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Abstract. Improving decisions by better mining the available data in an
Information System is a common goal in many decision making environ-
ments. However, the complexity and the large size of the collected data in
modern systems make this goal a challenge for mining methods. Evolu-
tionary Data Mining Algorithms (EDMA), such as Genetic Programming
(GP), are powerful meta-heuristics with an empirically proven efficiency
on complex machine learning problems. They are expected to be applied
to real-world big data tasks and applications in our daily life. Thus,
they need, as all machine learning techniques, to be scaled to Big Data
bases. This paper review some solutions that could be applied to help
EDMA to deal with Big Data challenges. Two solutions are then selected
and explained. The first one is based on the algorithmic manipulation
involving the introduction of the active learning paradigm thanks to the
active data sampling. The second is based on the processing manipu-
lation involving horizontal scaling thanks to the processing distribution
over networked nodes. This work explains how each solution is intro-
duced to GP. As preliminary experiences, the extended GP is applied to
solve two complex machine learning problem: the Higgs Boson classifi-
cation problem and the Pulsar detection problem. Experimental results
are then discussed and compared to value the efficiency of each solution.

Keywords: Big data mining · Machine learning · Genetic
Programming · Horizontal parallelization · Active learning · Data
sampling · Higgs Boson classification · Pulsar detection

1 Introduction

Modern processes are frequently monitored using information systems that
record large amounts of information given rise to Big Data bases. For a deci-
sion making environment, better mining the available data is a challenge. It is
the major issue for the current data mining and machine learning algorithms.
Regardless the Big Data 3V (variety, velocity and volume), data mining requires
powerful knowledge discovery techniques that are able to deal with the related
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challenges such complexity and learning cost. Thus, the use of evolutionary data
mining procedures becomes a hot trend. Thanks to their global search in the solu-
tion space, evolutionary computation techniques help in the information retrieval
from a voluminous pool of data in a better way compared to traditional retrieval
techniques [10].

Genetic Programming (GP) [21], as a particular EDMA, is considered as
a universal machine learning tool. Its paradigm has shown a great potential
when applied to supervised learning, especially classification and regression
problems [3,32]. However, like other machine learning techniques, GP computa-
tional overhead increases with large datasets and its efficiency is affected. Some
improvements are needed to scale GP when learning from big datasets. The
adaptation of EDMA, specially GP, for big data problems may require redesign-
ing the algorithms and/or their inclusion in parallel environments. Both tracks
are discussed in this paper.

An efficient strategy to redesign a machine learning technique to handle large
data sets is to introduce a special learning paradigm or a special parallelization
paradigm without parallel hardware. In the first case, the algorithm of the data
mining method is modified in order to improve its efficiency. With the second
case, a parallel data-intensive computing scenario is introduced to the method.
This strategy has become very popular in the last few years thanks to the appear-
ance of some open-source tools such as Hadoop/MapReduce.

As discussed in [25], learning paradigms could bring some solutions for big
data mining. For example, Ensemble Learning can help alleviate the “Concept
Drift” and “Curse of Modularity” issues associated with Big Data. Similarly,
Local Learning can help alleviate “Data locality” and “Variance and Bias” issues.
In this work, we are interested in the Active Learning paradigm. Active learning
is implemented essentially with active data sampling. In previous works [15,17],
we demonstrated how active sampling could be an efficient solution to learn
from large data sets by decreasing the size of the training set. The idea is to
introduce some components in the algorithm that allows it to select its training
data according to the evolution of the learning process. Section 4 explains in
details how an active sampling can be introduced in the GP engine.

