that allow the
central map to be solved easily, the security level would accordingly decrease
significantly. However, in our construction, matrices A and C are linear matrices
that cannot be changed by adding linear transformations. Moreover, the matrix
B consists of both linear and quadratic terms; thus, it is impossible to find an
exact linear transformation to separate.

Invariant Attack: In the simple matrix encryption scheme, a central map is
generated by the multiplication of two matrices. More precisely, matrices A,B,
and C are square matrices of linear polynomial entries. The central map is an
enumeration of matrices E1, E2, where E1 = AB,E2 = AC. In the invariant
attack [14], polynomials selected from the same column in E1 and E2 have the
same components. By computing the space generated from these polynomials,
attackers can restore the coefficients in matrix A. In our simple matrix signature
scheme, it becomes difficult to obtain a subspace from some set of particular
rows or columns.

5 Parameters

In this section, we present some parameters for different security levels based
on the analyses discussed in earlier sections. We chose a moderate setting of the
finite field with a size of 28 from Table 2. Because the complexity formula in
these attacks only involves u and v ≥ u, the square matrix form would be the
best choice.

For the given fixed parameters (q, u, v, n,m), the public key size len is cal-
culated as

len = m ×
(

n(n + 1)
2

+ n + 1
)

× log2 q bits.

(Short Paper) Simple Matrix Signature Scheme 235

According to this formula, we calculated the public key size and signature size
and compared them with those obtained in case of the Rainbow signature scheme
[6].

Table 3. Comparison of public key size and signature size of Rainbow(q, v, o1, o2) and
simple matrix signature scheme(q, u, v, n,m, l)

Level Parameters Pk. size (kB) Sig. size (bit)

I SM(28, 6, 6, 72, 36, 3) 93.7 576

Rainbow(24, 36, 32, 32) 157.8 528

III SM(28, 7, 7, 98, 49, 4) 234.5 784

Rainbow(28, 68, 32, 48) 861.4 1,312

V SM(28, 8, 8, 128, 64, 4) 520.0 1,056

Rainbow(28, 96, 36, 64) 1885.0 1,632

From Table 3, it may be observed that with the exception of the signature
size in 128-bit security, each number in the simple matrix scheme was smaller
than that in the Rainbow scheme. For example, in 128-bit security, the public
key size was smaller by 40.7%. The reduction range can reach approximately
63.4% in 256-bit security.

6 Conclusion

In this paper, we propose a new method for constructing an MPKC signature
by matrix multiplication. The most notable part of our simple matrix signature
scheme is the construction of its central map, which has both high randomness
and expansibility. In addition, we chose several conventional attack algorithms to
analyze the security of the proposed approach. The experimental results showed
that our signature scheme demonstrated high resistance against algebraic attacks
and rank attacks. Other attacks, such as invariant attacks, are expected to be
ineffective because all multiplication of the entries is mingled together. By calcu-
lating the computational complexity formulas for different attacks, we presented
some secure parameters at different levels. Compared to the Rainbow signa-
ture scheme, our proposed signature scheme requires approximately 40% to 60%
smaller public key sizes. In further steps, we can use some special parameters to
compress the public key size. We have considered some common attacks against
our signature scheme. It should be noted that whether there exists a particular
attack that may prove effective in breaking this signature scheme remains an
open question.

References

1. Beullens, W.: Improved cryptanalysis of UOV and rainbow, Cryptology ePrint
Archive, Report 2020/1343 (2020). https://eprint.iacr.org/2020/1343

https://eprint.iacr.org/2020/1343

236 C. Yin et al.

2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Universität
Innsbruck (1965)

3. Chen, L., et al.: Report on Post-quantum Cryptography, NIST Interagency
Report 8105 (2016). https://www.nist.gov/publications/report-post-quantum-
cryptography

4. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0 15

5. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

6. Ding, J., et al.: Rainbow, NIST PQC Project. https://csrc.nist.gov/projects/post-
quantum-cryptography/

7. Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High order linearization equation
(HOLE) attack on multivariate public key cryptosystems. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71677-8 16

8. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

9. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases (F4). J.
Pure Appl. Algebra 139(1), 61–88 (1999)

10. Faugère, J.-C., Din, M., Spaenlehauer, P.-J.: Computing loci of rank defects of
linear matrices using Gröbner bases and applications to cryptology. In: ISSAC
2010, pp. 257–264 (2010)

11. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, San Francisco (1979)

12. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

13. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055733

14. Moody, D., Perlner, R., Smith-Tone, D.: An asymptotically optimal structural
attack on the ABC multivariate encryption scheme. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 180–196. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 11

15. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

16. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

17. Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: a new central
trapdoor for multivariate quadratic systems. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29360-8 12

https://www.nist.gov/publications/report-post-quantum-cryptography
https://www.nist.gov/publications/report-post-quantum-cryptography
https://doi.org/10.1007/978-3-540-68914-0_15
https://doi.org/10.1007/3-540-45539-6_27
https://csrc.nist.gov/projects/post-quantum-cryptography/
https://csrc.nist.gov/projects/post-quantum-cryptography/
https://doi.org/10.1007/978-3-540-71677-8_16
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://doi.org/10.1007/978-3-319-11659-4_11
https://doi.org/10.1007/978-3-319-11659-4_11
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-319-29360-8_12
https://doi.org/10.1007/978-3-319-29360-8_12

