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Preface

This volume contains the papers and extended abstracts presented at the 14th Inter-
national Symposium on Algorithmic Game Theory (SAGT 2021), held during
September 21–24, 2021, at Aarhus University, Denmark.

The purpose of SAGT is to bring together researchers from Computer Science,
Economics, Mathematics, Operations Research, Psychology, Physics, and Biology to
present and discuss original research at the intersection of Algorithms and Game
Theory.

This year, we received a record number of 73 submissions, which were all rigor-
ously peer-reviewed by the Program Committee (PC). Each paper was reviewed by at
least 3 PC members, and evaluated on the basis of originality, significance, and
exposition. The PC eventually decided to accept 30 papers to be presented at the
conference.

The works accepted for publication in this volume cover most of the major aspects
of Algorithmic Game Theory, including auction theory, mechanism design, markets
and matchings, computational aspects of games, resource allocation problems, and
computational social choice. To accommodate the publishing traditions of different
fields, authors of accepted papers could ask that only a one-page abstract of the paper
appeared in the proceedings. Among the 30 accepted papers, the authors of 4 papers
selected this option.

Furthermore, due to the generous support by Springer, we were able to provide a
Best Paper Award. The PC decided to give the award to the paper “Descending the
Stable Matching Lattice: How Many Strategic Agents are Required to Turn Pessimality
to Optimality?” authored by Ndiamé Ndiaye, Sergey Norin, and Adrian Vetta.

The program also included three invited talks by distinguished researchers in
Algorithmic Game Theory, namely Yiling Chen (Harvard University, USA), Elias
Koutsoupias (University of Oxford, UK), and Rahul Savani (University of Liverpool,
UK). In addition, SAGT 2021 featured tutorial talks given by Vasilis Gkatzelis (Drexel
University, USA) and Martin Hoefer (Goethe University Frankfurt, Germany).

We would like to thank all the authors for their interest in submitting their work to
SAGT 2021, as well as the PC members and the external reviewers for their great work
in evaluating the submissions. We also want to thank Springer and the COST Action
GAMENET (CA16228) for their generous financial support. We are grateful to the
Aarhus Institute of Advanced Studies for hosting the conference. Finally, we would
also like to thank Anna Kramer at Springer for helping with the proceedings, and the
EasyChair conference management system for facilitating the peer-review process.

July 2021 Ioannis Caragiannis
Kristoffer Arnsfelt Hansen
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Invited Talks



Mechanisms for Selling Information

Yiling Chen

Harvard University, USA

Abstract. Different from traditional goods, information (private signals) can be
sold in more flexible ways. A salient feature of information as goods is that it
can be revealed partially. This not only means that one can sell partial infor-
mation at a granularity of his choice but also suggests that partial information
revelation can be used to advertise the value of the remaining information.
Hence, the space of mechanisms for selling information is rich. In this talk, I will
discuss designing optimal mechanisms for a revenue-driven, monopoly infor-
mation holder to sell his information to information buyers in a few scenarios.

Biography: Yiling Chen is a Gordon McKay Professor of Computer Science at
Harvard University. She received her Ph.D. in Information Sciences and
Technology from the Pennsylvania State University. Prior to working at Har-
vard, she spent two years at Yahoo! Research in New York City. Her research
lies in the intersection of computer science, economics and other social sciences,
with a focus on social aspects of computational systems. She was a recipient of
The Penn State Alumni Association Early Career Award, and was selected by
IEEE Intelligent Systems as one of “AI’s 10 to Watch” early in her career. Her
work received best paper awards at ACM EC, AAMAS, ACM FAT* (now
ACM FAccT) and ACM CSCW conferences. She has co-chaired the 2013
Conference on Web and Internet Economics (WINE’13), the 2016 ACM
Conference on Economics and Computation (EC’16) and the 2018 AAAI
Conference on Human Computation and Crowdsourcing (HCOMP18) and has
served as an associate editor for several journals.



On the Nisan-Ronen Conjecture for Graphs

Elias Koutsoupias

University of Oxford, UK

Abstract. The Nisan-Ronen conjecture states that no truthful mechanism for
makespan-minimization when allocating a set of tasks to n unrelated machines
can have approximation ratio less than n. Over more than two decades since its
formulation, little progress has been made in resolving it. In this talk, I will
discuss recent progress towards validating the conjecture by showing a lower
bound of 1þ ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

. The lower bound is based on studying an interesting class
of instances that can be represented by multi-graphs in which vertices represent
machines and edges represent tasks, and each task should be allocated to one of
its two incident machines.

Biography: Elias Koutsoupias is a professor of computer science at the
University of Oxford. His research interests include algorithmic aspects of game
theory, economics and networks, online algorithms, decision-making under
uncertainty, distributed algorithms, design and analysis of algorithms, and
computational complexity. He previously held faculty positions at the Univer-
sity of California, Los Angeles (UCLA) and the University of Athens. He
studied at the National Technical University of Athens (BSc in electrical
engineering) and the University of California, San Diego (PhD in computer
science). He received the Goedel Prize of theoretical computer science for his
work on the Price of Anarchy, in reference to laying the foundations of algo-
rithmic game theory.



The Complexity of Gradient Descent

Rahul Savani

University of Liverpool, UK

Abstract. PPAD and PLS are successful classes that each capture the com-
plexity of important game-theoretic problems: finding a mixed Nash equilibrium
in a bimatrix game is PPAD-complete; and finding a pure Nash equilibrium in a
congestion game is PLS-complete. Many important problems, such as solving a
Simple Stochastic Game or finding a mixed Nash equilibrium of a congestion
game, lie in both classes. However, it was strongly believed that their inter-
section does not have natural complete problems. We show that it does: any
problem that lies in both classes can be reduced in polynomial time to the
problem of finding a stationary point of a function. Our result has been used to
show that computing a mixed equilibrium of a congestion game is also complete
for the intersection of PPAD and PLS.
This is joint work with John Fearnley, Paul Goldberg, and Alexandros

Hollender.

Biography: Rahul Savani is a Professor of Economics and Computation at the
University of Liverpool. He has worked extensively on the computation of
equilibria in game-theoretic models. The paper that he will present won a Best
Paper Award at STOC’21.
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Understanding the Power and Limitations
of Clock Auctions

Vasilis Gkatzelis

Drexel University, USA

Abstract. In this tutorial, we will be focusing on the class of (deferred-accep-
tance) clock auctions, introduced by economists Paul Milgrom and Ilya Segal.
Clock auctions satisfy a sequence of impressive properties: i) they are obviously
strategyproof, which implies that it is very easy for the participating bidders to
identify their optimal strategy, ii) they are weakly group-strategyproof, which
guarantees that even if the bidders collude, they cannot all benefit from
manipulating the auction, iii) they are transparent and do not require that the
bidders trust the auctioneer, and iv) they satisfy unconditional winner privacy,
which means that the winners of the auction do not need to reveal their true
value. This unique combination of benefits that clock auctions provide make
them ideal for real-world problems, since they require very little from the par-
ticipating bidders. Our presentation will first discuss these properties in detail, it
will then study the extent to which clock auctions can match the state-of-the-art
performance guarantees of previously known auctions (proving both positive
and negative results) and will conclude with a discussion of some open prob-
lems and future directions.

Biography: Vasilis Gkatzelis is an assistant professor in computer science at
Drexel University and his research focuses on problems in algorithmic game
theory and approximation algorithms. He is a recipient of the NSF CAREER
award. Prior to joining Drexel University, he held positions as a postdoctoral
scholar at the computer science departments of UC Berkeley and Stanford
University, and as a research fellow at the Simons Institute for the Theory of
Computing. He received his PhD from the Courant Institute of New York
University.



Algorithmic Challenges in Information Design

Martin Hoefer

Goethe University Frankfurt, Germany

Abstract. Information is a crucial resource in modern economy. Collecting and
sharing information strategically is central to the business strategy of many
major companies, including search engines, recommendation engines, and two-
sided market platforms.
In all these domains, there is an informed “sender” (often a company or

platform) who shares information in order to motivate an uninformed “receiver”
(e.g., a potential customer) to take actions that are beneficial to the sender.
Information design, alternatively known also as Bayesian persuasion, studies
how the sender can disclose information optimally while accounting for the
incentives that govern the behavior of the receiver.
Over the last decade, ideas from information design have found many

applications in economics, and the area offers interesting challenges for algo-
rithmic work. In this tutorial, we concetrate on algorithms for optimization
problems arising in basic pesuasion problems. We also touch upon recent work
on extensions to restricted communication, dynamic arrival, multiple senders
and receivers, learning, and more. Along the way, we mention open problems
and opportunities for future research.

Biography: Martin Hoefer is a professor in Computer Science at Goethe
University Frankfurt. He received a PhD in Computer Science from Konstanz
University in 2007. Subsequently, he was a postdoc at Stanford University and a
junior professor at RWTH Aachen University. In 2012 he joined MPI Infor-
matik as a senior researcher, and in 2016 Goethe University as full professor.
His research investigates algorithms for problems at the intersection of computer
science and game theory in a broad sense, with a recent focus on information
design.
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Auctions and Mechanism Design



Improved Two Sample Revenue
Guarantees via Mixed-Integer Linear

Programming

Mete Şeref Ahunbay1(B) and Adrian Vetta2

1 Department of Mathematics and Statistics, McGill University,
Montréal, QC, Canada

mete.ahunbay@mail.mcgill.ca
2 Department of Mathematics and Statistics and School of Computer Science,

McGill University, Montréal, QC, Canada
adrian.vetta@mcgill.ca

Abstract. We study the performance of the Empirical Revenue Max-
imizing (ERM) mechanism in a single-item, single-seller, single-buyer
setting. We assume the buyer’s valuation is drawn from a regular dis-
tribution F and that the seller has access to two independently drawn
samples from F . By solving a family of mixed-integer linear programs
(MILPs), the ERM mechanism is proven to guarantee at least .5914 times
the optimal revenue in expectation. Using solutions to these MILPs, we
also show that the worst-case efficiency of the ERM mechanism is at
most .61035 times the optimal revenue. These guarantees improve upon
the best known lower and upper bounds of .558 and .642, respectively,
of Daskalakis and Zampetakis [4].

1 Introduction

We study a primitive setting in revenue maximization: there is a single seller
wishing to sell a single item to a single buyer, where the buyer’s valuation for the
item is drawn from a regular distribution F on [0,∞). Further, we incorporate
the now widespread supposition that the valuation distribution F is unknown
to the seller. Specifically, we present quantitative expected revenue guarantees
when the seller is allowed access to two random, independently drawn sample
valuations from F before she selects a mechanism by which to sell the item.

When F is known to the seller, Myerson [12] showed that the optimal mech-
anism the seller can implement is a posted price mechanism. In a posted price
mechanism, the seller chooses a price p and the buyer decides to either buy the
item or not. Of course, under the implementation of such a mechanism, the buyer
would purchase the item if and only if his valuation for the item is greater than
p. Given this, the seller simply picks a price p which maximizes her expected
revenue. Formally, denoting the probability she sells the item for price p′ as
1 − F (p′), the seller picks a price p ∈ maxp′∈R+ p′ · (1 − F (p′)).

c© Springer Nature Switzerland AG 2021
I. Caragiannis and K. A. Hansen (Eds.): SAGT 2021, LNCS 12885, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-85947-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85947-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-85947-3_1
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But what about the case when F is unknown to the seller? When the seller
has sample access to F , the natural approach is for the seller to assume the
buyer’s valuation distribution is given by the empirical distribution F̂ induced
by the set of samples; she may then simply implement the optimal mechanism
of Myerson [12] using the empirical distribution. This method, called the Empir-
ical Revenue Maximising (ERM) mechanism, provides surprisingly good perfor-
mance guarantees even in the case of a single sample. Specifically, Dhangwatnotai
et al. [6] showed that for the ERM mechanism just one sample suffices to give
a 1

2 -approximation to the optimal revenue. Huang et al. [11] showed that this
factor 1

2 bound is tight for any deterministic mechanism. In contrast, Fu et al. [7]
gave a probabilistic mechanism obtaining at least 1

2 + 5 · 10−9 times the optimal
revenue using a single sample.

On the other hand, another line of work studies the performance of the ERM
mechanism with respect to sample complexity. This asks how many samples are
necessary and/or sufficient to obtain a (1− ε)-approximation of the optimal rev-
enue, in expectation or with high probability. Dhangwatnotai et al. [6] noted
that even in our simple setting, the ERM mechanism does not provide distri-
bution independent polynomial sample complexity bounds; however, a guarded
variant of the ERM mechanism which ignores an ε fraction of the largest sam-
ples does produce a (1 − ε)-approximate reserve price with probability (1 − δ)
given Ω

(
ε−3 · ln

(
1
εδ

))
samples. Later, Huang et al. [11] showed that any pricing

algorithm that obtains a (1 − ε)-approximation of the optimal revenue requires
Ω(ε−3) samples, implying the factor ε−3 in the sample complexity result of [6]
is tight. For more on the sample complexity of the ERM mechanism and its
variants, see [1,3,5,8–10,13].

Motivated by the gap in our knowledge on sample complexity between the
cases of a large number of samples and a single sample, Babaioff et al. [2] asked
for revenue guarantees (in expectation) for a fixed number of samples ≥ 2.
Through a very rigorous case analysis they proved that, for two samples, the
ERM mechanism breaks the factor 1

2 barrier, guaranteeing at least .509 times the
optimal revenue in expectation. Significant improvements in revenue guarantees
were then provided by Daskalakis and Zampetakis [4], who showed that with two
samples a rounded version of the ERM mechanism obtains in expectation at least
.558 times the optimal revenue. To achieve this they constructed a family of SDPs
whose solutions provide lower bounds on the performance of the rounded ERM
mechanism. Furthermore, through their primal solutions, they also showed that
there exists a distribution of the buyer’s valuation for which, with two samples,
the ERM mechanism obtains in expectation at most .642 times the optimal
revenue.

In this paper, we study the ERM mechanism with two samples by building
upon the optimization perspective of Daskalakis and Zampetakis [4], using an
MILP-based framework to inspect the performance of the ERM mechanism in
our setting. Our key technical contribution is to present an MILP to bound
the performance of the ERM mechanism and which, despite the presence of
≥1000 binary variables, can be approximately solved in a reasonable amount
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of time with provably small error guarantees. This allows us to prove the ERM
mechanism obtains at least .5914 times the optimal revenue. Furthermore, primal
solutions to our MILPs show that there is a distribution F for the buyer such
that the ERM mechanism obtains at most .61035 times the optimal revenue.

2 Preliminaries

There are two agents: a seller and a buyer. The seller wishes to sell a single
item to the buyer, whose valuation v is drawn from a distribution F . To do
so, the seller runs a posted price mechanism – the seller commits to a price p,
and the buyer can either take it or leave it. The buyer is utility maximizing,
and his utility is quasilinear in payment. In particular, the buyer purchases the
item if and only if v ≥ p. Further, we make the standard assumption that the
distribution of the buyer’s valuation, F , is regular. A distribution F on R+, given
by its cumulative distribution function F : R+ → [0, 1], is called regular if its
revenue curve R(q) = (1 − q) · F−1(q) is concave on (0, 1). The objective of the
seller is to maximize her revenue, but the distribution F is unknown to her.
Instead she must select the posted price based upon (two) independently drawn
samples from F .

We assume the seller does the obvious and implements the Empirical Rev-
enue Maximizing (ERM) mechanism. That is, she simply posts a price which
maximizes her expected revenue with respect to the empirical distribution F̄ she
obtains via her two samples t ≤ s:

F̄ (p) =

⎧
⎪⎨

⎪⎩

0 p < t

1/2 t ≤ p < s

1 s ≤ p

Thus the seller sets price p = t if s < 2t, and sets price p = s if s > 2t. If s = 2t,
since we are interested in worst case revenue, we may assume that the seller
picks p ∈ {s, t} which minimizes p · (1 − F (p)). Denote the expected revenue
from posting price p by r(p) = p · (1 − F (p)). Next, let the bisample expected
revenue ψF (·, ·) be defined as follows. When s ≥ t, set

ψF (s, t) = r(s) · I(s > 2t) + r(t) · I(s < 2t) + min{r(s), r(t)} · I(s = 2t), (1)

and, when s < t, set ψF (s, t) = ψF (t, s). Then the seller’s revenue for imple-
menting the ERM mechanism is exactly:

r̄F =
∫

(s,t)∈R
2
+

ψF (s, t) · dF (s) × dF (t) (2)

In turn, the optimal revenue for distribution F is given by rF = maxp∈R+ p · (1−
F (p)). In this paper, we are interested in providing lower and upper bounds for
the relative performance of the ERM mechanism and the optimal mechanism,
α = infF |F is regular r̄F /rF .
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Following Daskalakis and Zampetakis [4], we will be deriving our bounds on α
via a reduction to a set of optimization programs for which we compute solutions.
However, we make a different choice of variables, working in the quantile space
(i.e. with the revenue curve) rather than working in the price space (i.e. with
the PDF/CDF of the distribution directly). Towards this end, note first that
if R is the revenue curve of the distribution F then R(q) = (1 − q) · F−1(q) for
any q ∈ [0, 1]. Therefore, for each q ∈ [0, 1], the revenue curve provides the price
inverse of q:

F−1(q) =

{
R(q)/(1 − q) q ∈ [0, 1)
limq′→1− R(q′)/(1 − q′) q = 1

Via the price inverse, we may define the bisample revenue function φR(·, ·)
on [0, 1]2. To do this, if (x, y) ∈ [0, 1]2 and x ≥ y, set

φR(x, y) = R(x) · I[F−1(x) > 2F−1(y)] + R(y) · I[F−1(x) < 2F−1(y)] (3)

+ min{R(x), R(y)} · I[F−1(x) = 2F−1(y)]

If instead x < y, we symmetrically extend the function by setting φR(x, y) =
φR(y, x). We then write r̄F as a double integral on [0, 1]2, which by (2) has the
form:

r̄R =
∫

(x,y)∈[0,1]2
φR(x, y) · d(x, y) (4)

For any concave R : [0, 1] → R+ the bisample revenue function φR(x, y) is
Riemann integrable, which implies that

α = inf
F |F is regular

r̄F /rF = inf
R|R:[0,1]→R+ is concave

r̄R/rR, (5)

where rR = maxq∈[0,1] R(q).

3 Approximation Programs

The Riemann integrability of φR on [0, 1]2 also suggests a possible optimization
formulation for our problem. Given a gauge, we can try to find a concave and non-
negative function R on [0, 1], suitably constrained, such that an approximation
of r̄R is minimized. To do so, we first need to define a gauge on [0, 1]2. We
opt for the natural approach, defining a gauge on [0, 1]2 by considering product
intervals arising from a gauge on [0, 1]. Suppose we divide the interval [0, 1] into
subintervals of the form I(i) = [qi, qi+1] for 1 ≤ i ≤ n, where q1 = 0, qn+1 = 1,
and qi+1 > qi for any 1 ≤ i ≤ n. Also denote by I(i, j) the product interval
[qi, qi+1] × [qj , qj+1]. Then we may rewrite integral (4) as:

r̄R =
∑

1≤i≤n

∫

(x,y)∈I(i,i)

φR(x, y) · d(x, y)+2 ·
∑

1≤j<i≤n

∫

(x,y)∈I(i,j)

φR(x, y) · d(x, y)

(6)
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We want primal solutions to our problems to describe approximately minimal
value distributions for the buyer. One way to do so is to include variables that
correspond to the values the revenue curve attains. Specifically, for (qi)1≤i≤n+1,
we will include variables R(qi). For notational convenience later on, let �R denote
the vector containing all R(qi). Then each R(qi) corresponds to a value attained
by a non-negative, concave function. This implies that the following constraints
must hold:

R(qi) ≥ R(qi+1)(qi − qi−1) + R(qi−1)(qi+1 − qi)
(qi+1 − qi−1)

∀ 1 < i < n + 1 (7)

R(qi) ≥ 0 ∀ 1 ≤ i ≤ n + 1 (8)

Furthermore, we want R to be normalized such that maxq∈[0,1] R(q) = 1.
Unfortunately, this is non-trivial to implement linearly. So, instead, we con-
strain the set of revenue curves so that there exists 1 ≤ OPT ≤ n and
q∗ ∈ [qOPT , qOPT+1] such that R(q∗) = 1. By the concavity and non-negativity
of R, this implies that:

R(qOPT ) ≥ qOPT /qOPT+1 (9)
R(qOPT+1) ≥ (1 − qOPT+1)/(1 − qOPT ) (10)

Furthermore, by concavity, R(·) should be weakly increasing before qOPT and
weakly decreasing beyond qOPT+1:

R(qi+1) − R(qi) ≤ 0 ∀1 ≤ i < qOPT (11)
−R(qi+1) + R(qi) ≤ 0 ∀qOPT+1 ≤ i < n

We also model the indicator functions in (3) as binary variables:

Lemma 1. For any (x, y) ∈ [0, 1) such that x > y,

φR(x, y) = min
w(x,y)∈{0,1}

R(x) · w(x, y) + R(y) · (1 − w(x, y))

subject to w(x, y) · [R(x) · (1 − y) − 2R(y) · (1 − x)] ≥ 0
(12)

(1 − w(x, y)) · [R(x) · (1 − y) − 2R(y) · (1 − x)] ≤ 0
(13)

To compute a Riemann sum, we evaluate w on a set T of points in [0, 1]2

such that for each non-diagonal area element I(i, j) for 1 ≤ j < i ≤ n contains
a point where we evaluate w. Formally,

∀1 ≤ j < i ≤ n, ∃(q̄i, q̄j) ∈ T, (q̄i, q̄j) ∈ [qi, qi+1] × [qj , qj+1].

We include variables for the value R attains on endpoints of intervals, but w
may be evaluated (in principle) anywhere on I(i, j). Then for (x, y) ∈ T , to be
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able to impose constraints of the form (12) and (13) on w(x, y), we find R(x)
and R(y) by linear interpolation on �R. In particular, if x ∈ [qi, qi+1], then:

R(x) · (qi+1 − qi) = R(qi) · (qi+1 − x) + R(qi+1) · (x − qi),

and likewise for R(y). So setting �w to be the vector containing all w(x�, y�), for
each individual summand in (6) we may approximate

∫

(x,y)∈I(i,j)

φR(x, y) · d(x, y) 	 A(i, j) · fij(�R, �w)

where A(i, j) = (qi+1 −qi)(qj+1 −qj) is the area of I(i, j), for 1 ≤ j ≤ i ≤ n, and
fij is some function determined by our approximation scheme, homogeneous of
degree one in �R.

This provides the form of our most general optimization formulation:
we consider a set of gauges indexed by a set J , (�qk)k∈J , such that
∪k∈J [qk

OPTk , qk
OPTk+1] = [0, 1], and find R that minimizes our approximation

of r̄R by computing:

min
k∈J

min
�R,�w

∑

1≤i≤n

Ak(i, i) · fii(�R, �w) + 2 ·
∑

1≤j<i≤n

Ak(i, j) · fij(�R, �w) (14)

subject to (7), (9), (10), (11), (12), (13)
�R ∈ [0, 1]n+1

�w ∈ {0, 1}T

3.1 Upper Bound: A Quadratic Formulation

To derive an upper bound, we will need to find an approximately-minimal rev-
enue curve. We consider a straightforward implementation of (14) to do this. For
n ∈ N, we take the uniform gauge given by qi = (i − 1)/n for 1 ≤ i ≤ n + 1,
and consider each case when the peak of the revenue curve is in [qk, qk+1] for
1 ≤ k ≤ n. To evaluate the Riemann sum, mark the midpoint of each interval,
q̄i = (qi + qi+1)/2. Then to approximate our Riemann integral, for each I(i, j)
we will evaluate the function φR at (q̄i, q̄j). So we set:

fii =
R(qi) + R(qi+1)

2
∀1 ≤ i ≤ n

fij =
R(qi) + R(qi+1)

2
w(q̄i, q̄j) +

R(qj) + R(qj+1)

2
(1 − w(q̄i, q̄j)) ∀1 ≤ j < i ≤ n

If we evaluate the resulting optimization problem, the constraints (9) and
(10) tend to “chip off” the peak of the revenue curve in the primal solutions.
This is unlikely to be a feature of an actual minimal revenue curve, so we will
convert the constraints (9) and (10) into a single equality constraint, at the cost
of increasing the size of the index set J by one. First observe that

max{R(qOPT ), R(qOPT+1)} ≥ max{qOPT /qOPT+1, (1 − qOPT+1)/(1 − qOPT )}



Improved Two Sample Revenue Guarantees via MILP 9

for any feasible solution (�R, �w). Let �R∗ = max{R(qOPT ), R(qOPT+1)}−1 �R. Then
for any 1 ≤ j ≤ i ≤ n, by the homogeneity of fij in �R it can be shown that

A(i, j) · fij(�R, �w) ≥ n − 1
n + 1

· A(i, j) · fij(�R∗, �w). (15)

Now, �R∗ has either R(qOPT ) = 1 or R(qOPT+1) = 1. So we consider imposing
such an equality constraint in our optimization programs to normalise the maxi-
mum of the revenue curve, dropping the optimality constraints (9) and (10) from
our optimization program. We are also able to drop the constraint (11), since it
is implied by R(qk) = 1, R ≤ 1, and the concavity constraints (7).

Finally, note that with the uniform gauge, A(i, j) = 1/n2, for any 1 ≤ j ≤
i ≤ n. Thus, our Riemann sum minimization program is:

α̂(n) = min
1≤k≤n+1

min
�R,�w

∑

1≤i≤n

1
n2

· fii(�R, �w) + 2 ·
∑

1≤j<i≤n

1
n2

· fij(�R, �w) (16)

subject to (7), (12), (13)
R(qk) = 1
�R ∈ [0, 1]n+1

�w ∈ {0, 1}(n2)

Intuitively, since the factor (n−1)/(n+1) in (15) goes to 1 as n grows large,
this program should be able to approximate α. To be able to prove this, we
emphasize an important monotonicity property of w(x, y): it is non-decreasing
in the first argument and non-increasing in the second argument:

Lemma 2. Suppose that R is concave and non-negative on [0, 1], and w is deter-
mined as in Lemma 1. Then for any x, y ∈ [0, 1]2 such that x > y:

(i) If x′ > x, then w(x′, y) ≥ w(x, y).
(ii) If x > y′ > y, then w(x, y′) ≤ w(x, y).

These monotonicity properties of w imply that only few w(q̄i, q̄j)’s may be
“misspecified”. In particular, for some revenue curve R, the objective contribu-
tions A(i, j) · fij(�R, �w) all underestimate their corresponding terms in 6 except
for a vanishing fraction of product intervals I(i, j):

Lemma 3. Let (�R, �w) be a feasible solution of (16), and let R be a revenue
curve agreeing with �R on the gauge (qi)1≤i≤n+1. Then for at least

(
n
2

) − 2n + 3
many pairs (i, j) such that 1 ≤ j < i ≤ n, w is a constant function on I(i, j). In
particular, for such pairs (i, j):

∫

(x,y)∈I(i,j)

φR(x, y) · d(x, y) ≥ A(i, j) · fij(�R, �w),

with equality if R is the linear interpolation of �R.
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To prove Lemma 3 we define a notion of constantness for w on any I(i, j) with
j < i. We will say that the pair (i, j) is 1-definite if w(qi+1, qj) = w(qi, qj+1) = 1,
and 0-definite if w(qi+1, qj) = w(qi, qj+1) = 1. Else, by the monotonicity of w,
it must be that w(qi+1, qj) = 1 and w(qi, qj+1) = 0; we call such a pair (i, j)
indefinite. Then, by the monotonicity of w, it holds that:

1. If (i, j) is 1-definite then (i + 1, j − 1) is 1-definite.
2. If (i, j) is 0-definite and j + 1 < i − 1, then (i − 1, j + 1) is 0-definite.
3. If (i, j) is indefinite then (i + 1, j − 1) is 1-definite, and if also j + 1 < i − 1,

then (i − 1, j + 1) is 0-definite.

Thus at most
(
n
2

)− 2n+3 pairs (i, j) such that 1 ≤ j < i ≤ n may be indefinite,
from which the proof follows. Consideration of definiteness also allows us to
provide an explicit convergence result for α̂(n):

Theorem 1. For each n ≥ 1, α̂(n) − 2
n−1 − 5n−6

n2 ≤ α ≤ α̂(n) + 5n−6
n2 .

The convergence result suggests a natural optimization scheme to find an
approximately minimal distribution – we linearize the terms of the form R(q�) ·
w(q̄i, q̄j) in the objective and the constraints, adding in the constraints from the
second-order Sherali-Adams lift of (16) that include such terms. In particular,
we add in the constraints

Rw(	, i, j) ≥ 0 (17)
w(q̄i, q̄j) − Rw(	, i, j) ≥ 0

R(q̄�) − Rw(	, i, j) ≥ 0
−R(q̄�) − w(q̄i, q̄j) + Rw(	, i, j) ≥ −1 ∀1 ≤ j < i ≤ n, 	 ∈ {i, j},

where Rw(	, i, j) is a variable representing the product R(q̄�) ·w(q̄i, q̄j). We then
replace the product terms in constraints (12), (13) and in the objective with
the corresponding linearized variable. Note that these constraints imply that
Rw(	, i, j) = R(q̄�) · w(q̄i, q̄j) whenever w(q̄i, q̄j) is {0, 1}-valued. Therefore, the
mixed-integer LP formulation is exact.

Finally, we impose the monotonicity constraints implied by Lemma 2. Even
though these constraints are redundant for our formulation, we have found that
the inclusion of monotonicity constraints improves the performance of the solver.
Then our approximate MILP has the following form:

min
1≤k≤n+1

min
�R,�w,Rw

∑

1≤i≤n

1

n2
· R(q̄i) +

∑

1≤j<i≤n

2

n2
· (Rw(i, i, j) + R(q̄j) − Rw(j, i, j)) (18)

subject to (7), (12), (13), 17

w(q̄i, q̄j) ≤ w(q̄i+1, q̄j) ∀1 ≤ j < i < n

w(q̄i, q̄j) ≥ w(q̄i, q̄j+1) ∀1 ≤ j < i + 1 ≤ n

R(qk) = 1

�R ∈ [0, 1]n+1

�w ∈ {0, 1}
(
n
2

)

Rw ∈ [0, 1]
2×

(
n
2

)
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3.2 Lower Bound: A Cubic Formulation

While the MILP (18) does provide certifiable lower bounds for α by Theo-
rem 1, the exponential nature of the problem kicks in before we can certify
any improvement on the lower bound of 	.558 provided Daskalakis and Zam-
petakis [4]. We work around this problem by considering a cubic program which,
given a gauge, lower bounds the contribution of any area element. We first fix
our gauge: for the general formulation of the problem (14), we find a set of
gauges (�qk)k∈I with prescribed optimal intervals [qk

OPTk , qk
OPTk+1] such that

∪k∈I [qk
OPTk , qk

OPTk+1] = [0, 1]. As evidenced by (15), we will want the freedom
to pick qk

OPTk+1 − qk
OPTk small for each gauge �qk to minimize the loss from

relaxing the optimality constraint to (9) and (10). To this end, for some N ∈ N

“significantly larger” than n, we will set J = {1, 2, ..., N} and

qk
OPTk =

k − 1
N

, qk
OPTk+1 =

k

N
.

Then by (15), we expect degredations on the quality of the lower bound caused
by the optimality constraints to be of order ∼1/N as we impose larger N . Note
that this only comes at a linear cost of having to compute N MILPs.

Next, we need to decide on where to evaluate each w(qi, qj). By Lemma 2,
to decide on the definiteness of an area element [qi, qi+1] × [qj , qj+1] for 1 ≤ j <
i ≤ n, we need to check w(qi+1, qj) and w(qi, qj+1). Due to this constraint, we
also need to assign a value to w on (qi, qi)1≤i≤n+1. The defining constraints (12)
and (13) become degenerate on such points. Instead we will opt to always fix
w(qi, qi) = 0, as such an assignment respects monotonicity and we wish to avoid
adding even more binary variables.

We now derive lower bounds on the contribution of each area element. Lower
bounding the contribution of diagonal area elements is straightforward:

Lemma 4. Suppose R : [0, 1] → R+ is concave and R attains its maximum in
Ik(OPT k). Then the following hold:

(i) If i < OPT k, then
∫
(x,y)∈Ik(i,i) φR(x, y) · d(x, y) ≥ Ak(i, i)

(
2R(qk

i )

3
+

R(qk
i+1)

3

)
.

(ii) If i = OPT k, then
∫
(x,y)∈Ik(i,i)

φR(x, y) · d(x, y) ≥ 0.

(iii) If i > OPT k, then
∫
(x,y)∈Ik(i,i) φR(x, y) · d(x, y) ≥ Ak(i, i)

(
R(qk

i )

3
+

2R(qk
i+1)

3

)
.

Next, we provide lower bounds on off-diagonal area elements conditional on
their definiteness:
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Lemma 5. Suppose R : [0, 1] → R+ is concave, 1 ≤ j < i ≤ n, and R attains
its maximum in Ik(OPT k). Then the following hold:

(a) If the pair (i, j) is 1-definite, or if the pair (i, j) is indefinite and j > OPT k,
then:

∫

(x,y)∈I(i,j)

φR(x, y) · d(x, y) ≥ Ak(i, j) · R(qk
i ) + R(qk

i+1)
2

.

(b) If the pair (i, j) is 0-definite, or if the pair (i, j) is indefinite and i < OPT k,
then:

∫

(x,y)∈I(i,j)

φR(x, y) · d(x, y) ≥ Ak(i, j) · R(qk
j ) + R(qk

j+1)
2

.

(c) For any pair (i, j) – in particular if (a) and (b) do not hold – we have
∫

(x,y)∈I(i,j)

φR(x, y) · d(x, y) ≥ Ak(i, j) · E[min{R(x), R(y)}|(x, y) ∈ I(i, j)],

where R is the minimum concave and non-negative function on [0, 1] satis-
fying (9) and (10).

This allows us to write a cubic expression which lower bounds the contribu-
tion from an off-diagonal area element to the revenue:

Corollary 1. Suppose R : [0, 1] → R+ is concave, 1 ≤ j < i ≤ n, and and R

attains its maximum in Ik(OPT k). Let f1ij(�R), f0ij(�R), fιij(�R) be respectively
the lower bounds on the revenue contribution from the area element I(i, j), con-
ditional respectively on the pair (i, j) being 1-definite, 0-definite or indefinite as
in Lemma 5. Then:

∫

(x,y)∈I(i,j)
φR(x, y) · d(x, y) ≥ Ak(i, j)f1ij(�R)w(qk

i+1, qk
j )w(qk

i , qk
j+1)

+ Ak(i, j)f0ij(�R)(1 − w(qk
i+1, qk

j ))(1 − w(qk
i , qk

j+1))

+ Ak(i, j)fιij(�R)w(qk
i+1, qk

j ))(1 − w(qk
i , qk

j+1))

+ Ak(i, j)fιij(�R)(1 − w(qk
i+1, qk

j ))w(qk
i , qk

j+1)

Note that the fourth term of the lower bound in Corollary 1 is redundant –
it will equal zero for any integral solution for �w by monotonicity. Still, the term
allows us to gain some more strength in the LP relaxation of the program, so
we retain it in our final formulation.

Given a gauge (�qk), a lower bound function fij(�R, �w) for each 1 ≤ j ≤ i ≤ n
is then provided by Lemma 4 and Corollary 1. To linearize the objective function,
we again consider incorporating the relevant variables from the degree 3 Sherali-
Adams lift of the problem, with their defining inequalities.

For the objective, we consider variables:
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1. w2 corresponding to terms of type w(qi+1, qj) · w(qi, qj+1),
2. Rw corresponding to terms of type R(q�) · w(qi+1, qj) or R(q�) · w(qi, qj+1),

and
3. Rw2 corresponding to terms of type R(q�) · w(qi+1, qj) · w(qi, qj+1).

For w2, the Sherali-Adams inequalities are then:

∀1 ≤ j < i ≤ n, (19)

−w(qi+1, qj) + w2(i, j) ≤ 0

−w(qi, qj+1) + w2(i, j) ≤ 0

w(qi+1, qj) + w(qi, qj+1) − w2(i, j) ≤ 1

In turn, for Rw, the Sherali-Adams inequalities are given:

∀1 ≤ j < i ≤ n,∀	 ∈ {i, i + 1, j, j + 1},∀(s, t) ∈ {(i + 1, j), (i, j + 1)}, (20)
−R(q�) + Rw(	, s, t) ≤ 0

−w(qs, qt) + Rw(	, s, t) ≤ 0
R(q�) + w(qs, qt) − Rw(	, s, t) ≤ 1

Finally, we have the Sherali-Adams inequalities for Rw2:

∀1 ≤ j < i ≤ n,∀	 ∈ {i, i + 1, j, j + 1}, (21)

−w2(i, j) + Rw2(	, i, j) ≤ 0

−Rw(	, i + 1, j) + Rw2(	, i, j) ≤ 0

−Rw(	, i, j + 1) + Rw2(	, i, j) ≤ 0

−w(qi+1, qj) + w2(i, j) + Rw(	, i + 1, j) − Rw2(	, i, j) ≤ 0

−w(qi, qj+1) + w2(i, j) + Rw(	, i, j + 1) − Rw2(	, i, j) ≤ 0

−R(q�) + Rw(	, i + 1, j) + Rw(	, i, j + 1) − Rw2(	, i, j) ≤ 0
R(q�) + w(qi+1, qj) + w(qi, qj+1)...

... − Rw(	, i + 1, j) − Rw(	, i, j + 1) − w2(i, j) + Rw2(	, i, j) ≤ 1

For the defining constraints for w, (12) and (13), we linearize terms of the
form R(q�) · w(q̄i, q̄j) to Rw(	, i, j), coinciding with the previously defined Rw
term whenever necessary. These terms have defining inequalities:

∀1 ≤ j < i ≤ n,∀	 ∈ {i, j}, (22)
−R(q�) + Rw(	, i, j) ≤ 0

−w(qi, qj) + Rw(	, i, j) ≤ 0
R(q�) + w(qi, qj) − Rw(	, i, j) ≤ 1

Finally, we again impose the monotonicity constraints for w to improve the
performance of our solver. This implies that our lower bounding MILP has the
following form:
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min
k∈{1,2,...,N}

min
�R,�w,w2,Rw,Rw2

∑

1≤i≤n

Ak(i, i) · fii(�R, �w) + 2 ·
∑

1≤j<i≤n

Ak(i, j) · fij(�R, �w)

(23)
subject to (7), (9), (10), (11), (12), (13), (19), (20), (21), (22)

w(q̄i, q̄j) ≤ w(q̄i+1, q̄j) ∀1 ≤ j < i < n

w(q̄i, q̄j) ≥ w(q̄i, q̄j+1) ∀1 ≤ j < i + 1 ≤ n

w(qi, qi) = 0 ∀1 ≤ i ≤ n

�R ∈ [0, 1]n+1

�w ∈ {0, 1}
(
n+1
2

)

w2, Rw, Rw2 ≥ 0

We still need to explicitly pick a gauge for (23) for each k ∈ {1, 2, ..., N}. An
immediate candidate is the “approximately uniform” gauge. For such a gauge,
when k = 1, we divide [1/N, 1] into n − 1 equal size intervals. Likewise, when
k = N , we divide [0, 1−1/N ] into n−1 equal size intervals. If instead 1 < k < N ,
we choose m such that:

m ∈ arg min
1<μ<n−1

∣
∣
∣
∣
k − 1
N · μ

− N − k

N · (n − μ − 1)

∣
∣
∣
∣

We then divide [0, (k − 1)/N ] into m equal size intervals, and [k/N, 1] into
n − m − 1 equal size intervals.

While straightforward, this choice of gauge is problematic. In particular, the
approximately uniform gauge results in “jagged” behaviour for the objective
values of (23) parametrised by qOPT when (approximately) qOPT ∈ [0, .2]. The
upwards kinks occur roughly when k → k + 1 causes m → m + 1. This implies
that, for some initial segment of [0, 1], the quality of our lower bounds improve
when we add more intervals in the segment [0, (k − 1)/N ]. So we consider a
modification of the approximately uniform gauge, square weighing the gauge on
[0, 1/2]. In particular, for k < N/2, we instead choose m such that

m ∈ arg min
1<μ<n−1

∣
∣
∣
∣
k − 1
N · μ2

− N − k

N · (n − μ − 1)2

∣
∣
∣
∣ .

Unfortunately, using this square-weighted gauge results in considerable slow-
down of computations, when k � N/10. For this reason, we lower the relative
efficiency guarantees of our solver when k ≤ N/10. This results in a jump “dis-
continuity” in our computed revenue guarantees, but the derived lower bounds
are smoothed on the initial segment of [0, 1] by the weighing and the quality of
the lower bounds we obtain increase. The reason for why such a weighing works
is unknown to us; indeed, we found the square-weighing rule by trial-and-error.

4 Results: Lower and Upper Bounds

We are now ready to present lower and upper bounds on the performance of the
ERM mechanism with two samples. We compute (18) and (23) using MATLAB
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+ CPLEX as our solver of choice1. We compute (18) for n = 80, obtaining an
approximate conditional2 minimum expected revenue curve. Each computation
for k ∈ {1, ..., 81} also provides us with an approximately minimal distribution;
given primal solution (R,w,Rw) to (18) for k, we consider the minimum concave
function Rk such that Rk(j/n) = R(j/n) for any j = {0, 1, ..., 80}. By numer-
ically evaluating the integral (4) in Mathematica for each such Rk, we obtain
upper bounds on the performance of the ERM mechanism.
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Fig. 1. Results of computation of (18) for n = 80. The objective values of (18) are
shown in blue, while upper bounds obtained from primal solutions are shown in orange.
(Color figure online)

The results of this computation is shown in Fig. 1. Numerically computing
the integral (4) for each primal solution we obtain, the internal error estimates
provided by Mathematica are ≤ 10−6 for each integral approximation. We find
that our primal solution for n = 80 and qOPT = 44/80 provides a regular revenue
curve for which the ERM mechanism obtains ≤ .61035 times the optimal revenue.
Also as seen in Fig. 2, our primal solutions show that minimal distributions are
closely approximated by piecewise linear functions on at most three intervals
(3-piecewise linear functions).
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Fig. 2. Revenue curves of approximately minimal distributions (conditional on qOPT )
obtained from (18) for n = 80 and k = 15, 45.

1 Our code is available at meteahunbay.com/files/code-twoSampleMILP.zip.
2 On arg maxq∈[0,1] R(q).

http://meteahunbay.com/files/code-twoSampleMILP.zip
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Finally, we compute (23) for n = 50 and N = 500, running our solver at
99.8% relative tolerance for k > 50 and 99% relative tolerance for k ≤ 50. The
results of the computation are shown in Fig. 3. Our results show that the ERM
mechanism guarantees an expected revenue ≥.5914 times the optimal revenue.
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Fig. 3. Results of computation of (23) for n = 50 and N = 500. The blue line shows the
value of the objective for primal solutions found, while the orange line shows conditional
lower bounds on the expected revenue of the auction. These results are corrected for
tolerance of the MILP solver. (Color figure online)

5 Conclusion

In this paper, we presented an MILP formulation to inspect the expected revenue
of the ERM mechanism in the single item, single buyer, two sample setting.
Working within this formulation has allowed us to greatly improve upon the
known upper and lower bounds of the expected revenue guarantees of the ERM
mechanism with two samples, and provided us with insights on what minimum
revenue distributions may look like.

Despite the sheer number of binary variables involved, computations to cer-
tify our bounds were relatively cheap – on a ASUS ROG Zephyrus M (GU502GV)
laptop, (18) for n = 80 took approximately a day to compute, while the compu-
tations to solve (23) for n = 50 and N = 500 took around twelve days. Still, the
exponential nature of the problem had become noticable around the values of
(n,N) we used. Therefore, we do not expect (18) and (23) to be feasibly solvable
for significantly finer gauges, disallowing major improvements on the bounds we
have provided by simply solving (18) and (23) for larger n,N .

That being said, it may be still possible to extract even stronger lower bounds
within our framework. Lower bounds we may derive from solutions of (18) cur-
rently depend on Theorem 1. For fixed n, our estimation of how much the value
of (18) overestimates α is 2/(n − 1) + (5n − 6)/n2. For n = 80, this error esti-
mate is �.0869, which means that our computations for (18) can only certify
a lower bound of .5210. However, Fig. 1 hints that the actual error might be
much smaller than our estimate. Improving this estimate could then help certify
stronger lower bounds on α.



Improved Two Sample Revenue Guarantees via MILP 17

Finally, we note that our formulation should extend naturally to the setting
with ≥3 samples. However, in such an extension, the number of binary variables
would blow up exponentially as the number of samples increases for fixed number
of intervals, n. This implies that the extension of (18) and (23) to a setting
with ≥3 samples might not be feasibly solvable. Still, for settings in which the
performance of solvers do not depreciate too much, our techniques should be
readily applicable.
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Abstract. Motivated by auctions for carbon emission permits, we
examine the social welfare of multi-buyer sequential auctions for iden-
tical items. Assuming the buyers have weakly-decreasing incremental
(concave) valuation functions, we study subgame perfect equilibria of
a repeated second-price auction with n buyers and T time periods. We
show that these auctions admit envy-free subgame-perfect equilibria that
(1 − 1/e)-approximate the optimal welfare. The equilibria we construct
have a natural interpretation: each bidder guarantees for herself the best
outcome she could obtain if all other bidders were non-strategic. With-
out the envy-freeness condition, the price of anarchy can be as bad as
Θ(1/T ) even when restricting to equilibria that satisfy a no-overbidding
condition. We also consider the restricted class of envy-free subgame
perfect equilibria that survive iterated deletion of weakly undominated
strategies. For this class of equilibria we prove constant bounds on the
price of anarchy for three settings with differing levels of market compet-
itiveness, based on the number of buyers with oligopsony power (market
power).

1 Introduction

We study sequential auctions with identical items. There are T time periods,
and in each period a single item is sold to n bidders via a second-price (or
first-price) auction. The same set of bidders participates in each round and
a bidder can win multiple items. Our motivation is that sequential auctions
with identical items form the basis of cap-and-trade systems and other emission
license markets. Thus, to assess the potential effectiveness of these system in
combating climate change, a central task is to quantify the quality of outcomes
in sequential auctions. In particular, our aim in this paper is to evaluate the
structure and efficiency of equilibria when the buyers have weakly decreasing
incremental (concave) valuation functions.
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1.1 Motivation: Carbon Pricing

One motivation for this work is the use of carbon pricing in reducing climate
change. For example, in a cap-and-trade system carbon permits are sold by
auction repeatedly over time. Ergo, to understand such mechanisms we must
understand sequential auctions with identical items (permits). Indeed, the auc-
tion mechanism studied in this paper forms the basis of both the Regional Green-
house Gas Initiative (RGGI), consisting of Eastern states in the United States,
and the Western Climate Initiative (WCI), including California and Québec.
Still, knowledge of carbon pricing markets is not required for the game-theoretic
auction analyses presented in this paper.

Formally, we want to evaluate the price of stability and the price of anarchy
when the number of bidders n and the number of time periods T gets large.1

There are multiple factors that may cause inefficiencies in sequential auctions of
carbon licenses. The first is that the carbon market involves a relatively small
number of very large participants. In such oligopolistic markets, the participants
have price-making abilities via strategic bidding. The extent of these abilities
and the magnitude of any resultant deleterious effects varies with the specific
market. Second, carbon permit auctions take place every quarter and this has
potentially serious consequences with respect to strategic behaviours. For exam-
ple, the repeated nature of cap-and-trade auction allows firms to experiment with
strategies. This opens up the possibility of learning bidding strategies that bene-
fit it but worsen the performance of the mechanism. Potentially, this could mean
that a cap-and-trade system initially works well but its performance degrades as
the firms learn to play the mechanism. In addition, it is well-known that repeated
auctions are more vulnerable to other problematic behaviours, such as signal-
ing and implicit collusion. To better understand these effects and their welfare
impact, we study classes of subgame perfect equilibria in sequential auctions.

1.2 Background on Sequential Auctions

Sequential auctions with identical goods have been long-studied in the economics
community. Early experimental and empirical studies of such sequential auc-
tions were given by Pitchik and Schotter [15] and by Ashtenfelter [3] who was
motivated by wine and art auctions. These papers highlighted the additional
complexity that arises in multi-period (sequential) auctions compared to one-
period (static) auctions. Indeed, Ashtenfelter begins with the memorable line
“At the first wine auction I ever attended, I saw the repeal of the law of one
price.” Specifically, the selling price of identical lots of wine differed over the
course of just “a matter of seconds”; in fact, the prices decreased over time. This
surprising property, known as the declining price anomaly [11], has since been
observed in numerous sequential auctions [4,7,8,14,17,18]. Furthermore, Gale
1 The price of stability is the worst case ratio over all instances between the welfare of

the best equilibrium (for a specified class of equilibria) and the optimal welfare, and
the price of anarchy is the worst case ratio over all instances between the welfare of
the worst equilibrium (for a specified class of equilibria) and the optimal welfare.
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and Stegeman [10] presented a model of sequential auctions (which we use in
this paper) and proved that, for the case of two buyers, the observational results
above were not coincidental: at any subgame perfect equilibrium that survives
the iterative deletion of weakly dominated strategies, the price weakly declines
over time.

There has also been a great deal of interest in the computer science commu-
nity in sequential auctions for both identical [5,6] and non-identical goods [9,13].
Of particular relevance, Ahunbay et al. [1,2] study the price of anarchy for 2-
buyer sequential auctions for identical goods. Under the model of Gale and
Stegeman [10], they prove that the price of anarchy is at most 1 − 1

e , assuming
weakly-decreasing incremental (concave) valuation functions.

In contrast, little is known about sequential auctions with more than two
buyers. The reader may ask: what is special about the two-buyer setting? It turns
out the 2-buyer is much simpler to analyze because, from the perspective of each
buyer, at any time period there are only two outcomes: win or lose. Thus, at each
node in the game tree for the auction, we can associate a specific marginal value
for winning to each buyer. Thus, each subgame corresponds to a standard auction
with independent values [10,13]. Consequently, applying backwards induction
on the game tree then allows us to compute an equilibrium. For example, in
the second-price setting, the unique subgame perfect equilibrium that survives
the iterative deletion of weakly dominated strategies corresponds to each buyer
bidding their marginal value at each game node. Unfortunately, for more than
two buyers this argument falls apart. From the perspective of any agent, there
are no longer just two outcomes in each round: losing to agent i is not the same
as losing to agent j, since the winner’s identity might change what happens in
future rounds. Agents can therefore implicitly impose externalities on each other,
and the marginal value of winning is not well-defined for any buyer. In particular,
each subgame now corresponds to a auction with inter-dependent values [12,13].
This makes analyzing the multi-buyer setting much more complicated. Indeed,
unlike 2-buyer auctions, prices need not weakly decrease over time in sequential
auctions with three or more buyers; see Narayan et al. [12].

1.3 Our Results

In Sect. 2, we present the formal model of sequential auctions with identical
goods where each buyer has a weakly concave valuation function.

Our first result is a negative one. In Sect. 2, we prove the price of anarchy is
Θ(1/T ) for second-price sequential auctions with T time periods. The example
we construct has the property that agents do not overbid their incremental
values in any round, so imposing a no-overbidding assumption is not enough to
bypass these bad equilibria. This motivates the study of envy-free second-price
equilibria. These correspond to equilibria of both first-price and second-price
sequential auctions [13]. Our main result, given in Sect. 4, is that the price of
stability for envy-free equilibria in sequential auctions for identical goods is at
least 1 − 1

e .
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In fact, the envy-free equilibrium we construct has a natural economic inter-
pretation. We suppose that each buyer considers a hypothetical scenario where
all other participants bid truthfully every round, and then decides on an opti-
mal response. This response might involve strategic demand reduction (from the
theory of multi-unit auctions), where a buyer uses their oligopsony power (i.e.,
market power) to influence their price. In our envy-free equilibrium, each agent
simultaneously obtains at least the utility they would obtain from this hypothet-
ical scenario. To show this we derive structural results and strategic concepts
of importance in analyzing envy-free equilibria, and find that agents can use
greedy bidding strategies to implement their oligopsonist outcome starting from
any round of the auction, and that this results in at least a 1 − 1

e factor of the
optimal welfare (and this bound is tight). The main result follows by constructing
an envy-free equilibrium related to these greedy bidding strategies.

In Sect. 5, we consider a different class of subgame perfect equilibria that
survive the iterated deletion of weakly dominated strategies and satisfy no-
incremental-overbidding. There might not be a unique such equilibrium when
there are three or more bidders. We therefore present bounds on the price of
anarchy for equilibria in this class. Specifically we present results for distinct
cases related to the number of buyers with oligopsony power. First, we show
the price of anarchy is 1 if the auction is suitably “competitive” and none of
the buyers have oligopsony power. Second, we prove that if there is a unique
buyer with oligopsony power then the price of anarchy is at least 1 − 1

e . Third,
we present constant price of anarchy bounds for a specific family of valuation
profiles where multiple buyers have oligopsony power.

2 Preliminaries

In this section, we present the complete information model for sequential mul-
tiunit auctions, due to Gale and Stegeman [10], and our concept of equilibrium.
In a sequential multiunit auction, there is a set [T ] of T ≥ 1 identical items to
be sold and a set [n] of n ≥ 1 buyers. Each buyer i ∈ [n] has a valuation func-
tion Vi : [T ] ∪ {0} → R+, where Vi(k) is buyer i’s value for obtaining k items.
We assume that valuation functions are non-decreasing (free-disposal) and nor-
malized so that Vi(0) = 0. We also assume that each Vi is weakly concave, i.e.
buyers’ valuations exhibit diminishing incremental returns. We define buyer i’s
incremental valuation function as vi(k) = Vi(k) − Vi(k − 1), denoting the value
buyer i has for obtaining a k’th additional item. Note that, since Vi is concave,
vi is weakly decreasing.

The items are sold in a sequential auction over T rounds. In each round a
single item is allocated via a sealed-bid auction. More specifically, in each round
t ∈ [T ], each buyer i submits a real-valued bid bit. An auction rule is then applied
to determine which buyer obtains the item and at what price. We will consider
both first-price and second-price variations of the auction.

Example 1. Consider a two-buyer auction with two items, where the incremental
valuations are (v1(1), v1(2)) = (11, 9) and (v2(1), v2(2)) = (7, 3). The optimal
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outcome is for buyer 1 to receive both copies of the item for a social welfare of
11 + 9 = 20. Interestingly, economic theory predicts a very different equilibrium
outcome. Specifically, using either a first-price or a second-price auction in each
time period, buyer 2 should win the first item sold for a price of 5, and buyer 1
should win the second item sold for a price of 3. To see this, imagine that buyer 1
wins the first item. Then in the second period she will have to pay 7 to beat
buyer 2 for the second item. Given this, buyer 2 will also be willing to pay
up to 7 to win the first item. Thus, buyer 1 will win both permits for 7 each
and obtains a utility (profit) of 20 − 14 = 6. On the other hand, imagine that
buyer 2 wins the first item. Now in the second period, buyer 1 will only need
to pay 3 to beat buyer 2 for the second item, giving her a profit of 11 − 3 = 8.
Consequently, by bidding 5 in the first period, buyer 1 can guarantee herself
a profit of 8 regardless of whether or not she wins in the first period. Given
this bid, buyer 2 will maximize his own utility by winning the first item for
5. The claimed equilibrium follows. In fact, this is the unique subgame perfect
equilibrium surviving the iterative deletion of weakly dominated strategies (see
Sect. 2.2). Note that this equilibrium outcome gives a suboptimal social welfare
of 11 + 7 = 18. �

2.1 Bidding Strategies

To investigate equilibria we must further formalise the sequential auction model.
A history describes the bid profiles and auction outcomes for a prefix of the
auction rounds. We write H for the set of all histories. We think of a history as
describing the public information revealed over the course of (a prefix of) the
auction. We say a history h is an outcome if it describes all T auction rounds,
otherwise we say it is a decision node. We write O for the set of outcomes and
D for the set of all decision nodes.

A bidding strategy bi : D → R+ maps each decision node to a bid. A profile
of bidding strategies b describes a bidding strategy for each bidder, where we
think of bi(h) as the bid placed by agent i following history h. We write B

for the set of all profiles of bidding strategies. A tie-breaking rule is a function
π : [n]×D×B → [0, 1], where πi(h|b) is the probability that bidder i is allocated
the item in the round at decision node h, given that bidders follow the strategies
in b. Note that for all b ∈ B and h ∈ D, we have

∑
i∈[n] πi(h|b) = 1.2 A tie-

breaking rule is deterministic precisely when πi(b|h) ∈ {0, 1} for all i, b, and h.
A payment rule is a function p : D×B → R+, where p(h|b) describes the payment
to be made by a buyer at decision node h conditional on being allocated an item
that round.

A history contains information about all past bids, as well as the winners and
payments of previous auction rounds. However in all of the bidding strategies we
consider, we will use only the number of items allocated to each buyer in prior
rounds. We will therefore sometimes abuse notation and describe a history h as

2 In alternate settings, such as when reserve prices are incorporated, it may be the
case that

∑
i∈[n] πi(h|b) < 1.
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a vector in Z
n
+, where the i’th component of the vector denotes the number of

items allocated to buyer i following history h. As we deal with integer vectors
representing item allocations, we will denote histories with x, y, z as needed. For
notational convenience, we let ei be the vector whose ith component equals 1
and all other components equal 0. So for example, x + ei denotes the history
that proceeds according to x, followed by bidder i winning the subsequent round.
Finally, we let t(x) = T − ∑

i xi denote the number of rounds remaining after
history x; i.e., the length of sequential subauction that begins following history x.

In this paper we focus on sequential first-price and second-price auctions. In
both of these auction types, the allocation rule π is such that, for all i ∈ [n],
b ∈ B, and x ∈ D, we have that πi(x|b) > 0 implies bi(x) ≥ bj(x) for all j ∈ [n].
In other words, a bidder with maximum bid will win in each round, but tie-
breaking can be arbitrary and possibly randomized. In the first-price auction, the
payment rule is p(x|b) = maxi bi(x), while in the second-price auction, p(x|b) =
mini∈[n] maxj∈[n]\{i} bj(x).

Given bidding strategies b and a tie-breaking rule π, we may compute forward
utilities of buyers at decision node x through induction on t(x). When t(x) = 0,
the auction has ended and for each i ∈ [n], ui(x|b) = 0. If t(x) > 0, for each
buyer i we have

ui(x|b) = πi(x|b) · [vi(xi + 1) − p(x|b)] +
∑

j∈[n]

πj(x|b) · ui(x + ej |b).

We write V (k|x) for the total valuation function at x, denoting the value of
the global optimal assignment of k items beginning at decision node x. That
is, V (k|x) is the maximum of

∑
i∈[n] Vi(xi + ki), over all profiles (k1, . . . , kn)

with
∑

j∈[n] kj = k. We note that V (·|x) is non-decreasing and weakly concave
for every x. We will also write V−i(k|x) and v−i(k|x) for the corresponding
global optimal assignment and marginal values when we exclude buyer i. That
is, V−i(k|x) is the maximum of

∑
j∈[n] Vj(xj +kj) over profiles (k1, . . . , kn) with

∑
j∈[n] kj = k and ki = 0, and v−i(k|x) = V−i(k|x) − V−i(k − 1|x). We refer to

v−i(·|x) as the opposing incremental value function of buyer i at x.

2.2 Equilibria in Sequential Auctions

We now discuss our equilibrium concept. Bidding strategies b paired with tie-
breaking rule π constitutes a subgame perfect equilibrium of the sequential
multiunit auction if

ui(x|(βi, b−i)) ≤ ui(x|b) ∀i ∈ [n],∀βi ∈ Bi,∀x ∈ D.

Subgame perfection requires that each agent is choosing a utility-optimizing
action at each decision node, given the strategies of other agents (including how
other agents will respond in future rounds).

In fact, the equilibrium concept we study here is that of an envy-free sub-
game perfect equilibrium with no-overbidding. A bidding profile b satisfies no-
(incremental) overbidding if ∀x ∈ D, bi(x) ≤ vi(xi + 1). That is, no agent
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bids more than their incremental value for winning an addition item, in any
round. We say that bidding strategies b (for tie-breaking rule π) constitute an
envy-free equilibrium if for every decision node x and buyer i,

ui(x|b) ≥ vi(xi + 1) − p(x|b) + ui(x + ei|b).

That is, in an envy-free equilibrium, no bidder who loses in a given round would
strictly prefer to win at the price paid by the winner.

3 Inefficiency of Non-Envy-Free Equilibria

It is well-known that subgame perfect equilibria may be arbitrarily inefficient,
even for single-item auctions, if buyers may overbid for an item.3 Overbidding is
extremely risky in practice, so we focus on equilibria that satisfy the aforemen-
tioned standard no-overbidding property – at each decision node buyers do not
bid more than their incremental value for winning an additional item. But we
note that the simple prohibition of overbidding does not ensure that equilibria
have good social welfare. Whilst the price of anarchy is bounded away from zero
(Theorem 1), it can still be negligible (Example 2).

Theorem 1. At any equilibrium in the sequential second price auction with no-
incremental overbidding, the social welfare is at least OPT

T .

The crude bound of 1
T in Theorem 1 is tight for SPE of second-price sequential

multiunit auctions. This is shown by the following example.

Example 2. We consider a sequential auction of T ≥ 3 identical items with three
buyers. Buyer 1 and buyer 2 have value 1 for every item they win. In turn, buyer
3 has value ε for the each item he wins up to T −2 items, and has value 0 for any
extra items he may win. Consider the following bidding strategy profile: in the
first T − 2 rounds, if buyer 3 has won every previous item, buyer 1 and buyer 2
both bid 0 and buyer 3 bids ε. In round T − 1 if buyer 3 has won every previous
item, buyer 2 bids 1 while buyer 1 and buyer 3 both bid 0. Finally, in round T
if buyer 3 has won T − 2 items and buyer 2 has won one item, buyer 1 bids 1
while buyer 2 and 3 both bid 0. At any other decision node, all buyers bid their
valuation for an additional item; in particular both buyer 1 and buyer 2 bid 1
while buyer 3 bids ≤ ε. This bidding profile is a subgame perfect equilibrium,
and on the equilibrium path buyer 3 wins T −2 items while buyer 1 and buyer 2
win only one item each afterwards. Therefore, the social welfare of the outcome
is 2 + (T − 2) · ε. On the other hand, a welfare-optimal allocation gives each
item to either buyer 1 or buyer 2, for a total value of T . Thus by taking ε > 0
sufficiently small, we obtain a price of anarchy of Θ(1/T ). �

3 For example, take a single-item second-price auction with two buyers. Suppose
v1(1) = 1 and v2(1) = ε. The bids b1(0) = 0 and b2(0) = 2 form an equilibrium
with social welfare ε, but the optimal welfare is 1.
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The problem inherent in Example 2 is that subgame perfect equilibria allow
for signalling behaviour even if overbidding is prohibited. Specifically, buyer 2
lets buyer 1 win at price 0 in the final round in response to buyer 1 letting
buyer 2 win in the penultimate round. But this is arguably unsatisfying: the
final round is a second-price auction over a single item, and buyer 2’s strategy
in the final round is weakly dominated by him bidding 1 instead. Such bidding
behavior cannot arise in an envy-free equilibrium, since no losing buyer would
strictly prefer to win the item at the price paid by the winning buyer. This is
exactly the condition which eliminates the possibility of a buyer overbidding to
the point it deters other buyers from partaking in the auction.

4 An Envy-Free Equilibrium

In this section, we show the price of stability of envy-free equilibria is (1 − 1
e ).

The subgame perfect equilibrium we construct also has the property that bidders
do not incrementally overbid.4 To do this, we first study an elementary bidding
scheme for buyers with oligopsony power. The bidding scheme is simply strategic
demand reduction, which is a restricted form of greedy bidding whereby each
agent aims at obtaining a certain “safe” payoff. This generalizes the Residual
Monopsonist procedure of Rodriguez [16] to arbitrary valuations, and the greedy
bidding strategies in Ahunbay et al. [1] to arbitrarily many buyers. We show
that if the buyers with oligopsony power simultaneously apply strategic demand
reduction then the outcome is guaranteed to provide at least a (1− 1

e ) factor of the
optimal social welfare. We then show how to construct an envy-free equilibrium
with no-incremental overbidding based upon the greedy strategies.

4.1 A Greedy Bidding Strategy

To start we define quantities that help compare how high a buyer’s valuation is
compared to other buyers. The strong oligopsony factor fi(x) and the weak
oligopsony factor gi(x) of buyer i at decision node x are respectively given by:

fi(x) = max[{0} ∪ {1 ≤ k ≤ t(x)|vi(xi + k) > v−i(t(x) − k + 1|x)}] (1)
gi(x) = max[{0} ∪ {1 ≤ k ≤ t(x)|vi(xi + k) ≥ v−i(t(x) − k + 1|x)}] (2)

So fi(x) is the minimum number of items that buyer i can obtain in a welfare-
optimal allocation (starting from node x) and gi(x) is the maximum. We say
that buyer i has oligopsony power at decision node x if fi(x) > 0. Note that
if there are no ties in incremental values then fi(x) = gi(x). If gi(x) = t(x) then
it is welfare-optimal to allocate all the remaining items to buyer i. Moreover,
if fi(x) = t(x) then this optimal allocation is unique. We will say that buyer

4 We note that this is an equilibrium refinement rather than a restriction of the action
space. Bidders are still able to consider deviations in which they overbid.
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i is a monopsonist at x if gi(x) = t(x) and a strict monopsonist at x if
fi(x) = t(x). Let

λij(x) = min{k ≥ 0|vj(xj + 1) = v−i(k|x)}. (3)

Then λij(x) measures the position of buyer j’s value of an additional item at
x in the opposing incremental valuation function v−i(x). For instance, suppose
that buyer 1’s opposing incremental valuation at 0 is as shown in Fig. 1, and
buyer 2 has value 4 for the first item he obtains. Then λ12(0) = 2, as buyer 2’s
first valuation equals the height of the second bin in Fig. 1.

0 1 2 3 4 5
0
1
2
3
4
5

k

v−1(k|0)

Fig. 1. Example opposing valuations for buyer 1. If buyer 2 has v2(1) = 4 then buyer 2’s
incremental valuation is at the second position earliest in the histogrammatic display
of v−1(·|0), hence λ12(0) = 2.

Given any bidding profile b for buyers, in the subauction starting from deci-
sion node x, any buyer i may consider deviating to a simple bidding strategy
targeting the purchase of 0 ≤ k ≤ fi(x) items. At decision node y ≥ x, suppose
buyer i has purchased less than k items and that the highest bidding buyer j has
vj(yj +1) ≤ v−i(t(x)−k+1|x). Then buyer i can deviate to bidding vj(yj +1)+ε
for small ε > 0; else buyer i can “pass” on winning the item by bidding below
other buyers. Then for each 0 ≤ k ≤ fi(x) buyer i may guarantee for herself at x

a forward utility equal to μ̄i(k|x) =
∑k

�=1 vi(xi + �) − k · v−i(t(x) − k + 1|x). We
then denote the greedy utility of buyer i at decision node x to be

μi(x) = max
0≤k≤t(x)

μ̄i(k|x). (4)

Buyer i’s greedy demand is the minimum number of items buyer i may target
the purchase of with these simple bidding strategies to attain their greedy utility,

κi(x) = min arg max
0≤k≤t(x)

μ̄i(k|x). (5)
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We ask if there exists an equilibrium where every buyer obtains their greedy
utility at every decision node x. If this is the case, at decision node x no buyer i
should let a buyer j 	= i win at price less than ρij(x) = vi(xi + 1) + μi(x + ei) −
μi(x + ej). We call this price the threshold price of buyer i against buyer j
at x. If buyer i is to obtain their greedy utility at x, it should also be the case
that buyer i does not win an item at a price strictly below

ρi(x) = vi(xi + 1) + μi(x + ei) − μi(x). (6)

This price is called the threshold price of buyer i at x, and it can be shown
that if buyer i has oligopsony power (fi(x) > 0) and does not demand the entire
supply (i.e. κi(x) < t(x)), then for every buyer j with λij(x) ≤ t(x) − κi(x) we
have ρij(x) = ρi(x). Finally, via the simple bidding strategies we consider and by
the no-overbidding constraint, no buyer i should let a buyer j with incremental
value vj(xj + 1) < v−i(t(x) − κi(x) + 1|x) win. We thus define the baseline
price of buyer i as

βi(x) =

{
v−i(t(x) − κi(x) + 1|x) κi(x) > 0
vi(xi + 1) κi(x) = 0

(7)

Example 3. Consider again a two-item auction with two buyers and incremental
valuations (v1(1), v1(2)) = (11, 9) and (v2(1), v2(2)) = (7, 3). In the first round,
buyer 1 has a greedy utility of 8 (buying one item at price v2(2) = 3) while
buyer 2 has a greedy utility of 0 (as she cannot guarantee herself any items). In
the second round, buyer 2 has a greedy utility of 0 whether he has won in the
first round or not. Buyer 1, on the other hand, has a greedy utility of 2 after
winning an item (by obtaining the second item at price v2(1) = 7), and 8 if she
lets buyer 2 win the first item. This implies that buyer 1 has a threshold price
of 11 + 2 − 8 = 5 in the first round. Since buyer 1 may attain its greedy utility
by purchasing a single item at price 3, buyer 1 has a baseline price of 3. Buyer 2
has f2(0, 0) = 0 so her threshold and baseline price both equal v2(1) = 7. �

We analyze the behaviour of threshold and baseline prices via an extension of
the arguments in [1]. Suppose that at decision node x, a buyer i with oligopsony
power does not let any buyer j win at price ρij(x). Then if buyer j 	= i wins at
x, ρi weakly decreases and βi remains constant. If instead buyer i wins at x and
fi(x + ei) > 0 then ρi and βi both weakly increase. Moreover, if buyer i does
not demand the entire supply then there exists a buyer j such that vi(xi + 1) >
vj(xj + 1) ≥ ρij(x) = ρi(x). If buyer i does demand the entire supply at x then
ρi(x) = v−i(1|x), while ρij(x) > vj(xj +1) for all j 	= i. We conclude that buyer
i may obtain their greedy utility by outbidding every other buyer.
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4.2 Efficiency Under Strategic Demand Reduction

Before we construct our equilibrium, we first inspect the evolution of the auction
when buyers implement strategic demand reduction. At each decision node x,
each buyer i bids their threshold price ρi(x). This may induce ties, but there is a
way to select the winner so that each buyer obtains at least their greedy payoff
in the auction. Specifically, we can choose a winning buyer i such that for any
other buyer j, ρji(x) = ρj(x). These strategies might not form an equilibrium
as-is, but in Sect. 4.3 we will use them as the basis of an envy-free subgame
perfect equilibrium.

At decision node x, if some buyer i demands the entire supply then ρij(x) >
v−i(1|x) for any buyer j. Also for a buyer j 	= i we have ρji(x) = ρj(x) = vj(xj +
1). Then buyer i wins an item at price v−i(1|x). At x + ei buyer i still demands
the entire supply and v−i(1|x+ei) = v−i(1|x), so buyer i keeps purchasing every
item at price v−i(1|x), earning a payoff equal to μ̄i(κi(x)|x) = μi(x).

Suppose instead that no buyer demands the entire supply. If some buyer i
with gi(x) > 0 wins an item, then κi(x + ei) ≥ κi(x) − 1. If such a buyer i does
not win the item, then the winning buyer j has λij(x) ≤ t(x) − κi(x) and buyer
i’s demand is unchanged. This implies that every buyer i wins at least κi(x)
items, and that there can be at most one buyer j who wins fewer than fj(x)
items. If such a buyer j exists, he must earn payoff exactly equal to μi(x) in the
subauction starting from x.

That each buyer earns their greedy utility and that there may only be one
buyer j who wins < fi(x) items allows us to lower bound the welfare of outcomes.
If there exists some buyer i with gi(x) > 0 who wins fewer than gi(x) items, the
social welfare of the outcome reached in equilibrium, sw(x), is bounded below:

sw(x) ≥
κi(x)∑

�=1

vi(xi + �) +
t(x)−κi(x)∑

�=1

v−i(�|x).

Example 4. Suppose in a six-item auction with five buyers that buyer 1 has
value 30 for each item she wins, except for a sixth item for which she has value
20. In turn buyers 2, 3, 4, 5 are unit-demand, with valuations of 24, 18, 15 and
10 respectfully. Then buyer 1’s incremental valuations and opposing incremental
valuations at the beginning of the auction can be displayed as in Fig. 2. When
buyers implement their greedy bidding strategies and if ties are never broken in
favor of buyer 1, buyer 1 obtains κ1(0) = 2 items and each other buyer obtains a
single item, so the welfare of the auction outcome equals the area of the shaded
region. It is immediate that among outcomes that award at least κ1(0) = 2
items to buyer 1 and f2(0) = 1 item to buyer 2, the shaded area equals the
lowest possible social welfare.
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Fig. 2. A histogrammatic display of buyers’ valuations in Example 4. The red curve
shows buyer 1’s incremental valuations, while the blue curve right-to-left shows buyer
1’s opposing incremental valuation function in the beginning of the auction. The shaded
area equals the welfare of the auction outcome when buyers bid their threshold prices.
(Color figure online)

Thus social welfare is lower bounded by the outcome of a two-buyer auction,
where we contract all buyers other than buyer i into a single buyer −i win-
ning t(x) − κi(x) items. Efficiency bounds in this setting therefore reduce to the
two buyer setting with no-overbidding considered in [1], when the two buyers
implement their greedy bidding strategies.

Theorem 2. If all buyers implement strategic demand reduction, the outcome
of the auction provides a (1 − 1/e)-approximation of the optimal social welfare.

From a practical perspective it is important to note that the implementa-
tion of these greedy bidding strategies does not require complete information.
Strategic demand reduction can be implemented by an agent i knowing only the
aggregate market demand v−i. In practice (such as in emission license auctions),
it is reasonable to assume that such aggregate demand, or a good approximation
to it, is known to the bidders.

4.3 Price of Stability of Envy-Free Equilibria

We obtain our price of stability result by modifying the bidding strategies that
result from strategic demand reduction to obtain an envy-free equilibrium with
no-overbidding in which every buyer i earns exactly their greedy payoff. If some
buyer i demands the entire supply at x, we let buyer i bid min{vi(xi+1), ρi(x)} >
v−i(1|x) and leave other buyers’ bids unchanged. In this case, buyer i again wins
all items at price v−i(1|x) without overbidding.

If no buyer demands the entire supply, suppose buyer i wins when buyers
implement demand reduction. If buyer i has fi(x) > 0 then there exists a buyer
j with vj(xj + 1) ≥ ρi(x). We then increase the bid of buyer j to ρi(x). Thus
buyer i and j both bid ρi(x) at x, and we break the tie5 at x in favor of buyer i.
5 Alternately, we can let buyer i make an infinitesimally greater bid than ρi(x). Such

bids are considered in [12,13] for equilibria of first-price sequential auctions.
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Other buyers j′ 	= i, j bid ρj′i(x) = ρj(x) at x instead – by maximality of ρi(x)
such buyers j′ do not outbid buyers i and j.

Then buyer i wins at x at price ρi(x) and subsequently earns payoff μi(x+ei)
in the rest of the auction, which implies that ui(x|b) = ρi(x). Any other buyer
j′ 	= i must have μj′(x) = μj′(x + ei), so they also earn their greedy utility.
Finally, as a buyer with maximal ρi(x) wins at each decision node x no buyer has
a profitable deviation, which implies that we have a subgame perfect equilibrium.

Theorem 3. There exists an envy-free SPE with no-overbidding where for any
buyer i and any decision node x, ui(x|b) = μi(x). Moreover the outcome of this
equilibrium is supported by buyers implementing strategic demand reduction, and
if buyer i wins at decision node x she purchases the item at price ρi(x).

In particular, the outcome of this envy-free equilibrium with no-overbidding
attains a (1 − 1/e)-approximation of the optimal social welfare. Moreover, this
approximation factor is tight for our construction: a sequence of two-buyer val-
uations profiles such that this equilibrium has efficiency converging to (1− 1/e).

Corollary 1. The price of stability of envy-free equilibria in sequential multiunit
auctions, under the no-incremental overbidding constraint, is at least (1 − 1/e).

5 Equilibria with Iterated Elimination of Weakly
Dominated Strategies

In this section we study a different class of equilibria that survive the iterated
elimination of weakly dominated strategies (IEWDS). Recall, from Theorem 1
and Example 2, that the price of anarchy is 1

T . But, as discussed, Example 2 relied
on the inherent use of signalling. Implicitly, the corresponding equilibrium class
encompassed by Theorem 1 is that of subgame perfect equilibria with signalling.
Can we say anything about less permissive (and more natural) classes of subgame
perfect equilibria? Indeed we can for the fundamental class of subgame perfect
equilibria that survive the iterative elimination of weakly dominated strategies.

5.1 An Ascending Price Auction Mechanism

Take any decision node in the sequential auction and consider the following
ascending-price mechanism. Starting at p = 0 continuously raise the price p. At
price p, buyer i remains in the auction as long as there is at least one buyer j
still in the auction who buyer i is willing to pay a price p to beat. The last buyer
to drop out wins at the corresponding price. This procedure produces a unique
dropout bid τi for each buyer i for the decision node.

This mechanism induces exactly the set of bids that survives IEWDS for both
first-price sequential auctions [13] and second-price sequential auctions; see [13]
and [12], respectively, for details. To wit, the ascending-price mechanism outputs
an envy-free equilibrium, albeit a different one than that of Sect. 4.
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Moreover, there are strong reasons to believe that equilibria that survive the
iterative elimination of weakly dominated strategies form the natural class of
equilibrium for sequential auctions [12,13]. Consequently, for the price of anarchy
results that follow we restrict attention to this class of equilibria, that is, those
equilibrium induced by the ascending-price mechanism.

5.2 The Price of Anarchy Under Competition

We now study the price of anarchy for equilibria that survive IEWDS, under
a no-incremental-overbidding assumption on the set of strategies. This class
of equilibria naturally extends the analysis of [1], which considered such no-
overbidding equilibria for the case of n = 2 bidders.

Specifically, we present constant price of anarchy bounds for three settings
with varying degrees of oligopsony power. The first result concerns the case where
no buyer has oligopsony power, that is, for every buyer i we have fi(0) = 0.
Example 2 is of this type. In this setting there is a unique equilibrium that
survives IEWDS and the auction attains full efficiency.

Theorem 4. Suppose that at decision node x, for any buyer i we have fi(x) = 0.
Then for any buyer i, ui(x) = 0, and prices equal v(1|x) in every subsequent
round of the auction. In particular, the price of anarchy is 1.

Second, consider the case where there is exactly one buyer i with oligopsony
power. Example 1 is of this type. In this setting, we prove a multi-buyer result
paralleling Theorem 3 of [1] for the 2-buyer case – at every decision node x of
the auction, buyer i obtains her greedy utility μi(x). This result is driven by the
fact that buyer i is the unique price-setter throughout the auction as long as
she retains oligopsony power. Because all the other buyers profit off of buyer i’s
demand reduction and since buyer i’s threshold price increases after she wins an
item, the buyers are incentivised to outbid buyer i while buyer i holds oligopsony
power. This causes buyer i to be constrained to her greedy utility, which in turn
induces her to win a number of items no less than her greedy demand.

Theorem 5. Suppose that there exists a unique buyer i such that fi(0) > 0.
Then for every decision node x, ui(x) = μi(x). Moreover, the price of anarchy
is at least 1 − 1/e.

Finally, consider the case where multiple buyers have oligopsony power. To
obtain constant price of anarchy bounds for this setting we make an additional
restriction on the valuation profiles. We say the buyers’ valuations are flat-
optimal if v(1|0) = v(T |0). In this case, for every pair of buyers i and j and for
any k, � such that 1 ≤ k ≤ gi(x), 1 ≤ � ≤ gj(x), we have vi(k) = vj(�). We note
that this family of valuations includes the worst-case efficiency instances for two
buyers [1,2].

To bound the efficiency of equilibria in this setting, we invoke Theorem 4 and
Theorem 5 and use a counting argument. Suppose that (0, x1, x2, ..., xT ) is an
equilibrium path, and (i1, i2, ..., iT ) the sequence of winners on this equilibrium
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path. We say that round 1 ≤ t ≤ T is a loss round if vit(xt−1 + 1) < v(1|0).
Note that if round t is a loss round, then for every buyer i we have fi(xt) =
max{fi(xt−1) − 1, 0}. We count the number of loss rounds until the subauction
we reach in equilibrium satisfies either the conditions of Theorem 4 or Theorem
5. This can equal at most the second-highest fi(0). Thus there are at most 
T/2�
loss rounds before we reach a subauction in which efficiency is at least (1−1/e).
However, the non-loss rounds before do not hurt efficiency, which provides a
lower bound on the efficiency of the equilibrium outcome.

Theorem 6. If the valuations are flat-optimal then the price of anarchy is at
least 1

2 · (1 − 1/e).

One interpretation of Theorem 6 is that, for a certain family of valuations,
even if a large number of buyers hold oligopsony power and ties are broken
adversarially, the efficiency of the auction does not depreciate too much. This
suggests that having many buyers with market power is not necessarily enough
to allow coordination on an inefficient outcome, for the natural class of equilibria
given by the ascending-price mechanism.
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Abstract. Interdependent values make basic auction design tasks – in
particular maximizing welfare truthfully in single-item auctions – quite
challenging. Eden et al. recently established that if bidders’ valuation
functions are submodular over their signals (a.k.a. SOS), a truthful 4-
approximation to the optimal welfare exists. We show existence of a
mechanism that is truthful and achieves a tight 2-approximation to the
optimal welfare when signals are binary. Our mechanism is random-
ized and assigns bidders only 0 or 1

2
probabilities of winning the item.

Our results utilize properties of submodular set functions, and extend to
matroid settings.

Keywords: Mechanism design · Welfare maximization ·
Submodularity

1 Introduction

One of the greatest contributions of Robert Wilson and Paul Milgrom, the 2020
Nobel Laureates in economics, is their formulation of a framework for auction
design with interdependent values [14]. Up to their work, the standard assump-
tion underlying auction design theory was that each bidder fully knows her value
for the item being auctioned, because this value depends only on her own private
information. This assumption is, however, far from reality in very important set-
tings – for example, when the auction is for drilling rights, the information one
bidder has about whether or not there is oil to be found is extremely relevant
to how another bidder evaluates the rights being auctioned. Works like [18] and
[12] lay the foundation for rigorous mathematical research of such settings, yet
many key questions still remain unanswered.

For concreteness, consider an auction with a single item for sale (our main
setting of interest). In the interdependent values model, every bidder i ∈ [n]
has a privately-known signal si, and her value vi is a (publicly-known) function
of all the signals, i.e., vi = vi(s1, s2, ..., sn). Thus, in this model, not only the
auctioneer is in the dark regarding a bidder’s willingness to pay for the item
being auctioned; so is the bidder herself (who knows si and vi(·) but not s−i)!

This stark difference from the standard, independent private values (IPV)
model creates a big gap in our ability to perform seemingly-simple auction design
c© Springer Nature Switzerland AG 2021
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tasks. Arguably the most fundamental such task is truthful welfare maximiza-
tion. For IPV, the truthful welfare-maximizing Vickrey auction [17] is a pillar
of mechanism design (e.g., it has many practical applications and is usually the
first auction taught in a mechanism design course). But with interdependence,
welfare and truthfulness are no longer perfectly compatible: Consider two bid-
ders reporting their signals s1, s2 to the auction, which allocates the item to
the highest-value bidder according to these reports; if the valuation functions
v1, v2 are such that bidder 1 wins when s1 = 0 but loses when s1 = 1, this
natural generalization of Vickrey to interdependence is non-monotone and thus
non-truthful. This is the case, for example, if v1 = 1 + s1 and v2 = H · s1 for
H > 2 (see [5, Example 1.2]).

The classic economics literature addressed this challenge by introducing a
somewhat stringent condition on the valuation functions called “single-crossing”,
which ensures truthfulness of the natural generalization of Vickrey (in particu-
lar, single-crossing is violated by v1 = 1 + s1, v2 = H · s1). Recently, a break-
through result of Eden et al. [5] took a different approach: For simplicity consider
binary signals – e.g., “oil” or “no oil” in an auction for drilling rights. Formally,
si ∈ {0, 1} (we focus on the binary case throughout the paper). The valuations
are now simply set functions over the signals, objects for which a rich mathe-
matical theory exists. Eden et al. applied a submodularity assumption to these
set functions (in particular, submodularity holds for v1 = 1+s1 and v2 = H ·s1).
Under such submodularity over the signals (SOS ), they shifted focus from maxi-
mizing welfare to approximating the optimal welfare. While they showed that no
truthful mechanism can achieve a better approximation factor than 2 (guarantee-
ing more than half the optimal welfare), they constructed a truthful randomized
mechanism that achieves a 4-approximation (guaranteeing at least a quarter of
the optimal welfare). The gap between 2 and 4 was left as an open problem.

Our Results and Organization. In this work we resolve the above open
problem of [5] for binary signals. More precisely, we show that in the binary
signal case there exists a truthful randomized mechanism that achieves a 2-
approximation to the optimal welfare (for a formal statement see Theorem 1).
Our result holds for any number n of bidders, and is constructive – that is, we
give an algorithm that gets the n valuation functions as input, and returns the
mechanism as output.1

The fact that our mechanism is randomized is unsurprising given another
result of Eden et al. [5], who show that a deterministic mechanism cannot achieve
a constant approximation to the optimal welfare even with SOS. This result is
in fact proved with the above example of v1 = 1 + s1, v2 = H · s1 and si ∈
{0, 1}. An interesting corollary of our construction is that a 2-approximation
is achievable by a mechanism that is only “slightly” randomized – the only
allocation probabilities it uses are 0 and 1

2 .

1 The algorithm runs in time polynomial in its input size, which consists of set func-
tions over n elements and so is exponential in n.
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Our algorithm is arguably quite simple and streamlined – for every signal pro-
file it searches for a feasible pair of bidders whose aggregate value exceeds that
of the highest bidder, and randomly allocates the item among these two (this
explains the factor of 2 in the approximation guarantee). Only if no such pair
exists, the item is randomly either allocated to the highest bidder or left unallo-
cated. To maintain monotonicity, the algorithm propagates allocation probabil-
ities to neighboring signal profiles. Despite its relative simplicity, the algorithm
requires careful analysis, which in particular relies on new properties of col-
lections of submodular functions (Sect. 4.2). The main technical challenge is in
showing that the 2-approximation guarantee holds despite the propagations.

Example. To illustrate our method, consider again the above example of v1 =
1 + s1 and v2 = H · s1 where si ∈ {0, 1}. Our algorithm returns a randomized
allocation rule that gives the item to bidder 1 with probability 1

2 if s1 = 0, and
randomly allocates it to one of the two bidders if s1 = 1.2 This allocation rule is
monotone (unlike the natural generalization of Vickrey), and leads to a truthful
mechanism with a 2-approximation guarantee.

Extensions. In the full version of the paper we extend our main result to beyond
single-item settings, namely to general single-parameter settings in which the
set of winning bidders must satisfy a matroid constraint [15]. As in [5], we can
also extend our positive results from welfare to revenue maximization using a
reduction of [4].

Organization. After presenting the preliminaries in Sect. 2, we state our main
theorem and give an overview of our algorithm in Sect. 3. The analysis appears in
Sect. 4. Section 6 summarizes with future directions. The full version of the paper
includes the pseudo-code and running time, additional details of the analysis,
the extension to matroids and our results for non-binary signals.

Additional Related Work. Interdependent values have been extensively stud-
ied in the economic literature (see, e.g., [1,3,8,11]). In computer science, most
works to date focus on the objective of maximizing revenue [2,4,10,16]. The work
of [4] considers welfare maximization with a relaxed c-single-crossing assump-
tion, where parameter c ≥ 1 measures how close the valuations are to satisfying
classic single-crossing. This work achieves a c-approximation for settings with
binary signals. Their mechanisms also use propagations but otherwise are quite
different than ours. The work of [7] also focuses on welfare but does not assume
single-crossing; instead it partitions the bidders into � “expertise groups” based
on how their signal can impact the values for the good, and using clock auc-
tions achieves approximation results parameterized by � (and by the number of
possible signals). The main paper our work is inspired by is [5]. It introduces

2 Our algorithm has two iterations: At s1 = 0, an appropriate pair is not found and so
the highest bidder (bidder 1) wins the item with probability 1

2
, which is propagated

forward to this bidder at s1 = 1. At s1 = 1, an appropriate pair is again not found
and so the highest bidder (bidder 2) wins the item with probability 1

2
.
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the Random Sampling Vickrey auction, which by excluding roughly half of the
bidders achieves a 4-approximation to the optimal welfare for single-parameter,
downward-closed SOS environments. The authors also show positive results for
combinatorial SOS environments under various natural constraints. Finally, [6]
also study welfare maximization in single- and multi-parameter environments
but by simple, non-truthful parallel auctions.

2 Setting

Signals. As our main setting of interest we consider single-item auctions with n
bidders. Every bidder i has a binary signal si ∈ {0, 1}, which encompasses the
bidder’s private bit of information about the item. It is convenient to identify a
signal profile s = (s1, s2, ..., sn) with its corresponding set S = {i | si = 1} (by
treating si as an indicator of whether i ∈ S).

Values. The bidders have interdependent values for the item being auctioned:
Every bidder i’s value vi is a non-negative function of all bidders’ signals, i.e.,
vi = vi(s1, s2, ..., sn) ≥ 0. We adopt the standard assumption that the valuation
function vi is weakly increasing in each coordinate and strongly increasing in si.
Using the set notation we also write vi = vi(S).3 This makes vi(·) a monotone
set function over subsets of [n].

Who Knows What. A setting is summarized by the valuation functions v1, . . . , vn,
which are publicly known (as is the signal domain {0, 1}). The instantiation of
the signals is private knowledge, that is, signal si is known only to bidder i.

SOS Valuations. The term SOS valuations was coined by Eden et al. [5]
to describe interdependent valuation functions that are submodular over the
signals (see also [2,4,13]).4 With binary signals, valuations are SOS if vi(·) is a
submodular set function for every i ∈ [n].

Definition 1 (Submodular set function). A set function vi : 2[n] → R is
submodular if for every S, T ⊆ [n] such that S ⊆ T and i ∈ [n]\T it holds that
vi(S ∪ {i}) − vi(S) ≥ vi(T ∪ {i}) − vi(T ).

A weaker definition that will also be useful for us is subadditivity. Every
submodular set function is subadditive, but not vice versa.

Definition 2 (Subadditive set function). A set function vi : 2[n] → R is
subadditive if for every S, T ⊆ [n] is holds that f(S) + f(T ) ≥ f(S ∪ T ).

3 This notation is not to be confused with the value for a set of items S; in our model
there is a single item, and a bidder’s interdependent value for it is determined by
the set of signals, i.e., which subset of signals is “on”.

4 As mentioned above, submodularity over signals is not to be confused with submod-
ularity over items in combinatorial auctions.
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Given a set function vi and a subset S ⊆ [n], we use vi(· | S) to denote the
following set function: vi(T | S) = vi(T ∪ S) − vi(S) for every T ⊆ [n]. It is
known that submodularity of vi implies subadditivity of vi(· | S):

Proposition 1 (e.g., Lemma 1 of [9]). If vi is submodular then vi(· | S) is
subadditive for every subset S ⊆ [n].

We refer to an ordering S1, S2, . . . , S2n of all subsets of the ground set of
elements [n] as inclusion-compatible if for every pair Sk, S� such that Sk ⊂ S�,
it holds that k < � (the included set is before the including one in the ordering).

Notation. Consider a set function vi and two elements j, k ∈ [n]. For brevity we
often write vi(j) for vi({j}), and vi(jk) for vi({j, k}).

2.1 Auctions with Interdependence

Randomized Mechanisms. Due to strong impossibility results for deterministic
mechanisms [5], we focus on randomized mechanisms as follows: A randomized
mechanism M = (x, p) for interdependent values is a pair of allocation rule x
and payment rule p. The mechanism solicits signal reports from the bidders, and
maps a reported signal profile s to non-negative allocations x = (x1, ..., xn) and
expected payments p = (p1, ..., pn), such that the item is feasibly allocated to
bidder i with probability xi (feasibility means

∑n
i=1 xi(s) ≤ 1).

Truthfulness. With interdependence, it is well-established that the appropriate
notion of truthfulness is ex post IC (incentive compatibility) and IR (individual
rationality). Mechanism M is ex post IC-IR if the following holds for every bidder
i, true signal profile s and reported signal s′

i: Consider bidder i’s expected utility
when the others truthfully report s−i:

xi(s−i, s
′
i)vi(s) − pi(s−i, s

′
i);

then this expected utility is non-negative and maximized by truthfully reporting
s′

i = si.5

Similarly to independent private values, the literature on interdependent val-
ues provides a characterization of ex post IC-IR mechanisms – as the class of
mechanisms with a monotone allocation rule x. Allocation rule x satisfies mono-
tonicity if for every signal profile s, bidder i and δ ≥ 0, increasing i’s signal
report by δ while holding other signals fixed increases i’s allocation probability:

xi(s−i, si) ≤ xi(s−i, si + δ).

The characterization also gives a payment formula which, coupled with the
monotone allocation rule, results in an ex post IC-IR mechanism. In more detail,
the expected payment of bidder i is achieved by finding her critical signal report
5 Note the difference from dominant-strategy IC, in which this guarantee should hold

no matter how other bidders report.
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and plugging it into her valuation function while holding others’ signals fixed
(see [16] for a comprehensive derivation of the payments).

Welfare Maximization. Our objective in this work is to design ex post IC-IR
mechanisms for interdependent values that maximize social welfare. For a given
setting and true signal profile s, the optimal welfare OPT(s) is achieved by giv-
ing the item to the bidder with the highest value, i.e., OPT(s) = maxi{vi(s)}.
Given a randomized ex post IC-IR mechanism M = (x, p) for this setting,
ALG(s) is its welfare in expectation over the internal randomness, i.e., ALG(s) =∑n

i=1 xi(s)vi(s). We say mechanism M achieves a c-approximation to the optimal
welfare for a given setting if for every signal profile s, ALG(s) ≥ 1

c OPT(s) (note
that the required approximation guarantee here is “universal”, i.e., should hold
individually for every s). Since Eden et al. [5] devise a setting for which no ran-
domized ex post IC-IR mechanism can achieve better than a 2-approximation,
we aim to design mechanisms that achieve a c-approximation to the optimal
welfare where c ≥ 2 (the closer to 2 the better).

3 Main Result and Construction Overview

Our main result is the following:

Theorem 1. For every single-item auction setting with n bidders, binary signals
and interdependent SOS valuations, there exists an ex post IC-IR mechanism that
achieves a 2-approximation to the optimal welfare.

Our proof of Theorem 1 is constructive – we design an algorithm that gets as
input the valuation functions v1, . . . , vn, and outputs an allocation rule x. Note
that the main goal of the algorithm is to establish existence. Rule x is guar-
anteed to be both feasible and monotone. Thus, coupled with the appropriate
expected payments p (based on critical signal reports), it constitutes an ex post
IC-IR mechanism M = (x, p). The main technical challenge is in showing that
mechanism M has the following welfare guarantee: for every signal profile s,
ALG(s) ≥ 1

2 OPT(s). We prove this approximation ratio and establish x’s other
properties like monotonicity in Sect. 4. We now give an overview of the algorithm
(for the pseudo-code see the full version).

3.1 Construction Overview

In this section we give an overview of our main algorithm. The algorithm
maintains an “allocation table” with rows corresponding to the n bidders, and
columns corresponding to subsets S ⊆ [n]. At termination, column S will rep-
resent the allocation rule x(S), with entry (i, S) encoding xi(S). For clarity of
presentation the encoding is via colors: At initiation, all entries of the table are
colored white to indicate they have not yet been processed. During its run, the
algorithm colors each entry (i, S) of the table either red or black. Once a cell
has been colored red or black, its color remains invariant until termination. The
colors represent allocation probabilities as follows:
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• red = bidder i gets the item with probability 1
2 at signal profile S;

• black = i does not get the item at S (i.e., gets the item with probability 0).

As an interesting consequence, the allocation rule achieving the 2-approximation
guarantee of Theorem 1 uses only two allocation probabilities, namely 1

2 and 0.
Note that for feasibility, no more than two entries in a single column should be
colored red, and the remaining entries should be colored black.

We now explain roughly how the colors are determined by the algorithm.
Consider an inclusion-compatible ordering of all subsets of [n]. The algorithm
iterates over the ordered subsets, with S representing the current subset. We
say bidder i can be colored red at iteration S if at the beginning of the iteration,
(i, S) is colored either white or red. We define a notion of favored bidder(s) at
iteration S – these are the ones the algorithm “favors” as winners of the item
given signal profile S, and so will color them red at S. First, if there is a pair of
bidders i 	= j for which the following conditions all hold, we say they are favored
at iteration S with Priority 1:

1. Bidder i and j’s signals both belong to S (i.e., si = sj = 1);
2. Bidders i and j can both be colored red at iteration S;
3. No other bidder k 	= i, j is colored red at the beginning of iteration S;
4. The sum of values vi(S) + vj(S) is at least OPT(S) (recall that OPT(S) is

the highest value of any bidder for the item given signal profile S).

If such a pair does not exist, but there exists a bidder i who satisfies the following
alternative conditions, we say i is favored at iteration S with Priority 2:

1. Bidder i can be colored red at iteration S;
2. The value vi(S) equals OPT(S).

Our main technical result in the analysis of the algorithm is to show that,
unless at the beginning of iteration S two bidders are already colored red, then
one of the two cases above must hold. That is, in every iteration S with no two
reds, there is always either a favored pair with Priority 1, or a single favored
bidder with Priority 2. Assuming this holds, the algorithm proceeds as follows.
At iteration S it checks whether two bidders are already red, and if so continues
to the next iteration. Otherwise, it colors the favored bidder(s) red by priority,
and all other bidders black. The algorithm then performs propagation to other
subsets S′ in order to maintain monotonicity of the allocation rule (the term
propagation was introduced in our context by [5]):

• If bidder i /∈ S is colored red at subset S, then red is propagated forward to
bidder i at subset S′ = S ∪ {i}.

• If bidder i ∈ S is colored black at subset S, then black is propagated backward
to bidder i at subset S′ = S\{i}.

This completes the overview of our construction.
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4 Proof of Theorem 1

We begin with a simple but useful observation:

Observation 1. Consider a subset S ⊆ [n] and i /∈ S. If during iteration S
bidder i is colored red then vi(S) = OPT(S).

Proof. The algorithm colors a bidder with a low signal red only if this bidder
has Priority 2, and in this case her value must be highest among all bidders.

We now prove our main theorem, up to three lemmas that appear in Sects. 4.1,
4.2 and 4.3, respectively. Section 4.2 also develops a necessary tool for the proof
in Sect. 4.3.

Proof (Theorem 1). We show that our algorithm returns an allocation rule that
is feasible, monotone, and achieves a 2-approximation to the optimal welfare.
For such an allocation rule there exist payments that result in an ex post IC-IR
mechanism (see Sect. 2.1), establishing the theorem.

Let x be the allocation rule returned by the algorithm. We first show x is
feasible. That is, for every S ⊆ [b], the algorithm colors (i, S) either red or black
for every bidder i, and at most two bidders are colored red in column S. To show
this we invoke Lemma 1, by which the algorithm never reaches one of its error
lines. Given that there are no errors, observe that the algorithm goes over all
subsets, and for every subset S ⊆ [n] either (i) skips to the next subset (if two
bidders are already red), or (ii) finds a Priority 1 pair or Priority 2 bidder and
colors them red. Indeed, by Lemma 4, if (i) does not occur then (ii) is necessarily
successful. Once a Priority 1 pair or Priority 2 bidder is found, the rest of
the column is colored black. Furthermore, once any two bidders in a column are
colored red, the rest of the column is colored black. This establishes feasibility.