The second strategy to scale an EA (Evolutionary Algorithm) to Big Data
Mining is the parallelization in a distributed environment. Vertical parallelization
(scaling up) paradigm was widely explored. It includes multicore CPUs, super-
computers, hardware acceleration including graphic processing units (GPUs) and
field-programmable gate arrays (FPGAs) [25]. In this work, we are interested in
the horizontal parallelization (scaling out) paradigm where processing is dis-
persed over networked nodes. This paradigm do not require detailed knowledge
of the underlying hardware architecture. The most known framework implement-
ing the horizontal parallelization is the MapReduce paradigm and its distributed
file system [11], originally introduced by Google. However, MapReduce encoun-
ters difficulties when dealing with iterative algorithms. Several new frameworks
have been proposed to provide better support for iterative processing such as
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HaLoop [6] or Apache Spark1. It is this last framework that we propose to scale
up GP to Big Data Mining with processing manipulation. Our goal is the imple-
mentation of GP in a distributed ecosystem by adapting existing libraries. In
a previous work, we proposed a solution to port a known GP implementation
to the Spark context in order to take the most of its proven potential [16]. The
source code of this model is available at GitHub2. This implementation is reused
in the present work.

The main purpose of this paper is to summarize the different strategies to
address Big Data challenges with machine learning (Sect. 2). It then presents
the horizontal parallelization and the active learning paradigm, two suited
approaches for EDMA (Sects. 3 and 4). The general purpose and some imple-
mentation details of the proposed techniques in each strategy are then given
and explained in details (Sects. 3 and 4). The efficiency of GP obtained with the
different extensions are studied on the HIGGS classification problem and the
pulsar detection problem in Sect. 5.

2 Some Approaches to Address Big Data Learning Cost

In modern Information Systems, the amount of stored data has reached a huge
volume and their complexity has widely increased. New challenges had then
arisen due to the data characteristics.

Approaches to countering the Big Data challenges for machine learning are
quite diverse. They are summarized in [25] and classified according to the data
analytics pipeline (see Fig. 1). Another review, published in [3], identifies meth-
ods and techniques to accelerate evolutionary algorithms when applied to learn-
ing tasks. Scaling approaches focus essentially on manipulating data, process-
ing and algorithms. We summarize below the main categories of the different
approaches and paradigms that can be developed to alleviate some issues asso-
ciated with Big Data.

    Data Extraction  Data Pre-
Processing

Data
   Transformation

Data 
Storage Data Analysis Decision 

Making

Data
Manipulations

Processing
Manipulations

Algorithms
Manipulations

Fig. 1. Manipulations through Data Analytics pipeline [25].

1 https://spark.apache.org.
2 https://github.com/hhmida/gp-spark.

https://spark.apache.org
https://github.com/hhmida/gp-spark
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– Data manipulation: It is applied in the pre-processing phase before adminis-
tering the data to the learning process. Its goal is to reduce the size of the
learning data base, for example by applying techniques of sampling or fea-
ture selection. Sampling, in this case, is independent of the learning process
(evolution process for GP).

– Processing manipulation: it relies on processing manipulations to handle the
additional computational cost by vertical or horizontal scaling. It includes
parallelization approaches using the parallel nature of some population based
algorithms such as GP and EA. Parallelization can be done with:

• Vertical scaling (scaling up): It is based on increasing resources for a single
node. For example, hardware acceleration based on graphics processors
called General Purpose Graphics Processing Units (GPGPU) and paral-
lelization using multicore CPUs have been used in several jobs [14,23,27].

• Horizontal scaling (scaling out): It refers to distributed systems where
computations are deployed on a cluster of nodes [27]. This is the most
common form of distribution with Big Data problems. Several frame-
works have been put in place for two types of parallelization: by batch or
flow-oriented. The most used are Hadoop/MapReduce [11] and Apache
Spark [34].

– Algorithm Manipulation: it relies on algorithm manipulations in order to
optimize its running time or to improve the learning quality. It involves the
introduction of new machine learning paradigms or the adaptation of some
existing machine learning paradigms. As new paradigms, the Online learning
and Transfer learning are promising approaches. As existing paradigms that
could be adapted to deal with Big Data, we find the Ensemble learning, the
Local learning and the Active learning.

In the context of GP scaling, two paths are considered in this work: the
acceleration of evaluations through the processing manipulation or the reduction
of their number through the learning paradigm. In the first case, the GP engine
is ported over a parallel framework to distribute the fitness computation. In the
second case, the GP algorithm is extended with an active learning paradigm
implemented with an active data sampling.