(Short Paper) Simple Matrix Signature Scheme 237

18. Tao, C., Xiang, H., Petzoldt, A., Ding, J.: Simple matrix - a multivariate public
key cryptosystem (MPKC) for encryption. Finite Fields Appl. 35, 352–368 (2015)

19. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8 10

https://doi.org/10.1007/978-3-642-30057-8_10
https://doi.org/10.1007/978-3-642-30057-8_10

Game Theory and Security

Moving Target Defense for the CloudControl
Game

Koji Hamasaki(B) and Hitoshi Hohjo

Osaka Prefecture University, Osaka, Japan

Abstract. The recent global spread of cloud computing has streamlined all kinds
of tasks by allowing people to go online and get the services they need, when they
need them. The cloud is a revolutionary system that saves time, effort, and money.
On the other hand, devices connected to the cloud pose the risk of cyber-attacks.
One example is Advanced Persistent Threats (APTs), which analyze a target over
a long period of time and expose it to danger. The increase in this threat has
led to the need for robustness against stealthy attacks. In this paper, we propose
Moving Target Defense (MTD) as a defense strategy in the CloudControl game
model, which models the interaction between the cloud-connected devices, the
defender and the attacker struggling for control of the cloud. We also prove the
convergence of this strategy against a static attacker by numerical experiments.
Our results contribute to cyber insurance, commercial investment, and corporate
policy.

Keywords: Cloud computing · Game theory · Moving Target Defense

1 Introduction

These days the term IoT, which describes physical objects—“things”—connected to the
Internet, is often used. At the same time Cyber-Physical Systems (CPS) [1, 2], which
is closely related to the IoT, is also getting a lot of attention. CPS is about attaching
many sensors to objects to be controlled in the real world, such as people and cars, and
analyzing the data collected by these devices in cyberspace and feeding it back to the
objects for more optimal control. These technologies will enable a variety of services
that have never been available before.

In order to realizeCPS/IoT society, a secure and safe networked relationship is needed
to communicate. However, with new technology comes the risk of new cyber-attacks, for
example, Advanced Persistent Threats (APTs) [3]. They target a specific individual or
organization and continuously attack it with a combination of suitable attacks. Because
they require a large amount of resources, these attacks are often carried out by huge
organizations and have a significant impact on society. Since new technologies such
as IoT and CPS have only been created for a short period of time, the vulnerabilities
are undiscovered and the risk of a zero-day attacks to exploit them before a fix or
countermeasure patch is made is high. APTs are often a combination of these zero-day

© Springer Nature Switzerland AG 2021
T. Nakanishi and R. Nojima (Eds.): IWSEC 2021, LNCS 12835, pp. 241–251, 2021.
https://doi.org/10.1007/978-3-030-85987-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85987-9_14&domain=pdf
http://orcid.org/0000-0001-8995-7746
http://orcid.org/0000-0003-2320-2812
https://doi.org/10.1007/978-3-030-85987-9_14

242 K. Hamasaki and H. Hohjo

attacks and are highly dangerous. This attack could allow the attacker to take ownership
of the cloud to send signals to the device.

In this paper, we propose Moving Target Defense (MTD) [4] as a strategy for the
administrator of the cloud which is vulnerable to APT and may be controlled by the
attacker. Furthermore, we model a situation in which the device decides whether to trust
a command from the cloud controlled by the defender using MTD or the static attacker,
and find a Gestalt Nash equilibrium (GNE) through game-theoretic analysis. We clarify
that MTD is an effective strategy in this situation. We created a proposed model using
the CloudControl game [5, 6]. This game consists of the signaling game and the FlipIt
game. The signaling game is a typical incomplete information dynamics game, which
have been developed based on the study of two-player language game [7]. Many studies
have utilized this game to model various security situations [8–11]. The Flipit game is a
recently created game in response to the development of cloud systems [12]. This game
is suited for studying systems attacked by APTs [13–19].

Because APTs persistently attack the system, we believe that the defenders can
count backwards the time that the defenders have moved since the system’s IDs and
passwords are no longer available. The attacker should use this information to conduct a
dynamic attack. However, the proposed models in [5, 6] used simple and static attacker
and defender strategies in the FlipIt game. Van Dijk proposed LM Attacker (LMA)
and Defender playing with Exponential Distribution (DED) as dynamic strategies for
attackers and defenders in the FlipIt game, respectively [12]. And Hyodo proposed the
CloudControl game model that uses the above dynamic strategies in the FlipIt game and
proved that GNE exists in the proposed model [20].

