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Abstract. Posted price mechanisms (PPM) constitute one of the pre-
dominant practices to price goods in online marketplaces and their rev-
enue guarantees have been a central object of study in the last decade. We
consider a basic setting where the buyers’ valuations are independent and
identically distributed and there is a single unit on sale. It is well-known
that this setting is equivalent to the so-called i.i.d. prophet inequality,
for which optimal guarantees are known and evaluate to 0.745 in gen-
eral (equivalent to a PPM with dynamic prices) and 1 − 1/e ≈ 0.632
in the fixed threshold case (equivalent to a fixed price PPM). In this
paper we consider an additional assumption, namely, that the under-
lying market is very large. This is modeled by first fixing a valuation
distribution F and then making the number of buyers grow large, rather
than considering the worst distribution for each possible market size. In
this setting Kennedy and Kertz [Ann. Probab. 1991] breaks the 0.745
fraction achievable in general with a dynamic threshold policy. We prove
that this large market benefit continue to hold when using fixed price
PPMs, and show that the guarantee of 0.632 actually improves to 0.712.
We then move to study the case of selling k identical units and we prove
that the revenue gap of the fixed price PPM approaches 1− 1/

√
2kπ. As

this bound is achievable without the large market assumption, we obtain
the somewhat surprising result that the large market advantage vanishes
as k grows.
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1 Introduction

Understanding the worst case revenue obtained by simple pricing mechanisms is
a fundamental question in Economics and Computation [2,3,10,16,18]. In this
context probably the most basic setting corresponds to selling a single item to n
buyers with valuations given by independent and identically distributed random
variables. Here the simplest possible mechanism is that of setting a fixed price
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(a.k.a. anonymous price) for the item and the benchmark, to which we want
to compare to, is the revenue obtained by Myerson’s optimal mechanism [25].
Through the well established connection between posted pricing mechanisms
and prophet inequalities [5,7,15], evaluating this revenue gap is equivalent to
determining the best possible single threshold prophet inequality in the i.i.d.
case. Thus, a result of Ehsani et al. [9] establishes that the performance of a
fixed threshold policy when facing i.i.d. samples is at least a fraction 1 − 1/e of
that of the optimal mechanism, and the bound is best possible.1 2 In this paper,
we explore this basic question under an additional large markets assumption
that is relevant to most modern online marketplaces.

In our study we take the viewpoint of prophet inequalities rather than that
of pricing mechanisms, mostly because this has become the standard in the
literature. Let us thus briefly recall some of the basics. For a fixed positive
integer n, let X1, . . . , Xn be a non-negative, independent random variables and
Sn their set of stopping rules. A classic result of Krengel and Sucheston, and
Garling [22,23] asserts that E(max{X1, . . . , Xn}) ≤ 2 sup{E(Xs) : s ∈ Sn} and
that two is the best possible bound. The study of this type of inequalities,
known as prophet inequalities, was initiated by Gilbert and Mosteller [13] and
attracted a lot of attention in the eighties [17,20,21,27,28]. In particular, Samuel-
Cahn [28] noted that rather than looking at the set of all stopping rules one
can obtain the same result by using a single threshold stopping rule in which
the decision to stop depends on whether the value of the currently observed
random variable is above a certain threshold. A natural restriction of this setting,
which we consider here, is the case in which the random variables are identically
distributed. This problem was studied by Hill and Kertz [17] who provided the
family of worst possible instances from which Kertz [20] proved that no stopping
rule can extract more than a fraction of roughly 0.745 of the expectation of
the maximum. Later, Correa et al. [6] proved that in fact this value is tight. We
note, however, that the optimal stopping rule in this i.i.d. case cannot be achieved
by a fixed threshold policy. Indeed, the best such policy has an approximation
guarantee of 1 − 1/e ≈ 0.632 [9].

In the last two decades, prophet inequalities gained particular attention due
to its close connection with online mechanisms. The connection involves mapping
the random variables in the prophet inequality setting to the virtual valuations
in the pricing setting and the expectation of the maximum value in the prophet
inequality setting to revenue of the optimal mechanism in the pricing setting.
This relation was firstly studied by Hajiaghayi et al. [15], who showed that
prophet inequalities can be interpreted as posted price mechanisms for online

1 Here the mild technical condition that the distribution is continuous is needed. Oth-
erwise the mechanism would need some randomization.

