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Abstract. We study the problem of allocating indivisible goods among
agents with additive valuations in a fair and efficient manner, when
agents have few utility values for the goods. We consider the compelling
fairness notion of envy-freeness up to any good (EFX) in conjunction
with Pareto-optimality (PO). Amanatidis et al. [1] showed that when
there are at most two utility values, an EFX allocation can be com-
puted in polynomial-time. We improve this result by showing that for
such instances an allocation that is EFX and PO can be computed in
polynomial-time. This is the first class apart from identical or binary
valuations, for which EFX+PO allocations are shown to exist and are
polynomial-time computable. In contrast, we show that when there are
three utility values, EFX+PO allocations need not exist, and even decid-
ing if EFX+PO allocations exist is NP-hard.

Our techniques allow us to obtain similar results for the fairness notion
of equitability up to any good (EQX) together with PO. We show that
for instances with two positive values an EQX+PO allocation can be
computed in polynomial-time, and deciding if an EQX+PO allocation
exists is NP-hard when there are three utility values.

We also study the problem of maximizing Nash welfare (MNW), and
show that our EFX+PO algorithm returns an allocation that approxi-
mates the MNW to a factor of 1.061 for two valued instances, in addition
to being EFX+PO. In contrast, we show that for three valued instances,
computing an MNW allocation is APX-hard.

Keywords: Fair and efficient allocation · EFX · Nash welfare · EQX

1 Introduction

The problem of fair division was formally introduced by Steinhaus [36], and
has since been extensively studied in various fields, including economics and
computer science [10,32]. It concerns allocating resources (goods) to agents in
a fair and efficient manner, and has various practical applications such as rent
division, division of inheritance, course allocation, and government auctions.
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Arguably, the most popular notion of fairness is envy-freeness (EF) [19,37],
which requires that every agent prefers their own bundle of goods to that of any
other. However in the case of indivisible goods, EF allocations need not even
exist (consider allocating 1 good among 2 agents). This motivated the study
of its relaxations. One such relaxation is envy-freeness up to one good (EF1)
allocation, defined by Budish [11], where every agent prefers their own bun-
dle to the bundle of any other agent after removing some good from the other
agent’s bundle. It is well-known that an EF1 allocation always exists and is
polynomial-time computable [29]. However, an EF1 allocation may be unsatis-
factory because it allows the removal of the most valuable good from the other
agent’s bundle, which might be the main reason for huge envy to exist in the
first place. Therefore, stronger fairness notions are desirable in many settings.

A stronger notion is called envy-free up to any good (EFX), defined by Cara-
giannis et al. [12], which requires every agent to prefer their bundle over the
bundle of any other agent after removing any good from the other agent’s bun-
dle. Clearly, any allocation that is EFX is also EF1, but not vice-versa. The
existence of EFX allocations is known for identical valuations [34], and was
recently shown for 3 agents with additive valuations [15].1 At the same time, we
want the output allocation to be efficient because a fair allocation by itself may
be highly inefficient. Consider for example two agents A1 and A2 and 2 goods g1
and g2 where Ai values only gi and does not value the other good. The allocation
in which g1 is assigned to A2 and g2 is assigned to A1 is clearly EFX. However
both agents get zero utility, which is highly inefficient. The allocation in which
gi is assigned to Ai is more desirable since it is both fair as well as efficient.

The standard notion of economic efficiency is Pareto optimality (PO). An
allocation is said to be PO if no other allocation makes an agent better off with-
out making someone else worse off. A stronger notion called fractional Pareto
optimality (fPO) requires that no other fractional allocation makes an agent
better off without making someone else worse off. Every fPO allocation is there-
fore PO, but not vice-versa (see the appendix for an example). Another reason
to prefer fPO allocations over PO allocations is that the former admit efficient
verification while the latter do not: given an allocation, it can be checked in
polynomial time if it is fPO [5], whereas checking if an allocation is PO is coNP-
complete [27]. Hence if a centralized entity responsible for allocating resources
claims the allocation is fPO, each agent can individually verify that this is indeed
the case; in contrast such a check is not efficiently possible if the guarantee is
only PO.