We now show x is monotone. Since the only allocation probabilities x assigns
are 1

2 and 0 (and one of these is always assigned), it is sufficient to show that for
every S ⊆ [n] and i /∈ S, if x(i, S) = 1

2 then x(i, S ∪ {i}) = 1
2 . This holds since

every time the algorithm calls ColorRed to color (i, S), it propagates the color
red forward to (i, S ∪ {i}) as well.

It remains to show that x achieves a 2-approximation to the optimal welfare.
By definition of Priority 1 and Priority 2, if such bidders are colored red then
a 2-approximation is achieved for the corresponding signal profiles. It remains
to consider signal subsets S for which at the beginning of iteration S, two cells
i, j in the column are already colored red. These reds propagated forward from
vi(S\{i}) and vj(S\{j}). Let vk(S) be the highest value at S. By Observation 1,
vi(S\{i}) and vj(S\{j}) are highest at S\{i} and S\{j}, respectively:

vi(S\{i}) ≥ vk(S\{i});
vj(S\{j}) ≥ vk(S\{j}).

Applying Lemma 2 to the above inequalities, it cannot simultaneously hold that
vk(S) > vi(S) + vj(S). So vi(S) + vj(S) ≥ vk(S), and the approximation guar-
antee holds, completing the proof. 
�
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4.1 No Errors

Lemma 1 (No errors). The algorithm runs without producing an error.

The proof of Lemma 1 appears in the full version.

4.2 Properties of SOS Valuations

In this section we state and prove two lemmas for SOS valuations. The first is
used in the proof of Theorem 1, and the second is the workhorse driving the proof
in Sect. 4.3 that either Priority 1 or Priority 2 always hold. Very roughly, the
first lemma (Lemma 2) states that if bidders i, j have higher values than bidder
k when their own signals are low, then bidder k’s value cannot exceed their sum
when their signals are high. The second lemma (Lemma 3) is more complex, and
to give intuition for what it states we provide a visualization in Figs. 1, 2 and 3
(we use a similar visualization to sketch our main proof in Sect. 4.3). The proof
is by induction and is deferred to the full version of the paper.

Lemma 2. Consider a subset S′ ⊆ [n] and three bidders i, j, k (not necessarily
distinct) with SOS valuations over binary signals; let S∗ = S′ ∪ {i, j}. If the
following three inequalities hold simultaneously then they all hold with equality:

• vi(S∗\{i}) ≥ vk(S∗\{i});
• vj(S∗\{j}) ≥ vk(S∗\{j});
• vk(S∗) ≥ vi(S∗) + vj(S∗).

Proof. Define ui(·) = vi(· | S′) for every i ∈ [n]. Using this notation, to prove
the lemma we need to show that if the following three inequalities hold simulta-
neously, they must all hold with equality:

• ui(j) + vi(S′) ≥ uk(j) + vk(S′);
• uj(i) + vj(S′) ≥ uk(i) + vk(S′);
• uk(ij) + vk(S′) ≥ ui(ij) + vi(S′) + uj(ij) + vj(S′).

Assume the inequalities hold. Summing them and simplifying we get

ui(j) + uj(i) + uk(ij) ≥ uk(j) + uk(i) + vk(S′) + ui(ij) + uj(ij). (1)

We now use the fact that uk(·) is subadditive (Proposition 1), so uk(ij) ≤ uk(j)+
uk(i). Thus by Inequality (1),

ui(j) + uj(i) ≥ vk(S′) + ui(ij) + uj(ij).

By monotonicity of set functions ui and uj , ui(j) ≤ ui(ij) and uj(i) ≤ uj(ij). We
conclude that vk(S′) ≤ 0, which can hold only with equality. But this equality
would be violated if one of the three inequalities was strict, completing the proof.


�
Lemma 3. Consider a subset S′ ⊆ [n] and 3 + �1 + �2 + �3 bidders E = {i, j, k,
t1, . . . , t�1 ,t

′
1, . . . , t

′
�2
,t′′1 , . . . , t′′�3} (not necessarily distinct) with SOS valuations

over binary signals. Let t�1+1 = k, t′�2+1 = k, t′′�3+1 = i, and S∗ = S′ ∪ E. If the
following 3 + �1 + �2 + �3 inequalities hold simultaneously then they all hold with
equality:
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Fig. 1. Visualization of inequality (2).

Fig. 2. Visualization of the inequalities of Lemma 3 for �1 = �2 = �3 = 0.

• vi(S∗\{i}) ≥ vt1(S
∗\{i}) + vj(S∗\{i});

• ∀h ∈ [�1] : vth
(S∗\{i, t1, ..., th}) ≥ vth+1(S

∗\{i, t1, ..., th}) + vj(S∗\{i, t1,
..., th});

• vj(S∗\{j}) ≥ vt′
1
(S∗\{j}) + vi(S∗\{j});

• ∀h ∈ [�2] : vt′
h
(S∗\{j, t′1, ..., t

′
h}) ≥ vt′

h+1
(S∗\{j, t′1, ..., t′h}) + vi(S∗\{j, t′1,

..., t′h});
• vk(S∗\{k}) ≥ vt′′

1
(S∗\{k}) + vj(S∗\{k});

• ∀h ∈ [�3] : vt′′
h
(S∗\{k, t′′1 , ..., t′′h}) ≥ vt′′

h+1
(S∗\{k, t′′1 , ..., t′′h}) + vj(S∗\{k, t′′1 ,

..., t′′h}).

Visualization of Lemma 3

Consider the case �1 = �2 = �3 = 0. The first inequality of Lemma 3 in this case,
using that t1 = t�1+1 (which equals k by definition), is:

vi(S∗\{i}) ≥ vk(S∗\{i}) + vj(S∗\{i}). (2)

We introduce a visualization of Inequality (2) as the 2 × n “block” shown in
Fig. 1. The columns of the block correspond to the bidders. The first row of the
block represents which bidders participate in the inequality (in this case i, j, k),
with the bidder on the greater (left) side of the inequality depicted in striped
red (in this case i); the second row represents the signal set in the inequality (in
this case S∗\i), with the signals not in the set depicted in white (in this case i).

We can use the above visualization to depict all inequalities of Lemma 3. For
the case that �1 = �2 = �3 = 0, these are shown in Fig. 2. Consider now the case
�1 = �2 = �3 = 1, with the following inequalities (among others):

vi(S∗\{i}) ≥ vj(S∗\{i}) + vt1(S
∗\{i});

vt1(S
∗\{i, t1}) ≥ vj(S∗\{i, t1}) + vk(S∗\{i, t1}).

In this case we have a fourth bidder t1 who “bridges” between i, j, k. Instead
of an inequality requiring that vi ≥ vj + vk directly, here it is required that
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Fig. 3. Visualization of the inequalities of Lemma 3 for �1 = �2 = �3 = 1.

vi ≥ vj + vt1 , and in turn vt1 ≥ vj + vk but with a different set of signals. The
full system of inequalities for this case (with 6 inequalities) appears in Fig. 3.

More generally, Lemma 3 holds for any number of “bridge” bidders. The
general case is shown in the full version of the paper.

4.3 When Are Priorities 1 or 2 Guaranteed

In this section we prove the following lemma (some details of the proof are
deferred to the full version of the paper):

Lemma 4. Assume the algorithm runs on n bidders with SOS valuations over
binary signals. Then for every S ⊆ [n], if at the beginning of iteration S there
are less than two red bidders, either Priority 1 or Priority 2 must hold.

We begin with two observations that will be useful in the proof of Lemma 4.

Observation 2. If at the beginning of iteration S no bidder is colored red, and
during the iteration bidder i whose signal is low (i /∈ S) is colored red, then for
every pair j, k ∈ S, vi(S) ≥ vj(S) + vk(S).

Proof. Assume for contradiction that vj(S)+vk(S) > vi(S), then since j, k both
have high signals and can be colored red at iteration S, they have Priority 1
and should be colored in place of bidder i, contradiction. 
�
Observation 3. If at the beginning of iteration S only bidder t whose signal is
high (t ∈ S) is colored red, and during the iteration bidder i whose signal is low
(i /∈ S) is colored red, then for every j ∈ S, vi(S) ≥ vj(S) + vt(S).

Proof. Assume for contradiction that vj(S) + vt(S) > vi(S), then since j, t both
have high signals and can be colored red at iteration S (t is already red and j
can be colored red since there are no other reds besides t), they have Priority 1
and should be colored in place of bidder i, contradiction. 
�

We can now prove our main lemma; missing details appear in the full version
of the paper.
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Fig. 4. Colorings at S, S∗, S∗\{i} and S∗\{j} given that (k, S) is black.

Proof (Lemma 4, sketch). Fix an iteration S with < 2 red bidders at its begin-
ning. By highest bidder we mean the bidder whose value at S equals OPT(S).
We split the analysis into cases; the most challenging cases technically are when
the highest bidder is colored black in column S, and there are either no red cells
or a single red cell in this column at the beginning of the iteration. Here we focus
on the first among these cases and remark at the end how to treat the second,
showing in both why a Priority 1 pair exists in column S. The remaining cases
are addressed in the full version of the paper.

Case 1: No Red Cells. Assume that at the beginning of iteration S, the highest
bidder is colored black and there are no red cells in column S. Denote the
highest bidder by k and observe that its color must have propagated backward
from (k, S ∪ {k}); let S∗ = S ∪ {k}. In column S∗ there must therefore be
two red bidders, whom we refer to as i and j, due to which k is colored black
in this column. Red must have propagated forward to column S∗ from S∗\{i}
and S∗\{j}. Figure 4 shows the allocation status of the relevant bidders at the
beginning of iteration S for subsets S, S∗, S∗\{i}, S∗\{j} – we use the same
visualization as in Sect. 4.2, but with colors in the first row representing those
set by the algorithm and arrows representing propagations.

Towards establishing existence of a Priority 1 pair in column S, consider
first the case in which the following two conditions hold:

1. At the beginning of iteration S∗\{i}, no cells in that column are red;
2. At the beginning of iteration S∗\{j}, no cells in that column are red.

By Observation 2,

vi(S∗\{i}) ≥ vj(S∗\{i}) + vk(S∗\{i}); (3)
vj(S∗\{j}) ≥ vi(S∗\{j}) + vk(S∗\{j}). (4)

If both (3) and (4) hold, by Lemma 3 with �1 = �2 = �3 = 0 it cannot simul-
taneously hold that vk(S) > vi(S) + vj(S) (see Fig. 2 and related text). Thus
vi(S) + vj(S) ≥ vk(S), and pair i, j has Priority 1.

Now consider the case in which one of the two conditions does not hold,
w.l.o.g. Condition (1). That is, at the beginning of iteration S∗\{i}, a bidder t1
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is colored red. (There is only one such bidder since we know bidder i cannot be
red at the beginning of that iteration – no forward propagation as i /∈ S∗\{i} –
and that i is colored red during the iteration). By Observation 3,

vi(S∗\{i}) ≥ vj(S∗\{i}) + vt1(S
∗\{i}). (5)

Since (t1, S∗\{i}) is red at the beginning of iteration S∗\{i}, the color red
necessarily propagated forward from S∗\{i, t1}. If Condition (1) now holds for
S∗\{i, t1} then by Observation 2,

vt1(S
∗\{i, t1}) ≥ vj(S∗\{i, t1}) + vk(S∗\{i, t1}) (6)

If Inequalities (4)–(6) hold simultaneously, then by Lemma 3 with �1 = 1, �2 =
�3 = 0 we can again conclude that vi(S) + vj(S) ≥ vk(S), and pair i, j has
Priority 1. Notice that t1 is the “bridge” bidder we discussed in Sect. 4.2. For
visualization we note that Inequality (4) is the one depicted in Fig. 2 (middle)
while Inequalities (5)–(6) are shown in Fig. 3 (left); these are the inequalities
that correspond to �1 = 1 and �2 = 0.

If Condition (1) does not hold for subset S∗\{i, t1}, then there is an additional
“bridge” bidder t2 that is colored red at S∗\{i, t1}, and we can possibly apply
Lemma 3 with �1 = 2. If not, we continue in this way until either Condition (1)
holds or only j, k remain in the subset. In either case, denote the final number of
“bridge” bidders by �1. In the latter case, either Observation 2 or Observation 3
hold, and so

vt�1
({j, k}) ≥ vj({j, k}) + vk({j, k}).

By applying Lemma 3 with �1 > 0 (and �2 = �3 = 0) we conclude that pair i, j
has Priority 1.

Observe that the same analysis holds if both Condition (1) and Condition (2)
are relaxed. In this case Lemma 3 applies with �1 > 0, �2 > 0 (and �3 = 0).

Case 2: Single Red Cell. Finally, we address the case in which there exists a red
bidder t′′1 in column S at the beginning of iteration S. We can write S as S∗\{k};
the color red of t′′1 necessarily propagated forward from S∗\{k, t′′1}. Assume the
following third condition holds:

3. At the beginning of iteration S∗\{k, t′′1}, no cells in that column are red.

By Observation 2,

vt′′
1
(S∗\{k, t′′1}) ≥ vj(S∗\{k, t′′1}) + vi(S∗\{k, t′′1}). (7)

If Inequality (7) holds (alongside previous inequalities) then Lemma 3 applies
with �1 > 0, �2 > 0, �3 = 1. If Condition (3) does not hold for subset S∗\{k, t′′1},
we continue as above, denoting the final number of “bridge” bidders by �3. By
applying Lemma 3 with �1 > 0, �2 > 0 and �3 > 0, we conclude that pair i, t′′1
has Priority 1. 
�
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5 Matroid Auction Settings

In this section we establish, by reduction to the single item case, the existence
of a truthful mechanism for matroid settings that achieves a 2-approximation to
the optimal welfare. A matroid auction setting is defined by a matroid ([n], I),
where I contains all independent sets of bidders, i.e., subsets of bidders who
can simultaneously win in the auction. We also refer to sets in I as feasible. For
example, if there are k units of the item to allocate in the auction, I can be
all possible subsets of k bidders. The rest of the setting is as before, i.e., every
bidder i has a signal si and a valuation vi(s1, . . . , sn) for winning. It is well known
that in matroid settings with given values, welfare maximization is achieved by
greedily adding bidders to the winner set W while keeping W feasible.

Proposition 2. If for single item auctions there exists a monotone feasible allo-
cation rule that achieves a 2-approximation to the optimal welfare, then there
exists such an allocation rule for matroid auction settings as well. Specifically,
Algorithm1 is an allocation mechanism for matroid settings that achieves a
2-approximation to the optimal welfare.

Algorithm 1. Matroid Settings
1: function MatroidMechanism((E, I), k, S = {si | si = 1}, V = (v1, . . . , vn))
2: W = ∅ � Current winning bidders
3: for j ∈ [k] do � Run k times where k is the matroid rank
4: x = Allocate(E,V ) � Allocate: the algorithm for the single item case
5: b = randomly choose a bidder such that every bidder b′ ∈ E is chosen with

probability x(b′, S)
6: W = W ∪ {b} � Add b to the winning set
7: E = all bidders b′ such that W ∪ {b′} ∈ I � Remove bidders who can no

longer feasibly win
8: end for
9: end function

6 Summary and Future Directions

Tension between optimization and truthfulness is an important theme of algo-
rithmic game theory. With interdependent values, this tension appears even
without computational considerations. Since with interdependence there is an
inherent clash between welfare maximization and truthfulness, the approxima-
tion toolbox comes in handy. We apply it to arguably the simplest possible
setting (single-item auctions with binary signals), and get a tight understanding
of the tradeoff (i.e., what fraction of the optimal welfare can be guaranteed by
a truthful mechanism). Our results extend beyond single items.

Two promising future directions are: (i) generalizing our results beyond
binary signals, and (ii) designing an “on the fly” tractable version of the
2-approximation truthful mechanism (i.e., a version that gets signal reports
and returns an allocation only for the reported signal profile). For the former
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direction, non-binary signals pose additional challenges since two priorities are
no longer sufficient in the algorithm, and additionally the propagation is more
complex. In the full version of the paper we present progress towards resolving
these challenges (in particular, we provide an extension of Lemma 3 to functions
over general integer signals).
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Abstract. We consider a single-facility location problem, where agents
are positioned on the real line and are partitioned into multiple disjoint
districts. The goal is to choose a location (where a public facility is to
be built) so as to minimize the total distance of the agents from it. This
process is distributed: the positions of the agents in each district are first
aggregated into a representative location for the district, and then one of
the district representatives is chosen as the facility location. This indirect
access to the positions of the agents inevitably leads to inefficiency, which
is captured by the notion of distortion. We study the discrete version of
the problem, where the set of alternative locations is finite, as well as the
continuous one, where every point of the line is an alternative, and paint
an almost complete picture of the distortion landscape of both general
and strategyproof distributed mechanisms.

Keywords: Facility location · Mechanism design · Distortion

1 Introduction

Social choice theory deals with the aggregation of different, often contrasting
opinions into a common decision. There are many applications where the nature
of the aggregation process is distributed, in the sense that it is performed in
the following two steps: smaller groups of people first reach a consensus, and
then their representative choices are aggregated into a final collective decision.
This can be due to multiple reasons, such as scalability (local decisions are
much easier to coordinate when dealing with a large number of individuals),
or the inherent roles of the participants (for example, being member states in
the European Union or electoral bodies in different regional districts). However,
although often necessary, this distributed nature is known to lead to outcomes
that do not accurately reflect the views of society. A prominent example of
this fact is the 2016 US presidential election, where Donald Trump won despite
receiving only 46.1% of the popular vote, as opposed to Hillary Clinton’s 48.2%.

To quantify the inefficiency that arises in distributed social choice settings,
recently Filos-Ratsikas et al. [20] adopted and extended the notion of distortion,
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which is broadly used in social choice theory to measure the deterioration of an
aggregate objective (typically the utilitarian social welfare) due to the lack of
complete information, and thus provides a systematic way of comparing different
mechanisms. In their work, Filos-Ratsikas et al. considered a very general social
choice scenario with unrestricted agent preferences, and showed asymptotically
tight upper and lower bounds on the distortion of plurality-based mechanisms.
We follow a similar approach in this paper for a fundamental structured domain
of agent preferences, the well-known facility location problem on the line of real
numbers.

The facility location problem is one of the most important in social choice,
and has been considered in both the economics and the computer science litera-
ture. It is a special case of the single-peaked preferences domain [9,26] equipped
with linear agent cost functions. Furthermore, it is the most prominent setting
where the agents have metric preferences, and as such it has been studied exten-
sively in the related distortion literature for centralized settings [3,6]. Finally,
facility location was the paradigm used by Procaccia and Tennenholtz [29] to put
forward their agenda of approximate mechanism design without money, which
resulted in a plethora of works in computer science ever since.

In the agenda of Procaccia and Tennenholtz, the goal is to design mechanisms
that are strategyproof (that is, they do not provide incentives to the agents to
lie about their true preferences) and have good performance in terms of some
aggregate objective, as measured by having low approximation ratio. The need
for approximation now comes from the strategyproofness requirement, rather
than the lack of information. In fact, the distortion and the approximation ratio
are essentially two sides of the same coin, differentiated by the reason for the
loss in efficiency. We will be concerned with distributed mechanisms, both strat-
egyproof and not, in a quest to quantify the effect of distributed decision making
on facility location, both independently and in conjunction with strategyproof-
ness. Hence, our work follows the agendas of both approximate mechanism design
[29] and of distributed distortion [20], and can be cast as approximate mechanism
design for distributed facility location.

Our Setting and Contribution. We study the distributed facility location
problem on the real line R. As in the standard centralized problem, there is a set
of agents with ideal positions and a set of alternative locations where the facility
can be built. We consider both the discrete setting, where the set of alternatives
is some finite subset of R, as well as the continuous setting, where the set of
alternatives is the whole R. In the distributed version, the agents are partitioned
into districts, and the aggregation of their positions into a single facility location
is performed in two steps: In the first step, the agents of each district select
a representative location for their district, and in the second step, one of the
representatives is chosen as the final facility location; in Sect. 6, we discuss how
our results extend to the case of proxy voting, where the location can be chosen
from the set of all alternatives.

Our goal is to find the mechanism with the smallest possible distortion, which
is defined as the worst-case ratio (over all instances of the problem) between the
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social cost of the location chosen by the mechanism and the minimum social cost
over all locations; the social cost of a location is the total distance between the
agent positions and the location. Note that the optimal location is calculated as
if the agents are not partitioned into districts, and thus the distortion accurately
measures the effect of selecting the facility location in a distributed manner to
the efficiency of the system. We are also interested in strategyproof mechanisms,
for which the distortion quantifies the loss in performance both due to lack of
information and due to requiring strategyproofness. We mainly focus on the case
of symmetric districts, which have equal size; in Sect. 6 we also discuss the case
of asymmetric districts and other extensions. Our results are as follows:

– For the discrete setting, the best possible distortion by any mechanism is 3,
and the best possible distortion by any strategyproof mechanism is 7.

– For the continuous setting, the best possible distortion by any mechanism
is between 2 and 3, and the best possible distortion by any strategyproof
mechanism is 3.

The mechanisms we design are adaptations of well-known mechanisms for
the centralized facility location problem. In the discrete setting, the mechanism
with the best possible distortion of 3 selects the representative of each district
to be the location that minimizes the social cost of the agents therein, and
then chooses the median representative as the facility location; we refer to this
mechanism as MinimizeMedian. By modifying the first step so as to select the
representative of a district to be the location that is the closest to the median
agent in the district, we obtain the DistributedMedian mechanism, which
is the best possible strategyproof mechanism with distortion 7. When we move
to the continuous setting, selecting the median agent within each district min-
imizes the social cost of the agents therein, and thus DistributedMedian is
an implementation of MinimizeMedian. The proofs of our upper bounds in
Sects. 3 and 5 rely on a characterization of the structure of worst-case instances
(in terms of distortion) for each of these mechanisms, which is obtained by care-
fully modifying the positions of some agents without decreasing the distortion.

For the lower bounds, we employ the following main idea. We construct
instances of the problem for which any mechanism with low distortion (depend-
ing on the bound we are aiming for) must satisfy some constraints about the
representative y it can choose for a particular district, namely, either that y is
some specific location (in the discrete setting), or that it must lie in some specific
interval (in the continuous setting). Then, because of the distributed nature of
the mechanism, we can exploit the fact that y must represent this district in
any instance that contains it, and use such instances to either argue about the
distortion of the mechanism, or to impose constraints on the representatives of
other districts. This idea is used repeatedly and inductively, and in conjunction
with strategyproofness arguments when necessary.

Related Work. The notion of distortion was first introduced by Procaccia and
Tennenholtz [28], who considered a setting where the agents have normalized
cardinal valuations and the objective is to choose a single alternative. In its



52 A. Filos-Ratsikas and A. A. Voudouris

original definition, the distortion measured the performance of ordinal social
choice mechanisms in terms of a cardinal objective, namely the utilitarian social
welfare (the total utility of the agents for the chosen outcome). However, if one
interprets the lack of information as the reason for the loss in efficiency, the
distortion actually captures much wider scenarios, like the distributed social
choice setting studied by Filos-Ratsikas et al. [20].

Although the number of papers dealing with (variants of) the aforementioned
normalized setting is substantial (e.g., see [2,10,11,25]) the literature on the
distortion flourished after Anshelevich et al. [3] and Anshelevich and Postl [6]
studied settings in which the agents have metric preferences. Such preferences
are constrained by the fact that the utility (or cost in the particular case) of
every agent for different alternatives must satisfy the triangle inequality, which
effectively results in the distortion bounds being small constants, rather than
asymptotic bounds depending on the number of agents and alternatives. Similar
investigations have given rise to a plethora of papers on this topic (e.g., see [1,7,
18,27]). For a comprehensive introduction to the distortion literature, we refer
the reader to the recent survey of Anshelevich et al. [4].

As already mentioned, the facility location problem plays an important role
in the literature at the intersection of computer science and economics. It became
extremely popular in the economics and computation community after Procaccia
and Tennenholtz [29] used it to put forward their agenda of approximate mecha-
nism design without money, and has been studied for different objectives [17,19],
multiple facilities [23,24], different domains [30], and several variants of the prob-
lem [13–16,21,22,31,32]; See also the recent survey of Chan et al. [12].

The most related setting to our work is an extension studied by Procaccia and
Tennenholtz [29] with super-agents controlling multiple locations, whose cost is
the total distance between their locations and the facility. They showed that the
mechanism that first selects the median location of each super-agent and then
the median of those is strategyproof and 3-approximate for the social cost. This
implies an upper bound of 3 on the distortion of strategyproof mechanisms in our
continuous setting, by interpreting the super-agents as district representatives;
we show that this bound can be obtained by simple extensions of our techniques
for the discrete setting. Procaccia and Tennenholtz also showed a matching lower
bound, which however requires the super-agents to be truthful, and thus does not
have any implications for our setting. This model was later extended by Babaioff
et al. [8] to a setting where the locations are themselves strategic agents, and
the agents of the higher level are strategic mediators.

2 Preliminaries

We consider the following distributed facility location problem. There is a set N
of n agents positioned on the line of real numbers; let xi ∈ R denote the position
of agent i ∈ N , and denote by x = (xi)i∈N the position profile of all agents. The
agents are partitioned into k districts; let D be the set of districts. We denote by
d(i) the district containing agent i, and by Nd the set of agents that belong to
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district d ∈ D. In the main part of our paper, we focus on the case of symmetric
districts such that |Nd| = n

k = λ; the case of asymmetric districts is discussed
in Sect. 6. We will use the notation xd = (xi)i∈Nd

for the restriction of x to the
positions of the agents in district d, and we will refer to xd as a district position
profile. We say that two districts d and d′ are identical if xd = xd′ .

For two points x, y ∈ R, let δ(x, y) = δ(y, x) = |x − y| denote their distance.
Given a position profile x, the social cost of point z ∈ R is the total distance of
the agents from z:

SC(z|x) =
∑

i∈N
δ(xi, z)

Our goal is to select a location z∗ from a set of alternative locations Z ⊆ R to
minimize the social cost: z∗ ∈ arg minz∈Z SC(z|x). In the discrete setting, the set
of alternative locations is finite and denoted by A, whereas, in the continuous
setting, the set of alternative locations is the whole R. Hence, Z = A in the
discrete version, or Z = R in the continuous version.

We will use the term instance to refer to a tuple I = (x,D,Z) consisting of
a position profile x, a set of districts D, and a set of alternative locations Z; we
omit the set of agents N as it is implied by x. In the continuous setting, since
the set of alternative locations is clear, we will simplify our notation further and
use a pair (x,D) to denote an instance.

If we had access to the positions of all the agents, it would be easy to select
the optimal location in both versions of the problem. However, in our setting
the positions are assumed to be locally known, within each district. To decide
the facility location we deploy distributed mechanisms (or, simply, mechanisms).
A mechanism M consists of the following two steps of aggregation:

1. For every district d ∈ D, the positions of the agents in d are aggregated into
the representative location zd ∈ Z of d. This step is local : zd is a result of the
corresponding district profile xd only. Formally, for any two instances that
contain two identical districts d1 and d2, we have that zd1 = zd2 ∈ Z.

2. The district representatives are aggregated into a single facility location. That
is, the facility location M(I) chosen by M when given as input the instance
I is selected from the set of representatives.

The Distortion of Mechanisms. Due to lack of global information, the facility
location chosen by a mechanism will inevitably be suboptimal. To quantify this
inefficiency, we adopt and extend the notion of distortion to our setting. The
distortion of an instance I = (x,D,Z) subject to using a mechanism M is the
ratio between the social cost of the location M(I) and the social cost of the
optimal location OPT(I) = arg minz∈Z SC(z|x) for I:

dist(I|M) =
SC(M(I)|x)

SC(OPT(I)|x)
.

Then, the distortion of M is the worst-case distortion over all possible instances:

dist(M) = sup
I

dist(I|M).
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We say that a mechanism M is unanimous, if it chooses the representative
of a district to be z ∈ Z, whenever all agents in the district are positioned at
z. The following lemma shows that it is without loss of generality to focus on
unanimous mechanisms. Due to lack of space, the proof of the lemma as well as
of other results are omitted.

Lemma 1. Any mechanism with finite distortion is unanimous.

Strategyproofness. Besides achieving low distortion, we are also interested
in mechanisms which ensure that the agents report their positions truthfully,
that is, they have no incentive to misreport hoping to change the outcome of
the mechanism to a location that is closer to their position. Formally, let I =
(x,D,Z) be an instance, where x is the true position profile of the agents, and
let J = (y,D,Z) be any instance with position profile y = (yi,x−i), in which
agent i reports yi and all other agents report their positions according to x. A
mechanism M is strategyproof if the location chosen by M when given as input
I is closer to the position xi of any agent i than the location chosen by M when
given as input J . In other words, for every agent i and yi ∈ R, it must hold that

δ(xi,M(x,D,Z)) ≤ δ(xi,M((yi,x−i),D,Z)).

This added requirement of strategyproofness imposes further restrictions, and
potentially impacts the achievable distortion as well. Hence, our goal is to design
strategyproof mechanisms with as low distortion as possible.

We now define the class of mechanisms that are strategyproof within districts.
Intuitively, such mechanisms prevent the agents from misreporting in hopes of
changing the representative of their district to a location closer to them. Observe
that a strategyproof mechanism could in principle allow such a local manipula-
tion, only to eliminate it in the second step (for example, by completely ignoring
the representatives and choosing an arbitrary fixed facility location). We show
that for mechanisms with a finite distortion, this is impossible.

Formally, a mechanism M is strategyproof within districts if for any district
d ∈ D, the representative of d on input I = (x,D,Z) is closer to the true position
xi of every agent i than the representative of d on input J = ((yi,x−i),D,Z).
We can now show the following useful property of stratefyproof mechanisms.

Lemma 2. Any strategyproof mechanism with finite distortion is strategyproof
within districts.

3 Mechanisms for the Discrete Setting

We begin the exposition of our results from the discrete setting. We consider the
mechanisms MinimizeMedian (MM) and DistributedMedian (DM), which
operate as follows. Given the representatives of the districts, both mechanisms
select the facility location to be the median representative. The main difference
between the two mechanisms is on how they select the representatives of the
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Algorithm 1: MinimizeMedian and DistributedMedian

Mechanism MinimizeMedian(x, D, A)
for each district d ∈ D do

zd ← left-most location in arg minz∈A
∑

i∈Nd
δ(xi, z)

return Median({zd}d∈D)

Mechanism DistributedMedian(x, D, A)
for each district d ∈ D do

zd ← arg minz∈A δ(Median(xd), z)

return Median({zd}d∈D)

Rule Median(y)
η ← |y|
sort y = (y1, ..., yη) in non-decreasing order
return y�η/2�

districts: MM selects the representative of each district to be the alternative
location that minimizes the social cost of the agents within the district, while DM
selects the representative of each district to be the location which is closest to the
median agent in the district. In case there are at least two median representatives
or at least two locations minimizing the social cost within some district, the left-
most such option is chosen. See Algorithm 1 for a description of both mechanisms
using pseudocode.

As one might expect, the fact that MM minimizes the social cost within the
districts may give the opportunity to some agents to misreport their positions
hoping to affect the outcome. On the other hand, by choosing the median location
both within and over the districts, DM does not allow such manipulations. We
have the following statement.

Theorem 1. MM is not strategyproof, whereas DM is strategyproof.

We now focus on bounding the distortion of these mechanisms. To this end,
we first show in Sect. 3.1 that the instances achieving the worst-case distortion
have a specific structure, which is common for both mechanisms. We then exploit
this structure in Sect. 3.2 to show an upper bound of 3 on the distortion of MM
and an upper bound of 7 on the distortion of DM.

3.1 Worst-Case Instances

For any mechanism M ∈ {MM,DM}, let wc(M) be the class of instances I =
(x,D,A) such that:

(P1) For every agent i ∈ N , xi ≥ M(I) if M(I) < OPT(I), or xi ≤ M(I) if
M(I) > OPT(I).
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(P2) For every location z ∈ A, which is representative for a set of districts
Dz �= ∅, the agents in those districts are positioned in the interval defined by
z and OPT(I).

Lemma 3. The distortion of M ∈ {MM,DM} is equal to

sup
I∈wc(M)

dist(I|M).

Proof (sketch). It suffices to show that for every instance J �∈ wc(M), there is
an instance I ∈ wc(M), such that dist(J |M) ≤ dist(I|M). Due to symmetry,
assume that M(J ) = w < o = OPT(J ). We transform J into I:

(T1) Every agent i with position xi < w is moved to w.

(T2) For every location z which is representative for a set of districts Dz �= ∅

in J , every agent in Dz whose position does not lie in the interval defined by z
and o is moved to the boundaries of this interval.

Observe that, because (T1) is performed before (T2), an agent i with position
xi < w < z < o who belongs to a district in Dz can be moved twice: once from
xi to w, and then again to z. These movements define a sequence of intermediate
instances with the same districts and alternative locations, but different position
profiles. We show that these instances preserve the following three properties,
which are sufficient to show by induction that the distortion does not decrease as
we go from J to I: (a) The facility location chosen by the mechanism is always
w; (b) The optimal location is always o; (c) For any two consecutive intermediate
instances with position profiles x and y, SC(w|x)

SC(o|x) ≤ SC(w|y)
SC(o|y) . ��

3.2 Bounding the Distortion

Given Lemma 3, we are ready to bound the distortion of both mechanisms.

Theorem 2. The distortion of MinimizeMedian is at most 3.

Proof. Let I = (x,D,A) ∈ wc(M) be an instance such that M(I) = w < o =
OPT(I), without loss of generality. For every z ∈ A, let Dz be the set of districts
for which z is the representative, and define the set Z = {z ∈ A : Dz �= ∅}.
Since the location w is selected by the mechanism, it must be w ∈ Z. For every
z ∈ Z and y ∈ A, let

SCz(y|x) =
∑

d∈Dz

∑

i∈Nd

δ(xi, y)

be the total distance of the agents in the districts of Dz from y. Also, recall that
each district contains exactly λ agents. We make the following observations:

– Consider a location z ∈ Z. By property (P2), for every district d ∈ Dz, we
have that δ(z, o) = δ(xi, z) + δ(xi, o) for every i ∈ Nd, and hence SCz(z|x) +
SCz(o|x) = δ(z, o)·λ|Dz|. Also, since zd = z for every d ∈ Dz, z minimizes the
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total distance of the agents in d, and thus SCz(z|x) ≤ SCz(o|x). Combining
these, we obtain

SCz(z|x) ≤ 1
2
δ(z, o) · λ|Dz|; (1)

SCz(o|x) ≥ 1
2
δ(z, o) · λ|Dz|. (2)

– Consider a location z ∈ Z\{w}. By (P1), w is the left-most representative, and
thus z > w. By (P2), every agent i in a district of Dz lies in the interval defined
by z and o, which means that δ(xi, w) ≤ δ(w, o) if z ≤ o, and δ(xi, w) ≤
δ(w, z) = δ(w, o) + δ(z, o) if z > o. Since δ(z, o) ≥ 0, by summing over all the
agents in the districts of Dz, we obtain that

SCz(w|x) ≤
(

δ(w, o) + δ(z, o)
)

· λ|Dz|. (3)

– Since w is the left-most representative (due to (P1)) and the median among
all representatives (since it is chosen by the mechanism), it must be the case
that w is the representative of more than half of the districts, and thus

|Dw| ≥
∑

z∈Z\{w}
|Dz|. (4)

Given the above observations, we will now upper-bound the social cost of w and
lower-bound the social cost of o. By the definition of SC(w|x), and by applying
(1) for z = w, (3) for z �= w, and (4), we obtain

SC(w|x) = SCw(w|x) +
∑

z∈Z\{w}
SCz(w|x)

≤ δ(w, o)λ
(

1
2
|Dw| +

∑

z∈Z\{w}
|Dz|

)
+

∑

z∈Z\{w}
δ(z, o)λ|Dz|

≤ 3
2
δ(w, o)λ|Dw| +

∑

z∈Z\{w}
δ(z, o)λ|Dz|

≤ 3
2

∑

z∈Z

δ(z, o)λ|Dz|. (5)

By the definition of SC(o|x) and by applying (2), we obtain

SC(o|x) =
∑

z∈Z

SCz(o|x) ≥ 1
2

∑

z∈Z

δ(z, o)λ|Dz|. (6)

Therefore, by (5) and (6), the distortion of I subject to MM is at most 3, and
since I is an arbitrary (up to symmetry) instance of wc(DM), Lemma 3 implies
that dist(DM) ≤ 3. ��

The bound on the distortion of DM follows by a similar proof.

Theorem 3. The distortion of DistributedMedian is at most 7.
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4 Lower Bounds for the Discrete Setting

In this section, we present our lower bounds for the discrete setting. Specifically,
we show that for any ε > 0, the distortion of any mechanism is at least 3 − ε,
and the distortion of any strategyproof mechanism is at least 7 − ε. These lower
bounds match the upper bounds of Sect. 3, and thus show that MM and DM are
the best possible general and strategyproof mechanisms, respectively.

Without loss of generality, we assume that when given as input any instance
with two districts each of which has a different representative, any mechanism
chooses the left-most representative as the facility location; otherwise, the same
bounds follow by symmetric arguments. Also, throughout this section, we write
SC(z) instead of SC(z|x) for the social cost of z; x will be clear from context.

We start with general mechanisms.

Lemma 4. Let M be a mechanism with distortion strictly less than 3. Let I be
an instance with set of alternative locations A = {0, 1}, and k = 2μ + 1 districts
such that 0 is the representative of μ districts and 1 is the representative of μ+1
districts, for every integer μ ≥ 1. Then, (i) M(I) = 1, and (ii) the representative
of any district d for which all agents are positioned at 2μ+1

4(μ+1) is zd = 0.

Proof. We prove the statement by induction on μ.

Base Case: μ = 1. For (i), assume there exists an instance I such that 0 is the
representative of one district and 1 is the representative of two districts, but
M(I) = 0. In particular, let I be as follows: In the first district, all agents
are positioned at 1/4; the representative must be 0, as otherwise the distortion
would be 3. In the other two districts, all agents are positioned at 1; since M
is unanimous, the representative of these districts is 1. Since SC(0) = λ/4 +
2λ = 9λ/4 and SC(1) = 3λ/4, we have that dist(M) ≥ dist(I|M) = 3, a
contradiction.

For (ii), assume that the representative of the district in which all agents are
positioned at 2μ+1

4(μ+1) = 3/8 is 1. Let J be the following instance: In the first
district, all agents are positioned at 0, and thus its representative is 0. In the
other two districts, all agents are positioned at 3/8, and thus their representative
is 1. Since J satisfies the properties of the lemma, by (i), it must be M(J ) = 1.
However, since SC(0) = 3λ/4 and SC(1) = λ + 10λ/8 = 9λ/4, we again have
that dist(M) ≥ dist(J |M) = 3, a contradiction.

Induction Step: We assume the lemma is true for μ = � − 1, and will show that
it is also true for μ = �. For (i), consider the following instance I with 2� + 1
districts: In the first � districts, all agents are positioned at 2�−1

4� = 2(�−1)+1
4((�−1)+1) ;

by part (ii) for μ = � − 1, we have that the representative of all these districts is
0. In the remaining � + 1 districts, all agents are positioned at 1, and thus their
representative is 1. We have that

SC(0) = � · (2� − 1)λ
4�

+ (� + 1) · λ =
3(2� + 1)λ

4
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and

SC(1) = � · (2� + 1)λ
4�

=
(2� + 1)λ

4
.

If M(I) = 0 then dist(M) ≥ dist(I|M) = 3. Therefore, for the mechanism to
achieve distortion strictly less than 3, it must be the case that M(I) = 1.

For (ii), assume that the representative of a district in which all agents are
positioned at 2�+1

4(�+1) is 1 instead. Let J be the following instance with 2� + 1
districts: In the first � districts, all agents are at 0, and thus their representative
is 0. In the remaining � + 1 districts, all agents are positioned at 2�+1

4(�+1) , and
their representative is 1, by assumption. Since (i) holds for μ = �, it must be
M(J ) = 1. However, since

SC(0) = (� + 1) · (2� + 1)λ
4(� + 1)

=
λ(2� + 1)

4

SC(1) = � · λ + (� + 1) · (2� + 3)λ
4(� + 1)

=
3λ(2� + 1)

4
,

we have that dist(M) ≥ dist(J |M) = 3. ��
We are now ready to prove the main theorem.

Theorem 4. In the discrete setting, the distortion of any mechanism is at least
3 − ε, for any ε > 0.

Proof. Let M be any mechanism with distortion less than 3−ε, for any ε > 0. We
consider instances with set of alternative locations A = {0, 1}. We will establish
that M must choose 1 as the representative of any district in which all the agents
are positioned at 1/2. Assume otherwise, and consider the following instance I
with two districts: In the first district, all agents are positioned at 1/2; hence,
the representative is 0. In the second district, all agents are positioned at 1;
by unanimity, the representative of the second district is 1. Since there are two
districts, one with representative 0 and one with representative 1, M selects
the left-most district representative as the facility location, that is, M(I) = 0.
However, since SC(0) = λ/2 + λ = 3λ/2 and SC(1) = λ/2, this decision leads to
dist(M) ≥ dist(I|M) = 3, a contradiction.

Finally, consider the following instance J with k = 2μ + 1 districts: In the
first μ districts, all agents are positioned at 0; by unanimity, the representative
of all these districts is 0. In the remaining μ+1 districts, all agents are positioned
at 1/2; by the above discussion, the representative of these districts is 1. By (i)
of Lemma 4, we have that M(J ) = 1. Since SC(0) = (μ + 1) · λ

2 and SC(1) =
μ · λ + (μ + 1) · λ

2 = (3μ+1)λ
2 , we have that dist(J |M) = 3μ+1

μ+1 . The theorem
follows by choosing μ to be sufficiently large. ��

Next, we show the following lower bound for stategyproof mechanisms.

Theorem 5. In the discrete setting, the distortion of any strategyproof mecha-
nism is at least 7 − ε, for any ε > 0.
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The proof of the above theorem requires the following lemma, establishing
that strategyproof mechanisms are ordinal, that is, their decisions are based only
on the orderings over the alternative locations induced by the positions of the
agents.

Lemma 5. Let M be a strategyproof mechanism with finite distortion. Let xd

and yd be two district position profiles for some district d, such that for every
agent i ∈ Nd and any two alternative locations α �= β, δ(xi, α) �= δ(xi, β) and
δ(yi, α) �= δ(yi, β); Also, if δ(xi, α) < δ(xi, β) then δ(yi, α) < δ(yi, β). The
representative of the district chosen by M must be the same under both xd and
yd.

By Lemma 5, Theorem 5, and the fact DM requires only ordinal information,
we obtain the following result.

Corollary 1. The distortion of any ordinal mechanism is at least 7−ε, for any
ε > 0. Moreover, there exists an ordinal mechanism with distortion at most 7.

5 Mechanisms for the Continuous Setting

We now turn our attention to the continuous setting. Recall that MM chooses
the alternative location that minimizes the social cost of the agents, whereas
DM chooses the location that is closest to the median agent. In the continuous
setting, where the set of alternative locations is R, the location of the median
agent is known to minimize the social cost of the agents in a district, and thus
the continuous version of DM, which chooses as representative the position of
the median agent, is an implementation of MM. So, the continuous version of
DM inherits the best properties of MM and the discrete version of DM, leading
to the following statement.

Theorem 6. The continuous version of DM is strategyproof and has distortion
at most 3.

The proof of the distortion bound in Theorem 6 also follows from the work of
Procaccia and Tennenholtz [29], who considered a setting with agents (or super-
agents, for clarity) that control multiple locations, and their cost is the total
distance between those locations and the facility. They showed that the median-
of-medians mechanism is 3-approximate. The theorem follows by interpreting
the super-agents as district representatives in our case, so that the social cost
objectives in the two settings coincide.

We next show a lower bound of almost 3 on the distortion of any strategyproof
mechanism, thus showing that the continuous version of DM is actually the best
possible among those mechanisms in the continuous setting.

Theorem 7. In the continuous setting, the distortion of any strategyproof mech-
anism is at least 3 − ε, for any ε > 0.

We also prove the following unconditional lower bound.
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Theorem 8. In the continuous setting, the distortion of any mechanism is at
least 2 − ε, for any ε > 0.

Even thought we have been unable to show a matching unconditional upper
bound, we believe that this should be possible. To this end, we conjecture that
there exists a mechanism with distortion 2 for the continuous setting.

6 Extensions and Open Problems

Asymmetric Districts. Our discussion in the previous sections revolves around
the assumption that the districts are symmetric. In general however, the districts
might be asymmetric, where every district d ∈ D might consist of a different
number nd of agents. It is not hard to observe that our mechanisms (MM and
DM) can be applied in the asymmetric case as well. In addition, the structure
of their worst-case instances defined in Sect. 3.1 is exactly the same; the proof
of the lemma does not require that nd = λ for every d ∈ D. Exploiting this, we
can show the following result, which generalizes Theorems 2, 3 and 6.

Theorem 9. Let α = maxd∈D nd

mind∈D nd
. The distortion of MM is at most 3α and the

distortion of DM is at most 7α.

Unfortunately, our lower bounds are tailor-made for the symmetric case, and
thus it is an interesting open problem to extend them to the case of asymmetric
districts. As MM and DM do not take into account the district sizes, it would also
be interesting to see whether using this information could lead to mechanisms
with improved distortion guarantees (besides the symmetric case).

Proxy Voting. Another ingredient of our distributed setting is that the facility
location is chosen from the set of district representatives, thus modeling scenarios
in which decisions of independent groups are aggregated into a common outcome.
Alternatively, one could assume that the location can be chosen from the set of all
alternative locations, in which case the district representatives are used as proxies
in a district-based election (e.g. see [5] and references therein). This captures
situations where the alternatives are agents themselves, and the groups select
as representatives those alternatives that more closely reflect their collective
opinions. Since the set of district representatives is a subset of the alternative
locations, it is straightforward to see that our upper bounds also hold for this
proxy model. Our lower bounds in the discrete setting extend as well, since there
are only two alternative locations in the instances used in the proofs, and each
of them is a representative for at least one district. Hence, our mechanisms are
best possible for the proxy model in the discrete setting.

Corollary 2. In the proxy model, the distortion of MM is at most 3 and the
distortion of DM is at most 7. Furthermore, in the discrete setting, MM and
DM are the best possible among general and strategyproof mechanisms.
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In the continuous setting, our lower bounds do not immediately carry over,
and it is an intriguing question to identify the exact bound for general and
strategyproof mechanisms.

Other Directions. In terms of extending and generalizing our model, there is
ample ground for future work. As is typical in the facility location literature, one
could consider objectives different than the social cost, such as the maximum cost
or the sum of squares. Again, the goal would be to show bounds on the distortion,
and also design good strategyproof mechanisms. Other possible extensions could
include multiple facilities, more general metric spaces, different cost functions,
or studying the many different variants of the facility location problem in the
distributed setting.

References

1. Abramowitz, B., Anshelevich, E.: Utilitarians without utilities: maximizing social
welfare for graph problems using only ordinal preferences. In: Proceedings of the
32nd AAAI Conference on Artificial Intelligence (AAAI), pp. 894–901 (2018)

2. Amanatidis, G., Birmpas, G., Filos-Ratsikas, A., Voudouris, A.A.: Peeking behind
the ordinal curtain: improving distortion via cardinal queries. Artif. Intell. 296,
103488 (2021)

3. Anshelevich, E., Bhardwaj, O., Elkind, E., Postl, J., Skowron, P.: Approximating
optimal social choice under metric preferences. Artif. Intell. 264, 27–51 (2018)

4. Anshelevich, E., Filos-Ratsikas, A., Shah, N., Voudouris, A.A.: Distortion in social
choice problems: the first 15 years and beyond. CoRR abs/2103.00911 (2021)

5. Anshelevich, E., Fitzsimmons, Z., Vaish, R., Xia, L.: Representative proxy voting.
In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI),
pp. 5086–5093 (2021)

6. Anshelevich, E., Postl, J.: Randomized social choice functions under metric pref-
erences. J. Artif. Intell. Res. 58, 797–827 (2017)

7. Anshelevich, E., Zhu, W.: Ordinal approximation for social choice, matching, and
facility location problems given candidate positions. In: Proceedings of the 14th
International Conference on Web and Internet Economics (WINE), pp. 3–20 (2018)

8. Babaioff, M., Feldman, M., Tennenholtz, M.: Mechanism design with strategic
mediators. ACM Trans. Econ. Comput. (TEAC) 4(2), 1–48 (2016)

9. Black, D.: The Theory of Committees and Elections. Kluwer Academic Publishers
(1957)

10. Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A.D., Sheffet, O.: Opti-
mal social choice functions: a utilitarian view. Artif. Intell. 227, 190–213 (2015)

11. Caragiannis, I., Nath, S., Procaccia, A.D., Shah, N.: Subset selection via implicit
utilitarian voting. J. Artif. Intell. Res. 58, 123–152 (2017)

12. Chan, H., Filos-Ratsikas, A., Li, B., Li, M., Wang, C.: Mechanism design for facility
location problems: a survey. CoRR abs/2106.03457 (2021)

13. Cheng, Y., Han, Q., Yu, W., Zhang, G.: Obnoxious facility game with a bounded
service range. In: Proceedings of the 10th International Conference on Theory and
Applications of Models of Computation (TAMC), pp. 272–281 (2013)

14. Cheng, Y., Yu, W., Zhang, G.: Mechanisms for obnoxious facility game on a path.
In: Proceedings of the 5th International Conference on Combinatorial Optimization
and Applications (COCOA), pp. 262–271 (2011)



Approximate Mechanism Design for Distributed Facility Location 63

15. Deligkas, A., Filos-Ratsikas, A., Voudouris, A.A.: Heterogeneous facility location
with limited resources. CoRR abs/2105.02712 (2021)

16. Duan, L., Li, B., Li, M., Xu, X.: Heterogeneous two-facility location games with
minimum distance requirement. In: Proceedings of the 18th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1461–1469
(2019)

17. Feigenbaum, I., Sethuraman, J., Ye, C.: Approximately optimal mechanisms for
strategyproof facility location: minimizing Lp norm of costs. Math. Oper. Res.
42(2), 434–447 (2017)

18. Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In: Proceedings
of the 2016 ACM Conference on Economics and Computation (EC), pp. 269–286
(2016)

19. Feldman, M., Wilf, Y.: Strategyproof facility location and the least squares objec-
tive. In: Proceedings of the 14th ACM Conference on Electronic Commerce (EC),
pp. 873–890 (2013)

20. Filos-Ratsikas, A., Micha, E., Voudouris, A.A.: The distortion of distributed voting.
Artif. Intell. 286, 103343 (2020)

21. Fong, C.K.K., Li, M., Lu, P., Todo, T., Yokoo, M.: Facility location games with
fractional preferences. In: Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), pp. 1039–1046 (2018)

22. Fotakis, D., Tzamos, C.: Winner-imposing strategyproof mechanisms for multiple
facility location games. Theoret. Comput. Sci. 472, 90–103 (2013)

23. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce (EC), pp. 315–324 (2010)

24. Lu, P., Wang, Y., Zhou, Y.: Tighter bounds for facility games. In: Proceedings of
the 5th International Workshop on Internet and Network Economics (WINE), pp.
137–148 (2009)

25. Mandal, D., Procaccia, A.D., Shah, N., Woodruff, D.P.: Efficient and thrifty vot-
ing by any means necessary. In: Proceedings of the 33rd Conference on Neural
Information Processing Systems (NeurIPS), pp. 7178–7189 (2019)

26. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4),
437–455 (1980)

27. Munagala, K., Wang, K.: Improved metric distortion for deterministic social choice
rules. In: Proceedings of the 2019 ACM Conference on Economics and Computation
(EC), pp. 245–262 (2019)

28. Procaccia, A.D., Rosenschein, J.S.: The distortion of cardinal preferences in voting.
In: Proceedings of the 10th International Workshop on Cooperative Information
Agents (CIA), pp. 317–331 (2006)

29. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
ACM Trans. Econ. Comput. 1(4), 18:1–18:26 (2013)

30. Schummer, J., Vohra, R.V.: Strategy-proof location on a network. J. Econ. Theory
104(2), 405–428 (2002)

31. Serafino, P., Ventre, C.: Truthful mechanisms without money for non-utilitarian
heterogeneous facility location. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI), pp. 1029–1035 (2015)

32. Serafino, P., Ventre, C.: Heterogeneous facility location without money. Theoret.
Comput. Sci. 636, 27–46 (2016)



Prior-Free Clock Auctions for Bidders
with Interdependent Values

Vasilis Gkatzelis, Rishi Patel(B), Emmanouil Pountourakis,
and Daniel Schoepflin

Drexel University, Philadelphia, USA
{gkatz,riship,manolis,schoep}@drexel.edu

Abstract. We study the problem of selling a good to a group of bidders
with interdependent values in a prior-free setting. Each bidder has a
signal that can take one of k different values, and her value for the good
is a weakly increasing function of all the bidders’ signals. The bidders
are partitioned into � expertise-groups, based on how their signal can
impact the values for the good, and we prove upper and lower bounds
regarding the approximability of social welfare and revenue for a variety
of settings, parameterized by k and �. Our lower bounds apply to all
ex-post incentive compatible mechanisms and our upper bounds are all
within a small constant of the lower bounds. Our main results take the
appealing form of ascending clock auctions and provide strong incentives
by admitting the desired outcomes as obvious ex-post equilibria.

Keywords: Clock auctions · Interdependent values · Obvious ex-post
equilibrium

1 Introduction

We study the problem of selling a good to bidders with interdependent values,
which has received a lot of attention in economics (e.g., see [12, Chapters 6 and
10]), and recently also in computer science (e.g., [3,4,6–9,19,20]). In contrast to
the private values model, where each bidder knows her value for the good being
sold, the interdependent value literature assumes that each bidder has some
private signal regarding the value of the good, e.g., through some research or
technical expertise, and the actual value of the good to each bidder is a function
of all the bidders’ signals. For instance, a common motivating example for this
problem involves firms competing over the mineral rights of a piece of land [23]:
each firm has conducted some tests, trying to estimate the land’s capacity in
desired minerals, but each of these tests may provide only partial evidence, and
the best estimate can be inferred by appropriately aggregating all the test results,
e.g., by computing the average across all of these measurements.
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The main difficulty when designing auctions for bidders with interdependent
values arises from the fact that the bidders’ signals are not known to the auction-
eer, or to the other bidders. Therefore, the auctioneer needs to elicit these signals
before deciding who should win the item and what the price should be. But, why
would any bidder reveal her true signal to the auctioneer? A sealed-bid auction
is said to be ex-post incentive compatible if truth-telling, i.e., reporting the true
signal to the auctioneer, is an equilibrium for all the bidders. Designing ex-post
incentive compatible auctions with non-trivial welfare or revenue guarantees has
been a central goal of this line of research.

Prior work has considered several different ways in which the bidders’ values
can depend on the vector of signals. For example, in the common value model all
the bidders have the same value for the good but, even in this special case, the
design of ex-post incentive compatible auctions is a non-trivial problem. This
problem becomes even harder when the bidders’ values can differ. To enable
the design of efficient incentive compatible mechanisms, prior work has intro-
duced useful restrictions on the structure of these valuation functions, such as
submodularity over signals (SOS) [1,7], or constraints across pairs of valuation
functions, such as the single-crossing property [16,17].

In this paper, we consider a variety of settings with interdependent values
that are not captured by (approximate) SOS or the single-crossing property. We
let k be the number of possible values that a bidder’s signal can have, and we
partition the bidders into � expertise-groups, depending on the type of infor-
mation that their signals provide regarding the good being sold. Using these
parameters, we prove upper and lower bounds, parameterized by k and �, on
the extent to which auctions can approximate the optimal welfare or revenue.
All our proposed auctions are ex-post incentive compatible, but our main results
also satisfy stronger incentive guarantees: they can be implemented not only as
direct-revelation mechanisms (sealed-bid auctions), but also as ascending clock
auctions, and they admit the desired outcomes as obvious ex-post equilibria [14]
which are easy for the bidders to verify, thus leading to more practical solutions.

1.1 Our Results

We begin, in Sect. 3, by considering the interesting case where each bidder’s
signal regarding the quality of the good can take two possible values, either
“low” or “high”, and each bidder’s value is a weakly increasing function of these
signals. If the valuation function of each bidder is symmetric, i.e., every bidder’s
signal matters the same, then we provide a clock auction that achieves a 5-
approximation of the optimal social welfare, and a variation of that auction that
guarantees revenue that is a 10-approximation of the optimal social welfare. We
then generalize these results to non-symmetric functions, where the bidders are
partitioned into � groups based on their expertise, and signals from different
groups may have different impact on the values. Our generalization achieves a
5�-approximation for social welfare and a 10�-approximation for revenue.

In Sect. 4, we go beyond the case of binary signals and consider problem
instances with k distinct signal value options, {0, 1, . . . , k − 1}, allowing for the
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bidders’ signals regarding the quality of the good to be more refined. The valua-
tion of each bidder can be an arbitrary weakly increasing function of the average
quality estimate of each group. Using a reduction to the binary case, we design
a clock auction that achieves a 5�(k − 1)-approximation for social welfare and a
10�(k − 1)-approximation for revenue. To complement these positive results, we
also prove a lower bound of �(k − 1) + 1 for the welfare approximation ratio of
ex-post incentive compatible auctions.

Our auctions in these two sections achieve signal discovery using random
sampling, while minimizing the probability of rejecting the highest value bidder.
Unlike prior work, our random sampling process is adaptive, depending on prior
signal discovery. Thus, our auction gradually refines our estimate of the item’s
quality as perceived by the bidders and eventually decides who to allocate to,
aiming to achieve high welfare and revenue. Apart from matching the lower
bound up to small constants, these auctions crucially also guarantee improved
incentives: they admit the desired outcome not just an ex-post equilibrium, but
as an obvious ex-post equilibrium, making our upper bounds stronger.

Finally, in Sect. 5 we consider the most general setting with any number of
signals k > 2 and arbitrary quality functions per expert type. We first prove a
stronger lower bound of �

(
k
2

)
+1 for the welfare approximation of ex-post incen-

tive compatible auctions. Then we prove the existence of a universally incentive
compatible and individually rational auction that matches this bound.

Due to space constraints, the proofs of some theorems (particularly those
which are similar to previous proofs) have been deferred to the full version.

1.2 Related Work

In an interdependent values setting, a bidder’s value for a good may depend on
how much others value it. This idea is formally captured by the canonical inter-
dependent values model given by Milgrom and Weber [17]. The interdependent
values setting has been well-studied in the economics literature for its descriptive
ability to capture many real-world scenarios. Noted examples in the literature
include the mineral rights [23] and common value (e.g., “wallet game”) models
[11] discussed above, and the resale model [18] in which the value a bidder has
for a good (e.g., a painting) depends on her own value for the good and the
amounts others may be willing to pay on its resale.

A common assumption when studying the interdependent values setting in
both the computer science and economics literature is that the valuations of the
bidders satisfy a single-crossing condition. Following the definition of Roughgar-
den and Talgam-Cohen [20], a set of valuation functions satisfies single-crossing
if for all bidders i and j

∂vi(si, s−i)
∂si

≥ ∂vj(si, s−i)
∂si

.

Loosely speaking, single-crossing states that a bidder is more sensitive to her
own signal than anyone else is. Using this assumption, many strong results can
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be obtained for both welfare and revenue. For example, Dasgupta and Maskin
[5] demonstrated that the celebrated Vickrey-Clarke-Groves (VCG) mechanism
can be adapted and extended into the common value setting to obtain optimal
welfare given single-crossing. Ausubel [2] demonstrated that a generalized Vick-
rey auction can achieve efficiency in a multi-unit setting with single-crossing
valuations. For revenue, Li [15] and Roughgarden and Talgam-Cohen [20] gave,
independently, auctions extracting near optimal revenue in the interdependent
values model for any matroid feasibility constraint when the valuations satisfy
single-crossing and the signals are drawn from distributions with a regularity-
type condition. Chawla et al. [3] gave an alternative generalization of the VCG
auction with reserve prices and random admission which approximates the opti-
mal revenue in any matroid setting without conditions on signal distributions.

On the other hand, it is well-known that without single-crossing, achiev-
ing the optimal welfare becomes impossible [5,10]. There have thus been recent
efforts to approximate the optimal welfare when the single-crossing assumption
is relaxed. Eden et al. [6] suggested a notion called “c-single-crossing” wherein
each bidder is at most a factor c times less sensitive to changes in her own
signal than any other bidder is (exact single-crossing has c = 1). They gave
a 2c-approximate randomized mechanism when valuation functions are con-
cave and satisfy c-single-crossing. Eden et al. [7] proposed an alternative notion
termed “submodularity over signals” (SOS) which, loosely speaking, stipulates
that a valuation function must be less sensitive to increases in any particular
signal when the other signals are high. The authors then gave a randomized 4-
approximate mechanism for all single-parameter downward-closed settings when
valuation functions are SOS; this factor was very recently improved to 2 for
the case of binary signals by Amer and Talgam-Cohen [1]. We note that the
valuations studied in this paper satisfy neither c-single-crossing nor (approxi-
mate) SOS, in general. Our work proposes alternative parameterizations of the
valuation functions and it provides another step toward a better understanding
of interdependent values beyond the classic, and somewhat restrictive, single-
crossing assumption.

In accordance with some recent work in computer science (e.g., see [6,7]), and
unlike much of the existing economics literature, we consider a prior-free setting
where there is no distributional information regarding the signals of the bidders.
Thus, our results are in consistent with “Wilson’s doctrine” [22], which envisions
a mechanism design process that is less reliant on the assumption of common
knowledge. Our results are independent of an underlying distribution and do not
assume that the auctioneer or the bidders have any information regarding each
other’s signals.

2 Preliminaries

We consider a setting where a set N of n bidders is competing to receive a good.
Each bidder i ∈ N has a private signal si regarding the good being sold, which
can take one of k publicly known different values. Her valuation of the good, vi(s),
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is a publicly known weakly increasing function of the vector of all the bidders’
signals, s = (s1, s2, . . . , sn). In many settings of interest it is natural to assume
that this is a symmetric function over the signals, e.g., when all the bidders have
the same access to information, or the same level of expertise. However, we also
consider the case when the signal of some bidders may have a different impact
than others’. To capture this case we partition the bidders into � > 1 groups
and assume that each group has different types of expertise. In this case, the
valuation functions vi(s) are symmetric with respect to the signals of bidders
with the same type of expertise, but arbitrarily non-symmetric across bidders
with different types of expertise. Note that this captures arbitrary monotone
valuation functions when � = n, and it also captures several classes of instances
where the valuations of different bidders are not (even approximately) single-
crossing or SOS. We call a bidder optimal for some signal vector s if i is a
highest value bidder for that signal profile, i.e., i ∈ arg maxj∈N{vj(s)}. We use
h(s) to refer to an optimal bidder for signal vector s, breaking ties arbitrarily
but consistently if there are multiple optimal bidders for s.

In interdependent value settings, a direct-revelation mechanism receives the
bidders’ signals as input and outputs a bidder to serve and a vector of prices p(s)
which each bidder is charged. For any bidder i, the utility ui(s) = vi(s) − pi(s)
if i is served and ui(s) = −pi(s), otherwise. A mechanism is ex-post individually
rational if ui(s) ≥ 0 for all i, assuming all bidders report their true signals. A
mechanism is ex-post incentive compatible if the utility that bidder i receives
by reporting her true signal is at least as high as the utility she would obtain
by reporting any other signal, assuming all the other bidders report their true
signals, i.e., ui(si, s−i) ≥ ui(s′

i, s−i) for all i, s−i. If a mechanism uses random-
ization, we say that it is universally ex-post individually rational and ex-post
incentive compatible (universally IC-IR) if it is a distribution over deterministic
ex-post individually rational and ex-post incentive compatible mechanisms.

We look to design universally IC-IR randomized mechanisms that aim to
serve the bidder with highest realized value given the signal profile. We measure
the expected performance of these mechanisms against the optimal solution given
full information. Given some instance I, let A(I) denote the bidder served by
auction A. We then say that A achieves an α-approximation to the optimal
welfare for a family of instances I if

sup
I∈I

maxi∈N{vi(s)}
E

[
vA(I)(s)

] ≤ α

where the expectation is taken over the random coin flips of our mechanism. In
terms of revenue, note that for mechanisms that are individually rational (like
the ones that we propose in this paper), we know that the revenue of these
mechanisms is always a lower bound for their social welfare. We therefore use
the optimal social welfare as an upper bound for the optimal revenue and say
that A achieves an α-approximation of revenue for a family of instances I if

sup
I∈I

maxi∈N{vi(s)}
E

[
pA(I)(s)

] ≤ α.
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Our main results in this paper take the form of clock auctions over signals. A
clock auction over signals is a multi-round dynamic mechanism in which bidders
are faced with personalized ascending signal clocks. Throughout the auction,
the clocks are non-decreasing and, at any point in the auction, a bidder may
choose to permanently exit the auction (thereby losing the good permanently).
When a bidder is declared the winner, she is offered a price (greater than or)
equal to the value implied by the final clock signals for all bidders. In a clock
auction, a bidder exits the auction if and only if her signal clock is greater than
her true signal, we refer to this as consistent bidding. In particular, we seek to
design clock auctions where consistent bidding is an obvious ex-post equilibrium
(OXP) strategy profile [13]. A strategy profile is an OXP of an auction if for
any bidder i, holding all other bidders’ strategies fixed (and assuming they are
acting truthfully), the best utility i can obtain by deviating from her truthful
strategy under any possible type profile of the other bidders consistent with the
history (i.e., their clock signals) is worse than the worst utility i can obtain
by following her truthful strategy under any possible type profile of the other
bidders consistent with the history.

3 Instances with Binary Signal Values

In this section, we consider the natural case where the signal of each bidder
regarding the good can take one of two possible values, e.g., “low quality” and
“high quality”. We first focus on instances where the bidders’ valuation func-
tions are symmetric over the signals, and we provide a clock auction which
admits an ex-post obvious equilibrium and 5-approximation to the optimal social
welfare. We then extend this result to general valuation functions, achieving a
5�-approximation to the optimal social welfare. This auction is then also used
as a building block for the results of the next section, which considers a setting
with k > 2 signal values.

3.1 A Clock Auction for Symmetric Valuation Functions

A central result of this paper is the signal discovery auction, which is presented
as a sealed-bid auction below (see Mechanism 1), but can also be implemented
as a clock auction (see Theorem 3). This auction aims to discover how many
bidders have a high signal, while minimizing the probability that the optimal
bidder is rejected during the discovery process. Throughout the execution of the
auction, the set A includes the bidders that remain active, i.e., the ones that
have not been rejected yet. The variables qmin and qmax provide a lower and an
upper bound, respectively, for the number of bidders that have a high signal,
based on the signals discovered up to that point. Note that qmin is initialized
to 0 and qmax is initialized to n, corresponding to all bidders having signal 0 or
signal 1, respectively. The set R∗ contains all the bidders that have been rejected,
without first verifying that they are not optimal.

The auction uses randomized sampling in order to initiate this discovery
process: it chooses one of the active bidders uniformly at random, it rejects that
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bidder, and then uses its signal value to narrow down the range [qmin, qmax]. We
refer to this as a “costly” signal discovery, because it may lead to the rejection of
the highest value bidder. Then, this discovery leads to a sequence of “free” signal
discoveries, by using this information to identify active bidders that cannot be
optimal, rejecting them, and then using their signal to further narrow down the
[qmin, qmax] range. When no additional free signal discoveries are available, the
auction removes any bidder of R∗ that is now verified to be non-optimal, and
executes another costly signal discovery.

This process continues until there is only one active bidder, at which point
this bidder is declared the winner. We say that a signal profile s is consistent
with some q ∈ [qmin, qmax] if it contains a number of “high” signals equal to
q. If this bidder i is optimal for a signal profile s consistent with exactly one
q ∈ [qmin, qmax], then the bidder is awarded the good at price p = vi(s); if the
bidder is optimal for multiple signal profiles consistent with distinct numbers
of “high” signal bidders in [qmin, qmax], she is awarded the good at the price
corresponding to a signal profile with the fewest number of “high” signal bidders.

Mechanism 1: Signal discovery auction for binary signal values
1 Let A ← N , R∗ ← ∅, qmin ← 0, and qmax ← n
2 while |A| > 1 do

// A ‘‘costly’’ signal discovery

3 Select a bidder i ∈ A uniformly at random
4 Let A ← A\{i} and R∗ ← R∗ ∪ {i}
5 if si = 0 then
6 qmax ← qmax − 1
7 else
8 qmin ← qmin + 1

// A sequence of ‘‘free’’ signal discoveries

9 while ∃j ∈ A that is not optimal for any s consistent with some
q ∈ [qmin, qmax] do

10 A ← A\{j}
11 if sj = 0 then
12 qmax ← qmax − 1
13 else
14 qmin ← qmin + 1

15 while ∃j ∈ R∗ that is not optimal for any s consistent with some
q ∈ [qmin, qmax] do

16 R∗ ← R∗\{j}
17 Let i be the single bidder in A
18 Let s′

i be the smallest signal such that i is optimal for (s′
i, s−i)

19 if vi(s) ≥ vi((s
′
i, s−i)) then

20 Award the good to i at price vi((s
′
i, s−i))

The following lemma shows that the size of R∗ is never more than 2, which
allows us to bound the probability that the auction identifies the optimal bidder.
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Lemma 1. Throughout the execution of the signal discovery auction, the size
of R∗ is never more than 2.

Proof. We first note that, throughout the auction, the only bidders in A ∪ R∗

are the potentially optimal bidders (i.e., those which correspond to some possible
signal profile) since bidders are removed from A ∪ R∗ when they are determined
to be non-optimal. Initially R∗ is empty and at the beginning of each iteration
of the outer while-loop, one randomly sampled active bidder i is added to this
set, increasing its size by one. The signal of bidder i is then used to update
either qmin or qmax; if si = 0 the auction can infer that qmax is not the true
number of high signal bidders, and if si = 1 the auction can infer that qmin is
not the true number of high signal bidders. In both of these cases, some possible
symmetric signal profile is ruled out, and this may lead to a sequence of “free”
signal discoveries, as discussed below.

Whenever a symmetric signal profile s is ruled out, there are four possibilities
regarding the bidder who is optimal for that level, i.e., the bidder h(s):

1. If h(s) is in A and is not optimal for any other s′ consistent with some
number q of high signal bidders in the updated interval [qmin, qmax], then the
first inner-while loop of the auction will remove that bidder from A and use
its signal to rule out one more quality level.

2. If h(s) is in A and is also optimal for some other s′ consistent with some
number q of high signal bidders in the updated interval [qmin, qmax], then the
iteration of the outer while-loop terminates without any additional operations
and we proceed to the next iteration.

3. If h(s) is in R∗, and is not optimal for any other s′ consistent with some
number q of high signal bidders in the updated interval [qmin, qmax], then the
second inner while-loop removes h(s) from R∗ and we proceed to the next
iteration of the outer while-loop.

4. If h(s) is in R∗, and is also optimal for some other s′ consistent with some
number q of high signal bidders in the updated interval [qmin, qmax], then the
iteration of the outer while-loop terminates without any additional operations
and we proceed to the next iteration.

Considering these four possibilities, note that while the first case arises,
the execution remains in the first inner while-loop and the size of R∗ remains
unchanged. When the third case arises, the size of R∗ is first reduced by one
(because the auction enters the second inner while-loop) and then proceeds to
the next iteration of the outer while-loop, which may bring this up to the same
size again. As a result, the third case does not increase the size of R∗ either.

On the other hand, both cases 2 and 4 may lead to an increase in the size of
R∗ by 1, since they terminate the current iteration of the outer while-loop and
may proceed to the next one, which would add one more bidder to R∗.

However, at the end of each iteration of the outer while-loop, A and R∗

contain only bidders that are optimal for some s consistent with some number
of high signal bidders q in [qmin, qmax] (all the others are removed from A in
the first inner while-loop and from R∗ in the second inner while-loop). Also, at
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the end of each iteration of the outer while-loop, we have qmax = qmin + |A|. To
verify this fact note that the signal of everyone not in A has already been used
to update the interval [qmin, qmax] and the only signals not used yet are those
of the bidders in A. If all the bidders in A have a low signal, then the true s has
qmin bidders with high signals. If they all have a high signal (adding |A| bidders
with high signal), the true s has qmax bidders with high signals.

Therefore, we know that at the end of each iteration of the outer while-loop,
every bidder in A and R∗ is optimal for some possible symmetric signal profile
with a number of high value bidders in [qmin, qmax] and there are at most |A|+1
such distinct signal profiles. If R∗ is empty at that point, this means that there
can be at most one bidder in A that is optimal for two distinct signal profiles.
If |R∗| = 1, then there are |A| + 1 optimal bidders and |A| + 1 distinct signal
profiles, so there is no bidder in A or R∗ that is optimal for more than one such
profile. This means that in the next iteration of the outer while-loop, cases 2
and 4 listed above cannot arise, and therefore the size of R∗ cannot be strictly
more than 1 at the end of any iteration of the outer while loop. ��
Theorem 1. The signal discovery auction achieves a 5-approximation of the
optimal welfare for instances with binary signals.

Proof. Let i∗ be the optimal bidder and q∗ be the true number of high signals.
We first observe that a bidder is removed from A ∪ R∗ only if they are determined
to be non-optimal. Thus, we know that i∗ ∈ A ∪ R∗ throughout the running of
the algorithm. By Lemma 1 we know that |R∗| ≤ 2 throughout the running of
the algorithm. There are then at most 5 distinct bidders who can be in A∪R∗ at
the end of the algorithm: i∗ and the (up to) four other bidders optimal for signal
profiles corresponding to q∗ − 2, q∗ − 1, q∗ + 1, or q∗ + 2 high signal bidders.
Provided that these four other bidders enter R∗ (or are eliminated) before i∗ is
added to R∗ we then obtain the optimal welfare. We conclude by noting that,
since the choices of the bidder to be added to R∗ is made uniformly at random,
we can envision the order in which bidders are added to R∗ as a uniform at
random permutation over the bidders fixed at the outset. In a uniform random
permutation, i∗ follows these four bidders with probability 1/5. ��

The signal discovery auction, as presented, achieves no interesting worst-case
approximation for revenue when the benchmark is the ex-post optimal welfare.
In particular, if there is a single optimal bidder for all the signal profiles corre-
sponding to numbers of high signal bidders in [qmin, qmax], and the true number
of high signal bidders is qmax, the mechanism charges the winner i a price of
vi(s′) where s′ is the signal profile obtained by her signal being 0 (corresponding
to qmin high signal bidders). If the true signal profile s′′ corresponds to having
qmax bidders of high signal, the ex-post optimal welfare is vi(s′′), which can
be arbitrarily higher than vi(s′). To address this issue, our next result shows
that if we slightly modify the pricing rule of the mechanism, then we can achieve
revenue which is a 10-approximation of the ex-post optimal welfare (which simul-
taneously also implies that the welfare we obtain is a 10-approximation).
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Theorem 2. The pricing rule of the signal discovery auction can be adjusted to
achieve revenue which is a 10-approximation of the optimal welfare for instances
with binary signals.

Proof. If in line 18 of Mechanism 1 we instead select a s for which i is optimal
consistent with some random q′ ∈ [qmin, qmax] and s is the true signal profile,
we extract all of the welfare as revenue. Since i is the only bidder with unknown
signal value, there are at most two levels for which i is optimal so we select the
signal profile with probability 1/2, yielding the 10-approximation. Note that in
line 20 we only allocate the item if the price is below the true value of i, so we
preserve ex-post IC-IR with this modification. ��

We conclude this section by verifying that the outcome of the signal discovery
auction can be implemented as an obvious ex-post equilibrium [13].

Theorem 3. The signal discovery auction can be implemented as an ascending
clock auction over the signals wherein consistent bidding is an obvious ex-post
equilibrium.

Proof. Rather than asking bidders to report their signals we may instead equip
each bidder with a signal clock. The clocks of all bidders begin at 0 and when
bidder i would have her signal discovered by the above mechanism, we instead
raise the clock of i to 1. If i rejects the new clock signal level (i.e., permanently
exits the auction), she cannot win the item regardless of her beliefs about the
signals of the remaining bidders.

If the true signal of i is 1, for any profile of signals of the remaining bidders
(assuming these signals are true) the worst utility i can obtain by accepting the
increased clock signal level is 0 (by losing the item or by winning the item and
being charged exactly her welfare). Thus, at any point in the auction, regardless
of the history, when i is approached to increase her clock signal level, the best
utility i can obtain by not accepting the increased clock signal level (thereby
necessarily losing the good) is weakly less than the worst utility i can obtain by
accepting the increased clock signal level. On the other hand, if the true signal of
i is 0, for any profile of signals of the remaining bidders (assuming these signals
are true) if she instead accepts the increased clock signal level she either will
continue to lose the auction (thereby obtaining a utility of 0) or win the auction
at a quality level higher than the actual underlying quality of the good. Since the
threshold signal of i would then be 1, she would necessarily be charged a price
weakly higher than her value for the good and she would obtain non-positive
utility. Thus, in either case, truthfully responding whether or not the clock signal
level is above a bidder’s signal is an obvious ex-post equilibrium. ��
Corollary 1. The version of the signal discovery auction which obtains revenue
guarantees can also be implemented as an ascending clock auction over the signals
wherein consistent bidding is an obvious ex-post equilibrium.

Proof. The proof follows exactly as above except we raise the clock signal level
of the winning bidder to the one corresponding to the randomly selected signal
profile (effectively setting a take-it-or-leave-it price at this signal). ��
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3.2 A Clock Auction for General Valuation Functions

In this section, we demonstrate how our auction for symmetric valuation func-
tions, i.e., the case where � = 1, above, can be easily extended to handle general
valuation functions over binary signals, leading to approximation bounds that
depend on the number of expert-groups, �.

The mechanism first uniformly at random selects some �′ ∈ {1, 2, . . . , �}, and
then assumes that the optimal bidder belongs to expertise type �′. The mecha-
nism rejects all bidders outside expertise-group �′ and “learns” their signals. The
auction then knows all the signals of bidders not in �′ and the problem reduces
to also discovering the number of bidders in �′ that have a high signal. We can
therefore run Mechanism 1 among the bidders in �′ to decide the winner among
them, and the price offered to her.

Theorem 4. The above mechanism yields a 5�-approximation of the optimal
welfare for instances with binary signals.

Proof. The probability that the optimal bidder does, indeed, belong to the
expertise-group �′ is 1/�. If the mechanism guesses the value of �′ correctly,
then the rejection of all the other bidders comes at no cost, and it reduces the
problem to finding the optimal bidder within the group �′. But, since we now
know all the signal values of bidders outside the group �′, we can use Mechanism
1 to discover the optimal bidder with probability at least 1/5 (by Theorem 1).
Combining these observations, the above mechanism allocates to the optimal
bidder with probability at least 1/(5�). ��
Theorem 5. The pricing rule of the above mechanism can be adjusted to achieve
revenue which is a 10�-approximation of the optimal welfare for instances with
binary signals.

4 Shared Quality Functions over k Signal Values

We now move beyond instances with binary signals and consider a class of valua-
tion functions over k ≥ 2 signal values. Each bidder i’s signal can take any value
si ∈ {0, 1, . . . , k−1} and the average of these signals determines the quality of the
good q =

∑
i∈N si (note that the average of the signals can be directly inferred

from the sum, so we use the sum for simplicity of notation).1 This captures a
variety of settings where each bidder has some estimate regarding the quality,
but the true quality is best approximated by averaging over all the bidders’ sig-
nals (e.g., see the wisdom of the crowds phenomenon [21]). Each bidder i’s value
for the good is provided by some (arbitrary) weakly increasing function vi(q),
which depends only on q, quantifying how much each bidder values quality.

Apart from these symmetric valuation functions, we also consider non-
symmetric ones involving � different classes of experts. The bidders are par-
titioned into sets N1, N2, . . . , N�, depending on their expertise, and the quality
1 Note that the actual k signal values need not be {0, 1, . . . , k − 1}, but we need them

to be equidistant for our results to hold.
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estimate from each expert group �′ is their average signal, i.e., q�′ =
∑

i∈N�′ si.
In this case, the quality of the good is captured by the shared quality vector
q = (q1, q2, . . . , q�), and each bidder’s valuation is a function vi(q). The only
restriction on the valuation function is that it is weakly increasing with respect
to the underlying signals, but it can otherwise arbitrarily depend on the quality
vector. For instance, this allows us to model settings where the signals of each
group of experts imply the quality of the good with respect to some dimension,
and each bidder can then synthesize this information into a quite complicated
valuation function, depending on the aspects that she cares about the most.

In this section, we first provide a lower bound for the approximability of the
optimal social welfare by universally ex-post IC-IR auctions, parameterized by
k and �. We then provide a way to leverage the ideas from the previous section
to achieve essentially matching upper bounds using clock auctions and ensuring
incentive guarantees even better than ex-post IC-IR.

4.1 Approximation Lower Bound for Ex-Post IC-IR Auctions

We first prove a lower bound for the welfare approximation that one can achieve
for the class of instances of this section involving � types of experts with k signal
values each. It is worth noting that the construction for this lower bound is
based on a simple class of valuation functions that only depend on the weighted
average of the bidder’s signals (with each expert group having a different weight
coefficient). Also, for the case k = 2, i.e., the binary case considered in the
previous section, this implies a lower bound of � + 1.

Theorem 6. No ex-post incentive compatible auction with � types of experts and
shared quality functions can achieve better than an �(k − 1) + 1-approximation
to the optimal welfare.

Proof. We consider a particularly simple setting, in which the quality of the
good can be summarized as a weighted average of all the bidders’ signals (with
bidders from different expertise classes given different weights). Note that this is
readily captured by the model described above. It follows that when we reduce
the signal of i by d > 0, the quality of the good changes by dwi. Note that d can
be at most k − 1 different values. We construct a valuation function as follows.
For each j ∈ {0, 1, . . . , � − 1}, we define the valuation function of bidder i where
(k − 1) · j + 1 ≤ i ≤ (k − 1) · (j + 1) as follows:

vi(t) =

{
Δi if t ≥ S − (i − (k − 1) · j) · wi,

0 otherwise.

Finally, for bidder i′ = (k − 1) · � + 1 (who has signal 0 in s), vi′(t) = Δi′ when
t ≥ S and vi′(t) = 0 otherwise. We let Δ1 = 1 and ∀i > 1, Δi = HΔi−1 (H is
arbitrarily large). In other words, at any of these qualities, we must allocate the
good to the optimal bidder with probability 1/α to obtain an α-approximation to
the optimal welfare in the worst case. To obtain a �(k −1)+1− ε approximation
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for ε > 0, it then must be that we allocate the good to the optimal bidder at all
of these qualities with probability at least 1/(�(k −1)+1− ε). But then we have
that for all d ∈ {1, 2, . . . , k − 1} and w ∈ {1, k, . . . , k�−1} if we allocate the good
to the optimal bidder i when the quality is S − dw with probability p, we must
continue to allocate the good to i with probability p when the quality is S in
order to maintain universal ex-post incentive compatibility (by monotonicity of
an allocation rule). Finally, since there are �(k−1)+1 qualities identified above,
each of the distinct optimal bidders at these qualities must be allocated the good
with probability at least 1/(�(k − 1) + 1 − ε) at quality S, a contradiction. ��

4.2 A Clock Auction for Instances with Shared Quality Functions

We now provide a way to reduce this problem to the case of binary signals,
while losing only a k − 1 factor in our bounds. As a result, the induced upper
bounds closely approximate the lower bound provided above. The majority of
this section discusses how Mechanism 2 achieves this reduction for the case where
�, and then briefly explain how to generalize our bounds for instances with � > 1.

Similarly to Mechanism 1 in the binary setting, whose goal is to discover
the number of signals that are high, Mechanism 2 aims to discover the value
of the sum of the signals. Throughout its execution, the auction maintains an
interval [qmin, qmax] such that the true sum q is guaranteed to be in that interval.
It gradually refines this range by discovering bidder signals as in the binary
setting. The main difference is that we now need to be more careful in order to
ensure that the size of R∗ remains low. To achieve this, the auction chooses some
m ∈ {0, 1, . . . , k − 2} uniformly at random and assumes that q mod (k − 1) =
m. It thus randomly reduces the number of values of q that it considers from
n(k − 1) + 1 (since the sum can initially range from 0 to n(k − 1)) to just n + 1
(which is equal to the length of the [qmin, qmax] interval in the case of binary
signals). Importantly, the values of q that are considered after this sampling are
spaced apart by k − 1, allowing us to upper bound the size of R∗.

Lemma 2. The set of R∗ in Mechanism 2 is never more than 2.

Theorem 7. The signal discovery auction achieves a 5(k−1) approximation of
the optimal welfare for instances with shared quality functions.

Theorem 8. The pricing rule of the signal discovery auction can be adjusted to
achieve revenue which is a 10(k − 1) approximation of the optimal welfare for
instances with shared quality functions.

Theorem 9. Mechanism 2 can be implemented as an ascending clock auction
over the signals wherein consistent bidding is an obvious ex-post equilibrium.

Theorem 10. Mechanism 2 can be modified to yield a 5(k − 1)�-approximation
of the optimal welfare and achieve revenue which is a 10(k − 1)�-approximation
of the optimal welfare for shared quality functions with � expertise types.
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Mechanism 2: Signal discovery auction for k signal values
1 Let A ← N , R∗ ← ∅, qmin ← 0, and qmax ← n(k − 1)
2 Choose some m ∈ {0, 1, . . . , k − 2} uniformly at random
3 S ← {q ∈ [qmin, qmax] | q mod (k − 1) = m}
4 while |A| > 1 do

// A ‘‘costly’’ signal discovery

5 Select a bidder i ∈ A uniformly at random
6 Let A ← A\{i} and R∗ ← R∗ ∪ {i}
7 qmax ← qmax − (k − 1 − si)
8 qmin ← qmin + si

// A sequence of ‘‘free’’ signal discoveries

9 while ∃j ∈ A that is not optimal for any q ∈ S ∩ [qmin, qmax] do
10 A ← A\{j}
11 qmax ← qmax + sj − k + 1
12 qmin ← qmin + sj
13 while ∃j ∈ R∗ that is not optimal for any q ∈ S ∩ [qmin, qmax] do
14 R∗ ← R∗\{j}
15 Let i be the single bidder in A
16 Choose the smallest quality level q′ ∈ S ∩ [qmin, qmax] for which i is optimal
17 if vi(q(s)) ≥ vi(q

′) then
18 Award the good to i at price vi(q

′)

5 General Valuation Functions and Signal Values

We now turn to the more general case where the quality of the good is any weakly
increasing function of the signals that treats bidders with the same expertise type
symmetrically. We provide an approximation lower bound for any allocation
function that is monotone: a necessary condition of ex-post IC. We conclude our
results by proving that there exists a universally IC-IR auction that matches
the approximation ratio lower bound. We can adjust the mechanism to achieve
revenue that is k · (�

(
k
2

)
+ 1) approximation of the welfare.

Theorem 11. No ex-post incentive compatible auction can get more than a
�
(
k
2

)
+1-approximation to the optimal welfare. Also, no universally ex-post IC-IR

auction can obtain revenue more than a �
(
k
2

)
+ 1 fraction of the revenue.

Theorem 12. There exists a universally ex-post IC-IR auction that achieves a
�
(
k
2

)
+ 1-approximation to the optimal welfare.

Theorem 13. There exists a universally ex-post IC-IR auction that obtains rev-
enue that is a k · (�

(
k
2

)
+ 1) approximation to the social welfare.
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Abstract. Selecting the most influential agent in a network has huge
practical value in applications. However, in many scenarios, the graph
structure can only be known from agents’ reports on their connections.
In a self-interested setting, agents may strategically hide some connec-
tions to make themselves seem to be more important. In this paper,
we study the incentive compatible (IC) selection mechanism to prevent
such manipulations. Specifically, we model the progeny of an agent as
her influence power, i.e., the number of nodes in the subgraph rooted at
her. We then propose the Geometric Mechanism, which selects an agent
with at least 1/2 of the optimal progeny in expectation under the prop-
erties of incentive compatibility and fairness. Fairness requires that two
roots with the same contribution in two graphs are assigned the same
probability. Furthermore, we prove an upper bound of 1/(1 + ln 2) for
any incentive compatible and fair selection mechanisms.

Keywords: Incentive compatibility · Mechanism design · Influence
approximation

1 Introduction

The motivation for influential agent selection in a network comes from real-world
scenarios, where networks are constructed from the following/referral relation-
ships among agents and the most influential agents are selected for various pur-
poses (e.g., information diffusion [10] or opinion aggregation). However, in many
cases, the selected agents are rewarded (e.g., coupons or prizes), and the network
structures can only be known from their reports on their following relationships.
Hence, agents have incentives to strategically misreport their relationships to
make themselves selected, which causes a deviation from the optimal results. An
effective selection mechanism should be able to prevent such manipulations, i.e.,
agents cannot increase their chances to be selected by misreporting, which is a
key property called incentive compatibility.

There have been many studies about incentive compatible selection mecha-
nisms with different influential measurements for various purposes (e.g., maxi-
mizing the in-degrees of the selected agent [1,5,7]). In this paper, we focus on
selecting an agent with the largest progeny. For this purpose, the following two
c© Springer Nature Switzerland AG 2021
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papers are the most related studies. Babichenko et al. [3] proposed the Two Path
Mechanism based on random walks. Although their mechanism achieves a good
approximation ratio of 2/3 between the expected and the optimal influence in
trees, it has no guaranteed performance in forests or general directed acyclic
graphs (DAGs). Furthermore, Babichenko et al. [4] advanced these results by
proposing another two selection mechanisms with an approximation ratio of
about 1/3 in forests. In these two papers, the authors assumed that agents can
add their out-edges to any other agents in the network. This strong assumption
limited the design of incentive compatible mechanisms. Also, in many cases,
agents cannot follow someone they do not know. Therefore, we focus on the
manipulation of hiding the connections they already have. In practice, it is pos-
sible that two agents know each other, but they are not connected. Then they
are more than welcome to connect with each other, which is not harmful for the
selection. Moreover, there still exists a noticeable gap between the approxima-
tion ratios of existing mechanisms and a known upper bound of 4/5 [4] for all
incentive compatible selection mechanisms in forests. Therefore, by restricting
the manipulations of agents, we want to investigate whether we can do better.

Furthermore, the previous studies mainly explored the forests, while in this
paper, we also looked at DAGs. A DAG forms naturally in many applications
because there exist sequential orders for agents to join the network. Each agent
can only connect to others who joined the network before her, e.g., a reference
or referral relationship network. Then, in a DAG, each node represents an agent,
and each edge represents the following relationship between two agents.

In this setting, the action of each agent is to report a set of her out-edges,
which can only be a subset of her true out-edges. The goal is to design selection
mechanisms to incentivize agents to report their true out-edge sets. Besides
the incentive compatibility, we also consider another desirable property called
fairness. Fairness requires that two agents with the maximum progeny in two
graphs share the same probability of being selected if their progeny make no
difference in both graphs (the formal definition is given in Sect. 2). Then, we
present an incentive compatible selection mechanism with an approximation
ratio of 1/2 and prove an upper bound of 1/(1+ln 2) for any incentive compatible
and fair selection mechanism.

1.1 Our Contributions

We focus on the incentive compatible selection mechanism in DAGs. It is natural
to assign most of the probabilities to select agents with more progeny to achieve
a good approximation ratio. Thus, we identify a special set of agents in each
graph, called the influential set. Each agent in the set, called an influential node,
is a root with the maximum progeny if deleting all her out-edges in the graph.
They are actually the agents who have the chances to make themselves the
optimal agent with manipulations. On the other hand, we also define a desirable
property based on the graph structure, called fairness. It requires that the most
influential nodes (the agents with the maximum progeny) in two graphs have
the same probability to be selected if the number of nodes in the two graphs,
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the subgraphs constructed by the two nodes’ progeny, and the influential sets
are all the same.

Based on these ideas, we propose the Geometric Mechanism, which only
assigns positive probabilities to the influential set. Each influential node will
be assigned a selection probability related to her ranking in the influential set.
We prove that the Geometric Mechanism satisfies the properties of incentive
compatibility and fairness and can select an agent with her progeny no less
than 1/2 of the optimal progeny in expectation. The approximation ratio of
the previous mechanisms is at most 1/ ln 16 (≈ 0.36). Under the constraints
of incentive compatibility and fairness, we also give an upper bound of 1/(1 +
ln 2) for the approximation ratio of any selection mechanism, while the previous
known upper bound for any incentive compatible selection mechanism is 4/5.

1.2 Other Related Work

Without the Constraint of Incentive Compatibility. Focusing on influ-
ence maximization, Kleinberg [11] proposed two models for describing agents’
diffusion behaviours in networks, i.e., the linear threshold model and the inde-
pendent cascade model. It is proved to be NP-hard to select an optimal subset
of agents in these two models. Following this, there are studies on efficient algo-
rithms to achieve bounded approximation ratios between the selected agents and
the optimal ones under these two models [9,12,15,21].

In cases where only one influential agent can be selected, the most related
literature also studied methods to rank agents based on their abilities to influ-
ence others in a given network, i.e., their centralities in the network. A common
way is to characterize their centralities based on the structure of the network.
In addition to the classic centrality measurements (e.g., closeness and between-
ness [13,19]) or Shapley value based characterizations [17], there are also other
ranking methods in real-world applications, such as PageRank [18] where each
node is assigned a weight according to its connected edges and nodes.

With the Constraint of Incentive Compatibility. In this setting, incentive
compatible selection mechanisms are implemented in two ways: with or without
monetary payments. The first kind of mechanism incentivizes agents to truth-
fully reveal their information by offering them payments based on their reports.
For example, Narayanam et al. [16] considered the influence maximization prob-
lem where the network structure is known to the planner, and each agent will be
assigned a fixed positive payment based on influence probabilities they reported.
With monetary incentives, there are also different mechanisms proposed to pre-
vent agents from increasing their utilities by duplicating themselves or colluding
together [6,20,22]. To achieve incentive compatible mechanisms without mon-
etary incentives, the main idea of the existing work is to design probabilistic
selection mechanisms and ensure that each agent’s selection probability is inde-
pendent of her report [1,2,7]. For example, Alon et al. [1] designed randomized
selection mechanisms in the setting of approval voting, where networks are con-
structed from agents’ reports. Our work belongs to this category.
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2 The Model

Let Gn be the set of all possible directed acyclic graphs (DAGs) with n nodes
and G =

⋃
n∈N∗ Gn be the set of all directed acyclic graphs. Consider a network

represented by a graph G = (N,E) ∈ G, where N = {1, 2, · · · , n} is the node set
and E is the edge set. Each node i ∈ N represents an agent in the network and
each edge (i, j) ∈ E indicates that agent i follows (quotes) agent j. Let Pi be the
set of agents who can reach agent i, i.e., for all agent j ∈ Pi, there exists at least
one path from j to i in the network. We assume i ∈ Pi. Let pi = |Pi| be agent
i’s progeny and p∗ = maxi∈N |Pi| be the maximum progeny in the network.

Our objective is to select the agent with the maximum progeny. However, we
do not know the underlying network and can only construct the network from
the following/referral relationships declared by all agents, i.e., their out-edges.
In a game-theoretical setting, agents are self-interested. If we simply choose an
agent i ∈ N with the maximum progeny, agents who directly follow agent i
may strategically misreport their out-edges (e.g., not follow agent i) to increase
their chances to be selected. Therefore, in this paper, our goal is to design a
selection mechanism to assign each agent a proper selection probability, such
that no agent can manipulate to increase her chance to be selected and it can
provide a good approximation of the expected progeny in the family of DAGs.

For each agent i ∈ N , her type is denoted by her out-edges θi = {(i, j) |
(i, j) ∈ E, j ∈ N}, which is only known to her. Let θ = (θ1, · · · , θn) be the
type of all agents and θ−i be the type of all agents expect i. Let θ′

i be agent i’s
report to the mechanism and θ′ = (θ′

1, · · · , θ′
n) be the report profile of all agents.

Note that agents do not know the others except for the agents they follow in
the network. Then θ′

i ⊆ θi should hold for all i ∈ N , which satisfies the Nested
Range Condition [8] thus guarantees the revelation principles. Thereby, we focus
on direct revelation mechanism design here. Let Φ(θi) be the space of all possible
report profiles of agent i with true type θi, i.e., Φ(θi) = {θ′

i | θ′
i ⊆ θi}. Let Φ(θ)

be the set of all possible report profiles of all agents with true type profile θ.
Given n agents, let Θn be the set of all possible type profile of n agents. Given

θ ∈ Θn and a report profile θ′ ∈ Φ(θ), let G(θ′) = (N,E′) be the graph con-
structed from θ′, where N = {1, 2, · · · , n} and E′ = {(i, j) | i, j ∈ N, (i, j) ∈ θ′}.
Denote the progeny of agent i in graph G(θ′) by pi(θ′) and the maximum progeny
in this graph by p∗(θ′). We give a formal definition of a selection mechanism.

Definition 1. A selection mechanism M is a family of functions f : Θn →
[0, 1]n for all n ∈ N

∗. Given a set of agents N and their report profile θ′, the
mechanism M will give a selection probability distribution on N . For each agent
i ∈ N , denote her selection probability by xi(θ′). We have xi(θ′) ∈ [0, 1] for all
i ∈ N and

∑
i∈N xi(θ′) ≤ 1.

Next, we define the property of incentive compatibility for a selection mech-
anism, which incentivizes agents to report their out-edges truthfully.

Definition 2 (Incentive Compatible). A selection mechanism M is incen-
tive compatible (IC) if for all N , all i ∈ N , all θ ∈ Θn, all θ′

−i ∈ Φ(θ−i) and
all θ′

i ∈ Φ(θi), xi((θi, θ
′
−i)) ≥ xi((θ′

i, θ
′
−i)).
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An incentive compatible selection mechanism guarantees that truthfully
reporting her type is a dominant strategy for all agents. An intuitive realiza-
tion is a uniform mechanism where each agent gets the same selection proba-
bility. However, there exists a case where most of the probabilities are assigned
to agents with low progeny, thus leading to an unbounded approximation ratio.
We desire an incentive compatible selection mechanism to achieve a bounded
approximation ratio for all DAGs. We call this property efficiency and define
the efficiency of a selection mechanism by its approximation ratio.

Definition 3. Given a set of agents N = {1, 2, · · · , n}, their true type profile
θ ∈ Θn, the performance of an incentive compatible selection mechanism in the
graph G(θ) is defined by

R(G(θ)) =
∑

i∈N xi(θ)pi(θ)
p∗(θ)

.

We say an incentive compatible selection mechanism M is efficient with an
approximation ratio r if for all N , all θ ∈ Θn, R(G(θ)) ≥ r.

This property guarantees that the worst-case ratio between the expected
progeny of the selected agent and the maximum progeny is at least r for all
DAGs. Without the constraint of incentive compatibility, an optimal selection
mechanism will always choose the agent with the maximum progeny. While in the
strategic setting, an agent with enough progeny can misreport to make herself
the agent with the maximum progeny. We define such an agent as an influential
node. In a DAG, there can be multiple influential nodes. Thus we define them as
the influential set, denoted by Sinf.. For example, in the graph shown in Fig. 1,
when removing agent 3’s out-edge, agent 3 will be the root with the maximum
progeny, same for agents 1 and 2. The formal definitions are as follows.

1

2

3 4 9

5 6 10 11

7 8 12

Fig. 1. An example for illustrating the definition of influential nodes: agents 1, 2, 3 are
the influential nodes and they form the influential set in the graph G.