3 Scaling by Processing Manipulation: Horizontal
Parallelization

The evolution of the Big Data ecosystem has allowed the development of new
approaches and tools such as Hadoop MapReduce3 and Apache Spark (see Foot-
note 1) that implement a new programming model over a distributed storage
architecture. They are the de facto tools for any data intensive application. This
section shows how an existing GP implementation is adapted to the Spark con-
text.

3 https://hadoop.apache.org.

https://hadoop.apache.org
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3.1 Spark and MapReduce

MapReduce is a parallel programming model introduced by Dean et al. in [11]
for Google. It was made popular with its Apache Hadoop implementation. The
fundamental idea that gave rise to this model is to move computations to the
data by reducing data traffic between the different nodes. MapReduce operates
over a distributed file system.

It applies the “divide and rule” technique to break down a process into mul-
tiple tasks performed concurrently on different machines on the portions of data
they store. These tasks are of two types: Map and Reduce, that are the functional
programming origin. Despite the simplicity of this model, which has allowed to
solve several large scale problems, it is not suited to iterative algorithms such as
EDMA that are penalized by the large number of I/Os and network latency.

Apache Spark is one of many frameworks intended to neutralize the limita-
tions of MapReduce while keeping its scalability, data locality and fault toler-
ance. The keystone of Spark is the Resilient Distributed Datasets (RDD) [34]. A
RDD is a typical immutable parallel data structure that can be cached. These
RDDs support two types of operations: transformations (map. filter, join, . . . )
that produce a modified RDD and actions (count, reduce, . . . ) that generate
non-RDD-type results (an integer, a table, etc.) and require all the RDD par-
titions to be performed. Spark is up to 100 times faster than MapReduce with
iterative algorithms (see Footnote 1).

3.2 Parallelizing GP over a Distributed Environment

The implementation of evolutionary algorithms over a distributed environment
has taken up light since the emergence of the Big Data ecosystem. Several works
have been published in this context. For example, Rong-Zhi Qi et al. [31] and
Padaruru et al. [29] propose solutions for parallelizing the entire evolutionary
process (fitness evaluation and genetic operators) with Spark. This solution has
been applied to automatic software test game generation.

In Chávez et al. [7], the well-known EA library ECJ is modified in order
to use MapReduce for fitness evaluations. This new tool is tested to resolve a
face recognition problem over around 50 MB of data. Only time measure was
considered in this work. Peralta et al. [30] applied the MapReduce model to
implement an EA for the pre-processing of big datasets (up to 67 million records
and attributes from 631 to 2000). It’s a feature selection application where each
map creates a vector of attributes on disjoint subsets of the original data base.
The Reduce phase aggregates all the vectors obtained.

The implementation used in this paper, introduced in [16], is inspired by the
works of Chavez et al. [7] Peralta et al. [30]. It is a solution for modifying an
existing tool (DEAP) for the distribution of the training data base using the
Spark engine for distributing GP evaluation. The GP loop with the different
distribution steps are illustrated by the Algorithm1. Steps 1, 4, 5, and 6 (blue
lines) concern the distribution of the training data set for the population fitness
computation. In step 1, we start by creating a RDD containing the training
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set. Then, at each generation, a map transformation (step 4) is performed by
sending individuals code to be executed (step 5) on RDD and then get results to
compute each individual fitness in step 6. Afterwards, GP pursues its standard
evolutionary steps.

Algorithm 1. GP + RDD
1: TrainingRDD ← parallelize the training set
2: g ← 0
3: for all generation g < gmax do
4: map: serialize population and map it on the training set (trainingRDD)
5: TrainingRDD ← compute distributed fitness
6: Reduce : Compute final fitness (Reduce fitnessRDD)
7: Update population fitness
8: Select parents according to fitness
9: Apply genetic operators and generate new population

10: end for

4 Scaling by the Learning Paradigm: Active Learning

Active Learning [2,8] could be defined as: ‘any form of learning in which the
learning program has some control over the inputs on which it trains.’