In this paper, we show that there is an effective strategy calledMovingTargetDefense
(MTD) in addition to the defender’s strategy in the FlipIt game proposed in [12], and
we propose the CloudControl game model using that strategy. We also show that GNE
is present in that model as well. This can guide the optimal action of defenders and IoT
devices against attackers (APTs) who launch advanced attacks. The results of this study
will be useful for cyber-insurance, commercial investment and corporate policies.

The remainder of this paper is organized as follows. We proposes the CloudControl
game with a defender using MTD in Sect. 2. Then we presents the results of the simula-
tions performed to reveal the presence of GNE in the above proposed model in Sect. 3.
We conclude the paper in Sect. 4.

2 Our Model

We model a cloud-based system in which the cloud is the target of APTs. In this model,
an attacker capable of APTs can pay the cost and compromise the cloud. The defender,
or the cloud administrator, can pay the cost and regain control of the cloud. The cloud
sends a message to the device, denoted by r. The device can follow this message, but
has an on-board control system to operate autonomously. So it is also possible to use the
autonomous motion system without following the message from the cloud.

In this scenario, we uses the CloudControl game that combines two games, the FlipIt
game and the signaling game. The FlipIt game takes place between the attacker and the
defender, while the signaling game takes place between the possibly compromized cloud

Moving Target Defense for the CloudControl Game 243

and the device. Specifically, the player who controls the resource in the FlipIt game will
be the sender of the signaling game.

The model proposed in this study is the CloudControl game model played by a static
attacker and a defender using Moving Target Defense (MTD), described below. We
investigated whether MTD is an effective strategy against the static attacker (Fig. 1).

Fig. 1. The CloudControl game. The FlipIt game models the interaction between an attacker and
a defender, or a cloud administrator, who compete for ownership of the cloud. The signaling game
is played in which the player, who controls the cloud in the FlipIt game, sends a message to a
device. The device then decides whether to trust or not to trust the message. (Hyodo, T., Hohjo,
H., 2019)

2.1 The Signaling Game in the Proposed Game Model

We describe the symbols used in this study.

• Player: Sender (Cloud(t)), Receiver (Device(r))
• Type of the sender: T = {t|tA, tD}
• Message: M = {m|mL,mH }
• Action: A = {a|aY , aN }

Player tA is the attacker and tD is the defender. In the CloudControl game, the type of
the sender is determined by the equilibriumof the FlipIt game. LetmL andmH denote low
and high risk messages, respectively. After receiving the message, the device chooses
an action. Action aY represents trusting the message from the cloud, and aN represents
not trusting it.

Let σ S
tA(m), σ S

tD(m) be the strategy in which player tA, tD sends a message m, and
σ S
r (a|m) be the strategy inwhich the device r takes an action a when it receives amessage

m. Also let uStA(m, a), uStD(m, a) be the utilities players tA, tD gain. Then the expected

utilities uStA
(
σ S
tA , σ

S
r

)
, uStD

(
σ S
tD , σ S

r

)
in the signaling game of the attacker and defender is

244 K. Hamasaki and H. Hohjo

as follows.

uStA

(
σ S
tA , σ

S
r

)
=

∑

a∈A
∑

m∈M uStA(m, a)σ S
r (a|m)σ S

tA(m) (1)

uStD

(
σ S
tD , σ S

r

)
=

∑

a∈A
∑

m∈M uStD(m, a)σ S
r (a|m)σ S

tD(m) (2)

Let μ(t|m) be the belief that the receiver determines the type of the sender is t and
σ S
r (t,m, a) be the utility that he gains when he receives the messagem, then his expected

utility uSr
(
σ S
r |m, μ

)
in the signaling game is as follows.

uSr
(
σ S
r |m, μ

)
=

∑

a∈A
∑

m∈M uSr (t,m, a)μ(t|m)σ S
r (a|m) (3)

Let p be the probability that an attacker sends a message. The receiver’s belief that
the sender is in state t when he receives the message m is as follows.

μ(tA|m) = σ S
tA(m)p

σ S
tA(m)p + σ S

tD(m)(1 − p)
(4)

Each player updates their strategy each game to maximize their own expected utility.
We used the ARP model proposed by Bereby-Meyer & Erev [21] to update the strategy.
This model is more human-like by learning with reference to the current and past reward
values. The ARP model is described below.

The probability Qn(time) of taking a move n at time is given by

Qn(time) = qn(time)∑
qn(time)

(5)

qn(time) is the pure value at the move n and is updated with each passing time.Let
gj be the reward for choosing a move j at time, then the renewal formula is given by

qn(time + 1) = max
{
υ, (1 − φ)qn(time) + Ej

(
n,Ltime

(
gj

))}
, (6)

where ϕ is the forgetting rate and v is the guaranteed value. Also the functions Ej and
Ltime are given by

Ej
(
n,Ltime

(
gj

)) =
{
Ltime

(
gj

)
(1 − ε) (j = n)

Ltime
(
gj

)
ε (otherwise)

(7)

Ltime
(
gj

) = gj − ρ(time), (8)

where the parameter ε is the weight of the reward. The ρ(time) in Eq. (8) is an important
function in the ARP model. As mentioned above, the ARP model learns rewards and the
function ρ(time) plays the role. It is given by

ρ(time + 1) =
{(

1 − c+)
ρ(time) + (

c+)
gj (gj ≥ ρ(time))(

1 − c−)
ρ(time) + (

c−)
gj (gj < ρ(time))

(9)

c+ and c− are parameters representing the impact of the next rewardwhen the reward
gj was better and worse than the evaluation function ρ(time), respectively.