Definition 4. For a set of agents N = {1, 2, · · · , n}, their true type profile
θ ∈ Θn and their report profile θ′ ∈ Φ(θ), an agent i ∈ N is an influential
node in the graph G(θ′) if pi((θ′

−i, ∅)) 	 pj((θ′
−i, ∅)) for all j 
= i ∈ N , where

pi 	 pj if either pi > pj or pi = pj with i < j.
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Definition 5. For a set of agents N = {1, 2, · · · , n}, their true type profile
θ ∈ Θn and their report profile θ′ ∈ Φ(θ), the influential set in the graph G(θ′)
is the set of all influential nodes, denoted by Sinf.(G(θ′)) = {s1, · · · , sm}, where
si 	 sj holds if and only if pi 	 pj, si 	 sj holds for all m ≥ j > i ≥ 1 and
m = |Sinf.(G(θ′))|.

According to the above definitions, we present three observations about the
properties of influential nodes.

Observation 1. Given a set of agents N = {1, 2, · · · , n}, their true type θ ∈ Θn

and their report profile θ′ ∈ Φ(θ), there must exist a path that passes through all
agents in Sinf.(G(θ′)) with an increasing order of their progeny.

Proof. Let the influential set be Sinf.(G(θ′)) = {s1, · · · , sm}. The statement
shows that agent sj is one of the progeny of agent si for all 1 ≤ i < j ≤ m, then
we can prove it by contradiction.

Assume that there doesn’t exist a path passing through all agents in the
influential set, then there must be an agent j such that sj /∈ Psi

for all 1 ≤ i < j.
Since si, sj ∈ Sinf.(G(θ′)), for all 1 ≤ i < j, we have

psi
((θ′

−si
, ∅)) 	 psj

((θ′
−si

, ∅)), (1)
psj

((θ′
−sj

, ∅)) 	 psi
((θ′

−sj
, ∅)). (2)

We also have psj
((θ′

−sj
, ∅)) = psj

((θ′
−si

, ∅)) and psi
((θ′

−sj
, ∅)) = psi

((θ′
−si

, ∅))
since sj /∈ Psi

and there is no cycle in the graph. With the lexicographical tie-
breaking way, the inequality 1 and 2 cannot hold simultaneously. Therefore, we
get a contradiction. ��
Observation 2. Given a set of agents N = {1, 2, · · · , n}, their true type θ ∈
Θn and their report profile θ′ ∈ Φ(θ), let Sinf.(G(θ′)) = {s1, · · · , sm} be the
influential set in the graph G(θ′). Then, agent s1 has no out-edges and she is the
one with the maximum progeny, i.e., agent s1 is the most influential node.

Proof. We prove this statement by contradiction. Assume that agent s1 has at
least one out-edge. Then there must exist an agent i ∈ N such that s1 ∈ Pi

and pi((θ′
−i, ∅)) 	 pk((θ′

−i, ∅)) for all k 
= i, otherwise there must exist an agent
j ∈ N such that s1 /∈ Pj and pj((θ′

−i, ∅)) 	 pi((θ′
−i, ∅)), which means that

s1 /∈ Sinf.(G(θ′)) since pi((θ′
−i, ∅)) 	 ps1((θ

′
−i, ∅)). Thus, such an i must exist

when agent s1 has out-edges. Now, we must have i ∈ Sinf.(G(θ′)) and pi 	 ps1 ,
which contradicts with ps1 	 pj for all j ∈ Sinf.(G(θ′)) and j 
= s1.

Then we can conclude that agent s1 has no out-edges. Since ps1((θ
′
−s1

, ∅))
	 pk((θ′

−s1
, ∅)) for all k 
= s1, we can get that agent s1 has the maximum progeny

in the graph G(θ′) and she is the most influential node. ��
Observation 3. Given a set of agents N = {1, 2, · · · , n}, their true type profile
θ ∈ Θn, for all agent i ∈ N , all θ′

−i ∈ Φ(θ−i), if agent i is not an influential
node in the graph G((θ′

−i, θi)), she cannot make herself an influential node by
misreporting.
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Proof. Given other agents’ report θ′
−i, whether an agent i can be an influential

node depends on the relation between pi((θ′
−i, ∅)) and pj((θ′

−i, ∅)), rather than
the out-edges reported by agent i. ��

There is one additional desirable property we consider in this paper. Consider
two graphs G,G′ ∈ Gn illustrated in Fig. 2, where they have the same influential
set (Sinf.(G) = Sinf.(G′)) and s1 is the most influential node in both graphs.
Additionally, the subgraphs constructed by agents in Ps1 are the same in both
G and G′ (The red parts in Fig. 2, represented by G(s1) = G′(s1)). The only
difference between the two graphs lies in the edges that are not in the subgraphs
constructed by agents in Ps1 (The yellow parts in Fig. 2).

G \G(s1)

Sinf.(G)

G(s1)
s1

· · ·· · ·

· · ·
· · ·

G

G′ \G′(s1)

Sinf.(G′)

G′(s1)
s1

· · ·· · ·

· · ·
· · ·

G′

Fig. 2. Example for fairness: in graphs G and G′, Sinf.(G) = Sinf.(G′), G(s1) = G′(s1);
the only difference is in the yellow parts. Fairness requires that xs1(G) = xs1(G

′).
(Color figure online)

We can observe that s1 and all her progeny have the same contributions in
the two graphs intuitively. Therefore, it is natural to require that a selection
mechanism assigns the same probability to s1 in the two graphs. We call this
property fairness and give the formal definition as follows.

Definition 6 (Fairness). For a graph G = (N,E) ∈ G, define a subgraph
constructed by agent i’s progeny as G(i) = (Pi, Ei), where Ei = {(j, k) | j, k ∈
Pi, (j, k) ∈ E} and i ∈ N .

A selection mechanism M is fair if for all N , for all G,G′ ∈ Gn where
Sinf.(G) = Sinf.(G′) = {s1, · · · , sm} and G(s1) = G′(s1), then xs1(G) =
xs1(G

′).

3 Geometric Mechanism

In this section, we present the Geometric Mechanism, denoted by MG. In Obser-
vation 3, an agent without enough progeny cannot make herself an influential
node by reducing her out-edges. Therefore, to maximize the approximation ratio,
we can just assign positive selection probabilities to agents in the influential set.
This is the intuition of the Geometric Mechanism.
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Geometric Mechanism

1. Given the set of agents N = {1, 2, · · · , n}, their true type profile θ ∈ Θn

and their report profile θ′ ∈ Φ(θ), find the influential set Sinf. in the
graph G(θ′):

Sinf.(G(θ′)) = {s1, · · · , sm},

where si 	 si+1 for all 1 ≤ i ≤ m − 1.
2. The mechanism gives the selection probability distribution on all agents

as the following.

xi =

{
1/(2m−j+1), i = sj ,

0, i /∈ Sinf.(G(θ′)).

Note that the Geometric Mechanism assigns each influential node a selection
probability related to her ranking in the influential set. Besides, an agent’ prob-
ability is decreasing when her progeny is increasing. This is reasonable because
if an influential node j is one of the progeny of another influential node i, the
contribution of agent i partially relies on j. To guarantee efficiency and incentive
compatibility simultaneously, we assign a higher probability to agent j compared
to agent i. We give an example to illustrate how our mechanism works below.

Example 1. Consider the network G shown in Fig. 3. We can observe that only
agents 1 and 2 will have the largest progeny in the graphs when they have no out-
edges respectively. Thus, the influential set is Sinf.(G) = {1, 2}. Since p1 	 p2,
then according to the probability assignment defined in the Geometric Mecha-
nism, we choose agent 1 with probability 1/4, choose agent 2 with probability
1/2 and choose no agent with probability 1/4. The expected progeny chosen by
the Geometric Mechanism in this graph is

E[p] =
1
2

× 6 +
1
4

× 8 = 5.

1

2 3 4

9

5 6

10

7 8

Fig. 3. An example for the geometric mechanism.
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On the other hand, the largest progeny is given by agent 1, which is 8, so
that the expected ratio of the Geometric Mechanism in this graph is 5/8.

Next, in Theorems 1 and 2, we show that our mechanism satisfies the prop-
erties of incentive compatibility and fairness and has an approximation ratio of
1/2 in the family of DAGs.

Theorem 1. In the family of DAGs, the Geometric Mechanism satisfies incen-
tive compatibility and fairness.

Proof. In the following, we give the proof for these properties separately.

Incentive Compatibility. Given a set of agents N = {1, 2, · · · , n}, their true
type θ ∈ Θn and their report profile θ′ ∈ Φ(θ), let G(θ′) be the graph constructed
by θ′, and Sinf.(G(θ′)) be the influential set in G(θ′). To prove that the mech-
anism is incentive compatible, we need to show that xi((θ′

−i, θi)) ≥ xi((θ′
−i, θ

′
i))

holds for all agent i ∈ N .

– According to Observation 3, for agent i /∈ Sinf.(G((θ′
−i, θi))), she cannot mis-

report to make herself be an influential node. Thus, her selection probability
will always be zero.

– If agent i ∈ Sinf.(G((θ′
−i, θi))), she cannot misreport to make herself be out

of the influential set. Suppose Sinf.(G((θ′
−i, θi))) = {s1, · · · , sm} and i = sl,

1 ≤ l ≤ m. Denote the set of influential nodes in her progeny when she
truthfully reports by Si((θ′

−i, θi)) = {j ∈ Sinf.(G((θ′
−i, θi))) | pi((θ′

−i, θi))
	 pj((θ′

−i, θi))}. Then agent i’s selection probability in the graph G((θ′
−i, θi))

is xi((θ′
−i, θi)) = 1/(2m−l+1) = 1/(2|Si((θ

′
−i,θi))|+1).

When she misreports her type as θ′
i ⊂ θi, i.e., deleting a nonempty sub-

set of her real out-edges, pj((θ′
−j , ∅)) 	 pk((θ′

−j , ∅)) still holds for all
j ∈ Si((θ′

−i, θi)), all k ∈ N and k 
= j. This can be inferred from
Observation 1, agent j is one of the progeny of agent i for all j ∈
Si. Thus, agent i’s report will not change agent j’s progeny. Moreover,
some other agent t ∈ Pi may become an influential node in the graph
G((θ′

−i, θ
′
i)), since maxk∈N,k �=t pk((θ′

−t, ∅)) may be decreased and pt((θ′
−t, ∅))

keeps unchanged. Then we can get Si((θ′
−i, θi)) ⊆ Si((θ′

−i, θ
′
i)), which implies

that xi((θ′
−i, θi)) = 1/2|Si((θ

′
−i,θi))|+1 ≥ xi((θ′

−i, θ
′
i)) = 1/2|Si((θ

′
−i,θ

′
i))|+1.

Thus, no agent can increase her probability by misreporting her type and the
Geometric Mechanism satisfies incentive compatibility.

Fairness. For any two graph G,G′ ∈ Gn, if their influential sets and the sub-
graphs constructed by the progeny of the most influential node are both the
same, i.e., Sinf.(G) = Sinf.(G′) = {s1, · · · , sm} and G(s1) = G′(s1), according
to the definition of Geometric Mechanism, agent s1 will always get a selection
probability of 1/2m. Therefore, the Geometric Mechanism satisfies fairness. ��
Theorem 2. In the family of DAGs, the Geometric Mechanism can achieve an
approximation ratio of 1/2.
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Proof. Given a graph G = (N,E) ∈ G and its influential set Sinf.(G) =
{s1, · · · , sm}, the maximum progeny is p∗ = ps1 . Then the expected ratio should
be

R =
E[p]
p∗ =

∑
i∈Sinf.(G) xipi

p∗

=
∑m

i=1 1/(2m−i+1) · psi

p∗

=
m∑

i=2

1
2m−i+1

· psi

ps1

+
1

2m
· ps1

ps1

≥
m−1∑

j=1

1
2j

· 1
2

+
1

2m

=
1
2

− 1
2m

+
1

2m
=

1
2
.

The inequality holds since psi
/ps1 ≥ 1

2 holds for all 1 ≤ i ≤ m − 1. This can be
inferred from Observation 1, agent si is one of agent s1’s progeny for all i > 1. If
psi

/ps1 < 1
2 , then we will have psi

((θ−si
, ∅)) ≺ ps1((θ−si

, ∅)), which contradicts
with that si ∈ Sinf.(G).

The expected ratio holds for any directed acyclic graph, which means that

rMG
= min

G∈G
R(G) =

1
2
.

Thus we complete the proof. ��

4 Upper Bound and Related Discussions

In this section, we further give an upper bound for any incentive compatible
and fair selection mechanisms in Theorem 3. After that, we consider a special
class of selection mechanisms, called root mechanisms (detailed in Sect. 4.2),
which contains the Geometric Mechanism. Then, we propose two conjectures
on whether root mechanisms and fairness will limit the upper bound of the
approximation ratio.

4.1 Upper Bound

We prove an upper bound for any IC and fair selection mechanisms as below.

Theorem 3. For any incentive compatible and fair selection mechanism M,
rM ≤ 1

1+ln 2 .

Proof. Consider the graph G = (N,E) shown in Fig. 4, the influential set in G
is Sinf.(G) = {2k − 1, 2k − 2, · · · , k}. When k → ∞, for each agent i, i ≤ k − 1,
their contributions can be ignored, it is without loss of generality to assume that
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they get a probability of zero, i.e., xi(G) = 0. Then, applying a generic incentive
compatible and fair mechanism M in the graph G, assume that xi(G) = βi−k is
the selection probability of agent i, βi−k ∈ [0, 1] and

∑2k−1
i=k βi−k ≤ 1.

For each agent i ∈ N , set Ni = Pi(G), N−i = N\Ni, Ei = {(j, k) | j, k ∈
Ii, (j, k) ∈ E} and E−i = E\{Ei ∪ θi}. Define a set of graphs Gi = {G′ =
(G(i);G(−i)) | G(−i) = (N−i, E

′
−i), E

′
−i ⊆ E−i}. Then for any graph G′ ∈ Gi,

it is generated by deleting agent i’s out-edge and a subset of out-edges of agent
i’s parent nodes, illustrated in Fig. 4. For any i ≥ k and any graph G′ ∈ Gi, the
influential set in the graph G′ should be Sinf.(G′) = {i, i − 1, · · · , k}.

Fig. 4. The upper part is the origin graph G. The bottom part is an example in Gi:
for any i ≥ k, any graph (G(i);G(−i)) ∈ Gi, the graph (G(i);G(−i)) is generated by
dividing G into two parts. Then, G(i) is generated by keeping the same as the first
part, G(−i) is then generated by deleting some of the edges in the second part. Note
that there is no edge between i and i + 1.

To get the upper bound of the approximation ratio, we consider a kind of
“worst-case” graphs where the contributions of agents except influential nodes
can be ignored when k → ∞. Since the mechanism M satisfies the fairness, it
holds that xi(G′) = xi(G′′) for any two graphs G′, G′′ ∈ Gi. Then for any graph
G′ ∈ Gk, agent k is assigned the same probability. Thus, we can find that in the
graph set Gk, the “worst-case” graph Gk is a graph where there are only edges
between k and i, 1 ≤ i ≤ k − 1 (shown in Fig. 5).

Since no matter how much the probability the mechanism assigns to other
agents, the expected ratio for the graph Gk approaches the probability xk(Gk)
when k → ∞, i.e.,

lim
k→∞

R(Gk) ≤ lim
k→∞

xk(Gk) +
1
k

· (1 − xk(Gk)) = xk(Gk).

The inequality holds since
∑2k−1

i=1 xi(Gk) ≤ 1. Similarly, for any k < j ≤ 2k − 2,
the “worst-case” graph Gj in Gj is the graph where the out-edge of agent i is
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Fig. 5. The “worst-case” graph Gk in the set Gk.

deleted for all i ≥ j. When k → ∞, the expected ratio in the graph Gj is

lim
k→∞

R(Gj) ≤ lim
k→∞

j∑

i=k

xi(Gj) · i

j
+

1
j

·
(

1 −
j∑

i=k

xi(Gj)

)

=
j∑

i=k

xi(Gj) · i

j
.

Therefore, in these “worst-case” graphs, we assume that only influential nodes
can be assigned positive probabilities. Suppose that for the graph Gj , k ≤ j ≤
2k − 2, an influential node i gets a probability of xi = β

(j−i)
i−k for k ≤ i ≤ j.

Since the mechanism M is incentive compatible, it holds that xi(G) ≥ xi(G′)
for all G′ ∈ Gi and all i ∈ N . To maximize the expected progeny of the selected
agent in all graphs, we can set xi(G′) = xi(G) for all G′ ∈ Gi and all i ∈ N .
Similarly, it also holds that xi(G′′) ≥ xi(G′) for any i ∈ N , any G′ ∈ Gi, any
G′′ ∈ Gj and k ≤ i < j ≤ 2k−1. When k → ∞, we can compute the performance
of the mechanism M in different graphs as the following.

R(Gj) =
j∑

i=k

β
(j−i)
i−k · i

j
, k ≤ j ≤ 2k − 2,

R(G) =
2k−1∑

i=k

βi−k · i

2k − 1
,

with β
(j−i)
i−k ≥ β

(0)
i−k, β

(0)
i−k = βi−k, k ≤ i ≤ 2k − 1, k ≤ j ≤ 2k − 2. The

approximation ratio of the mechanism M should be at most the minimum of
R(Gj) and R(G) for k ≤ j ≤ 2k − 2, i.e.,

rM ≤ min

{
β
(0)
0 , β

(1)
0 · k

k + 1
+ β

(0)
1 , · · · , β0 · k

2k − 1
+ β1 · k + 1

2k − 1
+ · · · + βk−1

}
.

Then we can choose β
(j−i)
i−k to achieve the highest minimum expected ratio. We

find that rM ≤ 1
1+ln 2 and the equation holds when k → ∞ and

⎧
⎪⎨

⎪⎩

β
(j−i)
i−k = βi−k,

β0 + β1 + · · · + βk−1 = 1,

β
(0)
0 = β

(1)
0 · k

k+1 + β
(0)
1 = · · · = β0 · k

2k−1 + β1 · k+1
2k−1 + · · · + βk−1.

��
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4.2 Open Questions

Note that the approximation ratio of the Geometric Mechanism is close to the
upper bound we prove in Sect. 4.1. However, there is still a gap between them.
In this section, we suggest two open questions which narrow down the space for
finding the optimal selection mechanism.

Root Mechanism. Recall that our goal in this paper is to maximize the
approximation ratio between the expected progeny of the selected agent and
the maximum progeny. If requiring incentive compatibility, a selection mecha-
nism cannot simply select the most influential node. However, we can identify
a subset of agents who can pretend to be the most influential node. This is the
influential set we illustrate in Definition 5, and we show that agents cannot be
placed into the influential set by misreporting as illustrated in Observation 3.
Utilizing this idea, we see that if we assign positive probabilities only to these
agents, then the selected agent has a large progeny, and agents have less chance
to manipulate. We call such mechanisms as root mechanisms.

Definition 7. A root mechanism MR is a family of functions fR : Θn → [0, 1]n

for all n ∈ N
∗. Given a set of agents N and their report profile θ′, a root

mechanism MR only assigns positive selection probabilities to agents in the set
Sinf.(G(θ′)). Let xi(θ′) be the probability of selecting agent i ∈ N . Then xi(θ′) =
0 for all i /∈ Sinf.(G(θ′)), xi(θ′) ∈ [0, 1] for all i ∈ N and

∑
i∈N xi(θ′) ≤ 1.

It is clear that our Geometric Mechanism is a root mechanism, whose approx-
imation ratio is not far from the upper bound of 1/(1+ln 2). We conjecture that
an optimal incentive compatible selection mechanism and an optimal incentive
compatible root mechanism share the same approximation ratio bound.

Conjecture 1. If an optimal incentive compatible root mechanism MR has an
approximation ratio of r∗

MR
, there does not exist other incentive compatible

selection mechanism that can achieve a strictly better approximation ratio.

Proof (Discussion). An optimal incentive compatible selection mechanism will
usually try to assign more probabilities to agents with more progeny. Following
this way, we assign zero probability to all agents who are not an influential
node and find a proper probability distribution for the influential set, rather
than giving non-zero probabilities to all agents. Since any agent who is not an
influential node cannot make herself in the influential set when other agents’
reports are fixed, this method will not cause a failure for incentive compatibility.

��

Fairness. Note that the upper bound of 1/(1+ln 2) is for all incentive compati-
ble and fair selection mechanisms. We should also consider whether an incentive
compatible selection mechanism can achieve a better approximation ratio with-
out the constraint of fairness. Here, we conjecture that an incentive compatible
selection cannot achieve an approximation ratio higher than 1/(1 + ln 2) if the
requirement of fairness is relaxed.
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Conjecture 2. If an optimal incentive compatible and fair mechanism M can
achieve an approximation ratio of r∗

M, there does not exist other incentive com-
patible mechanism with a strictly higher approximation ratio.

Proof (Discussion). Let Gf be a set of graphs where for any two graphs
G,G′ ∈ Gf , their number of nodes, their influential sets Sinf.(G) = Sinf.(G′) =
{s1, · · · , sm} and the subgraphs constructed by agent s1’s progeny are same. If
an incentive compatible selection mechanism is not fair, there must exist such
a set Gf where the mechanism fails fairness. Then the expected ratios in two
graphs in Gf may be different, and the graph with a lower expected ratio might
be improved since these two graphs are almost equivalent. One possible way for
proving this conjecture is to design a function that reassigns probabilities for
all graphs in Gf such that xs1 is the same for these graphs without hurting the
property of incentive compatibility, and all graphs in Gf then share the same
expected ratio without hurting the efficiency of the selection mechanism. ��

5 Conclusion

In this paper, we investigate a selection mechanism for choosing the most influen-
tial agent in a network. We use the progeny of an agent to measure her influential
level so that there exist some cases where an agent can decrease her out-edges
to make her the most influential agent. We target selection mechanisms that can
prevent such manipulations and select an agent with her progeny as large as
possible. For this purpose, we propose the Geometric Mechanism that achieves
at least 1/2 of the optimal progeny. We also show that no mechanism can achieve
an expected progeny of the selected agent that is greater than 1/(1+ ln 2) of the
optimal under the conditions of incentive compatibility and fairness.

There are several interesting aspects that have not been covered in this paper.
First of all, there is still a gap between the efficiency of our proposed mechanism
and the given upper bound. One of the future work is to find the optimal mech-
anism if it exists. In this direction, we also leave two open questions for further
investigations. Moreover, selecting a set of influential agents rather than a single
agent is also important in real-world applications (e.g., ranking or promotion).
So another future work is to extend our results to the settings where a set of k
(k > 1) agents need to be selected.
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Abstract. Finding the minimum approximate ratio for Nash equilib-
rium of bi-matrix games has derived a series of studies, started with
3/4, followed by 1/2, 0.38 and 0.36, finally the best approximate ratio
of 0.3393 by Tsaknakis and Spirakis (TS algorithm for short). Efforts to
improve the results remain not successful in the past 14 years.

This work makes the first progress to show that the bound of 0.3393 is
indeed tight for the TS algorithm. Next, we characterize all possible tight
game instances for the TS algorithm. It allows us to conduct extensive
experiments to study the nature of the TS algorithm and to compare it
with other algorithms. We find that this lower bound is not smoothed
for the TS algorithm in that any perturbation on the initial point may
deviate away from this tight bound approximate solution. Other approx-
imate algorithms such as Fictitious Play and Regret Matching also find
better approximate solutions. However, the new distributed algorithm for
approximate Nash equilibrium by Czumaj et al. performs consistently at
the same bound of 0.3393. This proves our lower bound instances gener-
ated against the TS algorithm can serve as a benchmark in design and
analysis of approximate Nash equilibrium algorithms.

Keywords: Approximate Nash equilibrium · Stationary point ·
Descent procedure · Tight instance

1 Introduction

Computing Nash equilibrium is a problem of great importance in a variety of
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It has been shown that Nash equilibrium computing lies in the complexity
class PPAD introduced by Papadimitriou [17]. Its approximate solution has been
shown to be PPAD-complete for 3NASH by Daskalakis, Goldberg and Papadim-
itriou [7], and for 2NASH by Chen, Deng and Teng [3], indicating its compu-
tational intractability in general. This leads to a great many efforts to find an
ε-approximate Nash equilibrium in polynomial time for small constant ε > 0.

Early works by Kontogiannis et al. [13] and Daskalakis et al. [9], introduce
simple polynomial-time algorithms to reach an approximation ratio of ε = 3/4
and ε = 1/2, respectively. Their algorithms are based on searching strategies
of small supports. Conitzer [5] also shows that the well-known fictitious play
algorithm [2] gives a 1/2-approximate Nash equilibrium within constant rounds,
combining Feder et al.’s result [11]. Subsequently, Daskalakis et al. [8] give an
algorithm with an approximation ratio of 0.38 by enumerating arbitrarily large
supports. The same result is achieved by Czumaj et al. in 2016 [6] with a totally
different approach by solving the Nash equilibrium of two zero-sum games and
making a further adjustment. Bosse et al. [1] provide another algorithm based
on the previous work by Kontogiannis and Spirakis [14] that reaches a 0.36-
approximate Nash equilibrium. Concurrently with them, Tsaknakis and Spi-
rakis [18] establish the currently best-known approximation ratio of 0.3393.

The original paper proves that the algorithm gives an upper bound of 0.3393-
approximate Nash equilibrium. However, it leaves the problem open that whether
0.3393 is tight for the algorithm. In literature, the experimental performance of
the algorithm is far better than 0.3393 [19]. The worst ratio in an empirical trial
by Fearnley et al. shows that there is a game on which the TS algorithm gives
a 0.3385-approximate Nash equilibrium [10].

In this work, we prove that 0.3393 is indeed the tight bound for the TS
algorithm [18] by giving a game instance, subsequently solving the open problem
regarding the well-followed the TS algorithm.

Despite the tightness of 0.3393 for the TS algorithm, our extensive exper-
iment shows that it is rather difficult to find a tight instance in practice by
brute-force enumerations. The experiment implies that the practical bound is
inconsistent with the theoretical bound. This rather large gap is a result of the
instability of both the stationary point and the descent procedure searching for
a stationary point.1

Furthermore, we mathematically characterize all game instances able to
attain the tight bound. We do a further experiment to explore for which games
the ratio becomes tight. Based on it, we identify a region that the games gener-
ated are more likely tight instances.

We use the generated game instances to measure the worst-case performances
of the Czumaj et al.’s algorithm [6], the regret-matching algorithm in online
learning [12] and the fictitious play algorithm [2]. The experiments suggest that
the regret-matching algorithm and the fictitious play algorithm perform well.

1 We follow [18] to define a stationary point for a strategy pair of the maximum value
of two players’ deviations: It is one where the directional derivatives in all directions
are non-negative. The formal definition is presented in Definition 2.



On Tightness of the TS Algorithm for Approximate Nash Equilibrium 99

Surprisingly, the algorithm of Czumaj et al. always reaches an approximation
ratio of 0.3393, implying that the tight instance generator for the TS algorithm
beats a totally different algorithm.

This paper is organized in the followings. In Sect. 2, we introduce the basic
definitions and notations that we use throughout the paper. In Sect. 3, we restate
the TS algorithm [18] and propose two other auxiliary methods which help to
analyze the original algorithm. With all preparations, we prove the existence of
a game instance on which the TS algorithm reaches the tight bound b ≈ 0.3393
by giving an example in Sect. 4. Further, we characterize all tight game instances
and present a generator that outputs tight game instances in Sect. 5. At last, We
conduct extensive experiments to reveal the properties of the TS algorithm, and
compare it with other approximate Nash equilibrium algorithms in Sect. 6.

2 Definitions and Notations

We focus on finding an approximate Nash equilibrium on general 2-player games,
where the row player and the column player have m and n strategies, respectively.
Further, we respectively use Rm×n and Cm×n to denote the payoff matrices of
row player and column player. We suppose that both R and C are normalized so
that all their entries belong to [0, 1]. In fact, concerning Nash equilibrium, any
game is equivalent to a normalized game, with appropriate shifting and scaling
on both payoff matrices.

For two vectors u and v, we say u ≥ v if each entry of u is greater than
or equal to the corresponding entry of v. Meanwhile, let us denote by ek a k-
dimension vector with all entries equal to 1. We use a probability vector to define
either player’s behavior, which describes the probability that a player chooses
any pure strategy to play. More specifically, row player’s strategy and column
player’s strategy lie in Δm and Δn respectively, where

Δm = {x ∈ R
m : x ≥ 0, xT em = 1},

Δn = {y ∈ R
n : y ≥ 0, yT en = 1}.

For a strategy pair (x, y) ∈ R
m × R

n, we call it an ε-approximate Nash
equilibrium, if for any x′ ∈ Δm, y′ ∈ Δn, the following inequalities hold:

x′T Ry ≤ xT Ry + ε,

xT Cy′ ≤ xT Cy + ε.

Therefore, a Nash equilibrium is an ε-approximate Nash equilibrium with
ε = 0.

To simplify our further discussion, for any probability vector u, we use

supp(u) = {i : ui > 0},

to denote the support of u, and also

suppmax(u) = {i : ∀j, ui ≥ uj},

suppmin(u) = {i : ∀j, ui ≤ uj},
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to denote the index set of all entries equal to the maximum/minimum entry of
vector u.

At last, we use max(u) to denote the value of the maximal entry of vector
u, and max

S
(u) to denote the value of the maximal entry of vector u confined in

index set S.

3 Algorithms

In this section, we first restate the TS algorithm [18], and then propose two aux-
iliary adjusting methods, which help to analyze the bound of the TS algorithm.

The TS algorithm formulates the approximate Nash equilibrium problem into
an optimization problem. Specifically, we define the following functions:

fR(x, y) := max(Ry) − xT Ry,

fC(x, y) := max(CT x) − xT Cy,

f(x, y) := max {fR(x, y), fC(x, y)} .

The goal is to minimize f(x, y) over Δm × Δn.
The relationship between the above function f and approximate Nash equilib-

rium is as follows. Given strategy pair (x, y) ∈ Δm×Δn, fR(x, y) and fC(x, y) are
the respective deviations of row player and column player. By definition, (x, y)
is an ε-approximate Nash equilibrium if and only if f(x, y) ≤ ε. In other words,
as long as we obtain a point with f value no greater than ε, an ε-approximate
Nash equilibrium is reached.

The idea of TS algorithm is to find a stationary point of the objective function
f by a descent procedure and make a further adjustment on the stationary
point.2 To give the formal definition of stationary points, we need to define the
scaled directional derivative of f as follows:

Definition 1. Given (x, y), (x′, y′) ∈ Δm×Δn, the scaled directional derivative
of (x, y) in direction (x′ − x, y′ − y) is

Df(x, y, x′, y′) := lim
θ→0+

1
θ

(f(x + θ(x′ − x), y + θ(y′ − y)) − f(x, y)) .

DfR(x, y, x′, y′) and DfC(x, y, x′, y′) are defined similarly with respect to fR and
fC .

Now we give the definition of stationary points.

Definition 2. (x, y) ∈ Δm × Δn is a stationary point if and only if for any
(x′, y′) ∈ Δm × Δn,

Df(x, y, x′, y′) ≥ 0.

2 We will see in Remark 1 that finding a stationary point is not enough to reach a
good approximation ratio; therefore the adjustment step is necessary.
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We use a descent procedure to find a stationary point. The descent procedure
is presented in the full version [4] of this paper. It has already been proved
that the procedure runs in the polynomial-time of precision δ to find a nearly
stationary point [19].

Now let SC(x) := suppmax(CT x), SR(y) := suppmax(Ry). To better deal
with Df(x, y, x′, y′), we introduce a new function T as follows:

T (x, y, x′, y′, ρ, w, z) := ρ(wT Ry′ − xT Ry′ − x′T Ry + xT Ry)

+ (1 − ρ)(x′T Cz − xT Cy′ − x′T Cy + xT Cy),

where ρ ∈ [0, 1], w ∈ Δm, supp(w) ⊆ SR(y), z ∈ Δn, supp(z) ⊆ SC(x).3 One
can verify that when fR(x, y) = fC(x, y) (which is a necessary condition for a
stationary point as proved in Proposition 3),

Df(x, y, x′, y′) = max
ρ,w,z

T (x, y, x′, y′, ρ, w, z) − f(x, y).

Now let
V (x, y) := min

x′,y′
max
ρ,w,z

T (x, y, x′, y′, ρ, w, z).

By Definition 2, (x, y) is a stationary point if and only if V (x, y) ≥ f(x, y).
Further, notice that

V (x, y) ≤ max
ρ,w,z

T (x, y, x, y, ρ, w, z) = f(x, y),

therefore, we have the following proposition.

Proposition 1. (x, y) is a stationary point if and only if

V (x, y) = fR(x, y) = fC(x, y).

In the following context, we use (x∗, y∗) to denote a stationary point. By von
Neumann’s minimax theorem [16], we have

Proposition 2.

V (x∗, y∗) = max
ρ,w,z

min
x′,y′

T (x∗, y∗, x′, y′, ρ, w, z),

and there exist ρ∗, w∗, z∗ such that

V (x∗, y∗) = min
x′,y′

T (x∗, y∗, x′, y′, ρ∗, w∗, z∗).

3 Throughout the paper, we suppose that (x, y), (x′, y′) ∈ Δm × Δn, and ρ ∈ [0, 1],
w ∈ Δm, supp(w) ⊆ SR(y), z ∈ Δn, supp(z) ⊆ SC(x). These restrictions are omitted
afterward for fluency.
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We call the tuple (ρ∗, w∗, z∗) a dual solution as it can be calculated by dual
linear programming.

Nevertheless, a stationary point may not be satisfying (i.e., with an approx-
imation ratio of no less than 1/2 in the worst case). In this case, we adjust the
stationary point to another point lying in the following rectangle:

Λ := {(αw∗ + (1 − α)x∗, βz∗ + (1 − β)y∗) : α, β ∈ [0, 1]}.

Different adjustments on Λ derive different algorithms to find an approximate
Nash equilibrium. We present three of these methods below, of which the first
one is the solution by the TS algorithm, and the other two are for the sake of
analysis in Sect. 4. For writing brevity, we define the following two subsets of the
boundary of Λ:

Γ1 := {(αx∗ + (1 − α)w∗, y∗) : α ∈ [0, 1]} ∪ {(x∗, βy∗ + (1 − β)z∗ : β ∈ [0, 1]},

Γ2 := {(αx∗ + (1 − α)w∗, z∗) : α ∈ [0, 1]} ∪ {(w∗, βy∗ + (1 − β)z∗ : β ∈ [0, 1]}.

Method in the TS Algorithm [18]. The first method is the original adjust-
ment given by [18] (known as the TS algorithm in literature). Define the quan-
tities

λ := min
y′:supp(y′)⊆SC(x∗)

{(w∗ − x∗)T
Ry′},

μ := min
x′:supp(x′)⊆SR(y∗)

{x′T C(z∗ − y∗)}.

The adjusted strategy pair is

(xTS, yTS) :=

⎧
⎨

⎩

(
1

1+λ−μw∗ + λ−μ
1+λ−μx∗, z∗

)
, λ ≥ μ,

(
w∗, 1

1+μ−λz∗ + μ−λ
1+μ−λy∗

)
, λ < μ.

Minimum Point on Γ2. For the second method, define

α∗ := argmin
α∈[0,1]

f(αw∗ + (1 − α)x∗, z∗),

β∗ := argmin
β∈[0,1]

f(w∗, βz∗ + (1 − β)y∗).

In a geometric view, our goal is to find the minimum point of f on Γ2.
The strategy pair given by the second method is

(xMB, yMB) :=

{
(α∗w∗ + (1 − α∗)x∗, z∗) , fC(w∗, z∗) ≥ fR(w∗, z∗),
(w∗, β∗z∗ + (1 − β∗)y∗) , fC(w∗, z∗) < fR(w∗, z∗).

Intersection Point of Linear Bound of fR and fC on Γ2. As we will
see later, (xMB, yMB) always behaves no worse than (xTS, yTS) theoretically.
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However, it is rather hard to quantitatively analyze the exact approximation
ratio of the second method. Therefore, we propose a third adjustment method.
Notice that fR(x, y), fC(x, y) and f(x, y) are all convex and linear-piecewise
functions with either x or y fixed. Therefore, they are bounded by linear functions
on the boundary of Λ. Formally, for 0 ≤ p, q ≤ 1, we have

fR(pw∗ + (1 − p)x∗, z∗) = (fR(w∗, z∗) − fR(x∗, z∗))p + fR(x∗, z∗), (1)
fC(pw∗ + (1 − p)x∗, z∗) ≤ fC(w∗, z∗)p; (2)
fC(w∗, qz∗ + (1 − q)y∗) = (fC(w∗, x∗) − fC(w∗, y∗))q + fC(w∗, y∗), (3)
fR(w∗, qz∗ + (1 − q)y∗) ≤ fR(w∗, z∗)q. (4)

Taking the minimum of terms on the right hand sides of (1) and (2), (3) and (4)
respectively, we derive the following quantities4

p∗ :=
fR(x∗, z∗)

fR(x∗, z∗) + fC(w∗, z∗) − fR(w∗, z∗)
,

q∗ :=
fC(w∗, y∗)

fC(w∗, y∗) + fR(w∗, z∗) − fC(w∗, z∗)
.

The adjusted strategy pair is

(xIL, yIL) :=

{
(p∗w∗ + (1 − p∗)x∗, z∗) , fC(w∗, z∗) ≥ fR(w∗, z∗),
(w∗, q∗z∗ + (1 − q∗)y∗) , fC(w∗, z∗) < fR(w∗, z∗).

We remark that the outcome of all these three methods can be calculated in
polynomial time of m and n.

4 A Tight Instance for All Three Methods

We now show the tight bound of the TS algorithm that we present in the previous
section, with the help of two auxiliary adjustment methods proposed in Sect. 3.
[18] has shown that the TS algorithm gives an approximation ratio of no greater
than b ≈ 0.3393. In this section, we construct a game on which the TS algorithm
attains the tight bound b ≈ 0.3393. In detail, the game is with payoff matrices (5),
where b ≈ 0.3393 is the tight bound, λ0 ≈ 0.582523 and μ0 ≈ 0.812815 are
the quantities to be defined formally in Lemma 6. The game attains the tight
bound b ≈ 0.3393 at stationary point x∗ = y∗ = (1, 0, 0)T with dual solution
ρ∗ = μ0/(λ0+μ0), w∗ = z∗ = (0, 0, 1)T . Additionally, the bound stays b ≈ 0.3393
for this game even when we try to find the minimum point of f on entire Λ.

R =

⎛

⎝
0.1 0 0

0.1 + b 1 1
0.1 + b λ0 λ0

⎞

⎠ , C =

⎛

⎝
0.1 0.1 + b 0.1 + b
0 1 μ0

0 1 μ0

⎞

⎠ . (5)

The formal statement of this result is presented in the following Theorem 1.
4 The denominator of p∗ or q∗ may be zero. In this case, we simply define p∗ or q∗ to

be 0.
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Theorem 1. There exists a game such that for some stationary point (x∗, y∗)
with dual solution (ρ∗, w∗, z∗), b = f(x∗, y∗) = f(xIL, yIL) = f(xMB, yMB) ≤
f(αw∗ + (1 − α)x∗, βz∗ + (1 − β)y∗) holds for any α, β ∈ [0, 1].

The proof of Theorem 1 is done by verifying the tight instance (5) above.
Nevertheless, some preparations are required to theoretically finish the verifica-
tion. They also imply the approach that we find the tight instance.

The preparation work consists of three parts. First, we give an equivalent
condition of the stationary point in Proposition 3, which makes it easier to
construct payoff matrices with a given stationary point and its corresponding
dual solution. Second, we will illustrate a panoramic figure of function fR and
fC on Λ and subsequently reveal the relationship among the three adjusting
strategy pairs presented in Sect. 3. Finally, we give some estimations over f and
show when these estimations are exactly tight. Below we present all propositions
and lemmas we need. We leave all the proofs in the full version of this paper.

The following proposition shows how to construct payoff matrices with given
stationary point (x∗, y∗) and dual solution (ρ∗, w∗, z∗).

Proposition 3. Let

A(ρ, y, z) := −ρRy + (1 − ρ)C(z − y),

B(ρ, x, w) := ρRT (w − x) − (1 − ρ)CT x.

Then (x∗, y∗) is a stationary point if and only if fR(x∗, y∗) = fC(x∗, y∗) and
there exist ρ∗, w∗, z∗ such that

supp(x∗) ⊂ suppmin(A(ρ∗, y∗, z∗)), (6)
supp(y∗) ⊂ suppmin(B(ρ∗, x∗, w∗)). (7)

Now we define the following quantities:

λ∗ := (w∗ − x∗)T
Rz∗,

μ∗ := w∗T C(z∗ − y∗).

Lemma 1. If ρ∗ ∈ (0, 1), then λ∗, μ∗ ∈ [0, 1].

For the sake of brevity below, we define

FI(α, β) := fI(αw∗ + (1 − α)x∗, βz∗ + (1 − β)y∗), I ∈ {R,C}, α, β ∈ [0, 1].

Then we have the following lemma:

Lemma 2. The following two statements hold:

1. Given β, FC(α, β) is an increasing, convex and linear-piecewise function of
α; FR(α, β) is a decreasing and linear function of α.

2. Given α, FR(α, β) is an increasing and convex, linear-piecewise function of
β; FC(α, β) is a decreasing and linear function of β.
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Recall that the second adjustment method yields the strategy pair
(xMB, yMB). We have the following lemma indicating that (x∗, y∗) and
(xMB, yMB) are the minimum points on the boundary of Λ.

Lemma 3. The following two statements hold:

1. (x∗, y∗) is the minimum point of f on Γ1 = {(αx∗ + (1 − α)w∗, y∗) : α ∈
[0, 1]} ∪ {(x∗, βy∗ + (1 − β)z∗ : β ∈ [0, 1]}.

2. (xMB, yMB) is the minimum point of f on Γ2 = {(αx∗ + (1 − α)w∗, z∗) : α ∈
[0, 1]} ∪ {(w∗, βy∗ + (1 − β)z∗ : β ∈ [0, 1]}.
Now we are ready to give an analysis on the third adjusting method.

Lemma 4. The following two statements hold:

1. FC(α, β) = fC(αw∗ + (1 − α)x∗, βz∗ + (1 − β)y∗) is a linear function of α if
and only if

SC(x∗) ∩ SC(w∗) �= ∅. (8)

2. FR(α, β) = fR(αw∗ + (1 − α)x∗, βz∗ + (1 − β)y∗) is a linear function of β if
and only if

SR(y∗) ∩ SR(z∗) �= ∅. (9)

With all previous results, we can finally give a comparison on the three
adjusting methods we present in Sect. 3.

Proposition 4. f(xTS, yTS) ≥ f(xMB, yMB) and f(xIL, yIL) ≥ f(xMB, yMB)
always hold. Meanwhile, f(xMB, yMB) = f(xIL, yIL) holds if and only if

⎧
⎪⎨

⎪⎩

SC(x∗) ∩ SC(w∗) �= ∅, if fC(w∗, z∗) > fR(w∗, z∗),
SR(y∗) ∩ SR(z∗) �= ∅, if fC(w∗, z∗) < fR(w∗, z∗),
fR(w∗, z∗) = fC(w∗, z∗).

There is a final step to prepare for the proof of the tight bound. We present
the following estimations and inequalities.

Lemma 5. The following two estimations hold:

1. If fC(w∗, z∗) > fR(w∗, z∗), then

f(xIL, yIL) =
fR(x∗, z∗)(fC(w∗, y∗) − μ∗)

fC(w∗, y∗) + λ∗ − μ∗ ≤ 1 − μ∗

1 + λ∗ − μ∗ .

And symmetrically, when fR(w∗, z∗) > fC(w∗, z∗), we have

f(xIL, yIL) =
fC(w∗, y∗)(fR(x∗, z∗) − λ∗)

fR(x∗, z∗) + μ∗ − λ∗ ≤ 1 − λ∗

1 + μ∗ − λ∗ .
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Furthermore, if (x∗, y∗) is not a Nash equilibrium, the equality holds if and
only if fC(w∗, y∗) = fR(x∗, z∗) = 1.

2. f(x∗, y∗) ≤ min{ρ∗λ∗, (1 − ρ∗)μ∗} ≤ λ∗μ∗

λ∗+μ∗ .

Remark 1. Lemma 5 tells us that the worst f value of a stationary point could
attain is 1/2. In fact, f(x∗, y∗) ≤ λ∗μ∗/(λ∗ + μ∗) ≤ (λ∗ + μ∗)/4 ≤ 1/2. We now
give the following game to demonstrate this. Consider the payoff matrices:

R =
(

0.5 0
1 1

)

, C =
(

0.5 1
0 1

)

.

One can verify by Proposition 3 that ((1, 0)T
, (1, 0)T ) is a stationary point with

dual solution ρ∗ = 1/2, w∗ = z∗ = (0, 1)T and f(x∗, y∗) = 1/2. Therefore, merely
a stationary point itself cannot beat a straightforward algorithm given by [9],
which always finds a 1/2-approximate Nash equilibrium.

Lemma 6 ([18]). Let

b = max
s,t∈[0,1]

min
{

st

s + t
,

1 − s

1 + t − s

}

,

Then b ≈ 0.339321, which is attained exactly at s = μ0 ≈ 0.582523 and t = λ0 ≈
0.812815.

Finally, we prove Theorem 1 by verifying the tight instance (5) with sta-
tionary point x∗ = y∗ = (1, 0, 0)T and dual solution ρ∗ = μ0/(λ0 + μ0),
w∗ = z∗ = (0, 0, 1)T .

Proof Sketch. The verification is divided into 4 steps.

Step 1. Verify that (x∗, y∗) is a stationary point by Proposition 3.
Step 2. Verify that SC(x∗) ∩ SC(w∗) �= ∅ and fC(w∗, z∗) > fR(w∗, z∗). Then
by Proposition 4, f(xIL, yIL) = f(xMB, yMB) and by Lemma 4, FC(α, β) is a
linear function of α.
Step 3. Verify that λ∗ = λ0, μ∗ = μ0, fR(x∗, z∗) = fC(w∗, y∗) = 1, and
f(x∗, y∗) = b. Then by Lemma 5 and Lemma 6, f(xIL, yIL) = f(xMB, yMB) =
b.
Step 4. Verify that b ≤ f(αw∗+(1−α)x∗, βz∗+(1−β)y∗) for any α, β ∈ [0, 1].

The last step needs more elaboration. First, we do a verification similar to Step
2: SR(y∗) ∩ SR(z∗) �= ∅, and thus FR(α, β) is a linear function of β. Second, we
define g(β) := minα f(αw∗ +(1−α)x∗, βz∗ +(1−β)y∗) and prove that g(β) ≥ b
for all β ∈ [0, 1], which completes the proof. �
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From the proof of Theorem 1, we obtain the following useful corollaries.

Corollary 1. Suppose f(x∗, y∗) = f(xIL, yIL) = b. If either of the following two
statements holds:

1. SC(x∗) ∩ SC(w∗) �= ∅ and fC(w∗, z∗) > fR(w∗, z∗),
2. SR(y∗) ∩ SR(z∗) �= ∅ and fR(w∗, z∗) > fC(w∗, z∗),

then for any (x, y) on the boundary of Λ, f(x, y) ≥ b.

Corollary 2. Suppose f(x∗, y∗) = f(xIL, yIL) = b, SC(x∗) ∩ SC(w∗) �= ∅ and
SR(y∗) ∩ SR(z∗) �= ∅. Then for any α, β ∈ [0, 1], f(αw∗ + (1 − α)x∗, βz∗ + (1 −
β)y∗) ≥ b.

It is worth noting that the game with payoff matrices (5) has a pure Nash
equilibrium with x = y = (0, 1, 0)T , and the stationary point

(x∗, y∗) = ((1, 0, 0)T
, (1, 0, 0)T )

is a strictly-dominated strategy pair. However, a Nash equilibrium never sup-
ports on dominated strategies! We can also construct bountiful games that are
able to attain the tight bound but own distinct characteristics. For instance,
we can give a game with no dominated strategies but attains the tight bound.
Some examples are listed in the full version of this paper. Such results suggest
that stationary points may not be an optimal concept (in theory) for further
approximate Nash equilibrium calculation.

5 Generating Tight Instances

In Sect. 4, we proved the existence of the tight game instance, and we can do more
than that. Specifically, we can mathematically profile all games that are able to
attain the tight bound. In this section, we gather properties in the previous
sections and post an algorithm that generates games of this kind. Using the
generator, we can dig into the previous three approximate Nash equilibrium
algorithms and reveal the behavior of these algorithms and even further, the
features of stationary points. Algorithm 1 gives the generator of tight instances,
in which the inputs are arbitrary (x∗, y∗), (w∗, z∗) ∈ Δm × Δn. The algorithm
outputs games such that (x∗, y∗) is a stationary point and (ρ∗ = λ0/(λ0 +
μ0), w∗, z∗) is a corresponding dual solution, or outputs “NO” if there is not
such a game.

The main idea of the algorithm is as follows. Proposition 3 shows an easier-to-
verify equivalent condition of the stationary point; and all additional equivalence
conditions required by a tight instance are stated in Proposition 4, Lemma 5
and Lemma 6. Therefore, if we enumerate each pair of possible pure strategies
in SR(z∗) and SC(w∗) respectively, whether there exists a tight instance solution
becomes a linear programming problem.
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Algorithm 1. Tight Instance Generator

Input (x∗, y∗), (w∗, z∗) ∈ Δm × Δn.

1: if supp(x∗) = {1, 2, . . . ,m} or supp(y∗) = {1, 2, . . . , n} then
2: Output “NO”
3: end if
4: ρ∗ ← μ0/(λ0 + μ0).

5: // Enumerate k ∈ SR(z∗) and l ∈ SC(w∗).
6: for k ∈ {1, . . . ,m} \ supp(x∗), l ∈ {1, . . . , n} \ supp(y∗) do

7: Solve a feasible R = (rij)m×n, C = (cij)m×n from the following LP with
no objective function:

8: // basic requirements.
9: 0 ≤ rij , cij ≤ 1 for i ∈ {1, . . . , m}, j ∈ {1, . . . , n},

10: supp(w∗) ⊂ SR(y∗), supp(z∗) ⊂ SC(x∗),
11: k ∈ SR(z∗), l ∈ SC(w∗),

12: // ensure (x∗, y∗) is a stationary point.
13: supp(x∗) ⊂ suppmin(−ρ∗Ry∗ + (1 − ρ∗)(Cz∗ − Cy∗)),
14: supp(y∗) ⊂ suppmin(ρ∗(RT w∗ − RT x∗) − (1 − ρ∗)RT x∗),

15: // ensure f(x∗, y∗) = b.
16: (w∗ − x∗)T

Ry∗ = x∗T C(z∗ − y∗) = b,

17: // ensure f(xIL, yIL) = b.
18: x∗T Rz∗ = w∗T Cy∗ = 0,
19: rkj = 1 for j ∈ supp(z∗), cil = 1 for i ∈ supp(w∗),
20: w∗T Rz∗ = λ0, w∗T Cz∗ = μ0,

21: // ensure f(xMB, yMB) = f(xIL, yIL).
22: l ∈ SC(x∗).

23: if LP is feasible then
24: Output feasible solutions
25: end if
26: end for

27: if LP is infeasible in any round then
28: Output “No”
29: end if

Proposition 5. Given (x∗, y∗), (w∗, z∗) ∈ Δm × Δn, all the feasible solutions
of the LP in Algorithm 1 are all the games (R,C) satisfying

1. (x∗, y∗) is a stationary point,
2. tuple (ρ∗ = μ0/(λ0 + μ0), w∗, z∗) is the dual solution,5

5 One can verify that the value of ρ∗ in the dual solution of any tight stationary point
has to be μ0/(λ0 + μ0), by the second part of Lemma 5.
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3. fC(w∗, z∗) > fR(w∗, z∗), and
4. f(x, y) ≥ b for all (x, y) on the boundary of Λ

if such a game exists, and the output is “NO” if no such game exists.

The proof of the proposition is presented in the full version of this paper.
For the sake of experiments, there are two concerns of the generator we should

take into account.
First, sometimes we want to generate games such that the minimum value of

f on entire Λ is also b ≈ 0.3393. By Corollary 2, it suffices to add a constraint
SR(y∗)∩SR(z∗) �= ∅ to the LP in Algorithm 1. This is not a necessary condition
though.

Second, the dual solution of the LP is usually not unique, and we cannot
expect which dual solution the LP algorithm yields. [15] gives some methods to
guarantee that the dual solution is unique. For practice, we simply make sure
that w∗ and z∗ are pure strategies. The reason is that even if the dual solution is
not unique, the simplex algorithm will end up with some optimal dual solution
on a vertex, i.e., w∗ and z∗ are pure strategies.

6 Experimental Analysis

In this section, we further explore the characteristics of the algorithms presented
in Sect. 3 with the help of numerical experiments. Such empirical results may
provide us with a deep understanding of the behavior of these algorithms, and
specifically, the behavior of stationary points and the descent procedure. Fur-
thermore, we are interested in the tight instance generator itself presented in
Sect. 5, particularly, on the probability that the generator outputs an instance
given random inputs. At last, we will compare the algorithms with other approx-
imate Nash equilibrium algorithms, additionally showing the potentially implicit
relationships among these different algorithms.

Readers can refer to the full version of this paper for the details of the exper-
iments. We now list the key results and insights we gain from these experiments.

1. Our studies on the behavior of algorithms we present in Sect. 3 show that
even in a tight game instance, it is almost impossible for a uniformly-picked
initial strategy pair to fall into the tight stationary point at the termination.
Such results imply the inconsistency of tight instances of stationary point
algorithms between theory and practice.

2. Next, we evaluate how the descent procedure behaves on strategy pairs
slightly perturbed from a tight stationary point. Surprisingly, as it turns
out, even with a minor perturbation, the initial strategy pair will eventu-
ally escape from the proximate tight stationary point in almost all cases.
Such a consequence shows that the descent procedure is indeed unstable to
the perturbation of stationary point and further explains why the tight bound
is hardly reached even in tight game instances.
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3. We then turn to the tight instance generator we described in Sect. 5. Given two
arbitrary strategy pairs (x∗, y∗) and (w∗, z∗) in Δm × Δn, we are interested
in whether the generator outputs a tight game instance. The result shows
that the intersecting proportion of (x∗, y∗) and (w∗, z∗) plays a vital role in
whether a tight game instance can be successfully generated from these two
pairs.

4. At last, we measure how other algorithms behave on these tight game
instances. Surprisingly, for Czumaj et al.’s algorithm [6], for all cases and
all trials, the algorithm terminates on the approximation ratio b ≈ 0.3393.
Meanwhile, regret-matching algorithms [12] always find the pure Nash equi-
librium of a 2-player game if there exists, which is the case for all generated
tight game instances. At last, fictitious play algorithm [2] behaves well on
these instances, with a median approximate ratio of approximately 1 × 10−3

to 1.2 × 10−3 for games with different sizes.
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Abstract. We introduce a model of competing agents in a prophet set-
ting, where rewards arrive online, and decisions are made immediately
and irrevocably. The rewards are unknown from the outset, but they are
drawn from a known probability distribution. In the standard prophet
setting, a single agent makes selection decisions in an attempt to maxi-
mize her expected reward. The novelty of our model is the introduction
of a competition setting, where multiple agents compete over the arriving
rewards, and make online selection decisions simultaneously, as rewards
arrive. If a given reward is selected by more than a single agent, ties are
broken either randomly or by a fixed ranking of the agents. The consid-
eration of competition turns the prophet setting from an online decision
making scenario to a multi-agent game.

For both random and ranked tie-breaking rules, we present simple
threshold strategies for the agents that give them high guarantees, inde-
pendent of the strategies taken by others. In particular, for random tie-
breaking, every agent can guarantee herself at least 1

k+1
of the highest

reward, and at least 1
2k

of the optimal social welfare. For ranked tie-
breaking, the ith ranked agent can guarantee herself at least a half of
the ith highest reward. We complement these results by matching upper
bounds, even with respect to equilibrium profiles. For ranked tie-breaking
rule, we also show a correspondence between the equilibrium of the k-
agent game and the optimal strategy of a single decision maker who can
select up to k rewards.

Keywords: Prophet inequality · Multi-agent system ·
Threshold-strategy

1 Introduction

In the classical prophet inequality problem a decision maker observes a sequence
of n non-negative real-valued rewards v1, . . . , vn that are drawn from known
independent distributions F1, . . . , Fn. At time t, the decision maker observes
reward vt, and needs to make an immediate and irrevocable decision whether or
c© Springer Nature Switzerland AG 2021
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not to accept it. If she accepts vt, the game terminates with value vt; otherwise,
the reward vt is gone forever and the game continues to the next round. The
goal of the decision maker is to maximize the expected value of the accepted
reward.

This family of problems captures many real-life scenarios, such as an employer
who interviews potential workers overtime, renters looking for a potential house,
a person looking for a potential partner for life, and so on. More recently, starting
with the work of Hajiaghayi et al. [5], the prophet inequality setting has been
studied within the AI community in the context of market and e-commerce sce-
narios, with applications to pricing schemes for social welfare and revenue max-
imization. For a survey on a market-based treatment of the prophet inequality
problem, see the survey by Lucier [13].

An algorithm ALG has a guarantee α if the expected value of ALG is at least
α, where the expectation is taken over the coin flips of the algorithm, and the
probability distribution of the input. Krengel and Sucheston [11,12] established
the existence of an algorithm that gives a tight guarantee of 1

2E[maxi vi]. Later,
it has been shown that this guarantee can also be obtained by a single-threshold
algorithm—an algorithm that specifies some threshold from the outset, and
accepts a reward if and only if it exceeds the threshold. Two such thresholds
have been presented by Samuel-Cahn [15], and Kleinberg and Weinberg [10].
Single-threshold algorithms are simple and easy to explain and implement.

Competing Agents. Most attention in the literature has been given to scenarios
with a single decision maker. Motivated by the economic aspects of the problem,
where competition among multiple agents is a crucial factor, we introduce a
multi-agent variant of the prophet model, in which multiple agents compete
over the rewards.

In our model, a sequence of n non-negative real-valued rewards v1, . . . , vn

arrive over time, and a set of k agents make immediate and irrevocable selection
decisions. The rewards are unknown from the outset, but every reward vt is
drawn independently from a known distribution Ft. Upon the arrival of reward
vt, its value is revealed to all agents, and every agent decides whether or not to
select it.

One issue that arises in this setting is how to resolve ties among agents. That
is, who gets the reward if more than one agent selects it. We consider two natural
tie-breaking rules; namely, random tie breaking (where ties are broken uniformly
at random) and ranked tie-breaking (where agents are a-priori ranked by some
global order, and ties are broken in favor of higher ranked agents). Random
tie-breaking fits scenarios with symmetric agents, whereas ranked tie-breaking
fits scenarios where some agents are preferred over others, according to some
global preference order. For example, it is reasonable to assume that a higher-
position/salary job is preferred over lower-position/salary job, or that firms in
some industry are globally ordered from most to least desired. Random and
ranked tie-breaking rules were considered in [8] and [9], respectively, in secretary
settings.

Unlike the classical prophet scenario, which studies the optimization problem
of a single decision maker, the setting of competing agents induces a game among
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multiple agents, were an agent’s best strategy depends on the strategies chosen
by others. Therefore, we study the equilibria of the induced games. In particular,
we study the structure and quality of equilibrium in these settings and devise
simple strategies that give agents high guarantees.

When the order of distributions is unknown in advance, calculating the opti-
mal strategy is computationally hard. This motivates the use of simple and
efficiently computed strategies that give good guarantees.

1.1 Main Results and Techniques

For both random and ranked tie-breaking rules, we present simple single-
threshold strategies for the agents that give them high guarantees. A single-
threshold strategy specifies some threshold T , and selects any reward that
exceeds T .

For j = 1, . . . , n, let yj be the jth highest reward.
Under the random tie-breaking rule, we show a series of thresholds that have

the following guarantee:

Theorem (Theorem 1). For every � = 1, . . . , n, let T � = 1
k+�

∑�
j=1 E[yj ]. Then,

for every agent, the single threshold strategy T � (i.e., select vt iff vt ≥ T �)
guarantees an expected utility of at least T �.

Two special cases of the last theorem are where � = 1 and � = k. The case of
� = 1 implies that every agent can guarantee herself (in expectation) at least 1

k+1
of the highest reward. The case of � = k implies that every agent can guarantee
herself (in expectation) at least 1

2k of the optimal social welfare (i.e., the sum of
the highest k rewards), which also implies that the social welfare in equilibrium
is at least a half of the optimal social welfare.

The above result is tight, as shown in Proposition 1.
Similarly, for the ranked tie-breaking rule, we show a series of thresholds that

have the following guarantee:

Theorem (Theorem 2). For every i ≤ n and � = 0, . . . , n − i, let T̂ �
i =

1
�+2

∑i+�
j=i E[yj ]. Then, for the i-ranked agent, the single threshold strategy T̂ �

i

(i.e., select vt iff vt ≥ T̂ �
i ) guarantees an expected utility of at least T̂ �

i .

This result implies that for every i, the i-ranked agent can guarantee herself
(in expectation) at least a half of the ith highest reward. In Proposition 2 we
show that the last result is also tight.

Finally, we show that under the ranked tie-breaking rule, the equilibrium
strategies of the (ordered) agents coincide with the decisions of a single decision
maker who may select up to k rewards in an online manner and wishes to maxi-
mize the sum of selected rewards. Thus, the fact that every agent is aware of her
position in the ranking allows them to coordinate around the socially optimal
outcome despite the supposed competition between them.
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Theorem (Corollary 4). Under the ranked tie-breaking rule, in every equilib-
rium of the k-agent game the expected social welfare is at least 1 − O( 1√

k
) of the

optimal welfare.

A similar phenomenon was observed in a related secretary setting, where
the equilibrium strategy profile of a game with several ranked agents, induces
an optimal strategy for a single decision maker who is allowed to choose sev-
eral rewards and wishes to maximize the probability that the highest reward is
selected [14].

1.2 Additional Related Literature

The prophet problem and variants thereof has attracted a vast amount of liter-
ature in the last decade. For comprehensive surveys, see, e.g., the survey by Hill
and Kertz [6] and the survey by Lucier [13] which gives an economic view of the
problem.

A related well-known problem in the optimal stopping theory is the secretary
problem, where the rewards are arbitrary but arrive in a random order. For the
secretary problem a tight 1/e-approximation has been established; for a survey,
see, e.g., [4].

Our work is inspired by a series of studies that consider scenarios where
multiple agents compete over the rewards in secretary-like settings, where every
agent aims to receive the highest reward. Karlin and Lei [9] and Immorlica et
al. [8] considered the ranked- and the random tie-breaking rules, respectively,
in secretary settings with competition. For the ranked tie-breaking rule, Karlin
and Lei [9] show that the equilibrium strategies take the form of time-threshold
strategies; namely, the agent waits until a specific time t, thereafter competes
over any reward that is the highest so far. The values of these time-thresholds
are given by a recursive formula. For the random tie-breaking rule, Immorlica
et al. [8] characterize the Nash equilibria of the game and show that for several
classes of strategies (such as threshold strategies and adaptive strategies), as the
number of competing agents grows, the timing in which the earliest reward is
chosen decreases. This confirms the argument that early offers in the job market
are the result of competition between employers.

Competition among agents in secretary settings has been also studied by Ezra
et al. [3], in a slightly different model. Specifically, in their setting, decisions need
not be made immediately; rather, any previous reward can be selected as long
as it is still available (i.e., has not been taken by a different agent). Thus, the
competition is inherent in the model.

Another related work is the dueling framework by Immorlica et al. [7]. One
of their scenarios considers a 2-agent secretary setting, where one agent aims
to maximize the probability of getting the highest reward (as in the classical
secretary problem), and the other agent aims to outperform her opponent. They
show an algorithm for the second agent that guarantees her a winning probability
of at least 0.51. They also establish an upper bound of 0.82 on this probability.
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Other competitive models have been considered in the optimal stopping the-
ory; see [1] for a survey.

The work of Kleinberg and Weinberg [10] regarding matroid prophet prob-
lems is also related to our work. They consider a setting where a single decision
maker makes online selections under a matroid feasibility constraint, and show
an algorithm that achieve 1/2-approximation to the expected optimum for arbi-
trary matroids. For the special case of uniform matroids, namely selecting up to
k rewards, earlier works of Alaei [2] and Hajiaghayi et al. [5] shows a approx-
imation of 1 − O( 1√

k
) for the optimal solution. As mentioned above, the same

guarantee is obtained in a setting with k ranked competing agents.

1.3 Structure of the Paper

In Sect. 2 we define our model. In Sects. 3 and 4 we present our results with
respect to the random tie-breaking rule, and the ranked tie-breaking rule, respec-
tively. We conclude the paper in Sect. 5 with future directions.

2 Model

We consider a prophet inequality variant, where a set of n rewards, v1, . . . , vn, are
revealed online. While the values v1, . . . , vn are unknown from the outset, vt is
drawn independently from a known probability distribution Ft, for t ∈ [n], where
[n] = {1, . . . , n}. In the classical prophet setting, a single decision maker observes
the realized reward vt at time t, and makes an immediate and irrevocable decision
whether to take it or not. If she takes it, the game ends. Otherwise, the reward
vt is lost forever, and the game continues with the next reward.

Unlike the classical prophet setting that involves a single decision maker, we
consider a setting with k decision makers (hereafter, agents) who compete over
the rewards. Upon the revelation of reward vt, every active agent (i.e., an agent
who has not received a reward yet) may select it. If a reward is selected by
exactly one agent, then it is assigned to that agent. If the reward vt is selected
by more than one agent, it is assigned to one of these agents either randomly
(hereafter, random tie-breaking), or according to a predefined ranking (hereafter,
ranked tie-breaking). Agents who received rewards are no longer active.

A strategy of agent i, denoted by Si, is a function that for every t = 1, . . . , n,
decides whether or not to select vt, based on t, the realization of vt, and the
set of active agents1. A strategy profile is denoted by S = (S1, . . . , Sk). We also
denote a strategy profile by S = (Si, S−i), where S−i denotes the strategy profile
of all agents except agent i.

Every strategy profile S induces a distribution over assignments of rewards to
agents. For ranked tie breaking, the distribution is with respect to the realizations

1 One can easily verify that in our setting, additional information, such as the history of
realizations of v1, . . . , vt−1, and the history of selections and assignments, is irrelevant
for future decision making.
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of the rewards, and possibly the randomness in the agent strategies. For random
tie breaking, the randomness is also with respect to the randomness in the tie-
breaking.

The utility of agent i under strategy profile S, ui(S), is her expected reward
under S; every agent acts to maximize her utility.

We say that a strategy Si guarantees agent i a utility of α if ui(Si, S−i) ≥ α
for every S−i.

Definition 1. A single threshold strategy T is the strategy that upon the arrival
of reward v, v is selected if and only if the agent is still active and vt ≥ T .

We also use the following equilibrium notions:

– Nash Equilibrium (NE): A strategy profile S = (S1, . . . , Sk) is a NE if for
every agent i and every strategy S′

i, it holds that ui(S′
i, S−i) ≤ ui(Si, S−i).

– Subgame perfect equilibrium (SPE): A strategy profile S = (S1, . . . , Sk) is an
SPE if S is a NE for every subgame of the game. I.e. for every initial history
h, S is a NE in the game induced by history h.

SPE is a refinement of NE; namely, every SPE is a NE, but not vice versa.
In the next sections, we let yj denote the random variable that equals the

jth maximal reward among {v1, . . . , vn}.

3 Random Tie-Breaking

In this section we consider the random tie-breaking rule.
We start by establishing a series of single threshold strategies that guarantee

high utilities.

Theorem 1. For every � = 1, . . . , n, let T � = 1
k+�

∑�
j=1 E[yj ]. Then, for every

agent, the single threshold strategy T � (i.e., select vt iff vt ≥ T �) guarantees an
expected utility of at least T �.

Proof. Fix an agent i. Let S−i be the strategies of all agents except agent i, and
let S = (T �, S−i). Let AS

i,j denote the event that agent i is assigned the reward
vj in strategy profile S. I.e., AS

i,j is the event that agent i competed over reward
vj and received it according to the random tie-breaking rule. For simplicity of
presentation, we omit S and write Ai,j . It holds that

ui(S) = E

⎡

⎣
n∑

j=1

vj · Pr (Ai,j)

⎤

⎦

= E

⎡

⎣
n∑

j=1

(T � + vj − T �) Pr
(
vj ≥ T �,∀r<jAi,r, Ai,j

)
⎤

⎦ .
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Let p =
∑n

j=1 Pr(vj ≥ T �,∀j′<jAi,j′ , Ai,j) (i.e., p is the probability that
agent i receives some reward in strategy profile S = (T �, S−i)), and let Z+ =
max{Z, 0}. We can now write ui(S) as follows:

ui(S) = pT � + E

⎡

⎣
n∑

j=1

(vj − T �)+ Pr
(∀r<jAi,r, Ai,j

)
⎤

⎦

= p · T � + E

[ n∑

j=1

(vj − T �)+ · Pr
(∀r<jAi,r

) · Pr
(
Ai,j | ∀r<jAi,r

)]

≥ p · T � + E

[ n∑

j=1

(vj − T �)+ · (1 − p) ·Pr
(
Ai,j | ∀r<jAi,r

)]

≥ p · T � +
1 − p

k
· E

⎡

⎣
n∑

j=1

(vj − T �)+

⎤

⎦ .

The first inequality holds since the probability of not getting any reward until
time j is bounded by 1 − p (i.e., the probability of not getting any reward). The
last inequality holds since if vj − T � ≥ 0 and agent i is still active, the reward
is selected, thus assigned with probability at least 1/k. Since each term in the
summation is non-negative, we get the following:

ui(S) ≥ p · T � +
1 − p

k
· E

⎡

⎣
�∑

j=1

(yj − T �)+

⎤

⎦

≥ p · T � +
1 − p

k
· E

⎡

⎣
�∑

j=1

yj − � · T �

⎤

⎦

= p · T � +
1 − p

k
· (

(k + �) · T � − � · T �
)

= T �,

where the last equality follows by the definition of T �. ��
The special cases of � = 1 and � = k give the following corollaries:

Corollary 1. The single-threshold strategy T k guarantees an expected utility of
at least 1

2kE[
∑k

i=1 yi].

Corollary 2. The single-threshold strategy T 1 guarantees an expected utility of
at least 1

k+1E[y1].

We now show that the bound in Theorem 1 is tight.

Proposition 1. For every ε > 0 there exists an instance such that in the
unique equilibrium of the game, no agent gets an expected utility of more than
1

k+�

∑�
j=1 E[yj ] + ε for any � ≤ n.
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Proof. Given an ε > 0, consider the following instance (depicted in Fig. 1):

vt = 1 for all t ≤ n − 1, and vn =

{
k+ε

ε w.p. ε

0 w.p. 1 − ε

One can easily verify that in the unique equilibrium S, all agents compete over
the last reward, for an expected utility of 1 + ε

k . It holds that for every agent i:

ui(S) = 1 +
ε

k
≤ 1 + ε =

E[
∑�

j=1 yj ]
k + �

+ ε.

This example also shows that there are instances in which the social welfare in
equilibrium is at most half the optimal welfare allocation. ��

1 1 1 ... 1
k+ w.p.

0 otherwise

n − 1

Fig. 1. An example where the expected reward is no more than 1
k+�

∑�
j=1 E[yj ] + ε

4 Ranked Tie-Breaking

In this section we consider the ranked tie-breaking rule, and present a series of
single threshold strategies with their guarantees. We then show an interesting
connection to the setting of a single agent that can choose up to k rewards. We
start by presenting the single threshold strategies.

Theorem 2. For every i ≤ n and � = 0, . . . , n− i, let T̂ �
i = 1

�+2

∑i+�
j=i E[yj ]. The

single threshold strategy T̂ �
i (i.e., select vt iff vt ≥ T̂ �

i ) guarantees an expected
utility of at least T̂ �

i for the i-ranked agent.

Proof. Fix an agent i. Let S−i be the strategies of all agents except agent i, and
let S = (T̂ �

i , S−i). Let AS
i,j denote the event that agent i is assigned the reward

vj in strategy profile S. I.e., AS
i,j is the event that agent i competed over reward

vj and received it according to the ranked tie-breaking rule. For simplicity of
presentation, we omit S and write Ai,j . We bound the utility of agent i under
strategy profile S.

ui(S) = E

⎡

⎣
n∑

j=1

vj · Pr (Ai,j)

⎤

⎦

= E

⎡

⎣
n∑

j=1

(T̂ �
i + vj − T̂ �

i ) Pr
(
vj ≥ T̂ �

i ,∀r<jAi,r, Ai,j

)
⎤

⎦ .
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Let p =
∑n

j=1 Pr(vj ≥ T̂ �
i ,∀r<jAi,r, Ai,j) (i.e., p is the probability that

agent i receives some reward in strategy profile S = (T̂ �
i , S−i)), and let Z+ =

max{Z, 0}. We can now write ui(S) as follows:

ui(S) = p · T̂ �
i + E

⎡

⎣
n∑

j=1

(vj − T̂ �
i )+ Pr

(∀r<jAi,r, Ai,j

)
⎤

⎦

≥ p · T̂ �
i + E

[ n∑

j=1

(vj − T̂ �
i )+ ·(1 − p) · Pr

(
Ai,j | ∀r<jAi,r

)]

≥ p · T̂ �
i + (1 − p) · E

⎡

⎣
n∑

j=i

(yj − T̂ �
i )+

⎤

⎦ (1)

≥ p · T̂ �
i + (1 − p) · E

⎡

⎣
i+�∑

j=i

(yj − T̂ �
i )

⎤

⎦

= p · T̂ �
i + (1 − p) ·

⎛

⎝E

⎡

⎣
i+�∑

j=i

yj

⎤

⎦ − (� + 1)T̂ �
i

⎞

⎠

= p · T̂ �
i + (1 − p) ·

(
(� + 2) · T̂ �

i − (� + 1) · T̂ �
i

)
= T̂ �

i .

Inequality (1) holds since the probability of not getting any reward until time
j is bounded by 1−p (i.e., the probability of not getting any reward). Inequality
(1) holds since there are at most i − 1 agents that are ranked higher than agent
i, therefore there are at most i−1 rewards that can be selected but not assigned
to agent i. Finally, the last equality holds by the definition of T̂ �

i . ��
The special case of Theorem 2 where � = 0 gives the following corollary.

Corollary 3. For every i, the threshold strategy T̂ 0
i guarantees an expected util-

ity of E[yi]
2 for the i-ranked agent.

We next show that the bound in Theorem 2 is tight.

Proposition 2. For every ε > 0 and every i ≤ n, there exists an instance such
that in the unique equilibrium of the game, the i-ranked agent gets an expected
utility of at most 1

�+2

∑i+�
j=i E[yj ] + ε for every � ≤ n − i.

Proof. Given some ε > 0 and i ≤ n, consider the following instance (depicted in
Fig. 2):

vt =

⎧
⎪⎨

⎪⎩

∞ for t < i

1 for i ≤ t < n
1+ε

ε w.p. ε, and 0 w.p. 1 − ε for t = n
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One can easily verify that in the unique equilibrium of the game, agents 1, . . . , i−
1 will be assigned rewards v1, . . . , vi−1, and agent i will be assigned the last
reward vn for an expected utility of 1 + ε. It holds that:

ui(S) = 1 + ε =
E[

∑i+�
j=i yj ]

2 + �
+ ε.

��
∞ ... ∞ 1 ... 1

−1 w.p.

0 otherwise

n − ii − 1

Fig. 2. An example where the expected reward for agent i is no more than
1

�+2

∑i+�
j=i E[yj ] + ε

We next show that for any instance, the set of rewards assigned to the k
competing agents in equilibrium coincides with the set of rewards that are chosen
by the optimal algorithm for a single decision maker who can choose up to k
rewards and wishes to maximize their sum. Kleinberg and Weinberg [10] show
that the only optimal strategy of such a decision maker, takes the form of nk
dynamic thresholds, {T i

t }i,t for all t ≤ n and i ≤ k, so that the agent accepts
reward vt if vt ≥ T i

t , where k − i is the number of rewards already chosen (i.e.,
i is the number of rewards left to choose)2. Moreover, they show that these
thresholds are monotone with respect to i.

With the characterization of the strategy of a single decision maker who can
choose up to k rewards, we can characterize the unique SPE for the k-agent
game3.

Theorem 3. Let {T i
t }i∈[k],t∈[n] be the optimal strategy of a single decision maker

who may choose up to k rewards and wishes to maximize their sum. The unique
SPE of the k-agent game is for agent i to accept vt iff vt ≥ T i′+1

t , where i′ ≤ i
is the rank of agent i among the active agents. This SPE is unique up to cases
where vt = T i′

t .

Proof. Let Si denote the optimal strategy of the single agent who may choose
up to i rewards, as described above. Let Si be the strategy of agent i as described
in the assertion of the theorem. We prove by induction that for every i ∈ [k], the
rewards that are chosen by agents 1, . . . , i correspond to the rewards chosen by
a single decision maker, who may choose up to i rewards, and uses strategy Si.
For the case of i = 1, the claim holds trivially. Assume the claim holds for any

2 The uniqueness holds for distributions with no mass points. For distributions with
mass points, whenever vt = T i

t , the decision maker is indifferent between selecting
and passing.

3 The SPE is unique up to cases where T i
j = vt; in these cases the agent is indifferent.
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number of agents smaller than i. Since agent i has no influence on the rewards
received by agents 1, . . . , i−1, we may assume that agents 1, . . . , i−1 are playing
according to strategies S1, . . . , Si−1.

For every i ∈ [k], the total utility of agents 1, . . . , i is bounded by the utility
of the single decision maker u(Si), since the single decision maker can simulate a
game with i competing agents. Hence, by the induction hypothesis, agent i can
obtain a utility of at most u(Si) − u(Si−1). By playing according to Si, we are
guaranteed that whenever at least j agents are still active, any reward vt such
that vt ≥ T j

t will be taken by one of the agents. Thus, when every agent i is
playing according to Si, players 1, . . . , i play according to Si. Consequently, their
total utility is u(Si), and the utility of agent i is then maximal. The uniqueness
(up to the cases where vj = T i′

j ) is by the uniqueness of the optimal strategy of
the single decision maker. ��

We note that by Theorem 2 it holds that in the unique SPE described in
Theorem 3, every agent i receives at least maxn−i

�=0
1

�+2

∑i+�
j=i E[yj ].

Using the results of Alaei [2] regarding a single decision maker choosing k
rewards, we deduce an approximation of the social welfare in equilibrium:

Corollary 4. In SPE of the k agent prophet game, the expected social welfare
is at least 1 − O( 1√

k
) of the optimal welfare.

5 Discussion and Future Directions

In this work, we study the effect of competition in prophet settings. We show
that under both random and ranked tie-breaking rules, agents have simple strate-
gies that grant them high guarantees, ones that are tight even with respect to
equilibrium profiles under some distributions.

Under the ranked tie-breaking rule, we show an interesting correspondence
between the equilibrium strategies of the k competing agents and the optimal
strategy of a single decision maker that can select up to k rewards. It would be
interesting to study whether this phenomenon applies more generally, and what
are the conditions under which it holds.

Below we list some future directions that we find particularly natural.

– Study competition in additional problems related to optimal stopping theory,
such as Pandora’s box [16].

– Study competition in prophet (and secretary) settings under additional tie-
breaking rules, such as random tie breaking with non-uniform distribution,
and tie-breaking rules that allow to split rewards among agents.

– Study competition in scenarios where agents can choose multiple rewards,
under some feasibility constraints (such as matroid or downward-closed fea-
sibility constraints).

– Consider prophet settings with the objective of outperforming the other
agents, as in [7], or different agents’ objectives.

– Consider competition settings with non-immediate decision making, as in [3].
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of Equilibria in Lipschitz Games
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Abstract. Nearly a decade ago, Azrieli and Shmaya introduced the class
of λ-Lipschitz games in which every player’s payoff function is λ-Lipschitz
with respect to the actions of the other players. They showed that such
games admit ε-approximate pure Nash equilibria for certain settings of ε
and λ. They left open, however, the question of how hard it is to find such
an equilibrium. In this work, we develop a query-efficient reduction from
more general games to Lipschitz games. We use this reduction to show a
query lower bound for any randomized algorithm finding ε-approximate
pure Nash equilibria of n-player, binary-action, λ-Lipschitz games that
is exponential in nλ

ε
. In addition, we introduce “Multi-Lipschitz games,”

a generalization involving player-specific Lipschitz values, and provide
a reduction from finding equilibria of these games to finding equilibria
of Lipschitz games, showing that the value of interest is the sum of the
individual Lipschitz parameters. Finally, we provide an exponential lower
bound on the deterministic query complexity of finding ε-approximate
correlated equilibria of n-player, m-action, λ-Lipschitz games for strong
values of ε, motivating the consideration of explicitly randomized algo-
rithms in the above results. Our proof is arguably simpler than those
previously used to show similar results.

Keywords: Query complexity · Lipschitz games · Nash equilibrium

1 Introduction

A Lipschitz game is a multi-player game in which there is an additive limit λ
(called the Lipschitz constant of the game) on how much any player’s payoffs can
change due to a deviation by any other player. Thus, any player’s payoff func-
tion is λ-Lipschitz continuous as a function of the other players’ mixed strategies.
Lipschitz games were introduced about ten years ago by Azrieli and Shmaya [1].
A key feature of Lipschitz games is that they are guaranteed to have approxi-
mate Nash equilibria in pure strategies, where the quality of the approximation
depends on the number of players n, the number of actions m, and the Lipschitz
constant λ. In particular, [1] showed that this guarantee holds (keeping the num-
ber of actions constant) for Lipschitz constants of size o(1/

√
n log n) (existence

of pure approximate equilibria is trivial for Lipschitz constants of size o(1/n)
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since then, players have such low effect on each others’ payoffs that they can
best-respond independently to get a pure approximate equilibrium). The gen-
eral idea of the existence proof is to take a mixed Nash equilibrium (guaranteed
to exist by Nash’s theorem [16]), and prove that there is a positive probability
that a pure profile sampled from it will constitute an approximate equilibrium.

As noted in [1] (and elsewhere), solutions in pure-strategy profiles are a more
plausible and satisfying model of a game’s outcome than solutions in mixed-
strategy profiles. On the other hand, the existence guarantee raises the question
of how to compute an approximate equilibrium. In contrast with potential games,
in which pure-strategy equilibria can often be found via best- and better-response
dynamics, there is no obvious natural approach in the context of Lipschitz games,
despite the existence guarantee. The general algorithmic question (of interest in
the present paper) is:

Given a Lipschitz game, how hard is it to find a pure-strategy profile that
constitutes an approximate equilibrium?

Recent work [8,10] has identified algorithms achieving additive constant approx-
imation guarantees, but as noted by Babichenko [5], the extent to which we
can achieve the pure approximate equilibria that are guaranteed by [1] (or
alternatively, potential lower bounds on query or computational complexity)
is unknown.

Variants and special cases of this question include classes of Lipschitz games
having a concise representation, as opposed to unrestricted Lipschitz games for
which an algorithm has query access to the payoff function (as we consider
in this paper). In the latter case, the question subdivides into what we can
say about the query complexity, and about the computational complexity (for
concisely-represented games the query complexity is low, by Theorem 3.3 of
[11]). Moreover, if equilibria can be easily computed, does that remain the case
if we ask for this to be achievable via some kind of natural-looking decentralized
process? Positive results for these questions help us to believe in “approximate
pure Nash equilibrium” as a solution concept for Lipschitz games. Alternatively,
it is of interest to identify computational obstacles to the search for a Nash
equilibrium.

1.1 Prior Work

In this paper we apply various important lower bounds on the query complexity
of computing approximate Nash equilibria of unrestricted n-player games. In
general, lower bounds on the query complexity are known that are exponential
in n (which motivates a focus on subclasses of games, such as Lipchitz games, and
others). Hart and Mansour [13] showed that the communication (and thus query)
complexity of computing an exact Nash equilibrium (pure or mixed) in a game
with n players is 2Ω(n). Subsequent results have iteratively strengthened this
lower bound. First, Babichenko [3] showed an exponential lower bound on the
randomized query complexity of computing an ε-well supported Nash equilibrium
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(an approximate equilibrium in which every action in the support of a given
player’s mixed strategy is an ε-best response) for a constant value of ε, even
when considering δ-distributional query complexity, as defined in Definition 4.
Shortly after, Chen, Cheng, and Tang [6] showed a 2Ω(n/ log n) lower bound on the
randomized query complexity of computing an ε-approximate Nash equilibrium
for a constant value of ε, which Rubinstein [19] improved to a 2Ω(n) lower bound,
even allowing a constant fraction of players to have regret greater than ε (taking
regret as defined in Definition 1). These intractability results motivate us to
consider a restricted class of games (Lipschitz, or large, games) which contain
significantly more structure than do general games.

Lipschitz games were initially considered by Azrieli and Shmaya [1], who
showed that any λ-Lipschitz game (as defined in Sect. 2.1) with n players
and m actions admits an ε-approximate pure Nash equilibrium for any ε ≥
λ
√

8n log 2mn 1. In Sect. 3 we provide a lower bound on the query complexity
of finding such an equilibrium.

Positive algorithmic results have been found for classes of games that combine
the Lipschitz property with others, such as anonymous games [7] and aggrega-
tive games [4]. For anonymous games (in which each player’s payoffs depend
only on the number of other players playing each action, and not which play-
ers), Daskalakis and Papadimitriou [7] improved upon the upper bound of [1]
to guarantee the existence of ε-approximate pure Nash equilibria for ε = Ω(λ)
(the only dependence on n coming from λ itself). Peretz et al. [17] analyze Lip-
schitz values that result from δ-perturbing anonymous games, in the sense that
every player is assumed to randomize uniformly with probability δ. Goldberg
and Turchetta [12] showed that a 3λ-approximate pure Nash equilibrium of a λ-
Lipschitz anonymous game can be found querying O(n log n) individual payoffs.

Goldberg et al. [10] showed a logarithmic upper bound on the randomized
query complexity of computing 1

8 -approximate Nash equilibria in binary-action
1
n -Lipschitz games. They also presented a randomized algorithm finding a (34+α)-
approximate Nash equilibrium when the number of actions is unbounded.

1.2 Our Contributions

The primary contribution of this work is the development and application of a
query-efficient version of a reduction technique used in [1,2] in which an algo-
rithm finds an equilibrium in one game by reducing it to a population game with
a smaller Lipschitz parameter. As the former is a known hard problem, we prove
hardness for the latter.

In Sect. 2 we introduce notation and relevant concepts, and describe the
query model assumed for our results. Section 3 contains our main contributions.
In particular, Theorem 3 utilizes a query-efficient reduction to a population

1 General Lipschitz games cannot be written down concisely, so we assume black-box
access to the payoff function of a Lipschitz game. This emphasizes the importance
of considering query complexity in this context. Note that a pure approximate equi-
librium can still be checked using mn queries.
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game with a small Lipschitz parameter while preserving the equilibrium. Hence,
selecting the parameters appropriately, the hardness of finding well-supported
equilibria in general games proven in [3] translates to finding approximate pure
equilibria in Lipschitz games. Whilst several papers have discussed both this
problem and this technique, none has put forward this observation.

In Sect. 3.2 we introduce “Multi-Lipschitz” games, a generalization of Lip-
schitz games that allows player-specific Lipschitz values (the amount of influ-
ence the player has on others). We show that certain results of Lipschitz games
extend to these, and the measure of interest is the sum of individual Lipschitz
values (in a standard Lipschitz game, they are all equal). Theorem 4 provides
a query-efficient reduction from finding equilibria in Multi-Lipschitz games to
finding equilibria in Lipschitz games. In particular, if there is a query-efficient
approximation algorithm for the latter, there is one for the former as well.

Finally, Sect. 3.3 provides a simpler proof of the result of [14] showing expo-
nential query lower-bounds on finding correlated equilibria with approximation
constants better than 1

2 . Theorem 7 provides a more general result for games
with more than 2 actions, and Corollary 4 extends this idea futher to apply to
Lipschitz games. While [14] relies on a reduction from the ApproximateSink
problem, we explicitly describe a class of games with vastly different equilibria
between which no algorithm making a subexponential number of queries can
distinguish. To any weak deterministic algorithm, these games look like pairs of
players playing Matching Pennies against each other - however the equilibria are
far from those of the Matching Pennies game.

For the sake of brevity, some technical details are omitted from this work,
and can be found in the full version [9].

2 Preliminaries

Throughout, we use the following notation.

– Boldface capital letters denote matrices, and boldface lowercase letters denote
vectors.

– The symbol a is used to denote a pure action profile, and p is used when the
strategy profiles may be mixed. Furthermore, X is used to denote correlated
strategies.

– [n] and [m] denote the sets {1, . . . , n} of players and {1, . . . , m} of actions,
respectively. Furthermore, i ∈ [n] will always refer to a player, and j ∈ [m]
will always refer to an action.

– Whenever a query returns an approximate answer, the payoff vector ũ will
be used to represent the approximation and u will represent the true value.

2.1 The Game Model

We introduce standard concepts of strategy profiles, payoffs, regret, and equilib-
ria for pure, mixed, and correlated strategies.
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Types of strategy profile; notation:

– A pure action profile a = (a1, . . . , an) ∈ [m]n is an assignment of one action
to each player. We use a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ [m]n−1 to denote
the set of actions played by players in [n] \ {i}.

– A (possibly mixed) strategy profile p = (p1, . . . , pn) ∈ (Δ[m])n (where Δ(S)
is the probability simplex over S) is a collection of n independent probability
distributions, each taken over the action set of a player, where pij is the
probability with which player i plays action j. The set of distributions for
players in [n] \ {i} is denoted p−i = (p1, . . . , pi−1, pi+1, . . . , pn). When p
contains just 0-1 values, p is equivalent to some action profile a ∈ [m]n.
Furthermore, when considering binary-action games with action set {1, 2},
we instead describe strategy profiles by p = (p1, . . . , pn), where pi is the
probability that player i plays action 1.

– A correlated strategy profile X ∈ Δ([m]n) is a single joint probability distri-
bution taken over the space of all pure action profiles a.

Notation for payoffs: Given player i, action j, and pure action profile a,

– ui(j,a−i) is the payoff that player i obtains for playing action j when all other
players play the actions given in a−i.

– ui(a) = ui(ai,a−i) is the payoff that player i obtains when all players play
the actions given in a.

– Similarly for mixed-strategy profiles:
ui(j,p−i) = Ea−i∼p−i

[ui(j,a−i)] and ui(p) = Ea∼p[ui(a)].
– For a given player i ∈ [n], consider a deviation function φ : [m] → [m].

Then, similarly, u
(φ)
i (X) = Ea∼X[ui(φ(ai),a−i)] and ui(X) = Ea∼X[ui(a)].

Furthermore, given an event E, ui(X | E) = Ea∼X[ui(a) | E].

Definition 1 (Regret).

– Given a player i and a strategy profile p, define the regret

regi(p) = max
j∈[m]

ui(j,p−i) − ui(p)

to be the difference between the payoffs of player i’s best response to p−i and
i’s strategy pi.

– Given a player i and a correlated strategy profile X, define

reg(φ)i (X) = u
(φ)
i (X) − ui(X), regi(X) = max

φ:[m]→[m]
reg(φ)i (X),

the regret regi(X) being the difference between the payoffs of player i’s best
deviation from X, and X.

Definition 2 (Equilibria).

– An ε-approximate Nash equilibrium (ε-ANE) is a strategy profile p∗ such
that, for every player i ∈ [n], regi(p∗) ≤ ε.
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– An ε-well supported Nash equilibrium (ε-WSNE) is an ε-ANE p∗ for which
every action j in the support of p∗

i is an ε-best response to p∗
−i.

– An ε-approximate pure Nash equilibrium (ε-PNE) is a pure action profile a
such that, for every player i ∈ [n], regi(a) ≤ ε.

– An ε-approximate correlated equilibrium (ε-ACE) is a correlated strategy pro-
file X∗ such that, for every player i ∈ [n], regi(X∗) ≤ ε.

Note that any ε-PNE is an ε-WSNE, and any ε-ANE constitutes an ε-ACE.
Consequently, any algorithmic lower bounds on correlated equilibria also apply
to Nash equilibria.

Finally, to end this section, we introduce the class of games that is the focus
of this work.

Definition 3 (Lipschitz Games). For any value λ ∈ (0, 1], a λ-Lipschitz
game is a game in which a change in strategy of any given player can affect
the payoffs of any other player by at most an additive λ, or for every player
i and pair of action profiles a,a′, |ui(a) − ui(a′)| ≤ λ||a−i − a′

−i||1. Here we
consider games in which all payoffs are in the range [0, 1] (in particular, note
that any general game is, by definition, 1-Lipschitz).

The set of n-player, m-action, λ-Lipschitz games will be denoted G (n,m, λ).

2.2 The Query Model

This section introduces the model of queries we consider.

Definition 4 (Queries).

– A profile query of a pure action profile a of a game G, denoted QG(a), returns
a vector u of payoffs ui(a) for each player i ∈ [n].

– A δ-distribution query of a strategy profile p of a game G, denoted QG
δ (p),

returns a vector ũ of n values such that ||ũ − u||∞ ≤ δ, where u is the players’
expected utilities from p. We also define a (δ, γ)-distribution query to be a δ-
distribution query of a strategy profile p in which every action j in the support
of pi is allocated probability at least γ for every player i ∈ [n].

– The (profile) query complexity of an algorithm A on input game G is the
number of calls A makes to QG. The δ-distribution query complexity of A is
the number of calls A makes to QG

δ .

Babichenko [3] points out that it is uninteresting to consider 0-distribution
queries, as any game in which every payoff is a multiple of 1

M for some M ∈ N

can be completely learned by a single 0-distribution query. On the other hand,
additive approximations to the expected payoffs can be computed via sampling
from p. Indeed, for general binary-action games we have from [11]:

Theorem 1 ([11]). Take G ∈ G (n, 2, 1) , η > 0. Any (δ, γ)-distribution query of
G can be simulated with probability at least 1 − η by

max
{

1
γδ2

log
(

8n

η

)
,
8
γ

log
(

4n

η

)}

profile queries.
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Corollary 1. Take G ∈ G (n, 2, 1) , η > 0. Any (δ, γ)-distribution query of G
can be simulated with probability at least 1 − η by

8
γ2δ2

log2
(

8n

η

)

profile queries. Furthermore, any algorithm making q (δ, γ)-distribution queries
of G can be simulated with probability at least 1 − η by

8q

γ2δ2
log2

(
8nq

η

)
= poly

(
n,

1
γ

,
1
δ
, log

1
η

)
· q log q

profile queries.

Proof. The first claim is a weaker but simpler version of the upper bound of
Theorem 1. The second claim follows from the first by a union bound. ��

2.3 The Induced Population Game

Finally, this section introduces a reduction utilized by [1] in an alternative proof
of Nash’s Theorem, and by [2] to upper bound the support size of ε-ANEs.

Definition 5. Given a game G with payoff function u, we define the population
game induced by G, G′ = gG(L) with payoff function u′ as follows. Every player
i is replaced by a population of L players (vi

� for � ∈ [L]), each playing G against
the aggregate behavior of the other n − 1 populations. More precisely,
u′

vi
�
(p′) = ui

(
p′

vi
�
,p−i

)
where pi′ = 1

L

∑L
�=1 p′

vi′
�

for all i′ 	= i.

Population games date back even to Nash’s thesis [15], in which he uses them
to justify the consideration of mixed equilibria. To date, the reduction to the
induced population game has been focused on proofs of existence. We show that
the reduction can be made query-efficient: an equilibrium of gG(L) induces an
equilibrium on G which can be found with few additional queries. This technique
is the foundation for the main results of this work.

Lemma 1. Given an n-player, m-action game G and a population game G′ =
gG(L) induced by G, if an ε-PNE of G′ can be found by an algorithm making
q (δ, γ)-distribution queries of G′, then an ε-WSNE of G can be found by an
algorithm making n · m · q (δ, γ/L)-distribution queries of G.

The proof can be found in [9].

3 Results

In this section, we present our three main results:

– In Sect. 3.1, Theorem 3 shows a lower bound exponential in nλ
ε on the ran-

domized query complexity of finding ε-approximate pure Nash equilibria of
games in G (n, 2, λ).
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– In Sect. 3.2, we generalize the concept of Lipschitz games. Theorem 4 provides
a reduction from finding approximate equilibria in our new class of “Multi-
Lipschitz” games to finding approximate equilibria of Lipschitz games.

– In Sect. 3.3, Theorem 7 and Proposition 1 provide a complete dichotomy of the
query complexity of deterministic algorithms finding ε-approximate correlated
equilibria of n-player, m-action games. Corollary 4 scales the lower bound
to apply to Lipschitz games, and motivates the consideration of explicitly
randomized algorithms for the above results.

These results also use the following simple lemma (which holds for all types
of queries and equilibria mentioned in Sect. 2).

Lemma 2. For any constants λ′ < λ ≤ 1, ε > 0, there is a query-free reduc-
tion from finding ε-approximate equilibria of games in G (n,m, λ) to finding λ′

λ ε-
approximate equilibria of games in G (n,m, λ′).

In other words, query complexity upper bounds hold as λ and ε are scaled
up together, and query complexity lower bounds hold as they are scaled down.
The proof is very simple - the reduction multiplies every payoff by λ′

λ (making
no additional queries) and outputs the result. Note that the lemma does not
hold for λ′ > λ, as the reduction could introduce payoffs that are larger than 1.

3.1 Hardness of Approximate Pure Equilibria

In this section we will rely heavily on the following result of Babichenko.

Theorem 2 ([3]). There is a constant ε0 > 0 such that, for any β = 2−o(n), the
randomized δ-distribution query complexity of finding an ε0-WSNE of n-player
binary-action games with probability at least β is δ22Ω(n).

For the remainder of this work, the symbol ε0 refers to this specific constant.
A simple application of Lemma 2 yields

Corollary 2. There is a constant ε0 > 0 such that, for any β = 2−o(n), the
randomized δ-distribution query complexity of finding an ε0λ-WSNE of games
in G (n, 2, λ) with probability at least β is δ22Ω(n).

We are now ready to state our main result – an exponential lower bound on
the randomized query complexity of finding ε-PNEs of λ-Lipschitz games.

Theorem 3 (Main Result). There exists some constant ε0 such that, for any
n ∈ N, ε < ε0, λ ≤ ε√

8n log 4n
, while every game in G (n, 2, λ) has an ε-PNE,

any randomized algorithm finding such equilibria with probability at least β =
1/poly(n) must make λ22Ω(nλ/ε) profile queries.

The proof follows by contradiction. Assume such an algorithm A exists mak-
ing λ22o(nλ/ε) profile queries, convert it to an algorithm B making λ22o(nλ/ε)

δ-distribution queries, then use Lemma 1 to derive an algorithm C finding ε0λ-
WSNE in λ-Lipschitz games contradicting the lower bound of Corollary 2.
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Fig. 1. Taking G′ to be the Coordination Game for fixed values of ε and δ, the blue
region shows the set of ε-approximate equilibria of G′ (the acceptable outputs of algo-
rithm B) while the orange region shows the set of all ε

2
-approximate equilibria of any

possible game G′′ in which each payoff may be perturbed by at most δ (the possible
outputs of algorithm B).

Proof. Assume that some such algorithm A exists finding ε-PNEs of games in
G (n, 2, λ) making at most λ22o(nλ/ε) profile queries. Consider any ε < ε0, λ

′ <
ε√

8n log 4n
, and define λ = ε

ε0
, L = λ

λ′ , N = Ln. We derive an algorithm C (with
an intermediate algorithm B) that contradicts Corollary 2.