2 Ehsani et al. [9] actually prove a more general prophet inequality, namely, that the
bound of 1−1/e holds even if the distributions are nonidentical. However, this more
general result does not translate into a fixed price policy (if the distributions are
not identical, neither are the virtual values and then this single threshold will be
mapped to different prices for different distributions).
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selection problems. Later, Chawla et al. [5] proved that any prophet inequality
can be turned into a posted price mechanism with the same approximation
guarantee. The reverse direction was proven by Correa et al. [7] and thus the
guarantees for optimal stopping problems are in fact equivalent to the problem
of designing posted price mechanisms. Furthermore, in the i.i.d. setting, fixed
threshold stopping rules become equivalent to fixed price policies.

In this work we study single threshold prophet inequalities in a large market
regime, where the random variables arriving over time are i.i.d. according to a
known and fixed distribution. The essential difference with the classic setting
is that rather than considering the worst distribution for each possible market
size n, we first fix the distribution and then take n grow to infinity. Our main
question is thus to understand to what extent one can obtain improved sin-
gle threshold prophet inequalities (or fixed price policies) when the market is
very large. Interestingly, this setting, though with general stopping rules, was
considered three decades ago by Kennedy and Kertz [19]. They prove that the
optimal stopping rule recovers at least a 0.776 fraction of the expectation of the
maximum, establishing that there is a sensible advantage when compared to the
0.745 bound of classic i.i.d. setting [17,20]. Kennedy and Kertz realize that the
limit problem may be ill behaved and thus impose an extreme value condition.3

This condition is, essentially, the equivalent of a central limit theorem for the
maximum of an i.i.d. sample, and it is the cornerstone of the extreme value
theory.

Then, a natural question that arises is whether the result obtained by
Kennedy and Kertz [19] for the optimal stopping rule also holds for the much
simpler single threshold policies. We answer this question on the positive proving
that the large market assumption allows to obtain a guarantee of 0.712 signif-
icantly improving the bound of 1 − 1/e [9]. We further consider the case of
selecting k items (or selling k items) with a fixed threshold policy and prove
that this large market advantage vanishes as k grows.

1.1 Our Results

For every positive integer n, consider an i.i.d. sample X1,X2, . . . , Xn with Xj

distributed according to F for every j ∈ {1, . . . , n}, where F is a distribution
over the non-negative reals. Given a value T , consider the simple algorithm given
by stopping the first time that a random variable exceeds T . Then, for each
distribution F , we are interested in understanding the limit ratio between the
reward of this simple stopping rule which is simply given by the probability of
having an Xi above T , 1−Fn(T ) times the expected value of this Xi conditioned
on it being larger than T , and the expectation of the maximum Xi, denoted as
Mn. Our quantity of interest is thus:

3 This is a classic condition in extreme value theory and it is satisfied by essentially
any distribution that may have a practical use. The characterization of this condition
is known as the Fisher-Tippett-Gnedenko Theorem.
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apx(F ) = lim inf
n→∞ sup

T∈R+

1 − Fn(T )
E(Mn)

(
T +

1
1 − F (T )

∫ ∞

T

(1 − F (s))ds

)
. (1)

Our first main result shows that 0.712 is a tight lower bound for apx(F ) when
the distribution satisfies the extreme value condition. This value is substantially
better than the known bound of 1 − 1/e by Ehsani et al. [9] and thus represents
a significant advantage for the large markets setting. We remark that we are
mainly interested in the case of distributions F with unbounded support, since
one can show that apx(F ) = 1 when F is of bounded support.

A natural and practically relevant extension of the single selection prophet
inequality is to consider the setting in which we can select up to k different
samples (or sell k items). We call this problem k-selection problem and we study
whether the large market advantage continues to be significant beyond the sin-
gle selection case. To this end, we provide a lower bound for the approximation
factor achievable by the best single threshold policy, again under the extreme
value condition. More specifically, for each value of k, the approximation factor
is bounded by a (computationally) simple optimization problem. In particular,
the bound presented when k = 1 follows by obtaining the exact solution of the
optimization problem. The performance obtained by our characterization yields
prophet inequalities that represent an advantage for the k-selection problem.
However, we also show that this advantage vanishes as k → ∞. Indeed, we prove
that for each integer k, the approximation factor is more than 1 − 1/

√
2kπ, but

there exists F such that this lower bound is asymptotically tight in k. This
tightness, together with the recent result of Duetting et al. [8] establishing that
the approximation ratio of the k-selection problem (without the large market
assumption) is almost exactly 1−1/

√
2kπ,4 implies that the large market advan-

tage vanishes as k → ∞. For an illustration, Fig. 1 depicts the bound obtained by
our optimization problem and compares it with 1−1/

√
2kπ. We finally note that

as a direct corollary, when F satisfies the extreme value condition and for large
markets, we can derive the worst case ratio between the optimal single thresh-
old prophet inequality obtained by our characterization theorem and the value
obtained by the optimal dynamic policy of Kennedy and Kertz, the adaptivity
gap. This value is, roughly, at most 1.105.