An important question is whether the notions of fairness (EF1 or EFX) can
be achieved in conjunction with the efficiency notions (PO or fPO). Further,
if yes, then whether they can be computed in polynomial-time. For this, the
concept of Nash welfare provides a partial answer. The Nash welfare is defined
as the geometric mean of the agents’ utilities, and by maximizing it we achieve

1 Settling the (non-)existence of EFX allocations is considered the biggest open ques-
tion in fair division [35]; see [16] and references therein for recent progress on this
problem.
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a tradeoff between efficiency and fairness. Caragiannis et al. [12] showed that
the maximum Nash welfare (MNW) allocations are EF1 and PO under additive
valuations. However, the problem of computing an MNW allocation is APX-hard
[28] (hard to approximate). Bypassing this barrier, Barman et al. [5] devised
a pseudo-polynomial-time algorithm that computes an EF1+PO allocation. In
a recent paper, Garg et al. [23] showed that an EF1+fPO allocation can be
computed in pseudo-polynomial time. For the special case of binary additive
valuations an MNW allocation is EFX+fPO, and is known to be polynomial-
time computable [6,18].

1.1 Our Contributions

In this work, we obtain several novel results on the notions of EFX, EQX, PO,
and MNW, especially for instances in which agents have few values for the goods.
A fair division instance is called k-valued if values that agents have for the goods
belong a set of size k.

EFX. Recently, Amanatidis et al. [1] showed that for 2-valued instances any
MNW allocation is EFX+PO, but left open the question of whether it can
be computed in polynomial-time. They presented a polynomial-time algorithm
which computes an EFX allocation for 2-valued instances, however, the outcome
of their algorithm need not be PO (see the appendix for an example). In this
work, we show EFX+fPO allocations always exist for 2-valued instances and
can be computed in polynomial-time.2 Further, apart from the classes of iden-
tical valuations and binary valuations, this is the first class for which EFX+PO
allocations exist and can be computed in polynomial-time.

In general, EFX+PO allocations are not guaranteed to exist [34]. We there-
fore ask the natural question: what is the complexity of checking if an instance
admits an EFX+PO allocation? We show that this problem is NP-hard, some-
what surprisingly, even for 3-valued instances.

EQX. Our techniques allow us to obtain similar results for the fairness notion
of equitability up to any good [20,26]. An allocation is said to be EQX (resp.
EQ1) if the utility an agent gets from her bundle is no less than the utility any
other agent gets after removing any (resp. some) good from their bundle. We
show that for positive 2-valued instances, an EQX+PO allocation can be com-
puted in polynomial-time, and in contrast, even checking existence of EQX+PO
allocations for 3-valued instances is NP-hard.

MNW. Our EFX+PO algorithm returns an allocation that approximates the
maximum Nash welfare to a factor of 1.061 in addition to being EFX and PO.
This guarantee is better than the best known 1.45-approximation algorithm of [5]
for the MNW problem.

Amanatidis et al. [1] showed that computing an MNW allocation is NP-hard
for 3-values instances, which, as they remark “extends the hardness aspect, but
2 Our results extend to the much broader class where there are two values {ai, bi} per

agent, but ai/bi is the same across agents.
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not the inapproximability, of the result of Lee [28] for 5-valued instances”, who
had shown that MNW is NP-hard to approximate within a factor of 1.00008.
In our work, we extend the inapproximability aspect too, and show that it is
NP-hard to approximate the MNW to a factor of 1.00019, even for 3-valued
instances, which is better than Lee’s result.

Thus, for the problems of computing (i) EFX+PO, (ii) EQX+PO, and (iii)
MNW allocations, our work improves the state-of-the-art and also crucially pin-
points the boundary between tractable and intractable cases.

1.2 Other Related Work

Barman et al. [5] showed that for n agents and m goods, an EF1+PO allocation
can be computed in time poly(n,m, vmax), where vmax is the maximum utility
value. Their algorithm first perturbs the values to a desirable form, and then
computes an EF1+fPO allocation for the perturbed instance, which for a small-
enough perturbation is EF1+PO for the original instance. Their approach is via
integral market-equilibria, which guarantees fPO at every step. Our algorithm
uses a similar approach, with one main difference being that we do not need
to consider any approximate instance and can work directly with the given val-
ues. The outcome of our algorithm is EFX+fPO, which beats the guarantee of
EF1+PO.

Another key difference is the run-time analysis: our arguments show termi-
nation in poly(n,m) time for 2-valued instances, even when vmax = 2Ω(n+m),
whereas the analysis of Barman et al. only shows a poly(n,m, vmax) time bound,
even for 2-valued instances.

Recently, Garg and Murhekar [33] showed that an EF1+fPO allocation can
be computed in poly(n,m, vmax)-time, by using integral market-equilibria. They
also showed that an EF1+fPO allocation can be computed in poly(n,m)-time
for k-valued instances where k is a constant, however they do not show that the
allocation returned by their algorithm is EFX for 2-valued instances.