A Note that A finds ε
2 -PNEs of games in G

(
N, 2, 3λ′

2

)
with probability at least β

making at most λ′22o(Nλ′/ε) profile queries (β can be amplified to constant).
B Let δ = ε0λ′

4 . For any game G′ ∈ G (N, 2, λ′), consider an algorithm making δ-
distribution queries of pure action profiles of G′ (introducing the uncertainty
without querying mixed strategies).

Claim. There is a game G′′ ∈ G
(
N, 2, 3λ′

2

)
that is consistent with all δ-

distribution queries (i.e. u′′(a) = ũ′(a) for all queried a) in which no payoff
differs from G′ by more than an additive δ. Futhermore, any ε

2 -PNE of G′′ is
an ε-PNE of G′. Figure 1 visually depicts this observation.

The above claim is proven in [9]. Define the algorithm B that takes input G′

and proceeds as though it is algorithm A (but makes δ-distribution queries
instead). By the claim above, after at most λ′22o(Nλ′/ε) queries, it has found
an ε

2 -PNE of some G′′ ∈ G
(
N, 2, 3λ′

2

)
that it believes it has learned, which

is also an ε-PNE of G′.
C Consider any game G ∈ G (n, 2, λ), and let G′ = gG(L) be the population

game induced by G. There is an algorithm C described by Lemma 1 that
takes input G and simulates B on G′ (making 2n · λ′22o(Nλ′/ε) = δ22o(nλ/ε)

δ-distribution queries) and correctly outputs an ε-WSNE (i.e. an ε0λ-WSNE)
of G with probability constant probability (so certainly 2−o(n)).
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The existence of algorithm C directly contradicts the result of Corollary 2,
proving that algorithm A cannot exist. ��
Remark 1. Note that, if we instead start the proof with the assumption of such
an algorithm B, we can also show a δ22o(nλ/ε) lower bound for the δ-distribution
query complexity of finding ε-PNEs of λ-Lipschitz games.

3.2 Multi-Lipschitz Games

In this section, we consider a generalization of Lipschitz games in which each
player i ∈ [n] has a “player-specific” Lipschitz value λi in the sense that, if player
i changes actions, the payoffs of all other players are changed by at most λi.

Definition 6. A Λ-Multi-Lipschitz game G is an n-player, m-action game G
in which each player i ∈ [n] is associated with a constant λi ≤ 1 such that∑n

i′=1 λi′ = Λ and, for any player i′ 	= i and action profiles a(1),a(2) with
a(1)−i = a(2)−i ,

∣∣ui′
(
a(1)

) − ui′
(
a(2)

)∣∣ ≤ λi. The class of such games is denoted
GΛ (n,m), and for simplicity it is assumed that λ1 ≤ . . . ≤ λn.

The consideration of this generalized type of game allows real-world situa-
tions to be more accurately modeled. Geopolitical circumstances, for example,
naturally take the form of Multi-Lipschitz games, since individual countries have
different limits on how much their actions can affect the rest of the world. Finan-
cial markets present another instance of such games; they not only consist of
individual traders who have little impact on each other, but also include a num-
ber of institutions that might each have a much greater impact on the market as
a whole. This consideration is further motivated by the recent GameStop frenzy;
the institutions still wield immense power, but so do the aggregate actions of
millions of individuals [18].

Notice that a λ-Lipschitz game is a Λ-Multi-Lipschitz game, for Λ = nλ. Any
algorithm that finds ε-ANEs of Λ-Multi-Lipschitz games is also applicable to
Λ/n-Lipschitz games. Theorem 4 shows a kind of converse for query complexity,
reducing from finding ε-ANE of Λ-Multi-Lipschitz games to finding ε-ANE of
λ-Lipschitz games, for λ a constant multiple of Λ/n.

Theorem 4. There is a reduction from computing ε-ANEs of games in GΛ (n, 2)
with probability at least 1 − η to computing ε

2 -ANEs of games in G (
2n, 2, 3Λ

2n

)
with probability at least 1− η

2 introducing at most a multiplicative poly(n, 1
ε , log 1

η )
query blowup.

As we now consider ε-ANEs, existence is no longer a question: such equilibria
are always guaranteed to exist by Nash’s Theorem [16]. This proof will also
utilize a more general population game G′ = gG(L1, . . . , Ln) in which player i is
replaced by a population of size Li (where the Li may differ from each other), and
the queries in Lemma 1 become (δ,mini∈[n]{γ/Li})-distribution queries (this will
now be relevant, as we need to apply Corollary 1). Otherwise, the proof follows
along the same lines as that of Theorem 3.
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Proof. Consider some ε > 0 and a game G ∈ GΛ (n, 2) (WLOG take λ1 ≤ . . . ≤
λn). First, if Λ < ε

n , finding an ε-ANE is trivial (each player can play their best-
response to the uniform mixed strategy, found in 2n queries). So assume Λ ≥ ε

n .
Define Li = max{nλi

Λ , 1} and, taking i′ = maxi∈[n]{i : Li = 1}, note that

n∑
i=1

Li =
i′∑

i=1

1 +
n∑

i=i′+1

nλi

Λ
=

i′∑
i=1

1 +
n

Λ

n∑
i=i′+1

λi ≤
i′∑

i=1

1 +
n

Λ
Λ ≤ 2n.

Thus the population game G′ = gG(L1, . . . , Ln) ∈ G (
2n, 2, Λ

n

)
.

A Consider an algorithm A that finds ε
2 -ANEs of games in G (

2n, 2, 3Λ
2n

)
, with

probability at least 1 − η
2 making q profile queries.

B Taking δ = ε2

4n2 < εΛ
4n , the algorithm B from the proof of Theorem 3 that

simulates A but makes (δ, 1)-distribution queries finds an ε-ANE of G′ (The
claim in Theorem 3 also holds for these parameters with this choice of δ).

C By Lemma 1, there is an algorithm C on input G ∈ GΛ (n, 2) that simulates
B (replacing each (δ, 1)-distribution query of G′ with 2n (δ, 1

n )-distribution
queries of G since 1

Ln
≥ 1

n ) finding an ε-ANE with probability at least 1 − η.

Applying Corollary 1 (using δ = ε2

4n2 , γ = 1
n ) to create a profile-query algorithm

from C completes the proof. ��
As an example application of Theorem 4, an algorithm of [10] finds

(
1
8 + α

)
-

approximate Nash equilibria of games in G (
n, 2, 1

n

)
; Theorem 5 states that result

in detail, and Corollary 3 extends it to Multi-Lipschitz games.

Theorem 5 ([10]). Given constants α, η > 0, there is a randomized algorithm
that, with probability at least 1−η, finds

(
1
8 + α

)
-approximate Nash equilibria of

games in G (
n, 2, 1

n

)
making O

(
1

α4 log
(

n
αη

))
profile queries.

We now have some ability to apply this to Multi-Lipschitz games; if 1 ≤ Λ < 4
we can improve upon the trivial 1

2 -approximate equilibrium of Proposition 1.

Corollary 3. For α, η > 0, Λ ≥ 1, ε ≥ Λ
8 + α, there is an algorithm finding

ε-ANEs of games in GΛ (n, 2) with probability at least 1 − η making at most
poly(n, 1

α , log 1
η ) profile queries.

Remark 2. This is actually a slight improvement over just combining Theorems 4
and 5, since the choice of δ can be made slightly smaller to shrink α as necessary.

3.3 A Deterministic Lower Bound

We complete this work by generalizing the following result of Hart and Nisan.

Theorem 6 ([14]). For any ε < 1
2 , the deterministic profile query complexity of

finding ε-ACEs of n-player games is 2Ω(n).
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Player 2

1 2

Player 1
1 1, 0 0, 1

2 0, 1 1, 0

(a) The payoff matrix of G1,2, the
Matching Pennies game.

Player 2

1 2 3

Player 1

1 1, 0 0, 1 0, 1

2 0, 1 1, 0 0, 1

3 0, 1 0, 1 1, 0

(b) The payoff matrix of G1,3, the generalized
Matching Pennies game.

Fig. 2. The payoff matrices of G1,2 and G1,3.

While the proof of Theorem 6 utilizes a reduction from ApproximateSink,
we employ a more streamlined approach, presenting an explicit family of “hard”
games that allows us to uncover the optimal value of ε as a function of the
number of actions:

Theorem 7. Given some m ∈ N, for any ε < m−1
m , the deterministic profile

query complexity of finding ε-ACEs of n-player, m-action games is 2Ω(n).

Furthermore, this value of ε cannot be improved:

Proposition 1. Given some n,m ∈ N, for any ε ≥ m−1
m , an ε-ANE of an

n-player, m-action game can be found making no profile queries.

The upper bound of Proposition 1 can be met if every player plays the uni-
form mixed strategy over their actions. Finally, we can apply Lemma 2 to scale
Theorem 7 and obtain our intended result:

Corollary 4. Given some m ∈ N, λ ∈ (0, 1], for any ε < m−1
m λ, the determinis-

tic profile query complexity of finding ε-ACEs of n-player, m-action, λ-Lipschitz
games is 2Ω(n).

In order to prove these results, we introduce a family of games {Gk,m}. For
any k,m ∈ N, Gk,m is a 2k-player, m-action generalization of k Matching Pennies
games in which every odd player i wants to match the even player i+1 and every
even player i + 1 wants to mismatch with the odd player i.

Definition 7. Define G1,2 to be the generalized Matching Pennies game, as
described in Fig. 2(a). Define the generalization Gk,m to be the 2k-player m-
action game such that, for any i ∈ [k], player 2i − 1 has a payoff 1 for matching
player 2i and 0 otherwise (and vice versa for player 2i) ignoring all other players.

The critical property of the generalized Matching Pennies game is that we can
bound the probability that any given action profile is played in any ε-ACE of
Gk,m. If too much probability is jointly placed on matching actions, player 2
will have high regret. Conversely, if too much probability is jointly placed on
mismatched actions, player 1 will have high regret.
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(a) α = 1
3

(b) α = 1
6

(c) α → 0

Fig. 3. The region of possible values for (Pra∼X∗(a1 = 1, a2 = 1), Pra∼X∗(a1 = 2, a2 =
2) in any

(
1
2
− α

)
-approximate correlated equilibrium of Gk,2. The only exact correlated

equilibrium is shown by the red point, and the corresponding values of ρ are displayed
as the orange lines.

Lemma 3. For any k,m ∈ N, α > 0, take ε = m−1
m − α. In any ε-ACE X∗ of

Gk,m, every action profile a′ ∈ [m]n satisfies Pra∼X∗(a = a′) < ρ
n
2 where

ρ =
(2 − α)m − 1

2m
.

This phenomenon can be seen in Fig. 3.

Proof. Define n = 2k to be the number of players in Gk,m, and consider some
ε-ACE X∗. Now WLOG consider players 1 and 2 and assume, for the sake of
contradiction, that there exist some actions j1, j2 such that Pra∼X∗(a1 = j1, a2 =
j2) > ρ. We will need to consider the two cases j1 = j2 and j1 	= j2.

Matching Actions. In this case, WLOG assume j1 = j2 = 1. We show that player
2 can improve her payoff by more than ε. Under X∗, with probability > ρ, any
random realization a ∼ X∗ will yield player 2 a payoff of 0. In other words,
u2(X∗) < 1 − ρ. Furthermore, considering the marginal distribution over player
1’s action, we are guaranteed that

m∑
j=2

Pr
a∼X∗

(a1 = j) < 1 − ρ

so there must exist some action (WLOG action 2) for which Pra∼X∗(a1 = 2) <
1−ρ
m−1 . As such, define φ(j) = 2. Then u

(φ)
2 (X∗) > 1 − 1−ρ

m−1 , so

reg(φ)2 (X∗) >

(
1 − 1 − ρ

m − 1

)
︸ ︷︷ ︸

u
(φ)
2 (X∗)

− (1 − ρ)︸ ︷︷ ︸
u2(X∗)

=
ρm − 1
m − 1

≥ m − 1
m

− α

for all m ≥ 2. This contradicts our assumption of an ε-ACE.
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Mismatched Actions. In this case, WLOG assume j1 = 1, j2 = 2. The situation
is simpler, taking φ(j) = 2, u1(X∗) < 1 − ρ and u

(φ)
1 (X∗) > ρ, so reg(φ)1 (X∗) >

m−1
m −α. This too contradicts our assumption of an ε-ACE, and thus completes

the proof of Lemma 3. ��
We can now prove Theorem 7. The general idea is that, should an efficient

algorithm exist, because any equilibrium of Gk,m must have large support by
Lemma 3, there is significant probability assigned to action profiles that are not
queried by the algorithm. We show there is a game that the algorithm cannot
distinguish from Gk,m that shares no approximate equillibria with Gk,m.

Proof (Theorem 7). Consider any α > 0 and let ε = m−1
m −α. Taking ρ as in the

statement of Lemma 3, assume there exists some deterministic algorithm A that
takes an n-player, m-action game G as input and finds an ε-ACE of G querying
the payoffs of q < α

2 ρ− n
2 action profiles. Fix some k ∈ N and consider input

Gk,m as defined in Definition 7. Then X∗ = A (Gk,m) is an ε-ACE of Gk,m. Note
that, for some j, Pra∼X∗(a1 = j) ≤ 1

m (WLOG assume j = 1).
Now define the perturbation G′

k,m of Gk,m with payoffs defined to be equal to
Gk,m for every action profile queried by A, 1 for every remaining action profile in
which player 1 plays action 1 (chosen because it is assigned low probability by X∗

by assumption), and 0 otherwise. Note that, by definition, A cannot distinguish
between Gk,m and G′

k,m, so A(G′
k,m) = X∗.

Taking the function φ(j) = 1, the quantity we need to bound is reg′(φ)
i (X∗) ≥

u
′(φ)
i (X∗)−u′

i(X
∗). We must bound the components of this expression as follows:

Claim. u
′(φ)
1 (X∗) > (1 − qρ

n
2 ) and u′

1(X
∗) <

(
1
m + qρ

n
2
)
.

Proof Using the claim (proven in [9]) and once again recalling the assumption
that q < α

2 ρ− n
2 , we see

reg′(φ)
1 (X∗) >

(
1 − 1

m
− 2qρ

n
2

)
=

m − 1
m

− α = ε.

So X∗ cannot actually be an ε-ACE of Gk,m. This completes the proof of The-
orem 7. ��

4 Further Directions

An important additional question is the query complexity of finding ε-PNEs of
n-player, λ-Lipschitz games in which ε = Ω(nλ). Theorem 3 says nothing in
this parameter range, yet Theorem 5 provide a logarithmic upper bound in this
regime. The tightness of this bound is of continuing interest. Furthermore, the
query- and computationally-efficient reduction discussed in Lemma 1 provides
a hopeful avenue for further results bounding the query, and computational,
complexities of finding equilibria in many other classes of games.
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Abstract. This paper studies gerrymandering on graphs from a compu-
tational viewpoint (introduced by Cohen-Zemach et al. [AAMAS 2018]
and continued by Ito et al. [AAMAS 2019]). Our contributions are two-
fold: conceptual and computational. We propose a generalization of the
model studied by Ito et al., where the input consists of a graph on n
vertices representing the set of voters, a set of m candidates C, a weight
function wv : C → Z

+ for each voter v ∈ V (G) representing the prefer-
ence of the voter over the candidates, a distinguished candidate p ∈ C,
and a positive integer k. The objective is to decide if it is possible to
partition the vertex set into k districts (i.e., pairwise disjoint connected
sets) such that the candidate p wins more districts than any other candi-
date. There are several natural parameters associated with the problem:
the number of districts (k), the number of voters (n), and the number of
candidates (m). The problem is known to be NP-complete even if k = 2,
m = 2, and G is either a complete bipartite graph (in fact K2,n, i.e.,
partitions of size 2 and n) or a complete graph. Moreover, recently we
and Bentert et al. [WG 2021], independently, showed that the problem is
NP-hard for paths. This means that the search for FPT algorithms needs
to focus either on the parameter n, or subclasses of forest (as the prob-
lem is NP-complete on K2,n, a family of graphs that can be transformed
into a forest by deleting one vertex). Circumventing these intractability
results we successfully obtain the following algorithmic results.
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– A 2n(n + m)O(1) time algorithm on general graphs.
– FPT algorithm with respect to k (an algorithm with running time

2O(k)nO(1)) on paths in both deterministic and randomized settings,
even for arbitrary weight functions. Whether the problem is FPT
parameterized by k on trees remains an interesting open problem.

Our algorithmic results use sophisticated technical tools such as repre-
sentative set family and Fast Fourier Transform based polynomial mul-
tiplication, and their (possibly first) application to problems arising in
social choice theory and/or algorithmic game theory is likely of indepen-
dent interest to the community.

Keywords: Gerrymandering · Parameterized complexity ·
Representative set

1 Introduction

“Elections have consequences” a now-famous adage ascribed to Barack Obama,
the former President of U.S.A, brings to sharp focus the high stakes of an elec-
toral contest. Political elections, or decision making in a large organization, are
often conducted in a hierarchical fashion. Thus, in order to win the final prize
it is enough to manipulate at district/division level, obtain enough votes and
have the effect propagate upwards to win finally. Needless to say the ramifica-
tions of winning and losing are extensive and possibly long-term; consequently,
incentives for manipulation are rife.

The objective of this article is to study a manipulation or control mecha-
nism, whereby the manipulators are allowed to create the voting “districts”.
A well-thought strategic division of the voting population may well result in
a favored candidate’s victory who may not win under normal circumstances.
In a more extreme case, this may result in several favored candidates winning
multiple seats, as is the case with election to the US House of Representatives,
where candidates from various parties compete at the district level to be the
elected representative of that district in Congress. This topic has received a lot
of attention in recent years under the name of gerrymandering. A New York
Times article “How computers turned gerrymandering into science” [16] dis-
cusses how Republicans were able to successfully win 65% of the available seats
in the state assembly of Wisconsin even though the state has about an equal
number of Republican and Democrat voters. The possibility for gerrymandering
and its consequences have long been known to exist and have been discussed for
many decades in the domain of political science, as discussed by Erikson [17]
and Issacharoff [23]. Its practical feasibility and long-ranging implications have
become a topic of furious public, policy, and legal debate only somewhat recently
[33], driven largely by the ubiquity of computer modelling in all aspects of the
election process. Thus, it appears that via the vehicle of gerrymandering the
political battle lines have been drawn to (re)draw the district lines.

While gerrymandering has been studied in political sciences for long, it is only
rather recently that the problem has attracted attention from the perspective of
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algorithm design and complexity theory. Lewenberg et al. [26] and Eiben et al.
[15] study gerrymandering in a geographical setting in which voters must vote
in the closest polling stations and thus problem is about strategic placement
of polling stations rather than drawing district lines. Cohen-Zemach et al. [8]
modeled gerrymandering using graphs, where vertices represent voters and edges
represent some connection (be it familial, professional, or some other kind), and
studied the computational complexity of the problem. Ito et al. [24] further
extended this study to various classes of graphs, such as paths, trees, complete
bipartite graphs, and complete graphs.

In both the papers the following hierarchical voting process is considered:
A given set of voters is partitioned into several groups, and each of the groups
holds an independent election. From each group, one candidate is elected as
a nominee (using the plurality rule). Then, among the elected nominees, the
winner is determined by a final voting rule (again by plurality). The formal
definition of the problem, termed Gerrymandering (GM), considered in [24]
is as follows. The input consists of an undirected graph G, a set of candidates
C, an approval function a : V (G) → C where a(v) represents the candidate
approved by v, a weight function w : V (G) → Z

+, a distinguished candidate
p, and a positive integer k. We say a candidate q wins a subset V ′ ⊆ V (G) if
q ∈ arg maxq′∈C

{∑
v∈V ′, a(v)=q′ w(v)

}
, i.e., the sum of the weights of voters in

the subset V ′ who approve q is not less than that of any other candidate. The
objective is to decide whether there exists a partition of V (G) into k non-empty
parts V1 � . . . � Vk (called districts) such that (i) the induced subgraph G[Vi] is
connected for each i ∈ {1, . . . , k}, and (ii) the number of districts won only by p
is more than the districts won by any other candidate alone or with others.

In this paper we continue the line of investigation done in [8,24]. Our
contribution is two fold, conceptual and the other is computational.
Towards the former, we offer a realistic generalization of GM, named
Weighted Gerrymandering (W-GM). Towards the latter, we present
fixed parameter tractable (FPT) algorithms with respect to natural param-
eters associated with the gerrymandering problem.

Our Model. A natural generalization of GM in real-life is that of a vertex
representing a locality or an electoral booth as opposed to an individual citizen.
In that situation, however, it is natural that more than one candidate receives
votes in a voting booth, and the number of such votes may vary arbitrarily. We
can model the number of votes each candidate gets in the voting booth corre-
sponding to booth v by a weight function wv : C → Z

+, i.e., the value wv(c)
for any candidate c ∈ C represents the number of votes obtained by candidate
c in booth v. This model is perhaps best exemplified by a nonpartisan “blan-
ket primary” election (such as in California) where all candidates for the same
elected post regardless of political parties, compete on the same ballot against
each other all at once. In a two-tier system, multiple winners (possibly more
than two) are declared and they contest the general election. The idea that one
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can have multiple candidates earning votes from the same locality and possibly
emerging as winners is captured by GM. In [8,24], the vertex v “prefers” only
one candidate, and in this sense our model (W-GM) generalizes theirs (GM).

Formally stated, the input to W-GM consists of an undirected graph G, a
set of candidates C, a weight function for each vertex v ∈ V (G), wv : C → Z

+,
a distinguished candidate p, and a positive integer k. A candidate q is said to
win a subset V ′ ⊆ V (G) if q ∈ arg maxq′∈C

{∑
v∈V ′ wv(q′)

}
. The objective is to

decide whether there exists a partition of the vertex set V (G) into k districts
such that (i) G[Vi] is connected for each i ∈ [k], and (ii) the number of districts
won only by p is more than the number of districts won by any other candidate
alone or with others. GM can be formally shown to be a special case of W-
GM since we can transform an instance I = (G, C, a, w, p, k) of GM to an
instance J = (G, C, {wv}v∈V (G), p, k) of W-GM as follows. For each v ∈ V (G),
let wv : C → Z

+ such that for any q ∈ C, if a(v) = q, then wv(q) = w(v) and
wv(q) = 0, otherwise.

Our Results and Methods. The main open problem mentioned in Ito et al.
[24] is the complexity status of GM on paths when the number of candidates is
not fixed (for the fixed number of candidates, it is solvable in polynomial time).
This question was recently resolved by Bentert et al. [1], and has also been
proved independently by us, which is presented in our extended version [22] and
omitted from here because of lack of space. Thus, in this article we will focus on
designing efficient algorithms. We must remark that Bentert et al. [1] also show
that the problem is weakly NP-hard for trees with three or more candidates.

We study the problem from the viewpoint of parameterized complexity. The
goal of parameterized complexity is to find ways of solving NP-hard problems
more efficiently than brute force: here the aim is to restrict the combinatorial
explosion in the running time to a parameter that is expected to be much smaller
than the input size. Formally, a parameterization of a problem is assigning an
integer � to each input instance and we say that a parameterized problem is
fixed-parameter tractable (FPT) if there is an algorithm that solves the problem
in time f(�) · |I|O(1), where |I| is the size of the input and f is an arbitrary
computable function depending on the parameter � only. There is a long list
of NP-hard problems that are FPT under various parameterizations. For more
background, the reader is referred to the monographs [9,14,29].

Our Choice of Parameters. There are several natural parameters associated with
the gerrymandering problem: the number of districts the vertex set needs to be
partitioned (k), the number of voters (n), and the number of candidates (m). Ito
et al. [24] proved that GM is NP-complete even if k = 2, m = 2, and G is either
a complete bipartite graph (in fact K2,n) or a complete graph. Thus, we cannot
hope for an algorithm for W-GM that runs in f(k,m) · nO(1) time, i.e., an FPT
algorithm with respect to the parameter k + m, even on planar graphs. In fact,
we cannot hope to have an algorithm with running time (n + m)f(k,m), where
f is a function depending only on k and m, as that would imply P=NP. This
means that our search for FPT algorithms needs to either focus on the parameter
n, or subclasses of planar graphs (as the problem is NP-complete on K2,n, which
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is planar). Furthermore, note that K2,n could be transformed into a forest by
deleting a vertex, and thus we cannot even hope to have an algorithm with
running time (n + m)f(k,m), where f is a function depending only on k and m,
on a family of graphs that can be made acyclic, in fact a star, by deleting at most
one vertex. This essentially implies that if we wish to design an FPT algorithm
for W-GM with respect to the parameter k, or m, or k + m, we must restrict
input graphs to forests. Circumventing these intractable results, we successfully
obtain several algorithmic results. We give deterministic and randomised FPT
algorithms for W-GM on paths with respect to k. Since W-GM generalizes GM,
the algorithmic results hold for GM as well.

Theorem 1. There is an algorithm that given an instance of W-GM on arbi-
trary graphs and a tie-breaking rule η, solves the instance in time 2n(n+m)O(1).

Intuition Behind the Proof of Theorem 1. Suppose that we are given a
Yes-instance of the problem. Of the k possibilities, we first “guess” in a solution
the number of districts that are won by the distinguished candidate p. Let this
number be denoted by k�. Next, for every candidate c ∈ C, we consider the
family Fc, the set of districts of V (G) in which c wins in each of them. These
families are pairwise disjoint because each district has a unique winner. Our goal
is to find k� disjoint sets from the family Fp and at most k� − 1 disjoint sets
from any other family so that in total we obtain k pairwise disjoint districts that
partition V (G). The exhaustive algorithm to find the districts from these families
would take time O�(2nmk�

). We reduce our problem to polynomial multiplication
involving polynomial-many multiplicands, each with degree at most O(2n).

Why Use Polynomial Algebra? Every district S is a subset of V (G). Let
χ(S) denotes the characteristic vector corresponding to S. We view χ(S) as
an n-digit binary number, in particular, if ui ∈ S, then ith bit of χ(S) is 1,
otherwise 0. A crucial observation guiding our algorithm is that two sets S1

and S2 are disjoint if and only if the number of 1 in χ(S1) + χ(S2) (binary
sum/modulo 2) is equal to |S1|+ |S2|. So, for each set Fc, we make a polynomial
Pc(y), where for each set S ∈ Fc, there is a monomial yχ(S). Let c1 and c2 be
two candidates, and for simplicity assume that each set in Fc1 has size exactly
s and each set in Fc2 has size exactly t (we do not have such assumption in
the formal description of the algorithm). Let P �(y) be the polynomial obtained
by multiplying Pc1(y) and Pc2(y); and let yz be a monomial of P �(y). Then,
the z has exactly s + t ones if and only if “the sets which corresponds to z
are disjoint”. Thus, the polynomial method allows us to capture disjointness
and hence, by multiplying appropriate subparts of polynomial described above,
we obtain our result. Furthermore, note that χ(S) ∈ {0, 1}n, throughout the
process, correspond to some set in V (G), and hence the decimal representation
of the maximum degree of the considered polynomials is upper bounded by 2n.
Hence, the algorithm itself is about applying an O(d log d) algorithm to multiply
two polynomials of degree d; here d ≤ 2n. Thus, we obtain Theorem 1.
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Theorem 2. There is a deterministic algorithm that given an instance of W-
GM on paths and a tie-breaking rule η solves in time 2.619k(n + m)O(1).

Theorem 3. There is a randomized algorithm that given an instance of W-GM
on paths and a tie-breaking rule η, solves the instance in time 2k(n+m)O(1) with
no false positives and false negatives with probability at most 1/3.

Intuition Behind the Proofs of Theorem 2 and 3. Since, the problem is
on paths, it boils down to selecting k − 1 appropriate vertices which divide
the path into k subpaths that form the desired districts. This in turn implies
that each district can be identified by the leftmost vertex and the rightmost
vertex appearing in the district (based on the way vertices appear on the path).
Hence, there can be at most O(n2) districts in the path graph. Furthermore,
since we are on a path, we observe that if we know a district (identified by
its leftmost and the rightmost vertices on the path), then we also know the
rightmost (and leftmost) vertex of the district adjacent to its left (resp. right).
These observations naturally lead us to consider the following graph H: we have
a vertex for each possible district and put an edge from a district to another
district, if these two districts appear consecutively on the path graph. Thus, we
are looking for a path of length k in H such that (a) it covers all the vertices of the
input path (this automatically implies that each vertex appears in exactly one
district); and (b) the distinguished candidate wins most number of districts. This
equivalence allows us to use the rich algorithmic toolkit developed for designing
2O(k)nO(1) time algorithm for finding a k-length path in a given graph [5,28,32].

The above tractability result for paths cannot be extended to graphs with
pathwidth 2, or graphs with feedback vertex set (a subset of vertices whose
deletion transforms the graph into a forest) of size 1, because GM is NP-complete
on K2,n when k = 2 and |C| = 2 (see [24]). Note that the pathwidth of graph
K2,n is 2 and it has feedback vertex set size 1. For trees, it is easy to obtain
a O(

(
n

k−1

)
) time algorithm by “guessing” the k − 1 edges whose deletion yields

the k districts that constitute the solution. However, a f(k)nO(1) algorithm for
trees so far eludes us. Thus, whether the problem is FPT parameterized by k on
trees remains an interesting open problem.

Unique Winner vs Multiple Winner: The definition of GM [24] or its general-
ization W-GM put forward by us does not preclude the possibility of multi-
ple winners in a district. The time complexity stated in Theorems 1 and 2 is
achieved when only one winner emerges from each district, a condition that is
attainable using a tie-breaking rule. Notably, the algorithms in Theorems 2 and
3 can be modified to handle the case when multiple winners emerge in some
district(s) [22].

Additionally, using our parameterized algorithms (Theorems 2 and 3), we
can improve over Theorem 1 when the input graph is a path. That is, using
Theorems 2 and 3, and the fact that there exists an algorithm for paths that
runs in time O(

(
n

k−1

)
), we conclude that for W-GM on paths, there exists a

deterministic algorithm that runs in max1≤k≤n min{
(
n
k

)
, 2.619k} time, and a
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randomized algorithm that runs in max1≤k≤n min{
(
n
k

)
, 2k} time. Using, standard

calculations we can obtain the following result.

Theorem 4. There is a (randomized) deterministic algorithm that given an
instance of W-GM on paths and a tie-breaking rule η, solves the instance in
time (1.708n(n + m)O(1)) 1.894n(n + m)O(1).

It is worth mentioning that our algorithmic results use sophisticated technical
tools from parameterized complexity–representative set family and Fast Fourier
transform based polynomial multiplication–that have yielded breakthroughs in
improving time complexity of many well-known optimization problems. Thus,
their (possibly first) application to problems arising in social choice theory
and/or algorithmic game theory is likely of independent interest. Due to the
constraints on space, proofs marked by ♣ are deferred to the full version [22].

Related Work. In addition to the result discussed earlier Ito et al. [24] also prove
that GM is strongly NP-complete when G is a tree of diameter four; thereby,
implying that the problem cannot be solved in pseudo-polynomial time unless P
= NP. As GM is a special case of W-GM, each of the hardness results for GM
carry onto W-GM. They also exhibit several positive results: GM is solvable
in polynomial time on stars (i.e., trees of diameter two) and that the problem
can be solved in polynomial time on trees when k is a constant. Moreover, when
the number of candidates is a constant, then it is solvable in polynomial time on
paths and is solvable in pseudo-polynomial time on trees. The running time of the
algorithm on paths is k2|C|

nO(1), where n is the number of vertices in the input
graph and C is the set of the candidates. Bentert et al. [1] proved GM is NP-hard
on paths even if all vertices have unit weights and it is weakly NP-hard on trees
even if |C| = 2; and that the problem is polynomial time solvable for trees with
diameter three. Prior to these Cohen-Zemach et al. [8] studied GM on graphs.
In addition to the papers discussed earlier, there are far too many articles to
list on this subject. Some of them are [4,6,7,11,20,25,30,31,34]. Parameterized
complexity of manipulation has received extensive attention over the last several
years, [2,3,12,18,19] are just a few examples.

2 Preliminaries

For our algorithmic results we define a variant of W-GM that we call Tar-
get Weighted Gerrymandering (TW-GM). The input of TW-GM is an
instance of W-GM, and a positive integer k�. The objective is to test whether
the vertex set of the input graph can be partitioned into k districts such that the
candidate p wins in k� districts alone and no other candidate wins in more than
k� − 1 districts. The following simple lemma implies that to design an efficient
algorithm for W-GM it is enough to design an efficient algorithm for TW-GM.

Lemma 1. If there exists an algorithm that given an instance (G, C,
{wv}v∈V (G), p, k, k�) of TW-GM and a tie-breaking rule η, solves the instance
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in f(z) time, then there exists an algorithm that solves the instance
(G, C, {wv}v∈V (G), p, k) of W-GM in f(z) · k time under the tie-breaking rule
η.

Notations and Basic Terminology. In an undirected graph G = (V,E), uv
denotes an edge between the vertices u and v which are called the endpoints of
uv. For a set X ⊆ V (G), G[X] denotes the graph induced on X. We say that set
X is connected if G[X] is a connected graph. In a directed graph G = (V,A),
we denote an arc (i.e., directed edge) from u to v by 〈u, v〉, and say that u is
an in-neighbor of v and v is an out-neighbor of u. For x ∈ V (G), N−(x) =
{y ∈ V (G) : 〈y, x〉 ∈ A(G)}. The in-degree (out-degree) of a vertex x in G is
the number of in-neighbors (out-neighbors) of x in G. For background on graph
theory we refer to [13].

3 FPT Algorithm for General Graphs

We prove Theorem 1 here. Towards that, we use polynomial algebra that care-
fully keeps track of the number of districts won by each candidate so that nobody
wins (if at all possible) more than p. An intuitive idea was presented in the intro-
duction.

Due to Lemma 1 it is sufficient to prove it for TW-GM.
Before we discuss our algorithm, we introduce some notations. The charac-

teristic vector of a set S ⊆ U , denoted by χ(S), is an |U |-length vector whose
ith bit is 1 if ui ∈ S, otherwise 0. Two binary strings S1, S2 ∈ {0, 1}n are said to
be disjoint if for each i ∈ {1, . . . , n}, the ith bit of S1 and S2 are different. The
Hamming weight of a binary string S is denoted by H(S).

Observation 1. Let S1 and S2 be two binary vectors, and let S = S1 + S2. If
H(S) = H(S1) + H(S2), then S1 and S2 are disjoint binary vectors.

Proposition 1 [10]. Let S = S1 ∪ S2, where S1 and S2 are two disjoint sub-
sets of the set V = {v1, . . . , vn}. Then, χ(S) = χ(S1) + χ(S2) and H(χ(S)) =
H(χ(S1)) + H(χ(S2)) = |S1| + |S2|.

A monomial xi, where i is a binary vector, is said to have Hamming weight
h, if i has Hamming weight h. The Hamming projection of a polynomial P (x)
to h, denoted by Hh(P (x)), is the sum of all the monomials of P (x) which have
Hamming weight h. We define the representative polynomial of P (x), denoted by
R(P (x)), as the sum of all the monomials that have non-zero coefficient in P (x)
but have coefficient 1 in R(P (x)), i.e., it only remembers whether the coefficient
is non-zero. We say that P (x) contains the monomial xi if its coefficient in P (x)
is non-zero. In the zero polynomial, the coefficient of each monomial is 0.

Algorithm. Let I = (G, C, {wv}v∈V (G), p, k, k�) be an instance of TW-GM. We
assume that k� ≥ 1, otherwise k = 1 and it is a trivial instance.

For each candidate ci in C, we construct a family Fi that contains all possible
districts won by ci. Due to the application of tie-breaking rule, we may assume
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that every district has a unique winner. Without loss of generality, let c1 = p, the
distinguished candidate. Note that we want to find a family S of k districts, that
contains k� elements of the family F1 and at most k� − 1 elements from each of
the other family Fi, where i > 1. The union of these districts gives V (G) and any
two districts in S are pairwise disjoint. To find such k districts, we use the method
of polynomial multiplication appropriately using the next proposition. Due to
Observation 1 and Proposition 1, we know that subsets S1 and S2 are disjoint
if and only if the Hamming weight of the monomial yχ(S1)+χ(S2) is |S1| + |S2|.
Here, degree of a polynomial is the decimal representation of its exponent.

Proposition 2 [27]. There exists an algorithm that multiplies two polynomials
of degree d in O(d log d) time.

For every i ∈ {1, . . . , m}, � ∈ {1, . . . , n}, if Fi has a set of size �, then we
construct a polynomial P �

i (y) =
∑

Y ∈Fi

|Y |=�
yχ(Y ). Next, using polynomials P �

1 (y),

where � ∈ {1, . . . , n}, we will create a sequence of polynomials Qs
1,j , where j ∈

{1, . . . , k� − 1}, s ∈ {j + 1, . . . , n}, in the increasing order of j, such that every
monomial in the polynomial Qs

1,j has Hamming weight s. For j = 1, we construct
Qs

1,1 by summing all the polynomials obtained by multiplying P s′
1 and P s′′

1 , for
all possible values of s′, s′′ ∈ {1, . . . , n} such that s′ +s′′ = s, and then by taking
the representative polynomial of its Hamming projection to s. If Qs

1,1 contains a
monomial xt, then there exists a set S ⊆ V (G) of size s such that t = χ(S) and
S is formed by the union of two districts won by c1. Next, for j ∈ {2, . . . , k� −1}
and s ∈ {j + 1, . . . , n}, we create the polynomial Qs

1,j similarly, using Qs′′
1,(j−1)

in place of P s′′
1 . Formally,

Qs
1,1 = R

(
Hs

( ∑
1≤s′,s′′≤s
s′+s′′=s

P s′
1 ×P s′′

1

))
, Qs

1,j = R
(
Hs

( ∑
1≤s′,s′′≤s
s′+s′′=s

P s′
1 ×Qs′′

1,(j−1)

))
.

Thus, if Qs
1,j contains a monomial xt, then there exists a set S ⊆ V (G) of

size s such that t = χ(S) and S is formed by the union of j + 1 districts won
by c1. In this manner, we can keep track of the number of districts won by c1.
Next, we will take account of the wins of the other candidates.

Towards this we create a family of polynomials T = {Tk� , . . . , Tk} such
that the polynomial Tk�+�, where � ∈ {0, . . . , k − k�}, encodes the following
information: the existence of a monomial xt in Tk�+� implies that there is a
subset X ⊆ V (G) such that t = χ(X) and X is the union of k� + � dis-
tricts in which c1 wins in k� districts and every other candidate wins in at
most k� − 1 districts. Therefore, it follows that if Tk contains the monomial
yχ(V (G)) (the all 1-vector) then our algorithm should return “Yes”, otherwise
it should return “No”. We define Tk�+� recursively, with the base case given by
Tk� =

∑n
s=k� Qs

1,(k�−1). If Tk� = 0, then we return “No”. We initialize Tk�+� = 0,
for each � ∈ {1, . . . , k − k�}. For each i ∈ {2, . . . ,m}, we proceed as follows in
the increasing order of i.
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– For each j ∈ {1, . . . ,min{k� − 1, k − k�}}
• For each � ∈ {j, . . . , k − k�} and s ∈ {k� + 1, . . . , n}

∗ Compute the polynomial Qs
� =

∑
1≤s′,s′′≤s
s′+s′′=s

P s′
i × Hs′′(Tk�+�−1)

∗ Compute the Hamming projection of Qs
� to s, that is, Qs

� =
Hs(Qs

�)
• For each � ∈ {j, . . . , k − k�}

∗ Set Tk�+� = R(Tk�+� +
∑n

s=k�+1 Qs
�)

The range of j is dictated by the fact that since c1 wins k� districts, all other
candidates combined can only win k − k� districts and each individually may
only win at most k� − 1 districts. Thus, overall candidate ci, for any i ≥ 2 can
win at most min{k� − 1, k − k�} districts. The range of � is dictated by the fact
that (assuming that first k� districts are won by c1) jth district won by ci is
either (k� + j)th district, or (k� + j + 1)th district, ..., or kth district. The range
of s is dictated by the fact that the number of vertices in the union of all the
districts is at least k� + 1 as c1 wins k� districts.

Note that Qs
� is a non-zero polynomial if there exists a subset of vertices of

size s that are formed by the union of k� + � pairwise disjoint districts, k� of
which are won by c1 and every other candidate wins at most k� − 1. Thus, the
recursive definition of Tk�+� is self explanatory. Next, we prove the correctness
and running time of the algorithm which conclude the proof of Theorem 1.

Correctness. The following lemma proves the completeness of the algorithm.

Lemma 2. If (G, C, {wv : C → Z
+}v∈V (G), p, k, k�) is a Yes-instance of TW-

GM under a tie-breaking rule, then the above algorithm returns “Yes”.

Proof. Suppose that V1, . . . , Vk is a solution to (G, C, {wv : C → Z
+}v∈V (G),

p, k, k�). Recall that we assumed that p = c1. Let Vi ⊆ {V1, . . . , Vk} be the set of
districts won by the candidate ci. Due to the application of a tie-breaking rule,
Vis are pairwise disjoint. Without loss of generality, let V1 = {V1, . . . , Vk�}. We
begin with the following claim that enables us to conclude that polynomial Tk

has monomial yχ(V (G)).

Claim 1 (♣). For each i ∈ {1, . . . , m}, polynomial T∑
|V1|+...+|Vi| contains the

monomial yχ(∪Y ∈V1∪...∪Vi
Y ).

Hence, we can conclude that the polynomial Tk contains the monomial
yχ(V (G)). Hence, the algorithm returns Yes. �
In the next lemma, we prove the soundness of the algorithm.

Lemma 3. If the above algorithm returns “Yes” for an instance I =
(G, C, {wv : C → Z

+}v∈V (G), c1, k, k�) for the tie-breaking rule η, then I is a
Yes-instance of TW-GM under the tie-breaking rule η.
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Proof. We first prove the following claims.

Claim 2 (♣). If Tk� has a monomial yS, then there are k� pairwise disjoint
districts Y1, . . . , Yk� such that χ(Y1∪ . . .∪Yk�) = S and c1 wins in every district.

Claim 3 (♣). For a pair of integer i, j, where i ∈ {2, . . . , m} and j ∈
{1, . . . ,min{k − k�, k� − 1}}, let Tk�+1, . . . , Tk be the family of polynomials con-
structed in the algorithm at the end of for loops for i and j, in the above algo-
rithm. Let yS be a monomial in Tt, where t ∈ {k�+1, . . . , k}. Then, the following
hold:

– there are t pairwise disjoint districts Y1, . . . , Yt such that χ(Y1 ∪ . . . ∪Yt) = S
– c1 wins in k� districts in {Y1, . . . , Yt}
– ci wins in j districts in {Y1, . . . , Yt}
– for 2 ≤ q < i, cq wins in at most k� − 1 districts in {Y1, . . . , Yt}
– for q > i, cq does not win in any district in {Y1, . . . , Yt}

The proof of this claim follows by using nested induction on i and j. If the
algorithm returns Yes, then we know that there is a monomial yχ(V (G)) in Tk.
Therefore, due to Claim 3, there are k districts such that c1 wins in k� districts
and all the candidates win in at most k� − 1 districts. �

Lemma 4 (♣). The above algorithm runs in 2n(n + m)O(1) time.

4 Deterministic Algorithm for Path

In this section, we discuss the proof of Theorem 2, the full details of each proof
is in the Appendix. We note that due to Lemma 1, it is sufficient to present a
deterministic FPT algorithm parameterized by k for TW-GM when the input
is a path. Let (G, C, {wv : C → Z

+}v∈V (G), p, k, k�) be the input instance where
G is the path (u1, . . . , un). We begin with a simple observation.

Observation 2 A path G on n vertices has O(n2) distinct connected sets.

Based on the above observation we create an auxiliary directed graph H with
parallel arcs on

(
n
2

)
+ n + 2 vertices, where we have a vertex for each connected

set of G. For {i, j} ⊆ [n], i ≤ j, let Pi,j denote the subpath of G starting at the
ith vertex and ending at the jth vertex. That is Pi,j is the subpath (ui, . . . , uj)
of G. Formally, we define the auxiliary graph H as follows.

1. For each {i, j} ⊆ {1, . . . , n} such that i ≤ j, create a vertex vi,j corre-
sponding to the subpath Pi,j . 2. We do the following for each {i, j} ⊆ {1, . . . , n}.
Let c denote the candidate that wins the district Pi,j , where i ≤ j. If c �= p,
then we do the following. For each r ∈ {j + 1, . . . , n}, we add k� − 1 arcs
〈vi,j , vj+1,r, 1〉, 〈vi,j , vj+1,r, 2〉,. . .,〈vi,j , vj+1,r, k

� − 1〉 from vertex vi,j to vj+1,r.
We label the k� −1 arcs from vi,j to vj+1,r with 〈c, 1〉, 〈c, 2〉, . . . , 〈c, k� −1〉. That
is, for each k′ ∈ {1, . . . , k� − 1}, the arc 〈vi,j , vj+1,r, k

′〉 is labeled with 〈c, k′〉. If
c = p, then we do the following. For each r ∈ {j +1, . . . , n}, we add an unlabeled
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arc from vi,j to vj+1,r. 3. Finally, we add two new vertices s and t. Now we add
arcs incident to s. Let i ∈ {1, . . . , n}. We add an unlabeled arc from the vertex
s to v1,i. Next we add arcs incident to t. Let c denote the candidate that wins
in Pi,n. If c �= p, then we add k� −1 arcs 〈vi,n, t, 1〉, 〈vi,n, t, 2〉, . . . , 〈vi,n, t, k� −1〉
from vi,n to t and label them with 〈c, 1〉, 〈c, 2〉, . . . , 〈c, k� − 1〉, respectively. If
c = p, then we add an unlabeled arc from vi,n to t.

Lemma 5 (♣). There is a path on k +2 vertices from s to t in H such that the
path has k − k� labeled arcs with distinct labels and k� + 1 unlabeled arcs if and
only if V (G) can be partitioned into k districts such that p wins in k� districts
and any other candidate wins in at most k� − 1 districts.

Thus, our problem reduces to finding a path on k + 2 vertices from s to t in
H such that there are k� + 1 unlabeled arcs, and k − k� distinctly labeled arcs.

Theorem 5. There is an algorithm that given an instance I of TW-GM and
a tie-breaking rule, solves the instance I in time 2.619k−k� |I|O(1).

Towards proving Theorem 5, we design a dynamic programming algorithm
using the concept of representative family. We first define representative family.

Let S be a family of subsets of a universe U ; and let q ∈ N. A subfamily
Ŝ ⊆ S is said to q-represent S if the following holds. For every set B of size q,
if there is a set A ∈ S such that A ∩ B = ∅, then there is a set A′ ∈ Ŝ such that
A′ ∩ B = ∅. If Ŝ q-represents S, then we call Ŝ a q-representative of S.

Proposition 3. [21] Let S = {S1, . . . , St} be a family of sets of size p over
a universe of size n and let 0 < x < 1. For a given q ∈ N, a q-representative
family Ŝ ⊆ S for S with at most x−p(1 − x)−q · 2o(p+q) sets can be computed in
time O((1 − x)−q · 2o(p+q) · t · log n).

We introduce the definition of subset convolution on set families which will
be used to capture the idea of “extending” a partial solution, a central concept
when using representative family. For two families of sets A and B, we define
A ∗ B as {A ∪ B : A ∈ A, B ∈ B, A ∩ B = ∅}.

Proof (Proof sketch of Theorem 5). An instance of TW-GM is given by
I =(G, C, {wv}v∈V , p, k, k�). Additionally, recall the construction of the labeled
digraph H with parallel arcs from I. In order to prove Theorem 5, due to
Lemma 5, it is enough to decide whether there exists a path on k + 2 vertices
from s to t in H that satisfies the following properties: (PI) there are k� + 1
unlabeled arcs, and (PII) the remaining k − k� arcs have distinct labels.

Before presenting our algorithm, we first define some notations. For i ∈
{1, . . . , k + 1} and r ∈ {1, . . . , k� + 1}, a path P starting from s on i + 1 vertices
is said to satisfy P(i, r) if there are r unlabeled arcs (including the arc from
s in P ), and the remaining i − r arcs have distinct labels. For a subgraph H ′

of H, we denote the set of labels in the graph H ′ by L(H ′). Recall that each
vertex v ∈ V (H) \ {s, t} corresponds to a subpath (i.e., a district) of the path
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G. Hence, for each v ∈ V (H) \ {s, t}, we use win(v) to denote the (unique)
candidate that wins1 the district denoted by v. Equivalently, we say that the
candidate win(v) wins the district v in G. For each vertex v ∈ V (H), and a pair
of integers i ∈ {1, . . . , k + 1}, r ∈ {1, . . . ,min{i, k� + 1}}, we define a set family
F [i, r, v] = {P : P is a s to v path in H on i+1 vertices satisfying P(i, r)}.

The following family contains the arc labels on the path in the family
F [i, r, v]. Q[i, r, v] =

{
L(P ) : P ∈ F [i, r, v]

}
. Note that for each value of

i ∈ {1, . . . , k+1}, r defined above and v ∈ V (H), each set in Q[i, r, v] is actually
a subset of L(H) of size i − r. If there is a path from s to t on k + 2 vertices
with k − k� arcs with distinct labels, then Q[k + 1, k� + 1, t] �= ∅ and vice versa.
That is, Q[k + 1, k� + 1, t] �= ∅ if and only if F [k + 1, k� + 1, t] �= ∅. Hence,
to solve our problem, it is sufficient to check if Q[k + 1, k� + 1, t] is non-empty.
To decide this, we design a dynamic programming algorithm using representa-
tive families over L(H). In this algorithm, for each value of i ∈ {1, . . . , k + 1},
r ∈ {1, . . . ,min{i, k� + 1}}, and v ∈ V (H), we compute a (k − k� − (i − r)) rep-
resentative family of Q[i, r, v], denoted by Q̂[i, r, v], using Proposition 3, where
x = i−r

2(k−k�)−(i−r) . Here, the value of x is set with the goal to optimize the run-
ning time of our algorithm, as is the case for the algorithm for k-Path in [21].
Our algorithm outputs “Yes” if and only if Q̂[k + 1, k� + 1, t] �= ∅.

Algorithm. We now formally describe how we recursively compute the family
Q̂[i, r, v], for each i ∈ {1, . . . , k + 1}, r ∈ {1, . . . ,min{i, k� + 1}}, and v ∈ V (H).

Base Case: We set Q̂[1, r, v] = Q[1, r, v]

=
{

{∅} if 〈s, v〉 is an arc in H and r = 1
∅ otherwise (1)

For each i ∈ {1, . . . , k + 1}, r ∈ {1, . . . , k − k�} ∪ {0}, and v ∈ V (H), we set

Q̂[i, r, v] = Q[i, r, v] = ∅ if r = 0 or r > i. (2)

We define (2) so that the recursive definition (3) has a simple description.

Recursive Step: For each i ∈ {2, . . . , k + 1}, r ∈ {1, . . . ,min{i, k� + 1}}, and
v ∈ V (H), we compute Q̂[i, r, v] as follows. We first compute Q′[i, r, v] from
the previously computed families and then we compute a (k − k� − (i − r))-
representative family Q̂[i, r, v] of Q′[i, r, v]. The family Q′[i, r, v] is computed
using the representative family as follows: Q′[i, r, v] =

( ⋃
w∈N−(v),
win(w)=p

Q̂[i − 1, r − 1, w]

) ⋃ ( ⋃
w∈N−(v),
win(w) �=p

Q̂[i − 1, r, w] ∗ {{〈win(w), j〉} : 1≤ j <k�}
)

(3)

Next, we compute a (k − k� − (i − r))-representative family Q̂[i, r, v] of
Q′[i, r, v] using Proposition 3, where x = i−r

2(k−k�)−(i−r) . Our algorithm works as

1 We may assume this by applying the tie-breaking rule.
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follows: compute Q̂[i, r, v] using Eqs. (1)–(3), and Proposition 3. Output “Yes”
if and only if Q̂[k + 1, k� + 1, t] �= ∅.

Correctness Proof. We prove that for every i ∈ {1, . . . , k + 1}, r ∈
{1, . . . ,min{i, k� +1}}, and v ∈ V (H), Q̂[i, r, v] is indeed a (k−k� − (i−r)) rep-
resentative family of Q[i, r, v], and not just that of Q′[i, r, v]. From the definition
of 0-representative family of Q[k+1, k�+1, t], we have that Q[k+1, k�+1, t] �= ∅
if and only if Q̂[k+1, k� +1, t] �= ∅. Thus, for correctness we prove the following.

Lemma 6 (♣). For each i ∈ {1, . . . , k + 1}, r ∈ {1, . . . ,min{i, k� + 1}}, and
v ∈ V (H), family Q̂[i, r, v] is a (k − k� − (i − r))-representative of Q[i, r, v].

We first prove that the following recurrence for Q[i, r, v] is correct. Q[i, r, v] =
( ⋃

w∈N−(v),
win(w)=p

Q[i − 1, r − 1, w]

) ⋃ ( ⋃
w∈N−(v),
win(w) �=p

Q[i − 1, r, w] ∗ {{〈win(w), j〉} : 1 ≤ j < k�}
)

(4)

We claim that Eqs. (1), (2), and (4) correctly compute Q[i, r, v], for each
i ∈ {1, . . . , k + 1}, r ∈ {1, . . . ,min{i, k� + 1}}, and v ∈ V (H). This concludes
the proof of Lemma 6 by showing subset containment on both sides. �

5 In Conclusion

We have shown that GM on paths is NP-complete, thereby resolving an open
question in [24]. This gives parameterized intractability for parameters such as
maximum degree of a vertex in the graph. Furthermore, we have presented FPT
algorithms for paths when parameterized by the number of districts. We also
give an FPT algorithm running in time 2n(n + m)O(1) on general graphs.

We conclude with a few directions for further research: (i) Does there exist a
O(cn) algorithm for W-GM when there are possibly multiple winners in a dis-
trict?; (ii) Is W-GM on paths FPT parameterized by the number of candidates?;
(iii) Is W-GM on trees FPT parameterized by the number of districts?
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Abstract. We propose a model for games in which the players have
shared access to a blockchain that allows them to deploy smart con-
tracts to act on their behalf. This changes fundamental game-theoretic
assumptions about rationality since a contract can commit a player to
act irrationally in specific subgames, making credible otherwise non-
credible threats. This is further complicated by considering the inter-
action between multiple contracts which can reason about each other.
This changes the nature of the game in a nontrivial way as choosing
which contract to play can itself be considered a move in the game.
Our model generalizes known notions of equilibria, with a single con-
tract being equivalent to a Stackelberg equilibrium, and two contracts
being equivalent to a reverse Stackelberg equilibrium. We prove a num-
ber of bounds on the complexity of computing SPE in such games with
smart contracts. We show that computing an SPE is PSPACE-hard in
the general case. Specifically, in games with k contracts, we show that
computing an SPE is ΣP

k -hard for games of imperfect information. We
show that computing an SPE remains PSPACE-hard in games of perfect
information if we allow for an unbounded number of contracts. We give
an algorithm for computing an SPE in two-contract games of perfect
information that runs in time O(m�) where m is the size of the game
tree and � is the number of terminal nodes. Finally, we conjecture the
problem to be NP-complete for three contracts.

1 Introduction

This paper is motivated by the games that arise on permissionless blockchains
such as Ethereum [22] that offer “smart contract” functionality: in these permis-
sionless systems, parties can deploy smart contracts without prior authorization
by buying the “tokens” required to execute the contract. By smart contracts, we
mean arbitrary pieces of code written in a Turing-complete language1 capable of
maintaining state (including funds) and interact with other smart contracts by
invoking methods on them. Essentially, smart contracts are objects in the Java
sense. Parties can also invoke methods on the smart contracts manually. Note
that the state of all smart contracts is public and can be inspected by any party

1 However the running time of the contracts is limited by the execution environment.
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at any time. This changes fundamental game-theoretic assumptions about ratio-
nality: in particular, it might be rational for a player to deploy a contract that
commits them to act irrationally in certain situations to make credible otherwise
non-credible threats. This gives rise to very complex games in which parties can
commit to strategies, that in turn depend upon other players’ committed strate-
gies. Reasoning about such equilibria is important when considering games that
are meant to be played on a blockchain, since the players - at least in princi-
ple - always have the option of deploying such contracts. In the literature, this
is known as a Stackelberg equilibrium where a designated leader commits to a
strategy before playing the game. In general, because of first-mover advantage,
being able to deploy a contract first is never a disadvantage, since a player can
choose to deploy the empty contract that commits them to nothing. It is well-
known that it is hard to compute the Stackelberg equilibrium in the general
case [12], though much less is known about the complexity when there are sev-
eral of these contracts in play: when there are two contracts, the first contract
can depend on the second contract in what is known as a reverse Stackelberg
equilibrium [2,9,21]. This is again strictly advantageous for the leader since they
can punish the follower for choosing the wrong strategy. In this paper, we present
a model that generalizes (reverse) Stackelberg games, that we believe captures
these types of games and which may be of wider interest. In practical terms,
we believe that our model is of interest when analyzing distributed systems for
“game-theoretic security” in settings where the players naturally have the ability
to deploy smart contracts. Potential examples include proof-of-stake blockchains
themselves and financial applications that build upon these systems.

Contracts Players Information Strategies Lower bound Upper bound

0 2 perfect pure P-hard [20] O(m) [16]

0 2 imperfect mixed PPAD-complete [7,6]

1 2 perfect pure P-hard [20] O( ) [4]

1 2 perfect mixed NP-complete [13]

1 2 imperfect - NP-complete [13]

2 2 perfect pure P-hard [20] O( ) [Theorem 3]

3 3 perfect pure Conjectured NP-hard NP [Theorem 3]

k 2 + k imperfect pure Σp
k-hard [Theorem 2] ?

unbounded - perfect pure PSPACE-hard [Theorem 4] ?

Fig. 1. An overview of some existing bounds on the complexity of computing an SPE
in extensive-form games and where our results fit in. Here, m is the size of the tree,
and � is the number of terminal nodes.

Our Results. We propose a game-theoretic model for games in which players
have shared access to a blockchain that allows the players to deploy smart con-
tracts to act on their behalf in the games. Allowing a player to deploy a smart
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contract corresponds to that player making a ‘cut’ in the tree, inducing a new
expanded game of exponential size containing as subgames all possible cuts in the
game. We show that many settings from the literature on Stackelberg games can
be recovered as special cases of our model, with one contract being equivalent to
a Stackelberg equilibrium, and two contracts being equivalent to a reverse Stack-
elberg equilibrium. We prove bounds on the complexity of computing an SPE in
these expanded trees. We prove a lower bound, showing that computing an SPE
in games of imperfect information with k contracts is ΣP

k -hard by reduction from
the true quantified Boolean formula problem. For k = 1, it is easy to see that a
contract can be verified in linear time, establishing NP-completeness. In general,
we conjecture ΣP

k -completeness for games with k contracts, though this turns
out to reduce to whether or not contracts can be described in polynomial space.
For games of perfect information with an unbounded number of contracts, we
also establish PSPACE-hardness from a generalization of 3-coloring. We show
an upper bound for k = 2 and perfect information, namely that computing an
SPE in a two-contract game of size m with � terminal nodes (and any number of
players) can be computed in time O(m�). For k = 3, the problem is clearly in NP
since we can verify a witness using the algorithm for k = 2, and we conjecture
the problem to be NP-complete. Finally, we discuss various extensions to the
model proposed and leave a number of open questions.

2 Games with Smart Contracts

In this section, we give our model of games with smart contracts. We mostly
assume familiarity with game theory and refer to [16] for more details. For sim-
plicity of exposition, we only consider a somewhat restricted class of games,
namely finite games in extensive form, and consider only pure strategies in these
games. In addition, we will assume games are in generic form, meaning the util-
ities of all players are unique. This has the effect that the resulting subgame
perfect equilibrium is unique. Equivalently, we use a tie breaking algorithm to
decide among the different subgame perfect equilibria, and slightly perturb the
utilities of the players to match the subgame perfect equilibrium chosen by the
tie breaker.

Formally, an extensive-form game G is a finite tree T . We denote by L ⊆ T
the set of leaves in T , i.e. nodes with no children, and let m denote the number
of nodes in T . Each leaf � is labeled by a vector u(�) ∈ R

n that denotes the
utility ui(�) obtained by party Pi when terminating in the leaf �. In addition,
the game consists of a finite set of n players. We consider a fixed partition of
the non-leaves into n sets, one for each player. The game is played by starting
at the root, letting the player who owns that node choose a child to recurse
into, this is called a move. We proceed in this fashion until we reach a leaf and
distribute its utility vector to the players. When there is perfect information,
a player always knows exactly which subgame they are playing, though more
generally we may consider a partition of the non-leafs into information sets,
where each player is only told the information set to which their node belongs.
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When all information sets are singletons we say the game has perfect information.
The players are assumed to be rational, that is they choose moves to maximize
their utility: we say a strategy for each player (a strategy profile) constitutes
a (Nash) equilibrium if no unilateral deviation by any party results in higher
utility for that party. Knowing the other players are rational, for games of perfect
information, at each branch a player can anticipate their utility from each of its
moves by recursively determining the moves of the other parties. This process is
called backward induction, and the resulting strategy profile is a subgame perfect
equilibrium. A strategy profile is an SPE if it is an equilibrium for every subgame
of the game. For games of perfect information, computing the SPE takes linear
time in the size of the tree and can be shown to be P-complete [20]. Later, we
will show a lower bound, namely that adding a contract to the tree moves this
computation up (at least) a level in the polynomial hierarchy. Specifically, we
show that computing the SPE in k-contract games is ΣP

k -hard in the general
case with imperfect information.

2.1 Smart Contract Moves

We now give our definition of smart contracts in the context of finite games. We
add a new type of node to our model of games, a smart contract move. Intuitively,
whenever a player has a smart contract move, they can deploy a contract that
acts on their behalf for the rest of the game. The set of all such contracts is
countably infinite, but fortunately, we can simplify the problem by considering
equivalence classes of contracts which “do the same thing”. Essentially, the only
information relevant to other players is whether or not a given action is still
possible to play: it is only if the contract dictates that a certain action cannot
be played, that we can assume a rational player will not play it. In particular,
any contract which does not restrict the moves of a player is equivalent to the
player not having a contract. Such a restriction is called a cut. A cut c(i) for
player Pi is defined to be a union of subtrees whose roots are children of Pi-
nodes, such that: (1) every node in T \ c(i) has a path going to a leaf; a cut is
not allowed to destroy the game by removing all moves for a player, and (2) c(i)

respects information sets, that is it ‘cuts the same’ from each node in the same
information set.

In other words, deploying a smart contract corresponds to choosing a cut in
the game tree. This means that a smart contract node for player Pi in a game
T is essentially syntactic sugar for the expanded tree that results by applying
the set of all cuts c(i) to T and connecting the resulting games with a new node
belonging to Pi at the top. Computing the corresponding equilibrium with smart
contracts then corresponds to the SPE in this expanded tree. Note that this tree
is uniquely determined. See Fig. 2 for an example. We use the square symbol in
figures to denote smart contract moves. When a game contains multiple smart
contract moves, we expand the smart contract nodes recursively in a depth-first
manner using the transformation described above.
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P1

P2

P1

(−∞, −∞) (0, 0)

(1, −1)

=

P1

P2

P1

(−∞, −∞) (0, 0)

(1, −1)

P2

P1

(0, 0)

(1, −1)

P2

P1

(−∞, −∞)

(1, −1)

Fig. 2. Expanding a smart contract node for a simple game. The square symbol is a
smart contract move for player P1. We compute all P1-cuts in the game and connect
them with a node belonging to P1. The first coordinate is the leader payoff, and the
second is the follower payoff. The dominating paths are shown in bold. We see that the
optimal strategy for P1 is to commit to choosing (−∞, −∞) unless P2 chooses (1, −1).

2.2 Contracts as Stackelberg Equilibria

As mentioned earlier, the idea to let a party commit to a strategy before playing
the game is not a new one: in 1934, von Stackelberg proposed a model for
the interaction of two business firms with a designated market leader [18]. The
market leader holds a dominant position and is therefore allowed to commit to
a strategy first, which is revealed to the follower who subsequently decides a
strategy. The resulting equilibrium is called a Stackelberg equilibrium. In this
section we show that the Stackelberg equilibrium for a game with leader P1 and
follower P2 can be recovered as a special case of our model where P1 has a smart
contract. We use the definition of strong Stackelberg equilibria from [5,11]. We
note that since the games are assumed to be in generic form, the follower always
has a unique response, thus making the requirement that the follower break ties
in favor of the leader unnecessary.

Let T be a game tree. A path p ⊆ T is a sequence of nodes such that for each
j, pj+1 is a child of pj . If p is a path, we denote by p(i) ⊆ p the subset of nodes
owned by player Pi. Now suppose T has a horizon of h. We let p = (pj)h

j=1 ⊆ T
denote the dominating path of the game defined as the path going from the root
p1 to the terminating leaf ph in the SPE of the game.

Definition 1. Let i ∈ [n] be the index of a player, and let f(si) be the best
response to si for players other than Pi. We say (s∗

i , f(s∗
i )) is a Stackelberg

equilibrium with leader Pi if the following properties hold true:

– Leader optimality. For every leader strategy si, ui(s∗
i , f(s∗

i )) ≥ ui(si, f(si)).
– Follower best response. For every j �= i, and every s−i, uj(s∗

i , f(s∗
i )) ≥

uj(s∗
i , s−i). �

Proposition 1. The Stackelberg equilibrium with leader Pi is equivalent to Pi

having a smart contract move.
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Proof. We show each implication separately:

⇒ SPE in the expanded tree T induces a Stackelberg equilibrium in the corre-
sponding Stackelberg game where Pi commits to all moves in p(i). It is not
hard to see that the follower best response f(s∗

i ) is defined by the SPE of the
subgame arising after Pi makes the move p1 choosing the contract in T .

⇐ A Stackelberg equilibrium induces a SPE in the expanded tree T with the
same utility: let (s∗

i , f(s∗
i )) be a Stackelberg equilibrium, observe that s∗

i corre-
sponds to a cut c(i) ⊆ T where Pi cuts away all nodes in T not dictated by s∗

i .
By letting the first move p1 of Pi correspond to c(i), the best follower response
f(s∗

i ) is the SPE in the resulting subgame, and hence u(p) = u(s∗
i , f(s∗

i )). 	


Multi-leader/multi-follower Contracts. Several variants of the basic Stack-
elberg game has been considered in the literature with multiple leaders and/or
followers [14,17]. We can model this using smart contracts by forcing some of the
contracts to independent of each other: formally, we say a contract is independent
if it makes the same cut in all subgames corresponding to different contracts. It
is not hard to see that multiple leaders can be modelled by adding contracts for
each leader, where the contracts are forced to be independent. �

Reverse Stackelberg Contracts. The reverse Stackelberg equilibrium is an
attempt to generalize the regular Stackelberg equilibrium: here, the leader does
not commit to a specific strategy a priori, rather they provide the follower with
a mapping f from follower actions to best response leader actions, see e.g. [1,19]
for a definition in the continuous setting. When the follower plays a strategy
s−i, the leader plays f(s−i). This is strictly advantageous for the leader since as
pointed out in [9], they can punish the follower for choosing the wrong strategy.

In the following, if p is a path of length �, we denote by Gs(p) the subgame
whose root is p�.

Definition 2. Let i be the index of the leader, and −i the index of the follower.
We say (f(s∗

−i), s
∗
−i) is a reverse Stackelberg equilibrium with leader i if the

following holds for every leader strategy si and follower strategy s−i, it holds:

– Leader best response: ui(f(s∗
−i), s

∗
−i) ≥ ui(si, s

∗
−i).

– Follower optimality: u−i(f(s∗
−i), s

∗
−i) ≥ u−i(f(s−i), s−i). �

Proposition 2. The reverse Stackelberg equilibrium for a two-player game with
leader Pi is equivalent to adding two smart contract moves to the game, one for
Pi, and another for P−i (in that order).

Proof. We show each implication separately:

⇒ The SPE in the expanded tree induces a reverse Stackelberg equilibrium: for
every possible follower strategy s−i, we define f(s−i) as the leader strategy in
the SPE in the subgame Gs(〈p1, s−i〉) after the two moves, where we slightly
abuse notation to let s−i mean that P−i chooses a cut where their SPE is
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s−i. Leader best response follows from the observation that p1 corresponds
to the optimal set of cuts of Pi moves in response to every possible cut of P−i

moves.
⇐ A reverse Stackelberg equilibrium induces an SPE in the expanded tree: let

(f(s∗
−i), s

∗
−i) be a reverse Stackelberg equilibrium and let f be the strategy

of Pi in the reverse Stackelberg game, then Pi has a strategy in the two-
contract game with the same utility for both players: namely, Pi’s first move
is choosing the subgame in which for every second move s−i by P−i they
make the cut f(s−i). 	


3 Computational Complexity

Having defined our model of games with smart contracts, in this section we study
the computational complexity of computing equilibria in such games. Note that
we can always compute the equilibrium by constructing the expanded tree and
performing backward induction in linear time. The problem is that the expanded
tree is very large: the expanded tree for a game of size m with a single contract
has 2O(m) nodes since it contains all possible cuts. For every contract we add, the
complexity grows exponentially. This establishes the rather crude upper bound
of ΣEXP

k for computing SPE in games with perfect information and k contracts.
The question we ask if we can do better than traversing the entire expanded
tree.

In terms of feasibility, our results are mostly negative: we show a lower bound
that computing an SPE, in general, is infeasible for games with smart contracts.
We start by considering the case of imperfect information where information
sets allow for a rather straightforward reduction from CircuitSAT to games with
one contract, showing NP-completeness for single-contract games of imperfect
information. This generalizes naturally to the k true quantified Boolean formula
problem (k-TQBF), establishing ΣP

k -hardness for games of imperfect information
with k contracts. On the positive side, we consider games of perfect information
where we provide an algorithm for games and two contracts that runs in time
O(m�). However, when we allow for an unbounded number of contracts, we show
the problem remains PSPACE-complete by reduction from the generalization of
3-coloring described in [3]. We conjecture the problem to be NP-complete for
three contracts.

3.1 Games with Imperfect Information, NP-Completeness

We start by showing NP-completeness for games of imperfect information by
reduction from CircuitSAT. We consider a decision problem version of SPE:
namely, whether or not a designated player can obtain a utility greater than
the target value.
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Reduction. Let C be an instance of CircuitSAT. Note that we can start from
any complete basis of Boolean functions, so it suffices to suppose the circuit
C consists only of NANDwith fanin 2 and fanout 1. We will now construct a
game tree for the circuit: we will be using one player to model the assignment of
variables, say player 1. The game starts with a contract move for player 1 who
can assign values to variables by cutting the bottom of the tree: we construct
the game such that player 1 only has moves in the bottom level of the tree.
In this way, we ensure that every cut corresponds to assigning truth values to
the variables. We adopt the convention that a payoff of 1 for player 1 is true
(), while a payoff of 0 for player 1 is false (⊥). All nodes corresponding to
occurrences of the same variable get grouped into the same information set,
which enforces the property that all occurrences of the same variable must be
assigned the same value (Fig. 3).

1

· · ·

1

⊥

1

⊥

· · ·

1

⊥

1

⊥

...

3

2

TL

⊥

TR

Fig. 3. The basic structure of the reduction. Player 1 has a smart contract that can
be used to assign values to the variables. The dashed rectangle denotes an information
set and is used when there are multiple occurrences of a variable in the circuit. On
the right, we see the NAND-gate gadget connecting the left subgame TL and the right
subgame TR. We implement the gadget by instantiating the utility vectors such that
player 2 chooses ⊥′ if only if both TL and TR propagate a utility vector encoding true.

For the NAND-gate, we proceed using induction: let TL, TR be the trees
obtained by induction, we now wish to construct a game tree gadget with NAND-
gate logic. To do this we require two players which we call player 2 and player 3.
Essentially, player 2 does the logic, and player 3 converts the signal to the right
format. The game tree will contain multiple different utility vectors encoding
true and false, which vary their utilities for players 2 and 3. Each NAND-gate
has a left tree and a right tree, each with their own utilities for true and false:
⊥L,⊥R;L,R. The gadget starts with a move for player 3 who can choose to
continue the game, or end the game with a true value ′. If they continue the
game, player 2 has a choice between false ⊥′ or playing either TL or TR. To
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make the gadget work like a NAND-gate we need to instantiate the utilities to
make backward induction simulate its logic. The idea is to make player 2 prefer
both ⊥L and ⊥R to ⊥′, which they, in turn, prefer to L and R. As a result,
player 2 propagates ⊥′ only if both TL, TR are true, otherwise, it propagates
⊥L or ⊥R. Finally, we must have that player 3 prefers ′ to both ⊥L and ⊥R,
while they prefer ⊥′ to ′,L and R. This gives rise to a series of inequalities:

⊥L
2 > ⊥′

2 > L
2 ′

3 > ⊥L
3 ⊥′

3 > L
3 ⊥′

3 > ′
3

⊥R
2 > ⊥′

2 > R
2 ′

3 > ⊥R
3 ⊥′

3 > R
3

We can instantiate this by defining ,⊥. For the base case corresponding to a
leaf, we let ⊥ = (0, 1, 0), = (1, 0, 0). We then define recursively:

′ =
(
1, 0, 1 + max(L

3 ,R
3 )

)

⊥′ =
(

0,
min(⊥L

2 ,⊥R
2 ) + max(L

2 ,R
2 )

2
, 2 + max

(L
3 ,R

3

)
)

It is not hard to verify that these definitions make the above inequalities hold
true. As a result, the gadget will propagate a utility vector corresponding to true
if and only if not both subtrees propagate true.

Theorem 1. Computing an SPE in three-player single-contract games of imper-
fect information is NP-complete.

Proof. We consider the decision problem of determining whether or not in the
SPE, player 1 has a utility of 1. By construction of the information sets, any
strategy is a consistent assignment of the variables. It now follows that player
1 can get a payoff > 0 if and only if there is an assignment of the variables
such that the output of the circuit is true. This shows NP-hardness. Now, it is
easily seen that this problem is in NP, since a witness is simply a cut that can
be verified in linear time in the size of the tree. Completeness now follows using
our reduction from CircuitSAT. 	

Remark 1. Our reduction also applies to the two-player non-contract case by
a reduction from circuit value problem. This can be done in logspace since all
the gadgets are local replacements. In doing so, we reestablish the result of [20],
showing that computing an SPE on two-player games is P-complete. �

3.2 Games with Imperfect Information, PSPACE-Hardness

In this section, we show that computing the SPE in a game with k contract moves
is ΣP

k -complete, in the general case with imperfect information. Generalizing the
previous result of NP-hardness to k contracts is fairly straightforward. Our claim
is that the resulting decision problem is ΣP

k -hard so we obtain a series of hardness
results for the polynomial hierarchy. This is similar to the results obtained in
[10] where the value problem for a competitive analysis with k + 1 players is
shown to be hard for ΣP

k .
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Formally, we consider the following decision problem with target value V for
a game tree T with k contract players: let T ′ be the expanded tree with contracts
for players P1, P2, . . . Pk in ascending order. Can player P1 make a cut in T ′ such
that their payoff is ≥ V ?

To show our claim, we proceed using reduction from the canonical ΣP
k -

complete problem k-TQBF, see e.g. [8] for a formal definition.

Theorem 2. Computing an SPE in 2+k player games of imperfect information
is ΣP

k -hard.

Proof (sketch). We extend our reduction from Theorem 1 naturally to the quan-
tified satisfiability problem. In our previous reduction, the contract player wanted
to satisfy the circuit by cutting as to assign values to the variables in the formula.
Now, for each quantifier in ψ, we add a new player with a contract, whose moves
range over exactly the variables quantified over. The players have contracts in the
same order specified by their quantifiers. The idea is that players corresponding
to ∀ try to sabotage the satisfiability of the circuit, while those corresponding
to ∃ try to ensure satisfiability. We encode this in the utility vectors by giving
∃-players a utility of 1 in  and 0 utility in ⊥, while for the ∀-players, it is the
opposite. It is not hard to see that ψ is true, only if P1 can make a cut, such
that for every cut P2 makes, there exists a cut for P3 such that, ..., the utility
of P1 is 1. This establishes our reduction. 	

Remark 2. We remark that it is not obvious whether or not the corresponding
decision problem is contained within ΣP

k . It is not hard to see we can write
a Boolean formula equivalent to the smart contract game in a similar manner
as with a single contract. The problem is that it is unclear if the innermost
predicate φ can be computed in polynomial-time. It is not hard to see that some
smart contracts do not have a polynomial description, i.e. we can encode a string
x ∈ {0, 1}∗ of exponential length in the contract. However, there might be an
equivalent contract that does have a polynomial-time description. By equivalent,
we mean one that has the same dominating path. This means that whether or
not ΣP

k is also an upper bound essentially boils down to whether or not every
contract has an equivalent contract with a polynomial description. �

3.3 Games with Perfect Information, Two Contracts, Upper Bound

In this section, we consider two-player games of perfect information and provide
a polynomial-time algorithm for computing an SPE in these games. Specifically,
for a game tree of size m with � terminal nodes with two contract players (and
an arbitrary number of non-contract players), we can compute the equilibrium
in time O(m�). Our approach is similar to that of [15], in that we compute the
inducible region for the first player, defined as the set of leaves they are able to
‘induce’ by making cuts in the game tree.

Let A,B be two sets. We then define the set of outcomes from A reachable
using a threat against player i from outcomes in B as follows:

threateni(A,B) = {x ∈ A | ∃ y ∈ B. xi > yi}
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As mentioned, we will compute the inducible region for the player with the first
contract, defined as the set of outcomes reachable with a contract. Choosing the
optimal contract is then reduced to a supremum over this region.

Definition 3. Let G be a fixed game. We denote by R(P1) (resp. R(P1, P2))
the inducible region of P1, defined as the set of outcomes reachable by making a
cut in G in all nodes owned by P1. R(P1) is a tuple (u, c1) where u ∈ R

n is the
utility vector, and c1 is the contract (a cut) of Pi. �

Algorithm. Let G be the game tree in question and let k be a fixed integer.
As mentioned, we assume without loss of generality that G is in generic form,
meaning all non-leafs in G have out-degree exactly two and that all utilities for a
given player are distinct such that the ordering of utilities is unique. We denote
by P1, P2 the players with contracts and assume that Pi has the ith contract.
We will compute the inducible regions in G for P1 (denoted S for self ), and for
(P1, P2) (denoted T for together) by a single recursive pass of the tree. In the
base case with a single leaf with label u we have S = T = {u}. For a non-leaf, we
can recurse into left and right child, and join together the results. The procedure
is detailed in Algorithm 1.

Algorithm 1: InducibleRegion(G)
switch G do

case Leaf(u):
return ({u}, {u})

case Node(GL, GR, i):
(SL, TL) ← InducibleRegion(GL)
(SR, TR) ← InducibleRegion(GR)
if i = 1 then

T ← TL ∪ TR

S ← SL ∪ SR ∪ threaten2(T
L ∪ TR, SL ∪ SR)

else if i = 2 then
T ← TL ∪ TR

S ← threaten2(T
L, SR) ∪ threaten2(T

R, SL)
else

T ← threateni(T
L, TR) ∪ threateni(T

R, TL)
S′ ← threateni(S

L, SR) ∪ threateni(S
R, SL)

S ← S′ ∪ threaten2(T, S′)
end
return (S, T )

end

Theorem 3. An SPE in two-contract games of perfect information can be com-
puted in time O(m�).
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Proof. First, the runtime is clearly O(m�) since the recursion has O(m) steps
where we need to maintain two sets of size at most �. For correctness, we show
something stronger: let R(P1) be the inducible region for P1 in the expanded
tree and R(P1, P2) be the inducible region of (P1, P2). Now, let (S, T ) =
InducibleRegion(G). Then we show that S = R(P1) and T = R(P1, P2). This
implies that argmaxu∈S u1 is the SPE. The proof is by induction on the height
h of the tree. As mentioned, we assume that games are in generic form. This
base case is trivial so we consider only the inductive step.

Necessity follows using simple constructive arguments: for S and i = 1, then
for every (u, c) ∈ S�, we can form contract where P1 chooses left branch and
plays c. And symmetrically for SR. Similarly, for every (u, c1, c2) ∈ TL and
(v, c′) ∈ SL can form contract where P1 plays c1 in all subgames where P2 plays
c2; and plays c′ otherwise. Then u is dominating if and only if u2 > v2. Similar
arguments hold for the remaining cases.

For sufficiency, we only show the case of i = 1 as the other cases are similar.
Assume (for contradiction) that there exists (u, c1) ∈ R(P1) \ S, i.e. there is a
P1-cut c1 such that u is dominating. Then,

(u, c1) ∈ (TL ∪ TR) \ (SL ∪ SR ∪ threaten2(TL ∪ TR, SL ∪ SR))

= {v ∈ (TL ∪ TR) \ (SL ∪ SR) | ∀v′ ∈ SL ∪ SR.v2 < v′
2}

That is, u must be a utility vector that P1 and P2 can only reach in cooperation
in a one of the two sub-games, say by P2 playing c2. However, for every cut
that P1 makes, the dominating path has utility for P2 that is > u2, meaning P2

strictly benefits by not playing c2. But this is a contradiction since we assumed
u was dominating. 	


3.4 Games with Perfect Information, Unbounded Contracts,
PSPACE-Hardness

We now show that computing an SPE remains PSPACE-complete when consid-
ering games with an arbitrary number of contract players. We start by showing
NP-hardness and generalize to PSPACE-hardness in a similar manner as we did
for Theorem 2. The reduction is from 3-coloring: let (V,E) be an instance
of 3-coloring and assume the colors are {R,G,B}. The intuition behind the
NP-reduction is to designate a coloring player Pcolor, who picks colors for each
vertex u ∈ V by restricting his decision space in a corresponding move using a
contract. They are the first player with a contract. This is constructed using a
small stump for every edge e ∈ E with three leaves Ru, Gu, Bu. We also have
another player Pcheck whose purpose is to ensure no two adjacent nodes are col-
ored the same. We attach all stumps to a node owned by Pcheck such that Pcheck

can choose among the colors chosen by Pcolor. If Pcolor are able to assign colors
such that no adjacent nodes share a color, then Pcolor maximizes their utility,
however, if no such coloring exists then Pcheck can force a bad outcome for Pcolor.
It follows that Pcolor can obtain good utility if and only there is a valid coloring
(Fig. 4).
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Pcheck

Pcolor

Pu1,R

Pu2,R

...

Pu1,R

...

Pcheck

Pcolor

Ru1 Gu1 Bu1

Pcolor

Ru2 Gu2 Bu2

· · · Pcolor

Run Gun Bun

Pu2,R

(u1,u2),R ⊥(u1,u2),R

Fig. 4. The structure of the reduction. First, Pcolor is allowed to assign a coloring of
all vertices. If there is no 3-coloring of the graph, there must be some vertex (u1, u2)
where both vertices are colored the same color c. In this case, Pcheck can force both
cu1 , cu2 , which are undesirable to Pu1,c, resp. Pu2,c: then in every Pu1,c-contract where
they do not commit to choosing Pu2,c, Pcheck cuts as to ensure cu1 and analogously
for P2. It follows that Pcheck can get ⊥ if and only if the graph is not 3-colored. Then
Pcolor can get a different outcome from ⊥ if and only if they can 3-color the graph.

Reduction. We add six contract players for every edge in the graph. Specifically,
for every edge (u, v) ∈ E and every color c ∈ {R,G,B}, we introduce two new
contract players Pu,c and Pv,c who prefer any outcome except cu (resp. cv) being
colored c. That is, if c = R, then the leaf Ru has a poor utility for Pu,R. We
add moves for Pu,c and Pv,c at the top of the tree, such that if they cooperate,
they can get a special utility vector ⊥u,v which has a poor utility for Pcolor

and great utility for Pcheck, though they themselves prefer any outcome in the
tree (except cu, resp. cv) to ⊥u,v. We ensure that Pcheck has a contract directly
below Pcolor in the tree. If no coloring exists, then Pcheck can force a bad outcome
for both Pu,c, Pv,c in all contracts where they do not commit to choosing ⊥u,v.
Specifically, Pcheck first threatens Pu,c with the outcome cu, and subsequently
threatens Pv,c with cv. Though they prefer any other node in the tree to ⊥u,v,
they still prefer ⊥u,v to cu, cv, meaning they will comply with the threat. This
means Pcolor will receive a poor outcome if the coloring is inconsistent. It follows
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that Pcolor will only receive a good payoff if they are able to 3-color the graph,
see e.g. Sect. 3.4 for an illustration.

Theorem 4. Computing an SPE in smart contract games of perfect information
is PSPACE-hard when we allow for an unbounded number of contract players.

Proof. Let (V,E) be an instance of 3-coloring. Our above reduction works
immediately for k = 1, showing NP-hardness. To show PSPACE-hardness we
reduce from a variant of 3-coloring as described in [3] where players alternately
color an edge and use a similar trick as Theorem 2 by introducing new players
between Pcolor and Pcheck. 	

It remains unclear where the exact cutoff point is, though we conjecture it to
be for three contracts: clearly, the decision problem for three-contract games of
perfect information is contained in NP as the witness (a cut for the first contract
player) can be verified by Algorithm1.

Conjecture 1. Computing an SPE for three-contract games is NP-complete. �

4 Conclusion

In this paper, we proposed a game-theoretic model for games in which players
have shared access to a blockchain that allows them to deploy smart contracts.
We showed that our model generalizes known notions of equilibria, with a single
contract being equivalent to a Stackelberg equilibrium and two contracts equiva-
lent to a reverse Stackelberg equilibrium. We proved a number of bounds on the
complexity of computing an SPE in these games with smart contracts, showing,
in general, it is infeasible to compute the optimal contract.
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Abstract. We explore the complexity of nucleolus computation in b-
matching games on bipartite graphs. We show that computing the nucle-
olus of a simple b-matching game is NP-hard when b ≡ 3 even on bipar-
tite graphs of maximum degree 7. We complement this with partial pos-
itive results in the special case where b values are bounded by 2. In
particular, we describe an efficient algorithm when a constant number of
vertices satisfy bv = 2 as well as an efficient algorithm for computing the
non-simple b-matching nucleolus when b ≡ 2.

Keywords: Nucleolus · b-Matching · Cooperative game theory ·
Computational complexity

1 Introduction

Consider a network of companies such that any pair with a pre-existing business
relationship can enter into a deal that generates revenue, and at any given time
every company has the capacity to fulfill a limited number of deals. This is an
example of a scenario that can be modeled as a cooperative b-matching game.

A cooperative game is a pair (N, ν) where N is a finite set of players and ν :
2N → R is a value function which maps subsets of players, known as coalitions to
a total value that their cooperation would generate. In the special case of simple
cooperative b-matching games, we are given an underlying graph G = (N,E),
vertex values b : N → Z+, and edge weights w : E → R. The set of players in the
game corresponds to the vertices N , and w(uv) denotes the value earned when
u, v ∈ N collaborate. For a coalition S ⊆ N , ν(S) corresponds to the maximum
weight of a b-matching in G[S] using each edge at most once. More formally,
ν(S) is the optimal value of w(M) where M ⊆ E[S] is subject to |M ∩δ(v)| ≤ bv

for each v ∈ S. On the other hand, in a non-simple cooperative b-matching game,
ν(S) is modified to allow M to be a multiset but we still require the underlying
set to be a subset of E[S].
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A central question in cooperative game theory is to study how the total
revenue generated through the cooperation of the players is shared amongst the
players themselves. An allocation x ∈ R

N is a vector whose entries indicate
the value each player should receive. Not all allocations are equally desirable.
Cooperative game theory gives us the language to model desirable allocations
which capture notions such as fairness and stability.

An allocation x ∈ R
N is called efficient if its entries sum to ν(N); i.e.,

if
∑

i∈N xi := x(N) = ν(N). Efficiency stipulates that an allocation should
distribute the total value generated by the grand coalition N . We say x is an
imputation if it is efficient and satisfies individual rationality : x(i) ≥ ν({i}) for
all i in N . Individual rationality captures the notion that each player should be
assigned at least the value they can earn on their own. In a b-matching game,
ν({i}) = 0 and individual rationality simplifies to non-negativity.

The natural extension of individual rationality would be coalitional ratio-
nality, i.e. stipulating that for any coalition S, x(S) ≥ ν(S). Allocations which
satisfy such a property are said to lie in the core of the game. Core allocations
can be considered highly stable in the sense that no subset of players can earn
more value by deviating from the grand coalition.

The core is well-known to be non-empty in bipartite b-matching games [10],
but may be empty in general matching games. It is in fact known that the core
of a matching game instance is non-empty if and only if the fractional matching
linear program is integral [10]. For example, the core of the matching instance
given by an odd-cycle with unit weights is empty.

Since the core may be empty, we need a more robust solution concept. Given
an allocation, we let e(S, x) := x(S)−ν(S) be the excess of coalition S ⊆ N with
respect to x. Informally, the excess measures the satisfaction of coalition S: the
higher the excess of S, the more satisfied its players will be. We can rephrase the
core as the set of all imputations where all coalitions have non-negative excess.

Instead of requiring all excesses to be non-negative, we can maximize the
excess of the worst off coalitions. Consider the following linear program

max ε1 (P1)
s.t. x(N) = N

x(S) ≥ ν(S) + ε ∀S ⊂ N

x(i) ≥ ν({i}) ∀i ∈ N

and let ε∗ be its optimal solution. The least core is the set of allocations x such
that (x, ε∗) is optimal for (P1). The least core is always non-empty.

For b-matching games when the core is non-empty, the least core coincides
with the core. When the core is empty, the least core tries to maximize the
satisfaction of the coalitions who are worst off in the game. The least core, and
by extension the core, both suffer from the fact that they are not in general
unique. Furthermore, the least core does nothing to improve the satisfaction
of coalitions which are not the worst off. This motivates the definition of the
nucleolus, first introduced by Schmeidler [34].
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For an allocation x, we write θ(x) ∈ R
2N−2 as the vector whose entries are

e(S, x) for all ∅ 
= S � N sorted in non-decreasing order. This is a listing of the
satisfactions of coalitions from worst off to best off. The nucleolus is defined as
the allocation which lexicographically maximizes θ(x) over the imputation set.
In a sense, the nucleolus is the most stable allocation. In Schmeidler’s paper
introducing the nucleolus, the author proved, among other things, that it is
unique.

We now have sufficient terminology to state our main result, proven in Sect. 2.

Theorem 1. The problem of deciding whether an allocation is equal to the
nucleolus of an unweighted bipartite 3-matching game is NP-hard, even in graphs
of maximum degree 7.

In the interest of space, we refer the interested reader to the full paper [23] for
any omitted proofs.

Kern and Paulusma posed the question of computing the nucleolus for gen-
eral matching games as an open problem in 2003 [21]. In 2008, Deng and Fang
conjectured this problem to be NP-hard [8]. This problem has been reaffirmed to
be of interest in 2018 [4]. In 2020, Könemann, Pashkovich, and Toth proved the
nucleolus of weighted matching games to be polynomial time computable [24].

On one hand, computing the nucleolus of unweighted b-matching games when
b ≥ 3 is known to be NP-hard for general graphs [3]. However, the gadget graph
in their hardness proof has many odd cycles. On the other hand, Bateni et al.
provided an efficient algorithm to compute the nucleolus in bipartite b-matching
games when one side of the bipartition is restricted to bv = 1 and the other
side is unrestricted [2]. Thus it is a natural question whether the nucleolus of
bipartite b-matching games is polynomial-time computable. Theorem 1 answers
this question in the negative.

The basis of this result is a hardness proof for core separation in unweighted
bipartite 3-matching games [4]. However, extending this to a hardness proof
of nucleolus computation requires significant technical innovation. Towards this
end, we introduce a new problem in Sect. 2, a variant of the cubic subgraph
problem which is NP-hard. Then, in Sect. 2.1, we reduce the decision variant of
nucleolus computation to our new problem, which yields the result.

In Sect. 3, we complement Theorem 1 with efficient algorithms to compute
the nucleolus in two relevant cases when b ≤ 2. Section 3.1 explores the scenario
when only a constant number of vertices satisfy bv = 2 and Sect. 3.2 delves into
the case when we relax the constraints to allow for non-simple b-matchings.

Theorem 2. Let G be a bipartite graph with bipartition N = A∪̇B and k ≥
0 a universal constant independent of |N |. Let b ≤ 2 be some node-incidence
capacity.

(i) Suppose bv = 2 for all v ∈ A but bv = 2 for at most k vertices of B, then the
nucleolus of the simple b-matching game on G can be computed in polynomial
time.

(ii) If b ≡ 2, then the nucleolus of the non-simple b-matching game on G can be
computed in polynomial time.
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1.1 Related Work

The assignment game, introduced by Shapley and Shubik [35], is the special case
of simple b-matching games where b is the all ones vector and the underlying
graph is bipartite. This was generalized to matching games for general graphs by
Deng, Ibaraki, and Nagamochi [10]. Solymosi and Raghavan [36] showed how to
compute the nucleolus in an unweighted assignment game. Kern and Paulusma
[21] later gave a nucleolus computation algorithm for all unweighted matching
games. Paulusma [31] extended this result to all node-weighted matching games.
An application of assignment games is towards cooperative procurement from
the field of supply chain management [11].

The nucleolus is surprisingly ancient, appearing as far back in history as a
scheme for bankruptcy division in the Babylonian Talmud [1]. Modern research
interest in the nucleolus is not only based on its widespread application [5,28],
but also the complexity of computing the nucleolus, which seems to straddle the
boundary between P and NP.

In a similar fashion to how we will define b-matching games, a wide variety
of combinatorial optimization games can be defined [10]. Here the underlying
structure of the game is based on the optimal solution to some underlying com-
binatorial optimization problem. One might conjecture that the complexity of
nucleolus computation for a combinatorial optimization game lies in the same
class as its underlying combinatorial optimization problem. However, this is not
in general true. For instance, nucleolus computation is known to be NP-hard
for network flow games [9], weighted threshold games [13], and spanning tree
games [16,18]. On the other hand, polynomial time algorithms are known for
computing the nucleolus in special cases of network flow games [9,33], directed
acyclic graph games [37,39], spanning tree games [20,27], b-matching games [2],
fractional matching games [17], weighted voting games [14], convex games [17],
and dynamic programming games [25].

One possible application of cooperative matching games is to network bar-
gaining [12,40]. In this setting, a population of players are connected through an
underlying social network. Each player engages in a profitable partnership with
at most one of its neighbours and the profit must be shared between the partic-
ipating players in some equitable fashion. Cook and Yamagishi [6] proposed a
profit-sharing model that generalizes Nash’s famous 2-player bargaining solution
[30] as well as validates empirical findings from the lab setting.

Both the pre-kernel and least-core are solution concepts which contain the
nucleolus. It is well-known that the pre-kernel of a cooperative game may be non-
convex and even disconnected [26,38]. Nonetheless, Faigle, Kern, and Kuipers
showed how to compute a point in the intersection of the pre-kernel and least-
core in polynomial time given a polynomial time oracle to compute the minimum
excess coalition for a given allocation [17]. The authors later refined their result
to compute a point within the intersection of the core and lexicographic kernel
[15], a set which also contains the nucleolus.

The complexity of computing the nucleolus of b-matching games remained
open for bipartite graphs, and for b-matching games where b ≤ 2. In Theorem 1,
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we show that the former is indeed NP-hard to compute and give an efficient
algorithm for a special case of the latter in Sect. 3.

1.2 The Kopelowitz Scheme

A more computational definition of the nucleolus is provided by the Kopelowitz
Scheme [26]. Let OPT(P ) denote the set of optimal solutions to the LP (P).
Recall the linear program (P1) and let ε1 be its optimal value. Write S :=
2N \ {∅, N} to denote the set of all non-trivial coalitions. Let us write S1 ⊆ S
as the set of coalitions satisfying x(S) = ν(S) + ε1 for every (x, ε1) ∈ OPT(P1).
We say S1 are the coalitions which are fixed in (P1).

For � ≥ 2, let (P�) be the linear program

max ε� (P�) (1)
x(N) = ν(N) (2)
x(S) = ν(S) + εi ∀i ≤ � − 1,∀S ∈ Si (3)

x(S) ≥ ν(N) + ε ∀S ∈ S \
(

�−1⋃

i=1

Si

)

(4)

Recursively, we set

S� := {S ∈ S : ∀i ≤ � − 1, S /∈ Si ∧ ∀(x, ε�) ∈ OPT(P�), x(S) = ν(S) + ε�}.

These are the coalitions which are fixed in (P�) but not in any (Pi) for i ≤ �− 1.
This hierarchy of linear programs terminates when the dimension of the feasible
region becomes 0, at which point the unique feasible solution is the nucleolus
[7].

Directly solving each (P�) requires solving a linear program with an expo-
nential number of constraints in terms of the number of players and hence takes
exponential time with respect to the input1. Moreover, the best general bound
on the number of linear programs we must solve until we obtain a unique solu-
tion is the naive exponential bound O(2|N |). However, we are still able to use
the Kopelowitz Scheme as a way to characterize the nucleolus in the proof of
Theorem 1.

One way of solving exponentially sized linear programs is to utilize the poly-
nomial time equivalence of optimization and separation [22]. That is, to develop
a separation oracle and employ the ellipsoid method. For our positive results,
we will take this route.

Indeed, we will develop a polynomial-size formulation of each (P�) by prun-
ing unnecessary constraints. Not only does this enable us to solve each (P�) in
polynomial time, but we also reduce the number of iterations to a polynomial of

1 Cooperative games we are interested in have a compact representation roughly on
the order of the number of players. For example b-matching games can be specified
by a graph, b-values and edge weights rather than explicitly writing out ν.
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the input size since at least one inequality constraint is changed to an equality
constraint per iteration.

It is of interest to consider a variation of the Kopelowitz Scheme by Maschler
[29]. In this variation, the author defines S� as

S� := {S ∈ S : ∀i ≤ � − 1, S /∈ Si ∧ ∃cS ∈ R,∀(x, ε�) ∈ OPT(P�), x(S) = cS}.

This way, at least 1 equality constraint is added to (P�+1) which is linearly
independent of all equality constraints in (P�). Hence the feasible region decreases
by at least 1 dimension per iteration and there are at most |N | iterations before
termination.

2 Hardness

We consider b-matching games for b ≡ 3 and uniform weights. The goal of the
this section is to prove Theorem 1.

The idea of the proof is inspired the hardness proof of core separation
employed in [4] and the hardness proof in [9]. We reduce the problem into a
variation of Cubic Subgraph which is NP-hard [32] through a careful analy-
sis of several iterations of the Kopelowitz Scheme. However, it is not clear that
our variation of Cubic Subgraph is NP-hard and we significantly extend the
techniques from [32] to prove its hardness.

Problem 1 (Two from Cubic Subgraph). Let G be an arbitrary graph.
Decide if G contains a subgraph H with vertices u 
= v ∈ V (H) satisfying
degH(w) = 2 if w = u, v and degH(w) = 3 otherwise for all w ∈ V (H). We say
that H is a Two from Cubic Subgraph.

Theorem 3. Two from Cubic Subgraph is NP-hard, even in bipartite
graphs of maximum degree 4.

This theorem is proven in [23] and is crucial to our proof of Theorem 1 in
Sect. 2.1.

2.1 The Reduction

Hereinafter, G = (N,E) is a bipartite instance of Two from Cubic Subgraph.
We assume that E 
= ∅ so that |N | ≥ 2. Take G∗ := (N∗, E∗) to be the
following bipartite gadget graph depicted in Fig. 1, initially proposed in [4]: For
each original vertex u ∈ N , create 5 new vertices vu, wu, xu, yu, zu. Then, define
N∗ := N ∪{vu, wu, xu, yu, zu : u ∈ N}. To obtain E∗ from E, we add edges until
({u, vu, wu}, {xu, yu, zu}) is a K3,3 subgraph for every u ∈ N .