As already mentioned, our main result for the multiple selection problem
translates into a fixed price policy when the buyers’ valuations are identically
and independently distributed, say according to F .5 Of course, this works as long
as the distribution of the virtual values of F , call it G, satisfies the extreme value
condition. This motivates the following question: When F satisfies the extreme
value condition, can we guarantee that the distribution of the virtual valuation
G also does? And, if this is the case, does G and F fall in the same extreme value
family? We answer these questions in the positive under some mild assumptions.

4 Slightly weaker bounds are also known for the case in which the random variables
are just independent but not necessarily identical [1,4].

5 Recall that single threshold policies map to fixed price mechanisms.
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Fig. 1. Our optimal revenue guarantee over k (continuous line) vs. the bound of 1 −
1/

√
2kπ (dashed line).

2 Preliminaries

We recall that F is a distribution if it is a right-continuous and non-decreasing
function, with limit equal to zero in −∞ and equal to one in +∞. We consider
F to be absolutely continuous in R, and we denote its density by f or F ′,
depending on the context. In general, F is not invertible, but we work with its
generalized inverse, given by F−1(y) = inf{t ∈ R : F (t) ≥ y}. We denote by
ω0(F ) = inf{t ∈ R : F (t) > 0} and ω1(F ) = sup{t ∈ R : F (t) < 1}, and we call
the interval (ω0(F ), ω1(F )) the support of F . Given a sequence {Xj}j∈N of i.i.d.
random variables with distribution F , we denote by Mn = maxj∈{1,...,n} Xj .

One of the main goals in the extreme value theory is to understand the
limit behavior of the sequence {Mn}n∈N. As the central limit theorem charac-
terizes the convergence in distribution of the average of random variables to a
normal distribution, a similar result can be obtained for the sequence of max-
ima {Mn}n∈N, but this time there are three possible limit situations. One of the
possible limits is the Gumbel distribution Λ(t) = exp(−e−t); we call these distri-
butions the Gumbel family. Given α > 0, the second possible limit is the Fréchet
distribution of parameter α, defined by Φα(t) = exp(−t−α) if t ≥ 0, and zero
otherwise; we call these distributions the Fréchet family. Finally, given α > 0,
the third possibility is the reversed Weibull distribution of parameter α, defined
by Ψα(t) = exp(−(−t)α) if t ≤ 0, and one otherwise; we call these distributions
the reversed Weibull family. We now state formally the extreme values theorem,
result due independently to Gnedenko [14] and Fisher & Tippett [11].

Theorem 1 (see [26]). Let F be a distribution for which there exists a posi-
tive real sequence {an}n∈N and other sequence {bn}n∈N such that (Mn − bn)/an

converges in distribution to a random variable with distribution H, namely,
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Table 1. Summary of the three possible extreme value distributions. The Fréchet
family and the Reversed Weibull family are associated to a parameter α ∈ (0, ∞).
Recall that for α > 0, the Pareto distribution of parameter α is given by 1 − t−α for
t ≥ 1 and zero otherwise.

Extreme type Parameter Limit distribution Example

Gumbel None exp(−e−t) Exponential distribution

Fréchet α ∈ (0, ∞) exp(−t−α) · 1[0,∞) Pareto distribution

Reversed Weibull α ∈ (0, ∞) exp(−(−t)α) · 1(−∞,0) + 1[0,∞) Uniform distribution

P (Mn − bn ≤ ant) = Fn(ant + bn) → H(t) for every t ∈ R when n → ∞.
Then we have that one of the following possibilities hold: H is the Gumbel, H is
in the Fréchet family or H is in the reversed Weibull family (see Table 1).

In the following, we say that a distribution F satisfies the extreme value condition
if there exist sequences {an}n∈N, that we call the scaling sequence, and {bn}n∈N,
that we call the shifting sequence, satisfying the condition of Theorem 1.6 It
can be shown that for every distribution F with extreme type in the reversed
Weibull family we have ω1(F ) < ∞ [26, Proposition 1.13, p. 59]. When F has
extreme type Fréchet, we have ω1(F ) = ∞ [26, Proposition 1.11, p. 54]. For the
distributions with extreme type Gumbel the picture is not so clear since ω1(F )
is neither finite nor unbounded in general. In our analysis we need a tool from
the extreme value theory related to the order statistics of a sample according to
F . We denote the order statistics of a sample of size n by Mn = M1

n ≥ M2
n ≥

· · · ≥ Mn
n .