Moving Target Defense for the CloudControl Game 245

2.2 The FlipIt Game in the Proposed Game Model

The FlipIt game in the original CloudControl game is a two-player game in which the
attacker and the defender compete for one shared resource along a timeline. In this paper,
we envision a system in which a defender can prevent an attack by moving the resource
through the network. In the next subsection, we describe the defender’s strategy in the
proposed game model.

Moving Target Defense (MTD). MTD is a defender’s strategy to migrate resources to
node i through a fully connected network of n(n ≥ 2) nodes with a probability of p(i).
Defenders can use this strategy to prevent attackers from discovering vulnerabilities and
critical resources in their systems. In other words, this model assumes a situation where
the target resource is not visible to the attacker. For simplicity, we assume that the MTD
in this study randomly migrates resources to all nodes (Fig. 2).

p(i) = 1

n
, i = 1, . . . , n (10)

Fig. 2. Moving Target Defense (MTD) when the number of nodes is 3. The defender can migrate
a resource to other node, through a fully connected network. p(0) = p(1) = p(2) = p(3) = 1/4.

The FlipIt Game with MTD. Let the number of nodes be n. The rules of the FlipIt
game in this case are as follows.

• The game begins with the defender in control of the resource on node 0 (time = 1).
• Both players follow their own strategies at a certain time and determine whether to
pay the moving cost.

• When the defender moves, he takes the ownership of the resource and may or may
not migrate it to another node.

246 K. Hamasaki and H. Hohjo

• When the attacker moves, he selects one node at random to attack. The attacker takes
the ownership of the resource only if he attacks a node where the resource actually
exists.

• When both players move at the same time, the defender takes the ownership of the
resource.

For each FlipIt game, the player who controls the resource becomes the sender and
plays multiple signaling games with the device (the receiver).

The expected utilities uFtA(αtA , αtD), uFtD(αtA , αtD) of the FlipIt game for the attacker
and defender in the proposed model is as follows.

uStA
(
αtA , αtD

) = uStA
p

n
− ktAαtA (11)

uStD
(
αtA , αtD

) = uStD

(
1 − p

n

)
− ktDαtD (12)

where αtA , αtD is the attacker’s and defender’s strategy in the FlipIt game, uStA , u
S
tD is

the attacker’s and defender’s expected utility in the signaling game, p is the probability
of the attacker controlling the resource at either node, and ktA , ktD is the attacker’s and
defender’s moving cost.

3 Numerical Experiments

In this study, numerical experiments were conducted to identify the existence of GNE.
The value of the ARP model used to update the strategy of the signaling game was set
to (φ, υ, ε, c+, c−, qn(0)) = (0.001, 0.0001, 0.2, 0.01, 0.02, 1000) from [21].

The procedure of the game is as follows.

Step 1. Players are a static attacker and a defender that use MTD, and a device. At the
start of the game, all players use a random strategy.
Step 2. The attacker and defender play the FlipIt game (time < 4000). Each time the
player controlling the resource plays the signaling game with the device, and updates
the signaling game strategy.
Step 3. From the expected utility of the signaling game, attackers and defenders find the
FlipIt game strategy that maximizes the expected utility of the FlipIt game.
Step 4. The attacker and the defender reset the signaling game strategy and return to a
random state.

We repeated Step 2 to Step 4 above 100 times to examine the variability of the
expected utilities of attacker and defender in the signaling game and the strategies of
both players in the FlipIt game. Also the signaling game was played enough times to
reach equilibrium.

Moving Target Defense for the CloudControl Game 247

Table 1. The gain of the attacker, the defender and the device in the signaling game.

The gain in the signalling game was set up as shown in the Table 1. The number
on the left is the sender’s (attacker or defender) gain and the number on the right is the
receiver’s (device) gain.

We first experimented with fixed n = 3 and not fixed ktA , ktD . Figure 3 shows the
result of the experiment for ktA = 20, ktD = 15. In the top graph, the red dots represent
the attacker’s expected utility uStA in the signaling game, and the blue dots represent the

defender’s expected utility uStD in the signaling game, with the vertical axis representing
the expected utility and the horizontal axis representing the number of sets. In the bottom
graph, the red dots represent the attacker’s strategy αtA in the FlipIt game, and the blue
dots represent the defender’s strategy αtD in the FlipIt game, with the vertical axis
representing the strategy and the horizontal axis representing the number of sets. In this
situation, the expected utilities of the attacker and defender in the signaling game and
their strategies in the FlipIt game converged to a certain value, respectively. This indicates
a convergence to GNE. The converged values were uStA = 12, uStD = 16, αtA = 0.12, and
αtD = 0.15.