In Fig. 1, the bigger vertices with bolded edges indicate the original graph
and the smaller vertices with thinner edges were added to obtain the gadget
graph. The square and circular vertices depict a bipartition of G∗. Observe that
the maximum degree of G∗ is the maximum degree of G plus 3.
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Fig. 1. The gadget graph from [4].

For each u ∈ N , define Tu := {vu, wu, xu, yu, zu} as well as Vu := Tu ∪ {u}.
We say that Tu are the gadget vertices of u and Vu is the complete gadget of u.

Let Γ = (N∗, ν) be the unweighted 3-matching game on G∗.
In Lemma 2, we show that if no two from cubic subgraph of G exists, then

the nucleolus is precisely x∗ ≡ 3
2 . Conversely, we prove in Lemma 3 that the

existence of a two from cubic subgraph implies that x∗ cannot be the nucleolus.
The proof of Theorem 1 follows from the above lemmas and the hardness of
Two from Cubic Subgraph. Remark that the degree bound follows from the
degree bound in Theorem 3 and the fact that our gadget graph increases the
maximum degree of the original graph by 3.

Lemma 1. Let M be a maximum 3-matching in G∗. Let C be the set of connected
components of G∗[M ]. Then for all core allocations x and every component C ∈
C, x(C) = ν(C).

Proof. Observe that

x(N∗) ≥ x(M) =
∑

C∈C
x(C) ≥

∑

C∈C
ν(C) =

∑

C∈C
|M ∩ E(C)| = |M | = ν(N∗)

with the first inequality following from the fact that x ≥ 0 and the second
inequality following from the assumption that x is in the core.

Lemma 2. If G does not contain a two from cubic subgraph, the uniform allo-
cation x∗ ≡ 3

2 is the nucleolus of Γ .

Proof. We argue using the Kopelowitz Scheme. Put (Pk) as the k-th LP in the
Kopelowitz Scheme.

We can check through computation that for all u ∈ N and S � Vu, e(S, x∗) ≥
3
2 .

Let ε1 be the optimal objective value to (P1). We claim that ε1 = 0. By core
non-emptiness, we have ε1 ≥ 0. Moreover, using Lemma 1, since E 
= ∅, we can
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choose u ∈ N so that Vu � N is a coalition for which e(Vu, x) = 0 for all core
allocations x. Thus ε1 = 0 and the set of optimal solutions to (P1) is precisely
the core.

We now claim that

S1 =

{

S ⊆ N∗ : S =
⋃

u∈S∩N

Vu

}

. (5)

These are the unions of complete gadgets.
Let x be an optimal solution to (P1) (core allocation). Clearly, if S is a

union of complete gadgets, then e(S, x) = 0 due to Lemma 1. This shows the
reverse inclusion in Eq. (5). Notice that ν(S) ≤ 3

2 |S| = x∗(S) by the definition
of a 3-matching, so x∗ is an optimal solution to (P1) and we may assume that
x = x∗.

We claim that
∀S /∈ S1, e(S, x∗) ≥ 3

2
. (6)

This shows that if S is not a union of complete gadgets, then there is some
optimal solution of (P1) for which S is not fixed in (P1) and hence S /∈ S1. Thus
the inclusion in Eq. (5) would hold.

Equation (6) is true if S = {u} for some u ∈ N∗. If S ⊆ N with |S| ≥ 2,
then ν(S) ≤ 3

2 |S| − 2. Otherwise, the edges of a maximum 3-matching in G[S]
induce a two from cubic subgraph. Thus e(S, x) ≥ 3

2 |S| − (
3
2 |S| − 2

) ≥ 2.
It remains to consider the case when there is some u ∈ N such that Tu ∩S 
=

∅. The argument here is similar to the reduction employed in [4]: If S ∩Vu = Vu,
then e(S \Vu, x∗) ≤ e(S, x∗)− 9+9 = e(S, x∗). We can remove as many of these
complete gadgets from S as possible to obtain some coalition S′.

If S′ = ∅, then S ∈ S1 by definition. In addition, if S′ ⊆ N , there is again
nothing to prove. Thus there must be some u′ ∈ S′ such that |Tu′ ∩ S′| ≥ 1 and
S′ ∩ Vu′ 
= Vu′ .

If |S′ ∩ Tu′ | ≤ 4, then

e(S′ \ Tu′ , x∗) ≤ e(S′, x∗) − 3
2
|Tu′ | + |E∗(S′ ∩ Tu′ ∪ {u′})| ≤ e(S′, x∗).

Finally, if |S′ ∩ Tu′ | = 5, we are required to have u′ /∈ S′. So

e(S′ \ Tu′ , x∗) ≤ e(S′, x∗) − 5 · 3
2

+ 6 ≤ e(S′, x∗).

We may thus again repeatedly remove vertices of N∗ \N until we arrive back at
the base case of S′ ⊆ N .

Thus Eq. (6) holds as all other coalitions have strictly greater excess with
respect to x∗.

We now argue that ε2 = 3
2 . Observe ν(N∗) = 3

2 |N∗| implies that
mina∈N∗ x(a) ≤ 3

2 for any allocation x in the core and thus also for feasible
solutions to (P2) as well as the nucleolus. It follows that ε2 ≤ 3

2 . But Eq. (6)
shows that this upper bound is attained by x∗.
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For all feasible solutions x to (P2), x(a) ≥ 3
2 for all a ∈ N∗. But we cannot

have some x(a) > 3
2 , or else x(N∗) > 3

2 |N∗| and x would not be an allocation.
Since the singleton coalitions are fixed in (P2), it must be that x∗ ≡ 3

2 is the
nucleolus.

Lemma 3. If G contains a two from cubic subgraph, then the nucleolus of the
gadget graph is not x∗ ≡ 3

2 .

Proof. We will show that x∗ ≡ 3
2 is not an optimal solution to (P2). Recall that

the nucleolus is necessarily an optimal solution to each LP in the Kopelowitz
Scheme. This would thus yield the desired result.

Let us introduce a parameter as follows:

Δ :=

{
0, G contains a cubic subgraph
1, G contains a two from cubic subgraph but no cubic subgraphs

Let N ′ ⊆ N be the vertices in the cubic subgraph or the vertices of the two from
cubic subgraph if no cubic subgraph exists. Then

e (N ′, x∗) =
3
2
|N ′| −

(
3
2
|N ′| − Δ

)

= Δ. (7)

In particular, the minimum excess over all coalitions in S is at most Δ.
For 0 < δ < 1

2 , define xδ(a) := 3
2 + δ for each a ∈ N and xδ(a) := 3

2 − δ
5 for

a ∈ N∗ \ N . We can again check by computation that

∀u ∈ N,∀S � Vu, e(S, xδ) ≥ 3
2

− δ (8)

The coalitions with minimum excess among such coalitions is S = Tu for some
u ∈ N .

We claim that ε1 = 0 and S1 = {∗}S ⊆ N∗ : S =
⋃

u∈S∩N Vu is again the
union of complete gadgets. The fact that ε1 = 0 is clear from our previous
lemma. Moreover, it is clear from our prior work that the unions of complete
gadgets must be fixed in (P1). We need only show that e(S, xδ) > 0 if S is not a
union of complete gadgets. This would show that if S is not a union of complete
gadgets, then there is some allocation (in particular xδ) for which S is not fixed
in (P1).

If S = {a} for some a ∈ N∗, then e(S, xδ) ≥ 3
2 − δ

5 > 0.
When S ⊆ N . We have

e(S, xδ) ≥
(

3
2

+ δ

)

|S| −
(

3
2
|S| − Δ

)

= δ|S| + Δ > 0.

Suppose now that there is some u ∈ N such that S ∩ Tu 
= ∅. Once again, if
S ∩ Vu = Vu, e(S \ Vu, xδ) ≤ e(S, xδ) − 9 + 9 = e(S, xδ). We can thus remove all
complete gadgets from S to obtain another coalition S′. If S′ = ∅, then S ∈ S1.
Similar to before, if S′ ⊆ N , we are back at the base case.
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Pick some u′ ∈ S′ such that |S′ ∩Tu′ | ≥ 1. Observe that ν(S′) ≤ ν(S′ \Tu′)+
ν(S′ ∩ Vu′). This is because any maximum 3-matching on S′ is a disjoint union
of 3-matchings on S′ \ Tu′ and S′ ∩ Vu′ .

Suppose u′ ∈ S′. We must have |S′ ∩ Tu′ | ≤ 4.

e(S′, xδ) = x(S′ \ Tu′) + x(S′ ∩ Vu′) − x(u′) − ν(S′)
≥ x(S′ \ Tu′) − ν(S′ \ Tu′) + [x(S′ ∩ Vu′) − x(u′)] − ν(S′ ∩ Vu′)

≥ e(S′ \ Tu′ , xδ) + |S ∩ Tu′ |
(

3
2

− δ

5

)

− |E∗(S′ ∩ Vu′)|

≥ e(S′ \ Tu′ , xδ) − 4
5
δ.

Suppose now that u′ /∈ S′. In this case,

e(S′, xδ)
= x(S′ \ Tu′) + x(S′ ∩ Tu′) − ν(S′)
≥ x(S′ \ Tu′) − ν(S′ \ Tu′) + x(S′ ∩ Tu′) − ν(S′ ∩ Tu′)
= e(S′ \ Tu′ , xδ) + e(S′ ∩ Tu′ , xδ)

≥ e(S′ \ Tu′ , xδ) +
(

3
2

− δ

)

by Equation (8)

By repeatedly removing vertices of N∗ \ N , we see that

e(S′, xδ)

≥ e(S′ ∩ N,xδ) +
∑

u∈S′∩N :S′∩Tu �=∅

[

−4
5
δ

]

+
∑

u∈N\S′:S′∩Tu �=∅

[
3
2

− δ

]

≥ δ|S′ ∩ N | + Δ − |S′ ∩ N |
(

4
5
δ

)

+ |{u ∈ N \ S′ : S′ ∩ Tu 
= ∅}|
(

3
2

− δ

)

=
δ

5
|S′ ∩ N | + Δ + |{u ∈ N \ S′ : S′ ∩ Tu 
= ∅}|

(
3
2

− δ

)

≥ δ

5
+ Δ.

The last inequality follows from the assumption that S′ 
= ∅. In particular, at
least one of S′ ∩ N or {u ∈ N \ S′ : S′ ∩ Tu 
= ∅} is non-empty. This shows that
ε1 = 0 is indeed the optimal solution to (P1). Moreover, S1 is again the union of
complete gadgets.

As an immediate corollary to the proof, ε2 ≥ δ
5 + Δ > Δ. Recall there was

a coalition N ′ ⊆ N satisfying Eq. (7). It follows that x∗ ≡ 3
2 is not an optimal

solution to (P2) and therefore cannot be the nucleolus.

3 Positive Results

In the case of b ≤ 2, we explore several variants of b-matching games for which
the nucleolus can be efficiently computed.
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First, we will state an important ingredient. Let Γ = (N, ν) be a cooperative
game. For S ⊆ S and x ∈ R

N , write θS (x) ∈ R
S to denote the restricted

vector containing the excess values e(S, x) for S ∈ S in non-decreasing order of
excess.

Definition 1 (Characterization Set). Let S ⊆ S be a subset of the non-
trivial coalitions.

We say S is a characterization set for the nucleolus of the cooperative game
Γ = (N, ν) if the lexicographic maximizer of θS (x) is a singleton that lexico-
graphically maximizes the unrestricted vector θ(x).

Intuitively, for S ∈ S \ S , we can drop the constraint corresponding to S from
the Kopelowitz Scheme when computing the nucleolus.

Proposition 1. Let Γ = (N, ν) be a cooperative game with non-empty core.
Suppose S is a polynomial sized characterization set for the nucleolus of Γ .

The nucleolus of Γ is polynomial time computable.

Let S ⊆ S be a characterization set of the nucleolus of some game Γ . Con-
sider the following tweak of the �-th iteration of Kopelowitz Scheme (P ′

�) (with
optimal value ε′

�) where we only have constraints corresponding to coalitions in
the characterization set S instead of every coalition. The sets S� are defined in
symmetric fashion as the coalitions from S which are fixed in (P�) but not at
any prior (Pi).

max ε (P ′
�) (9)

x(S) = ν(S) − ε′
i ∀0 ≤ i < �,∀S ∈ Si (10)

x(S) − ν(S) ≥ ε ∀S ∈ S \
�−1⋃

i=0

Si (11)

Proof. The tweaked Kopelowitz Scheme computes the lexicographic maximizer
of θS . Since S is polynomially sized, each linear program in the scheme can be
solved in polynomial time.

We are now ready to state the theorem by found in [19].

Theorem 4 ([19]). Let Γ = (N, ν) be a cooperative game with non-empty core.
The non-empty collection S ⊆ S is a characterization set for the nucleolus

of Γ if for every S ∈ S \S there exists a non-empty subcollection SS of S such
that

(i) For all T ∈ SS and core allocations x, e(T, x) ≤ e(S, x).
(ii) There are scalars λT ∈ R such that the characteristic vector χS ∈ {0, 1}N

of S satisfies χS =
∑

T∈SS∪{N} λT χT .

Let Γ = (N, ν) be a not necessarily simple weighted b-matching game with
non-empty core. Let S (Γ ) be the set of all S ∈ S such that for all maximum
b-matchings M of G[S], G[S][M ] is connected.
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Corollary 1. Let Γ = (N, ν) be a not necessarily simple weighted b-matching
game with non-empty core. Then S (Γ ) is a characterization set for the nucleolus
of Γ .

Proof. Fix S ∈ S \ S . Suppose M is a maximum b-matching of G[S]. Let
T1, T2, . . . , Tk be the components of G[S][M ] for k ≥ 2. Suppose x is a core
allocation.

Since x(S) =
∑k

i=1 x(Ti) and ν(S) =
∑k

i=1 ν(Ti), we have
∑k

i=1 e(Si, x) =
e(S, x). In particular, condition (ii) of Theorem 4 is satisfied. But all excesses
are non-negative as x is a core allocation, hence each e(Si, x) ≤ e(S, x) and
condition (i) of Theorem 4 is also satisfied.

The result follows by Theorem 4.

Lemma 4. Let Γ = (N, ν) be a not necessarily simple weighted b-matching game
with non-empty core. Suppose S (Γ ) is polynomially sized. Then the nucleolus
of Γ is polynomial time computable.

Proof. Apply Proposition 1 and Corollary 1.

3.1 Simple b-Matching Games

We now present a proof for the first claim in Theorem 2.

Proof (Theorem 2(i)). By Lemma 4, it suffices to show that any component
of a b-matching in some arbitrary induced subgraph G[S] has at most 2k + 3
vertices. If we show this, then S (Γ ) is polynomially sized since it is contained
in the subsets of V (G) of size at most 2k + 3.

Let C be a component of G[S][M ] for some S ⊆ N and maximum b-matching
M of G[S]. If C is a cycle, then exactly half the vertices of C are from B with
bv = 2. It follows that |C| ≤ 2k. Suppose now that C is some path. By deleting
at both endpoints and one more vertex, we may assume that every other vertex
in the path are from B with bv = 2. Thus |C| ≤ 2k + 3 as required.

This result can be modified for the case where at most O(log(n + m)) vertices
in total have bv = 2.

3.2 Non-simple 2-Matching Games

In the case where we allow for edges to be included multiple times in a 2-
matching, we leverage core non-emptiness and the non-existence of odd cycles
to compute the nucleolus in polynomial time.

Lemma 5. Let G be an arbitrary graph with edge weights w : E → R. The core
of the weighted non-simple 2-matching game on G is non-empty.

Lemma 6. For any bipartite graph, there is a maximum weighted non-simple
2-matching consisting only of parallel edges.
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We are now ready to prove the second result in Theorem 2.

Proof (Theorem 2(ii)). By Lemma 4, it suffices to show that if |S| ≥ 3, then
there is a 2-matching in G[S] with multiple components.

But this is precisely what we proved in Lemma 6, concluding the proof.

Unfortunately, Lemma 6 does not hold when the graph is non-bipartite, even
when we restrict ourselves to uniform edge weights. Indeed, consider the simple
triangle. The maximum non-simple 2-matching has size 3. However, when we
restrict ourselves to matchings composed of only parallel edges, the maximum
matching we can obtain has cardinality 2.

Similarly, Lemma 6 does not in general hold when there are some vertices
v where bv = 1. Consider the path of 3 edges where the endpoints have bv = 1
while the internal vertices have bv = 2. The maximum non-simple 2-matching
has size 3. However, if we only allow parallel edges, the maximum matching we
can obtain again has cardinality 2.
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Abstract. We introduce a model for congestion games in which
resources can fail with some probability distribution. These games are
an extension of classical congestion games, and like these, have exact
potential functions that guarantee the existence of pure Nash equilibria
(PNE). We prove that the agent’s cost functions for these games can
be hard to compute by giving an example of a game for which the cost
function is hard for Valiant’s #P class, even in the case when all failure
probabilities coincide. We characterize the complexity of computing PNE
in congestion games with failures with an extension of the local search
class PLS that allows queries to a #P function, and show examples of
games for which the PNE search problem is complete for this class. We
also provide a variant of the game with the property that a PNE can be
constructed in polynomial time if this also holds in the restricted game
without failures.

Keywords: Congestion game · Failure · PLS · #P · Nash equilibrium

1 Introduction

A central question at the verge between game theory and computer science is the
study of the complexity for the computation of a Nash equilibrium in a game.
This question has motivated many important results in the area and the defini-
tions of several complexity classes (see, e.g., Chap. 2 in [14]) characterizing the
complexity of this problem for many classes of games. On the one hand, cases
in which such equilibria can be computed efficiently have been identified. More
importantly, since reaching an equilibrium can be considered a natural process
generated from independent agents’ efforts trying to optimize some individual
goal, researchers have tried to identify the computational power of such a pro-
cess. One of the classes for which the study of the complexity of computing
Nash equilibria has been particularly fruitful is the class of congestion games
introduced by Rosenthal [20]. Congestion games model the behavior of rational
and selfish agents that have to share a set of resources to achieve personal goals.
The cost of a resource increases with the number of agents using it. Typical
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settings include, for example, processes competing for computation time or cars
participating in a road network.

Rosenthal used what is now known as the potential function method to prove
the existence guarantee of pure Nash equilibria (PNEs). Essentially, PNEs coin-
cide with minima of a function that always possesses at least one minimum if
defined over congestion games. Focusing on the function’s behavior, he proposed
a simple algorithm based on greedy best-response strategy changes that would
always lead to a PNE. However, it was shown that this algorithm might require
an exponential number of improvement steps to reach a PNE [4].

The complexity of finding PNEs in congestion games was mainly settled by
Fabrikant et al. and Ackermann et al. [1,4], proving completeness for the com-
plexity class polynomial local search (PLS), previously introduced by Johnson,
Papadimitriou, and Yannakakis [7]. PLS is a class of total functions characteriz-
ing the complexity of finding locally optimal solutions for optimization problems.
The problem is to compute any solution that is locally optimal while suboptimal
solutions can be locally improved in polynomial time, although it may take an
exponential number of improvement steps to reach a local optimum.

We consider a natural extension of congestion games, taking into account that
resources in any real-world scenario are subject to failures. For example, roads
might be blocked because of accidents, computers links might fail, etc. Motivated
by a series of papers by Penn, Polukarov, and Tennenholtz [15–18], we analyze
the effect of uncertainty in the resources’ availability by assigning a failure prob-
ability to each resource. In the mentioned papers, the authors introduced several
models incorporating different aspects into congestion games. They manage to
show a guarantee of existence of PNEs and even propose polynomial-time algo-
rithms for finding them in restricted scenarios. At the same time, however, they
diverged quite far away from the original games, allowing, for example, that
agents may add to the congestion of resources even if they do not actively use
them. Furthermore, they highly restrict the combinatorial richness of the allowed
strategy sets.

We introduce a new model that stays close to the original definition of con-
gestion games. In particular, the congestion of the resources only depends on
the number of players using them, like in the original congestion games. In the
presence of failures, it is not clear how to define the agents’ strategies after some
resources fail. Potentially, there can be exponentially many concrete different
scenarios in a game. One needs some kind of mechanism to decide which strat-
egy is chosen in each case. We consider two different approaches that allow the
agents to define their strategy according to the existing resources. In the first
model, we consider a priority list of goals. Once the resource scenario is clear, the
first doable strategy in the agent’s list is the one chosen. This corresponds to the
natural situation of considering a plan A, a plan B (in case A is not possible),
etc. In the second model, the agents encode their different goal options succinctly
in a Boolean circuit. The input of a circuit is a vector encoding the available
resources, and the output is a goal that can be reached with these resources. In
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both cases, a bound on the sizes of lists or circuits can be considered in order to
keep the size of the strategies polynomial in the size of the game description.

We show that the congestion games with resource failures (CGRF) have a
potential function and are thus congestion games [12]. This implies that PNEs are
guaranteed to exist for both models. Furthermore, we discuss the computational
complexity of finding a PNE in these games. We observe that the class PLS is
not sufficient to describe the complexity anymore, as we prove that calculating
the cost of an agent in a strategy combination is #P-complete, even in the
case in which all resources have the same failure probability. Consequently, we
introduce a generalization of PLS called PLS#P that has access to a #P oracle
and prove completeness in this class for the problem of finding a PNE in our
model with priority lists, assuming that the lists have a constant length.

Related work: Very recently, Kleinberg et al. [8] have identified several natural
complexity classes for search problems beyond NP. These classes are included
in TFNPA, the class of total polynomial time relative to an oracle set A in the
lower levels of the polynomial time hierarchy. PLS#P is another example of such
a complexity class, but with an oracle set in #P. Besides the aforementioned
models by Penn, Polukarov, and Tennenholtz, several other approaches exist that
consider the introduction of uncertainty into congestion games. These approaches
can be roughly split into two groups: uncertainty regarding the players, and
uncertainty regarding the resources. In the former, there is uncertainty typically
in the number, type, or weight of the participating players (see, e.g., [2,3,5,
10,11]). In the latter, the cost functions typically incorporate some randomness
[2,6,13,19]). Both approaches motivate, among others, rich fields of study of
risk-averse player behavior, and the effect of uncertainty on the existence and
quality of equilibria. Our approach is different from these models since in our
case both players and cost functions are deterministic.

The remainder of this paper is structured as follows. After some general
preliminary definitions in Sect. 2, we define our new model for CGRFs in Sect. 3.
We prove the existence of PNEs for the new model in Sect. 4 and discuss the
complexity of finding PNEs in Sect. 5. We introduce a generalization of PLS
and prove completeness in this new class for several problems in Sect. 6.

2 Preliminaries

Let FP be the class of polynomial-time computable functions. The complexity
class #P was introduced by Valiant [24]. It encompasses problems asking the
question ‘how many’ rather than ‘is there a solution?’. Formally, it is the class
of functions f : {0, 1}∗ → N for which there exists a polynomial-time non-
deterministic Turing machine M , such that, for each x ∈ {0, 1}∗, the number
of accepting paths of M on input x is exactly f(x). The counting versions of
NP-complete problems are typically complete for #P.

In the problems we consider, part of the input data can consist of rational
numbers p

q . As usual, we consider that these numbers are given as pairs (p, q) in
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binary. In some cases we scale up the value of a function f to cf for a suitable
number c to ensure that the value of f is a natural number and can be computed
by a #P function.

Also, in some of the upcoming scenarios, we have to express the expecta-
tion E(y) of a random variable y, as a #P function. If the probability for each
of the values of y can be computed in polynomial time, we can define a non-
deterministic machine whose number of accepting paths is E(y) (maybe suitably
scaled). This machine would non-deterministically guess the possible values of y
(thus adding over the possible values the variable can take) and multiply these
values by the corresponding probability of y occurring.

FP#P is the class of functions that can be computed in polynomial time,
allowing queries to a #P function. This class is very powerful and contains
all the functions that can be computed within the polynomial-time hierarchy
[23]. To show that a function is complete for #P we use the concept of metric
reducibility between functions [9]. A function f is metric reducible to a function
g if there are polynomial time computable functions h1 and h2 such that for all
x, f(x) = h2(g(h1(x))).

#DNF-SAT is the functional problem to compute the number of satisfying
assignments for a Boolean formula in disjunctive normal form. It is known to be
complete for #P under metric reductions.

The class PLS [7] encompasses local search problems for which any given
solution can be improved within a neighborhood in polynomial time if such an
improvement is possible.

Definition 1. Let L be an optimization problem with a set of instances DL, and
for each x ∈ DL a set of solutions FL(x) of length p(|x|) for some polynomial p.
For each solution s ∈ FL(x) there is a non negative integer cost cL(x, s) as well
as a subset N(s, x) ⊆ FL(x) of neighboring solutions. We say that L is in PLS
if the following conditions hold:

1. The relation R = {(x, s) | x ∈ DL, s ∈ FL(x)} is in P.
2. There is a function α : DL → FL(x), α ∈ FP. (α produces a solution).
3. The cost function cL(x, s) lies within FP.
4. There is a function γ ∈ FP that on input x ∈ DL and s ∈ FL(x) computes a

neighboring solution s′ ∈ N(x, s) with better cost than s (cL(x, s′) < cL(x, s)
for a minimization problem and cL(x, s′) > cL(x, s) for maximization) in case
such a solution s′ exists. Otherwise it outputs some special symbol.

The standard way of comparing the complexity of PLS problems is the
PLS-reduction [7].

Definition 2. A problem A in PLS is reducible to another problem B if there
are functions f and g in FP such that

1. f maps instances x of A to instances f(x) of B,
2. g maps (solution of f(x), x) pairs to solutions of x, and
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3. ∀x ∈ A, if s is a local optimum for f(x) in B, then g(s, x) is a local optimum
for x in A.

Note that while each individual improvement step in a PLS-problem can be
done in polynomial time, finding a local optimum is, in general, assumed to be a
difficult problem. It was shown in [7] that the number of necessary improvement
steps before convergence may be exponential. Clearly, FP ⊆ PLS ⊆ FNP. It
is currently unclear whether PLS might be equivalent to FP or FNP, however,
both seem unlikely. In particular, it was proven that if there exists a problem in
PLS that is NP-hard, then NP = coNP [7].

3 Model

A CGRF is defined by a tuple Γ = (A,E, (pe)e∈E , (Gi)i∈A, (ce)e∈E , (wi)i∈A)
where A = {1, . . . , n} is a set of agents and E = {1, . . . , m} is a set of resources,
with each e ∈ E being associated with a non-failure probability pe. We say a
resource exists (with the given probability), or fails otherwise. Each agent i has
a set of goals Gi ⊆ P(E) (corresponding to the set of strategies for a classical
congestion game). If no goal can be reached (because of failing resources), the
agent must pay a cost of failure wi. We say that a goal gj ∈ Gi can be reached
or is reachable if none of the resources e ∈ gj fail. The strategies of i are not the
elements of Gi. Rather, a strategy si for agent i describes for each set I ⊆ E
of non-failing resources a goal si(I) = gI

i ∈ Gi reachable with the available
resources in I if such a goal exists, or si(I) = ∅ if no such goal can be reached.
We call S = (s1, ...., sn) a state or strategy vector.

As in classical congestion games, let ne(S, I) = |{i | e ∈ si(I)}| be the
number of agents using resource e in case the resources in I are non-failing, and
let ce : N → Q

+ be the cost function for resource e. The cost ui of a strategy
combination S for an agent i is defined as the expectation of the costs over all
subsets of resources

ui(S) =
∑

I⊆E

p(I)ui(S, I),

where p(I) is the probability that the resources available are exactly those in I,
p(I) =

∏
e∈I pe

∏
e�∈I(1 − pe), and ui(S, I) is the cost of agent i in the case that

the non-failing set of resources is I,

ui(S, I) =
∑

e∈si(I)

ce(ne(S, I)).

It is ui(S, I) = wi if si(I) = ∅.
Observe that if all resources are guaranteed to exist, many practical choices

of strategy functions coincide with the definition of strategies in the classical
congestion games. This implies, in particular, that CGRFs generalize classical
congestion games in these cases.
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4 Existence of Pure Nash Equilibria

We show that these games have an exact potential function, and therefore they
always have a PNE. For a combination of strategies S, define the potential
function ϕ(S) as

ϕ(S) :=
∑

I⊆E

p(I)

⎡

⎣
∑

e∈E

⎛

⎝
ce(ne(S,I))∑

k=1

k

⎞

⎠ +
∑

{i|si(I)=∅}
wi

⎤

⎦ .

Imagine that agent i changes her strategy from si to s′
i. For a set of resources

I, we consider different cases for the difference Δi(I) in the payoff for agent i and
the difference in the potential function Δϕ(I) on the set of non-failing resources
I:

Case 1: si(I), s′
i(I) �= ∅ are different from ∅.

Δi(I) =
∑

e∈s′
i(I)\si(I)

(ce(ne(S, I) + 1) −
∑

e∈si(I)\s′
i(I)

ce(ne(S, I)) = Δϕ(I)

Case 2: si(I) = ∅ �= s′
i(I) (the symmetric case is analogous).

Δi(I) =
∑

e∈s′
i(I)

(ce(ne(S, I) + 1) − wi = Δϕ(I)

Case 3: si(I) = ∅ = s′
i(I).

Δi(I) = wi − wi = 0 = Δϕ(I)

As the differences coincide for every set I, minima of ϕ correspond to PNEs.
Since ϕ can only take finitely many values, the case distinction implies:

Theorem 1. CGRFs always posses a PNE.

5 Fixing a Strategy

The introduced model of CGRFs remains very general in the definition of a
strategy. In essence, we require a strategy to be any mechanism that, given a
set of existing resources, returns a valid goal or the empty set. Since the set
I ⊆ E of possible non-failing resources is exponential in |E| the description of
such a mechanism can be exponential in size. Note in particular that besides
the probabilities the set of existing resources is unknown prior to the choice of
strategy. In the remainder of the paper, we elaborate on the properties of two
explicit ways to provide a strategy succinctly:

– The agent provides a priority list Li of goals. For a set I of non-failing
resources, the goal selected by i would be the first one in the list that can
be accomplished with the resources in I. If no goal can be reached with the
resources in I, the agent plays ∅.
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– The agent provides a succinct description of the goals in terms of a Boolean
circuit Ci. On the input of a 0–1 vector encoding I, Ci computes a goal gI

i

doable with the available resources or states that no goal can be reached.

To guarantee the succinctness of the strategy, an additional parameter
restricting the size can be introduced into the game description. Note that in
the previous section, we made no assumptions on the exact mechanism of the
strategy. Hence, for both approaches, the existence of a PNE is still guaran-
teed, and both variants generalize the original congestion games. Because of this
generalization finding a PNE in CGRFs is PLS-hard.

5.1 Given a Boolean Circuit

The Boolean circuits as described above let us mitigate some of the complexity
introduced by the uncertainty in the resources. The only challenge is to keep the
circuit of polynomial size in the size of the game description. If an algorithm
exists that finds a PNE in these classical congestion games in polynomial time,
then the same holds for the CGRFs with circuits.

Theorem 2. Let Γ be a CGRF with n players and m resources and let T be a
subclass of congestion games for which a polynomial time algorithm A for finding
a PNE exists. Furthermore, let Γ I be the classical congestion game based on Γ
where only the resources in I exist. If it holds for any set I ⊆ E that Γ I ∈ T ,
then calculating a circuit Ci for each player such that C = (C1, . . . , Cn) is a
PNE is possible in polynomial time.

Proof. For an input size k, any polynomial-time algorithm for a problem can
be transformed in polynomial time into a Boolean circuit solving the problem
for instances of size k (see e.g. [21]). Let CA be such a circuit finding PNEs
for games in T of a fixed size. Let furthermore CA

i be a restriction of CA that
selects the set of resources chosen by player i in the calculated equilibrium. Note
that CA

i can be chosen as a strategy of player i in the circuit model and can
be constructed in polynomial time. Now consider the state (CA

1 , . . . , CA
n ). For

any set I, the goals chosen by the circuits correspond to a PNE in the classical
congestion game Γ I . In particular, this means that there does not exist a set
I such that a player could reduce his cost in Γ I through a strategy change.
Therefore, (CA

1 , . . . , CA
n ) is a PNE.

A class of games for which the above theorem applies is the symmetric net-
work congestion games. A polynomial-time algorithm based on min-cost flow
was introduced by Fabrikant, Papadimitriou, and Talwar [4]. Independent of the
set of non failing resources, the game remains symmetric (source and sink nodes
of the players do not change), hence a PNE can be computed in polynomial time.

Corollary 1. A PNE in symmetric network CGRF with circuit strategies can
be computed in polynomial time.
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Note that while a PNE can be stated in polynomial time, it may not be
possible to calculate each player’s cost in the equilibrium efficiently, as shown in
Theorem 4 for the list model. The hardness result can be applied to the circuit
model as well since as shown in the next result, a circuit representing a list of
goals can be created in polynomial time. The converse is not necessarily true,
i.e., not every circuit can be represented as a list.

Theorem 3. Any list strategy can be represented as a circuit strategy in poly-
nomial time.

Proof Sketch. Let Li = (g1, ..., gk) be the given list strategy. Interpreting any gi

as a Boolean variable (it is 1 if goal gi can be reached and 0 otherwise), consider
Boolean formulas of the form Fj = ¬g1 ∧ ¬g2 ∧ · · · ∧ gj . Fj is evaluated to 1
iff goal gj is chosen by the list. Note that at most, one such formula can be
evaluated to 1 at the same time. Each formula can be represented as a Boolean
circuit, and from the results of the circuits, the appropriate goal can be returned
efficiently.

5.2 Given a List of Goals

We now focus on priority lists of goals as strategies. As mentioned before, these
CGRFs generalize the classical congestion games; hence it is unlikely that a
polynomial-time algorithm for finding a PNE exists unless P = PLS. However,
finding an equilibrium in the list model may not be significantly harder than
finding it in the classical congestion games. In other words, it may be complete
for PLS. For this to be the case, the cost of a solution (i.e., the value of the
potential function) must be computable in polynomial time for any given state.
However, we prove that calculating a given player’s cost is #P-hard.

Theorem 4. Determining a player’s cost in the list model is complete for the
metric closure of #P.

Proof. The cost function is not necessarily in #P because depending on the
game, the cost function might be a rational number, and #P functions only
range over natural numbers. What the statement of the theorem means is that
the cost function, properly scaled, is in #P, or more formally, for any CGRF
Γ , there is a scaling function h ∈ FP such that if ui(S, Γ ) is the cost of agent i
under strategy combination S in the game, then ui(S, Γ ) ·h(Γ ) is a #P function.
ui(S, Γ ) · h(Γ ) can be computed by a function in #P because for a concrete set
of available resources, calculating the cost for player i can be done in polynomial
time. As indicated in Sect. 2, a non-deterministic machine can guess the available
resources, compute the corresponding cost and then multiply this number by
the probability of these resources occurring (properly scaled) and produce this
number of accepting paths. The sum over all combinations of resources of the
accepting paths of the machine is exactly ui(S, Γ ) · h(Γ ).

We prove #P-hardness through a reduction from #DNF-SAT. Let F =
m∨

i=1

Ci be a Boolean formula in DNF with n ≤ m variables v1, . . . , vn and the
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Ci its conjunctions. By #SAT (F ) we represent the number of satisfying assign-
ments of F . We construct the state of a game of an instance of a CGRF based
on F as follows:

The set of resources is E = {vi, vi | i ∈ {1, . . . , n}} ∪ {r}, two for each
variable, and an additional auxiliary resource. The variable resources each exist
with probability 1

2 , whereas the auxiliary resource always exists (pr = 1). The

cost functions are defined as cvi(x) = c
vi(x) = 0, and cr(x) =

{
0, if x ≤ m
M, otherwise ,

where M is a large number to be fixed later. The cost of failure can be arbitrary,
as we will design the strategies such that no agent can fail. There are three
different types of agents, each choosing a different list as their strategy. The
goals for the players coincide with the subsets of resources in the lists:

1. One agent a that chooses ({r}).
2. For each i ∈ {1, . . . , n} there are m agents that choose the list

({v1, v1}, . . . , {vn, vn}, {vi}, {vi}, {r}).
3. For each conjunction Ci, there is one agent choosing

({v1, v1}, . . . , {vn, vn}, Ci, {r}), where by Ci we mean the set of resources
corresponding to the literals appearing in Ci.

In total, we consider a game with (n+1)m+1 agents. Note, that the largest
list consists of n + 3 = O(

√
n · m) elements. We now calculate the expected cost

of agent a in this state through a case distinction:

1. There exists at least one index i, such that vi and vi both exist, and, without
loss of generality, assume that i is the lowest index of a resource with that
property. All agents but agent a choose the resource set {vi, vi}. Agent a is the
only one on resource a, hence her cost is 0. This case occurs with probability
1 − ( 34 )n

2. Case 1 does not apply, and there exists at least one index i, such that vi and
vi both do not exist. Then there are at least m agents of type 2 that have
to use resource r. The total number of agents on resource r is then above m,
and the cost of agent a for using the resource is M . This case occurs with
probability (34 )n − ( 12 )n.

3. For each i, either vi or vi exist, but not both. The existing resources can
then be interpreted as an assignment for the original formula F : If vi exists,
then the respective variable is assigned the value 1; otherwise vi exists, and
the variable is assigned the value 0. In this scenario, all agents of type 2
do not choose resource r. Agents of type 3 choose resource r if and only
if the conjunction they represent is not satisfied by the assignment. Hence,
only if the assignment is not a satisfying one for formula F , all m agents
of type 3 choose resource r. Only then does the total number of agents on r
increase above m, and the cost of agent a increases from 0 to M . There are 2n

possible assignments, each occurring with equal probability 1
4

n. The number
of assignments for which agent a has non-zero cost is 2n − #SAT (F ).
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Going over all cases and choosing M = 4n, the expected cost of agent a is:

M · ((
3
4
)n − (

1
2
)n) + M · (

1
4
)n · (2n − #SAT (F )) = 3n − #SAT (F )

Hence, subtracting the expected cost of player a from 3n gives us the number
of satisfying assignments for the original formula F . This implies that any #P
function is metrically reducible to the cost.

Remark: The probabilities in the proof of Theorem 4 were chosen for ease of
calculation. They can be chosen arbitrarily as long as the accumulated proba-
bilities for each case can be efficiently computed. This includes the probability
for the auxiliary resource (which is currently set to 1). If the probability of r is
not 1, an additional case has to be considered where a pays the cost of failure
(which could be set to 2M). This shows that the hardness of the problem stems
not from some property encoded in the probabilities but originates in the high
combinatorial complexity introduced by the uncertainty.

6 The Class PLS#P

Clearly PLS does not suffice to describe the complexity of finding a PNE in
CGRFs. However, structurally, PNEs in classical, and congestion games with
failures are very similar.

6.1 Allowing Operations in #P

We introduce a generalization of PLS capable of dealing with more complex cost
functions. For this, we remind the reader of the definition of PLS as introduced
in Definition 1. We only change the definition in two places:

3. The cost function cL can be expressed as cL(x, s) = f(x,s)
g(x) for two functions

f ∈#P and g ∈ FP. (g is a scaling function depending on x and not on s).
4. There is a function γ ∈ FP#P that on input x ∈ DL and s ∈ FL(x) computes

a neighboring solution s′ ∈ N(x, s) with better cost than s in case such a
solution s′ exists. Otherwise it outputs some special symbol.

The only difference with the definition of PLS is the complexity of the func-
tions cL and γ, which were polynomial-time computable functions in the original
definition. We will see that PLS#P captures the complexity of several natural
local search problems by showing that these problems are complete for the class
under the original PLS-reducibility.

Conceptually, the difference between the classes FP#P and PLS#P is anal-
ogous to that between FP and PLS. We do not expect the classes to coincide
since in order to reach a local optimum one might need an exponential number
of improvement steps (using the #P oracle each time to compute the improve-
ment), which is doable in PLS#P but not clear how to achieve in FP#P.
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6.2 Some PLS#P-complete Problems

In this section, we introduce the problem E-FLIP, a first PLS#P-complete prob-
lem that will be reduced to all the other PLS#P-complete problems considered
in this paper. E-FLIP is a version of the canonical PLS-complete problem FLIP
from [7] in which some of the circuit inputs can be probabilistic bits, and we ask
for the expected value of the output.

An instance of E-FLIP consists of a Boolean circuit C with two kinds of
input gates, l normal input gates x1, . . . , xl, and m further probabilistic input
gates y1, . . . , ym, plus n output gates z1, . . . , zl. Additionally, for each random
input gate yi, a probability pi = Prob[yi = 1] is given. For an input x and a fixed
choice for the random bits y, C(x, y) computes Boolean values for the output
bits z in the usual way.

Any input vector x ∈ {0, 1}l is a valid solution for E-FLIP. Let f(x, y) =∑n
i=1 zi2i−1, where the zi are the outputs of C with inputs x and y. For a

solution x let E(C, x) be the expectation of f over all random inputs y, E(C, x) :=∑
y∈{0,1}m p(y)f(x, y). The neighborhood of a solution x is the set of vectors at

Hamming distance 1 from x.

Definition 3. The local search problem E-FLIP for a probabilistic circuit C
as described above consists of finding a solution x such that E(C, x) is a local
maximum.

Some considerations have to be made in order to force the expected value
of the circuit to be an integer. We suppose the probabilities pi to be ratio-
nal numbers qi

ri
with the integers qi and ri encoded in binary. yi has the

value 1 with probability pi, and value 0 with probability 1 − pi. For any
y = y1, . . . , ym we denote by p(y) the probability of the random bits being
equal to y, p(y) =

∏
{i : yi=1} pi ·

∏
{i : yi=0}(1 − pi). Because this number is not

necessarily an integer, we multiply this function by a large number in order to
force this property. We define the cost function c(C, x) := π · E(C, x) where
π =

∏m
i=1 ri. Observe that c(C, x) is an integer and π can be computed in poly-

nomial time in the size of instance C.

Theorem 5. E-FLIP is PLS#P-complete under PLS-reductions.

Proof Sketch. We show first that E-FLIP belongs to the class PLS#P. We will
see that the cost function is, in fact, a #P function in this case. Once this
is established, given a problem instance C and a solution x for it, a better
neighboring solution (if it exists) can be obtained by computing the costs on
the l neighbors of x and selecting one with the highest cost. This is clearly
in FP#P. The cost of a solution x is c(C, x) = π

∑
y∈{0,1}m p(y)f(x, y). We

describe a non-deterministic polynomial time machine M that on input (C, x)
has exactly c(C, x) accepting paths. Observe that c(C, x) is bounded by π2n, and
let s be the smallest integer such that π2n ≤ 2s. s is polynomial in the input
size. M computes π and s, in a non-deterministic way, chooses a y ∈ {0, 1}l and
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a number k, 0 < k ≤ 2s and accepts if and only if k ≤ πp(y)f(x, y). The number
of accepting paths of M is then

∑
y πp(y)f(x, y) = c(C, x).

The hardness proof for E-FLIP in PLS#P follows the same steps as the
proof of FLIP for PLS from [7], reducing a generic problem L in PLS#P to
E-FLIP over two intermediate problems M and Q so that Q is a version of L
with the same neighboring structure as E-FLIP. We refer to the original proof
for the details. The only difference here is that in the reduction from Q to E-
FLIP, the cost function c(x, s) on an instance x in the original proof has to
be transformed into the cost function of an instance of E-FLIP so that local
optimality is preserved. By assumption c(x, s) = f(x,s)

g(x) for functions f ∈#P and
g ∈ FP. Since g does not depend on the solution s, it is enough if the value of the
circuit is f(x, s) to preserve local optimality. f can be computed as the number
of accepting paths of a non-deterministic polynomial time Turing machine N .
We can assume that for some polynomial q, all the computation paths of this
machine on an input (x, s) have exactly q(|x|) non-deterministic binary choices.
These choices can be encoded as a binary string y of length q(|x|). By standard
techniques, for inputs of length |x|, N can be transformed into a polynomial sized
circuit C with a single output bit b so that on input x, y, it is b = 1 if and only if
N accepts with input x and non-deterministic choices y. If we consider the input
bits for y as probabilistic bits, each one with probability 1

2 , then π = 2q(|x|) and
the output expectation of the circuit over all y′s is exactly c(x, s)2−q(|x| and the
expectation of bπ is exactly f(x, s).

Based on this initial complete problem, we can determine the completeness
of other interesting problems. Due to space restrictions, we only give a sketch
of the proofs. Finally, we will show the completeness of a natural variant of
our CGRFs. We start introducing the problem E-Pos-NAE-3SAT, a version of
positive not-all-equal 3-SAT with random variables.

An instance of E-Pos-NAE-3SAT consists of a Boolean formula F (x, y) in
3-CNF, with two sets of variables: y1,...,ym are random, with p(yi) denoting the
probability that yi = 1. Again, for a given vector y, we denote the probability of
it occurring as p(y) =

∏
{i : yi=1} p(yi) ·

∏
{i : yi=0}(1 − p(yi)). Variables x1, ..., xl

can be chosen freely. There are n clauses Ci each containing only positive literals.
A clause is considered satisfied, if at least one variable in it is assigned 0 and
one is assigned 1. If Ci is satisfied, we say that Ci(x, y) = 1 (for a fixed y), and
Ci(x, y) = 0 otherwise. Each clause Ci has an associated weight wi ∈ N.

A solution for the problem is any string x ∈ {0, 1}n and the neighborhood of a
solution x is the set of vectors at Hamming distance 1 from x. For a fixed vector y,
let f(x, y) =

∑n
i=1 Ci(x, y)wi. The weight of a solution x is the expected weight

over all vectors y: c(x) =
∑

y∈{0,1}m p(y)f(x, y). A local optimum is reached,
when c(x) cannot be further increased by a single flip of a variable in x.

Definition 4. The local search problem for a formula F (x, y) as described above,
consists of finding a solution x such that c(x) is a local maximum.

Theorem 6. E-Pos-NAE-3SAT is PLS#P-complete.
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Proof Sketch. Using the same techniques as before, it is easy to see that E-Pos-
NAE-3SAT lies within PLS#P. To show hardness, the reduction is analogous
to the one from FLIP to Pos-NAE-3SAT found in [22]. Observe, that their test
circuits now simply compare the expected cost of a flip instead of the exact cost.

From E-Pos-NAE-3SAT, we can reduce to our newly introduced problem:

Theorem 7. Finding a PNE in CGRFs with list strategies and constant list
lengths is PLS#P-complete.

Proof Sketch. We show in section Theorem 4 that calculating the cost of a solu-
tion is #P-complete, so in particular, it lies in #P. It is then easy to see
that finding a PNE in CGRFs lies within PLS#P. For hardness, we reduce
from E-Pos-NAE-3SAT to CGRFs. We adapt the proof that showed the PLS-
completeness of finding a PNE in classical congestion games by Fabrikant et al.
[4]. Consider an instance of E-Pos-NAE-3SAT defined through a formula F as
described above Definition 4.

We now create a CGRF out of F . For each clause Ci, we introduce two
resources e1i and e0i . The cost of both resources is wi for three players, and 0
otherwise. Both resources exist with probability 1. For each probabilistic vari-
able yi, we also introduce two resources, namely r1i and r0i . It is p(r1i ) = p(yi),
and p(r0i ) = 1. The cost of r1i is constant 0, while the cost of r0i is always
a very large number M . The variables (both probabilistic and standard ones)
are identified with one player each. We address them through their variable
names in F . We continue to call players from standard variables standard play-
ers and those from probabilistic variables probabilistic players. Each standard
player xi has two goals, gxi

= {{e1j : xi ∈ cj}, {e0j : xi ∈ cj}}. One goal
represents assigning 1 to the variable, the other 0. The goals of a probabilis-
tic player yi are similar, however they are enriched with the rb

i resources:
gyi

= {{e1j : yi ∈ cj} ∪ {r1i }, {e0j : yi ∈ cj} ∪ {r0i }}. The cost of failure is
2M .

Observe now that due to the high cost of the r0i resources, it is a dominant
strategy for the probabilistic players to play the list ({e1j : yi ∈ cj} ∪ {r1i }, {e0j :
yi ∈ cj} ∪ {r0i }). This exactly simulates the random variable: Resource r1i exists
with probability p(yi), thus player yi plays the according goal with probability
p(yi), assigning the variable the value 1. Otherwise, she assigns it the value 0.
The cost of failure is chosen big enough to ensure that a list containing both
goals is always a dominant strategy.

Players choosing a resource e0i or e1i suffer non-zero cost from this resource
if and only if the clause is not satisfied. This is the case when all variables in
the clause are assigned the same value. The cost incurred by that scenario is the
weight of the clause. A standard player can reduce her expected cost if and only
if the same change in the E-Pos-NAE-3SAT instance increases the weight of the
solution. Therefore, maxima in the instance of E-Pos-NAE-3SAT and PNEs of
the CGRF coincide.
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7 Conclusion

We have introduced a general description of congestion games with uncertainty
in the availability of resources. The description leaves the exact specification of a
strategy open, however using a potential function, we proved a guarantee of exis-
tence of PNEs independent of the specification. For many practical definitions
of a strategy, our model generalizes classical congestion games.

We then focused on explicit definitions of a strategy: In one, a strategy is
given as a Boolean circuit that returns a set of played resources for any set
of existing resources. In the other, the strategy is displayed through a priority
list, giving preference to resource sets further up in the list. Drawing similarities
with the PLS-complete problem in classical congestion games, we discussed the
complexity of finding PNEs.

Using the Boolean circuit model, a PNE can be stated in polynomial time
if, for any fixed set of existing resources, the resulting classical congestion game
can be solved in polynomial time as well. This implies, in particular, that a PNE
in symmetric network CGRF can be computed in polynomial time. Peculiarly,
while we can state the equilibrium in polynomial time, it is unlikely that the
players’ cost in the equilibrium can be efficiently calculated.

Using the priority lists, we proved that calculating the cost of a player is
#P-complete under metric reductions, demonstrating that PLS is insufficient
to describe the complexity of this type of CGRF. We introduced a generalization
of PLS called PLS#P, which has access to a #P oracle when improving a given
solution. We proved completeness of this problem for finding a PNE in the list
model, given that the length of the list is a constant.

We leave several open ends for further research. While we proved the PLS#P-
completeness of finding pure Nash equilibria in CGRFs with a list of constant
size, the classification of the general case remains unknown. We would be very
interested to see useful definitions for strategies that allow the feasible calculation
of PNEs, or more feasible special cases for the strategy definitions introduced in
this work, including different types of cost and utility functions. Regarding the
properties of the newly introduced class, similar to PLS, it would be interesting
to compare PLS#P to FP#P and FNP#P. Furthermore, it may be fruitful
to consider approximate variants of equilibria, as the hardness of finding PNEs
may be due to a large number of possible strategy changes with little effect on
the cost. Besides existence and complexity it would be interesting to analyze the
inefficiency of equilibria in the form of the price of anarchy.
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Abstract. We study (coalitional) exchange stability , which Alcalde
[Economic Design, 1995] introduced as an alternative solution concept for
matching markets involving property rights, such as assigning persons to
two-bed rooms. Here, a matching of a given Stable Marriage or Sta-
ble Roommates instance is called coalitional exchange-stable if it does
not admit any exchange-blocking coalition, that is, a subset S of agents
in which everyone prefers the partner of some other agent in S. The
matching is exchange-stable if it does not admit any exchange-blocking
pair , that is, an exchange-blocking coalition of size two.

We investigate the computational and parameterized complexity of
the Coalitional Exchange-Stable Marriage (resp. Coalitional
Exchange Roommates) problem, which is to decide whether a Sta-
ble Marriage (resp. Stable Roommates) instance admits a coali-
tional exchange-stable matching. Our findings resolve an open question
and confirm the conjecture of Cechlárová and Manlove [Discrete Applied
Mathematics, 2005] that Coalitional Exchange-Stable Marriage
is NP-hard even for complete preferences without ties. We also study
bounded-length preference lists and a local-search variant of deciding
whether a given matching can reach an exchange-stable one after at
most k swaps, where a swap is defined as exchanging the partners of the
two agents in an exchange-blocking pair.

1 Introduction

An instance in a matching market consists of a set of agents that each have
preferences over other agents with whom they want to be matched with. The
goal is to find a matching, i.e., a subset of disjoint pairs of agents, which is fair .
A classical notion of fairness is stability [14], meaning that no two agents can
form a blocking pair , i.e., they would prefer to be matched with each other rather
than with the partner assigned by the matching. This means that a matching is
fair if the agents cannot take local action to improve their outcome. If we assign
property rights via the matching, however, then the notion of blocking pairs
may not be actionable, as Alcalde [3] observed: For example, if the matching
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represents an assignment of persons to two-bed rooms, then two persons in a
blocking pair may not be able to deviate from the assignment because they
may not find a new room that they could share. Instead, we may consider the
matching to be fair if no two agents form an exchange-blocking pair , i.e., they
would prefer to have each other’s partner rather than to have the partner given
by the matching [3]. In other words, they would like to exchange their partners.
Note that such an exchange would be straightforward in the room-assignment
problem mentioned before. We refer to the work of Alcalde [3], Cechlárová [9],
and Cechlárová and Manlove [10] for more discussion and examples of markets
involving property rights.

If a matching does not admit an exchange-blocking pair, then the match-
ing is exchange-stable. If we also want to exclude the possibility that several
agents may collude to favorably exchange partners, then we arrive at coalitional
exchange-stability [3]. In contrast to classical stability and exchange-stability
for perfect matchings (i.e., everyone is matched), it is not hard to observe that
coalitional exchange-stability implies Pareto-optimality , another fairness con-
cept which asserts that no other matching can make at least one agent better-off
without making some other agent worse-off (see also Abraham and Manlove [2]).
Cechlárová and Manlove [10] showed that the problem of deciding whether an
exchange-stable matching exists is NP-hard, even for the marriage case (where
the agents are partitioned into two subsets of equal size such that each agent of
either subset has preferences over the agents of the other subset) with complete
preferences but without ties. They left open whether the NP-hardness transfers
to coalitional exchange-stability, but observed NP-containment.

In this paper, we study the algorithmic complexity of problems revolving
around (coalitional) exchange-stability. In particular, we establish a first NP-
hardness result for deciding coalitional exchange-stability, confirming a conjec-
ture of Cechlárová and Manlove [10]. The NP-hardness reduction is based on a
novel switch-gadget wherein each preference list contains at most three agents.
Utilizing this, we can carefully complete the preferences so as to prove the desired
NP-hardness. We then investigate the impact of the maximum length d of a pref-
erence list. We find that NP-hardness for both exchange-stability and coalitional
exchange-stability starts already when d = 3, while it is fairly easy to see that
the problem becomes polynomial-time solvable for d = 2. For d = 3, we obtain
a fixed-parameter algorithm for exchange-stability regarding a parameter which
is related to the number of switch-gadgets.

Finally, we look at a problem variant, called Path to Exchange-Stable

Marriage (P-ESM), for uncoordinated (or decentralized) matching markets.
Starting from an initial matching, in each iteration the two agents in an
exchange-blocking pair may swap their partners. An interesting question regard-
ing the behavior of the agents in uncoordinated markets is whether such iterative
swap actions can reach a stable state, i.e., exchange-stability, and how hard is it
to decide. It is fairly straight-forward to verify that if the number k of swaps is
bounded by a constant, then P-ESM is polynomial-time solvable since there are
only polynomially many possible sequences of exchanges to be checked. From
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the parameterized complexity point of view, we obtain an XP algorithm for k,
i.e., the exponent in the polynomial running time depends on k. We further show
that the dependency of the exponent on k is unlikely to be removed by showing
W[1]-hardness with respect to k.

Related Work. Alcalde [3] introduced (coalitional) exchange stability and dis-
cussed restricted preference domains where (coalitional) exchange stability is
guaranteed to exist. Abizada [1] showed a weaker condition (on the prefer-
ence domain) to guarantee the existence of exchange stability. Cechlárová and
Manlove [10] proved that it is NP-complete to decide whether an exchange-stable
matching exists, even for the marriage case with complete preferences without
ties. Aziz and Goldwasser [4] introduced several relaxed notions of coalitional
exchange-stability and discussed their relations.

The P-ESM problem is inspired by the Path-to-Stability via Divorces

(PSD) problem, originally introduced by Knuth [16], see also Biró and Nor-
man [5] for more background. Very recently, Chen [11] showed that PSD is
NP-hard and W[1]-hard when parameterized by the number of divorces. P-

ESM can also be considered as a local search problem and is a special case of
the Local Search Exchange-Stable Seat Arrangement (Local-STA)
problem, introduced by Bodlaender et al. [6]: Given a a set of agents, each hav-
ing cardinal preferences (i.e., real values) over the other agents, an undirected
graph G with the same number of vertices as agents, and an initial assignment
(bijection) of the agents to the vertices in G, is it possible to swap two agents’
assignments iteratively so as to reach an exchange-stable assignment? Herein an
assignment is called exchange-stable if no two agents can each have a higher sum
of cardinal preferences over the other’s neighboring agents. P-ESM is a restricted
variant of Local-STA, where G consists of disjoint edges and the agents have
ordinal preferences. Bodlaender et al. [7] showed that Local-STA is W[1]-hard
wrt. the number k of swaps. Their reduction relies on the fact that the given
graph contains cliques and stars, and the preferences of the agents may contain
ties. Our results for P-ESM that Local-STA is W[1]-hard even if the given
graph consists of disjoint edges and the preferences do not have ties. Finally, we
mention that Irving [15] and McDermid et al. [17] studied the complexity of com-
puting stable matchings in the marriage setting with preference lists, requiring
additionally that the matching should be man-exchange stable, i.e., no two men
form an exchange-blocking pair, obtaining hardness and tractability results.

Organization. In Sect. 2, we introduce relevant concepts and notation, and define
our central problems. In Sect. 3, we investigate the complexity of deciding (coali-
tional) exchange-stability, both when the preferences are complete and when the
preferences length are bounded. In Sect. 4, we provide algorithms for profiles with
preference length bounded by three. In Sect. 5, we turn to the local search vari-
ant of reaching exchange-stability. Section 6 concludes with open questions. Due
to space constraints, results marked by � are deferred to [12].
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2 Basic Definitions and Observations

For each natural number t, we denote the set {1, 2, . . . , t} by [t].
Let V = {1, 2, . . . , 2n} be a set of 2n agents. Each agent i ∈ V has a nonempty

subset of agents Vi ⊆ V which he finds acceptable as a partner and has a strict
preference list �i on Vi (i.e., a linear order on Vi). The length of preference list �i

is defined as the number of acceptable agents of i, i.e., |Vi|. Here, x �i y means
that i prefers x to y.

We assume that the acceptability relation among the agents is symmetric,
i.e., for each two agents x and y it holds that x is acceptable to y if and only if
y is acceptable to x. For two agents x and y, we call x most acceptable to y if x
is a maximal element in the preference list of y. For notational convenience, we
write X �i Y to indicate that for each pair of agents x ∈ X and y ∈ Y it holds
that x �i y.

A preference profile P is a tuple (V, (�i)i∈V ) consisting of an agent set V
and a collection (�i)i∈V of preference lists for all agents i ∈ V . For a graph G,
by V (G) and E(G) we refer to its vertex set and edge set, respectively. Given a
vertex v ∈ V (G), by NG(v) and dG(v) we refer to the neighborhood and degree
of v in G, respectively. To a preference profile P with agent set V we assign
an acceptability graph G(P) which has V as its vertex set and two agents are
connected by an edge if they find each other acceptable. A preference profile P
may have the following properties: Profile P is bipartite, if the agent set V can
be partitioned into two agent sets U and W of size n each, such that each agent
from one set has a preference list over a subset of the agents from the other set.
Profile P has complete preferences if the underlying acceptability graph G(P) is
a complete graph or a complete bipartite graph on two disjoint sets of vertices
of equal size; otherwise it has incomplete preferences. Profile P has bounded
length d if each preference list in P has length at most d.

(Coalitional) Exchange-stable Matchings. A matching M for a given profile P is
a subset of disjoint edges from the underlying acceptability graph G(P). Given a
matching M for P, and two agents x and y, if it holds that {x, y} ∈ M , then we
use M(x) (resp. M(y)) to refer to y (resp. x), and we say that x and y are their
respective assigned partners under M and that they are matched to each other;
otherwise we say that {x, y} is an unmatched pair under M . If an agent x is not
assigned any partner by M , then we say that x is unmatched by M and we put
M(x) = x. We assume that each agent x prefers to be matched than remaining
unmatched. To formalize this, we will always say that x prefers all acceptable
agents from Vx to himself x. A matching M is perfect if every agent is assigned a
partner. It is maximal if for each unmatched pair {x, y} ∈ E(G(P))\M it holds
that x or y is matched under M . For two agents x, y, we say that x envies y
under M if x prefers the partner of y, i.e., M(y), to his partner M(x). We omit
the “under M ” if it is clear from the context.

Matching M admits an exchange-blocking coalition (in short ebc) if there
exists a sequence ρ = (x0, x1, . . . , xr−1) of r agents, r ≥ 2, such that each agent xi

envies her successor xi+1 in ρ (index i + 1 taken modulo r). The size of an ebc
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is defined as the number of agents in the sequence. An exchange-blocking pair
(in short ebp) is an ebc of size two. A matching M of P is exchange-stable (resp.
coalitional exchange-stable) if it does not admit any ebp (resp. ebc). Note that a
coalitional exchange-stable matching is exchange-stable. For an illustration, let
us consider the following example.

Example 1. The following bipartite preference profile P with agent
sets U = {x, y, z} and W = {a, b, c}
admits 2 (coalitional) exchange- x : a � b � c , a : y � x � z ,

y : b � a � c , b : x � y � z,

z : a � c � b, c : x � y � z.

stable matchings M1 and M2 with
M1 = {{x, c}, {y, b}, {z, a}} (marked
in red boxes) and M2 = {{x, b},
{y, c}, {z, a}} (marked in blue boxes).
Matching M3 with M3 = {{x, c}, {y, a}, {z, b}} is not exchange-stable and hence
not coalitional exchange-stable since for instance (y, z) is an exchange-blocking
pair of M3.

As already observed by Cechlárová and Manlove [10], exchange-stable (or coali-
tional exchange-stable) matchings may not exist, even for bipartite profiles with
complete preferences. Every coalitional exchange-stable matching is maximal (�).

We are interested in the computational complexity of deciding whether a
given profile admits a coalitional exchange-stable matching.

Coalitional Exchange-Stable Roommates (CESR)

Input: A preference profile P.
Question: Does P admit a coalitional exchange-stable matching?

The bipartite restriction of CESR, called Coalitional Exchange-Stable

Marriage (CESM), has as input a bipartite preference profile. Exchange-

Stable Roommates (ESR) and Exchange-Stable Marriage (ESM) are
defined analogously.

We are also interested in the case when the preferences have bounded length.
In this case, not every coalitional exchange-stable (or exchange-stable) matching
is perfect. In keeping with the literature [9,10], we focus on the perfect case.

d-Coalitional Exchange-Stable Roommates (d-CESR)

Input: A preference profile P with preferences of bounded length d.
Question: Does P admit a coalitional exchange-stable and perfect matching?

We analogously define the bipartite restriction d-Coalitional Exchange-

Stable Marriage (d-CESM), and the exchange-stable variants d-Exchange-
Stable Roommates (d-ESR) and d-Exchange-Stable Marriage (d-ESM).
Note that the above problems are contained in NP [10].

Finally, we investigate a local search variant regarding exchange-stability. To
this end, given two matchings M and N of the same profile P, we say that M
is one-swap reachable from N if there exists an exchange-blocking pair (x, y)
of N such that M = (N \ {{x,N(x)}, {y,N(y)}}) ∪ {{x, y}, {N(x), N(y)}}.
Accordingly, we say that M is k-swaps reachable from N if there exists a
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sequence (M0,M1, · · · ,Mk′) of k′ matchings of profile P such that (a) k′ ≤ k,
M0 = N , Mk′ = M , and (b) for each i ∈ [k′], Mi is one-swap reachable
from Mi−1.

The local search problem variant is defined as follows:

Path to Exchange-Stable Marriage (P-ESM)

Input: A bip. preference profile P, a matching M0 of P, and an integer k.
Question: Is there an exchange-stable matching M for P that is k-swap
reachable from M0?

3 Deciding (Coalitional) Exchange-Stability is
NP-complete

Cechlárová and Manlove [10] proved NP-completeness for ESM. It is, however,
not immediate how to adapt Cechlárová and Manlove’s proof to show hardness
for coalitional exchange-stability since their constructed exchange-stable match-
ing is not always coalitional exchange-stable. To obtain a hardness reduction
for CESM, we first study the case when the preferences have length bounded
by three, and show that 3-CESM is NP-hard, even for strict preferences. We
reduce from an NP-complete (�) variant of 3SAT, called (2,2)-3SAT: Is there
a satisfying truth assignment for a given Boolean formula φ(X) with variable
set X in 3CNF (i.e., a set of clauses each containing at most 3 literals) where no
clause contains both the positive and the negated literal of the same variable,
and each literal appears exactly two times?

A crucial ingredient for our reduction is the following switch-gadget which
enforces that each exchange-stable matching results in a valid truth assignment.
The gadget and its properties are summarized in the following lemma.

Lemma 1 (�). Let P be a bipartite preference profile on agent sets U and W .
Let A = {az | z ∈ {0, 1, . . . , 6}} and B = {bz | z ∈ {0, 1, . . . , 6}} be two
disjoint sets of agents, and let Q = {α, β, γ, δ} be four further distinct agents
with A ∪ {α, γ} ⊆ U and B ∪ {β, δ} ⊆ W . The preferences of the agents from A
and B are as follows; the preferences of the other agents are arbitrary but fixed.

a0 : b1 � β , b0 : a1 � α ,

a1 : b0 � b2 � b1, b1 : a0 � a2 � a1,

a2 : b3 � b1 � b2, b2 : a2 � a3 � a1 ,

a3 : b2 � b3 � b4 , b3 : a4 � a3 � a2 ,

a4 : b4 � b3 � b5 , b4 : a3 � a5 � a4,

a5 : b6 � b4 � b5, b5 : a6 � a4 � a5,

a6 : b5 � δ , b6 : a5 � γ .
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Every perfect matching M of P satisfies the following, where

N1 := {{α, b0}, {a6, δ}} ∪ {{az−1, bz} | z ∈ [6]},

N2 := {{a0, β}, {γ, b6}} ∪ {{az, bz−1} | z ∈ [6]}, and
ND := {{α, b0}, {a0, β}, {a6, δ}, {γ, b6},

{a1, b2}, {a2, b1}, {a3, b3}, {a4, b5}, {a5, b4}}.

(1) If M is exchange-stable, then either (i) N1 ⊆ M , or (ii) N2 ⊆ M , or (iii)
ND ⊆ M .

(2) If N1 ⊆ M , then every ebc of M which involves an agent from A (resp. B)
also involves α (resp. δ).

(3) If N2 ⊆ M , then every ebc of M which involves an agent from A (resp. B)
also involves γ (resp. β).

(4) If ND ⊆ M , then every ebc of M which involves an agent from A (resp. B)
also involves an agent from {α, γ} (resp. {β, δ}).

Using Lemma 1, we can show NP-hardness for bounded preference length.

Theorem 1. 3-CESM, 3-ESM, 3-CESR, and 3-ESR are NP-complete.

Proof. As already mentioned [10], by checking for cycles in the envy graph all
discussed problems are in NP (�). For the NP-hardness, it suffices to show that
3-CESM and 3-ESM are NP-hard. We use the same reduction from (2,2)-3SAT

for both. Let (X,C) be an instance of (2,2)-3SAT where X = {x1, x2, · · · , xn̂}
is the set of variables and φ = {C1, C2, · · · , Cm̂} the set of clauses.

We construct a bipartite preference profile on two disjoint agent sets U and
W . The set U (resp. W ) will be partitioned into three different agent-groups: the
variable-agents, the switch-agents, and the clause-agents. The general idea is to
use the variable-agents and the clause-agents to determine a truth assignment
and satisfying literals, respectively. Then, we use the switch-agents from Lemma
1 to make sure that the selected truth assignment is consistent with the selected
satisfying literals. For each literal liti ∈ X ∪ X that appears in two different
clauses Cj and Ck with j < k, we use o1(liti) and o2(liti) to refer to the indices j
and k; recall that in φ each literal appears exactly two times.

The Variable-agents. For each variable xi ∈ X, introduce 6 variable-agents vi,
wi, xi, xi, yi, yi. Add vi, xi, xi to U , and wi, yi, yi to W . For each literal liti ∈
X ∪ X let y(liti) denote the corresponding Y -variable-agent, that is, y(xi) = yi

and y(xi) = yi. Define X := {xi | i ∈ [n̂]}, and Y := {yi | i ∈ [n̂]}.

The Clause-agents. For each clause Cj ∈ C, introduce two clause-agents cj , dj .
Further, for each literal liti ∈ Cj with lit ∈ {x, x}, introduce two more clause-
agents ei

j , f
i
j . Add cj , f

i
j to U , and dj , e

i
j to W . For each clause Cj ∈ φ,

define Ej := {ei
j | liti ∈ Cj}, and Fj := {f i

j | liti ∈ Cj}. Moreover,
define E :=

⋃
Cj∈φ Ej and F :=

⋃
Cj∈φ Fj .
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The Switch-agents. For each clause Cj ∈ C, and each literal liti ∈ Cj introduce
fourteen switch-agents az

i,j , b
z
i,j , z ∈ {0, 1, · · · , 6}. Define Ai,j = {az

i,j | z ∈
{0, 1, . . . , 6}} and Bi,j = {bz

i,j | z ∈ {0, 1, . . . , 6}}. Add Ai,j to U and Bi,j to W .
In total, we have the following agent sets:

U := {vi | i ∈ [n̂]} ∪ X ∪ X ∪ {cj | j ∈ [m̂]} ∪ F ∪ ⋃
Cj∈φ∧liti∈Cj

Ai,j , and
W := {wi | i ∈ [n̂]} ∪ Y ∪ Y ∪ {dj | j ∈ [m̂]} ∪ E ∪ ⋃

Cj∈φ∧liti∈Cj
Bi,j .

The Preference Lists. The preference lists of the agents are shown in Fig. 1.
Herein, the preferences of the switch-agents of each occurrence of the literal
correspond to those given in Lemma 1. Note that all preferences are specified
except those of αi,j and δi,j , which we do now. Defining them in an appropriate
way will connect the two groups of switch-agents that correspond to the same
literal as well as literals to clauses. For each literal liti ∈ X∪X, recall that o1(liti)
and o2(liti) are the indices of the clauses which contain liti with o1(liti) < o2(liti).
Let

αi,o1(liti) := liti, δi,o1(liti) := b0i,o2(liti),αi,o2(liti) := a6
i,o1(liti), δi,o2(liti) := y(liti). (1)

Fig. 1. The preferences constructed in the proof for Theorem 1. Recall that for each
literal liti ∈ X ∪ X, expressions o1(liti) and o2(liti) denote the two indices j < j′ of
the clauses that contain liti. For each clause Cj ∈ φ, the expression [Ej ] (resp. [Fj ])
denotes an arbitrary but fixed order of the agents in Ej (resp. Fj).
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This completes the construction of the instance for 3-CESM, which can
clearly be done in polynomial-time. Let P denote the constructed instance with
P = (U �W, (�x)x∈U∪W ). It is straight-forward to verify that P is bipartite and
contains no ties and each preference list �x has length bounded by three. Before
we give the correctness proof, for each literal liti ∈ X ∪ X and each clause Cj

with liti ∈ Cj we define the following three matchings:

N1
i,j := {{αi,j , b

0
i,j}, {a6

i,j , δi,j}} ∪ {{az−1
i,j , bz

i,j} | z ∈ [6]},

N2
i,j := {{a0

i,j , e
i
j}, {b6i,j , f

i
j}} ∪ {{az

i,j , b
z−1
i,j } | z ∈ [6]}, and

ND
i,j := {{αi,j , b

0
i,j}, {a0

i,j , e
i
j}, {a6

i,j , δi,j}, {f i
j , b

6
i,j},

{a1
i,j , b

2
i,j}, {a2

i,j , b
1
i,j}, {a3

i,j , b
3
i,j}, {a4

i,j , b
5
i,j}, {a5

i,j , b
4
i,j}}.

(2)

Now we show the correctness, i.e., φ admits a satisfying assignment if and only
if P admits a perfect and coalitional exchange-stable (resp. exchange-stable)
matching. For the “only if” direction, assume that σ : X → {true, false} is a
satisfying assignment for φ. Then, we define a perfect matching M as follows.

– For each variable xi ∈ X, let M(xi) := wi and M(vi) := yi if σ(xi) = true;
otherwise, let M(xi) := wi and M(vi) := yi.

– For each clause Cj ∈ φ, fix an arbitrary literal whose truth value satisfies Cj

and denote the index of this literal as s(j). Then, let M(cj) := e
s(j)
j and

M(f s(j)
j ) := dj .

– Further, for each literal liti ∈ X ∪ X and each clause Cj with liti ∈ Cj , do:
(a) If s(j) = i, then add to M all pairs from N1

i,j .
(b) If s(j) 
= i and liti is set true under σ (i.e., σ(xi) = true iff. liti = xi), then

add to M all pairs from ND
i,j .

(c) If s(j) 
= i and liti is set to false under σ (i.e., σ(xi) = true iff. liti = xi),
then add to M all pairs from N2

i,j .

One can verify that M is perfect. Hence, it remains to show that M is coalitional
exchange-stable. Note that this would also imply that M is exchange-stable.

Suppose, for the sake of contradiction, that M admits an ebc ρ. First, observe
that for each variable-agent z ∈ X ∪ X ∪ Y ∪ Y it holds that M(z) either is
matched with his most-preferred partner (i.e., either vi or wi) or only envies
someone who is matched with his most-preferred partner. Hence, no agent
from X ∪ X ∪ Y ∪ Y is involved in ρ. Analogously, no agent from E ∪ F is
involved in ρ. Next, we claim the following.

Claim 1 (�). For each literal liti ∈ X ∪ X and each clause Cj with liti ∈ Cj, it
holds that neither αi,j nor δi,j is involved in ρ.

Using the above observations and claim, we continue with the proof. We succes-
sively prove that no agent is involved in ρ, starting with the agents in U .

– If vi is involved in ρ for some i ∈ [n̂], then he only envies someone who is
matched with yi. By the preferences of yi, this means that M(yi) = a6

i,o2(xi)
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and vi envies a6
i,o2(xi)

. Hence, a6
i,o2(xi)

is also involved in ρ. Moreover, since
M(a6

i,o2(xi)
) = yi, we have N1

i,o2(xi)
⊆ M or ND

i,o2(xi)
⊆ M . By Lemma 1(2)

and Lemma 1(4) (setting α = αi,o2(xi), β = ei
o2(xi)

, γ = f i
o2(xi)

, and δ =
δi,o2(xi)), ρ involves an agent from {αi,o2(xi), f

i
o2(xi)

}. Since no agent from F
is involved in ρ, it follows that ρ involves αi,o2(xi), a contradiction to Claim 1.

– Analogously, if cj ∈ ρ for some j ∈ [m̂], then this means that Ej contains
two agents ei

j and et
j such that M(cj) = et

j but cj prefers ei
j to et

j , and
M(ei

j) ∈ ρ. Since M is perfect and cj is not available, it follows that M(ei
j) =

a0
i,j , implying that a0

i,j ∈ ρ. Moreover, by the definition of M we have that
N2

i,j ⊆ M or ND
i,j ⊆ M . By Lemmas 1(3)–(4) (setting α = αi,j , β = ei

j ,
γ = f i

j , and δ = δi,j), ρ involves an agent from {αi,j , f
i
j}, a contradiction

since no agent from Fj is involved in ρ and by Claim 1 αi,j is not in ρ.
– Analogously, we can obtain a contradiction if wi with i ∈ [n̂] is in ρ: By

the definition of M , if wi ∈ ρ, then M(xi) = b0i,o1(xi)
and wi envies b0i,o1(xi)

.
Hence, b0i,o1(xi)

is also involved in ρ. Moreover, since M(b0i,o1(xi)
) = xi, it

follows that N1
i,o1(xi)

⊆ M or ND
i,o1(xi)

⊆ M . By Lemmas 1(2) and (4) (setting
α = αi,o1(xi), β = ei

o1(xi)
, γ = f i

o1(xi)
, and δ = δi,o1(xi)), ρ involves an agent

from {ei
o1(xi)

, δi,o1(xi)}. Since no agent from E is involved in ρ, it follows that
ρ involves δi,o1(xi), a contradiction to Claim 1.

– Again, analogously, if dj ∈ ρ for some j ∈ [m̂], then we obtain that δi,j is
involved in ρ, which is a contradiction to Claim 1.

– Finally, if ρ involves an agent from Ai,j (resp. Bi,j), then by Lemma 1(2) and
(4) (setting α = αi,j , β = ei

j , γ = f i
j , and δ = δi,j), it follows that ρ involves

an agent from {αi,j , f
i
j} (resp. {βi,j , e

i
j}), a contradiction to our observation

and to Claim 1.

Summarizing, M is coalitional exchange-stable and exchange-stable.
For the “if” direction, assume that M is a perfect and exchange-stable match-

ing for P. We show that there is a satisfying assignment for φ. Note that this
then also implies that, if M is perfect and coalitional exchange-stable, then there
is a satisfying assignment for φ.

We claim that the selection of the partner of wi defines a satisfying
truth assignment for φ. More specifically, define a truth assignment σ : X →
{true, false} with σ(xi) = true if M(wi) = xi, and σ(xi) = false otherwise. We
claim that σ satisfies φ. To this end, consider an arbitrary clause Cj and the
corresponding clause-agent. Since M is perfect, it follows that M(cj) = ei

j for
some liti ∈ Cj . Since ei

j is not available, it also follows that M(a0
i,j) = b1i,j . By

Lemma 1(1) (setting α = αi,j , β = ei
j , γ = f i

j , and δ = δi,j), it follows that
N1

i,j ⊆ M . In particular, M(αi,j) = b0i,j so that αi,j is not available to other
agents anymore.

Now, if we can show that liti = αi,o1(liti) is matched to b0i,o1(liti), then since
M is perfect, we have M(wi) = xi if liti = xi, and M(wi) = xi otherwise By
definition, we have σ(xi) = true if liti = xi and σ(xi) = false otherwise. Thus,
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Cj is satisfied under σ, implying that σ is a satisfying assignment. It remains to
show that liti is matched to b0i,o1(liti). We distinguish between two cases;

– If j = o1(liti), then liti = αi,o1(liti) is matched to b0i,o1(liti), as required.
– If j = o2(liti), then by definition, it holds that αi,j = a6

i,o1(liti)
and δi,o1(liti) =

b0i,j . In other words, M(a6
i,o1(liti)

) = δi,o1(lit1). By Lemma 1(1) (setting α =
αi,o1(liti), β = ei

o1(liti)
, γ = f i

o1(liti)
, and δ = δi,o1(liti)), it follows that N1

i,j ⊆ M

or ND
i,j ⊆ M . In both cases, it follows that αi,o1(i) is matched to b0i,o1(i). ��

Next, we show how to complete the preferences of the agents constructed in
the proof of Theorem 1 to show hardness for complete and strict preferences.

Theorem 2. CESM and CESR are NP-complete even for complete and strict
preferences.

Proof. We only show NP-hardness for CESM as the hardness for CESR will
follow immediately by using the same approach as [10, Lemma 3.1]. To show
hardness for CESM, we adapt the proof of Theorem 1. In that proof, given (2,2)-

3SAT instance (X,φ) with X = {x1, x2, · · · , xn̂} and φ = {C1, C2, · · · , Cm̂}, we
constructed two disjoint agent sets U and W with U := {vi | i ∈ [n̂]} ∪ X ∪ X ∪
{cj | j ∈ [m̂]} ∪ F ∪ ⋃

Cj∈φ∧liti∈Cj
Ai,j and W := {wi | i ∈ [n̂]} ∪ Y ∪ Y ∪ {dj |

j ∈ [m̂]} ∪ E ∪ ⋃
Cj∈φ∧liti∈Cj

Bi,j . For each agent z ∈ U ∪ W let Lz denote the
preference list of z constructed in the proof. The basic idea is to extend the
preference list Lz by appending to it the remaining agents appropriately.

We introduce some more notations. Let �U and �W denote two arbitrary but
fixed linear orders of the agents in U and W , respectively. Now, for each subset
of agents S ⊆ U (resp. S ⊆ W ), let [S]� denote the fixed order of the agents in S
induced by �U (resp. �W ), and let S \ Lz denote the subset {t ∈ S | t /∈ Lz},
where z ∈ W (resp. z ∈ U). Finally, for each agent z ∈ U (resp. z ∈ W ),
let Rz denote the subset of agents which do not appear in Lz or in Y ∪ Y ∪
E (resp. X ∪ X ∪ F ). That is, Rz :=

(
W \ (Y ∪ Y ∪ F )

) \ Lz (resp. Rz :=
(
U \ (X ∪ Y ∪ F )

) \ Lz).
Now, we define the preferences of the agents as follows.

∀z ∈ U, z : Lz � [Y ∪ Y ∪ E \ Lz]� � [Rz]�, and

∀z ∈ W, z : Lz � [X ∪ X ∪ F \ Lz]� � [Rz]�.

Let P ′ denote the newly constructed preference profile. Clearly, the con-
structed preferences are complete and strict. Before we show the correctness, we
claim the following for each coalitional exchange-stable matching of P ′.

Claim 2 (�). If M is a coalitional exchange-stable matching for P ′, then

(i) for each agent z ∈ U ∪ W it holds that M(z) /∈ Rz, and
(ii) for each agent z ∈ U ∪W \ (X ∪X ∪F ∪Y ∪Y ∪E) it holds that M(z) ∈ Lz.
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Now we are ready to show the correctness, i.e., φ admits a satisfying assignment
if and only if P ′ admits a coalitional exchange-stable matching.

For the “only if” direction, assume that φ admits a satisfying assignment,
say σ : X → {true, false}. We claim that the coalitional exchange-stable match-
ing M for P that we defined in the “only if” direction of the proof for Theorem 1
is a coalitional exchange-stable matching for P ′. Clearly, M is a perfect matching
for P ′ since G(P ′) is a supergraph of G(P). Since each agent z ∈ U ∪ W has
M(z) ∈ Lz, for every two agents z, z′ ∈ U (resp. W ), it holds that z envies z′ only
if M(z′) ∈ Lz. In other words, if M would admit an ebc ρ = (z0, z1, · · · , zr−1)
(r ≥ 2) for P ′, then for each i ∈ {0, 1, . . . , r − 1} it must hold that M(zi) ∈ Lz−1

(z − 1 taken modulo r). But then, ρ is also an ebc for P, a contradiction to our
“only if” part of the proof for Theorem 1.

For the “if” direction, let M be a coalitional exchange-stable matching for P ′.
Note that in the “if” part of the proof of Theorem 1 we heavily utilize the
properties given in Lemma 1(1). Now, to construct a satisfying assignment for φ
from M , we will prove that the lemma also holds for profile P ′. To this end,
for each literal liti ∈ X ∪ X and each clause Cj with liti ∈ Cj , recall the three
matchings N1

i,j , N2
i,j , ND

i,j and the agents αi,j and δi,j that we have defined in
Eqs. (2) and (1) .

Claim 3 (�). Matching M satisfies for each literal liti ∈ X ∪X and each clause
Cj ∈ φ with liti ∈ Cj, either (i) N1

i,j ⊆ M , or (ii) N2
i,j ⊆ M , or (iii) ND

i,j ⊆ M .

Now we show that the function σ : X → {true, false} with σ(xi) = true if
M(wi) = xi, and σ(xi) = false otherwise is a satisfying truth assignment for φ.
Clearly, φ is a valid truth assignment since by Claim 2(ii) every variable agent wi

is matched to either xi or xi. We claim that σ satisfies φ. Consider an arbitrary
clause Cj and the corresponding clause-agent cj . By Claim 2(ii), we know that
M(cj) = ei

j for some liti ∈ Cj . Since ei
j is not available, by Claim 2(ii), it also

follows that M(a0
i,j) = b1i,j . By Claim 3, it follows that N1

i,j ⊆ M . In particular,
M(αi,j) = b0i,j so that αi,j is not available to other agents anymore.

We aim to show that αi,o1(liti) is matched to b0i,o1(liti) by M , which implies
that liti is not available to wi since αi,o1(liti) = liti by the definition of αi,o1(liti).
We distinguish two cases: If j = o1(liti), then by the definition of αi,j , it
follows that αi,o1(liti) is matched to b0i,o1(liti). If j = o2(liti), then by the def-
inition of αi,j , we have αi,j = a6

i,o1(liti)
and by the definition of δi,o1(liti)

we have δi,o1(liti) = b0i,o2(liti) = b0i,j . In particular, since M(αi,j) = b0i,j we
have M(a6

i,o1(liti)
) = δi,o1(lit1). By Claim 3, it follows that N1

i,o1(liti)
⊆ M or

ND
i,o1(liti)

⊆ M . In both cases, it follows that αi,o1(liti) is matched to b0i,o1(liti). We
have just shown that liti is not available to wi. Hence, by Claim 2(ii), M(wi) = xi

if liti = xi, and M(wi) = xi otherwise. By definition, we have that σ(xi) = true
if liti = xi and σ(xi) = false otherwise. Thus, Cj is satisfied under σ, implying
that σ is a satisfying assignment. ��
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4 Algorithms for Bounded Preferences Length

When bounding the preference length by two it is not hard to show that (coali-
tional) exchange-stability can be decided in linear time.

Theorem 3 (�). 2-ESM, 2-ESR, 2-CESM, and 2-CESR can be solved in linear
time.

Fixed-parameter Algorithm for 3-ESR. We now turn to preference length at
most three . In Theorem 1 we have seen that even this case remains NP-hard,
even for bipartite preference profiles. Moreover, the proof suggests that a main
obstacle that one has to deal with when solving 3-ESM (and hence 3-ESR)
are the switch gadgets. Here we essentially show that they are indeed the only
obstacles, that is, if there are few of them present in the input, then we can solve
the problem efficiently. We capture the essence of the switch gadgets with the
following structure that we call hourglasses.

Definition 1. Let P be a preference profile and VH ⊆ V a subset of 2h agents
with VH = {ui, wi | 0 ≤ i ≤ h − 1}. We call the subgraph G(P)[VH ] induced
by VH an hourglass of height h if it satisfies the following:

– For each i ∈ {0, h − 1} the degrees of ui and wi are both at least two
in G(P)[VH ];

– For each i ∈ [h − 2], the degrees of ui and wi are exactly three in G(P)[VH ];
– For each i ∈ {0, 1, . . . , h − 1} we have {ui, wi} ∈ E(G(P)[VH ]);
– For each i ∈ {0, 1, . . . , h − 2} we have {ui, wi+1}, {ui+1, wi} ∈ E(G(P)[VH ]).

We refer to the agents ui and wi from VH as layer-i agents. We call an hour-
glass H maximal if no larger agent subset V ′ � V (H) exists that induces an
hourglass.

Given an hourglass H in G(P), we call a matching M for P perfect for H if
for each agent v ∈ V (H) we have M(v) ∈ V (H) \ {v}. Further, M is exchange-
stable for H if no two agents from V (H) can form an exchange-blocking pair.

Notice that the smallest hourglass has height two and is a cycle with four
vertices. We are ready to show the following fixed-parameter tractability result.

Theorem 4 (�). An instance of 3-ESR with 2n agents and 
 maximal hour-
glasses can be solved in O(6� · n

√
n) time.

The main ideas are as follows. The first observation is that a matching for a
maximal hourglass can interact with the rest of the graph in only six different
ways: The only agents in an hourglass H of height h that may have neighbors
outside H are the layer-0 and layer-(h − 1) agents; let us call them connecting
agents of H. A matching M may match these agents either to agents inside
or outside H. Requiring M to be perfect means that an even number of the
connecting agents has to be matched inside H. This then gives a bound of at
most six different possibilities of the matching M with respect to whether the
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connecting agents are matched inside or outside H. Let us call this the signature
of M with respect to H. Hence, we may try all 6� possible combinations of
signatures for all hourglasses and check whether one of them leads to a solution
(i.e., an exchange-stable matching).

The second crucial observation is that each exchange-blocking pair of a per-
fect matching yields a four-cycle and hence, is contained in some maximal hour-
glass. Thus, the task of checking whether a combination of signatures leads to a
solution decomposes into (a) checking whether each maximal hourglass H allows
for an exchange-stable matching adhering to the signature we have chosen for H
and (b) checking whether the remaining acceptability graph after deleting all
agents that are in hourglasses or matched by the chosen signatures admits a
perfect matching.

Task (b) can clearly be done in O(n ·√n) time by performing any maximum-
cardinality matching algorithm (note that the graph G(P) has O(n) edges). We
then prove that task (a) for all six signatures can be reduced to checking whether
a given hourglass admits a perfect and exchange-stable matching. This, in turn,
we show to be linear-time solvable by giving a dynamic program that fills a
table, maintaining some limited but crucial facts about the structure of partial
matchings for the hourglass.

5 Paths to Exchange-Stability

We now study the parameterized complexity of P-ESM with respect to the
number of swaps. Observe that it is straightforward to decide an instance of
P-ESM with 2n agents in O((2n)2k+2) time by trying k times all of the O(n2)
possibilities for the next swap and then checking whether the resulting matching
is exchange-stable. The next theorem shows that the dependency of the exponent
on k in the running time cannot be removed unless FPT = W[1].

Theorem 5 (�). Path to Exchange-Stable Marriage is W[1]-hard with
respect to the number k of swaps.

Proof (Sketch). We provide a parameterized reduction from the W[1]-complete
Independent Set problem, parameterized by the size of the independent
set [13]: Therein, given a graph H and an integer h, we want to decide whether
G admits an h-vertex independent set, i.e., a subset of h pairwise nonadjacent
vertices.

Let I = (H,h) be an instance of Independent Set with vertex set V (H) =
{v1, v2, . . . , vn} and edge set E(H). We construct an instance I ′ = (P,M0, 2h) of
P-ESM where P has two disjoint agent sets U and W , each of size 2n+ h. Both U
and W consist of h selector-agents and 2n vertex-agents with preferences which
encode the adjacency of the vertices in V (H). More precisely, for each j ∈ [h],
we create two selector-agents, called sj and tj , and add them to U and W ,
respectively. For each i ∈ [n], we create four vertex-agents, called xi, ui, yi, wi,
add xi and ui to U , and add yi and wi to W . Altogether, we have U = {sj | j ∈
[h]} ∪ {ui, xi | i ∈ [n]} and W = {tj | j ∈ [h]} ∪ {wi, yi | i ∈ [n]}.



On (Coalitional) Exchange-Stable Matching 219

Now we define the preferences of the agents from U ∪ W . For notational
convenience, we define two subsets of agents which shall encode the neighborhood
of a vertex: For each vertex vi ∈ V (H), define Y (vi) := {yz | {vi, vz} ∈ E(H)}
and U(vi) := {uz | {vi, vz} ∈ E(H)}.

∀j ∈ [h] : sj : w1 � · · · � wn � tj , tj : u1 � · · · � un � x1 � · · · � xn � sj ,
∀i ∈ [n] : xi : t1 � · · · � th � yi, yi : ui � xi � [U(vi)],
∀i ∈ [n] : ui : wi � [Y (vi)] � yi � t1 � · · · � th, wi : s1 � · · · � sh � ui .

Herein, [Y (vi)] (resp. [U(vi)]) denotes the unique preference list where the agents
in Y (vi) (resp. U(vi)) are ordered ascendingly according to their indices. Observe
that the acceptability graph G(P) includes the following edges:

– For all i ∈ [h] and j ∈ [n], the edges {si, ti}, {si, wj}, {ti, xj}, {ti, uj},
{wj , uj}, {yj , xj}, {yj , uj} are in E(G(P)).

– For all edges {vi, vi′} ∈ E(G), the edges {ui, yi′} and {ui′ , yi} are in E(G(P)).

We define an initial matching M0 on G(P) as M0 = {{sj , tj} | j ∈ [h]}
∪ {{wi, ui}, {yi, xi} | i ∈ [n]}. This completes the construction of I ′, which can
clearly be done in polynomial time. It is straight-forward to check that that P is
bipartite and the construction can be done in linear time. The correctness proof
is given in the full version [12]. ��

6 Conclusion

Regarding preference restrictions [8], it would be interesting to know whether
deciding (coalitional) exchange-stability for complete preferences would be
become tractable for restricted preferences domains, such as single-peakedness
or single-crossingness. Further, the NP-containment of the problem of checking
whether a given matching may reach an exchange-stable matching is open.
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Abstract. Posted price mechanisms (PPM) constitute one of the pre-
dominant practices to price goods in online marketplaces and their rev-
enue guarantees have been a central object of study in the last decade. We
consider a basic setting where the buyers’ valuations are independent and
identically distributed and there is a single unit on sale. It is well-known
that this setting is equivalent to the so-called i.i.d. prophet inequality,
for which optimal guarantees are known and evaluate to 0.745 in gen-
eral (equivalent to a PPM with dynamic prices) and 1 − 1/e ≈ 0.632
in the fixed threshold case (equivalent to a fixed price PPM). In this
paper we consider an additional assumption, namely, that the under-
lying market is very large. This is modeled by first fixing a valuation
distribution F and then making the number of buyers grow large, rather
than considering the worst distribution for each possible market size. In
this setting Kennedy and Kertz [Ann. Probab. 1991] breaks the 0.745
fraction achievable in general with a dynamic threshold policy. We prove
that this large market benefit continue to hold when using fixed price
PPMs, and show that the guarantee of 0.632 actually improves to 0.712.
We then move to study the case of selling k identical units and we prove
that the revenue gap of the fixed price PPM approaches 1− 1/

√
2kπ. As

this bound is achievable without the large market assumption, we obtain
the somewhat surprising result that the large market advantage vanishes
as k grows.

Keywords: Prophet inequalities · Pricing · Large markets

1 Introduction

Understanding the worst case revenue obtained by simple pricing mechanisms is
a fundamental question in Economics and Computation [2,3,10,16,18]. In this
context probably the most basic setting corresponds to selling a single item to n
buyers with valuations given by independent and identically distributed random
variables. Here the simplest possible mechanism is that of setting a fixed price
c© Springer Nature Switzerland AG 2021
I. Caragiannis and K. A. Hansen (Eds.): SAGT 2021, LNCS 12885, pp. 221–235, 2021.
https://doi.org/10.1007/978-3-030-85947-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85947-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-85947-3_15


222 J. Correa et al.

(a.k.a. anonymous price) for the item and the benchmark, to which we want
to compare to, is the revenue obtained by Myerson’s optimal mechanism [25].
Through the well established connection between posted pricing mechanisms
and prophet inequalities [5,7,15], evaluating this revenue gap is equivalent to
determining the best possible single threshold prophet inequality in the i.i.d.
case. Thus, a result of Ehsani et al. [9] establishes that the performance of a
fixed threshold policy when facing i.i.d. samples is at least a fraction 1 − 1/e of
that of the optimal mechanism, and the bound is best possible.1 2 In this paper,
we explore this basic question under an additional large markets assumption
that is relevant to most modern online marketplaces.

In our study we take the viewpoint of prophet inequalities rather than that
of pricing mechanisms, mostly because this has become the standard in the
literature. Let us thus briefly recall some of the basics. For a fixed positive
integer n, let X1, . . . , Xn be a non-negative, independent random variables and
Sn their set of stopping rules. A classic result of Krengel and Sucheston, and
Garling [22,23] asserts that E(max{X1, . . . , Xn}) ≤ 2 sup{E(Xs) : s ∈ Sn} and
that two is the best possible bound. The study of this type of inequalities,
known as prophet inequalities, was initiated by Gilbert and Mosteller [13] and
attracted a lot of attention in the eighties [17,20,21,27,28]. In particular, Samuel-
Cahn [28] noted that rather than looking at the set of all stopping rules one
can obtain the same result by using a single threshold stopping rule in which
the decision to stop depends on whether the value of the currently observed
random variable is above a certain threshold. A natural restriction of this setting,
which we consider here, is the case in which the random variables are identically
distributed. This problem was studied by Hill and Kertz [17] who provided the
family of worst possible instances from which Kertz [20] proved that no stopping
rule can extract more than a fraction of roughly 0.745 of the expectation of
the maximum. Later, Correa et al. [6] proved that in fact this value is tight. We
note, however, that the optimal stopping rule in this i.i.d. case cannot be achieved
by a fixed threshold policy. Indeed, the best such policy has an approximation
guarantee of 1 − 1/e ≈ 0.632 [9].

In the last two decades, prophet inequalities gained particular attention due
to its close connection with online mechanisms. The connection involves mapping
the random variables in the prophet inequality setting to the virtual valuations
in the pricing setting and the expectation of the maximum value in the prophet
inequality setting to revenue of the optimal mechanism in the pricing setting.
This relation was firstly studied by Hajiaghayi et al. [15], who showed that
prophet inequalities can be interpreted as posted price mechanisms for online

1 Here the mild technical condition that the distribution is continuous is needed. Oth-
erwise the mechanism would need some randomization.

2 Ehsani et al. [9] actually prove a more general prophet inequality, namely, that the
bound of 1−1/e holds even if the distributions are nonidentical. However, this more
general result does not translate into a fixed price policy (if the distributions are
not identical, neither are the virtual values and then this single threshold will be
mapped to different prices for different distributions).
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selection problems. Later, Chawla et al. [5] proved that any prophet inequality
can be turned into a posted price mechanism with the same approximation
guarantee. The reverse direction was proven by Correa et al. [7] and thus the
guarantees for optimal stopping problems are in fact equivalent to the problem
of designing posted price mechanisms. Furthermore, in the i.i.d. setting, fixed
threshold stopping rules become equivalent to fixed price policies.

In this work we study single threshold prophet inequalities in a large market
regime, where the random variables arriving over time are i.i.d. according to a
known and fixed distribution. The essential difference with the classic setting
is that rather than considering the worst distribution for each possible market
size n, we first fix the distribution and then take n grow to infinity. Our main
question is thus to understand to what extent one can obtain improved sin-
gle threshold prophet inequalities (or fixed price policies) when the market is
very large. Interestingly, this setting, though with general stopping rules, was
considered three decades ago by Kennedy and Kertz [19]. They prove that the
optimal stopping rule recovers at least a 0.776 fraction of the expectation of the
maximum, establishing that there is a sensible advantage when compared to the
0.745 bound of classic i.i.d. setting [17,20]. Kennedy and Kertz realize that the
limit problem may be ill behaved and thus impose an extreme value condition.3

This condition is, essentially, the equivalent of a central limit theorem for the
maximum of an i.i.d. sample, and it is the cornerstone of the extreme value
theory.

Then, a natural question that arises is whether the result obtained by
Kennedy and Kertz [19] for the optimal stopping rule also holds for the much
simpler single threshold policies. We answer this question on the positive proving
that the large market assumption allows to obtain a guarantee of 0.712 signif-
icantly improving the bound of 1 − 1/e [9]. We further consider the case of
selecting k items (or selling k items) with a fixed threshold policy and prove
that this large market advantage vanishes as k grows.