Freeman et al. [20] showed that EQ.1+PO allocations can be computed in
pseudo-polynomial-time for instances with positive values. They also show that
the leximin solution, i.e., the allocation that maximizes the minimum utility, and
subject to this, maximizes the second minimum utility, and so on; is EQX+PO.
However, as remarked in [34], computing a leximin solution is intractable.

Barman et al. [6] showed that for identical valuations, any EFX allocation
provides a 1.061-approximation to the MNW. Garg et al. [21] show a 1.069-
hardness of approximating MNW, although for 4-valued instances.

Instances with few values have been widely considered in the fair division lit-
erature: for instance Golovin [25] presents approximation algorithms and hard-
ness results for computing max-min fair allocations in 3-valued instances; Aziz
et al. [3] show PO is efficiently verifiable for 2-valued instances and coNP-hard
for 3-valued instances; Aziz [2], and Vazirani and Yannakakis [38] study the
Hylland-Zeckhauser scheme for probabilistic assignment of goods in 2-valued
instances; Bogomolnaia and Moulin [9] study matching problems with 2-valued
(dichotomous) preferences; Bliem et al. [8] study fixed-parameter tractability
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for computing EF+PO allocations with parameter n+ z, where z is the number
of values; and Garg et al. [24] study leximin assignments of papers ranked by
reviewers on a small scale, in particular they present an efficient algorithm for 2
ranks, i.e., “high or low interest” and show NP-hardness for 3 ranks. More gener-
ally, such instances have been studied in resource allocation contexts, including
makespan minimization with 2 or 3 job sizes [13,39].

2 Preliminaries

For t ∈ N, let [t] denote {1, . . . , t}.

Problem Setting. A fair division instance is a tuple (N,M, V ), where N = [n]
is a set of n ∈ N agents, M = [m] is the set of m ∈ N indivisible items, and
V = {v1, . . . , vn} is a set of utility functions, one for each agent i ∈ N . Each
utility function vi : M → Z≥0 is specified by m numbers vij ∈ Z≥0, one for
each good j ∈ M , which denotes the value agent i has for good j. We assume
that the valuation functions are additive, that is, for every agent i ∈ N , and for
S ⊆ M , vi(S) =

∑
j∈S vij . Further, we assume that for every good j, there is

some agent i such that vij > 0. Note that we can in general work with rational
values without loss of generality, since they can be scaled to make them integral,
and the efficiency and fairness guarantees we consider are scale-invariant.3

We call a fair division instance (N,M, V ) a t-valued instance if |{vij : i ∈
N, j ∈ M}| = t. The class of 2-valued instances is made up of two disjoint
fragments: binary instances, where all values vij ∈ {0, 1}; and {a, b}-instances,
where all values vij ∈ {a, b} for a, b ∈ Z>0. An important subclass of 3-valued
instances is the {0, a, b} class, wherein all values vij ∈ {0, a, b} for a, b ∈ Z>0.

Allocation. An (integral) allocation x of goods to agents is a n-partition
(x1, . . . ,xn) of the goods, where xi ⊆ M is the bundle of goods allotted to
agent i, who gets a total value of vi(xi). A fractional allocation x ∈ [0, 1]n×m is
a fractional assignment of the goods to agents such that for each good j ∈ M ,∑

i∈N xij = 1. Here, xij ∈ [0, 1] denotes the fraction of good j allotted to agent i.
In a fractional allocation x, an agent i receives a value of vi(xi) =

∑
j∈M vijxij .

Fairness Notions. An allocation x is said to be:

1. Envy-free up to one good (EF1) if for all i, h ∈ N , there exists a good j ∈ xh

s.t. vi(xi) ≥ vi(xh \ {j}).
2. Envy-free up to any good (EFX) if for all i, h ∈ N and for all goods j ∈ xh

we have vi(xi) ≥ vi(xh \ {j}).
3. Equitable up to one good (EQ.1) if for all i, h ∈ N , there exists a good j ∈ xh

s.t. vi(xi) ≥ vh(xh \ {j}).
4. Equitable up to any good (EQX) if for all i, h ∈ N and for all goods j ∈ xh

we have vi(xi) ≥ vh(xh \ {j}).
3 The properties of EFX, PO, and Nash welfare are invariant under scaling, while

EQX is not scale-invariant in general. However, in our algorithms this is not an issue
since we only uniformly scale the valuations of all agents, which preserves EQX.
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Pareto-optimality. An allocation y dominates an allocation x if for all i ∈ N ,
vi(yi) ≥ vi(xi) and there exists h ∈ N s.t. vh(yh) > vh(xh). An allocation is said
to be Pareto-optimal (PO) if no allocation dominates it. Further, an allocation is
said to be fractionally Pareto-optimal (fPO) if no fractional allocation dominates
it. Thus, any fPO allocation is PO, but not vice-versa (see the appendix for an
example).