Fig. 3. The changes in the expected utilities uStA , uStD and strategies αtA , αtD with n = 3, ktA =
20, ktD = 15.

248 K. Hamasaki and H. Hohjo

Figure 4 shows the result of the experiment for ktA = 40, ktD = 30. In this situation,
αtA = αtD = 0.00. This shows that the attacker and the defender have the strategy of
not moving in the FlipIt game even if the signaling game’s utility conditions of Table 1.
were met. From Eq. (11), (12), the expected utility of the FlipIt game is smaller as the
moving cost increases. If they don’t benefit from attacking, they won’t bother attacking
because they won’t have to.

Fig. 4. The changes in the expected utilities uStA , uStD and strategies αtA , αtD with n = 3, ktA =
40, ktD = 30.

Next, we experimented with fixed ktA = 20, ktD = 15 and not fixed n. Figure 5
shows the result of the experiment for n = 5. In this situation, the expected utilities of
the attacker and defender in the signaling game and their strategies in the FlipIt game
converged to a certain value, respectively. This indicates a convergence to GNE. The
converged values were uStA = 12, uStD = 16, αtA = 0.09, and αtD = 0.07.

Figure 6 shows the result of the experiment for n = 10. In this situation, αtA = αtD =
0.00. This shows that the attacker and the defender have the strategy of not moving in
the FlipIt game. From their results, we found that even when the number of nodes n
is large, the attacker chooses not to move. In this situation, that is to say, the attacker
cannot find the actual location of the resource among the multiple nodes and gives up on
attacking it. However, we don’t take into account the costs of building a fully connected
network with multiple nodes and of migrating a resource. Therefore, in the real world,
if the number of nodes n is large, the defender is likely to have to pay more costs.

Moving Target Defense for the CloudControl Game 249

Fig. 5. The changes in expected utilities uStA , uStD and strategies αtA , αtD with n = 5, ktA =
20, ktD = 15.

Fig. 6. The changes in the expected utilities uStA , uStD and strategies αtA , αtD with n = 10, ktA =
20, ktD = 15.

4 Conclusion and Future Work

In this paper, we proposed the cloud control game with a static attacker and a defender
using MTD and showed that GNE exists in the proposed model. This equilibrium will
help protect cloud-connected CPSs by revealing the frequency of attacks by attackers
launching APTs in the future IoT/CPS society and the optimal strategies for MTD and
IoT devices against these attackers.

However, the only thing revealed in this study is the presence of GNE in the proposed
model. Its equilibrium equation is not clear.

In future work, it is important to find the equilibrium equation in the proposedmodel.
We would also like to revisit a model that takes into account the cost of building the
network and of migrating a resource. Furthermore, APTs in the real world are likely
to launch more sophisticated attacks. Therefore, we want to clarify whether MTD is

250 K. Hamasaki and H. Hohjo

an effective strategy for defenders even against advanced and dynamic attackers, and
whether GNE exists even in such a model.

References

1. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161–166 (2011)
2. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International

Symposium on Object Oriented Real-Time Distributed Computing (ISORC) on Proceedings,
Orlando, FL, USA, pp. 363–369. IEEE (2008)

3. Tankard, C.: Advanced persistent threats and how to monitor and deter them. Netw. Secur.
2011(8), 16–19 (2011)

4. Feng, X., Zheng, Z., Cansever, D., Swami, A., Mohapatra, P.: A signaling game model
for moving target defense. In: IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications on Proceedings, Atlanta, GA, USA, pp. 1–9. IEEE (2017)

5. Pawlick, J., Farhang, S., Zhu, Q.: Flip the cloud: cyber-physical signaling games in the pres-
ence of advanced persistent threats. In: Khouzani, M., Panaousis, E., Theodorakopoulos, G.
(eds.) Decision and Game Theory for Security. LNCS, vol. 9406, pp. 289–308. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25594-1_16

6. Pawlick, J., Zhu, Q.: Strategic trust in cloud-enabled cyber-physical systems with an
application to glucose control. IEEE Trans. Inf. Forensics Secur. 12, 2906–2919 (2017)

7. Lewis, D.: Convention: A Philosophical Study, 1st edn. Harvard University Press, Cambridge
(1969)

8. Casey, W., Morales, J.A., Wright, E., Zhu, Q., Mishra, B.: Compliance signaling games:
toward modeling the deterrence of insider threats. Comput. Math. Organ. Theory 22(3),
318–349 (2016). https://doi.org/10.1007/s10588-016-9221-5

9. Casey,W., Weaver, R., Morales, J.A., Wright, E., Mishra, B.: Epistatic signaling and minority
games, the adversarial dynamics in social technological systems. Mob. Netw. Appl. 21(1),
161–174 (2016). https://doi.org/10.1007/s11036-016-0705-9

10. Christian, E., Choi, C.: Signaling game based strategy for secure positioning inwireless sensor
network. Pervasive Mob. Comput. 40, 611–627 (2017)