Theorem 2 (see [24]). Let F be a distribution satisfying the extreme value
condition with the scaling and shifting sequences {an}n∈N and {bn}n∈N such
that P (Mn − bn ≤ ant) → H(t) for every t ∈ R when n → ∞. Then, for each
j ∈ {1, 2, . . . , n} and every t ∈ R we have

lim
n→∞P

(
M j

n − bn ≤ ant
)

= H(t)
j−1∑
s=0

(− log H(t))s

s!
.

A distribution V is in the Von Mises family if there exist z0 ∈ R, a con-
stant θ > 0 and a function μ : (ω0(V ),∞) → R+ absolutely continuous with
limu→∞ μ′(u) = 0, such that for every t ∈ (z0,∞) we have

1 − V (t) = θ exp
(

−
t∫

z0

1
μ(s)

ds
)
. (2)

We call such μ an auxiliary function of V . We summarize next some techni-
cal results related to the Von Mises family of distributions that we use in our
analysis.
6 Examples of continuous distributions not satisfying this extreme value condition

include distributions with odd behavior such as F (x) = exp(−x − sin(x)).
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Lemma 1 (see [26]). Let V be in the Von Mises family with auxiliary function
μ and such that ω1(V ) = ∞. Then, V has extreme type Gumbel, and the shifting
and scaling sequences may be chosen respectively as bn = V −1(1 − 1/n) and
an = μ(bn) for every n. Furthermore, we have limt→∞ μ(t)/t = 0 and limt→∞(t+
xμ(t)) = ∞ for every x ∈ R.

For example, the exponential distribution of parameter λ is in the Von Mises
family, with auxiliary constant function 1/λ, θ = 1 and z0 = 0. Furthermore,
for every positive integer n we have bn = F−1(1 − 1/n) = (log n)/λ and an =
μ(bn) = 1/λ. We need a few results from the extreme value theory. In particular,
a relevant property states that every distribution with extreme type Gumbel can
be represented by a distribution in the Von Mises family in the following precise
sense.

Lemma 2 (see [26]). Let F be a distribution satisfying the extreme value con-
dition with ω1(F ) = ∞. Then, F has extreme type Gumbel if and only if there
exists V in the Von Mises family and a positive function η : (ω0(F ),∞) → R+

with limt→∞ η(t) = η� > 0 such that 1 − F (t) = η(t)(1 − V (t)) for every
t ∈ (ω0(F ),∞).

Then, whenever F has extreme Gumbel there exists a pair (V, η) satisfying the
condition guaranteed in Lemma 2, and in this case we say that (V, η) is a Von
Mises representation of the distribution F .

3 Prophet Inequalities in Large Markets Through
Extreme Value Theory

We say that a stopping rule for the k-selection problem with an i.i.d. sample
X1,X2, . . . , Xn is a single threshold policy if there exists a threshold value T
such that we select the first min{k, |Q|} samples attaining a value larger than T ,
where Q is the subset of samples attaining a value larger than T . Consider the
random variable Rn

k,T equal to the summation of the first min{k, |Q|} samples
attaining a value larger than T . In particular, this value is completely determined
by the sample size n, the distribution F and the threshold T . We are interested
in understanding the value

apxk(F ) = lim inf
n→∞ sup

T∈R+

E(Rn
k,T )∑k

j=1 E(M j
n)

,

where M1
n ≥ M2

n ≥ · · · ≥ Mn
n are the order statistics of a sample of size n

according to F . We observe that when k = 1 the value apxk(F ) corresponds to
the value apx(F ) in (1). Now we present formally our main results for prophet
inequalities in the k-selection problem.

Theorem 3. Let F be a distribution over the non-negative reals that satisfies
the extreme value condition. Then, the following holds.
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(a) When F has an extreme type Fréchet of parameter α, we have that
apxk(F ) ≥ ϕk(α), where ϕk : (1,∞) → R+ is given by

ϕk(α) =
Γ (k)

Γ (k + 1 − 1/α)
max

x∈(0,∞)
x exp(−x−α)

k∑
j=1

∞∑
s=j

x−sα

s!
. (3)

In particular, we have apxk(F ) ≥ 1 − 1/
√

2πk for every distribution F with
extreme type in the Fréchet family.