Nash Welfare. The Nash welfare of an allocation x is given by NW(x) =
(
Πi∈Nvi(xi)

)1/n. An allocation that maximizes the NW is called an MNW allo-
cation or Nash optimal allocation. An allocation x approximates the MNW to a
factor α if α · NW(x) ≥ NW(x∗), where x∗ is an MNW allocation.

Fisher Markets. A Fisher market or a market instance is a tuple (N,M, V, e),
where N = [n] is a set of n ∈ N agents, M = [m] is a set of m ∈ N divisible
goods, V = {v1, . . . , vn} is a set of additive (linear) utility functions, and e =
{e1, . . . , en} is the set of agents’ budgets, where each ei ≥ 0. In this model, agents
can fractionally share goods. Each agent aims to obtain a bundle of goods that
maximizes her total value subject to her budget constraint.

A market outcome is a fractional allocation x of the goods to the agents
and a set of prices p = (p1, . . . , pm) of the goods, where pj ≥ 0 for every
j ∈ M . The spending of an agent i under the market outcome (x,p) is given by
p(xi) =

∑
j∈M pjxij . For an agent i, we define the bang-per-buck ratio αij of

good j as vij/pj , and the maximum bang-per-buck (MBB) ratio αi = maxj αij .
We define mbbi = {j ∈ M : αi = vij/pj}, called the MBB-set, to be the set of
goods that give MBB to agent i at prices p. A market outcome (x,p) is said to
be ‘on MBB’ if for all agents i and goods j, xij > 0 ⇒ j ∈ mbbi. For integral x,
this means xi ⊆ mbbi.

A market outcome (x,p) is said to be a market equilibrium if (i) the market
clears, i.e., all goods are fully allocated. Thus, for all j,

∑
i∈N xij = 1, (ii) budget

of all agents is exhausted, for all i ∈ N ,
∑

j∈M xijpj = ei, and (iii) agents only
spend money on MBB goods, i.e., (x,p) is on MBB.

Market equilibria are an important tool in computing fair and efficient
allocations because of their remarkable fairness and efficiency properties; see
e.g., [4,5,14,17,20,22,31]. The First Welfare Theorem [30] shows that for a mar-
ket equilibrium (x,p) of a Fisher market instance M, the allocation x is fPO.
We include a proof in the appendix for completeness.

Theorem 1. (First Welfare Theorem [30]) Let (x,p) be a equilibrium of a
Fisher market M. Then x is fractionally Pareto-optimal.

Given an allocation x for a fair division instance (N,M, V ) and a vector of
prices p for the goods such that (x,p) is on MBB, one can define an associated
Fisher market instance M = (N,M, V, e) by setting ei = p(xi). It is easy to see
that (x,p) is a market equilibrium of M. Hence Theorem 1 implies:

Corollary 1. Given a market outcome (x,p) on MBB, the allocation x is fPO.
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3 Computing EFX+PO Allocations

We first study the problem of computing an EFX+PO allocation for t-valued
instances when t ∈ {2, 3}. We show that EFX+PO allocations can be computed
in polynomial-time for 2-valued instances, and in contrast, computing such allo-
cations for 3-valued instances is NP-hard.

3.1 EFX+PO Allocations for 2-Valued Instances

We consider {a, b}-instances, as it is known EFX+PO allocations can be effi-
ciently computed for binary instances. We remark that while the allocation
returned by the algorithm Match&Freeze of Amanatidis et al., [1] for {a, b}-
instances is EFX, it need not be PO (example in appendix). We improve this
result by showing that:

Theorem 2. Given a fair division {a, b}-instance I = (N,M, V ), an allocation
that is EFX, fPO and approximates the maximum Nash welfare to a factor of
1.061 can be computed in polynomial-time.