11. Khalil, I., Eitan, A., Haddad, M.: Signaling game based approach to power control man-
agement in wireless network. In the 8th ACM Workshop on Performance Monitoring and
Measurement of Heterogeneous Wireless andWired Networks on Proceedings, pp. 139–144.
Association for Computing Machinery, New York (2013)

12. van Dijk, M., Juels, A., Oprea, A., Riveat, R.L.: Flipit: the game of “stealthy takecover.” J.
Cryptol. 26, 655–713 (2013). https://doi.org/10.1007/s00145-012-9134-5

13. Laszka, A., Horvath, G., Felegyhazi, M., Buttyan, L.: FlipThem: modeling targeted attacks
with FlipIt for multiple resources. In: Poovendran, R., Saad, W. (eds.) Decision and Game
Theory for Security. LNCS, vol. 8840, pp. 175–194. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-12601-2_10

14. Zhang, R., Zhu, Q.: FlipIn: a game-theoretic cyber insurance framework for incentive-
compatible cyber risk management of internet of things. IEEE Trans. Inf. Forensics Secur.
15, 2026–2041 (2019)

15. Feng, X., Zheng, Z., Hu, P., Cansever, D., Mohapatra, P.: Stealthy attacks meets insider
threats: a three-player gamemodel. In:MILCOM2015 - 2015 IEEEMilitaryCommunications
Conference on Proceedings, Tampa, FL, USA, pp. 25–30. IEEE (2015)

16. Oakley, L.,Oprea,A.:QFlip: an adaptive reinforcement learning strategy for theFlipIt security
game. In: Alpcan, T., Vorobeychik, Y., Baras, J.S., Dán, G. (eds.) Decision and Game Theory
for Security. LNCS, vol. 11836, pp. 364–384. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32430-8_22

https://doi.org/10.1007/978-3-319-25594-1_16
https://doi.org/10.1007/s10588-016-9221-5
https://doi.org/10.1007/s11036-016-0705-9
https://doi.org/10.1007/s00145-012-9134-5
https://doi.org/10.1007/978-3-319-12601-2_10
https://doi.org/10.1007/978-3-030-32430-8_22

Moving Target Defense for the CloudControl Game 251

17. Bowers, K.D., et al.: Defending against the unknown enemy: applying FlipIt to system
security. In: Grossklags, J., Walrand, J. (eds.) Decision and Game Theory for Security. LNCS,
vol. 7638, pp. 248–263. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-34266-
0_15

18. Greige, L., Chin, S.: Reinforcement learning in FlipIt. arXiv preprint arXiv: 2002.12909
(2020)

19. Feng, X., Zheng, Z., Hu, P., Cansever, D., Mohapatra, P.: Stealthy attacks with insider infor-
mation: a game theoretic model with asymmetric feedback. In: MILCOM 2016 - 2016 IEEE
Military Communications Conference on Proceedings, Baltimore, MD, USA, pp. 277–282.
IEEE (2015)

20. Hyodo, T., Hohjo, H.: The Gestalt Nash equilibrium analysis in cyber security. In: RIMS
Kokyuroku 2126, pp. 9–18. Kyoto University, Kyoto (2019). (in Japanese)

21. Bereby-Meyer, Y., Erev, I.: On learning to become a successful loser: a comparison of alter-
native abstractions of learning processes in the loss domain. J. Math. Psychol. 42, 266–286
(1998)

https://doi.org/10.1007/978-3-642-34266-0_15

Author Index

Aburada, Kentaro 119
Akiyama, Mitsuaki 99
Attrapadung, Nuttapong 77

Booth, Roland 195

Chiba, Daiki 99

Daiza, Takanori 175

Fan, Yun 99
Fukushima, Kazuhide 23

Hamasaki, Koji 241
Hashimoto, Yasufumi 137
Hohjo, Hitoshi 241
Hutchinson, Aaron 216

Ikematsu, Yasuhiko 3
Ito, Hiroshi 64

Kameyama, Yukiyoshi 151
Karati, Sabyasachi 195
Kiyomoto, Shinsaku 23, 64
Kudo, Momonari 23
Kurosawa, Kaoru 175
Kuzuno, Hiroki 45

LeGrow, Jason T. 216

Masuda, Masahiro 151
Matsuura, Kanta 77

Mukunoki, Masayuki 119
Murata, Masayuki 99

Nakamura, Satoshi 3
Nakamura, Toru 64

Ohsita, Yuichi 99
Okazaki, Naonobu 119

Park, Mirang 119
Phalakarn, Kittiphop 77

Safavi-Naini, Reihaneh 195
Shibahara, Toshiki 99
Sohaimi, Ahmad Saiful Aqmal Bin Ahmad

119
Suppakitpaisarn, Vorapong 77

Takagi, Tsuyoshi 23, 227

Uemura, Shusaku 23
Usuzaki, Shotaro 119

Wang, Yacheng 227

Xu, Yanhong 195

Yamaba, Hisaaki 119
Yamauchi, Toshihiro 45, 64
Yasuda, Masaya 3
Yin, Changze 227

	 Preface
	 IWSEC 2021 16th International Workshop on Security Organization
	 Contents
	Lattice-Based Cryptography
	A Trace Map Attack Against Special Ring-LWE Samples
	1 Introduction
	2 Preliminaries from Lattices to LWE Problems
	2.1 Mathematical and Algorithmic Background on Lattices
	2.2 LWE and Ring-LWE Problems