Active learning is implemented essentially with active sampling techniques.
The goal of any sampling approach is first to reduce the original size of the
training set, and thus the computational cost, and second to enhance the learner
performance. Sampling training dataset has been first used to boost the learn-
ing process and to avoid over-fitting [20]. Later, it was introduced for Genetic
learners as a strategy for handling large input databases. With active sampling,
the training subset is changed periodically across the learning process. The data
selection strategy is based on some dynamic criteria, such as random selection,
weighted selection, incremental selection, etc. We distinguish one-level sampling
methods using a single selection strategy and multi-level sampling (hierarchical
sampling) methods using multiple sampling strategies associated in a hierarchi-
cal way.

4.1 One-Level Active Sampling

One-level sampling methods use a single selection strategy based on dynamic
criteria. Records in the training subset S are selected before the application of
the genetic operators each generation.

To select a training subset S from a data base B, the simplest technique
is to select randomly TS records from B with a uniform probability. It is the
basic approach for the Random Subset Selection method [13] (Sect. 4.1) and
some variants like the Stochastic Sampling [28] and Fixed Random Selection [35].
Several other techniques use more sophisticated criteria in order to address some
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learning difficulties like over-fitting or imbalanced data. For example, weighted
sampling techniques [13] use information about the current state of the training
data such as difficulty and the number of solved fitness cases. However data-
topology based sampling techniques [15,24] use information about data topology
in order to avoid to select similar fitness cases in the same training subset.
Balanced sampling [19] and incremental sampling [22] techniques use information
about the data classes to handle the problem of imbalanced data. For this work,
we are interested in the random (RSS) and balanced (SBS) sampling methods.
In this work, the training data base is divided on balanced blocks and SBS and
RSS are applied the resulting blocks (Algorithm2).

Random Sampling (RSS). The simplest method to choose fitness cases and
build the training sample is random. The selection of fitness cases is based on a
uniform probability among the training subset. This stochastic selection helps to
reduce any bias within the full dataset on evolution. Random Subset Selection
(RSS) is the first implementation given by Gathercole et al. [13]. In RSS, at each
generation g, the probability of selecting any case i is equal to Pi(g) such that:

∀i : 1 ≤ i ≤ TB , Pi(g) =
TS

TB
. (1)

where TB is the size of the full dataset B and TS is the target subset size.
The sampled subset has a fluctuating size around TS .

Balanced Sampling (SBS). The main purpose of balanced sampling is to
overcome imbalance in the original data sets. The well known techniques in this
category are those proposed by Hun et al. [19] aiming to improve classifiers accu-
racy by correcting the original dataset imbalance within majority and minority
class instances. Some of these methods are based on the minority class size and
thus reduce the number of instances. In this paper, we focus on the Static Bal-
anced Sampling (SBS). SBS is an active sampling method that selects cases with
uniform probability from each class without replacement until obtaining a bal-
anced subset. This subset contains an equal number of majority and minority
class instances of the desired size.

4.2 Multi-level Active Sampling

Multi-level sampling combines several sampling algorithms applied at different
levels. Its objective is to deal with large data sets that do not fit in the memory,
and simultaneously provide the opportunity to find solutions with a greater
generalization ability than those given by the one-level sampling techniques.
The data subset selections at each level are independent. The usual schema is
made up of three levels. The first one (level 0) consists in creating blocks with
a given size from the original data set which are recorded in the hard disk. The
remaining two levels are a combination of two active sampling methods. In the
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Algorithm 2. GP + 2 Level Active Sampling
Parameters:
B: learning data base
TS : the subset size

1: Divide B into blocks Bb (level 0)
2: S(0) ← Select instances from Bb using RSS or SBS
3: g ← 0
4: for all generation g < gmax do
5: Evaluate individuals against Training Subset S(g)
6: Select parents according to fitness
7: Apply genetic operators and generate new population
8: Generate randomly new data subset S(g + 1) using RSS or SBS (level 1)
9: end for

present work, a balanced sampling is applied at levels 0 and 1 and a random
sampling is applied at level 2.

Algorithm 3 details how the hierarchical sampling is added to the GP loop. At
level 0, the data set B is first partitioned into blocks that are selected randomly
for the sampling step. Then, at level 1, an intermediate sample is extracted from
the current block using a balanced random selection SBS. Finally, at level 2, the
training subset S is generated randomly from the intermediate sample.