We prove this theorem by showing that Algorithm 1 computes such an allo-
cation. We first define some relevant terms, including the concept of price envy-
freeness introduced by Barman et al. [5]. A market outcome (x,p) is said to be
price envy-free up to one good (pEF1) if for all agents i, h ∈ N there is a good
j ∈ xh such that p(xi) ≥ p(xh \ {j}). Similarly, we say it is pEFX if for all
agents i, h ∈ N , and for all goods j ∈ xh it holds that p(xi) ≥ p(xh \ {j}). For
market outcomes on MBB, the pEFX condition implies the EFX condition:

Lemma 1. Let (x,p) be an integral market outcome on MBB. Then x is fPO.
If (x,p) is pEFX, then x is EFX.

Proof. The fact that x is fPO follows from Corollary 1. Since (x,p) is pEFX, for
all pairs of agents i, h ∈ N , and all goods j ∈ xh it holds that p(xi) ≥ p(xh\{j}).
Since (x,p) is on MBB, xi ⊆ mbbi. Let αi be the MBB-ratio of i at the prices
p. By definition of MBB, vi(xi) = αip(xi), and vi(xh \{j}) ≤ αip(xh \{j}), for
every j ∈ xh. Combining these, we get that x is EFX. �	

Given a price vector p, we define the MBB graph to be the bipartite graph
G = (N,M,E) where for an agent i and good j, (i, j) ∈ E iff j ∈ mbbi. Such
edges are called MBB edges. Given an accompanying allocation x, we supplement
G to include allocation edges, an edge between agent i and good j if j ∈ xi.

We call the agent i with minimum p(xi) a least spender (LS), where ties are
broken lexicographically. For agents i0, . . . , i� and goods j1, . . . , j�, consider a
path P = (i0, j1, i1, j2, . . . , j�, i�) in the supplemented MBB graph, where for all
1 ≤ �′ ≤ �, j�′ ∈ mbb(�′−1) ∩ x�′ . Define the level of an agent h to be the length
of the shortest such path from the LS to h, and to be n if no such path exists.
Define alternating paths to be such paths beginning with agents at a lower level
and ending with agents at a strictly higher level. The edges in an alternating
path alternate between MBB edges and allocation edges.
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Algorithm 1. EFX+fPO allocation for {a, b}-instances
Input: Fair division {a, b}-instance (N, M, V )
Output: An integral allocation x

1: Scale values to {1, k}, where k = a/b > 1.
2: (x,p) ← Integral welfare-maximizing market allocation, where pj = vij for j ∈ xi.
3: Let i ∈ argminh∈Np(xh) be the least spender
4: if there is an alternating path (i, j1, i1, . . . , j�, i�), s.t. p(xi� \ {j�}) > p(xi) then
5: Transfer j� from i� to i�−1

6: Repeat from Line 3

7: if ∀ agents h /∈ Ci, and ∀j ∈ xh : p(xh \ {j}) ≤ p(xi) then return x � pEFX
condition satisfied for all agents not in component of LS, defined in Def.1

8: else
9: Raise prices of goods in Ci by a multiplicative factor of k

10: Repeat from Line 3

Definition 1 (Component Ci of a least spender i). For a least spender i,
define C�

i to be the set of all goods and agents which lie on alternating paths of
length �. Call Ci =

⋃
� C�

i the component of i, the set of all goods and agents
reachable from the least spender i through alternating paths.

We now describe Algorithm 1. Let k = a/b > 1. Let us first scale the valu-
ations to {1, k} since both properties EFX and fPO are scale-invariant. The
algorithm starts with a welfare maximizing integral allocation (x,p), where
pj = vij if j ∈ xi. The algorithm then explores if there is an alternating
path P = (i = i0, j1, i1, · · · , j�, i� = h), where i is the LS agent, such that
p(xh \ {j�}) > p(xi), i.e., an alternating path along which the pEF1 condition
is violated for the LS agent. We call any such agent h who owns some good j
such that the pEF1 condition is not satisfied by the LS with respect to good j,
a pEF1-violator. When such a path is encountered, the algorithm transfers j�

from h to i�−1. This process is repeated from Line 3 to account for a possible
change in the LS, until there is no such path in the component Ci of the LS
agent. Suppose there is some agent h /∈ Ci for which the pEFX condition is not
satisfied with respect to the LS, then the algorithm raises the prices of all goods
in the component of the LS agent by a factor of k, and the algorithm proceeds
once again from Line 3.

The proof of Theorem 2 relies on Lemmas 1-6. We first show that we can
re-scale prices to {1, k}.