	3 A Trace Map Attack Against the Ring-LWE Problem
	3.1 Special Pairs of Ring-LWE Samples
	3.2 A Trace Map Attack Against Special Pairs of Ring-LWE Samples
	3.3 Comparison with the Standard Attack

	4 (In)feasibility of Trace Map Attack for Random Samples
	5 Conclusion
	References

	Shortest Vectors in Lattices of Bai-Galbraith's Embedding Attack on the LWR Problem
	1 Introduction
	1.1 Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Lattices
	2.3 Search-LWE and Search-LWR Problems
	2.4 Transformation of LWR to LWE

	3 Embedding Attacks Against LWE
	3.1 Kannan's Embedding Attack
	3.2 Bai-Galbraith's Embedding Attack

	4 Our Analysis of Shortest Vectors in BG-Lattices
	5 Second Shortest Vectors in BG-lattices
	5.1 Probability Distribution of "026B30D ec"026B30D 2
	5.2 Lower Bound of Probability
	5.3 Experimental Results

	6 Conclusion
	References

	System Security
	KPRM: Kernel Page Restriction Mechanism to Prevent Kernel Memory Corruption
	1 Introduction
	2 Background
	2.1 Address Space and Page Table
	2.2 Kernel Memory Corruption Vulnerability

	3 Threat Model
	4 Design and Implementation
	4.1 Design Requirements of the KPRM
	4.2 Design Overview
	4.3 Kernel Page Types
	4.4 Restricted Kernel Page Object
	4.5 Timing of Restricted Kernel Page Management
	4.6 Attack Situations
	4.7 Implementation
	4.8 Case Study

	5 Evaluation
	5.1 Purpose and Environment
	5.2 Prevention of Vulnerable Kernel Code Access and Kernel Memory Corruption
	5.3 Measurement of System Call Overhead
	5.4 Measurement of Application Overhead

	6 Discussion
	6.1 Kernel Resilience
	6.2 Performance Evaluation
	6.3 Limitation
	6.4 Portability

	7 Related Work
	7.1 Comparison with Related Work

	8 Conclusion
	References

	(Short Paper) Evidence Collection and Preservation System with Virtual Machine Monitoring
	1 Introduction
	1.1 Background
	1.2 Attack Model
	1.3 Related Work
	1.4 Our Contribution

	2 Issues on Existing Evidence Collection Systems
	3 Evidence Collection and Preservation System (ECoPS)
	3.1 Requirements
	3.2 Design Criteria for ECoPS

	4 Evidence Collection Mechanism
	4.1 Library File Path Names
	4.2 Hash Values of Library Files
	4.3 Consideration of Ways to Collect Other Information

	5 Evaluation
	6 Conclusion
	References

	Multiparty Computation
	Evolving Homomorphic Secret Sharing for Hierarchical Access Structures
	1 Introduction
	1.1 Our Contributions
	1.2 Our Approach
	1.3 Related Works
	1.4 Organization

	2 Preliminaries
	2.1 Secret Sharing
	2.2 Homomorphic Secret Sharing
	2.3 Evolving Secret Sharing
	2.4 Cryptographic Primitives

	3 Evolving Homomorphic Secret Sharing
	4 Our Scheme 1: From Hierarchical Secret Sharing
	4.1 Access Structure
	4.2 Construction
	4.3 Properties

	5 Our Scheme 2: Multi-generation of Shamir's Scheme
	5.1 Access Structure
	5.2 Construction
	5.3 Properties
	5.4 Variant of the Scheme

	6 Comparison to a Recent Scheme
	7 Concluding Remarks
	References

	Machine Learning and Security
	Understanding Update of Machine-Learning-Based Malware Detection by Clustering Changes in Feature Attributions
	1 Introduction
	2 Background and Related Work
	2.1 Evaluation Methods
	2.2 Feature Attribution Methods
	2.3 SHAP

	3 Proposed Method
	3.1 Calculating Feature Attribution Changes
	3.2 Clustering Based on Feature Attribution Changes

	4 Experimental Setup
	4.1 Dataset
	4.2 Model Update
	4.3 Features and Models

	5 Experimental Results
	5.1 Classification Performance of Updated Models
	5.2 Quantitative Evaluation
	5.3 Qualitative Evaluation

	6 Discussion
	7 Conclusion
	A Detailed Experimental Setup
	References

	Proposal of Jawi CAPTCHA Using Digraphia Feature of the Malay Language
	1 Introduction
	2 Jawi Script: An Overview
	3 Related Work
	3.1 Latin CAPTCHA Schemes
	3.2 Arabic CAPTCHA Scheme