Algorithm 3. GP + 3 Level Active Sampling
Parameters:
B: learning data base
Tl1: level 1 maximum iterations
Tl2: level 2 maximum iterations

1: Divide B into blocks (level 0)
2: for all level 1 iterations = Tl1 do
3: Conduct Block Selection
4: Sample an Intermediate subset using SBS or RSS (level 1)
5: for all level 2 iterations = Tl2 do
6: S(g) ← Conduct Training Subset Selection using RSS (level 2)
7: Evaluate individuals against Training Subset S(g)
8: Select parents according to fitness
9: Apply genetic operators and generate new population

10: end for
11: end for

In addition to the known GP parameters, two new parameters are used by the
algorithm: Tl1 and Tl2. Tl1 and Tl2 are respectively the number of GP iterations
for the first-level sampling and for the second-level sampling. Thus, after each
Tl1 iterations, the level-one training data set is replaced with an other set with
the SBS method. This set is used to generate the training sub set S at each Tl2

iterations with the RSS approach.
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5 Example of Application

This section presents an example of application of the proposed solutions in solv-
ing two real world problems. The aim is not to present a detailed experimental
study but to give an example of the GP’s behaviour when extended with an
active sampling or a parallelization over Spark. For this purpose, we have cho-
sen two applications: The Higg’s Boson classification and the Pulsar detection
problems.

5.1 Application Data Bases

The Higgs Data Base for Boson Detection. A Higgs or Z boson is a
heavy state of matter resulting from a small fraction of the proton collisions at
the Large Hadron Collider[5]. This heavy state quickly decays into more stable
particles, so the intermediate states of matter are not observable by the detectors
surrounding the point of collision. Highly faithful collisions are then simulated by
the ATLAS Simulator [9] to reproduce the essential measurements provided by
the detectors to reproduce the essential measurements provided by the detectors.

ATLAS experiment a portion of the simulated data to optimize the analysis
of the Higgs Bosons by machine learning techniques. A subset of this data was
presented as a challenge in 2014 [1] in the kaggle platform4,5.

From the machine learning point of view, the problem can be formally cast
into a binary classification problem. The task is to classify events as a signal
(event of interest) or a background (event produced by already known processes).
Baldi et al. [4] published for benchmarking machine-learning classification algo-
rithms a big data set of simulated Higgs Bosons that contains 11 million simu-
lated collision events and the 28 features. In this work, we propose to handle a
subset of the published data to test th different GP implementations.

HTRU Data Set for Pulsar Detection. Pulsars are a rare type of Neutron
star that produce radio emission detectable on Earth. They are of considerable
scientific interest as probes of space-time, the inter-stellar medium, and states
of matter [26]. As pulsars rotate, their emission beam sweeps across the sky, and
when this crosses our line of sight, produces a detectable pattern of broadband
radio emission. As pulsars rotate rapidly, this pattern repeats periodically. Thus
pulsar search involves looking for periodic radio signals. The HTRU(2) dataset,
is the publicly available data set6 that describes a sample of pulsar candidates
collected during the High Time Resolution Universe (HTRU) Survey. The goal
of the classification process is to classify the given candidates as pulsars or non
pulsars.

4 https://www.kaggle.com/.
5 See UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/datasets/

HIGGS.
6 https://archive.ics.uci.edu/ml/datasets/HTRU2.

https://www.kaggle.com/
http://archive.ics.uci.edu/ml/datasets/HIGGS
http://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HTRU2
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Some Related Works on Higgs and HTRU Data Sets. The first machine
learning technique applied to detect pulsars on the Lyon et al. HTRU data
set is the Gaussian Hellinger very fast Decision Tree with a precision equal to
89.9% [26]. These results are improved in the study published in [33] where
the precision and recall reach respectively 95% and 87.3% with the XG-Boost
classifier and 96% and 87% with Random Forest classifier.

Otherwise, the Boson classification problem using the Higgs data set was
first handled with Deep Neural Network (DNN) proposed by Baldi et al.[5].
Their method was compared the boosted decision tree and the Shallow Neural
Network. They used a subset of Higgs data base of 2.6 million examples and 100K
validation examples. They demonstrated how DNN can be trained on such data
set with a high degree of accuracy. The whole Kaggle data set with 11 millions
patterns has been studied in [16,18] where the best accuracy reach 66.93%.