(b) When F has extreme type in the Gumbel or reversed Weibull families, we
have that apxk(F ) = 1 for every positive integer k.

Theorem 4. Let F be the Pareto distribution with parameter α = 2. Then, for
every ε > 0 there exists a positive integer kε such that for every k ≥ kε it holds
that apxk(F ) ≤ 1 − (1 − ε)/

√
2πk.

Observe that by Theorem 3 we have that for each integer k the approxi-
mation factor is more than 1 − 1/

√
2kπ under the large market assumption.

Moreover, by Theorem 4 this lower bound is in fact asymptotically tight in k for
the distributions with extreme type Fréchet of parameter α = 2. This tightness,
together with the recent result of Duetting et al. [8] establishing that the approx-
imation ratio of the k-selection problem without the large market assumption
is almost 1 − 1/

√
2kπ, allows us to obtain the surprising result that the large

market advantage vanishes as k → ∞.
Despite the tightness result established in Theorem 4, for small values of k

this bound is in fact substantially better. Consider a distribution F with extreme
type Fréchet of parameter α ∈ (1,∞). By Theorem 3 (a), when k = 1 it holds
that

ϕ1(α) =
1

Γ (2 − 1/α)
sup

x∈(0,∞)

x
(
1 − exp(−x−α)

)
,

for every α ∈ (1,∞). The optimum for the above optimization problem as a
function of α is attained at the smallest real non-negative solution U∗(α) of the
first order condition Uα + α = Uα exp(U−α), which is given by

U∗(α) =
(

− 1
α

(
αW−1

(
− 1

α
e−1/α

)
+ 1

))−1/α

,

where W−1 is the negative branch of the Lambert function. Therefore, we have

ϕ1(α) =
α

Γ (2 − 1/α)
· U∗(α)
U∗(α)α + α

.

The minimum value is at least 0.712 and it is attained at α∗ ≈ 1.656. Note
that when α approaches to zero or ∞, the function ϕ1 goes to one and thus the
unique minimizer is given by α∗ ≈ 1.656.

We highlight here that, even though Theorem 3 implies that apx1(F ) is at
least ϕ1(α∗) ≈ 0.712 when F has extreme type Fréchet, this bound is in fact
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reached by the Pareto distribution with parameter α∗ and therefore this bound
is tight.

Given our closed expression for the function ϕ1, we can compare it with
the closed expression obtained Kennedy and Kertz for the revenue guarantees
of the optimal dynamic policy [19]. Given a distribution F , for every positive
integer n let vn = sup{E(Xτ ) : τ ∈ Tn} and consider the stopping time given
by τn = min{k ∈ {1, . . . , n} : Xk > vn−k}. In particular, vn = E(Xτn

) for every
positive integer n. The following summarizes the result of Kennedy and Kertz
[19] for the optimal dynamic policy: When F is a distribution in the Fréchet
family, there exists ν : (1,∞) → (0, 1) such that limn→∞ vn/E(Mn) = ν(α) when
F has an extreme type Fréchet of parameter α. Furthermore, limα→∞ ν(α) =
limα→1 ν(α) = 1 and ν(α) ≥ 0.776 for every α ∈ (1,∞). The function ν is given
by

ν(α) =
1

Γ (2 − 1/α)

(
1 − 1

α

)1− 1
α

,

and we have ϕ1(α) ≤ ν(α) for every α ∈ (1,∞). Kennedy and Kertz show that
the asymptotic approximation obtained by their multi-threshold policy when the
distribution has an extreme type in the Gumbel and reversed Weibull family is
equal to one. Our Theorem 3 (b) shows that for both such families we can attain
this value by using just single threshold policies. The adaptivity gap is equal to
the ratio between the optimal prophet inequality obtained by a single threshold
policy and the value obtained by the multi-threshold policy of Kennedy and
Kertz. As a corollary of our result for k = 1, we obtain an upper bound on the
adaptivity gap for the case of distributions with extreme value. For the family
of distributions over the non-negative reals and satisfying the extreme value
condition we have that the adaptivity gap is at most maxα∈(1,∞) ν(α)/ϕ1(α) ≈
1.105 and is attained at α ≈ 1.493.

4 Analysis of the k-Selection Prophet Inequalities

In this section we prove Theorem 3. Throughout the section we introduce some
necessary technical results, whose proof can be found in the full version paper.
The following proposition gives an equivalent expression for the value apxk(F ),
which is useful in our analysis.