Lemma 2. For every outcome (x,p) constructed during the run of Algorithm 1,
there exists a set of prices q such that (x,q) is also on MBB, and for every
j ∈ M , qj ∈ {1, k}.
Proof. Note that initially all prices are either 1 or k. Since all price rises are by
a factor of k (Line 9), final prices are of the form pj = ksj , for sj ∈ Z≥0. Let j0
be the smallest priced good with pj0 = ks, and let j0 ∈ xi, for some agent i ∈ N .
Then ∀j ∈ xi : pj ∈ {ks, ks+1}. By the MBB condition for any agent h �= i for
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j′ ∈ xh and j ∈ xi:
vhj′

pj′
≥ vhj

pj
,

which gives:
pj′ ≤ vhj′

vhj
pj ≤ ks+2 .

Thus all pj ∈ {ks, ks+1, ks+2}. Either all pj ∈ {ks, ks+1}, or ∃j ∈ xh with
pj = ks+2, for some agent h ∈ N . Then by the MBB condition for any good j′:

vhj

pj
≥ vhj′

pj′
,

which gives:
pj′ ≥ vhj′

vhj
pj ≥ ks+1 .

Thus either all pj ∈ {ks, ks+1} or all pj ∈ {ks+1, ks+2}. In either case we can
scale the prices to belong to {1, k}. �	

This in fact shows that at any stage of Algorithm 1, the prices of goods are
in {ks, ks+1} for some s ∈ Z≥0. This, along with the fact that goods are always
transferred along MBB edges, and the prices are raised only by factor of k, leads
us to conclude that the MBB condition is never violated for any agent and the
allocation is always on MBB throughout the run of the algorithm. Hence the
allocation is fPO.

Lemma 3. The allocation x returned by Algorithm 1 is on MBB w.r.t. prices
p upon termination. Thus, x is fPO.

The full proof of the above Lemma appears in the appendix. We now show:
correctness:

Lemma 4. The allocation x returned by Algorithm 1, together with the prices
p on termination is pEFX.

Proof. To see why (x,p) is pEFX, first note that by Lemma 2, we can assume
the prices are in {1, k}. Suppose (x,p) is not pEFX. Then there must be an agent
h and some good j ∈ xh s.t. p(xh \ {j}) > p(xi), where i is the least spender.
If h /∈ Ci, the algorithm would not have halted (negation of condition in line 8
holds). Therefore h is in Ci. Since the algorithm has halted, this means that along
all alternating paths (i, j1, i1, . . . , h′, j, h), it is the case that p(xh \{j}) ≤ p(xi).
Suppose there is some alternating path s.t. pj = 1. We know for all j′ ∈ xh,
pj′ ≥ 1. Thus:

p(xi) ≥ p(xh \ {j}) = p(xh) − 1 ≥ p(xh \ {j′}),

which means that i is pEFX towards h. Now suppose along all alternating paths
(i, j1, i1, . . . , h′, j, h), it holds that pj = k. Since (x,p) is not pEFX, it must
be the case that there is some good j′ ∈ xh that is not reachable from i via
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any alternating path, with pj′ = 1. This means that j′ /∈ mbbh′ . Since j ∈
mbbh′ , comparing the bang-per-buck ratios gives vh′j/pj > vh′j′/pj′ . This implies
vh′j > kvh′j′ which is not possible when vh′j , vh′j′ ∈ {1, k}, thus leading to a
contradiction. Hence we conclude that (x,p) is pEFX. �	
Lemma 5. Algorithm 1 terminates in polynomial-time.

Proof. (Sketch) We first note that the number of alternating paths from an agent
i to an agent h who owns a good j which is then transferred to an agent h′ is
at most n · n · m. Thus there are at most poly(n,m) transfers with the same LS
and no price rise step.

Next, we argue that the number of identity changes of the least spender
without a price rise step is poly(n,m). Suppose an agent i ceases to be the LS
at iteration t, and subsequently (without price-rise steps) becomes the LS again
for the first time at time t′. We show that the spending of i is strictly larger
at t′ than at t, and hence has strictly larger utility. Since all utility values are
integers, the increase in i’s utility is by at least 1. In any allocation x, if si (resp.
ti) is the number of goods in xi that are valued at b (resp. a) by i, the utility of
i is ui = sib + tia. Since 0 ≤ si, ti ≤ m, the number of different utility values i
can get in any allocation is at most O(m2). Thus, for any agent i, the number of
times her utility increases is at most O(m2). This is our key insight. It implies
that without price rises, any agent can become the least spender only O(m2)
times. Hence, the number of identity changes of the LS in the absence of price
rise steps is at most O(nm2).