5.2 Experimental Settings

Software Framework. DEAP (Distributed Evolutionary Algorithms in
Python)7 is presented as a rapid prototyping and testing framework [12] that
supports parallelization and multiprocessing. It implements several Evolution-
ary Algorithms: Genetic Algorithm, Evolution Strategies and GP. The basic
module contains objects and data structures frequently used in Evolutionary
Computation. We decided to use this framework for the following reasons: (1)
it implements standard GP with tree based representation (1), it is a Python
package which is one of the 3 languages supported by Spark and (3) it is dis-
tributed ready. The third point means that DEAP is structured in a way that
facilitates distribution of computing tasks.

Configurations and Performance Metrics. For each data set, five series
of tests are performed with different configurations according to the sampling
strategy or parallelization strategy, as follows:

– Standard GP: GP is run without active learning or parallelization.
– GP + Spark: GP is parallelized over Spark.
– GP + 2 Level Sampling: GP is extended with a two level sampling using SBS

at level 0 and RSS at level 1.
– GP + 3 Level Sampling: GP is extended with a three level sampling using

SBS at level 0 and 1 and RSS at level 2.

By the end of each run, the best individual based on the fitness function is
evaluated on the test data set. Results are recorded in a confusion matrix from
which accuracy is calculated according to the following formula.

Accuracy =
True Positives + True Negatives

Total patterns
. (2)

7 https://github.com/deap/deap.

https://github.com/deap/deap
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where True Positives and True Negatives are the numbers of exemplars cor-
rectly classified in respectively class 1 and 0. Experiments are performed on an
Intel i7 (4 Core) workstation with 16 GB RAM running under Windows 64-bit
Operating System.

The additional parameters needed for the different configurations are sum-
marized in the Table 1. For these first experiments, the training size is limited
40000 for the case of Boson classification.

Table 1. Additional parameters for the GP runs.

Method Parameter Level 0 Level 1 Level 2

Standard GP and
GP+Spark

Size HIGGS: 40000 – –

HTRU: 14000 – –

GP+2 Level
Sampling

Size HIGGS: 40000 - HTRU:2000 5000 400

Frequency 50 g 1 –

GP+3 Level
Sampling

Size HIGGS:5000 - HTRU:2000 1000 200

Frequency HTRU 50 g 5 2

Frequency HIGGS 50 g 8 4

GP Settings. The GP terminal set includes the features of data set benchmarks
studied in this work. The GP function set includes basic arithmetic, comparison
and logical operators reaching 17 functions. The objective is the minimisation
of the classification error. The main GP parameters are summarized in Table 2.

Table 2. GP parameters.

Parameter Value Parameter Value

Population size 200 Generations number 200

Crossover probability 0.5 Mutation probability 0.2

Tournament size 4 GP Tree depth 3

5.3 Results and Discussion

The results of these preliminary experiments are illustrated in Table 3 for the
HTRU base and in Table 4 for the HIGGS data base. The recorded metrics are
average and best accuracy and average computing time over 10 runs.

The key observation from the obtained results is that the proposed solutions
are able not only to reduce the computation cost according to Standard GP
results, but also to improve the performance of the classifiers. The reduction in
the computational cost is about 50% with active learning and can be reduced
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Table 3. Preliminary results on HTRU data set.

Test case Avg accuracy Computing time (en s) Best accuracy

Standard GP 97% 5313,81 97,8%

GP+2L-Sampling 97,3% 764,183 98,9%

GP+3L-Sampling 97,2% 751,607 98,7%

GP+RDD 97,4% 428,83 98,2%

Table 4. Preliminary results on HIGGS data set.

Test case Avg accuracy Computing time (en s) Best accuracy

Standard GP 57% 7918 59,2%

GP+2L-Sampling 53% 2220 56%

GP+3L-Sampling 52% 3417,89 55%

GP+RDD 57% 1278,9 61%

up to 10 times with GP+RDD in the case of HTRU. Likewise, the average
and best accuracies are improved with parallelization and active learning in the
majority of test cases. According to these first series of tests and considering
the best measures, we can state that the extended GP is able to generate better
results than the standard GP either for Higgs data set or HTRU data set.