Proposition 1. Let F be a distribution, let T be a real value and let X1, . . . , Xn

be an i.i.d. sample according to F . Then, for every positive integer k we have
E(Rn

k,T ) = E (X1|X1 > T )
∑k

j=1 P(M j
n > T ).

Using Proposition 1 we have that apxk(F ) is therefore given by

apxk(F ) = lim inf
n→∞ sup

T∈R+

E (X|X > T )

∑k
j=1 P(M j

n > T )∑k
j=1 E(M j

n)
, (4)

where X is a random variable distributed according to F .
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4.1 Proof of Theorem 3 (a): The Fréchet Family

In what follows we restrict to the case in which the distribution F has extreme
type in the Fréchet family. We remark that if α ∈ (0, 1] the expected value of a
random variable with distribution Fréchet Φα is not finite. Therefore, we further
restrict to the Fréchet family where α ∈ (1,∞). To prove Theorem 3 (a) we
require a technical lemma, where we exploit the structure given by the existence
of an extreme value and we show how to characterize the approximation factor
of a distribution in the Fréchet family for large values of n. Before stating this
lemma, let us introduce a few results about the Fréchet family that will be
required.

We say that a positive measurable function � : (0,∞) → R is slowly varying if
for every u > 0 we have limt→∞ �(ut)/�(t) = 1. For example, the function �(t) =
log(t) is slowly varying, since �(ut)/�(t) = log(u)/ log(t) + 1 → 1 when t → ∞.
On the other hand, the function �(t) = tγ is not slowly varying, since for every
u > 0 we have �(ut)/�(t) = uγ . The following lemma shows the existence of a
strong connection between the distributions with extreme type in Fréchet family
and slowly varying functions. Recall that for α > 0, the Pareto distribution of
parameter α is given by Pα(t) = 1 − t−α for t ≥ 1 and zero otherwise.

Lemma 3 ([26]). Let F be a distribution with extreme type in the Fréchet
family. Then, for every positive integer n, we have an = F−1(1 − 1/n) and
bn = 0 are scaling and shifting sequences for F . Furthermore, there exists a
slowly varying function �F such that 1 − F (t) = t−α�F (t), for every t ∈ R+. In
particular, we have 1 − F (t) = (1 − Pα(t)) · �F (t) for every t ∈ R+.

Observe that this lemma says that if F has extreme type Fréchet of parameter
α, then it essentially corresponds to a perturbation of a Pareto distribution with
parameter α by some slowly varying function. Let {an}n∈N be a scaling sequence
for the distribution F in the Fréchet family. Thanks to Lemma 3, we have the
shifting sequence in this case is zero. We are now ready to state the main technical
lemma.

Lemma 4. Let F be a distribution with extreme type Fréchet of parameter α
and let {an}n∈N be an appropriate scaling sequence. Consider a positive sequence
{Tn}n∈N with Tn → ∞ and for which there exists U ∈ R+ such that Tn/an → U .
Then, we have

lim
n→∞

E (X|X > Tn)

∑k
j=1 P(M j

n > Tn)
∑k

j=1 E(M j
n)

=
Γ (k)

Γ (k + 1 − 1/α)
U exp(−U−α)

k∑

j=1

∞∑

s=j

U−sα

s!
.

We use this lemma to prove Theorem 3 (a).

Proof (Proof of Theorem 3 (a)). Let F be a distribution with extreme type
Fréchet of parameter α. We first prove that for each positive integer k it holds
that apxk(F ) ≥ ϕk(α). To this end, for each positive integer n and positive real
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number U , let Tn be the threshold given by Tn = an · U , where {an}n∈N is the
scaling sequence for the distribution F given by Lemma 3. Then,

apxk(F ) ≥ lim inf
n→∞ E (X|X > Tn)

∑k
j=1 P(M j

n > Tn)∑k
j=1 E(M j

n)
. (5)

Note that lim infn→∞ Tn = ∞ (and thus Tn → ∞), since U ∈ R+ and
an → ∞. Furthermore, limn→∞ Tn/an = U and then applying Lemma 4 together
with inequality (5) we obtain that

apxk(F ) ≥ Γ (k)
Γ (k + 1 − 1/α)

U exp(−U−α)
k∑

j=1

∞∑
s=j

U−sα

s!
.

Given that the inequality above holds for every positive real number U , we
have

apxk(F ) ≥ Γ (k)
Γ (k + 1 − 1/α)

max
U∈R+

U exp(−U−α)
k∑

j=1

∞∑
s=j

U−sα

s!
= ϕk(α).