1.1 Our Results

For every positive integer n, consider an i.i.d. sample X1,X2, . . . , Xn with Xj

distributed according to F for every j ∈ {1, . . . , n}, where F is a distribution
over the non-negative reals. Given a value T , consider the simple algorithm given
by stopping the first time that a random variable exceeds T . Then, for each
distribution F , we are interested in understanding the limit ratio between the
reward of this simple stopping rule which is simply given by the probability of
having an Xi above T , 1−Fn(T ) times the expected value of this Xi conditioned
on it being larger than T , and the expectation of the maximum Xi, denoted as
Mn. Our quantity of interest is thus:

3 This is a classic condition in extreme value theory and it is satisfied by essentially
any distribution that may have a practical use. The characterization of this condition
is known as the Fisher-Tippett-Gnedenko Theorem.
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apx(F ) = lim inf
n→∞ sup

T∈R+

1 − Fn(T )
E(Mn)

(
T +

1
1 − F (T )

∫ ∞

T

(1 − F (s))ds

)
. (1)

Our first main result shows that 0.712 is a tight lower bound for apx(F ) when
the distribution satisfies the extreme value condition. This value is substantially
better than the known bound of 1 − 1/e by Ehsani et al. [9] and thus represents
a significant advantage for the large markets setting. We remark that we are
mainly interested in the case of distributions F with unbounded support, since
one can show that apx(F ) = 1 when F is of bounded support.

A natural and practically relevant extension of the single selection prophet
inequality is to consider the setting in which we can select up to k different
samples (or sell k items). We call this problem k-selection problem and we study
whether the large market advantage continues to be significant beyond the sin-
gle selection case. To this end, we provide a lower bound for the approximation
factor achievable by the best single threshold policy, again under the extreme
value condition. More specifically, for each value of k, the approximation factor
is bounded by a (computationally) simple optimization problem. In particular,
the bound presented when k = 1 follows by obtaining the exact solution of the
optimization problem. The performance obtained by our characterization yields
prophet inequalities that represent an advantage for the k-selection problem.
However, we also show that this advantage vanishes as k → ∞. Indeed, we prove
that for each integer k, the approximation factor is more than 1 − 1/

√
2kπ, but

there exists F such that this lower bound is asymptotically tight in k. This
tightness, together with the recent result of Duetting et al. [8] establishing that
the approximation ratio of the k-selection problem (without the large market
assumption) is almost exactly 1−1/

√
2kπ,4 implies that the large market advan-

tage vanishes as k → ∞. For an illustration, Fig. 1 depicts the bound obtained by
our optimization problem and compares it with 1−1/

√
2kπ. We finally note that

as a direct corollary, when F satisfies the extreme value condition and for large
markets, we can derive the worst case ratio between the optimal single thresh-
old prophet inequality obtained by our characterization theorem and the value
obtained by the optimal dynamic policy of Kennedy and Kertz, the adaptivity
gap. This value is, roughly, at most 1.105.

As already mentioned, our main result for the multiple selection problem
translates into a fixed price policy when the buyers’ valuations are identically
and independently distributed, say according to F .5 Of course, this works as long
as the distribution of the virtual values of F , call it G, satisfies the extreme value
condition. This motivates the following question: When F satisfies the extreme
value condition, can we guarantee that the distribution of the virtual valuation
G also does? And, if this is the case, does G and F fall in the same extreme value
family? We answer these questions in the positive under some mild assumptions.

4 Slightly weaker bounds are also known for the case in which the random variables
are just independent but not necessarily identical [1,4].

5 Recall that single threshold policies map to fixed price mechanisms.
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Fig. 1. Our optimal revenue guarantee over k (continuous line) vs. the bound of 1 −
1/

√
2kπ (dashed line).

2 Preliminaries

We recall that F is a distribution if it is a right-continuous and non-decreasing
function, with limit equal to zero in −∞ and equal to one in +∞. We consider
F to be absolutely continuous in R, and we denote its density by f or F ′,
depending on the context. In general, F is not invertible, but we work with its
generalized inverse, given by F−1(y) = inf{t ∈ R : F (t) ≥ y}. We denote by
ω0(F ) = inf{t ∈ R : F (t) > 0} and ω1(F ) = sup{t ∈ R : F (t) < 1}, and we call
the interval (ω0(F ), ω1(F )) the support of F . Given a sequence {Xj}j∈N of i.i.d.
random variables with distribution F , we denote by Mn = maxj∈{1,...,n} Xj .

One of the main goals in the extreme value theory is to understand the
limit behavior of the sequence {Mn}n∈N. As the central limit theorem charac-
terizes the convergence in distribution of the average of random variables to a
normal distribution, a similar result can be obtained for the sequence of max-
ima {Mn}n∈N, but this time there are three possible limit situations. One of the
possible limits is the Gumbel distribution Λ(t) = exp(−e−t); we call these distri-
butions the Gumbel family. Given α > 0, the second possible limit is the Fréchet
distribution of parameter α, defined by Φα(t) = exp(−t−α) if t ≥ 0, and zero
otherwise; we call these distributions the Fréchet family. Finally, given α > 0,
the third possibility is the reversed Weibull distribution of parameter α, defined
by Ψα(t) = exp(−(−t)α) if t ≤ 0, and one otherwise; we call these distributions
the reversed Weibull family. We now state formally the extreme values theorem,
result due independently to Gnedenko [14] and Fisher & Tippett [11].

Theorem 1 (see [26]). Let F be a distribution for which there exists a posi-
tive real sequence {an}n∈N and other sequence {bn}n∈N such that (Mn − bn)/an

converges in distribution to a random variable with distribution H, namely,
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Table 1. Summary of the three possible extreme value distributions. The Fréchet
family and the Reversed Weibull family are associated to a parameter α ∈ (0, ∞).
Recall that for α > 0, the Pareto distribution of parameter α is given by 1 − t−α for
t ≥ 1 and zero otherwise.

Extreme type Parameter Limit distribution Example

Gumbel None exp(−e−t) Exponential distribution

Fréchet α ∈ (0, ∞) exp(−t−α) · 1[0,∞) Pareto distribution

Reversed Weibull α ∈ (0, ∞) exp(−(−t)α) · 1(−∞,0) + 1[0,∞) Uniform distribution

P (Mn − bn ≤ ant) = Fn(ant + bn) → H(t) for every t ∈ R when n → ∞.
Then we have that one of the following possibilities hold: H is the Gumbel, H is
in the Fréchet family or H is in the reversed Weibull family (see Table 1).

In the following, we say that a distribution F satisfies the extreme value condition
if there exist sequences {an}n∈N, that we call the scaling sequence, and {bn}n∈N,
that we call the shifting sequence, satisfying the condition of Theorem 1.6 It
can be shown that for every distribution F with extreme type in the reversed
Weibull family we have ω1(F ) < ∞ [26, Proposition 1.13, p. 59]. When F has
extreme type Fréchet, we have ω1(F ) = ∞ [26, Proposition 1.11, p. 54]. For the
distributions with extreme type Gumbel the picture is not so clear since ω1(F )
is neither finite nor unbounded in general. In our analysis we need a tool from
the extreme value theory related to the order statistics of a sample according to
F . We denote the order statistics of a sample of size n by Mn = M1

n ≥ M2
n ≥

· · · ≥ Mn
n .

Theorem 2 (see [24]). Let F be a distribution satisfying the extreme value
condition with the scaling and shifting sequences {an}n∈N and {bn}n∈N such
that P (Mn − bn ≤ ant) → H(t) for every t ∈ R when n → ∞. Then, for each
j ∈ {1, 2, . . . , n} and every t ∈ R we have

lim
n→∞P

(
M j

n − bn ≤ ant
)

= H(t)
j−1∑
s=0

(− log H(t))s

s!
.

A distribution V is in the Von Mises family if there exist z0 ∈ R, a con-
stant θ > 0 and a function μ : (ω0(V ),∞) → R+ absolutely continuous with
limu→∞ μ′(u) = 0, such that for every t ∈ (z0,∞) we have

1 − V (t) = θ exp
(

−
t∫

z0

1
μ(s)

ds
)
. (2)

We call such μ an auxiliary function of V . We summarize next some techni-
cal results related to the Von Mises family of distributions that we use in our
analysis.
6 Examples of continuous distributions not satisfying this extreme value condition

include distributions with odd behavior such as F (x) = exp(−x − sin(x)).
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Lemma 1 (see [26]). Let V be in the Von Mises family with auxiliary function
μ and such that ω1(V ) = ∞. Then, V has extreme type Gumbel, and the shifting
and scaling sequences may be chosen respectively as bn = V −1(1 − 1/n) and
an = μ(bn) for every n. Furthermore, we have limt→∞ μ(t)/t = 0 and limt→∞(t+
xμ(t)) = ∞ for every x ∈ R.

For example, the exponential distribution of parameter λ is in the Von Mises
family, with auxiliary constant function 1/λ, θ = 1 and z0 = 0. Furthermore,
for every positive integer n we have bn = F−1(1 − 1/n) = (log n)/λ and an =
μ(bn) = 1/λ. We need a few results from the extreme value theory. In particular,
a relevant property states that every distribution with extreme type Gumbel can
be represented by a distribution in the Von Mises family in the following precise
sense.

Lemma 2 (see [26]). Let F be a distribution satisfying the extreme value con-
dition with ω1(F ) = ∞. Then, F has extreme type Gumbel if and only if there
exists V in the Von Mises family and a positive function η : (ω0(F ),∞) → R+

with limt→∞ η(t) = η� > 0 such that 1 − F (t) = η(t)(1 − V (t)) for every
t ∈ (ω0(F ),∞).

Then, whenever F has extreme Gumbel there exists a pair (V, η) satisfying the
condition guaranteed in Lemma 2, and in this case we say that (V, η) is a Von
Mises representation of the distribution F .

3 Prophet Inequalities in Large Markets Through
Extreme Value Theory

We say that a stopping rule for the k-selection problem with an i.i.d. sample
X1,X2, . . . , Xn is a single threshold policy if there exists a threshold value T
such that we select the first min{k, |Q|} samples attaining a value larger than T ,
where Q is the subset of samples attaining a value larger than T . Consider the
random variable Rn

k,T equal to the summation of the first min{k, |Q|} samples
attaining a value larger than T . In particular, this value is completely determined
by the sample size n, the distribution F and the threshold T . We are interested
in understanding the value

apxk(F ) = lim inf
n→∞ sup

T∈R+

E(Rn
k,T )∑k

j=1 E(M j
n)

,

where M1
n ≥ M2

n ≥ · · · ≥ Mn
n are the order statistics of a sample of size n

according to F . We observe that when k = 1 the value apxk(F ) corresponds to
the value apx(F ) in (1). Now we present formally our main results for prophet
inequalities in the k-selection problem.

Theorem 3. Let F be a distribution over the non-negative reals that satisfies
the extreme value condition. Then, the following holds.
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(a) When F has an extreme type Fréchet of parameter α, we have that
apxk(F ) ≥ ϕk(α), where ϕk : (1,∞) → R+ is given by

ϕk(α) =
Γ (k)

Γ (k + 1 − 1/α)
max

x∈(0,∞)
x exp(−x−α)

k∑
j=1

∞∑
s=j

x−sα

s!
. (3)

In particular, we have apxk(F ) ≥ 1 − 1/
√

2πk for every distribution F with
extreme type in the Fréchet family.

(b) When F has extreme type in the Gumbel or reversed Weibull families, we
have that apxk(F ) = 1 for every positive integer k.

Theorem 4. Let F be the Pareto distribution with parameter α = 2. Then, for
every ε > 0 there exists a positive integer kε such that for every k ≥ kε it holds
that apxk(F ) ≤ 1 − (1 − ε)/

√
2πk.

Observe that by Theorem 3 we have that for each integer k the approxi-
mation factor is more than 1 − 1/

√
2kπ under the large market assumption.

Moreover, by Theorem 4 this lower bound is in fact asymptotically tight in k for
the distributions with extreme type Fréchet of parameter α = 2. This tightness,
together with the recent result of Duetting et al. [8] establishing that the approx-
imation ratio of the k-selection problem without the large market assumption
is almost 1 − 1/

√
2kπ, allows us to obtain the surprising result that the large

market advantage vanishes as k → ∞.
Despite the tightness result established in Theorem 4, for small values of k

this bound is in fact substantially better. Consider a distribution F with extreme
type Fréchet of parameter α ∈ (1,∞). By Theorem 3 (a), when k = 1 it holds
that

ϕ1(α) =
1

Γ (2 − 1/α)
sup

x∈(0,∞)

x
(
1 − exp(−x−α)

)
,

for every α ∈ (1,∞). The optimum for the above optimization problem as a
function of α is attained at the smallest real non-negative solution U∗(α) of the
first order condition Uα + α = Uα exp(U−α), which is given by

U∗(α) =
(

− 1
α

(
αW−1

(
− 1

α
e−1/α

)
+ 1

))−1/α

,

where W−1 is the negative branch of the Lambert function. Therefore, we have

ϕ1(α) =
α

Γ (2 − 1/α)
· U∗(α)
U∗(α)α + α

.

The minimum value is at least 0.712 and it is attained at α∗ ≈ 1.656. Note
that when α approaches to zero or ∞, the function ϕ1 goes to one and thus the
unique minimizer is given by α∗ ≈ 1.656.

We highlight here that, even though Theorem 3 implies that apx1(F ) is at
least ϕ1(α∗) ≈ 0.712 when F has extreme type Fréchet, this bound is in fact
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reached by the Pareto distribution with parameter α∗ and therefore this bound
is tight.

Given our closed expression for the function ϕ1, we can compare it with
the closed expression obtained Kennedy and Kertz for the revenue guarantees
of the optimal dynamic policy [19]. Given a distribution F , for every positive
integer n let vn = sup{E(Xτ ) : τ ∈ Tn} and consider the stopping time given
by τn = min{k ∈ {1, . . . , n} : Xk > vn−k}. In particular, vn = E(Xτn

) for every
positive integer n. The following summarizes the result of Kennedy and Kertz
[19] for the optimal dynamic policy: When F is a distribution in the Fréchet
family, there exists ν : (1,∞) → (0, 1) such that limn→∞ vn/E(Mn) = ν(α) when
F has an extreme type Fréchet of parameter α. Furthermore, limα→∞ ν(α) =
limα→1 ν(α) = 1 and ν(α) ≥ 0.776 for every α ∈ (1,∞). The function ν is given
by

ν(α) =
1

Γ (2 − 1/α)

(
1 − 1

α

)1− 1
α

,

and we have ϕ1(α) ≤ ν(α) for every α ∈ (1,∞). Kennedy and Kertz show that
the asymptotic approximation obtained by their multi-threshold policy when the
distribution has an extreme type in the Gumbel and reversed Weibull family is
equal to one. Our Theorem 3 (b) shows that for both such families we can attain
this value by using just single threshold policies. The adaptivity gap is equal to
the ratio between the optimal prophet inequality obtained by a single threshold
policy and the value obtained by the multi-threshold policy of Kennedy and
Kertz. As a corollary of our result for k = 1, we obtain an upper bound on the
adaptivity gap for the case of distributions with extreme value. For the family
of distributions over the non-negative reals and satisfying the extreme value
condition we have that the adaptivity gap is at most maxα∈(1,∞) ν(α)/ϕ1(α) ≈
1.105 and is attained at α ≈ 1.493.

4 Analysis of the k-Selection Prophet Inequalities

In this section we prove Theorem 3. Throughout the section we introduce some
necessary technical results, whose proof can be found in the full version paper.
The following proposition gives an equivalent expression for the value apxk(F ),
which is useful in our analysis.

Proposition 1. Let F be a distribution, let T be a real value and let X1, . . . , Xn

be an i.i.d. sample according to F . Then, for every positive integer k we have
E(Rn

k,T ) = E (X1|X1 > T )
∑k

j=1 P(M j
n > T ).

Using Proposition 1 we have that apxk(F ) is therefore given by

apxk(F ) = lim inf
n→∞ sup

T∈R+

E (X|X > T )

∑k
j=1 P(M j

n > T )∑k
j=1 E(M j

n)
, (4)

where X is a random variable distributed according to F .
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4.1 Proof of Theorem 3 (a): The Fréchet Family

In what follows we restrict to the case in which the distribution F has extreme
type in the Fréchet family. We remark that if α ∈ (0, 1] the expected value of a
random variable with distribution Fréchet Φα is not finite. Therefore, we further
restrict to the Fréchet family where α ∈ (1,∞). To prove Theorem 3 (a) we
require a technical lemma, where we exploit the structure given by the existence
of an extreme value and we show how to characterize the approximation factor
of a distribution in the Fréchet family for large values of n. Before stating this
lemma, let us introduce a few results about the Fréchet family that will be
required.

We say that a positive measurable function � : (0,∞) → R is slowly varying if
for every u > 0 we have limt→∞ �(ut)/�(t) = 1. For example, the function �(t) =
log(t) is slowly varying, since �(ut)/�(t) = log(u)/ log(t) + 1 → 1 when t → ∞.
On the other hand, the function �(t) = tγ is not slowly varying, since for every
u > 0 we have �(ut)/�(t) = uγ . The following lemma shows the existence of a
strong connection between the distributions with extreme type in Fréchet family
and slowly varying functions. Recall that for α > 0, the Pareto distribution of
parameter α is given by Pα(t) = 1 − t−α for t ≥ 1 and zero otherwise.

Lemma 3 ([26]). Let F be a distribution with extreme type in the Fréchet
family. Then, for every positive integer n, we have an = F−1(1 − 1/n) and
bn = 0 are scaling and shifting sequences for F . Furthermore, there exists a
slowly varying function �F such that 1 − F (t) = t−α�F (t), for every t ∈ R+. In
particular, we have 1 − F (t) = (1 − Pα(t)) · �F (t) for every t ∈ R+.

Observe that this lemma says that if F has extreme type Fréchet of parameter
α, then it essentially corresponds to a perturbation of a Pareto distribution with
parameter α by some slowly varying function. Let {an}n∈N be a scaling sequence
for the distribution F in the Fréchet family. Thanks to Lemma 3, we have the
shifting sequence in this case is zero. We are now ready to state the main technical
lemma.

Lemma 4. Let F be a distribution with extreme type Fréchet of parameter α
and let {an}n∈N be an appropriate scaling sequence. Consider a positive sequence
{Tn}n∈N with Tn → ∞ and for which there exists U ∈ R+ such that Tn/an → U .
Then, we have

lim
n→∞

E (X|X > Tn)

∑k
j=1 P(M j

n > Tn)
∑k

j=1 E(M j
n)

=
Γ (k)

Γ (k + 1 − 1/α)
U exp(−U−α)

k∑

j=1

∞∑

s=j

U−sα

s!
.

We use this lemma to prove Theorem 3 (a).

Proof (Proof of Theorem 3 (a)). Let F be a distribution with extreme type
Fréchet of parameter α. We first prove that for each positive integer k it holds
that apxk(F ) ≥ ϕk(α). To this end, for each positive integer n and positive real
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number U , let Tn be the threshold given by Tn = an · U , where {an}n∈N is the
scaling sequence for the distribution F given by Lemma 3. Then,

apxk(F ) ≥ lim inf
n→∞ E (X|X > Tn)

∑k
j=1 P(M j

n > Tn)∑k
j=1 E(M j

n)
. (5)

Note that lim infn→∞ Tn = ∞ (and thus Tn → ∞), since U ∈ R+ and
an → ∞. Furthermore, limn→∞ Tn/an = U and then applying Lemma 4 together
with inequality (5) we obtain that

apxk(F ) ≥ Γ (k)
Γ (k + 1 − 1/α)

U exp(−U−α)
k∑

j=1

∞∑
s=j

U−sα

s!
.

Given that the inequality above holds for every positive real number U , we
have

apxk(F ) ≥ Γ (k)
Γ (k + 1 − 1/α)

max
U∈R+

U exp(−U−α)
k∑

j=1

∞∑
s=j

U−sα

s!
= ϕk(α).

In the rest of the proof we show that, for each positive real number k and
each α ∈ (1,∞), ϕk(α) is lower bounded by 1 − 1/

√
2kπ. To this end, we just

need to evaluate the objective function of our optimization problem in a well
chosen value. One of the Gautschi inequalities for the Gamma function states
that for every s ∈ (0, 1) and every x ≥ 1 we have Γ (x+1) > x1−s ·Γ (x+ s) [12].
Then, setting x = k and s = 1 − 1/α yields Γ (k + 1) > k1/αΓ (k + 1 − 1/α).
Since Γ (k) = Γ (k + 1)/k, we therefore obtain k1−1/α > Γ (k + 1 − 1/α)/Γ (k).
On the other hand, note that for each U ∈ (0,∞) we have

U exp(−U−α)
k∑

j=1

∞∑

s=j

U−sα

s!
= U exp(−U−α)

(
k∑

s=1

s · U−sα

s!
+ k

∞∑

s=k+1

U−sα

s!

)

= U exp(−U−α)

(

U−α
k−1∑

s=0

U−sα

s!
+ k

∞∑

s=k+1

U−sα

s!

)

.

In particular, by taking Uk,α = k−1/α we get that

ϕk(α) · Γ (k + 1 − 1/α)

Γ (k)
≥ Uk,α · k exp(−U−α

k,α)

(
k−1∑

s=0

U−sα
k,α

s!
+

∞∑

s=k+1

U−sα
k,α

s!

)

= Uk,α · k exp(−U−α
k,α)

(

exp(U−α
k,α) − U−αk

k,α

k!

)

= k1−1/α

(

1 − e−kkk

k!

)

≥ Γ (k + 1 − 1/α)

Γ (k)

(

1 − 1√
2πk

)

,

where the first inequality follows since the value of ϕk(α) involves the maxi-
mum over (0,∞), the first equality from the Taylor series for the exponential
function and the last inequality is obtained by applying Stirling’s approximation
inequality. This concludes the proof of the theorem. 	
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4.2 Proof of Theorem 3 (b): Gumbel and Reversed Weibull Family

In what follows we consider a distribution F with extreme type Gumbel or in
the reversed Weibull family. We consider both cases separately. Recall that if F
has extreme type in the reversed Weibull family then it holds that ω1(F ) < ∞,
that is, F has bounded support.

We start by showing that when ω1(F ) < ∞ we have apxk(F ) = 1 for every
positive integer k. In particular, the approximation result follows directly from
this in the case of a distribution F with extreme type in the reversed Weibull
family. When the support of F is upper bounded by ω1(F ) < ∞, we have
E(M j

n) ≤ ω1(F ) for every j ∈ {1, . . . , k}. For every ε > 0 consider Tε = (1 −
ε) · ω1(F ). Then, by the expression in (4) we have that apxk(F ) can be lower
bounded as apxk(F ) ≥ (1−ε)·ω1(F )·lim infn→∞

∑k
j=1 P(M j

n > Tε)/(k·ω1(F )) =
1 − ε, and we conclude that apxk(F ) = 1.

In what follows we restrict attention to the distributions F with extreme
type Gumbel where ω1(F ) = ∞. Key to our analysis are the result presented
in the Preliminaries Sect. 2 about Von Mises representations for distributions in
the Gumbel family. We need some lemmas about the structure of a distribution
in the Gumbel family before proving the theorem.

Lemma 5. Let F be a distribution with extreme type in the Gumbel family such
that ω1(F ) = ∞ and let (V, η) be a Von Mises representation of F such that
limt→∞ η(t) = η�. Let {an}n∈N and {bn}n∈N be scaling and shifting sequences,
respectively, for V . For every positive integer n consider bη

n = bn + an log η�.
Then, the following holds:

(a) {an}n∈N and {bη
n}n∈N are scaling and shifting sequences, respectively, for F .

(b) For every U ∈ R we have limn→∞(anU + bη
n) = ∞.

(c) For every U ∈ R and every positive integer k we have that limn→∞(anU +
bη
n)/

∑k
j=1 E(M j

n) = 1/k, where M1
n, . . . , Mn

n are the order statistics for F .

Lemma 6. Let F be a distribution with extreme type in the Gumbel family and
let {Θn}n∈N be a sequence of real values such that Θn → ∞. Then, we have
limn→∞ 1

Θn
E(X|X > Θn) = 1, where X is distributed according to F .

We are now ready to prove Theorem 3 (b) for the Gumbel family.

Proof (Proof of Theorem 3 (b) for the Gumbel family). Let F be a distribution
with extreme type in the Gumbel family and such that ω1(F ) = ∞. Consider
a Von Mises pair (V, η) that represents F and such that limt→∞ η(t) = η� >
0, guaranteed to exist by Lemma 2. Let {an}n∈N and {bn}n∈N be scaling and
shifting sequences, respectively, for V . For every positive integer n consider bη

n =
bn + an log η�. We can lower bound the value of apxk(F ) by

sup
U∈R

lim inf
n→∞

E (X|X > anU + bη
n)

anU + bη
n

· anU + bη
n∑k

j=1 E(M j
n)

·
k∑

j=1

P(M j
n > anU + bη

n).
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By Lemma 5 (b), we have anU+bη
n → ∞ for every U when n → ∞, and therefore

from Lemma 6 we obtain

lim
n→∞

E (X|X > anU + bη
n)

anU + bη
n

= 1,

for every U . Furthermore, Lemma 5 (c) implies that for every U and every
positive integer k it holds (anU + bη

n)/
∑k

j=1 E(M j
n) → 1/k. We conclude that

for every U

lim
n→∞

E (X|X > anU + bη
n)

anU + bη
n

· anU + bη
n∑k

j=1 E(M j
n)

=
1
k

.

By Lemma 5 (a), {an}n∈N and {bη
n}n∈N are scaling and shifting sequences, respec-

tively, for F . Therefore, by Theorem 2 we have

lim
n→∞

k∑
j=1

P(M j
n > anU + bη

n) = lim
n→∞

k∑
j=1

P

(
M j

n − bη
n

an
> U

)

=
k∑

j=1

(
1 − exp

(
− e−U

) j−1∑
s=0

e−sU

s!

)

= k − exp
(

− e−U
) k∑

j=1

j−1∑
s=0

e−sU

s!
.

Note that the last term is non-negative for every U . Furthermore, we get that

lim
U→∞

exp
(

− e−U
) k∑

j=1

j−1∑
s=0

e−sU

s!
= inf

U∈R

exp
(

− e−U
) k∑

j=1

j−1∑
s=0

e−sU

s!
= 0

since
∑∞

s=0 e−sU/s! = exp(−e−U ). We conclude that

sup
U∈R

lim
n→∞

E (X|X > anU + bη
n)

anU + bη
n

· anU + bη
n∑k

j=1 E(M j
n)

·
k∑

j=1

P(M j
n > anU+bη

n) =
1
k

·k = 1,

and therefore apxk(F ) = 1. That concludes the proof for the Gumbel family. 	


5 Extreme Types and Virtual Valuations

The virtual valuation associated to a distribution G is given by φG(t) = t − (1 −
G(t))/g(t), where g is the density function of G. When v is distributed according
to G, we denote by Gφ the distribution of φG(v) and by G+

φ the distribution of
φ+

G(v) = max{0, φG(v)}. Using Theorem 3 we can apply the existing reductions
in the literature [5,7,15] to translate our optimal guarantees for single threshold
prophet inequalities to optimal fixed price mechanisms as long as G+

φ satisfies
the extreme value condition. If G+

φ has extreme value Fréchet, the revenue gap
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of the fixed price PPM for the k-selection problem is bounded by a limit of
the maximization problem (3) and, for every k, this revenue gap is more than
1−1/

√
2kπ and asymptotically tight in k. When k = 1 we further have that the

revenue gap is roughly 0.712. When G+
φ is in the Gumbel or reversed Weibull

families, we have that with fixed prices a PPM is able to recover the same revenue
of that of the optimal mechanism for the k-selection problem, for every positive
integer k.

In what follows, we say that a pair (V, η) smoothly represents a distri-
bution G if it satisfies the conditions in (2) where V is in the Von Mises
family and limt→ω1(F ) η′(t) = 0. We say that a distribution G with extreme
type Fréchet of parameter α satisfies the asymptotic regularity condition if
limt→∞(1 − G(t))/(tg(t)) = 1/α, where g is the density of the distribution G.
This holds, for example, every time that g is non-decreasing [26, Proposition
1.15]. In our next result we show that if a distribution G with extreme type
satisfies any of these two conditions, the distribution G+

φ has an extreme type
as well, and furthermore, it belongs to the same family.

Theorem 5. Let G be a distribution satisfying the extreme value condition.
Then, the following holds:

(a) When G has extreme type in the Fréchet family and if it satisfies the asymp-
totic regularity condition, then G+

φ has extreme type in the Fréchet family
as well.

(b) When G has extreme type Gumbel and if it can be smoothly represented, then
G+

φ has extreme type Gumbel as well.
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Abstract. We study the existence of approximate competitive equilib-
rium in the Fisher market with generic budgets. We show that for any
number of buyers and any number of goods, when the preferences are
identical and budgets are generic, a 2 approximation of competitive equi-
librium (2-CE) always exists. By 2-CE we mean that every buyer receives
a bundle with a value at least half of the value of her most desirable bun-
dle that fits within her budget, and the market clears. We also present a
polynomial time algorithm to obtain a 2-CE.

1 Introduction

Competitive equilibrium is a central concept from the general equilibrium the-
ory for allocating resources among agents with different preferences. Consider
a simple Fisher market [14]: a seller with m goods and n buyers each of whom
holds a certain budget. The seller desires money and buyers only desire good.
For such a market, an allocation of the goods to the buyers along with a price
for each good constitutes a competitive equilibrium, if supply meets demand and
each buyer believes that her share is the best she could obtain under her budget.

Competitive equilibrium (CE) is well known to be a remarkable solution to the
efficient and fair allocation problem, and “the description of perfect justice”[2].
By the first welfare theorem, a CE allocation is Pareto efficient, and when buyers
have equal budgets, competitive equilibrium implies envy-freeness1. For unequal
budgets, CE can be interpreted as a generalized fairness criterion for the agents
with different entitlements which maps to many real-life scenarios such as divid-
ing cabinet ministries among political parties, distributing the inherited wealth
among heirs, and allocating university courses to the students.

Perhaps the most remarkable breakthrough in general equilibrium theory
is establishing mild conditions under which a competitive equilibrium tends to
exist in different markets of divisible goods [4,29,33]. These existential proofs
are sometimes accompanied by constructive algorithms [24].

In contrast to divisible goods, once there are indivisible goods in the market,
CE might fail to exist even in very simple cases. For example, when we have one

1 An allocation is envy-free if each agent prefers her share to other agent’s share.
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Table 1. A summary of the results for CE in Fisher markets. Symbol � means that
a CE exists for the corresponding setting while ✘ refers to the non-existence of CE. A
preference ≺ is leveled, if for every two bundles S, T with |S| < |T |, S ≺ T holds.

n m Preferences Budgets Result

2 ≥ 1 - Almost equal � [7]

2 ≥ 1 Identical Generic � [7]

≥ 1 ≤ 3 General Ordinal Generic � [5]

≤ 4 2 General Ordinal Generic � [5]

2 Any Leveled Ordinal Generic � [5]

5 ≥ 2 - Generic ✘ [5]

3 4 - Generic � [32]

≥ 4 4 - Generic ✘ [32]

item and two buyers with identical preferences and equal budgets, no CE exists:
based on the price of the item, demand is either 0 or 2, and supply is always 1.
However, this example is only a knife-edge phenomenon in the sense that requires
exact equal budgets; even a very slight difference in the budgets yields the exis-
tence of CE. Indeed, CE exists in almost all the income-space, except a subset
of measure zero which includes equal incomes. This motivates studying markets
with budgets that are almost (but not exactly) equal or unequal (generic). These
forms of budget constraints are recently considered in several studies [5,6,16,32].
A summary of the results of these papers is outlined in Table 1.

As is clear from Table 1, when the number of items and buyers are not too
small (e.g. ≥ 4), no allocation algorithm can guarantee CE even with generic
budgets assumption. In addition, the only positive result for markets with more
than four items is when there are two buyers with identical valuations. In light
of these negative results, we wish to mitigate this barrier by introducing the
approximate version of competitive equilibrium in Fisher market. We give the
exact definition of approximate-CE in Sect. 2. Roughly speaking, by approximate-
CE we mean that each buyer gets a share which is approximately the best she
can obtain within her budget, and the market clears.

Consideration of approximately fair allocations has been a fruitful approach
in allocation problems, especially in recent years [1,9,16,31]. These approxima-
tions are with respect to various fairness objectives, including envy-freeness,
proportionality, maximin-share, maximin-fairness, etc. In particular, in a work
more related to ours, Budish [16] circumvents the non-guaranteed existence of
CEEI due to indivisibilities by weakening the equilibrium concept and introduc-
ing (α, β)-approximate competitive equilibrium from equal incomes in a sense
that the market approximately clears with error α and budgets are not exactly
equal, but within a ratio β of each other. He proved the existence of an (α, β)-
approximate CE for α =

√
m/2 and some small β > 0. His proof is noncon-

structive as it relies on a fixed-point argument. Indeed, it is shown that finding
a solution with the same approximation ratio as [16] is PPAD-complete [30].
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Our main result is a method to obtain a 2-approximate competitive equilib-
rium (2-CE) for Fisher markets with any number of indivisible goods and any
number of buyers with generic budgets, when preferences are identical. We also
show how to find such a solution in polynomial time. This result establishes a
clear separation between unconstrained and generic budgets, because even for
the case of two agents with equal budgets and identical preferences, neither CE
nor any approximation of CE exists.

Even though quite restrictive, the assumption that the goods have the same
value to all the agents applies to many economic situations, in particular, when
buyers can further sell their goods to the other parties in the market [11]. Identi-
cal preferences assumption is observed for various allocation objectives, including
envy-freeness, Pareto efficiency, and equity [12,15,23], competitive equilibrium
[5,13], Nash welfare [10], and other notions [25,28]. Exploring the case of sym-
metric preferences is posed by Babaioff et al. [6,7] as a promising step toward
achieving more positive results for Fisher markets with generic budgets.

In Sect. 1.1 we overview the techniques we used in our methods.

1.1 Our Results and Techniques

Our focus in this paper is Fisher markets with indivisible goods and generic bud-
gets, that is, arbitrary budgets (possibly far from equal) to which tiny random
perturbations are added. We show that for a Fisher market with any number of
buyers and any number of indivisible goods when preferences are identical and
budgets are generic, a 2 approximation of competitive equilibrium (2-CE) always
exists. By 2-CE we mean that every buyer receives a bundle with value at least
half of the value of her most desirable bundle which fits within her budget, and
the market completely clears, meaning that no good is left behind.

Theorem 1. Given any one-sided Fisher market with generic budgets and an
additive valuation V for all the buyers, there exists a pricing p and an allocation
S such that (p, S) constitutes a 2-CE.

To prove Theorem 1, we propose a basic pricing rule, namely linear pricing.
Roughly speaking, a pricing is β-linear, if for each good offers a price which is β
times its value. We then choose maximum β, such that an allocation exists for β-
linear pricing rule which clears the market and respects the budget constraints
(but not necessarily is a 2-CE). Let βm be this value. We propose a greedy
allocation algorithm and show that running this algorithm for βm-linear pricing,
either allocates the entire set of goods2, or enables us to reduce the problem
into a smaller one by removing a subset of the buyers and their allocated goods.
For the former case, we use another algorithm to convert the obtained greedy
allocation into a 2-CE. For latter, we use induction to prove the existence of 2-CE.
Note that, the final pricing of the goods is not necessarily βm-linear. However,
our method guarantees that during the algorithm, the price of each good never
decreases. Thus, at the end the price of a good with value v is at least βm · v.
2 Note that our greedy algorithm might leave some of the goods un-allocated.
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Next, we investigate the computational aspect of our method. In Lemma 10,
we show that finding the exact value of βm is not polynomial-time tractable,
unless P=NP. To circumvent this hurdle, we introduce another linear pricing,
namely βg-linear pricing, which refers to the maximum β such that our greedy
algorithm clears the market. We show how to use this allocation to obtain the
same approximation guarantee.

Notice that finding the exact value of βg is also not trivial. In Sect. 4, we
provide a process to learn the value of βg. Roughly, we start by an estimation of
βg and make our estimation more and more accurate by iteratively simulating
the greedy allocation algorithm. At the end of this process, we obtain a value
β� which is close to βg (but not necessarily equal) and an allocation exactly
similar to what we obtained if we ran the greedy algorithm with βg-linear pricing.
Finally, by a simple observation about the remaining budget of the agents, we
find the exact value of βg. This implies Theorem 2.

Theorem 2. Given any one-sided Fisher market with unequal budgets and an
additive valuation V for all the agents, we can find a 2-CE in polynomial time.

1.2 Related Work

Fisher market [14] is among the most attractive and well-studied models within
mathematical economics which enjoys desirable existential and computational
characteristics: for convex utility functions a competitive equilibrium is guar-
anteed to exist [4]; and for many utility classes such as Constant Elasticity of
Substitution functions (e.g., Linear and Leontief), competitive equilibrium can
be computed efficiently [3,20,27].

To circumvent the non-guaranteed existence of equilibrium in markets with
indivisibilities, several studies consider the relaxed versions of equilibrium
notions [19,21,22]. Apart from the work of Budish [16] mentioned in the intro-
duction, eliminating the market-clearing property yields another concept called
envy-free pricing which has attracted attention in the past decade [8,26].

Competitive equilibrium can be considered as a fairness criterion. For indivis-
ible goods, CEEI implies envy-freeness, proportionality and maximin-share [16].
For divisible goods, CEEI happens to coincide with Nash Social Welfare (NSW)
maximizing allocation3. Several recent works provide approximations for NSW
objective by rounding modifications of EG program [17,18].

2 Preliminaries and Overview of the Ideas

In this section, we provide definitions and basic observations that are used in
Sect. 3. In addition, we expose the main ideas and techniques that help us prove
our main results. This section is divided into four parts: first, we define Fisher
market and (approximate) competitive equilibrium, next we dedicate two sub-
sections to demonstrate the related concepts of pricing and allocation. Finally,
we define cuts and satisfying cuts.
3 allocation that maximizes the utility product of the agents.
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2.1 Fisher Market and Competitive Equilibrium

A Fisher market consists of a set of n buyers and a set M of m goods. Each
buyer has a valuation over the goods. Our assumption is that the valuations of
the buyers are identical, that is, every bundle S of goods has the same value
to all the buyers. We denote by V (S), the value of bundle S to each buyer. In
addition, we suppose that V is additive, i.e., for two disjoint bundles S and T
we have V (S ∪ T ) = V (S) + V (T ). Furthermore, each buyer i has a budget bi.
In this paper, we suppose that the budgets are not equal and, without loss of
generality, b1 < b2 < . . . < bn.

Any solution to a Fisher market is a pair (S, p), where S = 〈S1, S2, . . . , Sn〉
is an allocation of M to the buyers (Si is the bundle allocated to buyer i) and
p is a pricing rule which attributes a price to each good. We denote by p(T ) the
price of bundle T which by additivity assumption we have p(T ) =

∑
q∈T p({q}).

Definition 1. A competitive equilibrium (CE) is a pair (S, p) with these prop-
erties:

– Market Clearance: all the items are allocated, i.e.,
⋃

i Si = M.
– Budget Feasibility: for every buyer i, price of the bundle allocated to i is

within her budget, i.e., p(Si) ≤ bi.
– Satisfaction: For every buyer i, Si is her preferred bundle among all sets

whose price is within her budget, i.e., for every subset T with p(T ) ≤ bi we
have V (Si) ≥ V (T ).

Definition 2. A pair (S, p) is a 2-CE, if the following properties hold:

– Market Clearance: S allocates all the goods.
– Budget Feasibility: each buyer receives a bundle with price at most her

budget.
– Approximate Satisfaction: For every buyer i and bundle T where p(T ) ≤

bi, we have V (Si) ≥ V (T )/2.

For an allocation S we say buyer i is satisfied with bundle Si, if p(Si) ≤ bi

and V (Si) ≥ V (Bi)/2, where Bi is the best bundle of M for buyer i under pricing
p. We also say buyer i is completely satisfied, if she is satisfied and p(Si) = bi.

2.2 Pricing: Feasible, Linear, and Maximum-Linear

Definition 3. A pricing p is feasible, if there exists an allocation S such that
(S, p) clears the market and each buyer gets a share with price within her budget.

Definition 4. A pricing p is β-linear, if for every item x, p({x}) = βV ({x}).
For brevity, for two pricings p and p′ which are respectively β-linear and β′-
linear, we say p > p′, if and only if β > β′.

Lemma 1 indicates that for a β-linear pricing p, buyer i is satisfied, if she
spends a factor 1/2 of her budget. Thus, when the pricing is β-linear and we
want to find an 2-CE, it suffices to allocate each buyer i a bundle with price at
least a factor 1/2 of her budget.
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Lemma 1. For a β-linear pricing p, buyer i is satisfied with bundle Si, if
p(Si) ≥ bi/2.4

Definition 5. Define βm as the maximum possible value such that βm-linear
pricing is feasible. Furthermore, denote by pm the pricing corresponding to βm-
linear pricing.

By definition, for any β > βm, β-linear pricing is not feasible. Another impor-
tant property of βm is stated in Observation 1.

Observation 1. For pricing pm, every allocation that clears the market admits
at least one completely satisfied agent.

2.3 Allocation: Admissible, Sorted, and Right-Sided Sorted

Definition 6. Given a pricing p, an allocation S is admissible, if it allocates all
the items and the price of the share allocated to each agent is within her budget.

Notice that, when an allocation S is admissible, its corresponding pricing is
feasible. Indeed, the admissibility of an allocation relies on the prices attributed
to the goods. Throughout the paper, when the price vector is clear from the
context, we only say “S is admissible”, without mentioning the pricing vector.

We now define sorted and right-sided sorted allocations and show how to
convert an allocation to a sorted and right-sided sorted one.

Definition 7. For a pricing p, an admissible allocation S is sorted, if p(S1) ≤
p(S2) ≤ . . . ≤ p(Sn).

Lemma 2. Given a pricing p and an admissible allocation S, there exists an
admissible and sorted allocation S′ with the same pricing.

Definition 8. For a pricing p, a sorted allocation S is a right-sided sorted allo-
cation, if for every i such that Si �= ∅, buyer i + 1 satisfies with her share.

Lemma 3. Given a sorted allocation S with pricing vector p, we can convert S
to a right-sided sorted allocation.

Algorithm 1 shows the method by which we convert a sorted allocation to a
right-sided sorted allocation in the proof 6 of Lemma 3.

2.4 Cuts and Satisfying Cuts

We now introduce cuts and satisfying cuts which play a key role in our method.
But before defining these concepts, in Observation 2 we first show that for any
buyer i which is satisfied with a bundle of goods, increasing the prices of the
other goods does not affect her satisfaction.

4 For the missing proofs, we refer to the complete version of the paper.
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Algorithm 1: Right Sided Sorter algorithm
Data: S : the allocations, b : budgets, p : the pricing vector
Result: Right sided sorted allocation
while ∃i such that Si �= ∅ and p(Si+1) < bi+1/2 do

Si+1 = Si+1 ∪ Si;
Si = ∅;
Sort(S);

end

Observation 2. Suppose buyer i is satisfied with bundle Si. If we increase the
prices of the goods in M \ Si or reallocate them, buyer i remains satisfied.

The reason that Observation 2 holds is that after increasing the prices, what-
ever buyer i can buy, she could also buy before. Intuitively Observation 2 indi-
cates that for an allocation S, we might be able to increase the number of satisfied
buyers by increasing the prices of some items.

For an allocation S, denote by Si+ , the set of items in Si+1 ∪ Si+2 ∪ . . . Sn.
In addition, let Si− = M \ Si+ .

Definition 9 (Cut). For a pricing p and an admissible allocation S, we
say there is a cut on buyer i, if minx∈Si+

p({x}) > bi. We also call buyers
{1, 2, . . . , i}, the left-side of the cut and the rest of the buyers, the right-side of
the cut.

By definition, if there exists a cut C for some pair (S, p), the left-side buyers
of C cannot own any of the goods in Si+ since the price of each good in Si+ is
higher than their budget.

Definition 10 (Satisfying cut). Cut C is a satisfying cut, if all the buyers
on right-side of C are satisfied.

As mentioned, satisfying cuts play a key role in our method since they reduce
the problem into a smaller sub-problem. Consider pricing p and an admissible
allocation S, and assume that C is a satisfying cut. By definition, the price of each
good in Si+ is too high for the buyers on the left side. Furthermore, the right-side
buyers are currently satisfied with their share. This allows us to put the right-
side buyers and their allocated goods aside and solve the problem recursively
for the left-side buyers and goods in Si− . However, note that if we decrease the
prices of the goods in Si− , a right-side buyer may become unsatisfied, because
her preferred bundle may change. Fortunately, our method has the property that
the prices obtained for the goods in Si− by recursively solving the problem for
left-hand side buyers are at least as their initial prices in the satisfying cut.
Therefore, we can use satisfying cuts to reduce our instances.

The main body of Sect. 3 is devoted to proving Lemma 4.

Lemma 4. For any instance of the problem, there exists an allocation S, such
that the pair (S, pm) either is a 2-CE, or admits a satisfying cut.
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Based on Lemma 4, we operate as follows: we find pm and allocation S
satisfying the condition of Lemma 4. If (S, pm) constitutes a 2-CE, we are done.
Otherwise, we satisfy the agents in the right-side of the produced satisfying cut
and remove these agents and their corresponding goods. Next, we repeat the
same process for the remaining goods and agents. Observation 3 assures that
during the further steps, the price of no good decreases which means that the
agents satisfied in the previous steps remain satisfied.

Observation 3. Let S be an admissible allocation for pm. Furthermore, for
some 1 ≤ i < n, let p′

m be the maximum linear pricing for the Fisher market
containing goods in Si− and buyers 1, 2, . . . , i. Then we have p′

m ≥ pm.

Lemma 4 with Observation 3 implies Theorem 1.

3 Existence of Approximate CE

In this section, we prove the existence of a 2-CE for every instance of Fisher
market with generic budgets, when preferences are identical. As said before, to
show this, we prove Lemma 4 which states that there is an allocation S such that
(S, pm) either is a 2-CE or has a satisfying cut. For this purpose, we introduce
the greedy allocation.

Definition 11. Greedy allocation for a pricing p, denoted by G(p), is the allo-
cation obtained from the following n-step greedy algorithm: in the i’th step, ask
buyer i to iteratively pick the most valuable remaining good which fits into her
remaining budget. When no good could be selected by i, we head to the next step.

See Algorithm 2 for a pseudo-code of this algorithm. When the price is clear from
the context, we use Gi to refer to the bundle of buyer i in the greedy allocation.
Note that for a pricing vector p, G(p) does not necessarily allocate all the goods,
even for a β-linear pricing with β ≤ βm. However, these allocations are attractive
because of the property we show in Lemma 5: in a greedy allocation, for each
buyer, either she is satisfied or there is a cut on that buyer5.

Lemma 5. For any price p, in G(p) each buyer i is either satisfied or there is
a cut on buyer i.

Now, we show that if G(pm) clears the market, then one can refine G(pm)
to obtain an allocation satisfying the condition of Lemma 4. But before proving
this, in Lemma 6 we prove another property for G(pm).

Lemma 6. If G(pm) is admissible, at least one good is allocated to buyer n.

We remark that the property proved in Lemma 6 essentially relies on generic
budgets. To see how Lemma 6 fails for equal budgets, consider n buyers with
budget 10 and n+1 identical goods with value 5. For this case, the price of each
good in pm is 5 and the last 	(n − 1)/2
 buyers receive no good in G(pm).
5 Here we need to extend Definition 9 for i = n: there is a cut on buyer n if she is not

satisfied.
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Algorithm 2: Greedy Allocation algorithm
Data: b: set of budgets , M: set of goods , p: pricing
Result: Allocation G
for i : 1 → n do

Gi = ∅ ;
F = {x ∈ M|p({x}) ≤ bi − p(Gi)};
while F �= ∅ do

y ← arg maxx∈F p({x});
Gi ← Gi ∪ {y} ;
M ← M \ {y};
F = {x ∈ M|p(x) ≤ bi − p(Gi)};

end

end

Lemma 7. If G(pm) is admissible, we can convert it to an allocation which is
either a 2-CE or admits a satisfying cut.

Proof. First, note that if G(pm) admits a satisfying cut then G(pm) itself is
the desired allocation. Therefore, without loss of generality, we assume that
G(pm) admits no satisfying cut. By Lemma 5, in G(pm) each buyer is either
satisfied or the allocation admits a cut on that buyer. In particular, the right-
most unsatisfied buyer (i.e., the buyer with the largest index, say j which is
not satisfied with Gj) admits a satisfying cut, unless j = n. Therefore, if G(pm)
admits no satisfying cut, buyer n is not satisfied with Gn. Note that by Lemma
6, we know this buyer has at least one good.

Now, assume that there are k completely satisfied buyers i1 < i2 < . . . < ik.
By Observation 1, we know there is at least one, i.e., k ≥ 1.

Proposition 1. For any buyer j > ik such that j is not satisfied with Gj, we
have p(Gik ∪ Gj) ≥ bj.

We now claim that no unsatisfied buyer exists between buyers ik and n. In
other words, n is the only unsatisfied buyer after ik.

Proposition 2. For every buyer ik < j < n we have bj/2 ≤ p(Gj) < bj .

Since buyer n is not satisfied, by Proposition 1 we have

p(Gik) > bn/2. (1)

To refine the allocation, we exchange the bundles of buyers n and ik, i.e., we
allocate Gn to buyer ik and allocate Gik to buyer n. Since before this exchange
Inequality (1) holds, buyer n becomes satisfied but not completely satisfied since
bik < bn. Therefore, if buyer ik satisfies with her new bundle, we have obtained
the desired allocation, since buyers ik . . . n are satisfied with their bundles and
the bundles allocated to the buyers 1 . . . ik −1 are the same as the greedy alloca-
tion. Recall that by Lemma 5, either all the buyers 1, . . . , ik −1 are also satisfied,
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or there is a satisfying cut on buyer � where � = arg maxj such that buyer j is
not satisfied. For the case that buyer ik is not satisfied after the exchange, we use
induction on k (number of completely-satisfied buyers) to prove the statement of
Lemma 7. If k = 1, after this exchange buyer ik must remain completely-satisfied,
otherwise none of the buyers in the refined allocation is completely-satisfied and
therefore we can increase the value of βm. This contradicts our assumption that
ik is not satisfied after the exchange.

Now, assume k > 1, and consider the sub instance containing buyers [1..ik]
and goods

⋃
1≤l≤ik

Gl. Note that if we ran the greedy algorithm on these sets of
buyers and goods with the same pricing, the resulted allocation would be the
same as their current bundles. Furthermore, for this sub-instance, the value of
βm is the same as the original instance; otherwise, we can increase βm in the
original instance, because none of the buyers after ik are completely-satisfied. For
this sub-instance, we have k −1 completely-satisfied buyers (i.e., i1, i2, . . . , ik−1)
and an un-satisfied buyer ik. By the induction hypothesis, we can convert the
greedy allocation of this sub-instance into an allocation which is either a 2-CE
or admits a satisfying cut for buyers [1..ik]. Since all the buyers after ik are
satisfied with their bundles, this allocation combined with the bundles allocated
to the buyers after ik yields an allocation which fulfills the requirements of
Lemma 4. ��

Algorithm 3: Refine
Data: G : an admissible greedy allocation, b : set of budgets, p : pricing.
Result: An allocation satisfying everyone or having a satisfying cut
initialization;
i = n ;
Let ik be the largest index such that p(Gik) = bik ;
Swap Gik and Gn ;
if p(Gik) > bik/2 then

return G ;
else

return Refine({G1,G2, . . . ,Gik}, [b1..bik ], p) ⊕ 〈Gik+1,Gik+2, . . . ,Gin〉
end

Algorithm 3 represents the method by which we convert an admissible greedy
allocation into an allocation desired by Lemma 4. Thus, the only remaining case
is when the greedy allocation does not clear the market. To address this case,
we introduce the Best Fit First (BFF) algorithm. Roughly, BFF takes pm and
an admissible allocation S for pm as input and refines S to be as much similar
to G(pm) as possible. In what follows, we formally describe BFF.

3.1 BFF Algorithm

BFF algorithm takes pm and an admissible allocation S as input and updates
S according to the following procedure: in the i’th step, let Si be the current
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goods allocated to buyer i in S and let Gi be the goods that would be allocated
to buyer i if we ran the greedy allocation for pm. BFF iteratively selects the good
with the maximum value in Gi\Si. If Gi\Si = ∅, we head to step i+1; otherwise,
let x be the selected good. We carefully update S, so that these properties hold:

– After the update, x belongs to Si.
– The update keeps S1, S2, . . . , Si−1 and the goods in Si ∩ Gi intact.
– The allocation remains admissible.

In the rest of this section, we show how to perform BFF. We show that we can
either perform such an update, or instantly return an allocation satisfying the
condition of Lemma 4. We start by Lemma 8 which states that in the i’th step
of BFF, for every j < i, bundle Sij is exactly the same as Gj .6

Lemma 8. If BFF heads to the i’th step, for every j < i we have Gj = Sj .

Now, suppose that the algorithm is at step i, and we want to transfer a good
x ∈ Gi \ Si to Si. We show that either such a transformation is possible, or we
can instantly return an allocation satisfying the conditions of Lemma 4.

Lemma 9. Assume that at the i’th step of BFF, we want to transfer a good
x ∈ Gi \ Si to Si. Either such a transformation is possible, or we can instantly
return an allocation satisfying the requirements of Lemma 4.

Proof. Suppose that for some x, such a transformation is not possible. Let R =
Gi ∩ Si , and consider the following sub-instance:

– buyers {i, i + 1, . . . , n} with budgets {bi − p(R), bi+1, bi+2, . . . , bn}.
– S′ = 〈S′

i, S
′
i+1, S

′
i+2, . . . , S

′
n〉 where S′

i = Si \ R and for every j > i, S′
i = Si.

By Lemma 2, we can convert S′ to a right-sided sorted allocation. After this
conversion, suppose that good x is in some bundle S′

j . Based on the goods in S′
i,

one of the following cases occur:

– S′
i is empty: in this case, we can simply update S to allocation: 〈S1, S2, . . . ,

Si−1, R ∪ {x}, S′
i+1, . . . , S

′
j \ {x}, . . . , S′

n〉. One can easily verify that all 3
properties hold for this allocation which contradicts our assumption that
transferring x to the bundle of buyer i is not possible.

– S′
i is not empty and buyer i satisfies with R ∪ S′

i: by definition of right-
sided sorted allocation, since S′

i is not empty, buyers i + 1, i + 2, . . . , n are
satisfied by their bundles in S′. Therefore, if buyer i also satisfies with R ∪ S′

i,
since the first i − 1 bundles of S are the same as the bundles returned by
greedy algorithm, by Lemma 2, in allocation S′′ = 〈S1, S2, . . . , Si−1, R ∪
S′

i, S
′
i+1, . . . , S

′
n〉, either all the buyers in {1, 2, . . . , i − 1} are also satisfied

which means S′′ is a 2-CE, or S′′ admits a satisfying cut.

6 Note that Lemma 8 holds regardless of the method by which we update the bundles.
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– S′
i is not empty and buyer i does not satisfy with R ∪ S′

i: since buyer i does not
satisfy with R ∪ S′

i, we have p(R ∪ S′
i) < bi/2. In addition, we have p({x}) ≤

p(S′
i), otherwise we can exchange x and S′

i and update allocation S to alloca-
tion 〈S1, S2, . . . , Si−1, R ∪ {x}, S′

i+1, . . . , S
′
j−1, S

′
j ∪ S′

i \ {x}, S′
j+1, . . . , S

′
n〉.

Note that this allocation respects the budget constraints since we know
p(R ∪ {x}) ≤ p(Gi) < bi and furthermore p(S′

j ∪ S′
i \ {x}) ≤ p(S′

j) ≤ bj .
It is easy to check that this allocation satisfies all 3 properties which con-
tradicts our assumption that transferring x to the bundle of buyer i is not
possible. Therefore, we have p({x}) ≤ p(S′

i). Since buyer i does not satisfy
with bundle R ∪ S′

i, we have

p(R ∪ S′
i ∪ {x}) = p(R) + p(S′

i) + p({x})
≤ p(R) + 2p(S′

i)
≤ 2p(S′

i ∪ R) ≤ bi.

Thus, allocation

〈S1, S2, . . . , Si−1, R ∪ S′
i ∪ {x}, S′

i+1, . . . , S
′
j−1, S

′
j \ {x}, S′

j+1, . . . , S
′
n〉

satisfies all the desired properties which again contradicts the assumption
that moving x to the bundle of buyer i is not possible. ��

In conclusion, we can either perform the exchange operation or instantly return
an allocation which satisfies the condition of Lemma 4. Note that BFF starts
with an admissible allocation and keeps the allocation admissible during the
algorithm. Therefore, since G(pm) is not admissible, at some point of the algo-
rithm, we are unable to perform the exchange operation. By Lemma 9, in such
case we can return a proper allocation. This completes the proof of Lemma 4
and as a consequence, Theorem 1 holds.

Theorem 1. Given any one-sided Fisher market with generic budgets and an
additive valuation V for all the buyers, there exists a pricing p and an allocation
S such that (p, S) constitutes a 2-CE.

4 Polytime Algorithm

Recall that an essential part of the proof in the previous section was finding the
value of βm and an admissible allocation for pricing pm. However, as we show in
Lemma 10, finding pm is NP-hard.

Lemma 10. Finding the exact value of βm is NP-hard.

In this section, we show that we can bypass this hardness using another
pricing rule. As discussed earlier, for a feasible linear pricing rule p, there is no
guarantee that G(p) allocates all the goods, even if p < pm. We define the maxi-
mum greedy pricing as a maximum linear pricing p, such that G(p) is admissible.
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Definition 12. Maximum greedy pricing, denoted by pg is defined as the linear
pricing with the maximum β, such that G(pg) is admissible.

Trivially, we have pg ≤ pm. In the rest of this section, we provide a method
to learn the value of pg.

Observation 4. If G(p) is admissible, then for any price p′ < p, G(p′) is also
admissible. In addition, if G(p) is not admissible, then for any price p′ > p, G(p′)
is not admissible.

Lemma 11. With β-linear pricing p, we can either find a solution, or tell if
β < βg or β > βg.

Note that Lemma 11 immediately suggests a simple binary search to find the
value of βg. However, the running time of binary search depends on the value
of budgets and goods, which is not desirable. Here, we show how to learn βg by
somewhat simulating the greedy algorithm. To illustrate our method, suppose
that the value of βg is unknown to us, and we want to guess βg based on the
operations made in the greedy algorithm. In the beginning we only know that
βg is a value in (0,+∞). Now, suppose that an oracle tells us which good is the
first good that buyer 1 selects in the greedy algorithm and assume that the value
of this good is v. Since any allocation must respect the budget constraints, we
can immediately conclude that the value of βg is upper bounded by b1/v since
buyer 1 was able to select an good with value v, and lower bounded b1/v′ where

v′ = min
x∈M,V ({x})>v

V ({x}). (2)

This lower bound stems from the fact that in the greedy algorithm, buyer 1 must
choose the most valuable good whose price fits into her budget, and we know
her choice was the good with value v, which indicates that the price of the more
valuable goods are higher than her budget. Therefore, this information from the
oracle limits to possible values of βg to the interval (b1/v′, b1/v].

Note that, there is also another possibility: buyer 1 passes her turn since
none of the goods fits into her budget. If oracle tells that buyer 1 passes without
selecting any good, we can conclude that the value of βg is lower bounded by
b1/v where v is the value of the least valuable good. This limits βg to (b1/v,+∞).

Based on the above discussion, we can discover the first step of the greedy
algorithm by considering all m + 1 possibilities: selecting each one of the goods
as the first choice of buyer 1 or passing to the second buyer. Each one of these
possibilities determines an interval to limit the value of βg and therefore we
have m + 1 intervals [0, β1], (β1, β2], (β2, β3], . . . , (βm,+∞). Among these inter-
vals we select the correct interval using Lemma 11 and consider allocating its
corresponding good to buyer 1 (or passing to buyer 2 if the last interval was
correct) as the first event that happens in the greedy algorithm and limit βg

to some interval (βi−1, βi]. With a similar argument, we can trace the goods
allocated at each step of the greedy algorithm one by one, while increasing the
accuracy of our estimation of βg. After finding the greedy allocation, we can use
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Observation 1 to determine the exact value of pg, since at least one of the buyers
in this allocation is fully satisfied in G(pg). This concludes Lemma 12.

Lemma 12. We can find the value of pg in polynomial time.

Finally, we show that using pg instead of pm leads us finding a 2-CE.

Theorem 2. Given any one-sided Fisher market with unequal budgets and an
additive valuation V for all the agents, we can find a 2-CE in polynomial time.
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Abstract. Motivated by the emergence of popular service-based two-
sided markets where sellers can serve multiple buyers at the same time,
we formulate and study the two-sided cost sharing problem. In two-sided
cost sharing, sellers incur different costs for serving different subsets of
buyers and buyers have different values for being served by different sell-
ers. Both buyers and sellers are self-interested agents whose values and
costs are private information. We study the problem from the perspective
of an intermediary platform that matches buyers to sellers and assigns
prices and wages in an effort to maximize gains from trade (i.e., buyer
values minus seller costs) subject to budget-balance in an incentive com-
patible manner. In our markets of interest, agents trade the (often same)
services multiple times. Moreover, the value and cost for the same service
differs based on the context (e.g., location, urgency, weather conditions,
etc.). In this framework, we design mechanisms that are efficient, ex-ante
budget-balanced, ex-ante individually rational, dominant strategy incen-
tive compatible, and ex-ante in the core (a natural generalization of the
core that we define here).

Keywords: Cost sharing · Mechanism design · Two-sided markets

1 Introduction

The recent emergence of sharing economy has brought renewed interest in the
scientific community on studying two-sided markets where services are traded.
One example of such markets are ride-sharing services like Uber and Lyft where
one side of the market, i.e. drivers, provide a service to the other side of the
market, namely riders. An important characteristic of such markets is the ability
of a seller to offer service to multiple buyers at the same time. For example, Uber
Pool and Lyft Line typically assign a driver to multiple riders at the same time;
as long as the number of riders does not exceed the capacity of the car. This is in
contrast to the one-to-one assignment that happens in other popular two-sided
markets such as Amazon and Ebay. Central to the design of the above markets
are the problems of price and wage computation as well as assignment of buyers
to sellers.

Consider a simpler one sided case where we have multiple buyers and one
service provider. In such a case, a service provider incurs a cost c(S) for serving
a subset S of its customers. In the case of ride-sharing, c(S) is the cost incurred
c© Springer Nature Switzerland AG 2021
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by a cab driver to serve the riders in S. Each rider i values the ride vi which is
known only to i. In this case, the utility derived by the rider is vi −pi where pi is
the price charged to the rider for the ride. Depending on the pricing mechanism
chosen by the ride-sharing platform, a rider might have an incentive to misreport
her value to derive higher utility. The solution to this problem involves solving
a cost sharing problem [14,16,20,22,26–28,30]. A cost sharing mechanism first
asks each buyer to report their value for being served and then decides the
assignment as well as the price each user pays on the buyer side in a way that
the cost of the seller is covered by the payments of the buyers.

The reader may note that in the above one-sided setting, only the values of
the users are private while the cost function c(S) of the providers is known to
the platform. In this study, we propose and study the two-sided cost sharing
problem that generalizes the one-sided setting to the case where the costs are
also private information to the sellers and the platform procures their services
by offering wages. One challenge for such settings is designing a mechanism that
can actually extract the true values and cost functions of buyers and sellers
respectively.

In designing our mechanism, there are various objectives that we aim to
achieve. A two-sided cost-sharing mechanism is efficient if it maximizes the sum
of valuations of all buyers in the assignment minus the cost incurred by the
sellers (which is equivalently called the gains from trade, a popular objective in
the literature for designing mechanisms for two sided markets); It is dominant-
strategy incentive compatible (DSIC) if for every buyer and seller, revealing their
true value and cost respectively is a dominant strategy; it is weakly budget-
balanced (BB) if, in the assignment, the price realized from all buyers is at least
as large as the wages paid to all the sellers; it is individually rational (IR) if
no agent incurs a loss participating in the mechanism; finally, a solution of the
mechanism (which consists of an assignment and vectors of wages and prices)
is in the core if the utilities of the agents are such that no subset of them can
form a coalition and produce welfare higher than their collective utility in the
proposed solution.

Two salient features of services in the sharing economy are - a) an agent par-
ticipates many times in the market and b) the agent types tend to be dependent
on environmental and circumstantial parameters (such as the current location,
traffic volume in the surrounding area, weather conditions, urgency, etc.) and are
not intrinsic to the agents. Therefore, our work focuses on designing two-sided
cost sharing mechanisms that will satisfy the properties that pertain to agent
utilities, namely IR and the core, in expectation. To be more precise, our mech-
anisms are efficient, dominant strategy IC (DSIC), ex-ante IR, ex-ante weakly
BB, and ex-ante in the core.

We note that, on top of being suitable for our applications of interest, these
properties are also tight from a technical perspective: Efficiency and IC are sat-
isfied as their strongest possible versions and weakly BB is a platform constraint
that we satisfy. Strengthening ex-ante IR is not possible even when relaxing IC to
Bayesian IC (as given by the Myerson-Satterthwaite impossibility theorem [29]
for the single buyer-single seller case) or even when relaxing efficiency (gains
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from trade) to approximate efficiency (as shown in [4,5,11], again for a single
buyer and a single seller). Moreover, it is conjectured to be impossible even when
relaxing both IC and efficiency, as supported by partial impossibility results and
experimental evidence [5].

1.1 Results and Techniques

Table 1. Summary of our results.

Cost function Result

1 submodular seller Optimum welfare and core

Capacitated NGS sellers Optimum welfare and core

General sellers with constant capacity constraints Approx welfare and core

Super additive sellers Approx welfare and core

As we explained above, our main contributions are mechanisms that are effi-
cient, DSIC, ex-ante weakly BB, ex-ante IR, and ex-ante in the core. In Sect. 3
we study classes of cost functions that allow us to design an efficient mecha-
nism, i.e. a mechanism that maximizes gains from trade. Subsequently in Sect. 4
we study general cost functions for which we devise an approximately efficient
mechanism. The cases we study, are characterized by the cost functions of the
sellers. We study 4 different scenarios. First the case where we only have one sin-
gle seller, second, when we have multiple sellers with negative gross substitutes
cost functions, third, when we have multiple sellers with general cost functions
and constant capacity constraints, and lastly, when we have multiple sellers with
superadditive cost functions (Table 1).

Given that our setting is multi-dimensional, it is known that the design space
for truthful mechanisms is strongly restricted and the main tool in our disposal
is the family of VCG-type mechanisms [9,21,33]. Our first technical contribution
is designing a VCG-like mechanism that guarantees the DSIC property as well
as the induced outcome being ex-ante in the core. To do so, we first give an
algorithm that computes utilities in the core for the case with known values
and costs, by means of a primal-dual pair of LPs. This result is of independent
interest in itself as it generalizes a result of [3] to our various models. We then
show that the utilities for different realizations can be combined point-wise to
yield weakly BB wages and payments that are ex-ante in the core.

A second technical contribution is the proper use of sampling to achieve our
properties of interest with high probability in polynomial time in certain sub-
models. We note that, in this sampling scenario, it is trickier to guarantee that
the expected total utility (over sampled points) of a group of agents matches
the expected welfare (over all points) that they could generate. However, with
appropriate parameter selection and arguments, we show that we can approxi-
mate to arbitrary precision the utility per agent, which then yields the required
properties.



254 S. Gollapudi et al.

Finally, for the case of multiple agents and general cost functions with con-
stant capacity, since we can no longer achieve an assignment that maximizes
gains from trade, it is more challenging to attain the DSIC property. However,
we design a rounding scheme that rounds the optimal fractional solution of the
LP corresponding to gains from trade, into an integral solution that achieves
exactly a fixed fraction of the LP objective. This allows us to maintain the
DSIC property for our mechanism. Subsequently, for the case of uncapacitated
super additive cost functions, we present a transformation of the game to fit the
framework of [23] and get a truthful mechanism, even in the absence of a welfare-
maximizing algorithm. The framework of [23] is one-sided and requires utility
functions that, among other properties, are monotone. Our setting is two-sided
and the utility generated by each seller is not necessarily monotone in the set of
buyers. However, we show how to get past these issues and design a mechanism
that works for our model.

1.2 Related Work

Our work is related to two areas of literature: two-sided markets and (one-sided)
cost sharing. In two-sided markets, a series of papers studies two-sided auctions
that approximate efficiency with respect to the sum of values of the items’ hold-
ers after trade, as opposed to the gains from trade version that we study here
[4,10,12,17,24]. With respect to gains from trade, approximating the optimal
gains from trade is impossible in many settings [4,5,11]. Nevertheless, there do
exist results that impose assumptions on the distributions and/or approximate
a weaker benchmark: the gains from trade achieved by the “second-best” mech-
anism of Myerson and Satterthwaite [29], which is known to be the one that
maximizes gains from trade subject to interim IR and BIC [5,7,11,25]. All these
results rely heavily on the fact that the studied settings are single-dimensional
and break down even in minor departures from single-dimensionality. Approxi-
mating gains from trade even in simple multi-dimensional settings seems like a
challenging problem. In a slightly different setting, other works [1,2] approximate
gains from trade with non-atomic populations of agents.

On the cost sharing side of the literature, early work on cooperative games
and the core can be found in [6,19,31,32]. Related to our results on computing
outcomes in the core for known agent types is the work by Bateni et al. [3]
who show how to compute a solution in the core of a game where suppliers deal
with manufacturers and all information is public. With a simple transformation,
one can show that the model in [3] is equivalent to our model with additive cost
functions. In this sense, our results on computing solutions in the core for known
agent types generalize the corresponding result of [3] to broader classes of cost
functions. Considering mechanisms for one-sided cost sharing, most works focus
on the version of the problem where there are no prior distributions on the values
of the buyers. We remark that, in the absence of prior knowledge, the two-sided
setting is hopeless in trading-off efficiency and budget balance. A simple example
with a buyer with a large value v and a seller with 0 cost is enough to see that.
The only price and wage that make this setting efficient and truthful are a price
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of 0 for the buyer and a wage of v for the seller. The only exception to this rule,
is the work by Fu et al. [18], who consider a Bayesian setting and show that any
approximation algorithm for the underlying problem can be transformed into a
mechanism for the cost sharing problem with a logarithmic loss in efficiency.

Finally, we note that our mechanisms are related to the AGV mechanism [13]
and the mechanisms in [8], which also achieve ex-ante IR guarantees. The AGV
mechanism is efficient, BB, Bayesian IC, and ex-ante IR under certain conditions
(such as no costs) which are very different from our setting. The work in [8]
focuses on auction settings (including a two-sided auction with a single seller
and a single item) and designs mechanisms that are efficient, BB, DSIC, and
ex-ante IR. Our mechanisms focus on the richer two-sided cost-sharing setting,
in which we provide solutions in the core (an important consideration in our
applications of interest as, otherwise, agents are incentivized to deal outside
of the market), and also address computational considerations (as they run in
polynomial time for various settings).

2 Preliminaries

Our market model is comprised of a set of m ≥ 1 sellers M and a set of n ≥ 1
buyers N . Each buyer i ∈ N is unit demand and has value vij for being served by
seller j ∈ M . Each seller j ∈ M is endowed with a cost function cj(S) which gives
the cost of the seller to serve the buyers in S ⊆ N . We assume that cj(∅) = 0
for all j ∈ M . Optionally, the model can impose a capacity constraint on the
sellers with each seller j being able to accept kj buyers. We make the natural
assumption that values are bounded and further, without loss of generality and
for simplicity of exposition, that they are in [0, 1]. Buyers and sellers interact with
an intermediary platform that determines the assignment of buyers to sellers as
well as prices pi for the buyers i ∈ N and wages wj for the sellers j ∈ M . The
utility of a buyer i that is matched to a seller j is ui = vij − pi. The utility of a
seller who is assigned buyers S is uj = wj − cj(S).

We assume the existence of discrete prior distributions over the types of each
buyer and seller. The type of a seller specifies her cost function whereas the
type of a buyer specifies her values. We assume agent types are drawn indepen-
dently and that the prior distributions are common knowledge. Note that our
discreteness assumption is a) natural, since these are distributions over possible
payments which are by definition discrete, and b) without a major impact on
the model since any continuous distribution can be replaced by a discrete ver-
sion with an arbitrarily small approximation to the results. The solution that
the platform needs to come up with is specified as an assignment of buyers to
sellers, a price vector for the buyers, and a wage vector for the sellers. Through-
out the paper we describe the assignment both as a collection of buyer subsets
S1, S2, . . . , Sm, with Sj being the set assigned to seller j ∈ M , and as a mapping
function σ(·), with σ(i) being the seller to which buyer i ∈ N is assigned. Gen-
erally, our goal is to maximize gains from trade, i.e., the total value of matched
buyers minus the total cost of sellers. Sometimes we refer to this objective as
the social welfare.
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We next describe the mechanism properties that appear in our results.

Efficiency. A mechanism is efficient if it maximizes the gain from trade, i.e.,
the total value of matched buyers minus the total cost of sellers. A mechanism
is α-efficient if it achieves an α approximation to the optimal gains from trade.

Weak Budget Balance (BB). A mechanism is ex-ante weakly BB if the
expected sum of prices extracted from the buyers is at least equal to the expected
sum of wages paid to the sellers.

Individual Rationality (IR). A mechanism is ex-ante IR if every agent has
non-negative expected utility before all types are drawn. We say a mechanism
is ε ex-ante IR if the agent expected utilities are at least −ε.

Incentive Compatibility. A solution is dominant strategy incentive compatible
(DSIC) if an agent cannot improve her utility by misreporting her type, even
after learning the types of other agents.

In addition to these standard properties, we are interested in obtaining solu-
tions that are in the core of the cost-sharing game, something that would encour-
age agents to adhere to the platform’s solution and stay in its market.

Cost-Sharing Core. A solution is in the core if the sum of buyer and seller
utilities equals the welfare they produce and there does not exist a coalition of
buyers and sellers who can generate welfare higher than the sum of their utilities.
More generally, the α-core requests that every set of agents can’t produce welfare
higher than α times their total utilities. The α-core property guarantees that
agents on platform achieve in expectation, at least α fraction of the maximum
utility they can potentially gain in the market by forming a private coalition.

Before moving forward with presenting our results, we define the classes of
submodular and negative gross substitutes seller cost functions which we will use
as part of our results. For the latter, we begin with the standard gross substitutes
definition and then present the negative gross substitutes definition and how it
is placed in our framework. This class of functions is interesting to study since it
represents the theoretical border of tractability for obtaining the optimal solution
for this problem.

Submodular Cost Functions. A cost function c is submodular if for every
subsets of buyers S, S′ ∈ 2N it is the case that c(S)+c(S′) ≥ c(S∪S′) + c(S∩S′).

Gross Substitutes Functions. A function f defined over the set of buyers N
satisfies the gross substitutes condition if and only if the following holds. Let p
be a vector of prices charged to the buyers and let D(p) = arg maxS⊆N{f(S) −∑

i∈S pi} be the demand set. Then, for every price vector p, every S ∈ D(p),
and every q ≥ p, there exists a set T ⊆ N such that (S \ A) ∪ T ∈ D(q), where
A = {i ∈ N : qi ≥ pi} is the set of items for which the prices increase from p
to q.

Negative Gross Substitutes Cost Functions in Two-Sided Cost-Shar-
ing. A seller cost function, which maps each subset of buyers S ∈ 2N to the
real cost c(S), satisfies the negative gross substitutes condition if and only if the
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following holds. Let p be a vector of prices charged to the buyers and let D(p) =
arg maxS⊆N c(S)−∑

i∈S pi. Then, for every price vector p, every S ∈ D(p), and
every q ≤ p, there exists a set T ⊆ N such that (S \ A) ∪ T ∈ D(q), where
A = {i ∈ N : qi ≤ pi}.

Super Additive Cost Functions. A cost function c is super additive if for every
pair of disjoint subsets of buyers S, S′ ∈ 2N we have c(S) + c(S′) ≤ c(S ∪ S′).

The class of functions satisfying the gross substitutes property contains, for
example, all additive and unit-demand functions and is contained in the class of
submodular functions. To abbreviate, we will say that a function is (negative)
GS if it satisfies the (negative) gross substitutes condition.

In Sect. 3, we show how to design an efficient mechanism for special cases such
as when we have one seller with a submodular cost function or the case where we
have multiple sellers with negative gross substitutes cost functions. Note that,
in general, this problem is very difficult, and as proved in Proposition 1, even
for the case where the cost functions are constant over non-empty subsets, it is
still NP-hard to design an efficient mechanism. That is why, in Sect. 4, we study
approximately efficient mechanisms for more general cost functions.

This version of the paper does not include any proofs, however, we provide
proofs of all the arguments in the full version of the paper available on arXiv1.

Proposition 1. Given multiple sellers with cost functions that are constant over
non-empty subsets, it is NP-hard to find an assignment that maximizes gains
from trade.

3 Efficient Mechanism

In this section we describe the main mechanism for most of the settings we study.
The mechanism requires access to two algorithms: a) an algorithm to compute a
welfare-maximizing assignment of buyers to sellers with known values and costs
and b) a deterministic algorithm to compute non-negative utilities that are in
the (approximate) core of the cost-sharing game and sum up to the optimal
welfare, again, with known values and costs. We discuss these algorithms further
in Sect. 3.1 and in the sections that correspond to the different models we study.
For the polynomial time version of our mechanism, both of these algorithms must
run in polynomial time. Let welfare-alg be the welfare maximizing algorithm
and let core-alg be the algorithm that computes utilities in the α-core. The
exact value of α will depend on the exact model, i.e., on the number of sellers
and the class of cost functions under consideration.

Mechanism 1. Is defined as follows:

– Allocation Rule: Given the reported values vij for i ∈ N, j ∈ M , and cost
functions cj : 2N → R for j ∈ M , output the welfare-maximizing allocation
computed by welfare-alg.

1 https://arxiv.org/abs/1809.02718.

https://arxiv.org/abs/1809.02718
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– Pre-processing: For every realization of agent types r that has some probability
qr, compute buyer utilities yr

i , i ∈ N, and seller utilities zr
j , j ∈ M , that are

non-negative, in the α-core, and sum up to the optimal welfare using core-
alg. Let yi =

∑
r qry

r
i , be the expected utility of buyer i over all realizations

and let zj =
∑

r qrz
r
j , be the expected utility of seller j over all realizations.

– Buyer prices: The price charged to buyer i is

pi =
∑

j∈M

cj(Sj) −
∑

i′∈N,i′ �=i

vi′σ(i′) +
∑

i′∈N,i′ �=i

yi′ +
∑

j∈M

zj ,

where Sj is the set of buyers assigned to seller j and σ(i′) is the seller that i′

is assigned to.
– Seller wages: The wage paid to seller j is

wj =
∑

i∈N

viσ(i) −
∑

j′∈M,j′ �=j

cj′(Sj′) −
∑

i∈N

yi −
∑

j′∈M,j′ �=j

zj′ ,

where Sj is the set of buyers assigned to seller j and σ(i) is the seller that i
is assigned to.

Theorem 1. Mechanism 1 is efficient, ex-ante weakly BB, DSIC, ex-ante IR,
and ex-ante in the α-core.

The second step of Mechanism 1 might not be feasible in polynomial time.
We now modify our mechanism to make it run in polynomial time (assuming
welfare-alg and core-alg run in polynomial time) as follows. Define Mech-
anism 2 to be exactly like Mechanism 1, however we replace the second step
with the following:

– Pre-processing: Sample a set C of c = n2(n + m)5/ε3 realizations of agent
types, for some small parameter ε > 0. For every sample r ∈ C, compute
buyer utilities yr

i , i ∈ N, and seller utilities zr
j , j ∈ M , that are non-negative,

in the α-core, and sum up to the optimal welfare using core-alg. Let

yi =

(
∑

r∈C

yr
i

c

)

+
ε

(n + m)2
,

be the slightly shifted average utility of buyer i over all sampled realizations
and let

zj =

(
∑

r∈C

zr
j

c

)

+
ε

(n + m)2
,

be the slightly shifted average utility of seller j over all sampled realizations.

Theorem 2. For arbitrarily small ε > 0, Mechanism 2 runs in time polynomial
in n,m, and 1/ε, and is efficient, DSIC, and, with probability 1 − ε, ex-ante
weakly BB, ε ex-ante IR, and ex-ante in the α(1 + δ)-core, where δ = 2ε/W and
W is the expected optimal welfare.
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3.1 Welfare Maximization and Core Computation Algorithms

In this section we further discuss welfare-alg and core-alg. We begin with
welfare-alg and note that in Mechanism 1, for which no run-time guarantees
are provided, welfare-alg is simply exhaustive search and is available in all
models. For Mechanism 2, welfare-alg must be an algorithm that solves the
optimization problem of assigning buyers to sellers in polynomial time. This can
be done in several models (as we explain in upcoming sections), such as the case
with negative GS cost functions and the case with a single uncapacitated seller
with a submodular cost function.

Our core computation algorithm, core-alg, relies on the following primal-
dual pair of linear programs. The primal:

maximize
∑

j∈M

∑

S⊆N,|S|≤kj

xjS

(
∑

i∈S

vij − cj(S)

)

subject to
∑

S⊆N

xjS ≤ 1 ∀j ∈ M

∑

j∈M

∑

S�i

xjS ≤ 1 ∀i ∈ N

xjS ≥ 0 ∀j ∈ M,∀S ⊆ N

and the dual:

minimize
∑

i∈N

yi +
∑

j∈M

zj

subject to
∑

i∈S

yi + zj ≥
∑

i∈S

vij − cj(S) ∀j ∈ M,∀S ⊆ N, |S| ≤ kj

yi ≥ 0 ∀i ∈ N

zj ≥ 0 ∀j ∈ M

Let W ∗ be the optimal value of primal and let W be the optimal value among
integral solutions to primal. The utilities that core-alg outputs are precisely
the dual variables scaled by W/W ∗. The following theorem shows that these
values are indeed in the approximate core.

Theorem 3. Let (y∗, z∗) be the solution to dual and let (y, z) = (y∗, z∗)W/W ∗,
where W ∗ is the optimal value for primal and W the value of the integral
optimal solution to primal. Then (y, z) gives utilities yi for the buyers i ∈ N
and utilities zj for the sellers j ∈ M that are in the α-approximate core, with α
the integrality gap of primal.

With respect to running time considerations, we need to be able to solve
dual in polynomial time.

For the case where we only have one submodular seller we can show that
the integrality gap of primal is 1 and we can solve the primal optimally in
polynomial time.
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This also holds when we have multiple sellers with NGS cost functions. These
functions, which are strictly more general than linear functions, represent the
limit of tractability for solving primal optimally over the space of integral solu-
tions. Once we leave the space of NGS functions, we have to rely on approxi-
mately efficient mechanisms to achieve our results.

This implies that for these two cases, we can utilize Mechanism 2 to achieve
in polynomial time, a mechanism that is efficient, DSIC, and, with probability
1 − ε, ex-ante weakly BB, ε ex-ante IR, and ex-ante in the (1 + δ)-core, where
δ = 2ε/W and W is the expected optimal welfare. Please refer to Theorem 1
and 2 for more details.

4 Approximately Efficient Mechanism

In this section, we present a polynomial time mechanism that addresses the
case of intractable models, such as multiple submodular sellers. Our mechanism
will achieve approximate efficiency and will be in the approximate core. The
mechanism requires access to an algorithm that computes a convex combination
of integral solutions that is equal to 1/γ times the fractional optimal solution of
the primal of Sect. 3.1, for some given γ. We discuss this algorithm, which we call
approx-welfare-alg, further in Sect. 4.1. We now present the mechanism’s
specifics.

Mechanism 3. Specifics:

– Allocation Rule: Given the reported values vij for i ∈ N, j ∈ M , and cost
functions cj : 2N → R for j ∈ M , let x∗ be the optimal solution to the primal
linear program in Sect. 3.1. Our allocation is the lottery x that is output by
approx-welfare-alg.

– Pre-processing: Sample a set C of c = n2(n + m)5/ε3 realizations of agent
types, for some small parameter ε > 0. For every sample r ∈ C, compute
buyer utilities yr

i , i ∈ N, and seller utilities zr
j , j ∈ M , by solving the dual of

Sect. 3.1. Let yi =
(∑

r∈C
yr
i

c

)
+ ε

(n+m)2 , be the slightly shifted average utility

of buyer i over all sampled realizations and let zj =
(∑

r∈C

zr
j

c

)
+ ε

(n+m)2 ,
be the slightly shifted average utility of seller j over all sampled realizations.
Also, define

vi(x∗) =
∑

j∈M,S�i

x∗
jSvij and cj(x∗) =

∑

S⊆N

x∗
jScj(S),

which can be interpreted as the extracted value of buyer i and the incurred
cost of seller j under fractional solution x∗.

– Buyer prices: The price charged to buyer i is

pi =
1
γ

⎛

⎝
∑

j∈M

cj(x∗) −
∑

i′∈N,i′ �=i

vi(x∗) +
∑

i′∈N,i′ �=i

yi′ +
∑

j∈M

zj

⎞

⎠ .
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– Seller wages: The wage paid to seller j is

wj =
1
γ

⎛

⎝
∑

i∈N

vi(x∗) −
∑

j′∈M,j′ �=j

cj′(x∗) −
∑

i∈N

yi −
∑

j′∈M,j′ �=j

zj′

⎞

⎠ .

Theorem 4. For arbitrarily small ε > 0, Mechanism 3 runs in time polynomial
in n,m, and 1/ε, and is γ-efficient, DSIC, and, with probability 1 − ε, ex-ante
weakly BB, ε ex-ante IR, and ex-ante in the γ(1 + δ)-core, where δ = 2ε/W and
W is the expected welfare of the mechanism.

4.1 Approximate Welfare Algorithm

In this section, we present approx-welfare-alg, which outputs a convex com-
bination of integral solutions that is precisely x∗/γ with x∗ the fractional optimal
solution to primal. We study two different settings. One is for general cost func-
tions when we treat the capacity constraint of sellers as a constant. The other
setting is when the cost functions are super additive.

General Cost Functions with Constant Capacity Constraints. In this
section we study the case where sellers can have general cost functions and the
capacity of all the sellers is a constant C. One can easily extend our result to the
case where these constants are different for different sellers, however, for ease of
exposition, we assume the same capacity constraint for all sellers.

Our approximate welfare algorithms consists of two parts. First we need to
argue that we can find an optimal feasible solution to primal linear program
in Sect. 3.1. And next we need to argue that we can in fact assign the buyers to
sellers in a way that the assignment is a convex combination of integral solutions
such that the expected assignment is exactly equal to 1/γ times the fractional
optimal solution for some constant γ. This equality is important, since otherwise,
the proof of DSIC property in Theorem 4 does not go through.

To optimally solve the primal, we first explain how we can design a separation
oracle for the dual. This is not too hard, since for each seller j ∈ M , given the
values of {y}i, {z}j , we have to be able to check the following constraint in
polynomial time

∑

i∈S

yi + zj ≥
∑

i∈S

vij − cj(S) ∀S ⊆ N, |S| ≤ C.

However, since C is just a constant, we can just enumerate over all such
subsets and check them one by one. This allows us to solve the primal optimally
to achieve solution x∗. Next we will show how to round this optimal fractional
solution into an integral solution, such that for each j ∈ M and S ⊆ N , the
probability that seller j is assigned set S is exactly x∗

j,S/γ for γ = C + 1.
To do this, first pick an arbitrary order for all pairs (j, S) where j ∈ M and

S ⊆ N and call them (j1, S1), (j2, S2), . . . , (jk, Sk) where k is the total number
of such pairs. Then run the following rounding algorithm.
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Algorithm 1. Rounding Algorithm
1: input: An optimal solution x∗ to primal.

2: output: A random integral and feasible assignment x such that E[xj,S ] =
x∗
j,S

γ+1
for

all j ∈ M and S ⊆ N .
3: For i=1. . . k do:
4: If none of the buyers in Si have been assigned to a seller, and, no set of buyers

have been assigned to seller ji then:
5: Define set R as follows

R = {l|l < i, (Si ∩ Sl �= ∅ or jl = ji)}
6: Assign buyers in Si to seller ji with probability

xji,Si
γ(1−∑

l∈R xjl,Sl
/γ)

.

7: End

We have the following result.

Theorem 5. Given an optimal solution x∗ to primal, Algorithm1 will generate
a random integral assignment x, such that

E[xj,S ] =
1

C + 1
x∗

j,S ∀j ∈ M,S ⊆ N.

Super Additive Cost Functions. The idea in this section is to, similar to
the previous section, first solve the primal linear program to obtain an optimal
fractional solution x∗. This is in general a hard problem, however, we assume in
this section, that we are given access to a demand oracle for the problem. The
demand oracle allows us to design a separation oracle for the dual, which in turn
allows us to obtain x∗ in polynomial time. We will then use a method inspired
by [15], that can round this fractional solution to an integral solution with a

√
n

approximation ratio in polynomial time. Finally, following the following lemma
due to [23], we show how we can design an algorithm that round the solution of
x∗ into a random integral solution x, such that E[x] = x∗/

√
n.

Lemma 1. (Lavi and Swamy [23]). Let x∗ be the fractional optimal solution
to primal and γ be such that there exists a γ-approximation algorithm for the
buyer to seller assignment problem and γ also bounds the integrality gap of pri-
mal. Then, there exists an algorithm which we call lottery-alg that can be
used to obtain, in polynomial time, a convex combination of integral solutions
that is equal to x∗/γ, under the following conditions on the welfare generated by
each seller j and her matched buyers: a) it is a monotone function, b) it is 0 for
an empty set of buyers, and c) we have a polynomial time demand oracle for it.

Note that the utility function of the sellers in our setting does not satisfy the
conditions presented in 1. Namely, the welfare of each seller Vj(S) =

∑
i∈S vij −

cj(S) is not monotone. To fix this issue, we define another utility function for
our sellers as follows,

V̂j(S) = max
S′⊆S

∑

i∈S′
vij − cj(S′).
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Now we have the following result.

Theorem 6. For the case of super additive cost functions, using lottery-alg
of Lemma 1, with V̂j(S) as the welfare functions, we can in polynomial time,
achieve a random integral assignment x such that x = x∗/γ, with γ = O(

√
n).
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Abstract. The Stable Roommates problem involves matching a set of
agents into pairs based on the agents’ strict ordinal preference lists. The
matching must be stable, meaning that no two agents strictly prefer each
other to their assigned partners. A number of three-dimensional variants
exist, in which agents are instead matched into triples. Both the original
problem and these variants can also be viewed as hedonic games. We
formalise a three-dimensional variant using general additively separable
preferences, in which each agent provides an integer valuation of every
other agent. In this variant, we show that a stable matching may not
exist and that the related decision problem is NP-complete, even when
the valuations are binary. In contrast, we show that if the valuations
are binary and symmetric then a stable matching must exist and can be
found in polynomial time. We also consider the related problem of finding
a stable matching with maximum utilitarian welfare when valuations are
binary and symmetric. We show that this optimisation problem is NP-
hard and present a novel 2-approximation algorithm.

Keywords: Stable roommates · Stable matching · Three dimensional
roommates · Hedonic games · Coalition formation · Complexity

1 Introduction

The Stable Roommates problem (SR) is a classical problem in the domain of
matching under preferences. It involves a set of agents that must be matched
into pairs. Each agent provides a preference list, ranking all other agents in strict
order. We call a set of pairs in which each agent appears in exactly one pair a
matching. The goal is to produce a matching M that admits no blocking pair,
which comprises two agents, each of whom prefers the other to their assigned
partner in M . Such a matching is called stable. This problem originates from
a seminal paper of Gale and Shapley, published in 1962, as a generalisation of
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the Stable Marriage problem [15]. They showed that an SR instance need not
contain a stable matching. In 1985, Irving presented a polynomial-time algorithm
to either find a stable matching or report that none exist, given an arbitrary SR
instance [20]. Since then, many papers have explored extensions and variants of
the fundamental SR problem model.

In this paper we consider the extension of SR to three dimensions (i.e., agents
must be matched into triples rather than pairs). A number of different formalisms
have already been proposed in the literature. The first, presented in 1991 by Ng
and Hirschberg, was the 3-Person Stable Assignment Problem (3PSA) [24]. In
3PSA, agents’ preference lists are formed by ranking every pair of other agents
in strict order. A matching M is a partition of the agents into unordered triples.
A blocking triple t of M involves three agents that each prefer their two partners
in t to their two assigned partners in M . Accordingly, a stable matching is one
that admits no blocking triple. The authors showed that an instance of this
model may not contain a stable matching and the associated decision problem
is NP-complete [24]. In the instances constructed by their reduction, agents’
preferences may be inconsistent [19], meaning that it is impossible to derive a
logical order of individual agents from a preference list ranking pairs of agents.

In 2007, Huang considered the restriction of 3PSA to consistent preferences.
He showed that a stable matching may still not exist and the decision problem
remains NP-complete [18,19]. In his technical report, he also described another
variant of 3PSA using Precedence by Ordinal Number (PON). PON involves each
agent providing a preference list ranking all other agents individually. An agent’s
preference over pairs is then based on the sum of the ranks of the agents in each
pair. Huang left open the problem of finding a stable matching, as defined here,
in the PON variant. He also proposed another problem variant involving a more
general system than PON, in which agents provide arbitrary numerical “ratings”.
It is this variant that we consider in this paper. He concluded his report by asking
if there exist special cases of 3PSA in which stable matchings can be found using
polynomial time algorithms. This question is another motivation for our paper.

The same year, Iwama, Miyazaki and Okamoto presented another variant
of 3PSA [21]. In this model, agents rank individual agents in strict order of
preference, and an ordering over pairs is inferred using a specific set extension
rule [5,7]. The authors showed that a stable matching may not exist and that
the decision problem remains NP-complete.

In 2009, Arkin et al. presented another variant of 3PSA called Geometric
3D-SR [1]. In this model, preference lists ranking pairs are derived from agents’
relative positions in a metric space. Among other results, they showed that in
this model a stable matching, as defined here, need not exist. In 2013, Deineko
and Woeginger showed that the corresponding decision problem is NP-complete
[14].

All of the problem models described thus far, including SR, can be viewed
as hedonic games [6]. A hedonic game is a type of coalition formation game.
In general, coalition formation games involve partitioning a set of agents into
disjoint sets, or coalitions, based on agents’ preferences. The term ‘hedonic’ refers
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to the fact that agents are only concerned with the coalition that they belong to.
The study of hedonic games and coalition formation games is broad and many
different problem models have been considered in the literature [17].

In particular, SR and its three-dimensional variants can be viewed as hedonic
games with a constraint on permissible coalition sizes [26]. In the context of a
hedonic game, the direct analogy of stability as described here is core stability.
In a given hedonic game, a partition is core stable if there exists no set of agents
S, of any size, where each agent in S prefers S to their assigned coalition [6].

Recently, Boehmer and Elkind considered a number of hedonic game variants,
including 3PSA, which they described as multidimensional roommate games [8].
In their paper they supposed that the agents have types, and an agent’s prefer-
ence between two coalitions depends only on the proportion of agents of each
type in each coalition. They showed that, for a number of different ‘solution con-
cepts’, the related problems are NP-hard, although many problems are solvable
in linear time when the room size is a fixed parameter. For stability in partic-
ular, they presented an integer linear programming formulation to find a stable
matching in a given instance, if one exists, in linear time.

In 2020, Bredereck et al. considered another variation of multidimensional
roommate games involving either a master list or master poset, a central list or
poset from which all agents’ preference lists are derived [10]. They presented two
positive results relating to restrictions of the problem involving a master poset
although they showed for either a master list or master poset that finding a
stable matching in general remains NP-hard or W[1]-hard, for three very natural
parameters.

Other research involving hedonic games with similar constraints has consid-
ered Pareto optimality rather than stability [13]; ‘flatmate games’, in which any
coalition contains three or fewer agents [9]; and strategic aspects [27].

The template of a hedonic game helps us formalise the extension of SR to
three dimensions. In this paper we apply the well-known system of additively
separable preferences [2]. In a general hedonic game, additive separable prefer-
ences are derived from each agent αi assigning a numerical valuation valαi

(αj)
to every other agent αj . A preference between two sets is then obtained by com-
paring the sum of valuations of the agents in each set. This system formalises
the system of “ratings” proposed by Huang [19]. In a general hedonic game
with additively separable preferences, a core stable partition need not exist, and
the associated decision problem is strongly NP-hard [25]. This result holds even
when preferences are symmetric, meaning that valαi

(αj) = valαj
(αi) for any

two agents αi, αj [3].
The three-dimensional variant of SR that we consider in this paper can also

be described as an additively separable hedonic game in which each coalition
in a feasible partition has size three. To be consistent with previous research
relating to three-dimensional variants of SR [19,21], in this paper we refer to
a partition into triples as a matching rather than a partition and write stable
matching rather than core stable partition. We finally remark that the usage of
the terminology “three-dimensional” to refer to the coalition size rather than,
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say, the number of agent sets [24], is consistent with previous work in the liter-
ature [1,10,21,26].

Our Contribution. In this paper we use additively separable preferences to
formalise the three-dimensional variant of SR first proposed by Huang in 2007
[19]. The problem model can be equally viewed as a modified hedonic game
with additively separable preferences [3,25]. We show that deciding if a sta-
ble matching exists is NP-complete, even when valuations are binary (Sect. 3).
In contrast, when valuations are binary and symmetric we show that a stable
matching always exists and give an O(|N |3) algorithm for finding one, where N
is the set of agents (Sects. 4.1–4.4). We believe that this restriction to binary
and symmetric preferences has practical as well as theoretical significance. For
example, this model could be applied to a social network graph involving a sym-
metric “friendship” relation between users. Alternatively, in a setting involving
real people it might be reasonable for an administrator to remove all asymmetric
valuations from the original preferences.

We also consider the notion of utility based on agents’ valuations of their
partners in a given matching. This leads us to the notion of utilitarian welfare [4,
11] which is the sum of the utilities of all agents in a given matching. We consider
the problem of finding a stable matching with maximum utilitarian welfare given
an instance in which valuations are binary and symmetric. We prove that this
optimisation problem is NP-hard and provide a novel 2-approximation algorithm
(Sect. 4.5).

We continue in the next section (Sect. 2) with some preliminary definitions
and results.

2 Preliminary Definitions and Results

Let N = {α1, . . . , α|N |} be a set of agents. A triple is an unordered set of three
agents. A matching M comprises a set of pairwise disjoint triples. For any agent
αi, if some triple in M contains αi then we say that αi is matched and use
M(αi) to refer to that triple. If no triple in M contains αi then we say that αi is
unmatched and write M(αi) = ∅. Given a matching M and two distinct agents
αi, αj , if M(αi) = M(αj) then we say that αj is a partner of αi.

We define additively separable preferences as follows. Each agent αi supplies
a valuation function valαi

: N \ {αi} −→ Z. Given agent αi, let the utility of
any set S ⊆ N be uαi

(S) =
∑

αj∈S\{αi}
valαi

(αj). We say that αi ∈ N prefers

some triple t1 to another triple t2 if uαi
(t1) > uαi

(t2). An agent’s preference
between two distinct matchings depends only on that agent’s partners in each
matching, so given a matching M we write uαi

(M) as shorthand for uαi
(M(αi)).

Let V =
⋃

αi∈N

valαi
be the collection of all valuation functions.

Suppose we have some pair (N,V ) and a matching M involving the agents in
N . We say that a triple {αk1 , αk2 , αk3} blocks M in (N,V ) if uαk1

({αk2 , αk3}) >
uαk1

(M), uαk2
({αk1 , αk3}) > uαk2

(M), and uαk3
({αk1 , αk2}) > uαk3

(M). If no
triple in N blocks M in (N,V ) then we say that M is stable in (N,V ). We say



270 M. McKay and D. Manlove

that (N,V ) contains a stable matching if at least one matching exists in (N,V )
that is stable.