For polynomial run-time, it remains to be shown that the number of price-
rises is poly(n,m). We do this via a potential function argument similar to [20].
The full proof is present in the appendix. �	

Finally, we show that the allocation returned by our algorithm also provides
a good approximation to the MNW, and defer the proof to the appendix.

Lemma 6. Let x be the allocation output by Algorithm 1. If x∗ is an MNW
allocation, then NW(x) ≥ 1

1.061NW(x∗).

Proof. (Sketch) Let p be the price vector on termination. Consider a scaled fair
division instance I ′ = (N,M, V ′) with identical valuations, where v′

ij = pj for
each i ∈ N, j ∈ M . Since (x,p) is pEFX for the instance I (Lemma 4), x is EFX
for the instance I ′. Barman et al., [6] showed that for identical valuations, any
EFX allocation provides a 1.061-approximation to the maximum Nash welfare.
Hence x provides a 1.061-approximation to the MNW of I ′, and we can show
that because (x,p) is on MBB (from Lemma 3), x gives the same guarantee for
the MNW of the instance I. �	
Lemmas 1, 3, 4, 5, and 6 together prove Theorem 2.

3.2 EFX+PO for 3-Valued Instances

On generalizing the class of valuations slightly to {0, a, b}, EFX+PO allocations
are no longer guaranteed to exist [34] (see the appendix for an example).
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Therefore we investigate the complexity of checking if an EFX and PO allo-
cation exists or not, and show that this problem is NP-hard.

Theorem 3. Given a fair division instance I = (N,M, V ), checking if I admits
an allocation that is both EFX and PO is NP-hard, even when I is a {0, a, b}-
instance.

We reduce from 2P2N3SAT, an instance of which consists of a 3SAT formula
over n variables {xi}i∈[n] in conjunctive normal form, and m distinct clauses
{Cj}j∈[m], with three literals per clause. Additionally, each variable xi appears
exactly twice negated and exactly twice unnegated in the formula. Deciding
if there exists a satisfying assignment for such a formula is known to be NP-
complete [7]. Given a 2P2N3SAT-instance ({xi}i∈[n], {Cj}j∈[m]), we construct a
fair division instance with 2n + m agents and 7n + m goods, with all values in
{0, 1, 3} as follows:

1. For every variable xi, create two agents Ti and Fi. Also create 7 goods:
dT

i , dF
i , gi, y

T
i , zT

i , yF
i , zF

i . Both Ti and Fi value gi at 3. Ti values dT
i , yT

i , zT
i at

1, and Fi values dF
i , yF

i , zF
i at 1. Ti and Fi value all other goods at 0.

2. For every clause Cj = �1 ∨ �2 ∨ �3, create one agent Dj and a good ej . Dj

values ej at 1. If for any k ∈ [3], �k = xi for some i ∈ [n] then Dj values
yT

i , zT
i at 1; and if for any k ∈ [3], �k = ¬xi for some i ∈ [n] then Dj values

yF
i , zF

i at 1. Dj values all other goods at 0.

We show that this instance admits an EFX+PO allocation iff the formula has a
satisfying assignment. We illustrate the correspondence between PO allocations
and assignments, and how our construction enforces EFX allocations to give
rise to satisfying assignments (and vice versa). In any PO allocation, for every
i ∈ [n], dA

i must be assigned to Ai, for A ∈ {T, F}; and gi must be assigned to
Ti or Fi. Consider the assignment xi = A, if gi is allotted to Ai, for A ∈ {T, F},
for all i ∈ [n]. Suppose for some i ∈ [n], gi is allocated to Ti. Then in an EFX
allocation, because Fi must not envy Ti after removing dT

i from the bundle of
Ti, Fi must get utility at least 3. This is only possible if both yF

i and zF
i are

allocated to Fi. This leaves yT
i , zT

i for the clause agents, when xi is True. Thus
if there is a satisfying assignment, the remaining goods can be allocated to the
clause agents in an EFX+PO manner. Also, if all assignments are unsatisfying,
some clause agent will end up not being EFX towards another agent in any PO
allocation.

We defer the full proof to the appendix, and also show:

Lemma 7. Given a fair division instance I = (N,M, V ), checking if I admits
an allocation that is both EFX and fPO is NP-complete, even when I is a
{0, a, b}-instance.