In the rest of the proof we show that, for each positive real number k and
each α ∈ (1,∞), ϕk(α) is lower bounded by 1 − 1/

√
2kπ. To this end, we just

need to evaluate the objective function of our optimization problem in a well
chosen value. One of the Gautschi inequalities for the Gamma function states
that for every s ∈ (0, 1) and every x ≥ 1 we have Γ (x+1) > x1−s ·Γ (x+ s) [12].
Then, setting x = k and s = 1 − 1/α yields Γ (k + 1) > k1/αΓ (k + 1 − 1/α).
Since Γ (k) = Γ (k + 1)/k, we therefore obtain k1−1/α > Γ (k + 1 − 1/α)/Γ (k).
On the other hand, note that for each U ∈ (0,∞) we have

U exp(−U−α)
k∑

j=1

∞∑

s=j

U−sα

s!
= U exp(−U−α)

(
k∑

s=1

s · U−sα

s!
+ k

∞∑

s=k+1

U−sα

s!

)

= U exp(−U−α)

(

U−α
k−1∑

s=0

U−sα

s!
+ k

∞∑

s=k+1

U−sα

s!

)

.

In particular, by taking Uk,α = k−1/α we get that

ϕk(α) · Γ (k + 1 − 1/α)

Γ (k)
≥ Uk,α · k exp(−U−α

k,α)

(
k−1∑

s=0

U−sα
k,α

s!
+

∞∑

s=k+1

U−sα
k,α

s!

)

= Uk,α · k exp(−U−α
k,α)

(

exp(U−α
k,α) − U−αk

k,α

k!

)

= k1−1/α

(

1 − e−kkk

k!

)

≥ Γ (k + 1 − 1/α)

Γ (k)

(

1 − 1√
2πk

)

,

where the first inequality follows since the value of ϕk(α) involves the maxi-
mum over (0,∞), the first equality from the Taylor series for the exponential
function and the last inequality is obtained by applying Stirling’s approximation
inequality. This concludes the proof of the theorem. 	
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4.2 Proof of Theorem 3 (b): Gumbel and Reversed Weibull Family

In what follows we consider a distribution F with extreme type Gumbel or in
the reversed Weibull family. We consider both cases separately. Recall that if F
has extreme type in the reversed Weibull family then it holds that ω1(F ) < ∞,
that is, F has bounded support.

We start by showing that when ω1(F ) < ∞ we have apxk(F ) = 1 for every
positive integer k. In particular, the approximation result follows directly from
this in the case of a distribution F with extreme type in the reversed Weibull
family. When the support of F is upper bounded by ω1(F ) < ∞, we have
E(M j

n) ≤ ω1(F ) for every j ∈ {1, . . . , k}. For every ε > 0 consider Tε = (1 −
ε) · ω1(F ). Then, by the expression in (4) we have that apxk(F ) can be lower
bounded as apxk(F ) ≥ (1−ε)·ω1(F )·lim infn→∞

∑k
j=1 P(M j

n > Tε)/(k·ω1(F )) =
1 − ε, and we conclude that apxk(F ) = 1.

In what follows we restrict attention to the distributions F with extreme
type Gumbel where ω1(F ) = ∞. Key to our analysis are the result presented
in the Preliminaries Sect. 2 about Von Mises representations for distributions in
the Gumbel family. We need some lemmas about the structure of a distribution
in the Gumbel family before proving the theorem.

Lemma 5. Let F be a distribution with extreme type in the Gumbel family such
that ω1(F ) = ∞ and let (V, η) be a Von Mises representation of F such that
limt→∞ η(t) = η�. Let {an}n∈N and {bn}n∈N be scaling and shifting sequences,
respectively, for V . For every positive integer n consider bη

n = bn + an log η�.
Then, the following holds:

(a) {an}n∈N and {bη
n}n∈N are scaling and shifting sequences, respectively, for F .

(b) For every U ∈ R we have limn→∞(anU + bη
n) = ∞.

(c) For every U ∈ R and every positive integer k we have that limn→∞(anU +
bη
n)/

∑k
j=1 E(M j

n) = 1/k, where M1
n, . . . , Mn

n are the order statistics for F .

Lemma 6. Let F be a distribution with extreme type in the Gumbel family and
let {Θn}n∈N be a sequence of real values such that Θn → ∞. Then, we have
limn→∞ 1

Θn
E(X|X > Θn) = 1, where X is distributed according to F .

We are now ready to prove Theorem 3 (b) for the Gumbel family.