We now define the Three-Dimensional Stable Roommates problem with Addi-
tively Separable preferences (3D-SR-AS). An instance of 3D-SR-AS is given by
the pair (N,V ). The problem is to either find a stable matching in (N,V ) or
report that no stable matching exists. In this paper we consider two different
restrictions of this model. The first is when preferences are binary, meaning
valαi

(αj) ∈ {0, 1} for any αi, αj ∈ N . The second is when preferences are also
symmetric, meaning valαi

(αj) = valαj
(αi) for any αi, αj ∈ N .

Lemma 1 illustrates a fundamental property of matchings in instances of
3D-SR-AS. We shall use it extensively in the proofs. Throughout this paper the
omitted proofs can be found in the full version [23].

Lemma 1. Given an instance (N,V ) of 3D-SR-AS, suppose that M and M ′ are
matchings in (N,V ). Any triple that blocks M ′ but does not block M contains
at least one agent αi ∈ N where uαi

(M ′) < uαi
(M).

We also make an observation that unmatched agents may be arbitrarily
matched if required. The proof follows from Lemma 1.

Proposition 1. Suppose we are given an instance (N,V ) of 3D-SR-AS. Sup-
pose |N | = 3k + l where k ≥ 0 and 0 ≤ l < 3. If a stable matching M exists in
(N,V ) then without loss of generality we may assume that |M | = k.

Finally, some notes on notation: in this paper, we use L = 〈. . . 〉 to construct
an ordered list of elements L. If L and L′ are lists then we write L · L′ meaning
the concatenation of L′ to the end of L. We also write Li to mean the ith element
of list L, starting from i = 1, and e ∈ L to describe membership of an element
e in L. When working with sets of sets, we write

⋃
S to mean

⋃
T∈S T .

3 General Binary Preferences

Let 3D-SR-AS-BIN be the restriction of 3D-SR-AS in which preferences are
binary but need not be symmetric. In this section we establish the NP-
completeness of deciding whether a stable matching exists, given an instance
(N,V ) of 3D-SR-AS-BIN.

Theorem 1. Given an instance of 3D-SR-AS-BIN, the problem of deciding
whether a stable matching exists is NP-complete. The result holds even if each
agent must be matched.

Proof Sketch. Given an instance (N,V ) of 3D-SR-AS-BIN and a matching M ,
it is straightforward to test in O(|N |3) time if M is stable in (N,V ). This shows
that the decision version of 3D-SR-AS-BIN belongs to the class NP.

We present a polynomial-time reduction from Partition Into Triangles (PIT),
which is the following decision problem: “Given a simple undirected graph G =
(W,E) where W = {w1, w2, . . . , w3q} for some integer q, can the vertices of G
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×6q pentagadgets

p2
r

p3
r

p4
rp5

r

p1
r

bi

a2
i

a1
i

. . .

bk

bj

for each vertex wi ∈ W
where N(wi) = {wj , wk, . . . }

Fig. 1. The reduction from PIT to 3D-SR-AS-BIN. Each vertex represents an agent.
An arc is present from agent αi to agent αj if valαi(αj) = 1.

be partitioned into q disjoint sets X = {X1,X2, . . . , Xq}, each set containing
exactly three vertices, such that for each Xp = {wi, wj , wk} ∈ X all three of the
edges {wi, wj}, {wi, wk}, and {wj , wk} belong to E?” PIT is NP-complete [16].

The reduction from PIT to 3D-SR-AS-BIN is as follows (see Fig. 1). Unless
otherwise specified assume that valαi

(αj) = 0 for any αi, αj ∈ N . For each
vertex wi ∈ W create agents a1

i , a
2
i , bi in N . Then set vala1

i
(a2

i ) = vala1
i
(bi) =

1, vala2
i
(a1

i ) = vala2
i
(bi) = 1, valbi(a

1
i ) = valbi(a

2
i ) = 1, and valbi(bj) = 1 if

{wi, wj} ∈ E for any wj ∈ N \ {wi}. Next, for each r where 1 ≤ r ≤ 6q
create p1r, p

2
r, p

3
r, p

4
r, p

5
r in N . Then set valp1

r
(p2r) = valp1

r
(p3r) = valp1

r
(p5r) = 1,

valp2
r
(p3r) = valp2

r
(p4r) = valp2

r
(p1r) = 1, valp3

r
(p4r) = valp3

r
(p5r) = valp3

r
(p2r) = 1,

valp4
r
(p5r) = valp4

r
(p1r) = valp4

r
(p3r) = 1, and valp5

r
(p1r) = valp5

r
(p2r) = valp5

r
(p4r) =

1. We shall refer to {p1r, . . . , p
5
r} as the rth pentagadget. Note that |N | = 39q. In

the full proof of this theorem, contained in [23], we show that a partition into
triangles X exists in G = (W,E) if and only if a stable matching M exists in
(N,V ) where |M | = |N |/3. 	


4 Symmetric Binary Preferences

Consider the restriction of 3D-SR-AS in which preferences are binary and sym-
metric, which we call 3D-SR-SAS-BIN. In this section we show that every
instance of 3D-SR-SAS-BIN admits a stable matching. We give a step-by-step
constructive proof of this result between Sects. 4.1–4.4, leading to an O(|N |3)
algorithm for finding a stable matching. In Sect. 4.5 we consider an optimisation
problem related to 3D-SR-SAS-BIN.

4.1 Preliminaries

An instance (N,V ) of 3D-SR-SAS-BIN corresponds to a simple undirected graph
G = (N,E) where {αi, αj} ∈ E if valαi

(αj) = 1, which we refer to as the
underlying graph.
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We introduce a restricted type of matching called a P -matching. Recall that
by definition, M(αp) = ∅ implies that uαp

(M) = 0 for any αp ∈ N in an
arbitrary matching M . We say that a matching M in (N,V ) is a P -matching if
M(αp) �= ∅ implies uαp

(M) > 0.
It follows that a P -matching corresponds to a {K3, P3}-packing in the under-

lying graph [22]. Note that any triple in a P -matching M must contain some
agent with utility two. A stable P -matching is a P -matching that is also stable.
We will eventually show that any instance of 3D-SR-SAS-BIN contains a stable
P -matching.

In an instance (N,V ) of 3D-SR-SAS-BIN, a triangle comprises three agents
αm1 , αm2 , αm3 such that valαm1

(αm2) = valαm2
(αm3) = valαm3

(αm1) = 1. If
(N,V ) contains no triangle then we say it is triangle-free. If (N,V ) is not triangle-
free then it can be reduced by successively removing three agents that belong
to a triangle until it is triangle-free. This operation corresponds to removing
a maximal triangle packing (see [12,22]) in the underlying graph and can be
performed in O(|N |3) time. The resulting instance is triangle-free. We summarise
this observation in the following lemma.

Lemma 2. Given an instance (N,V ) of 3D-SR-SAS-BIN, we can identify an
instance (N ′, V ′) of 3D-SR-SAS-BIN and a set of triples M� in O(|N |3) time
such that (N ′, V ′) is triangle-free, |N ′| ≤ |N |, and if M is a stable P -matching
in (N ′, V ′) then M ′ = M ∪ M� is a stable P -matching in (N,V ).

4.2 Repairing a P -Matching in a Triangle-Free Instance

In this section we consider an arbitrary triangle-free instance (N,V ) of 3D-SR-
SAS-BIN. Since the only instance referred to in this section is (N,V ) so here we
shorten “is stable in (N,V )” to “is stable”, or similar.

We first define a special type of P -matching which is ‘repairable’. We then
present Algorithm repair (Algorithm 1), which, given (N,V ) and a ‘repairable’
P -matching M , constructs a new P -matching M ′ that is stable. We shall see
in the next section how this relates to a more general algorithm that, given a
triangle-free instance, constructs a P -matching that is stable in that instance.

Given a triangle-free instance (N,V ), we say a P -matching M is repairable
if it is not stable and there exists exactly one αi ∈ N where uαi

(M) = 0 and
any triple that blocks M comprises {αi, αj1 , αj2} for some αj1 , αj2 ∈ N where
uαj1

(M) = 1, uαj2
(M) = 0, and valαi

(αj1) = valαj1
(αj2) = 1.

We now provide some intuition behind Algorithm repair and refer the reader
to Fig. 2. Recall that the overall goal of the algorithm is to construct a stable
P -matching M ′. Since the given P -matching M is repairable, our aim will be
to modify M such that uαi

(M ′) ≥ 1 while ensuring that no three agents that
are ordered to different triples in M ′ block M ′. The stability of the constructed
P -matching M ′ then follows.

The algorithm begins by selecting some triple {αi, αj1 , αj2} that blocks M .
The two agents in M(αj1) \ {αj1} are labelled αj3 and αj4 . We present two
example scenarios in which it is possible to construct a stable P -matching. First,
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suppose there exists some αz1 where valαj3
(αz1) = 1 and uαz1

(M) = 0. Con-
struct M ′ from M by removing {αj1 , αj2 , αj3} and adding {αi, αj1 , αj2} and
{αj3 , αj4 , αz1}. Now, uαi

(M ′) = 1 and uαp
(M ′) ≥ uαp

(M) for any αp ∈ N \{αi}.
It follows by Lemma 1 that M ′ is stable. Second, suppose there exists no such
αz1 but there exists some αz2 where valαj4

(αz2) = 1 and uαz2
(M) = 0. Now

construct M ′ from M by removing {αj1 , αj2 , αj3} and adding {αi, αj1 , αj2}
and {αj3 , αj4 , αz2}. Note that uαi

(M ′) = 1 and uαp
(M ′) ≥ uαp

(M) for any
αp ∈ N \ {αi, αj3}. It can be shown that αj3 does not belong to a triple that
blocks M ′ since no αz1 exists as described. It follows again by Lemma 1 that M ′

is stable. Generalising the approach in the two example scenarios, the algorithm
constructs a list S of agents, which initially comprises 〈αj1 , αj3 , αj4〉. The list S
has length 3c for some c ≥ 1, where {S3c−2, S3c−1, S3c} ∈ M and valSp

(Sp+1) = 1
for each p (1 ≤ p < 3c). The list S therefore corresponds to a path in the under-
lying graph. In each iteration of the main loop, three agents belonging to some

Algorithm 1. Algorithm repair

Input: a triangle-free instance (N, V ) of 3D-SR-SAS-BIN, repairable P -matching M
in (N, V ) (Section 4.2) with some such αi ∈ N .
Output: stable P -matching M ′ in (N, V )

{αj1 , αj2} ← some αj1 , αj2 ∈ N where {αi, αj1 , αj2} blocks M and uαj1
(M) = 1

{αj3 , αj4} ← M(αj1) \ {αj1} where uαj3
(M) = 2

S ← 〈αj1 , αj3 , αj4〉
c ← 1
b ← 0
αz1 , αz2 , αy1 , αy2 , αw1 ← ⊥
while true

αz1 ← some αz1 ∈ N \ {αi} where valαz1
(S3c−1) = 1 and uαz1

(M) = 0, else ⊥
αz2 ← some αz2 ∈ N \ {αi, αj2} where valαz2

(S3c) = 1 and uαz2
(M) = 0, else ⊥

αy1 ← some αy1 ∈ N where valS3c(αi) = valαy1
(αi) = 1 and uαy1

(M) = 0, else ⊥
αy2 ← some αy2 ∈ N where valS3c(αj2) = valαy2

(αj2) = 1 and uαy2
(M) = 0, else ⊥

b ← some 1 ≤ b < c where valS3b(αj2) = valS3c(S3b) = 1, else 0

αw1 ← some αw1 ∈ N where valS3c(αw1) = 1, uαw1
(M) = 1 and αw1 /∈ S

and there exists some αz3 ∈ N \ {αi} where valαw1
(αz3) = 1 and uαz3

(M) = 0,
else ⊥

if αz1 �= ⊥ or αz2 �= ⊥ or αy1 �= ⊥ or αy2 �= ⊥ or b > 0 or αw1 = ⊥ then
break

else
{αw2 , αw3} ← M(αw1) \ {αw1} where uαw2

(M) = 2
S ← S · 〈αw1 , αw2 , αw3〉
c ← c + 1

end if
end while

continued overleaf
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Algorithm 1. Algorithm repair

continued from previous page

if αz1 �= ⊥ and αz1 �= αj2 then
� Case 1
MS ← {{αi, αj1 , αj2}} ∪ ⋃

1≤d<c

{{S3d−1, S3d, S3d+1}} ∪ {{αz1 , S3c−1, S3c}}
else if αz2 �= ⊥ then

� Case 2
MS ← {{αi, αj1 , αj2}} ∪ ⋃

1≤d<c

{{S3d−1, S3d, S3d+1}} ∪ {{S3c−1, S3c, αz2}}
else if αz1 �= ⊥ and αz1 = αj2 then

� Case 3
αz4 ← some αz4 ∈ N \ {αi, αj2} where valS3c−2(αz4) = 1 and uαz4

(M) = 0

MS ← {{αi, αj1 , αj3}} ∪ ⋃

1≤d<c−1

{{S3d, S3d+1, S3d+2}} ∪ {{S3c−3, S3c−2, αz4}}
∪ {{S3c−1, S3c, αj2}}

else if αy1 �= ⊥ then
� Case 4
MS ← {{αj2 , αj1 , αj3}} ∪ ⋃

1≤d<c

{{S3d, S3d+1, S3d+2}} ∪ {{S3c, αi, αy1}}
else if αy2 �= ⊥ then

� Case 5
MS ← {{αi, αj1 , αj3}} ∪ ⋃

1≤d<c

{{S3d, S3d+1, S3d+2}} ∪ {{S3c, αj2 , αy2}}
else if b > 0 then

� Case 6
αz5 ← some αz5 ∈ N \ {αi, αj2} where valS3b+1(αz3) = 1 and uαz3

(M) = 0

MS ← {{αi, αj1 , αj3}} ∪ ⋃

1≤d<b

{{S3d, S3d+1, S3d+2}} ∪ {{αz4 , S3b+1, S3b+2}}
∪ ⋃

b+1≤d<c

{{S3d, S3d+1, S3d+2}} ∪ {{S3c, S3b, αj2}}
else

� Case 7. Note that αw1 = ⊥.
MS ← {{αi, αj1 , αj3}} ∪ ⋃

1≤d<c

{{S3d, S3d+1, S3d+2}}

end if
return M ′ = MS ∪ {r ∈ M | r ∩ S = ∅}

triple in M are appended to the end of S. The loop continues until S satisfies
at least one of six specific conditions. We show that eventually at least one of
these conditions must hold.

These six stopping conditions correspond to seven different cases, labelled
Case 1–Case 7, in which a stable P -matching M ′ may be constructed. The
exact construction of M ′ depends on which condition(s) caused the main loop to
terminate. Cases 1 and 3 generalise the first example scenario, in which some αz1

exists as described. Case 2 generalises the second example scenario, in which no
such αz1 exists but some αz2 exists as described. Cases 4–7 correspond to similar
scenarios. The six stopping conditions and seven corresponding constructions of
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αi

αj2

αj1 αj3 αj4 S4 S5 S6

. . .

S3d−2 S3d−1 S3d

. . .

S3c−2 S3c−1 S3c αw1

. . .

αz3

Fig. 2. Players and triples in M before a new iteration of the while loop

M ′ are somewhat hierarchical. For example, the proof that M ′ is stable in Case
4 relies on the fact that in no iteration did the condition for Cases 1 and 3
hold. A similar reliance exists in the proofs of each of the other cases. The proof
that M ′ is stable in Case 7 is the most complex. It relies on the fact that no
condition relating to any of the previous six cases held in the final or some
previous iteration of the main loop. Further intuition for the different cases is
given in the full version of this paper [23].

Algorithm repair is presented in Algorithm 1 in two parts. The first part
involves the construction of S and exploration of the instance. The second part
involves the construction of M ′. The following lemma establishes the correctness
and complexity of this algorithm.

Lemma 3. Algorithm repair returns a stable P -matching in O(|N |2) time.

4.3 Finding a Stable P -Matching in a Triangle-Free Instance

In the previous section we supposed that (N,V ) was a triangle-free instance of
3D-SR-SAS-BIN and considered a P -matching M that was repairable (Sect. 4.2).
We presented Algorithm repair, which can be used to construct a stable P -
matching M ′ in O(|N |2) time (Lemma 3). In this section we present Algo-
rithm findStableInTriangleFree (Algorithm 2), which, given a triangle-free
instance (N,V ), constructs a P -matching M ′ that is stable in (N,V ). Algo-
rithm findStableInTriangleFree is recursive. The algorithm first removes an
arbitrary agent αi to construct a smaller instance (N ′, V ′). It then uses a recur-
sive call to construct a P -matching M that is stable in (N ′, V ′). By Lemma 1,
any triple that blocks M in the larger instance (N,V ) must contain αi or block
M in (N ′, V ′). There are then three cases involving types of triple that block M
in (N ′, V ′). In two out of three cases, M ′ can be constructed by adding to M
a new triple containing αi and two players unmatched in M . In the third case,
M is not stable in (N,V ) but, by design, is repairable (see Sect. 4.2). It follows
that Algorithm repair can be used to construct a P -matching that is stable in
(N,V ) (Lemma 3). It is relatively straightforward to show that the running time
of Algorithm findStableInTriangleFree is O(|N |3).
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Algorithm 2. Algorithm findStableInTriangleFree

Input: an instance (N, V ) of 3D-SR-SAS-BIN
Output: stable P -matching M ′ in (N, V )

if |N | = 2 then return ∅

αi ← an arbitrary agent in N
(N ′, V ′) ← (N \ {αi}, V \ {valαi})
M ← findStableInTriangleFree((N ′, V ′))

if some αl1 , αl2 ∈ N exist where uαl1
(M) = uαl2

(M) = 0
and valαi(αl1) = valαi(αl2) = 1 then

return M ∪ {{αi, αl1 , αl2}}
else if some αl3 , αl4 ∈ N exist where uαl3

(M) = uαl4
(M) = 0

and valαi(αl3) = valαl3
(αl4) = 1 then

return M ∪ {{αi, αl3 , αl4}}
else if some αl5 , αl6 ∈ N exist where uαl5

(M) = 1, uαl6
(M) = 0

and valαi(αl5) = valαl5
(αl6) = 1 then

� M is repairable in (N, V ) (see Section 4.2). Note that αj1 = αl5 and αj2 = αl6 .
return repair((N, V ), M, αi)

else
return M

end if

Lemma 4. Algorithm findStableInTriangleFree returns a stable P -match-
ing in (N,V ) in O(|N |3) time.

4.4 Finding a Stable P -Matching in an Arbitrary Instance

In the previous section we considered instances of 3D-SR-SAS-BIN
that are triangle-free. We showed that, given such an instance, Algo-
rithm findStableInTriangleFree can be used to find a stable P -matching in
O(|N |3) time (Lemma 4). In Sect. 4.1, we showed that an arbitrary instance
can be reduced in O(|N |3) time to construct a corresponding triangle-free
instance (Lemma 2). Algorithm findStable therefore comprises two steps. First,
the instance is reduced by removing a maximal set of triangles. Call this set
M�. Then, Algorithm findStableInTriangleFree is called to construct a P -
matching M ′ that is stable in the reduced, triangle-free instance. It is straight-
forward to show that M� ∪ M ′ is a stable P -matching. The running time
of Algorithm findStable is thus O(|N |3). A pseudocode description of Algo-
rithm findStable can be found in the full version of this paper [23]. We arrive
at the following result.

Theorem 2. Given an instance (N,V ) of 3D-SR-SAS-BIN, a stable P -
matching, and hence a stable matching, must exist and can be found in O(|N |3)
time. Moreover, if |N | is a multiple of three then, if required, every agent can be
matched in the returned stable matching.
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4.5 Stability and Utilitarian Welfare

Given an instance (N,V ) of 3D-SR-SAS-BIN and matching M , let the utilitarian
welfare [4,11] of a set S ⊆ N , denoted uS(M), be

∑

αi∈S

uαi
(M). Let u(M) be

short for uN (M). Given a matching M in an arbitrary instance (N,V ) of 3D-
SR-SAS-BIN, it follows that 0 ≤ u(M) ≤ 2|N |. It is natural to then consider
the optimisation problem of finding a stable matching with maximum utilitarian
welfare, which we refer to as 3D-SR-SAS-BIN-MAXUW. This problem is closely
related to Partition Into Triangles (PIT, defined in Sect. 3), which we reduce
from in the proof that 3D-SR-SAS-BIN-MAXUW is NP-hard.

Theorem 3. 3D-SR-SAS-BIN-MAXUW is NP-hard.

We note that the reduction from PIT to 3D-SR-SAS-BIN-MAXUW also
shows that the problem of finding a (not-necessarily stable) matching with max-
imum utilitarian welfare, given an instance of 3D-SR-SAS-BIN, is also NP-hard.

In Sect. 4.4 we showed that, given an arbitrary instance (N,V ) of 3D-SR-
SAS-BIN, a stable P -matching exists and can be found in O(|N |3) time. We now
present Algorithm findStableUW (Algorithm 3) as an approximation algorithm
for 3D-SR-SAS-BIN-MAXUW.

This algorithm first calls Algorithm findStable to construct a stable P -
matching. It then orders the unmatched agents into triples such that the pro-
duced matching is still stable in (N,V ) (by Lemma 1) but is not necessarily a
P -matching. The pseudocode description of Algorithm findStableUW includes

Algorithm 3. Algorithm findStableUW

Input: an instance (N, V ) of 3D-SR-SAS-BIN
Output: stable matching MA in (N, V )

M1 ← findStable((N, V ))
U ← agents in N unmatched in M1

Y ← maximum2DMatching((N, V ), U)

if |Y | ≥ �|U |/3 then
X ← any �|U |/3 elements of Y

else
� Note that since Y is a set of disjoint pairs, it follows that

|U \ ⋃
Y | = |U | − 2|Y | ≥ �|U |/3 − |Y |.

W ← an arbitrary set of �|U |/3 − |Y | pairs of elements in U \ ⋃
Y

X ← Y ∪ W
end if

Z ← U \ ⋃
X

� Suppose X = {x1, x2, . . . , x�|U|/3�} and Z = {z1, z2, . . . , z�|U|/3�}.
� Note that xi is a pair of agents and zi is a single agent for each 1 ≤ i ≤ �|U |/3.
M2 ← {xi ∪ {zi} for each 1 ≤ i ≤ �|U |/3}
return M1 ∪ M2
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a call to maximum2DMatching. Given an instance (N,V ) and some set U ⊆ N ,
this subroutine returns a (two-dimensional) maximum cardinality matching Y
in the subgraph of G, the underlying graph of (N,V ), induced by U . From Y ,
Algorithm findStableUW constructs a set X of pairs with cardinality |U |/3�. It
also constructs a set Z from the remaining agents, also with cardinality |U |/3�.
Finally, it constructs the matching M2 such that each triple in M2 is union of
a pair of agents in X and a single agent in Z. Let MA be an arbitrary match-
ing returned by Algorithm findStableUW given (N,V ). Suppose Mopt is a stable
matching in (N,V ) with maximum utilitarian welfare. To prove the performance
guarantee of Algorithm findStableUW we show that 2u(MA) ≥ u(Mopt). The
proof involves apportioning the welfare of agents in MA by the triples of those
agents in Mopt.

Theorem 4. Algorithm findStableUW is a 2-approximation algorithm for 3D-
SR-SAS-BIN-MAXUW.

In the instance of 3D-SR-SAS-BIN shown in Fig. 3, Algorithm findStableUW
always returns MA = {{α3, α5, α6}} while Mopt = {{α1, α2, α3},
{α4, α5, α8}, {α6, α7, α9}}. Since u(MA) = 6 and u(Mopt) = 12 it follows that
u(Mopt) = 2u(MA). This shows that the analysis of Algorithm findStableUW
is tight. Moreover, this particular instance shows that any approximation algo-
rithm with a better performance ratio than 2 should not always begin, like
Algorithm findStableUW does, by selecting a maximal set of triangles.

5 Open Questions

In this paper we have considered the three-dimensional stable roommates prob-
lem with additively separable preferences. We considered the special cases in
which preferences are binary but not necessarily symmetric, and both binary
and symmetric. There are several interesting directions for future research.

α5α4

α8

α6

α9

α7

α3

α2α1

Fig. 3. An instance in which u(Mopt) = 2u(MA).
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• Does there exist an approximation algorithm for 3D-SR-SAS-BIN-MAXUW
(Sect. 4.5) with a better performance guarantee than 2?

• In 3D-SR-AS, there are numerous possible restrictions besides symmetric and
binary preferences. Do any other restrictions ensure that a stable matching
exists? For example, we could consider the restriction in which preferences
are symmetric and valαi

∈ {0, 1, 2} for each αi ∈ N .
• Additively separable preferences are one possible structure of agents’ prefer-

ences that can be applied in a model of three-dimensional SR. Are there other
systems of preferences that result in new models in which a stable matching
can be found in polynomial time?

• The 3D-SR-AS problem model can be generalised to higher dimensions. It
would be natural to ask if the algorithm for 3D-SR-SAS-BIN can be gener-
alised to the same problem in k ≥ 3 dimensions, in which a k-set of agents S
is blocking if, for each of the k agents in S, the utility of S is strictly greater
than that agent’s utility in the matching. We conjecture that when k ≥ 4, a
stable matching need not exist, and that the associated decision problem is
NP-complete, even when preferences are both binary and symmetric.
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Abstract. The set of stable matchings induces a distributive lattice. The
supremum of the stable matching lattice is the boy-optimal (girl-pessimal)
stable matching and the infimum is the girl-optimal (boy-pessimal) sta-
ble matching. The classical boy-proposal deferred-acceptance algorithm
returns the supremum of the lattice, that is, the boy-optimal stable match-
ing. In this paper, we study the smallest group of girls, called theminimum
winning coalition of girls, that can act strategically, but independently, to
force the boy-proposal deferred-acceptance algorithm to output the girl-
optimal stable matching. We characterize the minimum winning coalition
in terms of stable matching rotations. Our two main results concern the
random matching model. First, the expected cardinality of the minimum
winning coalition is small, specifically ( 1

2
+o(1)) log n. This resolves a con-

jecture of Kupfer [13]. Second, in contrast, a randomly selected coalition
must contain nearly every girl to ensure it is a winning coalition asymptot-
ically almost surely. Equivalently, for any ε > 0, the probability a random
group of (1 − ε)n girls is not a winning coalition is at least δ(ε) > 0.

1 Introduction

We study the stable matching problem with n boys and n girls. Each boy has
a preference ranking over the girls and vice versa. A matching is stable if there
is no boy-girl pair that prefer each other over their current partners in the
matching. A stable matching always exists and can be found by the deferred-
acceptance algorithm [5]. Furthermore, the set of stable matchings forms a lattice
whose supremum matches each boy to his best stable-partner and each girl to
her worst stable-partner. This matching is called the boy-optimal (girl-pessimal)
stable matching. Conversely, the infimum of the lattice matches each boy to his
worst stable-partner and each girl to her best stable-partner. Consequently this
matching is called the girl-optimal (boy-pessimal) stable matching.

Interestingly, the deferred-acceptance algorithm outputs the optimal stable
matching for the proposing side. Perhaps surprisingly, the choice of which side
makes the proposal can make a significant difference. For example, for the ran-
dom matching model, where the preference list of each boy and girl is sampled
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uniformly and independently, Pittel [15] showed the boy-proposal deferred accep-
tance algorithm assigns the boys with much better ranking partners than the
girls. Specifically, with high probability, the sum of the partner ranks is close
to n log n for the boys and close to n2

log n for the girls. Hence, on average, each
boy ranks his partner at position log n at the boy-optimal stable matching while
each girl only ranks her partner at position n

log n . Consequently, collectively the
girls may have a much higher preference for the infimum (girl-optimal) stable
matching than the supremum (girl-pessimal) stable matching output by the boy-
proposal deferred-acceptance algorithm.

Remarkably, Ashlagi et al. [1] proved that in an unbalanced market with one
fewer girls than boys this advantage to the boys is reversed. In the random
matching model, with high probability, each girl is matched to a boy she ranks
at log n on average and each boy is matched to a girl he ranks at n

log n on aver-
age, even using the boy-proposal deferred-acceptance algorithm.1 Kupfer [13]
then showed a similar effect arises in a balanced market in which exactly one
girl acts strategically. The expected rank of the partner of each girl improves
to O(log4 n) while the expected rank of the partner of each boy deteriorates to
Ω( n

log2+ε n
). Thus, just one strategic girl suffices for the stable matching output

by the boy-proposal deferred-acceptance algorithm to change from the supre-
mum of the lattice to a stable matching “close” to the infimum. But how many
strategic girls are required to guarantee the infimum itself is output? Kupfer [13]
conjectured that O(log n) girls suffice in expectation. In this paper we prove this
conjecture. More precisely, we show that the minimum number of strategic girls
required is 1

2 log n+O(log log n) = (12 +o(1)) log n in expectation. Consequently,
the expected cardinality of the optimal winning coalition of girls is relatively
small. Conversely, a random coalition of girls must be extremely large, namely
of cardinality n − o(n), if it is to be a winning coalition asymptotically almost
surely. We prove that, for any ε > 0, the probability a random group of (1− ε)n
girls is not a winning coalition is at least a constant.

1.1 Overview

In Sect. 2, we present the relevant background on the stable matching problem,
in particular, concerning the stable matching lattice and the rotation poset.
In Sect. 3 we provide a characterization of winning coalitions of girls in terms
of minimal rotations in the rotation poset. In Sect. 4, we present the random
matching model studied for the main results of the paper. Our first main result
is given in Sect. 5 and shows that in random instances the cardinality of the
minimum winning coalition is much closer to the lower bound than the upper
bound. Specifically, in the random matching model, the expected cardinality of
the minimum winning coalition is 1

2 log n + O(log log n). Our second main result
is presented in Sect. 6 and shows that for a randomly selected coalition to be a
winning coalition with probability 1 − o(1), it must have cardinality n − o(n).
1 In fact, an unbalanced market essentially contains a unique stable matching; see [1]

for details.
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An example illustrating the concepts along with the proofs of the lemmas
and theorems are deferred to the full version of the paper.

2 The Stable Matching Problem

Here we review the stable matching problem and the concepts and results rele-
vant to this paper. The reader is referred to the book [9] by Gusfield and Irving
for a comprehensive introduction to stable matchings.

We are given a set B = {b1, b2, . . . , bn} of boys and a set G = {g1, g2, . . . , gn}
of girls. Every boy b ∈ B has a preference ranking �b over the girls; similarly,
every girl g ∈ G has a preference ranking �g over the boys. Now let μ be a
(perfect) matching between the boys and girls. We say that boy b is matched to
girl μ(b) in the matching μ; similarly, girl g is matched to boy μ(g). Boy b and
girl g form a blocking pair {b, g} if they prefer each other to their partners in
the matching μ; that is g �b μ(b) and b �g μ(g). A matching μ that contains
no blocking pair is called stable; otherwise it is unstable. In the stable matching
problem, the task is to find a stable matching.

2.1 The Deferred-Acceptance Algorithm

The first question to answer is whether or not a stable matching is guaranteed
to exist. Indeed a stable matching always exists, as shown in the seminal work
of Gale and Shapley [5]. Their proof was constructive; the deferred-acceptance
algorithm, described in Algorithm 1, outputs a stable matching.

Algorithm 1: Deferred-Acceptance (Boy-Proposal Version)
while there is an unmatched boy b do

Let b propose to his favourite girl g who has not yet rejected him;
if g is unmatched then

g provisionally matches with b;

else if g is provisionally matched to b̂ then

g provisionally matches to her favourite of b and b̂, and rejects the
other;

The key observation here is that only a girl can reject a provisional match.
Thus, from a girl’s perspective, her provisional match can only improve as the
algorithm runs. It follows that the deferred-acceptance algorithm terminates
when every girl has received at least one proposal. In addition, from a boy’s
perspective, his provisional match can only get worse as the algorithm runs.
Indeed, it would be pointless for a boy to propose to girl who has already rejected
him. Thus, each boy will make at most n proposals. Furthermore, because each
boy makes proposals in decreasing order of preference, every girl must eventually
receive a proposal. Thus the deferred-acceptance algorithm must terminate with
a perfect matching μ.
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Theorem 2.1 (Gale and Shapley 1962 [5]). The deferred-acceptance algo-
rithm outputs a stable matching.

2.2 The Stable Matching Lattice

So a stable matching always exists. In fact, there may be an exponential number
of stable matchings [11]. The set M of all stable matchings forms a poset (M,�)
whose order � is defined via the preference lists of the boys. Specifically, μ1 � μ2

if and only if every boy weakly prefers their partner in the stable matching μ1 to
their partner in the stable matching μ2; that is μ1(b) �b μ2(b), for every boy b.

Conway (see Knuth [11]) observed that the poset (M,�) is in fact a distribu-
tive lattice. Thus, by the lattice property, each pair of stable matchings μ1 and μ2

has a join (least upper bound) and a meet (greatest lower bound) in the lattice.
Moreover, the join μ̂ = μ1 ∨ μ2 has the remarkable property that each boy b is
matched to his most preferred partner amongst the girls μ1(b) and μ2(b). Simi-
larly, in the meet μ̌ = μ1 ∧ μ2 each boy is matched to his least preferred partner
amongst the girls μ1(b) and μ2(b). In particular, in the supremum 1 =

∨
μ∈M μ

of the lattice each boy is matched to his most preferred partner from any stable
matching (called his best stable-partner). Accordingly, the matching 1 is called
the boy-optimal stable matching. On the other hand, in the infimum 0 =

∧
μ∈M μ

of the lattice each boy is matched to his least preferred partner from any stable
matching (called his worst stable-partner). Accordingly, the matching 0 is called
the boy-pessimal stable matching.

Theorem 2.2 [5]. The deferred-acceptance algorithm outputs the boy-optimal
stable matching.

The reader may have observed that the description of the deferred-acceptance
algorithm given in Algorithm 1 is ill-specified. In particular, which unmatched
boy is selected to make the next proposal? Theorem 2.2 explains the laxity of
our description. It is irrelevant which unmatched boy is chosen in each step,
the final outcome is guaranteed to be the boy-optimal stable matching! In fact,
the original description of the algorithm by Gale and Shapley [5] allowed for
simultaneous proposals by unmatched boys – again this has no effect on the
stable matching output.

The inverse poset (M,�) is also of fundamental interest. Indeed, McVitie and
Wilson [14] made the surprising observation that (M,�) is the lattice defined
using the preference lists of the girls rather than the boys. That is, every boy
weakly prefers their partner in the stable matching μ1 to their partner in the
stable matching μ2 if and only if every girl weakly prefers their partner in the
stable matching μ2 to their partner in the stable matching μ1.

Theorem 2.3 [14]. If μ1 � μ2 in the lattice (M,�) then every girl weakly
prefers μ2 over μ1.
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Consequently, the boy-optimal stable matching 1 is also the girl-pessimal sta-
ble matching and the boy-pessimal stable matching 0 is the girl-optimal stable
matching.

2.3 The Rotation Poset

Recall that the lattice (M,�) is a distributive lattice. This is important because
the fundamental theorem for finite distributive lattices of Birkhoff [2] states that
associated with any distributive lattice L is a unique auxiliary poset P(L). Specif-
ically, the order ideals (or down-sets) of the auxiliary poset P, ordered by inclu-
sion, form the lattice L. We refer the reader to the book of Stanley [18] for
details on the fundamental theorem for finite distributive lattices. For our pur-
poses, however, it is sufficient to note that the auxiliary poset P for the stable
matching lattice (M,�) has an elegant combinatorial description that is very
amenable in studying stable matchings.

In particular, the auxiliary poset for the stable matching lattice is called the
rotation poset P = (R,≥) and was first discovered by Irving and Leather [10].
The elements of the auxiliary poset are rotations. Informally, given a sta-
ble matching μ, a rotation will rearrange the partners of a suitably chosen
subset of the boys in a circular fashion to produce another stable matching.
Formally, a rotation R ∈ R is a subset of the pairs in the stable match-
ing μ, R = [(b0, g0), (b1, g1), . . . , (bk, gk)], such that for each boy bi, the girl
gi+1 (mod k+1) is the first girl after his current stable-partner gi on his preference
list who would accept a proposal from him. That is, gi+1 prefers boy bi over her
current partner boy bi+1 and every girl g that boy bi ranks on his list between
gi and gi+1 prefers her current partner in μ over bi.

In this case, we say that R is a rotation exposed by the stable matching μ.
Let μ̂ = μ⊗R be the perfect matching obtained by matching boy bi with the girl
gi+1 (mod k+1), for each 0 ≤ i ≤ k, with all other matches the same as in μ. Irving
and Leather [10] showed that μ̂ is also a stable matching. More importantly they
proved:

Theorem 2.4 [10]. The matching μ̂ is covered2 by μ in the Hasse diagram of
the stable matching lattice if and only if μ̂ = μ ⊗ R for some rotation R exposed
by μ.

Theorem 2.4 implies we may traverse the stable matching lattice (M,�) using
rotations. As stated, we may also derive a poset P = (R,≥) whose elements are
rotations. Let Rμ be the set of all rotations exposed in μ. Then R =

⋃
μ∈M Rμ is

the set of all rotations. We then define the partial order ≥ as follows. Let R1 ≥ R2

in P if and only if for any stable matching μ1 ∈ {μ ∈ M : R1 ∈ Rμ} and any
stable matching μ2 ∈ {μ ∈ M : R2 ∈ Rμ}, either μ1 and μ2 are incomparable or
μ1 � μ2 in (M,�). This rotation poset P = (R,≥) is the auxiliary poset for the

2 We say y is covered by x in a poset if x � y and there is no element z such that
x � z � y.
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stable matching lattice (M,�); see Gusfield and Irving [9]. In particular, there
is a bijection between stable matchings and antichains of the rotation poset.

For any stable matching μ = {(b1, g1), (b2, g2), . . . , (bn, gn)} we define an
auxiliary directed graph H(μ). This graph, which we call the (exposed) rotation
graph, has a vertex i for each boy bi. There is an arc from i to j if the next girl
on bi’s list to prefer bi over her current partner is gj . If for some bi, no such girl
exists, then i has out-degree 0; otherwise it has out-degree 1. By definition, the
rotations exposed in μ are exactly the cycles of H(μ). For example, if μ = 1 then
H(1) consists of the set of rotations exposed in the boy-optimal stable matching.
We call these the maximal rotations.

A rotation R exposed in μ is minimal if μ⊗R = 0. Equivalently, the minimal
rotations are the set of rotations exposed in the girl-optimal stable matching 0
when ordering using the preferences of the girls rather than the boys.

3 Incentives in the Stable Matchings Problem

Intuitively, because the deferred-acceptance algorithm outputs the boy-optimal
stable matching, there is no incentive for a boy not to propose to the girls in order
of preference. This fact was formally proven by Dubins and Freedman [3]. On the
other hand, because the stable matching is girl-pessimal, it can be beneficial for
a girl to strategize. Indeed, Roth [17] showed that no stable matching mechanism
exists that is incentive compatible for every participant.

3.1 The Minimum Winning Coalition of Girls

The structure of the stable matching lattice L is extremely useful in understand-
ing the incentives that arise in the stable matching problem. For example, the
following structure will be of importance in this paper. Let F ⊆ G be a group
of girls and let MF be the collection of stable matchings where every girl in F
is matched to their best stable-partner. Given the aforementioned properties of
the join and meet operation in the stable matching lattice, it is easy to verify
that LF = (MF ,�) is also a lattice. Thus, LF has a supremum 1F which is the
boy-optimal stable matching given that every girl in F is matched to their best
stable-partner. Similarly, LF has a infimum 0F which is the boy-pessimal sta-
ble matching given that every girl in F is matched to their best stable-partner.
Observe that 0F is the girl-optimal stable-matching 0, for any subset F of the
girls.

Why is this useful here? Well, imagine that each girl in F rejects anyone who
is not their best stable-partner. Then the deferred-acceptance algorithm will
output the stable matching 1F ; see also the works of Gale and Sotomayor [6] on
strong equilibria and of Gonczarowski [7] on blacklisting. Of course, if F = G
then both 1G and 0G must match every girl to their optimal stable partner so
1G = 0G = 0.

We will call any F ⊆ G such that 1F = 0 a winning coalition and the
smallest such group is called a minimum winning coalition. Winning coalitions
can be found using the rotation poset.
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Theorem 3.1. A set of girls is a winning coalition if and only if it contains at
least one girl from each minimal rotation in the rotation poset (R,≥)

Theorem 3.1 allows us to find a minimum winning coalition.

Corollary 3.2. The cardinality of the minimum winning coalition is equal to
the cardinality of the set of minimal rotations in the rotation poset (R,≥).

3.2 Efficiency and Extremal Properties

From the structure inherent in Theorem 3.1 and Corollary 3.2 we can make
several straight-forward deductions regarding winning coalitions.

First, Theorem 3.1 implies that we have a polynomial algorithm to verify
winning coalitions. Likewise Corollary 3.2 implies that we have a polynomial time
algorithm to compute the minimum winning coalition. In fact, the techniques of
Gusfield [8] (see also [9]) can now be used to solve both problems in O(n2) time.

Second, we can upper bound the cardinality of the minimum winning coali-
tion.

Lemma 3.3. In any stable matching problem the minimum winning coalition
has cardinality at most

⌊
n
2

⌋
.

Can this upper bound on the cardinality of the minimum winning coalition
ever be obtained? The answer is yes. In fact, every integer between 0 and �n

2 �
can be the cardinality of the smallest winning coalition.

Theorem 3.4. For each 0 ≤ k ≤ �n
2 � there exists a stable matching instance

where the minimum winning coalition has cardinality exactly k.

We remark that the instances constructed in the proof of Theorem 3.4 have
2k stable matchings. As k can be as large as �n

2 �, this gives a simple proof of
the well known fact that the number of stable matchings may be exponential in
the number of participants [11].

We now have all the tools required to address the main questions in this
paper.

4 The Random Matching Model

For the rest of the paper we use the random matching model which was first
studied by Wilson [19] and subsequently examined in detail by Knuth, Pittel and
coauthors [11,12,15,16]. Here the preference ranking of each boy and each girl is
drawn uniformly and independently from the symmetric group Sn. Specifically,
each preference ranking is a random permutation of the set [n] = {1, 2, . . . , n}.

We may now state the two main results of the paper. First, in the random
matching model, the expected cardinality of the minimum winning coalition is
O(log n).
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Theorem 4.1. In the random matching model, the expected cardinality of the
minimum winning coalition F is E(|F |) = log(

√
n) + O(log log n)

So the minimum winning coalition is small. Surprisingly, in sharp contrast, our
second result states that a random coalition must contain nearly every girl if it
is to form a winning coalition with high probability. Equivalently:

Theorem 4.2. In the random matching model, ∀ε > 0, ∃δ(ε) > 0 such that for
a random coalition F of cardinality (1 − ε) · n the probability that F is not a
winning coalition is at least δ(ε).

To prove these results, recall Theorem 3.1 which states that a winning coalition
F must intersect each minimal rotation in the rotation poset (R,≥). Thus, for
Theorem 4.1 it suffices to show that the expected number of minimal rotations
is O(log n). To show Theorem 4.2 we must lower bound the probability that
a randomly chosen coalition of girls contains at least one girl in each minimal
rotation. Our approach is to show the likelihood of a small cardinality minimal
rotation is high. In particular, we prove there is a minimal rotation containing
exactly two girls with constant probability. It immediately follows that a random
coalition must contain nearly all the girls if it is to be a winning coalition with
high probability.

So our proofs require that we study the set of minimal rotations in the random
matching model. The following two “tricks” will be useful in performing our
analyses. First, instead of minimal rotations we may, in fact, study the set Rmax

of maximal rotations, that is the rotations that are exposed at the boy-optimal
stable matching 1. This is equivalent because Theorem 2.3 tells us that the
inverse lattice (M,�) is the stable matching lattice ordered according to the
preferences of the girls. This symmetry implies that the behaviour of minimal
rotations is identical to the behaviour of maximal rotations as the maximal
rotations of one lattice are the minimal rotations of the other. But why is the
switch to maximal rotations from minimal rotations helpful? Simply put, as
we are using the boy-proposal version of the deferred acceptance algorithm, we
obtain the boy-optimal stable matching and, consequently, it is more convenient
to reason about the rotations exposed at 1, that is, the maximal rotations.

Second, it will be convenient to view the deferred acceptance algorithm with
random preferences in an alternative manner. In particular, instead of gener-
ating the preference rankings in advance, we may generate them dynamically.
Specifically, when a boy b is selected to make a proposal he asks a girl g chosen
uniformly at random. If b has already proposed to g then this proposal is imme-
diately rejected; such a proposal is termed redundant. Meanwhile, g maintains a
preference ranking only for the boys that have proposed to her. Thus if this is the
kth distinct proposal made to girl g then she assigns to b a rank chosen uniformly
at random among {1, . . . k}. In particular, in the deferred acceptance algorithm
g accepts the proposal with probability 1/k. As explained by Knuth et al. [12],
this process is equivalent to randomly generating the preference rankings inde-
pendently in advance. Furthermore, recall from Theorem 2.2 that the deferred
acceptance algorithm will output the boy-optimal stable matching regardless
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of the order of proposals. It follows that, for the purposes of analysis, we may
assume the algorithm selects the unmatched boy with the lowest index to make
the next proposal.

So our task now is to investigate the properties of maximal rotations, that
is directed cycles in the rotation graph H(1). Intuitively, this relates to the
study of directed cycles in random graphs with out-degrees exactly one. But
there is one major problem. In random graphs the choice of out-neighbour is
independent for each vertex. But in the rotation graph H(1) this independence is
lost. In particular, the arcs in H(1) share intricate dependencies and specifically
depend on who made and who received each proposal in obtaining the boy-
optimal stable matching 1. Moreover, a vertex may even have out-degree zero in
H(1). Essentially, the remainder of paper is devoted to showing that the myriad
of dependencies that arise are collectively of small total consequence. It will
then follow that the expected number or maximal rotations and the minimum
cardinality of a maximal rotation both behave in a predictable manner, similar to
that of directed cycles in random graphs with out-degrees exactly one. Namely,
the expected number of cycles is close to log n

2 and the existence a cycle of size
two with constant probability [4].

Consequently, to study maximal rotations we must consider H(1). We do
this via a two-phase approach. In the first phase we calculate the boy-optimal
stable matching 1, without loss of generality, 1 = {(b1, g1), (b2, g2), . . . , (bn, gn)}.
This of course can be found by running the boy-proposal deferred acceptance
algorithm. In the second phase, we calculate the rotation graph H(1). But, as
explained in Sect. 2.3, we can find the rotations by running the boy-proposal
deferred acceptance algorithm longer.

In fact, to calculate (i) the expected number of maximal rotations and (ii) the
probability that there is a maximum rotation of cardinality 2, we will not need
the entire rotation graph H(1) only subgraphs of it. Moreover, the subgraphs we
require will be different in each case. Consequently, the second phases required to
prove Theorem 4.1 and Theorem 4.2 will each be slightly different. These distinct
second phases will be described in detail in Sect. 5 and Sect. 6, respectively.
They both, however, share fundamental properties which will be exploited in
shortening the subsequent proofs.

4.1 A Technical Tool for Counters

Before describing the two algorithms, we present a technical lemma that we
will use repeated in analyzing the deviations that arise in their application. To
formalize the lemma, we require the notion of a state. The state of the algorithm
at any point is the record of all the (random) choices made so far: the sequence
of proposals and the preference rankings generated by the girls. Thus we are
working in the probability space (Ω,P ) of all possible states Ω of the algorithm
and the probabilities of reaching them.

We index the intermediate states of the algorithm by the number of proposals
made to reach it. Let Ωt denote the set of all possible states of the procedure
after t proposals. A random variable Xt is Ωt-measurable if Xt is determined by
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the algorithm state after t proposals, that is X is constant on each part of Ωt.
We say that a sequence (Xt)t≥0 of random variables is a counter if Xt is Ωt-
measurable and Xt − Xt−1 ∈ {0, 1}. Thus counters count the number of certain
events occurring over the course of the algorithm. As an example, the number
of successful proposals among the first t proposals is a counter.

Our main tool is Lemma 4.3 below which is used to control large deviations
of counters. Let Bk,p be a random variable which follows a binomial distribution
with parameters k and p. We say that a collection of states G is monotone if
for every state S �∈ G we have S′ �∈ G for every state S′ that can be reached
from S. For example, the collection of states in which every girl received at most
one proposal is monotone. Let {St|t ∈ N} be the sequence of random variables
corresponding to the state of the algorithm at time t

Lemma 4.3. Let G be a monotone collection of states and let (Xt)t≥0 be a
counter. If P (Xt′+1 − Xt′ = 1|St′ = St′) ≥ p for every state St′ ∈ Ωt′ ∩ G, for
any t′ ∈ [t, t + k], then, for any λ ≥ 0 and any k ≥ 1,

P ((Xt+k − Xt ≤ λ) ∧ (St+k−1 ∈ G)|St = St) ≤ P (Bk,p ≤ λ) .

We also use a version of this lemma in which we give an upper bound to the
probability that a counter is bounded below.

5 Minimum Winning Coalitions

In this section, we will evaluate the expected cardinality of the minimum winning
coalition. Recall, it suffices is to find the expected number of directed cycles,
Rmax, in the rotation graph H(1). To do this, it will be useful to describe the
cardinality of Rmax in a more manipulable form. Specifically, for any boy bi define
a variable Zi to be 1

|R| if bi is in a maximal rotation R and 0 otherwise. Then
we obtain that |Rmax| =

∑
R∈Rmax 1 =

∑
R∈Rmax

∑
(b,g)∈R

1
|R| =

∑n
i=1 Zi.

By linearity of expectation, the expected cardinality of the minimum winning
coalition F is E(|F |) = E(|Rmax|) = E (

∑n
i=1 Zi) =

∑n
i=1 E(Zi). This

equality has an important consequence. Recall from Sect. 4 that the difficulty in
computing E(|F |) is the myriad of dependencies that arise in the formation of
the rotations in Rmax. But we can now infer that, to quantify the dependency
effects, rather than count expected rotations directly, it suffices to focus simply
on computing E(Zi).

5.1 Generating Maximal Rotations from the Rotation Graph

Ergo, our task now is to evaluate E(Zi). For this we study a two-phase ran-
domized algorithm, henceforth referred to as the algorithm, for generating the
potential maximal rotation containing a given boy. The first phase computes the
boy-optimal stable matching 1 = {(b1, g1), (b2, g2), . . . , (bn, gn)}. In the second
phase we use a variation of the deferred acceptance algorithm to generate arcs
in (a subgraph of) the rotation graph and generate a random variable Z.



Descending the Stable Matching lattice 291

The second phase starts with a randomly selected boy i1 who makes uni-
formly random proposals until the first time he proposes to a girl gj who prefers
him over her partner bj in the boy-optimal stable matching. The boy bj will
make the next sequence of proposals. The process terminates if we find a max-
imal rotation. Moreover, if this rotation is completed because girl gi1 receives
and accepts a proposal then we have found a maximal rotation containing boy
i1. In this case we also update Z. Formally, we initialize the second-phase by:

– Choose i1 from {1, 2, . . . , n} uniformly at random.
– Initialize the potential cycle in the rotation digraph containing i1 by setting

R = [i1].

Once R = [i1, . . . , ik] is found, we generate the arc of the rotation digraph
emanating from ik, as follows.

– Let boy bik
make uniformly random proposals until the first time he proposes

to a girl gj such that gj ranks bik
higher than bj . That is, gj ranks bik

higher
than her pessimal stable partner.

• If j �∈ R then we set ik+1 = j, R = [i1, . . . , ik, ik+1], and recurse.
• If j ∈ R then we terminate the procedure. We set Z = 1

|R| , if j = i1, and
Z = 0, otherwise.

– If, instead, boy bik
gets rejected by all the girls then the vertex ik has no-

outgoing arcs in the rotation graph. Thus, bi1 belongs to no maximal rotation,
so we terminate the procedure and set Z = 0.

We emphasize that as the second phase runs, we do not change any assigned
partnerships. Specifically, when a girl receives a proposal we always compare her
rank for the proposing boy to the rank of her pessimal partner, regardless of any
other proposals she may have received during the second phase. Note Z = Zi1 ,
where i1 was chosen uniformly at random. The next lemma is then implied by
noting that the expectation of Z is the average of the expectations of the Zi.

Lemma 5.1. E(|F |) = n · E(Z) where Z is the random variable generated by
the algorithm.

Recall, bi1 is in a maximal rotation if and only if the rotation graph of the boy
optimal stable matching has a cycle containing bi1 . Observe that every connected
component of a directed graph in which each vertex has out-degree 1 contains
exactly one cycle. Hence, if we find a cycle in the same connected component as
bi but which does not contain him then bi1 is not in a maximal rotation. Then,
since |F | =

∑n
j=1 Zij

, we get E(|F |) =
∑n

j=1 E(Zij
) = n · E(Z).

5.2 Properties of the Two-Phase Algorithm

We now present a series of properties that arise with high enough probability
during the two-phase process. In particular, the process does not deviate too
far from its expected behaviour. For example, the running time of each phase is
not much longer than expected, no girl receives too many proposals, and no boy
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makes too many proposals. To formalize this, let T1 and T2 be the number of
proposals made in the first and second phases, respectively, and let T = T1 +T2.
Further, let a run be a sequence of consecutive proposals made by the same boy
in the same phase. Now consider the following properties that may apply to a
state:

I. The algorithm has not terminated.
II. If the algorithm is in the first phase then t ≤ 5n log n. If the algorithm is

in the second phase then T1 ≤ 5n log n
III. If the algorithm has not found a rotation yet then t ≤ T1 +

√
n log3 n.

IV. Each girl has received at most 21 log n proposals.
V. Each boy started at most 21 log n runs.

VI. Each run contained at most 111 log2 n proposals.
VII. Each boy has made at most log4 n proposals.

Let G be the set of all states that satisfy properties I to VII. We call these
good states. Any state that is not good is bad. Let G∗ denote the event that
the algorithm is in a good state the step before it terminates. Let G∗ be the
complement of G∗.

We remark that, for technical reasons, we will assume the second-phase ter-
minates if n log n proposals are made during that phase. This assumption is
superfluous here by conditon III, which states the second phase has at most√

n log3 n proposals. However, the assumption is useful as it will allow the fol-
lowing lemma to also apply for the modified second-phase algorithm that we use
in Sect. 6.

Lemma 5.2. For n sufficiently large, P (G∗) ≥ 1 − O(n−4).

So, we are in a good state the period before the algorithm terminates with high
probability. It follows that the magnitude of the expected number of maximal
rotations can be evaluated by consideration of good states.

Now, to calculate the expected number of maximal rotations we must analyze
in more detail the second phase of the algorithm. In particular, this section is
devoted to the proof of the following lemma.

Lemma 5.3. Let S∗ be the terminal state of the first phase.
If P

(
G∗|S∗

) ≤ 1
n3 then

E (Z|S∗) =
log n

2n
+ O

(
log log n

n

)

.

We remark that that our first main result, Theorem 4.1, readily follows from
Lemma 5.3 via Lemmas 5.1 and 5.2. It is also worth noting that III implies that
the second phase has at most

√
n log3 n proposals when G∗ occurs, due to the

fact we stop once we find our first cycle.
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6 Random Winning Coalitions

In this section, we consider the case where the girls in the coalition are themselves
randomly selected. Our task now is to prove that almost every girl must be
selected if we wish to obtain a winning coalition with high probability To do
this, it will suffice to prove that there is a maximal rotation of cardinality two
with constant probability.

6.1 Generating Maximal Rotations from the Rotation Graph

Let Z ′ be a random variable counting the number of maximal rotations of car-
dinality two. Again, to analyze Z ′ we use a two-phase algorithm. The first phase
is the same as before. We simply generate the boy-optimal stable matching
1 = {(b1, g1), (b2, g2), . . . , (bn, gn)}. But the second phase is slightly different.
Previously we had to evaluate the expected number of maximal rotations and,
to achieve that, it sufficed to end the second phase once we had found one rota-
tion. Now, because we are interested in maximal rotations or cardinality two we
will extend the second phase and terminate only when and if we find rotation of
cardinality two.

So now in the second phase we use the following algorithm to generate the
random variable Z ′, initialized at 0:

– Choose i1 from {1, 2, . . . , n} uniformly at random.
– Initialize the set of indices of boys who have made proposals in the second

phase with I = {i1}.
– Set tar = ∞.

For motivation, at any step, girl gtar can be viewed as the target girl. If she
accepts the next proposal then this will complete a rotation of cardinality two.
Observe that we intitialize tar = ∞ as it is impossible to complete a rotation
in the fist step.

To complete the description of the second-phase, assume we have I =
{i1, . . . , ik}. If k < n

2 and less than n log n proposals in total have been made
then we generate the next arc of the rotation digraph starting at ik, as follows:

– Let boy bik
make uniformly random proposals until the first time he proposes

to a girl gj such that gj ranks bik
higher than bj .

• If j = tar then increment Z ′ by 1. Recurse.
• If j ∈ I \{tar} then pick ik+1 from {1, 2, . . . , n}\I uniformly at random.

Set I = {i1, . . . , ik, ik+1} and tar = ∞. Recurse.
• If j �∈ I then set ik+1 = j, tar = ik, I = {i1, . . . , ik, ik+1}. Recurse.

– If, instead, boy bik
gets rejected by all the girls then return Z ′ = 0

Lemma 6.1. The probability of the existence of a maximal rotation of size two
is lower bounded by P (Z ′ ≥ 1).

Therefore, our aim is to prove that P (Z ′ ≥ 1) = Ω(1), where Z ′ is the random
variable generated by the algorithm.
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6.2 Bounding the Probability of Missing a Rotation

Our objective now is to show that the behaviour of this new two-phase algorithm
does not deviate too much from its expected behaviour. Specifically, we show it
satisfies a series of properties with sufficiently high probability. Properties I to
VII as well as T1 and T2 are as defined in Sect. 5. But now we require several more
properties. To describe these, let pSt

denote the probability of the next proposal
being accepted when in state St. We are interested in the states satisfying the
following properties:

VIII. t ≥ 1
2n log n

IX. No more than n
9
10 girls have received less than 1

4 log n proposals.
X. No more than

√
n girls have received a redundant proposal.

XI. {pτ |T1 ≤ τ ≤ t} ⊆
[

1
22 log n , 5

log n

]

XII. T2 ≥ 1
20n log n

Lemma 6.2. For n sufficiently large, the algorithm in a good state satisfying
these conditions the period before it terminates with high probability.

We can complete the proof of our second main result in two steps. First, we
show that the probability of a maximal rotation of cardinality two existing is at
least a constant, namely P (Z ′ ≥ 1) = Ω(1). The second step is then easy. If there
is a maximal rotation of cardinality two then a random coalition of cardinality
at most (1 − ε) · n will not be a winning coalition with constant probability.

7 Conclusion

We have evaluated the expected cardinality of the minimum winning coalition.
We believe this result is of theoretical interest and that the techniques applied
may have broader applications for stable matching problems. In terms of prac-
tical value it is worth discussing the assumptions inherent in the model. The
assumption of uniform and independent random preferences, while ubiquitous in
the theoretical literature, is somewhat unrealistic in real-world stable matching
instances. Furthermore, as presented, the model assumes full information, which
is clearly not realistic in practice. However, to implement the behavioural strat-
egy presented in this paper, the assumption of full information is not required.
It needs only that a girl has a good approximation of the rank of her best stable
partner. But, by the results of Pittel [15], she does know this with high prob-
ability. Consequently, a near-optimal implementation of her behavioural strat-
egy requires knowledge only of her own preference list! This allows for a risk-
free method to output a matching close in the lattice to the girl-optimal stable
matching. Similarly, as discussed, although our presentation has been in terms
of a coalition of girls, each girl is able to implement a near-optimal behavioural
strategy independent of who the other girls in the coalition may be or what their
preferences are.

Acknowledgements. We would like to thank the various reviewers whose comments
have helped us improve this paper.
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Abstract. In this work we study the metric distortion problem in vot-
ing theory under a limited amount of ordinal information. Our primary
contribution is threefold. First, we consider mechanisms which perform
a sequence of pairwise comparisons between candidates. We show that
a widely-popular deterministic mechanism employed in most knockout
phases yields distortion O(log m) while eliciting only m−1 out of Θ(m2)
possible pairwise comparisons, where m represents the number of can-
didates. We also provide a matching lower bound on its distortion. In
contrast, any mechanism which performs fewer than m − 1 pairwise
comparisons has unbounded distortion. Moreover, we study the power
of deterministic mechanisms under incomplete rankings. Most notably,
when every agent provides her k-top preferences we show an upper bound
of 6m/k + 1 on the distortion, for any k ∈ {1, 2, . . . , m}, substantially
improving over the previous bound of 12m/k recently established by
Kempe [25,26]. Finally, we are concerned with the sample complexity
required to ensure near-optimal distortion with high probability. Our
main contribution is to show that a random sample of Θ(m/ε2) voters
suffices to guarantee distortion 3 + ε with high probability, for any suf-
ficiently small ε > 0. This result is based on analyzing the sensitivity
of the deterministic mechanism introduced by Gkatzelis, Halpern, and
Shah [22].

Keywords: Social choice · Metric distortion · Pairwise comparisons ·
Incomplete rankings · Sampling

1 Introduction

Aggregating the preferences of individuals into a collective decision lies at the
heart of social choice. According to the classic theory of Von Neumann and
Morgenstern [31] individual preferences are captured through a utility function,
which assigns numerical (or cardinal) values to each alternative. Yet, in vot-
ing theory, as well as in most practical applications, mechanisms typically elicit
only ordinal information from the voters, indicating an order of preferences over
the candidates. Although this might seem at odds with a utilitarian framework,
it has been recognized that it might be hard for a voter to specify a precise
numerical value for an alternative, and providing only ordinal information sub-
stantially reduces the cognitive burden. This begs the question: What is the loss
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in efficiency of a mechanism extracting only ordinal information with respect to
the utilitarian social welfare, i.e. the sum of individual utilities over a chosen
candidate? The framework of distortion introduced by Procaccia and Rosen-
schein [32] measures exactly this loss, and has received considerable attention in
recent years.

As it turns out, the guarantees we can hope for crucially depend on the
assumptions we make on the utility functions. For example, in the absence of
any structure Procaccia and Rosenschein observed that no ordinal mechanism
can obtain bounded distortion [32]. In this work we focus on the metric distortion
framework, introduced by Anshelevich et al. [3], wherein voters and candidates
are thought of as points in some arbitrary metric space; this is akin to models in
spatial voting theory [17]. In this context, the voters’ preferences are measured
by means of their “proximity” from each candidate, and the goal is to output
a candidate who (approximately) minimizes the social cost, i.e. the cumulative
distances from the voters.

A common assumption made in this line of work is that the algorithm has
access to the entire total rankings of the voters. However, there are many prac-
tical scenarios in which it might be desirable to truncate the ordinal information
elicited by the mechanism. For example, requesting only the top preferences
could further relieve the cognitive burden since it might be hard for a voter to
compare alternatives which lie on the bottom of her list (for additional motiva-
tion for considering incomplete or partial orderings see [16,21], and references
therein), while any truncation in the elicited information would also translate
to more efficient communication. These reasons have driven several authors to
study the decay of distortion under missing information [5,18,24,26], potentially
allowing some randomization (see our related work subsection). In this work we
follow this line of research, offering several new insights and improved bounds
over prior results.

1.1 Overview of Results

First, we study voting rules which perform a sequence of pairwise comparisons
between two candidates, with the result of each comparison being determined by
the majority rule over the entire population of voters. This class includes many
common mechanisms such as Copeland’s rule [33], and has received considerable
attention in the literature of social choice; cf., see [27], and references therein.
Within the framework of (metric) distortion the following fundamental question
arises:

How many pairwise comparisons between two candidates are needed to
guarantee non-trivial bounds on the distortion?

For example, Copeland’s rule elicits all possible pairwise comparisons, i.e.(
m
2

)
= Θ(m2), and guarantees distortion at most 5 [3]. Thus, it is natural to

ask whether we can substantially truncate the number of elicited pairwise com-
parisons without sacrificing too much the efficiency of the mechanism. In this
context, we provide the following strong positive result:
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Theorem 1. There exists a deterministic mechanism which elicits only m − 1
pairwise comparisons and guarantees distortion O(log m).

Our mechanism is particularly simple and natural: In every round we arbi-
trarily pair the remaining candidates and we only extract the corresponding com-
parisons. Next, we eliminate all the candidates who lost and we continue recur-
sively until a single candidate emerges victorious. Interestingly, this mechanism
is widely employed in practical applications, for example in the knockout phases
of most competitions. The main technical ingredient of the analysis is a powerful
lemma developed by Kempe via an LP duality argument [25]. Specifically, Kempe
characterized the social cost ratio between two candidates when there exists a
sequence of intermediate alternatives such that every candidate in the chain
pairwise-defeats the next one. We also supplement our analysis for this mecha-
nism with a matching lower bound on a carefully constructed instance. Moreover,
we show that any mechanism which performs (strictly) fewer than m−1 pairwise
comparisons has unbounded distortion. This limitation applies even if we allow
randomization either during the elicitation or the winner-determination phase.

Next, we study deterministic mechanisms which only receive an incomplete
order of preferences from every voter, instead of the entire rankings as it is usu-
ally assumed. This setting has already received attention in the literature, most
notably by Kempe [26], and has numerous applications in real-life voting sys-
tems. Arguably the most important such consideration arises when every voter
provides her k-top preferences, for some parameter k ∈ [m]. Kempe showed [26]
that there exists a deterministic mechanism which elicits only the k-top prefer-
ences and whose distortion is upper-bounded by 79m/k; using a tool developed
in [25] this bound can be improved all the way down to 12m/k. However, this
still leaves a substantial gap with respect to the best-known lower bound, which
is 2m/k if we ignore some additive constant factors. Thus, Kempe [26] left as
an open question whether the aforementioned upper bound can be improved. In
our work we make substantial progress towards bridging this gap, proving the
following:

Theorem 2. There exists a deterministic mechanism which only elicits the k-
top preferences and yields distortion at most 6m/k + 1.

We should stress that the constant factors are of particular importance in this
framework; indeed, closing the gap even for the special case of k = m has received
intense scrutiny in recent years [3,22,25,30]. From a technical standpoint the
main technique for proving such upper bounds consists of identifying a candidate
for which there exists a path to any other node such that every candidate in the
path pairwise-defeats the next one by a sufficiently large margin (which depends
on k). Importantly, the derived upper bound crucially depends on the length of
the path. Our main technical contribution is to show that there always exists a
path of length 2 with the aforedescribed property, while the previous best result
by Kempe established the claim only for paths of length 3.
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We also provide some other interesting bounds for deterministic mechanisms
under missing information. Most notably, if the voting rule performs well on an
arbitrary (potentially adversarially selected) subset of the voters can we quantify
its distortion over the entire population? We answer this question with a sharp
upper bound in Theorem5. In fact, we use this result as a tool for some of our
other proofs, but nonetheless we consider it to be of independent interest.

Finally, we consider mechanisms which receive information from only a
“small” random sample of voters; that is, we are concerned with the sample
complexity required to ensure efficiency, which boils down to the following fun-
damental question:

How large should the size of the sample be in order to guarantee near-
optimal distortion with high probability?

More precisely, we are interested in deriving sample-complexity bounds which
are independent on the number of voters n. This endeavor is particularly moti-
vated given that in most applications n � m. Naturally, sampling approxima-
tions are particularly standard in the literature of social choice. Indeed, in many
scenarios one wishes to predict the outcome of an election based on small sample
(e.g. in polls or exit polls), while in many other applications it is considered even
infeasible to elicit the entire input (e.g. in online surveys). In this context, we
will be content with obtaining near-optimal distortion with high probability (e.g.
99%). This immediately deviates from the line of research studying randomized
mechanisms (cf. see [5]) wherein it suffices to obtain a guarantee in expecta-
tion. We point out that it has been well-understood that a guarantee only in
expectation might be insufficient in many cases (e.g. see [18]). In this context,
we analyze the sample complexity of PluralityMatching, the mechanism of
Gkatzelis et al. [22] which recovers the optimal distortion bound of 3 (among
deterministic mechanisms), establishing the following result:

Theorem 3. For any sufficiently small ε > 0 there exists a mechanism which
takes a sample of size Θ(m/ε2) voters and yields distortion at most 3 + ε with
probability 0.99.

More precisely, the main ingredient of PluralityMatching is a maximum-
matching subroutine for a certain bipartite graph. Our first observation is that
the size of the maximum matching can be determined through a much smaller
graph which satisfies a “proportionality” condition with respect to a maximum-
matching decomposition. Although this condition cannot be explicitly met since
the algorithm is agnostic to the decomposition, our observation is that sampling
(with sufficiently many samples) will approximately satisfy this requirement,
eventually leading to the desired conclusion. It should be noted that our approach
is distribution-independent.

To conclude, we provide several experimental findings in real-life voting appli-
cations from the standpoint of the (metric) distortion framework. We are mostly
concerned with comparing the results of the scoring systems used in practice
against a mechanism which explicitly attempts to minimize the distortion; the
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latter is realized with the linear programming mechanism of Goel et al. [23].
Specifically, we analyze the efficiency of the scoring rule used in the Eurovision
song contest. Interestingly, we find that the winner in the actual competition
is the candidate who minimizes the distortion. Our implementation is publicly
available at https://github.com/ioannisAnagno/Voting-MetricDistortion.

We should remark that due to space constraints most of our proofs, as well
as some additional results are presented in the full version of our paper [2].

1.2 Related Work

Research in the metric distortion framework was initiated by Anshelevich et
al. [3]. Specifically, they analyzed the distortion of several common voting rules,
most notably establishing that Copeland’s rule has distortion at most 5, with the
bound being tight for certain instances. They also conjectured that the ranked
pairs mechanism always achieves distortion at most 3, which is also the lower
bound for any deterministic mechanism. This conjecture was disproved by Goel
et al. [23], while they also studied fairness properties of certain voting rules.
The barrier of 5 set out by Copeland was broken by Munagala and Wang [30],
presenting a novel deterministic rule with distortion 2+

√
5. The same bound was

obtained by Kempe [25] through an LP duality framework, who also articulated
sufficient conditions for proving the existence of a deterministic mechanism with
distortion 3. This conjecture was only recently confirmed by Gkatzelis et al. [22],
introducing the plurality matching mechanism. Closely related to our study is
also the work of Gross et al. [24], wherein the authors provide a near-optimal
mechanism which only asks m + 1 voters for their top-ranked alternatives. One
of the main differences with our setting is that we require an efficiency-guarantee
with high probability, and not in expectation.

Broader Context. Beyond the metric case most focus has been on analyzing
distortion under a unit-sum assumption on the utility function. In particular,
Boutilier et al. [11] provide several upper and lower bounds, while they also
study learning-theoretic aspects under the premise that every agent’s utility is
drawn from a distribution. Moreover, several multi-winner extensions have been
studied in the literature. Caragiannis et al. [15] studied the committee selection
problem, which consists of selecting k alternatives that maximize the social wel-
fare, assuming that the value of each agent is defined as the maximum value
derived from the committee’s members. We also refer to [8] for the participatory
budgeting problem, and to [9] when the output of the mechanism should be a
total order over alternatives (instead of a single winner). The trade-off between
efficiency and communication has been addressed in [28,29] (see also [1]). We
should also note a series of works analyzing the power of ordinal preferences
for some fundamental graph-theoretic problems [6,7,19]. Finally, we point out
that strategic issues are typically ignored within this line of work. We will also
posit that agents provide truthfully their preferences, but we refer to [10,14] for
rigorous considerations on the strategic issues that arise. We refer the interested
reader to the survey of Anshelevich et al. [4], as we have certainly not exhausted
the literature.

https://github.com/ioannisAnagno/Voting-MetricDistortion
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2 Preliminaries

A metric space is a pair (M, d), where d : M × M �→ R constitutes a metric on
M, i.e., (i) ∀x, y ∈ M, d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles), (ii)
∀x, y ∈ d(x, y) = d(y, x) (symmetry), and (iii) ∀x, y, z ∈ M, d(x, y) ≤ d(x, z) +
d(z, y) (triangle inequality). Consider a set of n voters V = {1, 2, . . . , n} and
a set of m candidates C = {a, b, . . . , }; candidates will be typically represented
with lowercase letters such as a, b, w, x. We assume that every voter i ∈ V
is associated with a point vi ∈ M, and every candidate a ∈ C to a point
ca ∈ M. Our goal is to select some candidate x in order to minimize the social
cost : SC(x) =

∑n
i=1 d(vi, cx). This task would be trivial if we had access to

the agents’ distances from all the candidates. However, in the standard metric
distortion framework, every agent i provides only a ranking (a total order) σi

over the points in C according to the order of i’s distances from the candidates.
We assume that ties are broken arbitrarily, subject to transitivity.

In this work we are considering a substantially more general setting, wherein
every agent provides a subset of σi. More precisely, we assume that agent i
provides as input a set Pi of ordered pairs of distinct candidates, such that
(a, b) ∈ Pi =⇒ a �i b, where a, b ∈ C; it will always be assumed that Pi

corresponds to the transitive closure of the input. We will allow Pi to be the
empty set, in which case i does not provide any information to the mechanism;
with a slight abuse of notation we will let Pi ≡ σi when i provides the entire
order of preferences. We will say that the input P = (P1, . . . ,Pn) is consistent
with the metric d if (a, b) ∈ Pi =⇒ d(vi, ca) ≤ d(vi, cb),∀i ∈ V , and this will
be denoted with d � P. We will also represent with top(i) i’s most preferred
candidates.

A deterministic social choice rule is a function that maps an election in the
form of a 3-tuple E = (V,C,P) to a single candidate a ∈ C. We will measure the
performance of f for a given input of preferences P in terms of its distortion,
namely, the worst-case approximation ratio it provides with respect to the social
cost:

distortion(f ;P) = sup
SC(f(P))

mina∈C SC(a)
, (1)

where the supremum is taken over all metrics such that d � P. The distortion
of a social choice rule f is the maximum of distortion(f ;P) over all possible
input preferences P. In other words, once the mechanism selects a candidate
(or a distribution over candidates if the social choice rule is randomized) an
adversary can select any metric space subject to being consistent with the input
preferences. Similarly, in Sect. 3 where we study mechanisms performing pair-
wise comparisons, the adversary can select any metric space consistent with the
elicited comparisons.
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3 Sequence of Pairwise Comparisons

Consider the tournament graph T = (C,E) where (a, b) ∈ E if and only if
candidate a pairwise-defeats candidate b; it will be tacitly assumed—without
any loss of generality—that ties are broken arbitrarily so that T is indeed a
tournament. In this section we study mechanisms which elicit edges from T , and
we are interested in establishing a trade-off between the number of elicited edges
and the distortion of the mechanism. We commence with the following lower
bound:

Proposition 1. There are instances for which any deterministic mechanism
which elicits (strictly) fewer than m − 1 edges from T has unbounded distortion.

In fact, the same limitation applies even if we allow randomization, either
during the elicitation or the winner-determination phase. Importantly, we will
show that m − 1 edges from T suffice to obtain near-optimal distortion. To this
end, we will employ a powerful technical lemma by Kempe [25], proved via an
LP-duality argument.

Lemma 1. ([25]). Let a1, a2, . . . a� be a sequence of distinct candidates such
that for every i = 2, . . . , � at least half of the agents prefer candidate ai−1 over
candidate ai. Then, SC(a1) ≤ (2� − 1)SC(a�).

Armed with this important lemma we introduce the DominationRoot
mechanism, which operates with access only to a pairwise comparison oracle;
namely, O takes as input two distinct candidates a, b ∈ C and returns the losing
candidate based on the voters’ preferences.

Mechanism 1: DominationRoot

Input: Set of candidates C, Pairwise comparison oracle O;
Output: Winner w ∈ C;
1. Initialize S := C;
2. Construct arbitrarily a set Π of S/2� pairings from S;
3. For every {a, b} ∈ Π remove O(a, b) from S;
4. If |S| = 1 return w ∈ S; otherwise, continue from step 2;

The performance of the DominationRoot mechanism can be understood
using Lemma 1, leading to the following conclusion:

Theorem 4. DominationRoot elicits only m−1 edges from T and guarantees
distortion at most 2�log m� + 1.

This theorem along with Proposition 1 imply a remarkable gap depending on
whether the mechanism is able to elicit at least m− 1 pairwise comparisons. We
also provide a matching lower bound for DominationRoot:

Proposition 2. There exist instances for which DominationRoot yields dis-
tortion at least 2 log m + 1.
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This lower bound is shown in two steps. First, we prove that Lemma1 is
tight; the pattern of this construction is illustrated in Fig. 1a. Then, we devise
an instance and a sequence of pairing (Fig. 1b) for which Proposition 2 reduces
to the tightness of Lemma 1.

(a) (b)

Fig. 1. (a) A metric embedding of voters and candidates establishing that Lemma 1 is
tight. (b) A sequence of pairings such that c� emerges victorious. We have highlighted
with different colors pairings that correspond to different rounds.

4 Distortion of Deterministic Rules Under Incomplete
Rankings

In this section we study the performance of deterministic voting rules under
incomplete rankings. We commence this section with another useful lemma by
Kempe [25].

Lemma 2. ([25]). Consider three distinct candidates w, y, x ∈ C so that at
least α · n voters prefer w over y, and y over x. Then,

SC(w)
SC(x)

≤ 2
α

+ 1. (2)

As a warm-up, we first employ this lemma to characterize the distortion when
for all pairs of candidates at least a small fraction of voters has provided their
pairwise preferences.

Proposition 3. Consider an election E = (V,C,P) such that for every pair of
distinct candidates a, b ∈ C it holds that

∑n
i=1 1 {(a, b) ∈ Pi ∨ (b, a) ∈ Pi} ≥ α·n.

Then, there exists a voting rule which obtains distortion at most 4/α + 1.

We should remark that this upper bound is tight (up to constant factors),
at least for certain instances. Interestingly, Proposition 3 suggests one possible
preference elicitation strategy: collect the information about the preferences in
a “balanced” manner.
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4.1 Missing Voters

Next, consider a mechanism which has access to the votes of only a subset V \Q
of voters, where Q ⊂ V is the set of missing voters such that |Q| = ε · n. If the
mechanism performs well on V \ Q can we characterize the distortion over the
entire set of voters as ε increases? Observe that this setting is tantamount to
Pi = ∅ for all i ∈ Q. In the following theorem we provide a sharp bound:

Theorem 5. Consider a mechanism with distortion at most � w.r.t. an arbitrary
subset with (1 − ε) fraction of all the voters, for some ε ∈ (0, 1). Then, the
distortion of the mechanism w.r.t. the entire population is upper-bounded by

� +
ε

1 − ε
(� + 1). (3)

The proof of this theorem uses some standard techniques to identify and
characterize the worst-case scenario. It should also be noted that the derived
bound is tight, for example in the presence of 2 candidates. In the sequel, we
will use this bound as a tool for establishing some of our results.

4.2 Top Preferences

In this subsection we investigate how the distortion increases when every voter
provides only her k-top preferences, for some parameter k ∈ [m]. It should
be noted that the two extreme cases are well understood. Specifically, when
k = m the mechanism has access to the entire rankings and we know that any
deterministic mechanism has distortion at least 3, which is also the upper bound
established in [22]. On the other end of the spectrum, when k = 1 the plurality
rule—which incidentally is the optimal deterministic mechanism when only the
top preference is given—yields distortion at most 2m − 1 [3]. Consequently, the
question is to quantify the decay of distortion as we gradually increase k. In
this context, we should point out that Kempe [26] obtained the lower bound of
2m/k (ignoring some additive constant factors) for any deterministic mechanism
which elicits only the k-top preferences. In the following theorem we come closer
to matching this lower bound.

Theorem 6. There exists a deterministic mechanism which elicits only the k-
top preferences from every voter out of m candidates and has distortion at most
6m/k + 1.

For the proof of this theorem we analyze the directed graph Ĝ = (C, Ê),
where (a, b) ∈ Ê if and only if at least a fraction of k/(3m) voters prefer a over
b. In particular, we manage to show that this graph always admits a king vertex,
and then our claim follows by Lemma 2. Notably, this implies that if k = γ · m
for some γ ∈ (0, 1), the distortion is at most 6/γ + 1. Our analysis substantially
improves over the previous best-known bound which was 12m/k [25,26], but
nonetheless there is still a gap between the aforementioned lower bound. Before
we conclude this section we elaborate on how one can further improve upon our
the bound of Theorem6.



308 I. Anagnostides et al.

Conjecture 1. If we assume that every agent provides her k-top preferences for
some k ∈ [m], there is a candidate a ∈ C and a subset S ⊆ V such that

(i) There exists a perfect matching M : S �→ S in the integral domination graph
of a (see Definition 1 in the next section);

(ii) |S| ≥ n × k/m.

When k = m this conjecture was shown to be true by Gkatzelis et al. [22].
On the other end of the spectrum, when k = 1 it is easy to verify that the
plurality winner establishes this conjecture. In this context, we observe that if
this conjecture holds we would immediately obtain a substantial improvement
over the bound of Theorem6.

Proposition 4. If Conjecture 1 holds, then there exists a deterministic mech-
anism which elicits only the k-top preferences and yields distortion at most
4m/k − 1.

5 Randomized Preference Elicitation and Sampling

Previously we characterized the distortion when only a deterministically (and
potentially adversarially) selected subset of voters has provided information to
the mechanism. This raises the question of bounding the distortion when the
mechanism elicits information from only a small random sample of voters. Here
a single sample corresponds to the entire ranking of a voter. We stress that
randomization is only allowed during the preference elicitation process; for any
given random sample as input the mechanism has to select a candidate determin-
istically. We commence this section with a simple lower bound, which essentially
follows from a standard result by Canetti et al. [12].

Proposition 5. Any mechanism which yields distortion at most 3+ε with prob-
ability at least 1 − δ requires Ω(log(1/δ)/ε2) samples, even for m = 2.

5.1 Approximating PLURALITYMATCHING

In light of Proposition 5 the main question that arises is whether we can asymp-
totically reach the optimal distortion bound of 3. To this end, we will analyze a
sampling approximation of PluralityMatching, a deterministic mechanism
introduced by Gkatzelis et al. [22] which obtains the optimal distortion bound
of 3. To keep the exposition reasonably self-contained we recall some basic facts
about PluralityMatching.

Definition 1. For an election E = (V,C, σ) and a candidate a ∈ C, the integral
domination graph of candidate a is the bipartite graph G(a) = (V, V,Ea), where
(i, j) ∈ Ea if and only if a �i top(j).

Proposition 6. ([22]). There exists a candidate a ∈ C whose integral domina-
tion graph G(a) admits a perfect matching.
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Before we proceed let us first introduce some notation. For this subsection it
will be convenient to use numerical values in the set {1, 2, . . . ,m} to represent
the candidates. We let Πj =

∑
i∈V 1{top(i) = j}, i.e. the number of voters for

which j ∈ C is the top candidate. For candidate j ∈ C we let G(j) be the integral
domination graph of j, and Mj be a maximum matching in G(j). In the sequel,
it will be useful to “decompose” Mj as follows. We consider the partition of V
into V 0

j , V 1
j , . . . , V m

j such that V k
j = {i ∈ V : Mj(i) = k} for all k ∈ [m], while

V 0
j represents the subset of voters which remained unmatched under Mj .

Moreover, consider a set S = S0
j ∪ S1

j ∪ · · · ∪ Sm
j such that Sk

j ⊆ V k
j for all

k; we also let c = |S|, and Π ′
j = c/n × Πj . For now let us assume that Π ′

j ∈ N

for all j. We let GS(j) represent the induced subgraph of G(j) w.r.t. the subset
S ⊆ V and the new plurality scores Π ′

j . We start our analysis with the following
observation:

Lemma 3. Assume that S is such that |Sk
j |/c = |V k

j |/n for all k. Then, if MS
j

represents the maximum matching in GS(j), it follows that |MS
j |/c = |Mj |/n.

Let us denote with Φj = Mj/n; roughly speaking, we know from [22] that Φj

is a good indicator of the “quality” of candidate j. Importantly, Lemma3 tells
us that we can determine Φj in a much smaller graph, if only we had a decom-
position that satisfied the “proportionality” condition of the claim. Of course,
determining explicitly such a decomposition makes little sense given that we do
not know the sets V k

j , but the main observation is that we can approximately
satisfy the condition of Lemma3 through sampling. It should be noted that we
previously assumed that Π ′

j ∈ N, i.e. we ignored rounding errors. However, in the
worst-case rounding errors can only induce an error of at most m/c in the value
of Φj ; thus, we remark that our subsequent selection of c will be such that this
error will be innocuous, in the sense that it will be subsumed by the “sampling
error” (see Lemma 5). Before we proceed, recall that for p, p̂ ∈ Δ([k]),

dTV(p, p̂) def= sup
S⊆[k]

|p(S) − p̂(S)| =
1
2
||p − p̂||1, (4)

where || · ||1 represents the �1 norm. In this context, we will use the following
standard fact (e.g., see [13]):

Lemma 4. Consider a discrete distribution p ∈ Δ([k]) and let p̂ be the empir-
ical distribution derived from N independent samples. For any ε > 0 and
δ ∈ (0, 1), if N = Θ((k + log(1/δ))/ε2) it follows that dTV(p, p̂) ≤ ε with proba-
bility at least 1 − δ.

As a result, if we draw a set S with |S| = c = Θ((m + log(1/δ))/ε2) samples
(without replacement1) we can guarantee that

1 Although the samples are not independent since we are not replacing them, observe
that the induced bias is negligible for n substantially larger than m.
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m∑

k=0

∣
∣
∣
∣
∣
|Sk

j |
c

− |V k
j |
n

∣
∣
∣
∣
∣
≤ 2ε; (5)

m∑

k=1

∣
∣
∣
∣
∣
Π̂k

c
− Πk

n

∣
∣
∣
∣
∣
≤ 2ε, (6)

where Sk
j represents the subset of S which intersects V k

j , and Π̂k is the empirical
plurality score of candidate k. Thus, the following lemma follows directly from
Lemma 3 and Lemma 4.

Lemma 5. Let Φ̂j = |M̂j |/c, where M̂j is the maximum matching in the graph
GS(j). Then, if |S| = Θ((m + log(1/δ)/ε2) for some ε, δ ∈ (0, 1), it follows that
(1 − ε)Φj ≤ Φ̂j ≤ (1 + ε)Φj with probability at least 1 − δ.

As a result, if we combine all of these ingredients we can establish the main
result of this section:

Theorem 7. For any ε ∈ (0, 4] and δ ∈ (0, 1) there exists a mechanism which
takes a sample of size Θ((m+log(m/δ))/ε2) voters and yields distortion at most
3 + ε with probability at least 1 − δ.

6 Experiments

Finally, we analyze the performance of the scoring system used in the Eurovision
song contest, so let us first give a basic overview of the competition and the
voting rule employed. Fist of all, we will only focus on the final stage of the
competition, wherein a set of m countries compete amongst each other and a
set of n countries—which is a strict superset of the contenders—provide their
preferences over the finalists. Eurovision employs a specific positional scoring
system which works as follows. Every country assigns 12 points to its highest
preference, 10 points to its second-highest preference, and from 8 − 1 points to
each of its next 8 preferences; note that no country can vote for itself. This
scoring system shall be referred to as the Scoring rule. It should be noted that
the authors in [34] quantify the distortion for some specific scoring rules (e.g.
the harmonic rule). We will make the working hypothesis that for every country
the assigned scores correspond to its actual order of preferences. Nonetheless, we
stress that the assigned scores of every country have been themselves obtained
by preference aggregation, and as such they are themselves subject to distortion,
but we will tacitly suppress this issue.2

We will focus on the competitions held between 2004 and 2008; during these
years the number of finalists (or candidates) m was 24, with the exception of
2008 where 25 countries were represented in the final. We should note that for
our experiments we used a dataset from Kaggle. Observe that every “voter” only

2 We refer the interested reader to the work of Filos-Ratsikas and Voudouris [20].
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provides its top k = 10 preferences, while the countries which are represented in
the final are 0-decisive (see [5]). The main question that concerns us is whether
the Scoring rule employed for the competition yields very different results from
the instance-optimal mechanism (which we refer to as Minimax-LP) of Goel
et al. [23]—which is based on linear programming. Our results are summarized
in Table 1.

Perhaps surprisingly, on all occasions the winners in the two mechanisms
coincide; on the other hand, there are generally substantial differences below the
first position. It is also interesting to note that on all occasions the winner has
a remarkably small distortion, at least compared to the theoretical bounds.

Table 1. Summary of our findings for the Eurovision song contests held between 2004
and 2008. For every year we have indicated the top three countries according to the
Minimax-LP rule and the Scoring system employed in the actual contest.

Year Minimax-LP rule Scoring rule # of CountriesCountry Distortion Country Score

2004
Ukraine 1.1786 Ukraine 280

36Serbia & Montenegro 1.4444 Serbia & Montenegro 263
Turkey 1.4746 Greece 252

2005
Greece 1.4068 Greece 230

39Switzerland 1.4127 Malta 192
Moldova 1.4194 Romania 158

2006
Finland 1.3000 Finland 292

38Romania 1.4262 Russia 248
Russia 1.4407 Bosnia & Herzegovina 229

2007
Serbia 1.3235 Serbia 268

42Ukraine 1.3667 Ukraine 235
Russia 1.5231 Russia 207

2008
Russia 1.3562 Russia 272

43Greece 1.4507 Ukraine 230
Ukraine 1.4923 Greece 218
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Abstract. We consider a team formation setting where agents have
varying levels of expertise in a global set of required skills, and teams are
ranked with respect to how well the expertise of teammates complement
each other. We model this setting as a hedonic game, and we show that
this class of games possesses many desirable properties, some of which
are as follows: A partition that is Nash stable, core stable and Pareto
optimal is always guaranteed to exist. A contractually individually stable
partition (and a Nash stable partition in a restricted setting) can be
found in polynomial-time. A core stable partition can be approximated
within a factor of 1 − 1

e
and this bound is tight. We discover a larger

and relatively general class of hedonic games, where the above existence
guarantee holds. For this larger class, we present simple dynamics that
converge to a Nash stable partition in a relatively low number of moves.

Keywords: Team formation · Hedonic games · Common ranking
property

1 Introduction

Hedonic games provide a simple formal model for numerous problems, where
a set of agents is required to be partitioned into stable coalitions [11], such as
research group formation [1], group activity selection [10] or task allocation [17]
problems. In this paper, we follow this line of research by introducing a model
for the formation of stable teams. For the ease of understanding, we define our
model below using a simple example where students in a classroom need to form
teams for a project assignment.

Model. In our model, a global set of skills and for each agent a level of expertise
in each of these skills are given. For instance, the required skills for a class project
assignment may be (Python, Java, SQL) where the expertise of two students,
say Alice and Bob, in these skills are (1, 3, 3) and (3, 3, 1) respectively.
We measure the success of a team by how well the expertise of teammates
complement each other. For instance, notice that Alice may compensate the
lack of expertise of Bob in SQL, just as Bob may compensate Alice in Python.
We say that a coalition’s joint expertise in some skill is the maximum level of
expertise of its members in that skill, and its joint utility is the sum of its joint

c© Springer Nature Switzerland AG 2021
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expertise in each skill. For instance, the team formed by Alice and Bob would
have a joint expertise of 3 in each skill, and thus a joint utility of 9.

We next define the utility of agents. In our classroom example, even if some
students do not contribute to their teams as much as their teammates, note that
they will still receive the same grade as their teammates, which is the typical
case in a significant number of scenarios involving teams. Therefore, we define
the utility of agents simply as the joint utility of their coalition. For instance,
if Alice and Bob form a coalition, they both will have a utility of 9. Under this
assumption, notice that all agents are better off in the grand coalition. However,
in most real-life scenarios there exists a limit on the sizes of coalitions that can be
formed due to inherent constraints and/or coordination problems. For instance,
it would not make sense if the whole class formed a single team, in the classroom
example above. Therefore, we additionally have an upper bound on the sizes of
coalitions that are possible to form.

The above setting can be modeled as a subclass of hedonic game, which
we refer to as hedonic expertise games (HEGs). HEGs naturally model a vari-
ety of team contests such as hackathons in which software developers, graphic
designers, project managers, and other domain experts collaborate on software
projects. Various other team formation settings are studied in the literature,
which are similar to HEGs in that agents are endowed with a set of skills, or some
other kind of resource (see, for example [3,21]). What differs between HEGs and
these models is that, in HEGs, instead of completion of a set of tasks or goals,
agents are solely motivated to form teams that best complement each other’s
strengths, which captures the main concern in many team contests and group
projects. Moreover, they are not modeled as non-transferable utility coalitional
games, such as hedonic games (see the related work section for more details).

HEGs also have the useful property that the joint utility function (defined
above for possible coalitions) is monotone and submodular, which is discussed
below in more detail.

Common Ranking Property. A hedonic game where all agents in a coalition
receive the same utility is said to possess the common ranking property [13], and
the class of those games is referred to as hedonic games with common ranking
property (HGCRP). We may represent an HGCRP instance with a single joint
utility function U defined for each possible coalition C, i.e., each member of C
receives a utility of U(C) if C is formed. It is clear that HEGs are a subclass of
HGCRP. Moreover, it turns out that the joint utility function defined in HEGs is
monotone and submodular, which gives rise to some desirable complexity results.

To the best of our knowledge, a monotonicity restriction has not yet been
considered in HGCRP. Therefore, we also study this restriction on HGCRP, and
obtain some interesting results which we discuss below.

Monotonicity Restriction. We show that a monotonicity restriction in
HGCRP ensures the existence of a Nash stable, core stable and Pareto optimal
partition. We also study better response dynamics (based on Nash stability) in
this setting. We identify a large set of initial partitions for which there exists a
sequence of better responses that reaches a Nash stable partition in a low num-
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ber of moves. We also give a simple decentralized algorithm that finds such a
sequence.

Related Work. We now discuss some notable classes of games that are simi-
lar to HEGs in their motivation and/or formulation. In coalitional skill games
[3], each agent has a set of skills that are required to complete various tasks.
Each task requires a set of skills in order to be completed, and a coalition can
accomplish the task only if its members cover the set of required skills for the
task. The game is modeled as a transferable utility coalitional game where the
characteristic function maps the achieved set of tasks to a real value. That is,
the authors are concerned with how the value of a coalition is distributed among
its members, depending on their contribution to the accomplishment of tasks. In
the hedonic games literature, the focus is on which coalitions are formed instead.

Another similar model is coalitional resource games [21], where agents are
interested in achieving a single goal among their set of goals. Each agent has
different amounts of various resources, which are required to reach these goals.
A goal set is said to be satisfying for a coalition, if for every agent in that coalition
it contains a goal desired by that agent; and a goal set is said to be feasible for
a coalition, if its members collectively have sufficient resources to achieve all
the goals in that set. A solution in this model is simply a goal set that is both
feasible and satisfying for a coalition, i.e., this model does not technically define
a coalitional game.

Unlike HEGs, a naive representation of HGCRP and coalitional skill games
can be exponential, respectively, in the number of agents and tasks. There has
been a considerable amount of effort put in the literature to design succinctly
representable hedonic games (see, for example [4,5,12]). Among those, HEGs are
somewhat related to B-hedonic games [9], in which each agent ranks all other
agents and prefers a coalition over another if it contains an agent that she ranked
higher. HEGs might be thought of as a multidimensional generalization of B-
hedonic games where each agent has multiple rankings over other agents, which
corresponds to different skills. However, each agent’s ranking over other agents
is identical in our setting, which is not necessarily the case in B-hedonic games.

Research on hedonic games has been mainly focused on the existence and
computational complexity of deciding the existence of partitions under various
stability criteria. The actual process of forming coalitions based on individual
behavior has received little attention until very recently. Brandt et al. initiated
the study of better response dynamics (based on individual stability) leading to
stable partitions in a variety of classes of hedonic games [6]. In an earlier study,
better response dynamics (based on contractually individual stability) have been
shown to converge in symmetric additively separable hedonic games [15].

For a detailed discussion of hedonic games literature, we refer to [7,16].

Contributions and Organization. In Sect. 2, we introduce HEGs and mono-
tone HGCRP formally, and define the stability and optimality concepts we use.

In Sect. 3, we prove that a partition that is Nash stable, core stable and
Pareto optimal is guaranteed to exist in monotone HGCRP (and thus in HEGs).
The economical interpretation of this existence guarantee is that efficiency need



Hedonic Expertise Games 317

not be sacrificed for the sake of stability with respect to both individual and
group based deviations.

In Sect. 4, we introduce a decentralized algorithm that finds a Nash stable
partition of a given HEG instance. Our procedure terminates in a linear number
of moves, if the number of levels of expertise is bounded above by a constant.1

There exists such a bound for most practical purposes because the expertise
in some real-life skill is most commonly measured by a small number of levels
such as (0: None, 1: Beginner, 2: Intermediate, 3: Advanced). We also
show that finding a contractually individually stable partition is polynomial-time
solvable in HEGs, even if expertise levels are not bounded.

In Sect. 5, we show that a (1 − 1
e )-approximate core stable partition of a

given HEG instance can be found in polynomial-time and that this is the best
approximation ratio achievable, unless P = NP. We also show that verifying a
core stable partition is intractable, unless NP = co-NP.

In Sect. 6, we show that finding a perfect partition, or a socially optimal
partition, or a Pareto optimal partition is NP-HARD. We also show that verifying
a Pareto optimal partition is coNP-COMPLETE.

In Sect. 7, we conclude the paper and discuss future directions.
Lastly, the overall picture for our results on HEGs is given in Fig. 1.

Fig. 1. The set of core stable, Nash stable, contractually individually stable and Pareto
optimal partitions of HEGs are drawn in the above Venn diagram. The intersection
of all of these sets of partitions are guaranteed to be nonempty. The computational
complexity of finding one such partition in these sets of partitions are stated above.

1 This follows from our investigation on better response dynamics in monotone
HGCRP, which we discussed above.
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2 Model and Background

We now formally define hedonic expertise games (HEGs). We have a set of agents
N and a set of skills S. For each agent i ∈ N , we have a non-negative integer-
valued expertise function ei : S → Z≥0, where ei(s) denotes the expertise that
agent i ∈ N has in skill s ∈ S. Lastly, we have an upper bound of κ on the sizes
of coalitions, i.e., no coalition of size greater than κ can be formed. We denote an
HEG instance by G = (N,S, e, κ). Moreover, we refer to the subclass of HEGs in
which ei : S → {0, 1, . . . , β} for all i ∈ N , where β is a constant, as (0, β)-HEGs.

For each coalition C, we define the joint expertise function EC : S → Z≥0 as
EC(s) = maxi∈C ei(s), i.e., EC(s) is the maximum expertise level that a member
of coalition C has in skill s. Lastly, we define the joint utility of a coalition C
as U(C) =

∑
s∈S EC(s), i.e., U(C) is the sum of the maximum expertise that

a member of coalition C has in each skill s ∈ S. We define U(∅) = 0 as a
convention.

A solution of an HEG instance is a partition π over the set of agents N where
for each coalition C ∈ π we have |C| ≤ κ. (Throughout the rest of the paper,
when we refer to a partition π, it is implicitly assumed that |C| ≤ κ for all C ∈ π
for the sake of briefness.) We use π(i) to denote the coalition containing agent
i ∈ N in partition π. We use ui(π) to denote the utility of agent i in partition π
where ui(π) = U(π(i)), i.e., the utilities of all members of a coalition C ∈ π are
the same, and equal to U(C).

The first thing to notice about the above definition is that the joint utility
function U is submodular, i.e., for every X,Y ⊆ N with X ⊆ Y and for every
x ∈ N \Y , we have that U(X∪{x})−U(X) ≥ U(Y ∪{x})−U(Y ). Moreover, the
joint utility function U is also monotone, i.e., U(X) ≤ U(Y ) for all X ⊆ Y ⊆ N .
We state these properties of the function U in Observation 1, the proof of which
is omitted due to space constraints.