	4 Proposed Scheme
	4.1 Basic Concept
	4.2 Answer Text Generation
	4.3 Obstacle Patterns

	5 Usability Evaluation
	5.1 Experimental System and Data
	5.2 Purpose and Conditions
	5.3 Results

	6 Security Evaluation
	6.1 Purpose and Conditions
	6.2 Results

	7 Discussion
	8 Conclusion
	References

	Post-Quantum Cryptography (1)
	Solving the Problem of Blockwise Isomorphism of Polynomials with Circulant Matrices
	1 Introduction
	2 Isomorphism of Polynomials
	2.1 Isomorphism of Polynomials
	2.2 Blockwise Isomorphism of Polynomials
	2.3 Blockwise Isomorphism of Polynomials with Circulant Matrices
	2.4 Encryption Scheme Based on BIP with Circulant Matrices
	2.5 Previous Security Analyses and Parameter Selections

	3 Solving the BIP Problem with Circulant Matrices
	3.1 Conjugations of Circulant Matrices
	3.2 Equivalent Keys
	3.3 Solving the BIP Problem with Circulant Matrices

	4 Conclusion
	A Toy Example
	References

	FFT Program Generation for Ring LWE-Based Cryptography
	1 Introduction
	2 Related Work
	3 Background
	3.1 FFT in the RLWE Context
	3.2 Tagless-Final Style

	4 The Proposed Approach
	4.1 Abstract Definition of the FFT Innermost Loop
	4.2 Vectorizing Modular Reductions
	4.3 Subtraction
	4.4 Vectorizing the Innermost Loop
	4.5 Lazy Reduction
	4.6 SIMD Backend Implementation

	5 Experiments
	6 Conclusion
	Appendix A Vectorize Module
	Appendix B Lazy Reduction Implementation
	Appendix C Details on SIMD Backend Implementation
	References

	Symmetric-Key Cryptography
	Optimum Attack on 3-Round Feistel-2 Structure
	1 Introduction
	1.1 Feistel Structure
	1.2 Feistel-2 Structure
	1.3 Our Contribution
	1.4 Related Works

	2 Preliminaries
	2.1 3-Round Feistel-2 Structure
	2.2 Meet in the Middle Attack ch10IS12

	3 Data-Time Tradeoff Attack on 3-Round Feistel-2 Structure
	3.1 Attack Outline
	3.2 Offline Phase
	3.3 How to Recover k1 F0(k0)
	3.4 How to Recover k2 and F0(k0)
	3.5 How to Recover k0
	3.6 Complexity

	4 Memoryless Attack for D=3 and T=O(2n/2)
	4.1 Attack Outline
	4.2 Details

	5 Memoryless Attack For D=O(2n/4) and T=O(2n/4)
	5.1 Our Idea
	5.2 Memoryless Attack to Recover k0
	5.3 Memoryless Attack to Recover k1
	5.4 Memoryless Attack to Recover k2

	References

	Post-Quantum Cryptography (2)
	An Intermediate Secret-Guessing Attack on Hash-Based Signatures
	1 Introduction
	2 Preliminaries
	2.1 Description of XMSSMT
	2.2 Description of K2SN-MSS

	3 ISG Attack on XMSSMT
	3.1 Verifying a WOTS+ Seed Guess for XMSSMT
	3.2 Using a WOTS+ Seed to Forge a Signature
	3.3 ISG Attack on XMSSMT
	3.4 Analysis of ISG Attack on XMSSMT

	4 ISG Attack on K2SN-MSS
	4.1 Verifying a KSN-OTS Seed Guess for K2SN-MSS
	4.2 Using a KSN-OTS Seed to Forge a Signature
	4.3 ISG Attack on K2SN-MSS and Its Analysis

	5 Implementation and Experiments
	6 Mitigations Against the ISG Attack
	7 Concluding Remarks
	A Description of WOTS+
	B Deferred Details of the ISG Attack on XMSSMT
	References

	(Short Paper) Analysis of a Strong Fault Attack on Static/Ephemeral CSIDH
	1 Introduction
	2 Preliminaries
	2.1 General Structure of the Attack

	3 Attack Analysis
	3.1 ``Real-then-Dummy'' Decision Vector
	3.2 Dynamic Uniformly Random Decision Vector
	3.3 Determining the Signs of the Key

	4 Simulation Results
	5 Conclusions
	References

	(Short Paper) Simple Matrix Signature Scheme
	1 Introduction
	2 Trapdoor Designs for Multivariate Public Key Cryptosystems
	2.1 Constructions of MPKC
	2.2 UOV and Rainbow
	2.3 Simple Matrix Encryption

	3 Proposed Simple Matrix Signature Scheme
	4 Security Analysis
	4.1 Algebraic Attack
	4.2 MinRank Attack
	4.3 Other Attacks

	5 Parameters
	6 Conclusion
	References

	Game Theory and Security
	Moving Target Defense for the CloudControl Game
	1 Introduction
	2 Our Model
	2.1 The Signaling Game in the Proposed Game Model
	2.2 The FlipIt Game in the Proposed Game Model

	3 Numerical Experiments
	4 Conclusion and Future Work
	References

	Author Index