Proof (Proof of Theorem 3 (b) for the Gumbel family). Let F be a distribution
with extreme type in the Gumbel family and such that ω1(F ) = ∞. Consider
a Von Mises pair (V, η) that represents F and such that limt→∞ η(t) = η� >
0, guaranteed to exist by Lemma 2. Let {an}n∈N and {bn}n∈N be scaling and
shifting sequences, respectively, for V . For every positive integer n consider bη

n =
bn + an log η�. We can lower bound the value of apxk(F ) by

sup
U∈R

lim inf
n→∞

E (X|X > anU + bη
n)

anU + bη
n

· anU + bη
n∑k

j=1 E(M j
n)

·
k∑

j=1

P(M j
n > anU + bη

n).
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By Lemma 5 (b), we have anU+bη
n → ∞ for every U when n → ∞, and therefore

from Lemma 6 we obtain

lim
n→∞

E (X|X > anU + bη
n)

anU + bη
n

= 1,

for every U . Furthermore, Lemma 5 (c) implies that for every U and every
positive integer k it holds (anU + bη

n)/
∑k

j=1 E(M j
n) → 1/k. We conclude that

for every U

lim
n→∞

E (X|X > anU + bη
n)

anU + bη
n

· anU + bη
n∑k

j=1 E(M j
n)

=
1
k

.

By Lemma 5 (a), {an}n∈N and {bη
n}n∈N are scaling and shifting sequences, respec-

tively, for F . Therefore, by Theorem 2 we have

lim
n→∞

k∑
j=1

P(M j
n > anU + bη

n) = lim
n→∞

k∑
j=1

P

(
M j

n − bη
n

an
> U

)

=
k∑

j=1

(
1 − exp

(
− e−U

) j−1∑
s=0

e−sU

s!

)

= k − exp
(

− e−U
) k∑

j=1

j−1∑
s=0

e−sU

s!
.

Note that the last term is non-negative for every U . Furthermore, we get that

lim
U→∞

exp
(

− e−U
) k∑

j=1

j−1∑
s=0

e−sU

s!
= inf

U∈R

exp
(

− e−U
) k∑

j=1

j−1∑
s=0

e−sU

s!
= 0

since
∑∞

s=0 e−sU/s! = exp(−e−U ). We conclude that

sup
U∈R

lim
n→∞

E (X|X > anU + bη
n)

anU + bη
n

· anU + bη
n∑k

j=1 E(M j
n)

·
k∑

j=1

P(M j
n > anU+bη

n) =
1
k

·k = 1,

and therefore apxk(F ) = 1. That concludes the proof for the Gumbel family. 	


5 Extreme Types and Virtual Valuations

The virtual valuation associated to a distribution G is given by φG(t) = t − (1 −
G(t))/g(t), where g is the density function of G. When v is distributed according
to G, we denote by Gφ the distribution of φG(v) and by G+

φ the distribution of
φ+

G(v) = max{0, φG(v)}. Using Theorem 3 we can apply the existing reductions
in the literature [5,7,15] to translate our optimal guarantees for single threshold
prophet inequalities to optimal fixed price mechanisms as long as G+

φ satisfies
the extreme value condition. If G+

φ has extreme value Fréchet, the revenue gap
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of the fixed price PPM for the k-selection problem is bounded by a limit of
the maximization problem (3) and, for every k, this revenue gap is more than
1−1/

√
2kπ and asymptotically tight in k. When k = 1 we further have that the

revenue gap is roughly 0.712. When G+
φ is in the Gumbel or reversed Weibull

families, we have that with fixed prices a PPM is able to recover the same revenue
of that of the optimal mechanism for the k-selection problem, for every positive
integer k.

In what follows, we say that a pair (V, η) smoothly represents a distri-
bution G if it satisfies the conditions in (2) where V is in the Von Mises
family and limt→ω1(F ) η′(t) = 0. We say that a distribution G with extreme
type Fréchet of parameter α satisfies the asymptotic regularity condition if
limt→∞(1 − G(t))/(tg(t)) = 1/α, where g is the density of the distribution G.
This holds, for example, every time that g is non-decreasing [26, Proposition
1.15]. In our next result we show that if a distribution G with extreme type
satisfies any of these two conditions, the distribution G+

φ has an extreme type
as well, and furthermore, it belongs to the same family.

Theorem 5. Let G be a distribution satisfying the extreme value condition.
Then, the following holds:

(a) When G has extreme type in the Fréchet family and if it satisfies the asymp-
totic regularity condition, then G+

φ has extreme type in the Fréchet family
as well.

(b) When G has extreme type Gumbel and if it can be smoothly represented, then
G+

φ has extreme type Gumbel as well.
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