Results for 1M Train Instances from Higgs Database. The GP behavior
observed in the first experiments should remain unchanged with the increase
of data size. To demonstrate it, some tests were carried out with a train sam-
ple of 1million instances from the Higgs data base and a test set of 200000
instances. Due to the limited computational capacity, only few runs are per-
formed and the number of generations is limited to 25 for GP+Spark and to 100
for PG+2/3 L Sampling. The remaining GP parameters still unchanged.

GP+Spark, after 25 generations and about 5 h of computing time, the best
test accuracy reach 57,15%. The parallelization of GP over Spark has not only
allowed GP to be applied to a very large data set that is impossible to do with
a Standard GP, but also to slightly improve the overall performance. For active
learning, as for previous experiments, the training set is first divided into blocks
of 100,000 instances (level 1). RSS is then applied on these blocks to generate
samples with 10000 instances in the case of 2L sampling. For the 3L Sampling,
SBS and RSS are applied respectively at level 1 and 2 where the sample sizes are
equal of 10000 and 3000. The learning time reach 5h30mn, however the results
are quite improved. The accuracy of the resulting classifiers is about 63% for 2L
and 61% for 3L. This performance exceeds not only the first results in Table 4
but also some previous published results in the state of the art. However, it is
not possible to compare the results of this paper with those of baldi et al. [5]
since we use a smaller sample size.
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Discussion. This paper presents some trends to address difficulties related
to complexity and volume for big data mining with GP as an EDMA. Two
solutions are explored, the active sampling with SBS and RSS and the horizontal
parallelization with Spark, that are proved to be promising directions to improve
classifiers’ quality. Indeed, according to the first series of tests summarized above,
and considering the best measures, we can state that the extended GP is able to
generate better results than the standard GP either for Higgs data set or HTRU
data set. Otherwise, when comparing these results with those of the state of the
art, it is clear that GP, in the different explored configurations, is a competitive
technique able to accomplish similar or better performance.

These preliminary experiments allow us to conclude that the solutions pro-
posed in this work are effective and promising. However, additional experiments
are needed to compare the different techniques according to a complete set of
metrics such as the recall, precision and F2-score measures. Otherwise, further
studies aim to better explore the different solutions and the different possibilities
of combination.

6 Conclusion

With the incremental demand to analyze huge amounts of data, resulting from
variant sources and generated at very high rates, researchers at different domains
have studied the expansion of the existing data mining techniques to cope with
the evolved nature of data. In this paper, we provide some trends to address
complexity and large data size with evolutionary machine learning. Active sam-
pling and parallelization over Spark are explained and we detailed how they
can be implemented into GPs. A first experimental study to detect pulsar and
Higgs Boson demonstrates how these extensions help GP to better deal with
complex data. Further works aim to propose a framework implementing the dif-
ferent trends discussed in this paper with more comprehensive studies. In par-
ticular, implementing active sampling on top of Spark RDDs is an interesting
path towards combining the discussed techniques in the same process. Another
direction is studying the effect of cluster size on GP performance.
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7. Chávez, F., et al.: ECJ+HADOOP: an easy way to deploy massive runs of evo-
lutionary algorithms. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016.
LNCS, vol. 9598, pp. 91–106. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31153-1 7

8. Cohn, D., Atlas, L.E., Ladner, R., Waibel, A.: Improving generalization with active
learning. Mach. Learn. 15, 201–221 (1994)

9. ATLAS Collaboration: Dataset from the ATLAS Higgs Boson machine learn-
ing challenge 2014 (2014). http://opendata.cern.ch/record/328. https://doi.org/
10.7483/OPENDATA.ATLAS.ZBP2.M5T8

10. Cummins, R., O’Riordan, C.: Evolved term-weighting schemes in information
retrieval: an analysis of the solution space. Artif. Intell. Rev. 26(1–2), 35–47 (2006).
https://doi.org/10.1007/s10462-007-9034-5

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Brewer, E.A., Chen, P. (eds.) 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, 6–8 December
2004, pp. 137–150. USENIX Association (2004)

12. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
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