4 Computing EQX+PO Allocations

We now consider relaxations of the fairness notion of equitability, which demands
that all agents receive roughly the same utility. An allocation is said to be
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Algorithm 2. EQX+fPO allocation for {a, b}-instances
Input: Fair division {a, b}-instance (N, M, V )
Output: An integral allocation x

1: (x,p) ← Integral welfare-maximizing market allocation, where pj = vij for j ∈ xi.
2: Let i ∈ argminh∈Nvh(xh) be the least utility (LU) agent
3: if there is an alternating path (i, j1, i1, . . . , j�, i�), s.t. vi�(xi� \ {j�}) > vi(xi) then
4: Transfer j� from i� to i�−1

5: Repeat from Line 2

6: if ∀ agents h /∈ Ci, and ∀j ∈ xh : vh(xh \ {j}) ≤ vi(xi) then return x � EQX
condition satisfied for all agents not reachable through alt. paths from LU agent;
Ci is defined in Def. 1

7: else
8: Raise prices of goods in Ci by a multiplicative factor of a/b
9: Repeat from Line 2

equitable up to any good (EQX) if for all i, h ∈ N , for all j ∈ xh we have
vi(xi) ≥ vh(xh \ {j}). It is known that for binary instances, EQX+PO alloca-
tions can be computed in polynomial-time, whenever they exist [20]. Hence we
first consider {a, b}-instances. We show that:

Theorem 4. Given a fair division {a, b}-instance I = (N,M, V ), an allocation
that is both EQX and fPO exists and can be computed in polynomial-time.

We prove this by showing that Algorithm 2 terminates in polynomial-time with
an EQX+fPO allocation. Since we are interested in EQX as opposed to EFX,
we need not construct a pEFX allocation and can instead work directly with the
values. Since the techniques used in the analysis of Algorithm 2 are similar to
the analysis of Algorithm 1, we defer the full proof to the appendix. We remark
here that our techniques also enable us to show that EQ.1+fPO allocations can
be computed in polynomial-time for {a, b}-instances of chores.

For {0, a, b}-instances, EQX+PO allocations need not exist (example in
appendix). Therefore, we study the complexity of checking if an EQX+PO allo-
cation exists or not, and show that this problem too is NP-hard. The full proof
is deferred to the appendix.

Theorem 5. Given a fair division instance I = (N,M, V ), checking if I admits
an allocation that is both EQX and PO is NP-hard, even when I is a {0, a, b}-
instance.

5 Maximizing Nash Welfare

We turn to the problem of maximizing Nash welfare for t-valued instances when
t ∈ {2, 3}. Recall that for {a, b}-instances, we showed in Lemma 6 that Algo-
rithm 1 approximates the MNW to a 1.061-factor.

Turning to 3-valued instances, our final result shows APX-hardness for the
MNW problem with we slighly generalize the class of allowed values to {0, a, b}.
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This rules out the existence of a polynomial-time approximation scheme (PTAS)
for the MNW problem even {0, a, b}-instances, thus strengthening the result
of [1], who showed NP-hardness for the same. The full proof is present in the
appendix.

Theorem 6. Given a fair division instance I = (N,M, V ), it is NP-hard
to approximate the MNW to a factor better than 1.00019, even for {0, a, b}-
instances.

We present the reduction and defer the full proof to the appendix. We consider
a 2P2N3SAT-instance: {xi}i∈[n], {Cj}j∈[m], where 3m = 4n. For each variable
xi, we create two agents Ti, Fi and one good gi which is valued at 2 by both
Ti, Fi. For each clause Cj , we create a good hj which is valued at 1 by agent Ai

if setting xi = A makes Cj true, for A ∈ {T, F}. We also create 2n − m dummy
goods {dj}j∈[2n−m] which are valued at 1 by all agents. All other values are 0.
We show that if we can approximate the MNW to a factor better than 1.00019,
we can decide if there is an assignment with ≥ ρ1m clauses, or all assignments
satisfy at most ≤ ρ2m clauses, for specific constants ρ1, ρ2. The latter problem
is known to be NP-complete [7].

6 Conclusion

In this paper, we push the boundary between tractable and intractable cases for
the problems of fair and efficient allocations. We presented positive algorithmic
results for computing EFX+PO, EQX+PO, and 1.061-approximate MNW allo-
cations for 2-valued instances. In contrast, we showed that for 3-valued instances,
checking existence of EFX+PO (or EQX+PO) allocations is NP-complete, and
computing MNW is APX-hard. Our techniques can be adapted to compute
EQ.1+PO allocations for 2-valued instances of chores, and an interesting direc-
tion for future work is to see if we can compute EF1+PO allocations in the
chores setting, even for 2-valued instances. We also leave open the problem of
computing an MNW allocation for general 2-valued instances.
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