Observation 1. In HEGs, U is a monotone submodular function.

Recall that HEGs are a subclass of HGCRP, an instance of which is a pair
(N,U) where N is a set of agents and U : 2N → Z≥0 is a joint utility function.
Due to Observation 1, we are interested in the following subclass of HGCRP,
which has not been studied earlier as far as we are aware of. A monotone HGCRP
instance is a triple G = (N,U, κ) where (N,U) is an HGCRP instance in which
U is monotone, and κ is an upper bound on the sizes of coalitions. Notice that,
as it is the case in HEGs, this game form would be trivial without an upper
bound on the size of the coalitions since otherwise all agents would be better off
in the grand coalition. It is clear that HEGs are a subclass of monotone HGCRP
by Observation 1.

2.1 Stability and Optimality

We now formally define the stability and optimality concepts that we study, in
the context of monotone HGCRP.

The main stability concepts based on individual deviations [5] are as follows:
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– A partition π is Nash stable (NS) if no agent i ∈ N can benefit from moving
to an existing2 coalition C ∈ π such that |C| < κ, i.e., U(π(i)) ≥ U(C ∪ {i})
for all C ∈ π where |C| < κ.

– A partition π is individually stable (IS) if no agent i ∈ N can benefit from
moving to an existing coalition C ∈ π such that |C| < κ, without making an
agent in C worse off, i.e., U(π(i)) ≥ U(C ∪ {i}) or U(C) > U(C ∪ {i}) for all
C ∈ π where |C| < κ.

– A partition π is contractually individually stable (CIS) if no agent i ∈ N can
benefit from moving to an existing coalition C ∈ π such that |C| < κ, without
making an agent in neither C nor π(i) worse off, i.e., U(π(i)) ≥ U(C ∪ {i})
or U(C) > U(C ∪ {i}) or U(π(i)) > U(π(i)\{i}) for all C ∈ π where |C| < κ.

It is clear that an NS partition is IS, and an IS partition is CIS by definition.
However, an IS partition is also NS in monotone HGCRP since U(C) ≤ U(C ′)
for all C ⊆ C ′ ⊆ N . In other words, the sets of NS partitions and IS partitions
are identical in monotone HGCRP.3

The main stability concept based on group deviations [20], and its approxi-
mate adaptation is as follows:

– A coalition C is said to block π, if U(C) > ui(π) for all agents i ∈ C, i.e., any
agent i ∈ C is better off in C than she is in her coalition π(i). A partition π
is core stable (CS) if no coalition blocks π.

– Similarly, a coalition C is said to α-approximately block π where α ≤ 1, if
α ·U(C) > ui(π) for all agents i ∈ C. Similarly, a partition π is α-approximate
CS if no coalition α-approximately blocks π. Note that a 1-approximate CS
partition is simply a CS partition.

We now introduce the following notation which comes in handy with the
above stability concepts. For a partition π and a coalition C /∈ π, we define πC

as the partition induced on π by C, i.e., πC is the partition that would arise if
the agents in C collectively deviated from π to form coalition C, i.e., πC(i) = C
for all i ∈ C, and πC(j) = π(j)\C for all j ∈ N\C.

Notice that if a partition π is not NS then there exists an agent i ∈ N and
a coalition C ∈ π such that ui(πC∪{i}) > ui(π) and |C| < κ. Also notice that if
coalition C blocks partition π then ui(πC) > ui(π), for all agents i ∈ C.

The main optimality concepts are as follows:

– A partition π is perfect if all agents are in their most preferred coalition.
– The social welfare W (π) of a partition π is defined as the sum of the utilities

of all the agents, i.e., W (π) =
∑

i∈N ui(π). A socially optimal (SO) solution
is a partition for which the social welfare is maximized.

2 Moving to an empty coalition is also permissible, but we can omit this case w.l.o.g.
due to monotonicity.

3 Similarly, the sets of CIS partitions and contractually Nash stable [19] partitions are
identical in monotone HGCRP.
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– A partition π′ Pareto dominates a partition π if ui(π′) ≥ ui(π) for all agents
i ∈ N , and there exists some agent i for which the inequality is strict. A par-
tition π is said to be Pareto optimal (PO) if no partition π′ Pareto dominates
π.

Observe that a perfect partition is necessarily SO, and a SO partition is
necessarily PO. Though a SO partition (and thus a PO partition) is guaranteed
to always exist, a perfect partition does not necessarily exist in HEGs (and thus
in monotone HGCRP). Moreover, observe that a PO partition is necessarily CIS.

3 Existence Guarantees

The common ranking property has long been known for guaranteeing the exis-
tence of a CS partition in hedonic games via a simple greedy algorithm [13].
Moreover, existence of a partition which is both CS and PO in HGCRP has
recently been proven by giving an asymmetric and transitive relation ψ defined
over the set of partitions, where a maximal partition with respect to ψ is both
CS and PO [8]. This is established by applying two potential function arguments
in a successive manner as described below.

Given a partition π, ψ(π) is defined as the sequence of the utilities of all the
agents in a non-increasing order (if two agents have the same utility then that
value is repeated in the sequence, i.e., the length of ψ(π) is exactly |N |). It is
shown that (CS) and (PO) given below hold for any partition π, where we use
� to denote “lexicographically greater than”.

(CS) If there exists a coalition C that blocks π then ψ(πC) � ψ(π).
(PO) If there exists a partition π′ that Pareto dominates π then ψ(π′) � ψ(π).

On the other hand, an HGCRP instance does not necessarily possess an NS
partition as can be seen from Example 1.

Example 1. Consider the HGCRP instance G = (N,U), where N = {1, 2}, and
U is defined as U({1}) = 1, U({1, 2}) = 2 and U({2}) = 3. Notice that HGCRP
instance G does not possess an NS partition.

In contrast, monotone HGCRP do not only admit an NS partition but also
an NS, CS and PO partition as stated in Theorem 1, which improves upon the
aforementioned existence guarantee in HGCRP.

Theorem 1. In monotone HGCRP, a partition that is NS, CS and PO is always
guaranteed to exist.

In order to prove Theorem 1, notice that we only need to include a third
potential function argument which establishes that a maximal partition with
respect to ψ is also NS, due to (CS) and (PO). This is done in Lemma 1 whose
proof is omitted due to space constraints.
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Lemma 1. Given a partition π of a monotone HGCRP instance, if there exists
an agent i which benefits from moving to an existing coalition C ∈ π such that
|C| < κ (i.e., ui(πC∪{i}) > ui(π)), then ψ(πC∪{i}) � ψ(π).

Recall that HEGs are a subclass of monotone HGCRP by Observation 1.
Therefore, Theorem 1 has the following corollary.

Corollary 1. In HEGs, a partition that is NS, CS and PO is always guaranteed
to exist.

4 Efficiently Computable Stable Partitions

We first present a decentralized algorithm for finding an NS partition of a given
monotone HGCRP instance. Our algorithm accompanies a restricted version of
better response dynamics, i.e., while the current partition π is not NS, an agent i
moves to an existing coalition C ∈ π such that |C| < κ and ui(πC∪{i}) > ui(π),
which we refer to as a better response of agent i in partition π. Note that better
response dynamics is guaranteed to converge to an NS partition in monotone
HGCRP by Lemma 1.

For the ease of analysis, we force a natural restriction on better response
dynamics. We refer to this restricted class as imitative better response dynamics,
which we describe below.

Imitative Better Response Dynamics. Given a partition π, suppose that an
agent i benefits from moving to an existing coalition C ∈ π such that |C| < κ,
i.e., U(C ∪{i}) > U(π(i)). Suppose that agent i takes the above better response.
If |C ∪ {i}| < κ, then notice that another agent i′ ∈ π(i)\{i} also benefits from
moving to C ∪{i}, since U(C ∪{i}) > U(π(i)) ≥ U(π(i)\{i}). That is, if the size
of the coalition that the last agent i has moved to did not reach the upper bound
of κ, then an agent i′ ∈ π(i)\{i} simply “imitates” the last agent i by moving
to the same coalition. Otherwise, an arbitrary agent takes a better response.

We refer to a partition π where each coalition C ∈ π has a size of exactly
κ (except maybe for one coalition) as a complete partition. We now show that
the above procedure starting from any complete partition π converges to an NS
partition in O(|N | · U(N)) moves.

Theorem 2. In monotone HGCRP, imitative better response dynamics starting
from any complete partition converges to an NS partition in O(|N |·U(N)) moves.

Proof. Suppose that a monotone HGCRP instance G = (N,U, κ) is given. Let π
be a complete partition of G. We refer to the coalitions in π whose size is exactly
κ as C1, . . . , C�|N|/κ�. Notice that if these are the only coalitions in π then we
are done since no agent can move to another coalition in π. Hence, we assume
w.l.o.g. that there is another coalition L ∈ π such that |L| < κ which consists of
the leftover agents from those coalitions whose sizes are exactly κ.

Suppose that π is not NS. Then, there exists an agent j ∈ Ci which benefits
from moving to coalition L, i.e., U(L∪{j}) > U(Ci). Suppose that agent j takes
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this better response. Note that then κ−|L|−1 agents in Ci\{j} will imitate agent
j by moving to the same coalition. Notice that after these κ − |L| moves, the
resulting partition will still consist of 	|N |/κ
 coalitions whose sizes are exactly κ,
and an additional coalition that consists of the leftover agents. We exploit this
structure as follows:

– Let C ′
i denote the resulting coalition after agent j and other κ−|L|−1 agents

in Ci\{j} move to coalition L, i.e., C ′
i = L ∪ {j} ∪ K where K ⊆ Ci\{j} is

an arbitrary subset of agents of size κ − |L| − 1.
– Let L′ denote the remaining coalition after agent j and other κ − |L| − 1

agents in Ci\{j} move to coalition L, i.e., L′ = Ci\(K ∪ {j}).

Notice that we can obtain the resulting partition, say π′, after these κ − |L|
moves by updating Ci as C ′

i and L as L′ in partition π. Moreover, notice that
U(C ′

i) = U(L ∪ {j} ∪ K) ≥ U(L ∪ {j}) > U(Ci), which means the joint utility
of the coalition which we refer to as Ci is strictly greater in π′ than in π. Since
U(Ci) is an integer between 0 and U(N), this means the number of moves is
bounded by U(N) · 	|N |/κ
 · (κ − |L|) = O(|N | · U(N)), which finishes our proof.

��
In (0, β)-HEGs, notice that U(N) is at most β · |S|. Therefore, Theorem 2

has the following corollary.

Corollary 2. In (0, β)-HEGs, an NS partition can be found in polynomial-time
via imitative better response dynamics in O(|N | · |S|) moves.

Corollary 2 is significant since we can say that even boundedly-rational agents
that imitate the last agent if possible, and take the first beneficial move other-
wise, will converge to an NS partition quickly.

We next present a polynomial-time algorithm for finding a CIS partition in
HEGs, not only in (0, β)-HEGs unlike our previous result.

Theorem 3. In HEGs, a CIS partition can be found in polynomial-time.

Proof. Suppose that an HEG instance G = (N,S, e, κ) is given. Exactly as in
Theorem 2, we begin with a partition π = (C1, . . . , C�|N|/κ�, L) where |Ci| = κ
for all Ci ∈ π and |L| < κ. Note that if L = ∅ (i.e. κ divides |N |) then we are
already done. Hence, we assume w.l.o.g. that L = ∅.

Recognizing which agents of a coalition are (or would be) “critical” lies in
the heart of our proof. We say that an agent i is critical for a coalition C if there
exists a skill s ∈ S such that ei(s) > EC\{i}(s). Note that an agent i ∈ C is
critical for coalition C if and only if U(C) > U(C\{i}). This means that if each
agent i ∈ C is critical for C, then no agent in C can leave coalition C without
making an agent in C worse off.

Notice that π is not CIS if and only if there exists an agent j ∈ Ci such that4:

4 And also U(L ∪ {j}) ≥ U(L) which trivially holds in HEGs due to monotonicity.
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– U(L ∪ {j}) > U(Ci)
(which means there exists a skill s ∈ S such that EL(s) > ECi

(s), which then
implies that there exists a critical agent j′ ∈ L for coalition Ci),

– U(Ci\{j}) ≥ U(Ci)
(which means that agent j is not critical for Ci),

If this is the case, then we update Ci and L as follows:

– Let C ′
i = (Ci\{j}) ∪ {j′}.

– Let L′ = (L\{j′}) ∪ {j}.

Let γ(C) denote the number of critical agents for coalition C that are also in
coalition C. Since j′ is critical for Ci whereas j is not, we have γ(C ′

i) > γ(Ci).
Therefore, if we update Ci as C ′

i, L as L′ and repeat the above procedure, we will
eventually reach a CIS partition. We now only need to show that the number of
iterations will be polynomial.

Notice that EC′
i
(s) ≥ ECi

(s) for all s ∈ S. Therefore, no matter how many
iterations have passed, agent j cannot ever become critical for coalition Ci.
However, for j to be able to return to Ci, she must be critical for Ci. Hence, j
cannot ever return to Ci. This means that the number of iterations is bounded
by 	|N |/κ
 · |N |, which finishes our proof. ��

5 Approximating Core Stable Partitions

We devote this section to show that finding a (1 − 1
e )-approximate CS partition

of an HEG instance is polynomial-time solvable, and this is the best possible
approximation ratio achievable, unless P = NP.

Initially, we study the problem of finding a coalition with maximum joint
utility, which we formally specify as follows.

MAXIMUM-JOINT-UTILITY = “Given an HEG instance G = (N,S, e, κ),
find a subset of agents C∗ ⊆ N which maximizes U(C∗) such that |C∗| ≤ κ.”

In the lemma below, we show that this problem is inapproximable within better
than a ratio of 1− 1

e , even for (0, 1)-HEGs. We then use this lemma to show that
a (1 − 1

e + ε)-approximate CS partition cannot be found in polynomial-time for
any ε > 0.

Lemma 2. In (0, 1)-HEGs, the above problem of MAXIMUM-JOINT-UTILITY
is inapproximable within better than a ratio of 1 − 1

e , unless P = NP.

Proof. We will give an approximation preserving S-reduction from MAXIMUM-
COVERAGE problem, which is known to be inapproximable within better than
1 − 1

e , unless P = NP [14]. An instance of MAXIMUM-COVERAGE problem con-
sists of a universe U = {1, . . . , m}, a family S = {S1, . . . ,Sn} of subsets of U ,
an integer k, and the objective is finding a subset C ⊆ S such that |C| ≤ k
which maximizes cov(C) = | ∪Si∈C Si|. Given a MAXIMUM-COVERAGE instance
I = (U ,S, k), we build a (0, 1)-HEG instance GI = (N,S, e, κ) as follows:
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– Universe U corresponds to the set of skills S.
– Each subset Si ∈ S corresponds to an agent i ∈ N , whose expertise function

is defined for each skill s ∈ S as ei(s) = 1 if s ∈ Si, and ei(s) = 0 otherwise.
– Finally, k corresponds to the upper bound κ on the sizes of coalitions.

Notice that a coalition C (i.e., a subset of the set of agents N such that
|C| ≤ κ) corresponds to a subset C ⊆ S such that U(C) = cov(C) and |C| ≤ k;
and the reverse also holds, which completes our S-reduction. ��
Theorem 4. In (0, 1)-HEGs, a (1 − 1

e + ε)-approximate CS partition cannot be
found in polynomial-time for any constant ε > 0, unless P = NP.

Proof. For some ε > 0, suppose that a (1 − 1
e + ε)-approximate CS partition π

of a given (0, 1)-HEG instance G = (N,S, e, κ) can be found in polynomial-time.
Let C∗ be a coalition in G with maximum joint utility. Then, there exists an
agent i∗ ∈ C∗ such that (1 − 1

e + ε) · U(C∗) ≤ ui∗(π), because otherwise C∗

would (1 − 1
e + ε)-approximately block π.

Let C ∈ π be a coalition such that U(C) ≥ U(C ′) for all C ′ ∈ π. Note that C
can be found in polynomial-time. Notice that (1− 1

e +ε)·U(C∗) ≤ ui∗(π) ≤ U(C).
This means that we could devise a (1 − 1

e + ε)-approximation algorithm for
MAXIMUM-JOINT-UTILITY problem by simply returning C. Unless P = NP,
this creates a contradiction by Lemma 2, which finishes our proof. ��

Theorem 4 also has the following interesting implication, the proof of which
is omitted due to space constraints.

Theorem 5. In (0, 1)-HEGs, it is not possible to verify whether a given partition
is CS or not in polynomial-time, unless NP = co-NP.

We next show that MAXIMUM-JOINT-UTILITY problem is approximable
within a ratio of 1 − 1

e by the so-called standard greedy algorithm, which is
described below in the context of HEGs.

“Begin with an empty coalition C, and greedily add the agent that increase
the joint utility of C the most, until reaching the upper bound of κ”.

We then use the above algorithm as a subroutine to find a (1 − 1
e )-approximate

CS partition in HEGs.

Lemma 3. In HEGs, MAXIMUM-JOINT-UTILITY problem is (1 − 1
e )-

approximable by the standard greedy algorithm.

Proof. Recall that the joint utility function U is monotone and submodular
as given in Observation 1. Due to the upper bound on the sizes of coalitions,
this means that MAXIMUM-JOINT-UTILITY is simply a problem of maximizing
a monotone submodular function subject to a cardinality constraint, which is
known to be (1 − 1

e )-approximable by the standard greedy algorithm [18]. ��
Theorem 6. In HEGs, a (1 − 1

e )-approximate CS partition can be found in
polynomial-time.
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Proof. Consider an HEG instance G = (N,S, e, κ). Let C∗ be a coalition of G
with maximum joint utility. Note that running the standard greedy algorithm
will return a coalition C such that U(C) ≥ (1 − 1

e ) · U(C∗) due to Lemma 3.
Since no agent can have a strictly greater utility than U(C∗), notice that if π is
a partition where C ∈ π then no agent i ∈ C can participate in a coalition that
(1 − 1

e )-approximately blocks π. Thus, by assuming coalition C is formed, we
can reduce the problem of finding a (1 − 1

e )-approximate CS partition in G into
one of finding a (1 − 1

e )-approximate CS partition in G′ = (N\C,S, e, κ). This
means that we can build a (1− 1

e )-approximate CS partition in polynomial-time
by repeatedly running the standard greedy algorithm, which finishes our proof.

��

6 Intractability of Computing Optimal Partitions

This section is devoted to show that finding a perfect (if exists), SO or PO
partition in (0, 1)-HEGs is intractable, and so is verifying if a partition is PO.
For any subclass of hedonic games, if deciding whether there exists a perfect
partition is NP-HARD, and if a given partition can be verified to be perfect
in polynomial-time, then it is known that finding a PO or SO partition is also
NP-HARD in the same subclass of hedonic games [2]. However, we cannot directly
use this method since it is not clear how we can check efficiently whether a given
partition is perfect in HEGs. The trick is to construct special HEG instances
where a partition can be verified to be perfect easily, throughout the reductions.

Theorem 7. In (0, 1)-HEGs: (i) deciding if a perfect partition exists is
NP-HARD, (ii) finding a SO partition is NP-HARD, (iii) finding a PO partition
is NP-HARD and (iv) verifying whether a partition is PO is coNP-COMPLETE.

Proof. All of the proofs for (i), (ii), (iii) and (iv) are via a polynomial-time
mapping reduction from SET-COVER problem, in which we are given a universe
U = {1, . . . , m} and a family S = {S1, . . . ,Sn} of subsets of U along with a
positive integer k; and then, we are required to decide whether there exists a
set cover C ⊆ S whose size is at most k, i.e., we need to have |C| ≤ k and
∪Si∈CSi = U . Given an instance I = (U ,S, k) of SET-COVER, we build a (0, 1)-
HEG instance GI = (N,S, e, κ) as follows:

– Universe U corresponds to the set of skills S.
– Each subset Si ∈ S corresponds to an agent i ∈ N , whose expertise function

is defined for each skill s ∈ S as ei(s) = 1 if s ∈ Si, and ei(s) = 0 otherwise.
– Let x = �n−k

k−1 � and X = {n + 1, . . . , n + x} where each i ∈ X corresponds to
an agent i ∈ N such that ei(s) = 1 for all s ∈ S.

– Finally, k corresponds to the upper bound κ on the sizes of coalitions.

Notice that |N | = n + x and �n+x
k � = x + 1. Therefore, a partition π of GI

contains at least x + 1 coalitions. Hence, there exists a coalition C ∈ π which
does not contain any agent in X. Thus, we can map back any partition π of GI
to a feasible solution C of I by returning coalition C. Notice that coalition C
corresponds to a set cover C of I if and only if U(C) = m.
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(i) Since all the agents can attain the utility of m by participating in a
coalition with an agent in X, a partition π is perfect if and only if ui(π) = m
for all i ∈ N . Notice that such an allocation π exists if and only if there exists
a set cover C of I whose size is less than k. Therefore, deciding whether there
exists a perfect partition in (0, 1)-HEGs is NP-HARD.

The rest of our results are proven via the same construction as above but by
exploiting a reduction from the problem given in (i).

(ii) Notice that if there exists a perfect partition, then any SO partition needs
to be also perfect. If we could find a SO partition π of GI in polynomial-time,
then we could decide if there exists a perfect partition in polynomial-time by
simply checking whether ui(π) = m for all i ∈ N . However, this would be
contradictory. Therefore, finding a SO partition is also NP-HARD in (0, 1)-
HEGs.
(iii) Assume for the sake of contradiction that we can find a PO partition
π of GI in polynomial-time. Suppose that π is not a perfect partition. Then,
there cannot exist a perfect partition π∗ of GI because otherwise π∗ would
Pareto dominate π by definition. Then, we could decide if there exists a
perfect partition by checking whether ui(π) = m for all i ∈ N , which would
be contradictory. Therefore, finding a PO partition is also NP-HARD in (0, 1)-
HEGs.
(iv) Let π = (X1, . . . , Xx, C) be a partition of GI such that X ∩ C = ∅,
U(C) < m and n + i ∈ Xi for all i. We show that there exists a perfect
partition of GI if and only if π is not PO. Notice that π is not a perfect
partition, since U(C) < m. Therefore, it is clear that if π is PO then there
does not exist a perfect partition.

Now suppose that π is not PO. Then, there exists a partition, say π′, that
Pareto dominates π. Recall that there must be a coalition C ′ ∈ π′ such that
C ′ ∩ X = ∅. Note that C ′ = C since otherwise no agent would be better off in
π′ with respect to π. Moreover, since all agents except those in C had a utility
of m in π, some agents would get worse off in π′, unless U(C ′) = m. Recall that
this implies the existence of a perfect partition, and thus, we are done.

Finally, note that verifying a whether a given partition π is PO is in coNP,
since a partition π′ that Pareto dominates π is a counterexample that is verifiable
in polynomial-time. Therefore, verifying a PO partition is coNP-COMPLETE. ��

7 Conclusion

In this paper, we investigated computational aspects of HEGs and we concluded
that stable solutions based on individual deviations (namely NS partitions if
the level of expertise is bounded by a constant, and CIS partitions in general)
can be computed efficiently, whereas stable solutions based on group deviations
(namely CS partitions) can be approximated within a factor of 1 − 1

e ≈ 0.632.
On the other hand, we showed that finding a perfect, SO or PO partition, and
verifying a CS or PO partition is intractable. Yet the computational complexity
of finding an NS partition in HEGs remains open.
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Moreover, we showed that the existence guarantees given in HEGs arise from
the fact that HEGs is a subclass of a much more general class of hedonic games,
which we referred to as monotone HGCRP. For this larger class, we introduced
imitative better response dynamics, which demonstrate how boundedly-rational
agents playing this game can naturally converge to an NS partition in a relatively
low number of moves. Using the upper bound we obtained for monotone HGCRP,
we showed that, in (0, β)-HEGs, imitative better response dynamics converge to
an NS partition in a polynomial number of moves. But the convergence rate of
(usual) better response dynamics remains open.

Future Directions. A strong assumption in our model is that skills are additive.
One might, for instance, use L2-norm or L∞-norm (instead of L1-norm) to define
the joint utility of a coalition C from the joint expertise values of C in each skill.
One might also define the joint expertise of a coalition C in a skill s as the sum,
average or geometric mean (instead of maximum) of expertise levels of members
of C have in s. All of these alternative definitions might drastically change the
properties of the game, some of which might be worth studying. On the other
hand, note that the definition used in this paper desirably favor agents that
complement each other’s abilities, and reflect the diminishing returns of each
new member (due to submodularity).

Another strong assumption in our model is that the utility functions of agents
are uniform. One might, for instance, consider a setting where each agent only
cares about a subset of skills, which would violate the uniformity. One might be
also concerned by fairness considerations since the utility of an agent does not
depend on the contribution of the expertise that she provides on the skill. First,
note that HEGs are best thought of as a group of contestants who try to form
teams in order to increase their chances of winning. However, suppose now that
a team actually wins and needs to share a given amount of prize money. In order
to address this problem, our model can be simply reformulated as a transferable
utility coalition game where the characteristic function corresponds to the joint
utility function (since U is monotone). Such a research direction (similar to [3])
could be also interesting.
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Abstract. We study markets with mixed manna, where m divisible
goods and chores shall be divided among n agents to obtain a competitive
equilibrium. Equilibrium allocations are known to satisfy many fairness
and efficiency conditions. While a lot of recent work in fair division is
restricted to linear utilities, we focus on a substantial generalization to
separable piecewise-linear and concave (SPLC) utilities. We first derive
polynomial-time algorithms for markets with a constant number of items
or a constant number of agents. Our main result is a polynomial-time
algorithm for instances with a constant number of chores (as well as any
number of goods and agents) under the condition that chores dominate
the utility of the agents. Interestingly, this stands in contrast to the case
when the goods dominate the agents utility in equilibrium, where the
problem is known to be PPAD-hard even without chores.

1 Introduction

The allocation of a set of items to a set of agents in a fair and efficient manner is
the main challenge in fair division, a prominent field in economics with a variety
of well-established concepts and techniques [22]. Algorithms for fair division
have recently prompted a large amount of research interest in AI, due to many
important applications arising from computer-aided decision making in various
parts of society [10, Part II]. Standard criteria for fair and efficient allocation in
markets include envy-freeness (EF; no agent prefers the bundle of goods from
another agent), proportionality (PROP; every agent gets a bundle that has at
least her “average” value), and Pareto-optimality (PO). Interestingly, all these
criteria are achieved in a competitive equilibrium from equal incomes (CEEI), an
equilibrium allocation in a market when every agent has $1 of (fake) money.

For more than two decades, the computation of competitive equilibria (with
and without equal incomes) has been a main line of research in fair division
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and, more broadly, at the intersection of economics and computer science [23,
Chapters 5+6]. An intriguing recent development in this area is the consideration
of chores and, more generally, mixed manna. In an allocation problem with mixed
manna there are goods and chores. Goods are desired by at least one of the
agents (e.g., cake), chores are undesirable for all agents (e.g., job shifts, cleaning
tasks). In particular, chores are not disposable. All goods can and chores must be
allocated to the agents. The goal again is to satisfy fairness criteria such as EF,
PROP, and/or PO. The consideration of mixed manna substantially generalizes
our understanding of fair division and represents an intriguing challenge for
algorithms to computing such allocations when they exist.

In a seminal contribution [7] the existence of competitive equilibria under
general conditions for instances with mixed manna were established. Moreover,
even for mixed manna, CEEI retain their attractive fairness properties. Clearly,
this raises a natural question from a computational perspective, which we study
in this paper: Under which conditions can competitive equilibria be computed in
polynomial time for markets with mixed manna?

The answers depend on whether we consider instances with only goods, only
chores or, more generally, true mixed manna. For only goods, markets with
linear utilities allow even strongly polynomial-time algorithms [19,24]. For addi-
tively separable piecewise-linear concave (SPLC) utilities, the problem is PPAD-
hard [14]. For only chores, the problem is PPAD-hard for linear utilities when we
allow agents to have infinitely negative utility for some chores [12]. For mixed
manna, an equilibrium can be computed efficiently for linear utilities, when we
have a constant number of agents or a constant number of items [17].

1.1 Contribution and Outline

In this paper, we provide polynomial-time algorithms for computing competi-
tive equilibria in markets with mixed manna. The introduction of the formal
model and preliminary results are given in Sect. 2. As a first set of results, we
show a polynomial-time algorithm to compute equilibria in markets with SPLC
utilities when the number of agents or items (i.e., goods and bads) is constant.
This substantially generalizes the results in [17] where only linear utilities are
considered. SPLC utilities are quite more general and applicable as they model
natural properties like decreasing marginals while maintaining (piecewise) lin-
earity; see, e.g., [18]. The discussion of these results is given in Sect. 3. We note
that this is the first polynomial time algorithm to compute a competitive equi-
librium of mixed manna with SPLC utilities under any assumptions. Our main
result is then presented in Sect. 4 – an efficient algorithm for computing com-
petitive equilibria in negative instances with arbitrary many agents, goods, and
a constant number of chores. The agents can have SPLC utilities for goods, but
we assume linear utilities for chores. Negativity is a condition that implies that
chores dominate the utility of the agents (for a formal definition see Sect. 2).
This is a notable contrast to positive instances with SPLC utilities for goods,
where computation of an equilibrium is PPAD-hard, even without chores.
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Finally, in Sect. 5 we discuss an algorithm that rounds any equilibrium for
markets with divisible mixed manna to an allocation for the same market with
indivisible mixed manna. The resulting allocation guarantees Pareto-optimality
(PO) and a notion of proportionality1.

1.2 Further Related Work

The literature on competitive equilibrium in markets with only goods is vast,
and a complete review is beyond the scope of this paper. Instead, we refer the
reader the books [9,22,25], and focus on the case of mixed manna.

While most of the work in fair division focuses on goods, there are a few
works for the case of bads [4,9,25,26]. The study of competitive division with
a mixed manna was initiated by [7]. They establish equilibrium existence and
show further properties, e.g., that multiple, disconnected equilibria may exist,
and polynomial-time computation is possible if there are either two agents or
two items with linear utility functions [8].

On the algorithmic side, an algorithm to compute a competitive allocation of
bads with linear utility functions was recently proposed in [11]. The algorithm
runs in strongly polynomial time if either the number of agents or bads is con-
stant. This result was generalized in [17] to a mixed manna. Our work generalizes
this further to the case of SPLC utilities.

Chaudhury et al. [13] provided an algorithm to compute an equilibrium of
mixed manna with SPLC utility functions. However, our work differs from theirs
in two important ways. First, our approach allows for computing all equilibria
in an instance, while in [13] only one is found. In negative instances where ‘bads
overwhelm the goods’, there are generally multiple equilibria in which agents
receive significantly different utilities, i.e., an agent might prefer one equilibrium
over another. Thus, finding all equilibria might enable a social planner to offer
an allocation that is more ‘fair’ to all agents. Second, the algorithm in [13] has
polynomial runtime when the number of agents or items is constant for instances
with only bads. Our algorithm runs in polynomial time for a more general setting
of mixed manna under the same conditions.

Fair allocation of indivisible items is an intensely studied problem. Recently,
attention has shifted to the case of all bads or mixed manna, see e.g. [1,3,6,
20]. Most closely related to our work is a recent contribution [2] presenting an
algorithm to compute an indivisible allocation that is PO and PROP1 in markets
with mixed manna. Our algorithm has a number of similarities with the approach
in [2]. A notable difference is that in our case the divisible allocation constitutes
a competitive equilibrium in the divisible market. Hence, our algorithm comes
with the additional benefit of strengthening the algorithmic connection between
competitive equilibrium and fair indivisible allocations.

1 More precisely, the allocation satisfies an adaptation of proportionality up to one
good (PROP1) to mixed manna.
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2 Preliminaries

2.1 Fair Division with Mixed Manna

We consider fair division of mixed manna, in which there is a set N = [n] of n
agents and a set M = [m] of m divisible items. We strive to divide the items
among the agents. W.l.o.g. we may assume that there is a unit amount of each
item. A fractional allocation x = {x1, . . . , xn} assigns each agent i ∈ N a bundle
of items xi = (xi1, . . . , xim), where xij ∈ [0, 1] is the amount of item j agent
i receives. An allocation is feasible if all items are fully assigned, i.e., ∀j ∈ M ,∑

i∈N xij = 1. For the rest of the paper, we assume all allocations are feasible,
unless otherwise explicitly stated.

Each agent i ∈ N has a utility function ui that maps the received bundle to
a numerical value. In this paper, we assume all utility functions are additively
separable over items, piecewise linear, and concave (SPLC). Formally, agent i’s
utility for receiving xij amount of item j ∈ M is given by the piecewise linear
and concave function fij(xij), and the total utility for the bundle xi is given by
ui(xi) =

∑
j∈M fij(xij). Let {uij1, . . . , uijk} be the slopes of each linear segment

of fij with lengths {lij1, . . . , lijk}. In contrast to the familiar case of disposable
goods where fij ≥ 0, ∀i ∈ N, ∀j ∈ M , a mixed manna allows fij ∈ R, i.e., an
agent may get positive or negative utility for an item. We assume each agent
labels each item either an (individual) good or bad. If item j is a good for agent
i, then fij > 0 and uij1 > uij2 > · · · > uijk > 0, which implies concavity and
captures the classical condition of decreasing marginal returns. Otherwise, j is
a bad for agent i, then fij < 0 and 0 > uij1 > uij2 > · · · > uijk. Note that
two agents i, i′ might disagree the label of a given item j, e.g., j can be a good
for i and a bad for i′. For simplicity of the technical exposition, we assume that
uijk �= 0 for all segments.2 Let |fij | denote the number of linear segments of fij .
Also, we sometimes write (i, j, k) to refer to the k-th segment of the function fij .

Instance Types. In [7], the authors show that every fair division instance with
mixed manna falls into one of three types: positive, negative, or null. The type
roughly indicates whether there is a ‘surplus’ of goods or bads.

More formally, let N+ = {i ∈ N : maxj∈M uij1 > 0} be the set of attracted
agents, i.e., agents that each have at least one good, whereas N− = N \ N+ is
the set of repulsed agents that have only bads. We use X to denote the set of
feasible allocations, and U for the set of agent utilities over all feasible allocations.
If u ∈ U , then u = (u1(x1), . . . , un(xn)) for some x ∈ X . Next, we define Γ+ =
R

N+

+ × {0}N−
. Note that in Γ+ attracted agents benefit (the R

N+

+ portion),
without harming any repulsed agents (the {0}N−

portion). Also, let Γ++ =
R

N+

++ × {0}N−
be the relative interior of Γ+.

2 While we conjecture that conceptually all our ideas can be applied also when uijk = 0
is allowed, the analysis of such segments generates a lot of technicalities, which we
leave for future work.
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Definition 1. A fair division instance is called

– positive if U ∩ Γ++ �= ∅
– null if U ∩ Γ+ = {0}
– negative if U ∩ Γ+ = ∅.

For an interpretation of a positive instance, we can ensure all attracted agents
receive strictly positive utility without harming any repulsed agents (who dislike
all items). Conversely, in a negative instance, no feasible allocation gives all
attracted agents non-negative utility. Finally, in null instances, the only feasible
allocations which give all agents non-negative utility satisfy ui(xi) = 0, ∀i ∈ N .

Determining the Instance Type. We can determine the type of a given
instance with SPLC utilities in polynomial time by solving the following LP.
The approach extends results of [17] for linear utilities.

max t

s.t.
∑

j,k

uijkxijk ≥ t, ∀i ∈ N+

∑

i∈N+,k

xijk = 1, ∀j ∈ M

0 ≤ xijk ≤ lijk, ∀i ∈ N+, j ∈ M

(1)

The solution t gives a lower bound on any attracted agent’s utilities by the first
set of constraints. The second set of constraints simply requires that all items are
fully allocated among attracted agents, and the third set of constraints ensures
that segments aren’t overallocated.

Proposition 1. Let (t∗, x∗) be a solution to (1). The sign of t∗ determines the
instance type:

– If t∗ > 0, then the instance is positive.
– If t∗ = 0, then the instance is null.
– If t∗ < 0, then the instance is negative.

Proof. First suppose that t∗ > 0. Then all attracted agents receive strictly pos-
itive utility, while repulsed agents receive no allocation. Hence the instance is
positive by Definition 1.

Next suppose that t∗ = 0. We want to show that the only feasible alloca-
tions which give all agents non-negative utility satisfy ui(xi) = 0, ∀i ∈ N . For
contradiction suppose not. Then at least one agent k ∈ N+ receives strictly
positive utility uk(xk) > 0, and some other agent i ∈ N+ receives a total
utility of ui(xi) = 0. We now construct an alternate allocation y so that
ui(yi) > 0, ∀i ∈ N+, contradicting the optimality of t∗ = 0.

Let M+ = {j ∈ M : maxi∈N uij1 > 0} and M− = M \ M+ = {j ∈ M :
maxi∈N uij1 < 0}. First observe that for any good j ∈ M+, there is i ∈ N+ such
that uij1 > 0. Therefore, we may assume that no agent i′ ∈ N+ with ui′j1 < 0
receives any part xi′j > 0 of j. This is valid since reallocating xi′j to i, i.e.,
yij = xij + xi′j and yi′j = 0 improves both agents utilities.
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Next consider any agent i with a non-zero allocation, i.e., xi �= 0, such that
ui(xi) = 0. Since xi �= 0, we must have xij , xij′ > 0, for some j ∈ M+ and
j′ ∈ M−. If uk(xk) = ε > 0 for some k ∈ N+, then we can reallocate some
portion of xij′ to agent k to make both agents utilities strictly positive, i.e.,
transfer a fraction of bad j′ from agent i to agent k. Let d be the final segment
of j′ with positive allocation xkj′d > 0. If there is none, then d = 1. Now set

yij′ = xij′ − min
(

min(ε, lkj′d − xkj′d)
2|ukj′d| , xij′

)

and

ykj′ = xkj′ + min
(

min(ε, lkj′d − xkj′d)
2|ukj′d| , xij′

)

.

Then uk(yk) = ε/2 > 0, and ui(yi) > 0.
After the steps above, either ui(yi) > 0 or yi = 0, for all i ∈ N+. If ui(yi) > 0

for all i ∈ N+, then we reach a contradiction to that t∗ = 0 is optimal. Therefore,
assume that yi = 0 for some i ∈ N+. By definition of N+, there is j ∈ M+ such
that uij1 > 0. Further, all items are fully allocated in x, so there is z ∈ N+ with
xzj > 0, and uz(yz) = ε > 0. Let d be the last segment with xzjd > 0. Suppose
we reallocate a portion of xzj to agent i:

yij = min
(

min(ε, lij1)
2|uzjd| , xzjd

)

and

yzj = xzj − min
(

min(ε, lij1)
2|uzjd| , xzjd

)

.

Then uz(yz) ≥ ε/2 > 0 and ui(yi) > 0. Repeating this step for all i ∈ N+

with xi = 0 ensures that ui(yi) > 0 for all i ∈ N+, which contradicts that t∗

maximizes (1).
The above argument shows that if t∗ = 0, then x∗ must satisfy ui(x∗

i ) =
0, ∀i ∈ N+, so the instance is null. Finally, repeating the above arguments in
case t∗ < 0 shows that the instance must be negative. 	


2.2 Competitive Equilibrium

We are interested in computing competitive equilibria (CE). To define this notion,
we turn a fair division instance into a market. We endow each agent i ∈ N with a
budget ei of (virtual) currency. We assume that all agents’ budgets are restricted
to have the same sign, sign(ei) = sign(ej), ∀i, j ∈ N . The sign of agents’ budgets
corresponds to the instance type. In positive instances, we assume strictly posi-
tive budgets with ei > 0, while in negative instances all budgets are strictly neg-
ative. In null instances, there is no money, and computing a CE is easy.3 Hence,
for the rest of the paper, we concentrate on positive and negative instances.
3 Any feasible allocation that gives all agents non-negative utility can be seen as

CE. We can compute such an allocation when solving the LP (1) to determine the
instance type.
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A competitive equilibrium consists of an allocation x and a vector of prices
p = (p1, . . . , pm) for the items. In markets with mixed manna, the prices of an
item can also be positive or negative. A price pj > 0 represents a payment to
receive a fraction of an item an agent enjoys, while pj ≤ 0 means that agents
are paid to receive a fraction of a bad item they dislike. Nevertheless, we say i
buys item j whenever xij > 0.

Definition 2 (Competitive Equilibrium). A pair (x∗, p∗) of allocation and
prices is a competitive equilibrium if:

1.) Items are fully allocated:
∑

i∈N x∗
ij = 1, ∀j ∈ M .

2.) Budgets are fully spent:
∑

j∈M x∗
ijp

∗
j = ei, ∀i ∈ N .

3.) Each agent i ∈ N buys a utility-maximizing bundle:

x∗
i ∈ arg max

xi∈Rm
ui(xi), s.t.

∑

j∈M

xijp
∗
j ≤ ei, xij ≥ 0. (2)

Our algorithms for computing CE apply even to scenarios with different bud-
gets, where agents have different entitlements to the items (e.g., when dissolving
a business partnership where one partner is more senior than another). The
prominent special case of equal budgets, i.e., ei = ej , ∀i, j ∈ N , is a competitive
equilibrium from equal incomes (CEEI).

Bogomolnaia et al. [7] show that CE exist under very general conditions
and satisfy a number of fairness criteria. The following theorem summarizes the
result in our context.

Theorem 1. If agents’ utility functions are SPLC, then a competitive equilib-
rium always exists. The allocation is Pareto-optimal, satisfies envy-freeness and
proportionality.

Global Goods and Bads. It is easy to see that any item j either has p∗
j > 0

in every CE or p∗
j ≤ 0. If uij1 > 0 for some agent i ∈ N , then p∗

j > 0, since
otherwise agent i has infinite demand for j in (2) regardless of the budget ei.
Then p∗

j cannot be an equilibrium price. If maxi uij1 ≤ 0, then p∗
j < 0, since

otherwise no agent chooses to purchase j in (2). Therefore item j is not allocated
at all.

Hence, in addition to individual goods and bads for each agent, we define a
global set of goods M+ = {j ∈ M : maxi∈N uij1 > 0} and the complement, a
global set of bads M− = M \ M+ = {j ∈ M : maxi∈N uij1 < 0}.

2.3 Optimal Bundles

Let us analyze the structure of an agent’s optimal bundle in a CE. Note that for
SPLC utilities, the optimization problem in (2) is an LP. We use variables xijk

as agent i’s allocation on the k-th segment of item j. Since the segment (i, j, k)
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has length lijk, we have 0 ≤ xijk ≤ lijk. Given a vector of prices p, agent i then

solves the LP maxxi

{∑
j,k uijkxijk

∣
∣
∣
∑

j,k xijkpj ≤ ei, 0 ≤ xijk ≤ lijk

}
.

Bang and Pain Per Buck. Given prices p, we define agent i’s bang per buck for
the k-th segment of good j ∈ M+ as bpbijk = uijk/pj , and the pain per buck for
the k-th segment of bad j ∈ M− as ppbijk = uijk/pj . Note that bpb (ppb) gives
the utility (disutility) per unit spending on a good (bad). Next, we partition the
segments of i’s utility function into the equivalence classes {Gi

1, . . . , G
i
k} with

the same bpb, where the Gi
j are labeled in decreasing order of bpb. Similarly, we

define {Bi
1, . . . , B

i
k′} as the equivalence classes of segments with the same ppb

labeled in increasing order. Intuitively, agent i must buy the segments of the Gi
j ’s

in increasing order, i.e., all of Gi
1, then all of Gi

2 and so on, since they provide
the highest utility per unit spending. Similarly, i buys the segments of the Bi

j ’s
in increasing order since they provide the minimum disutility per unit spending.
These facts are easy consequences of KKT conditions applied to the above LP.

Forced and Flexible Segments. If agent i exhausts her budget in the segments
Gi

r and Bi
s, then she buys all the segments in Gi

1 through Gi
r−1, and Bi

1 through
Bi

s−1. We call these forced segments since i must buy them to maximize her
utility. We call the segments of Gi

r and Bi
s flexible segments, since i can buy a

fraction of any of the segments, but she need not buy the entire (or even any
part) of these segments. Finally, we call segments of a class undesirable when
they have lower bpb than Gi

r or higher ppb than Bi
s.

The following proposition shows a structural condition on the bang and pain
per buck of flexible segments for goods and bads in a CE.

Proposition 2. Let (x, p) be a CE, and let Gi
r and Bi

s be flexible segments of
agent i. If (i, j, k) ∈ Gi

r and (i, j′, k′) ∈ Bi
s, then, bpbijk = ppbij′k′ .

Proof. Clearly, bpbijk ≥ ppbij′k′ otherwise disutility per unit earning exceeds
utility gained per unit spending. For contradiction, suppose that bpbijk >
ppbij′k′ . Recall that this means i’s utility gained per unit spending on the seg-
ment (i, j, k) is higher than her utility lost per unit earning on segment (i, j′, k′).
We want to show that i can increase her utility by purchasing a small additional
amount of each item.

Formally, suppose i purchases δijk and δij′k′ more of segments (i, j, k)
and (i, j′, k′) respectively, and let yi be her new bundle: yijk = xijk + δijk,
yij′k′ = xij′k′ + δij′k′ , and yilt = xilt otherwise. By purchasing in the
ratio δij′k′ = −δijkpj/pj′ , i’s spending remains unchanged. Further, choosing
max(δijk, δij′k′) ≤ max(lijk − xijk, lij′k′ − xij′k′) ensures that her new bundle yi

remains on the segments (i, j, k) and (i, j′, k′). Therefore, yi is a feasible bundle
with the same total spending as xi. Now observe that

ui(yi) − ui(xi) = δijkuijk + δij′k′uij′k′ = δijkpj

(uijk

pj
− uij′k′

pj′

)
> 0,

since uijk/pj = bpbijk > ppbij′k′ = uij′k′/pj′ . Therefore, i’s bundle xi is not
optimal for prices p, contradicting that (x, p) is a CE. 	
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UPB Graph. Given prices p, we define the following bipartite graph G(p) =
(V,E) that we refer to as the utility per buck graph (UPB). We drop the price
argument when the meaning is clear. We create a vertex for each agent i ∈ N
on one side and a vertex each item j ∈ M on the other side. Let Gi

k ∪Bi
k′ be the

flexible segments for agent i. We create the following edges: (i, j), ∀j ∈ Gi
k ∪Bi

k′ ,
∀i ∈ N .

3 Constant Number of Agents or Items

In this section, we discuss an algorithm for computing all CE for instances with
SPLC utilities when there is a constant number of agents or a constant number of
items. Our approach represents an extension of algorithms for linear utilities [17].
The treatment of SPLC utilities creates a number of technical challenges in the
correct handling of forced and flexible segments.

We assume that the input is a market with agents, items, utilities, and bud-
gets4 (in accordance with the instance type). Our algorithm is based on the ‘cell’
decomposition technique pioneered by [15]. It rests on the fact that k hyper-
planes separate R

d into O(kd) non-empty regions or cells. If d is constant, then
this creates only polynomially many cells. We choose hyperplanes so that each
cell corresponds to a unique set of forced and a unique set of flexible segments
for each agent. We call such a set system a UPB configuration. Since agents only
purchase segments from a UPB configuration in a CE, each cell uniquely deter-
mines which items an agent might purchase. Hence, for a cell it remains to check
the conditions for a CE: 1.) all items are fully sold, and 2.) all agents spend their
budget. Note that the optimal bundles condition will get automatically satisfied
by consistent selection of forced and flexible segments.

Overall, our algorithm proceeds as follows: 1.) Enumerate the polynomially
many UPB configurations via cell decomposition. Then, for each UPB configu-
ration: 2.) Check whether there are feasible prices. 3.) Check whether for these
prices there is a CE allocation consistent with the UPB configuration. We here
concentrate on step 1, polynomial-time algorithms for steps 2 and 3 are described
in the full version.

3.1 Finding UPB Configurations

We present a cell decomposition to determine all meaningful UPB configura-
tions. We show that if the number of agents or items is constant, we obtain
only poly(n,m) cells. Using polynomial-time algorithms for finding prices and
allocations (full version), we get a polynomial-time algorithm to compute all CE.

Constant Number of Agents. Let n = |N | = d be a constant. Suppose for
a given set of prices, Bi

r and Gi
s are agent i’s flexible segments. Then, for any

4 Alternatively, if the goal is to compute CEEIs for a fair division instance, we can
determine the instance type in polynomial time by solving the LP (1) and then
assign appropriate budgets ei = 1 or ei = −1 for all i ∈ N .
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(i, j, k) ∈ Bi
r∪Gi

s, we have uijk/pj = αi > 0. Also, any segment with uijk/pj > αi

must be forced for good j ∈ M+, and any segment with uijk/pj < αi must be
forced for a bad j ∈ M−. Note that if (i, j, k) is a flexible segment for i, then
uijk/αi = pj .

Let λi = 1/αi, and consider R
n with coordinates λ1, . . . , λd. For each tuple

(a, b, j, r, s) where a, b ∈ N , j ∈ M , r ≤ |faj | and s ≤ |fbj |, we create a hyper-
plane uajrλa−ubjsλb = 0. In the > half-space, we have uajrλa > ubjsλb. If (b, j, s)
is flexible segment of good j ∈ M+ for agent b, then uajrλa > ubjsλb = pj , or
uajr/pj > 1/λa = αa, i.e., the segment (a, j, r) is forced for agent a. Similarly,
(b, j, s) is flexible segment of bad j ∈ M− for agent b, then in the > half-space
uajr/pj < αa, i.e., (a, j, r) is forced for agent a.

A cell is the intersection of these half-spaces, which gives a partial order-
ing on the uijkλi’s. We sort the segments of good j ∈ M+ in the decreasing
order of uijkλi, and partition them into equivalence classes Gj

1, . . . , G
j
s with the

same uijkλi value. Similarly, we create equivalence classes Bj
1, . . . , B

j
s for bad

j by sorting the uijkλi in increasing order. By the above discussion, if flexi-
ble segments of good j ∈ M+ are in Gj

t , then all segments in Gj
t′ with t′ < t

are forced. Let Bj
<k = ∪k−1

z=1B
i
z and define Gi

<k similarly. Now the flexible seg-
ment, say s, of good j is the largest integer such that

∑
(i,j,k)∈Gj

<s
lijk < 1,

since the last spending by any agent on good j before it is fully sold happens
on Gj

s. The same holds for any bad j ∈ M−. Then, each cell corresponds to a
unique UPB configuration. Let S = maxi,j |fij |. Observe that the total number
of hyperplanes created is m

(
nS
2

)
= O(mn2S2), and they divide R

n into at most
O((mn2S2)n) = O((mS2)d) many cells.

Constant Number of Items. We concentrate on negative instances, i.e., ei <
0. One can adapt the argument to positive instances by swapping the roles of
goods and bads. Due to space constraints we discuss a high-level overview here.
Let m = |M | = d, a constant. Consider R

d with coordinates p1, . . . , pd. For
each tuple (i, j, k, r, s) where i ∈ N , j �= k ∈ M , r ≤ |fij | and s ≤ |fik|,
we create a hyperplane uijrpk − uikspj = 0. Each hyperplane divides R

d into
regions with signs >, =, or <, where the sign of determines whether i prefers
the segment (i, j, r) or (i, k, s), e.g., if j, k ∈ M+ then uijr/pj ≥ uiks/pk in the
≥ region. A cell is the intersection of these half-spaces, so that a cell gives a
partial ordering of bpbijr and ppbijr for each agent i ∈ N . Sort the segments
(i, j, r) of goods in decreasing order of bpb for agent i and create the equivalence
classes Gi

1, . . . , G
i
c with the same bpb. Similarly create the equivalence classes

Bi
1, . . . , B

i
c′ of segments of bads with the same ppb, sorted in increasing order.

We let ppbj be the ppb of Bi
j , and bpbj be the bpb of Gi

j .
Let Bi

<j = ∪j−1
z=1B

i
z and define Gi

<j similarly. Also let Bi
<1 = Gi

<1 = ∅. If Bi
j

and Gi
k are i’s flexible segments, then Bi

<j and Gi
<k are her forced segments.

Thus, each choice of flexible segments Bi
j and Gi

k for each agent yields a unique
UPB configuration.

To find agent i’s flexible segments we add another set of hyperplanes∑
(i,j,k)∈Bi

<r∪Gi
<s

lijkpj − ei = 0 to partition cells into sub-cells. The sign of
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sub-cell >, =, or < determines whether an agent over- or underspends her bud-
get. For example, in a negative instance where ei = −1, then in the > region∑

(i,j,k)∈Bi
<r∪Gi

<s
lijkpj > ei, so if agent i purchases all segments of Bi

<r ∪ Gi
<s,

then she still needs to purchase more bads to reach her budget. From this infor-
mation we can ultimately determine i’s flexible segments. This aspect is the most
significant challenge by SPLC utilities over the linear case in [17].

4 Constant Number of Bads

In this section, we show that in a negative instance when agents have linear
utility functions for bads we can relax the requirement for a constant number
of items, and instead only ask for a constant number of bads. To be clear, we
still allow any number of goods with SPLC utilities. This result improves on [17]
by using a weaker set of assumptions to obtain a polynomial time algorithm to
compute a CE of mixed manna.

Note that linear utility function is SPLC with a single segment, i.e., fij(xij) =
uijxij . For a set of prices p, define the minimum pain per buck bads as mpbi =
arg minj∈M− uij/pj and let αi = minj∈M− uij/pj . In a negative instance where
all agents must purchase some bads, αi is well defined. Let Gi

k be agent i’s
flexible segment for goods with bang per buck bpbk. Then bpbk = αi, and any
segments Gi

j with bpbj > bpbk are forced.

Finding UPB Configurations. The algorithm has the same basic structure as
in Sect. 3.1: we use a cell decomposition to enumerate UPB configurations, then
determine prices and check if an equilibrium allocation exists. The difference lies
in the cell decomposition. It can be seen as a hybrid of the techniques used in
the two scenarios in Sect. 3.1.

In a negative instance, agents have negative budgets ei = −1, and must earn
on some bads. First, we determine the mpbi bads for each agent in a cell using a
similar approach as the constant number of items case. This gives the set of bads
each agent might purchase and determines the value of αi = minj∈M− uij/pj . In
the constant number of agents case, we used the variables λi = 1/αi to determine
mbbi goods and mpbi bads for each agent. Now we adapt the approach using the
variables pj/uij = 1/αi = λi, for bad j ∈ mpbi.

Theorem 2. Suppose the instance is negative and that agents have linear utility
functions for bads and SPLC utility functions for goods. If the number of bads
is constant, then we can compute all CE in polynomial time.

Proof. Let d = |M−| be a constant. Consider Rd with coordinates p1, . . . , pd. For
each agent i ∈ N and each pair of bads j, k ∈ M− we introduce the hyperplane
uijpk − uikpj = 0, which partitions R

d into regions with sign >, =, or <. Thus,
a cell gives a partial ordering on the terms uijpk. Sort the bads by uijpk values
under this ordering, i.e., j < k if uijpk < uikpj , and let Bi

1, . . . , B
i
c be the

equivalence classes listed in increasing order. Then Bi
1 are the mbbi goods for

agent i in the cell. To see this, suppose (i, j) ∈ Bi
1 and (i, k) ∈ Bi

z for some z > 1.
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Then, uijpk < uikpj , or uij/pj < uik/pk, i.e., j ∈ mbbi. We use
(
d
2

)
hyperplanes

for each agent, giving O(nd2) in total. Therefore there are at most O(nd) cells.
Note that all bads j ∈ mpbi have ppb of αi = minj∈M− uij/pj . Recall that we

used λi = 1/αi to determine the forced and flexible segments when the number
of agents is constant. We follow a similar procedure, this time using pj/uij =
1/αi = λi, for a j ∈ mpbi. To simplify notation, for each agent i pick a bad
k ∈ mpbi, and let c(i) = 1/uik and define p(i) = pk. Then p(i)c(i) = λi = 1/α.

We now determine the flexible segments of goods for each agent in a given cell.
For each tuple (i, i′, j, k, k′) where i �= i′ ∈ N , j ∈ M+, k < |fij |, k′ < |fi′j |, we
create a hyperplane uijkc(i)p(i) − ui′jk′c(i′)p(i′) = 0, if p(i) �= p(i′). Otherwise,
we compare the values uijk|c(i)| and ui′jk′ |c(i′)| directly, since p(i), c(i) < 0.
This further divides a cell into sub-cells where we have a partial ordering on the
agents’ segments for each good j ∈ M+, i.e., (i, j, k) > (i′, j, k′) if uijkc(i)p(i) >

ui′jk′c(i′)p(i′) since ci, p(i) < 0. For each good j ∈ M+, define Gj
1, . . . , G

j
c as the

equivalence classes with the same uijkc(i)p(i) value, sorted in decreasing order.
Since each good must be fully sold, let r be largest integer such that∑

(i,j,k)∈Gj
<r

lijk < 1, i.e., j becomes fully sold once agents purchase the seg-

ments of Gj
≤r. Then, Gj

r are the flexible segments. Indeed, let (i, j, k) ∈ Gj
r

be a flexible segment for agent i. This means that uijk/pj = αi, or pj =
uijk/αi = uijkc(i)p(i), by our choice of c(i) and p(i). Consider the segment
(i′, j, k′) ∈ Gj

q, for some q < r. Then, ui′jk′
αi′

= ui′jk′c(i′)p(i′) > uijkc(i)p(i) = pj ,
i.e., ui′jk′

pj
> αi′ , so that (i′, j, k′) is a forced segment for agent i. Also, by our

choice of r, the final segments of j that agents purchase are Gj
r.

Let S be the maximum number of segments of any agents’ utility functions.
We formed sub-cells by adding hyperplanes for each tuple (i, i′, j, k, k′) where
i �= i′ ∈ N , j ∈ M+, k < |fij |, k′ < |fi′j | . We created |M+|(nS

2

)
= O(mn2S2)

overall in any given cell, which partitions the cell into at most O(md(nS)2d)
sub-cells. As previously calculated, there are O(nd) cells. The total number of
sub-cells is O(mdn3dS2d), which is poly(n,m, S) for constant d. 	


Remark: If both goods and (constantly many) bads have SPLC utilities, we
need to find agent i’s flexible segments of bads Bi

s. The ppb of theses segments
is αi. However, flexible segments are determined by ensuring an agent spends
her entire budget, which obviously depends on both goods and bads. Thus, we
cannot consider goods and bads separately as we have done in this proof. Finding
a polynomial-time algorithm in this case is an interesting open problem.

5 Indivisible Manna

Finally, we turn to fair division with indivisible mixed manna. We assume that
there are m indivisible items. Each agent i ∈ N has a utility value uij for each
item j ∈ M . In this section, we assume that the utilities for the agents are
additive, i.e., ui(Si) =

∑
j∈Si

uij for every subset Si ⊆ M of items assigned to
agent i. Item j is a good for agent i if uij > 0. If uij < 0, then j is a bad for
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i.5 More globally, we define sets of (global) goods and bads as in Sect. 2, i.e.,
M+ = {j ∈ M : maxi∈N uij > 0} and M− = M \ M+.

In a feasible allocation, we can assign the goods but must assign all bads to
the agents. Clearly, in a Pareto-optimal (PO) feasible allocation, we assign all
items; in particular, goods only get assigned to agents that have positive value
for them. While finding a feasible allocation is trivial, our goal is to satisfy a
natural fairness criterion that we term proportional up to a single item. Our
definition is a direct extension of the version for goods to mixed manna.

Definition 3. A feasible allocation S = (S1, . . . , Sn) for an instance with mixed
manna is proportional up to a single item (PROP1) if for every agent i there
is j ∈ M+ such that ui(Si ∪ {j}) ≥ 1

n · ui(M) or j ∈ Si ∩ M− such that
ui(Si \ {j}) ≥ 1

n · ui(M).

Our main result is a polynomial-time rounding algorithm that yields a feasible
PROP1 allocation. Our algorithm is inspired by algorithms for markets with only
goods [5,21]. We pretend the instance is divisible with linear utilities, compute
a CEEI based on the instance type (all budgets are 1, 0, or -1 respectively), and
then use our algorithm to round the CEEI to an indivisible allocation that is
feasible and PROP1. For positive and negative instances it is also PO.

Theorem 3. There is a polynomial-time algorithm to round any CEEI for a
divisible instance with mixed manna and linear utilities to a feasible indivisible
PROP1 allocation. For positive/negative instances the rounded allocation is PO.

Proof. Due to space constraints, we show the result for positive instances. Con-
sider a CEEI (x, p) in a positive instance. Agent i only buys from a subset of
goods that give the maximum bang per buck mbbi = maxk∈M+ uik/pk and/or a
subset of bads that give minimum pain per buck mpbi = mink∈M− uik/pk. If i
buys both goods and bads, then mbbi = mpbi. The sets of mbbi goods and mpbi

bads are invariant to scaling all utility values uij by a common factor γi > 0.
Further, properties feasibility, PO, and PROP1 are also invariant to such a scal-
ing. Hence, we assume w.l.o.g. that the utilities are scaled such that whenever
xij > 0, this implies uij/pj = 1. As a consequence, since all budgets are 1, we
have ui(xi) = 1 for all i ∈ N . Further, by market clearing,

∑
j pj =

∑
i ei = n.

Hence, with a budget of n, any agent i would be able to buy all goods and bads.
However, when doing so, every good delivers at most a utility per unit spending
of 1, and every bad at least a pain per utility of earning of 1. As a consequence,
ui(M) ≤ n, and ui(xi) ≥ 1

nui(M).
Now consider the allocation graph G, i.e., the bipartite graph composed of

agents, items, and edges E = {{i, j} ∈ N ×M | xij > 0}. Because the allocation
x is fractional PO (i.e., no other allocation makes an agent better off without
making someone else worse off), we can use standard arguments for linear mar-
kets and assume that the allocation graph is a forest [8,16]. Moreover, for the

5 For consistency with previous sections, we assume that uij �= 0 throughout. Our
arguments can be adapted easily by assuming that when uij = 0, j is a good for i.
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same reason, it holds that xij > 0 and uij < 0 only when j ∈ M− is a (global)
bad. Thus, for every agent, the set of incident goods in G fulfills

∑

j∈M+:xij>0

uij ≥ 1 −
∑

j∈M−:xij>0

xijuij . (3)

For our rounding algorithm, we consider every tree T of G separately. We root
T in an arbitrary agent r and initialize Sr = ∅. Now apply a greedy algorithm:
First add all incident leaf items to Sr, since these items are already assigned
fully to r in the CEEI. Then go through the remaining children goods of r in
non-increasing order of urj , and add good j to Sr as long as ur(Sr ∪ {j}) ≤ 1.
Due to (3) and since we include only leaf bads of r into Sr, there is either child
good j′ with ur(Sr ∪ {j′}) > 1 or we add all child items to Sr resulting in
ur(Sr) = 1. In both cases, Sr fulfills PROP1.

We recursively apply the greedy approach. Remove r from T and all children
goods assigned to r. Assign each remaining child item of r to its respective child
agent. This splits T into a number of subtrees of T1, T2, . . .. The new roots are
the grandchildren r1, r2, . . . of r. We label each new root whether it received its
parent good (RG), its parent bad (RB), or did not receive its parent good (NG).
Note that, recursively, a parent bad is always assigned to the child agent.

If ri is (RG), it is easy to see that the greedy procedure and the arguments
for r can be applied directly to assign a subset to ri that is PROP1. If ri is
(RB), let ji be the parent bad. We apply the greedy procedure, but stop only
after the first child good that yields uri

(Sri
\{ji}) ≥ 1. Such a good exists, since

ri buys a fraction of ji in the CEEI, and the set of all child goods of ri fulfills (3).
Clearly, the resulting set Sri

is PROP1. Finally, if ri is (NG), let ji be the parent
good. Hence, we apply the greedy algorithm, but stop only after the first child
good gives uri

(Sri
∪ {ji}) ≥ 1. Again, such a good exists due to (3). Again,

the resulting Sri
is PROP1. Using these arguments, we can proceed recursively

top-down through the entire tree. The resulting allocation is PROP1.
For PO, recall that we scale utilities based on mbbi and mpbi values. We

allocate only mbbi goods and mpbi bads in the CEEI, so xij > 0 only if uij/pj =
1, i.e., if xij > 0, then uij = pj . The other items have less value, i.e., if xij = 0,
then uij ≤ pj . The algorithm assigns item j to agent i only if xij > 0 and,
thus, uij = pj . As a consequence, the algorithm gives each item to an agent with
maximum scaled utility for that item. Hence, the allocation maximizes the sum
of all scaled utilities of the agents. This proves that it is PO.
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Abstract. We study the problem of allocating indivisible goods among
agents with additive valuations in a fair and efficient manner, when
agents have few utility values for the goods. We consider the compelling
fairness notion of envy-freeness up to any good (EFX) in conjunction
with Pareto-optimality (PO). Amanatidis et al. [1] showed that when
there are at most two utility values, an EFX allocation can be com-
puted in polynomial-time. We improve this result by showing that for
such instances an allocation that is EFX and PO can be computed in
polynomial-time. This is the first class apart from identical or binary
valuations, for which EFX+PO allocations are shown to exist and are
polynomial-time computable. In contrast, we show that when there are
three utility values, EFX+PO allocations need not exist, and even decid-
ing if EFX+PO allocations exist is NP-hard.

Our techniques allow us to obtain similar results for the fairness notion
of equitability up to any good (EQX) together with PO. We show that
for instances with two positive values an EQX+PO allocation can be
computed in polynomial-time, and deciding if an EQX+PO allocation
exists is NP-hard when there are three utility values.

We also study the problem of maximizing Nash welfare (MNW), and
show that our EFX+PO algorithm returns an allocation that approxi-
mates the MNW to a factor of 1.061 for two valued instances, in addition
to being EFX+PO. In contrast, we show that for three valued instances,
computing an MNW allocation is APX-hard.

Keywords: Fair and efficient allocation · EFX · Nash welfare · EQX

1 Introduction

The problem of fair division was formally introduced by Steinhaus [36], and
has since been extensively studied in various fields, including economics and
computer science [10,32]. It concerns allocating resources (goods) to agents in
a fair and efficient manner, and has various practical applications such as rent
division, division of inheritance, course allocation, and government auctions.
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Arguably, the most popular notion of fairness is envy-freeness (EF) [19,37],
which requires that every agent prefers their own bundle of goods to that of any
other. However in the case of indivisible goods, EF allocations need not even
exist (consider allocating 1 good among 2 agents). This motivated the study
of its relaxations. One such relaxation is envy-freeness up to one good (EF1)
allocation, defined by Budish [11], where every agent prefers their own bun-
dle to the bundle of any other agent after removing some good from the other
agent’s bundle. It is well-known that an EF1 allocation always exists and is
polynomial-time computable [29]. However, an EF1 allocation may be unsatis-
factory because it allows the removal of the most valuable good from the other
agent’s bundle, which might be the main reason for huge envy to exist in the
first place. Therefore, stronger fairness notions are desirable in many settings.

A stronger notion is called envy-free up to any good (EFX), defined by Cara-
giannis et al. [12], which requires every agent to prefer their bundle over the
bundle of any other agent after removing any good from the other agent’s bun-
dle. Clearly, any allocation that is EFX is also EF1, but not vice-versa. The
existence of EFX allocations is known for identical valuations [34], and was
recently shown for 3 agents with additive valuations [15].1 At the same time, we
want the output allocation to be efficient because a fair allocation by itself may
be highly inefficient. Consider for example two agents A1 and A2 and 2 goods g1
and g2 where Ai values only gi and does not value the other good. The allocation
in which g1 is assigned to A2 and g2 is assigned to A1 is clearly EFX. However
both agents get zero utility, which is highly inefficient. The allocation in which
gi is assigned to Ai is more desirable since it is both fair as well as efficient.

The standard notion of economic efficiency is Pareto optimality (PO). An
allocation is said to be PO if no other allocation makes an agent better off with-
out making someone else worse off. A stronger notion called fractional Pareto
optimality (fPO) requires that no other fractional allocation makes an agent
better off without making someone else worse off. Every fPO allocation is there-
fore PO, but not vice-versa (see the appendix for an example). Another reason
to prefer fPO allocations over PO allocations is that the former admit efficient
verification while the latter do not: given an allocation, it can be checked in
polynomial time if it is fPO [5], whereas checking if an allocation is PO is coNP-
complete [27]. Hence if a centralized entity responsible for allocating resources
claims the allocation is fPO, each agent can individually verify that this is indeed
the case; in contrast such a check is not efficiently possible if the guarantee is
only PO.

An important question is whether the notions of fairness (EF1 or EFX) can
be achieved in conjunction with the efficiency notions (PO or fPO). Further,
if yes, then whether they can be computed in polynomial-time. For this, the
concept of Nash welfare provides a partial answer. The Nash welfare is defined
as the geometric mean of the agents’ utilities, and by maximizing it we achieve

1 Settling the (non-)existence of EFX allocations is considered the biggest open ques-
tion in fair division [35]; see [16] and references therein for recent progress on this
problem.
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a tradeoff between efficiency and fairness. Caragiannis et al. [12] showed that
the maximum Nash welfare (MNW) allocations are EF1 and PO under additive
valuations. However, the problem of computing an MNW allocation is APX-hard
[28] (hard to approximate). Bypassing this barrier, Barman et al. [5] devised
a pseudo-polynomial-time algorithm that computes an EF1+PO allocation. In
a recent paper, Garg et al. [23] showed that an EF1+fPO allocation can be
computed in pseudo-polynomial time. For the special case of binary additive
valuations an MNW allocation is EFX+fPO, and is known to be polynomial-
time computable [6,18].

1.1 Our Contributions

In this work, we obtain several novel results on the notions of EFX, EQX, PO,
and MNW, especially for instances in which agents have few values for the goods.
A fair division instance is called k-valued if values that agents have for the goods
belong a set of size k.

EFX. Recently, Amanatidis et al. [1] showed that for 2-valued instances any
MNW allocation is EFX+PO, but left open the question of whether it can
be computed in polynomial-time. They presented a polynomial-time algorithm
which computes an EFX allocation for 2-valued instances, however, the outcome
of their algorithm need not be PO (see the appendix for an example). In this
work, we show EFX+fPO allocations always exist for 2-valued instances and
can be computed in polynomial-time.2 Further, apart from the classes of iden-
tical valuations and binary valuations, this is the first class for which EFX+PO
allocations exist and can be computed in polynomial-time.

In general, EFX+PO allocations are not guaranteed to exist [34]. We there-
fore ask the natural question: what is the complexity of checking if an instance
admits an EFX+PO allocation? We show that this problem is NP-hard, some-
what surprisingly, even for 3-valued instances.

EQX. Our techniques allow us to obtain similar results for the fairness notion
of equitability up to any good [20,26]. An allocation is said to be EQX (resp.
EQ1) if the utility an agent gets from her bundle is no less than the utility any
other agent gets after removing any (resp. some) good from their bundle. We
show that for positive 2-valued instances, an EQX+PO allocation can be com-
puted in polynomial-time, and in contrast, even checking existence of EQX+PO
allocations for 3-valued instances is NP-hard.

MNW. Our EFX+PO algorithm returns an allocation that approximates the
maximum Nash welfare to a factor of 1.061 in addition to being EFX and PO.
This guarantee is better than the best known 1.45-approximation algorithm of [5]
for the MNW problem.

Amanatidis et al. [1] showed that computing an MNW allocation is NP-hard
for 3-values instances, which, as they remark “extends the hardness aspect, but
2 Our results extend to the much broader class where there are two values {ai, bi} per

agent, but ai/bi is the same across agents.



348 J. Garg and A. Murhekar

not the inapproximability, of the result of Lee [28] for 5-valued instances”, who
had shown that MNW is NP-hard to approximate within a factor of 1.00008.
In our work, we extend the inapproximability aspect too, and show that it is
NP-hard to approximate the MNW to a factor of 1.00019, even for 3-valued
instances, which is better than Lee’s result.

Thus, for the problems of computing (i) EFX+PO, (ii) EQX+PO, and (iii)
MNW allocations, our work improves the state-of-the-art and also crucially pin-
points the boundary between tractable and intractable cases.

1.2 Other Related Work

Barman et al. [5] showed that for n agents and m goods, an EF1+PO allocation
can be computed in time poly(n,m, vmax), where vmax is the maximum utility
value. Their algorithm first perturbs the values to a desirable form, and then
computes an EF1+fPO allocation for the perturbed instance, which for a small-
enough perturbation is EF1+PO for the original instance. Their approach is via
integral market-equilibria, which guarantees fPO at every step. Our algorithm
uses a similar approach, with one main difference being that we do not need
to consider any approximate instance and can work directly with the given val-
ues. The outcome of our algorithm is EFX+fPO, which beats the guarantee of
EF1+PO.

Another key difference is the run-time analysis: our arguments show termi-
nation in poly(n,m) time for 2-valued instances, even when vmax = 2Ω(n+m),
whereas the analysis of Barman et al. only shows a poly(n,m, vmax) time bound,
even for 2-valued instances.

Recently, Garg and Murhekar [33] showed that an EF1+fPO allocation can
be computed in poly(n,m, vmax)-time, by using integral market-equilibria. They
also showed that an EF1+fPO allocation can be computed in poly(n,m)-time
for k-valued instances where k is a constant, however they do not show that the
allocation returned by their algorithm is EFX for 2-valued instances.

Freeman et al. [20] showed that EQ.1+PO allocations can be computed in
pseudo-polynomial-time for instances with positive values. They also show that
the leximin solution, i.e., the allocation that maximizes the minimum utility, and
subject to this, maximizes the second minimum utility, and so on; is EQX+PO.
However, as remarked in [34], computing a leximin solution is intractable.

Barman et al. [6] showed that for identical valuations, any EFX allocation
provides a 1.061-approximation to the MNW. Garg et al. [21] show a 1.069-
hardness of approximating MNW, although for 4-valued instances.

Instances with few values have been widely considered in the fair division lit-
erature: for instance Golovin [25] presents approximation algorithms and hard-
ness results for computing max-min fair allocations in 3-valued instances; Aziz
et al. [3] show PO is efficiently verifiable for 2-valued instances and coNP-hard
for 3-valued instances; Aziz [2], and Vazirani and Yannakakis [38] study the
Hylland-Zeckhauser scheme for probabilistic assignment of goods in 2-valued
instances; Bogomolnaia and Moulin [9] study matching problems with 2-valued
(dichotomous) preferences; Bliem et al. [8] study fixed-parameter tractability
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for computing EF+PO allocations with parameter n+ z, where z is the number
of values; and Garg et al. [24] study leximin assignments of papers ranked by
reviewers on a small scale, in particular they present an efficient algorithm for 2
ranks, i.e., “high or low interest” and show NP-hardness for 3 ranks. More gener-
ally, such instances have been studied in resource allocation contexts, including
makespan minimization with 2 or 3 job sizes [13,39].

2 Preliminaries

For t ∈ N, let [t] denote {1, . . . , t}.

Problem Setting. A fair division instance is a tuple (N,M, V ), where N = [n]
is a set of n ∈ N agents, M = [m] is the set of m ∈ N indivisible items, and
V = {v1, . . . , vn} is a set of utility functions, one for each agent i ∈ N . Each
utility function vi : M → Z≥0 is specified by m numbers vij ∈ Z≥0, one for
each good j ∈ M , which denotes the value agent i has for good j. We assume
that the valuation functions are additive, that is, for every agent i ∈ N , and for
S ⊆ M , vi(S) =

∑
j∈S vij . Further, we assume that for every good j, there is

some agent i such that vij > 0. Note that we can in general work with rational
values without loss of generality, since they can be scaled to make them integral,
and the efficiency and fairness guarantees we consider are scale-invariant.3

We call a fair division instance (N,M, V ) a t-valued instance if |{vij : i ∈
N, j ∈ M}| = t. The class of 2-valued instances is made up of two disjoint
fragments: binary instances, where all values vij ∈ {0, 1}; and {a, b}-instances,
where all values vij ∈ {a, b} for a, b ∈ Z>0. An important subclass of 3-valued
instances is the {0, a, b} class, wherein all values vij ∈ {0, a, b} for a, b ∈ Z>0.

Allocation. An (integral) allocation x of goods to agents is a n-partition
(x1, . . . ,xn) of the goods, where xi ⊆ M is the bundle of goods allotted to
agent i, who gets a total value of vi(xi). A fractional allocation x ∈ [0, 1]n×m is
a fractional assignment of the goods to agents such that for each good j ∈ M ,∑

i∈N xij = 1. Here, xij ∈ [0, 1] denotes the fraction of good j allotted to agent i.
In a fractional allocation x, an agent i receives a value of vi(xi) =

∑
j∈M vijxij .

Fairness Notions. An allocation x is said to be:

1. Envy-free up to one good (EF1) if for all i, h ∈ N , there exists a good j ∈ xh

s.t. vi(xi) ≥ vi(xh \ {j}).
2. Envy-free up to any good (EFX) if for all i, h ∈ N and for all goods j ∈ xh

we have vi(xi) ≥ vi(xh \ {j}).
3. Equitable up to one good (EQ.1) if for all i, h ∈ N , there exists a good j ∈ xh

s.t. vi(xi) ≥ vh(xh \ {j}).
4. Equitable up to any good (EQX) if for all i, h ∈ N and for all goods j ∈ xh

we have vi(xi) ≥ vh(xh \ {j}).
3 The properties of EFX, PO, and Nash welfare are invariant under scaling, while

EQX is not scale-invariant in general. However, in our algorithms this is not an issue
since we only uniformly scale the valuations of all agents, which preserves EQX.
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Pareto-optimality. An allocation y dominates an allocation x if for all i ∈ N ,
vi(yi) ≥ vi(xi) and there exists h ∈ N s.t. vh(yh) > vh(xh). An allocation is said
to be Pareto-optimal (PO) if no allocation dominates it. Further, an allocation is
said to be fractionally Pareto-optimal (fPO) if no fractional allocation dominates
it. Thus, any fPO allocation is PO, but not vice-versa (see the appendix for an
example).

Nash Welfare. The Nash welfare of an allocation x is given by NW(x) =
(
Πi∈Nvi(xi)

)1/n. An allocation that maximizes the NW is called an MNW allo-
cation or Nash optimal allocation. An allocation x approximates the MNW to a
factor α if α · NW(x) ≥ NW(x∗), where x∗ is an MNW allocation.

Fisher Markets. A Fisher market or a market instance is a tuple (N,M, V, e),
where N = [n] is a set of n ∈ N agents, M = [m] is a set of m ∈ N divisible
goods, V = {v1, . . . , vn} is a set of additive (linear) utility functions, and e =
{e1, . . . , en} is the set of agents’ budgets, where each ei ≥ 0. In this model, agents
can fractionally share goods. Each agent aims to obtain a bundle of goods that
maximizes her total value subject to her budget constraint.

A market outcome is a fractional allocation x of the goods to the agents
and a set of prices p = (p1, . . . , pm) of the goods, where pj ≥ 0 for every
j ∈ M . The spending of an agent i under the market outcome (x,p) is given by
p(xi) =

∑
j∈M pjxij . For an agent i, we define the bang-per-buck ratio αij of

good j as vij/pj , and the maximum bang-per-buck (MBB) ratio αi = maxj αij .
We define mbbi = {j ∈ M : αi = vij/pj}, called the MBB-set, to be the set of
goods that give MBB to agent i at prices p. A market outcome (x,p) is said to
be ‘on MBB’ if for all agents i and goods j, xij > 0 ⇒ j ∈ mbbi. For integral x,
this means xi ⊆ mbbi.

A market outcome (x,p) is said to be a market equilibrium if (i) the market
clears, i.e., all goods are fully allocated. Thus, for all j,

∑
i∈N xij = 1, (ii) budget

of all agents is exhausted, for all i ∈ N ,
∑

j∈M xijpj = ei, and (iii) agents only
spend money on MBB goods, i.e., (x,p) is on MBB.

Market equilibria are an important tool in computing fair and efficient
allocations because of their remarkable fairness and efficiency properties; see
e.g., [4,5,14,17,20,22,31]. The First Welfare Theorem [30] shows that for a mar-
ket equilibrium (x,p) of a Fisher market instance M, the allocation x is fPO.
We include a proof in the appendix for completeness.

Theorem 1. (First Welfare Theorem [30]) Let (x,p) be a equilibrium of a
Fisher market M. Then x is fractionally Pareto-optimal.

Given an allocation x for a fair division instance (N,M, V ) and a vector of
prices p for the goods such that (x,p) is on MBB, one can define an associated
Fisher market instance M = (N,M, V, e) by setting ei = p(xi). It is easy to see
that (x,p) is a market equilibrium of M. Hence Theorem 1 implies:

Corollary 1. Given a market outcome (x,p) on MBB, the allocation x is fPO.
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3 Computing EFX+PO Allocations

We first study the problem of computing an EFX+PO allocation for t-valued
instances when t ∈ {2, 3}. We show that EFX+PO allocations can be computed
in polynomial-time for 2-valued instances, and in contrast, computing such allo-
cations for 3-valued instances is NP-hard.

3.1 EFX+PO Allocations for 2-Valued Instances

We consider {a, b}-instances, as it is known EFX+PO allocations can be effi-
ciently computed for binary instances. We remark that while the allocation
returned by the algorithm Match&Freeze of Amanatidis et al., [1] for {a, b}-
instances is EFX, it need not be PO (example in appendix). We improve this
result by showing that:

Theorem 2. Given a fair division {a, b}-instance I = (N,M, V ), an allocation
that is EFX, fPO and approximates the maximum Nash welfare to a factor of
1.061 can be computed in polynomial-time.

We prove this theorem by showing that Algorithm 1 computes such an allo-
cation. We first define some relevant terms, including the concept of price envy-
freeness introduced by Barman et al. [5]. A market outcome (x,p) is said to be
price envy-free up to one good (pEF1) if for all agents i, h ∈ N there is a good
j ∈ xh such that p(xi) ≥ p(xh \ {j}). Similarly, we say it is pEFX if for all
agents i, h ∈ N , and for all goods j ∈ xh it holds that p(xi) ≥ p(xh \ {j}). For
market outcomes on MBB, the pEFX condition implies the EFX condition:

Lemma 1. Let (x,p) be an integral market outcome on MBB. Then x is fPO.
If (x,p) is pEFX, then x is EFX.

Proof. The fact that x is fPO follows from Corollary 1. Since (x,p) is pEFX, for
all pairs of agents i, h ∈ N , and all goods j ∈ xh it holds that p(xi) ≥ p(xh\{j}).
Since (x,p) is on MBB, xi ⊆ mbbi. Let αi be the MBB-ratio of i at the prices
p. By definition of MBB, vi(xi) = αip(xi), and vi(xh \{j}) ≤ αip(xh \{j}), for
every j ∈ xh. Combining these, we get that x is EFX. �	

Given a price vector p, we define the MBB graph to be the bipartite graph
G = (N,M,E) where for an agent i and good j, (i, j) ∈ E iff j ∈ mbbi. Such
edges are called MBB edges. Given an accompanying allocation x, we supplement
G to include allocation edges, an edge between agent i and good j if j ∈ xi.

We call the agent i with minimum p(xi) a least spender (LS), where ties are
broken lexicographically. For agents i0, . . . , i� and goods j1, . . . , j�, consider a
path P = (i0, j1, i1, j2, . . . , j�, i�) in the supplemented MBB graph, where for all
1 ≤ �′ ≤ �, j�′ ∈ mbb(�′−1) ∩ x�′ . Define the level of an agent h to be the length
of the shortest such path from the LS to h, and to be n if no such path exists.
Define alternating paths to be such paths beginning with agents at a lower level
and ending with agents at a strictly higher level. The edges in an alternating
path alternate between MBB edges and allocation edges.
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Algorithm 1. EFX+fPO allocation for {a, b}-instances
Input: Fair division {a, b}-instance (N, M, V )
Output: An integral allocation x

1: Scale values to {1, k}, where k = a/b > 1.
2: (x,p) ← Integral welfare-maximizing market allocation, where pj = vij for j ∈ xi.
3: Let i ∈ argminh∈Np(xh) be the least spender
4: if there is an alternating path (i, j1, i1, . . . , j�, i�), s.t. p(xi� \ {j�}) > p(xi) then
5: Transfer j� from i� to i�−1

6: Repeat from Line 3

7: if ∀ agents h /∈ Ci, and ∀j ∈ xh : p(xh \ {j}) ≤ p(xi) then return x � pEFX
condition satisfied for all agents not in component of LS, defined in Def.1

8: else
9: Raise prices of goods in Ci by a multiplicative factor of k

10: Repeat from Line 3

Definition 1 (Component Ci of a least spender i). For a least spender i,
define C�

i to be the set of all goods and agents which lie on alternating paths of
length �. Call Ci =

⋃
� C�

i the component of i, the set of all goods and agents
reachable from the least spender i through alternating paths.

We now describe Algorithm 1. Let k = a/b > 1. Let us first scale the valu-
ations to {1, k} since both properties EFX and fPO are scale-invariant. The
algorithm starts with a welfare maximizing integral allocation (x,p), where
pj = vij if j ∈ xi. The algorithm then explores if there is an alternating
path P = (i = i0, j1, i1, · · · , j�, i� = h), where i is the LS agent, such that
p(xh \ {j�}) > p(xi), i.e., an alternating path along which the pEF1 condition
is violated for the LS agent. We call any such agent h who owns some good j
such that the pEF1 condition is not satisfied by the LS with respect to good j,
a pEF1-violator. When such a path is encountered, the algorithm transfers j�

from h to i�−1. This process is repeated from Line 3 to account for a possible
change in the LS, until there is no such path in the component Ci of the LS
agent. Suppose there is some agent h /∈ Ci for which the pEFX condition is not
satisfied with respect to the LS, then the algorithm raises the prices of all goods
in the component of the LS agent by a factor of k, and the algorithm proceeds
once again from Line 3.

The proof of Theorem 2 relies on Lemmas 1-6. We first show that we can
re-scale prices to {1, k}.

Lemma 2. For every outcome (x,p) constructed during the run of Algorithm 1,
there exists a set of prices q such that (x,q) is also on MBB, and for every
j ∈ M , qj ∈ {1, k}.
Proof. Note that initially all prices are either 1 or k. Since all price rises are by
a factor of k (Line 9), final prices are of the form pj = ksj , for sj ∈ Z≥0. Let j0
be the smallest priced good with pj0 = ks, and let j0 ∈ xi, for some agent i ∈ N .
Then ∀j ∈ xi : pj ∈ {ks, ks+1}. By the MBB condition for any agent h �= i for
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j′ ∈ xh and j ∈ xi:
vhj′

pj′
≥ vhj

pj
,

which gives:
pj′ ≤ vhj′

vhj
pj ≤ ks+2 .

Thus all pj ∈ {ks, ks+1, ks+2}. Either all pj ∈ {ks, ks+1}, or ∃j ∈ xh with
pj = ks+2, for some agent h ∈ N . Then by the MBB condition for any good j′:

vhj

pj
≥ vhj′

pj′
,

which gives:
pj′ ≥ vhj′

vhj
pj ≥ ks+1 .

Thus either all pj ∈ {ks, ks+1} or all pj ∈ {ks+1, ks+2}. In either case we can
scale the prices to belong to {1, k}. �	

This in fact shows that at any stage of Algorithm 1, the prices of goods are
in {ks, ks+1} for some s ∈ Z≥0. This, along with the fact that goods are always
transferred along MBB edges, and the prices are raised only by factor of k, leads
us to conclude that the MBB condition is never violated for any agent and the
allocation is always on MBB throughout the run of the algorithm. Hence the
allocation is fPO.

Lemma 3. The allocation x returned by Algorithm 1 is on MBB w.r.t. prices
p upon termination. Thus, x is fPO.

The full proof of the above Lemma appears in the appendix. We now show:
correctness:

Lemma 4. The allocation x returned by Algorithm 1, together with the prices
p on termination is pEFX.

Proof. To see why (x,p) is pEFX, first note that by Lemma 2, we can assume
the prices are in {1, k}. Suppose (x,p) is not pEFX. Then there must be an agent
h and some good j ∈ xh s.t. p(xh \ {j}) > p(xi), where i is the least spender.
If h /∈ Ci, the algorithm would not have halted (negation of condition in line 8
holds). Therefore h is in Ci. Since the algorithm has halted, this means that along
all alternating paths (i, j1, i1, . . . , h′, j, h), it is the case that p(xh \{j}) ≤ p(xi).
Suppose there is some alternating path s.t. pj = 1. We know for all j′ ∈ xh,
pj′ ≥ 1. Thus:

p(xi) ≥ p(xh \ {j}) = p(xh) − 1 ≥ p(xh \ {j′}),

which means that i is pEFX towards h. Now suppose along all alternating paths
(i, j1, i1, . . . , h′, j, h), it holds that pj = k. Since (x,p) is not pEFX, it must
be the case that there is some good j′ ∈ xh that is not reachable from i via
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any alternating path, with pj′ = 1. This means that j′ /∈ mbbh′ . Since j ∈
mbbh′ , comparing the bang-per-buck ratios gives vh′j/pj > vh′j′/pj′ . This implies
vh′j > kvh′j′ which is not possible when vh′j , vh′j′ ∈ {1, k}, thus leading to a
contradiction. Hence we conclude that (x,p) is pEFX. �	
Lemma 5. Algorithm 1 terminates in polynomial-time.

Proof. (Sketch) We first note that the number of alternating paths from an agent
i to an agent h who owns a good j which is then transferred to an agent h′ is
at most n · n · m. Thus there are at most poly(n,m) transfers with the same LS
and no price rise step.

Next, we argue that the number of identity changes of the least spender
without a price rise step is poly(n,m). Suppose an agent i ceases to be the LS
at iteration t, and subsequently (without price-rise steps) becomes the LS again
for the first time at time t′. We show that the spending of i is strictly larger
at t′ than at t, and hence has strictly larger utility. Since all utility values are
integers, the increase in i’s utility is by at least 1. In any allocation x, if si (resp.
ti) is the number of goods in xi that are valued at b (resp. a) by i, the utility of
i is ui = sib + tia. Since 0 ≤ si, ti ≤ m, the number of different utility values i
can get in any allocation is at most O(m2). Thus, for any agent i, the number of
times her utility increases is at most O(m2). This is our key insight. It implies
that without price rises, any agent can become the least spender only O(m2)
times. Hence, the number of identity changes of the LS in the absence of price
rise steps is at most O(nm2).

For polynomial run-time, it remains to be shown that the number of price-
rises is poly(n,m). We do this via a potential function argument similar to [20].
The full proof is present in the appendix. �	

Finally, we show that the allocation returned by our algorithm also provides
a good approximation to the MNW, and defer the proof to the appendix.

Lemma 6. Let x be the allocation output by Algorithm 1. If x∗ is an MNW
allocation, then NW(x) ≥ 1

1.061NW(x∗).

Proof. (Sketch) Let p be the price vector on termination. Consider a scaled fair
division instance I ′ = (N,M, V ′) with identical valuations, where v′

ij = pj for
each i ∈ N, j ∈ M . Since (x,p) is pEFX for the instance I (Lemma 4), x is EFX
for the instance I ′. Barman et al., [6] showed that for identical valuations, any
EFX allocation provides a 1.061-approximation to the maximum Nash welfare.
Hence x provides a 1.061-approximation to the MNW of I ′, and we can show
that because (x,p) is on MBB (from Lemma 3), x gives the same guarantee for
the MNW of the instance I. �	
Lemmas 1, 3, 4, 5, and 6 together prove Theorem 2.

3.2 EFX+PO for 3-Valued Instances

On generalizing the class of valuations slightly to {0, a, b}, EFX+PO allocations
are no longer guaranteed to exist [34] (see the appendix for an example).
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Therefore we investigate the complexity of checking if an EFX and PO allo-
cation exists or not, and show that this problem is NP-hard.

Theorem 3. Given a fair division instance I = (N,M, V ), checking if I admits
an allocation that is both EFX and PO is NP-hard, even when I is a {0, a, b}-
instance.

We reduce from 2P2N3SAT, an instance of which consists of a 3SAT formula
over n variables {xi}i∈[n] in conjunctive normal form, and m distinct clauses
{Cj}j∈[m], with three literals per clause. Additionally, each variable xi appears
exactly twice negated and exactly twice unnegated in the formula. Deciding
if there exists a satisfying assignment for such a formula is known to be NP-
complete [7]. Given a 2P2N3SAT-instance ({xi}i∈[n], {Cj}j∈[m]), we construct a
fair division instance with 2n + m agents and 7n + m goods, with all values in
{0, 1, 3} as follows:

1. For every variable xi, create two agents Ti and Fi. Also create 7 goods:
dT

i , dF
i , gi, y

T
i , zT

i , yF
i , zF

i . Both Ti and Fi value gi at 3. Ti values dT
i , yT

i , zT
i at

1, and Fi values dF
i , yF

i , zF
i at 1. Ti and Fi value all other goods at 0.

2. For every clause Cj = �1 ∨ �2 ∨ �3, create one agent Dj and a good ej . Dj

values ej at 1. If for any k ∈ [3], �k = xi for some i ∈ [n] then Dj values
yT

i , zT
i at 1; and if for any k ∈ [3], �k = ¬xi for some i ∈ [n] then Dj values

yF
i , zF

i at 1. Dj values all other goods at 0.

We show that this instance admits an EFX+PO allocation iff the formula has a
satisfying assignment. We illustrate the correspondence between PO allocations
and assignments, and how our construction enforces EFX allocations to give
rise to satisfying assignments (and vice versa). In any PO allocation, for every
i ∈ [n], dA

i must be assigned to Ai, for A ∈ {T, F}; and gi must be assigned to
Ti or Fi. Consider the assignment xi = A, if gi is allotted to Ai, for A ∈ {T, F},
for all i ∈ [n]. Suppose for some i ∈ [n], gi is allocated to Ti. Then in an EFX
allocation, because Fi must not envy Ti after removing dT

i from the bundle of
Ti, Fi must get utility at least 3. This is only possible if both yF

i and zF
i are

allocated to Fi. This leaves yT
i , zT

i for the clause agents, when xi is True. Thus
if there is a satisfying assignment, the remaining goods can be allocated to the
clause agents in an EFX+PO manner. Also, if all assignments are unsatisfying,
some clause agent will end up not being EFX towards another agent in any PO
allocation.

We defer the full proof to the appendix, and also show:

Lemma 7. Given a fair division instance I = (N,M, V ), checking if I admits
an allocation that is both EFX and fPO is NP-complete, even when I is a
{0, a, b}-instance.

4 Computing EQX+PO Allocations

We now consider relaxations of the fairness notion of equitability, which demands
that all agents receive roughly the same utility. An allocation is said to be
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Algorithm 2. EQX+fPO allocation for {a, b}-instances
Input: Fair division {a, b}-instance (N, M, V )
Output: An integral allocation x

1: (x,p) ← Integral welfare-maximizing market allocation, where pj = vij for j ∈ xi.
2: Let i ∈ argminh∈Nvh(xh) be the least utility (LU) agent
3: if there is an alternating path (i, j1, i1, . . . , j�, i�), s.t. vi�(xi� \ {j�}) > vi(xi) then
4: Transfer j� from i� to i�−1

5: Repeat from Line 2

6: if ∀ agents h /∈ Ci, and ∀j ∈ xh : vh(xh \ {j}) ≤ vi(xi) then return x � EQX
condition satisfied for all agents not reachable through alt. paths from LU agent;
Ci is defined in Def. 1

7: else
8: Raise prices of goods in Ci by a multiplicative factor of a/b
9: Repeat from Line 2

equitable up to any good (EQX) if for all i, h ∈ N , for all j ∈ xh we have
vi(xi) ≥ vh(xh \ {j}). It is known that for binary instances, EQX+PO alloca-
tions can be computed in polynomial-time, whenever they exist [20]. Hence we
first consider {a, b}-instances. We show that:

Theorem 4. Given a fair division {a, b}-instance I = (N,M, V ), an allocation
that is both EQX and fPO exists and can be computed in polynomial-time.

We prove this by showing that Algorithm 2 terminates in polynomial-time with
an EQX+fPO allocation. Since we are interested in EQX as opposed to EFX,
we need not construct a pEFX allocation and can instead work directly with the
values. Since the techniques used in the analysis of Algorithm 2 are similar to
the analysis of Algorithm 1, we defer the full proof to the appendix. We remark
here that our techniques also enable us to show that EQ.1+fPO allocations can
be computed in polynomial-time for {a, b}-instances of chores.

For {0, a, b}-instances, EQX+PO allocations need not exist (example in
appendix). Therefore, we study the complexity of checking if an EQX+PO allo-
cation exists or not, and show that this problem too is NP-hard. The full proof
is deferred to the appendix.

Theorem 5. Given a fair division instance I = (N,M, V ), checking if I admits
an allocation that is both EQX and PO is NP-hard, even when I is a {0, a, b}-
instance.

5 Maximizing Nash Welfare

We turn to the problem of maximizing Nash welfare for t-valued instances when
t ∈ {2, 3}. Recall that for {a, b}-instances, we showed in Lemma 6 that Algo-
rithm 1 approximates the MNW to a 1.061-factor.

Turning to 3-valued instances, our final result shows APX-hardness for the
MNW problem with we slighly generalize the class of allowed values to {0, a, b}.
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This rules out the existence of a polynomial-time approximation scheme (PTAS)
for the MNW problem even {0, a, b}-instances, thus strengthening the result
of [1], who showed NP-hardness for the same. The full proof is present in the
appendix.

Theorem 6. Given a fair division instance I = (N,M, V ), it is NP-hard
to approximate the MNW to a factor better than 1.00019, even for {0, a, b}-
instances.

We present the reduction and defer the full proof to the appendix. We consider
a 2P2N3SAT-instance: {xi}i∈[n], {Cj}j∈[m], where 3m = 4n. For each variable
xi, we create two agents Ti, Fi and one good gi which is valued at 2 by both
Ti, Fi. For each clause Cj , we create a good hj which is valued at 1 by agent Ai

if setting xi = A makes Cj true, for A ∈ {T, F}. We also create 2n − m dummy
goods {dj}j∈[2n−m] which are valued at 1 by all agents. All other values are 0.
We show that if we can approximate the MNW to a factor better than 1.00019,
we can decide if there is an assignment with ≥ ρ1m clauses, or all assignments
satisfy at most ≤ ρ2m clauses, for specific constants ρ1, ρ2. The latter problem
is known to be NP-complete [7].

6 Conclusion

In this paper, we push the boundary between tractable and intractable cases for
the problems of fair and efficient allocations. We presented positive algorithmic
results for computing EFX+PO, EQX+PO, and 1.061-approximate MNW allo-
cations for 2-valued instances. In contrast, we showed that for 3-valued instances,
checking existence of EFX+PO (or EQX+PO) allocations is NP-complete, and
computing MNW is APX-hard. Our techniques can be adapted to compute
EQ.1+PO allocations for 2-valued instances of chores, and an interesting direc-
tion for future work is to see if we can compute EF1+PO allocations in the
chores setting, even for 2-valued instances. We also leave open the problem of
computing an MNW allocation for general 2-valued instances.
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An Approval-Based Model for Single-Step
Liquid Democracy
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Abstract. We study a Liquid Democracy framework where voters can
express preferences in an approval form, regarding being represented by
a subset of voters, casting a ballot themselves, or abstaining from the
election. We examine, from a computational perspective, the problems of
minimizing (resp. maximizing) the number of dissatisfied (resp. satisfied)
voters. We first show that these problems are intractable even when
each voter approves only a small subset of other voters. On the positive
side, we establish constant factor approximation algorithms for that case,
and exact algorithms under bounded treewidth of a convenient graph-
theoretic representation, even when certain secondary objectives are also
present. The results related to the treewidth are based on the powerful
methodology of expressing graph properties via Monadic Second Order
logic. We believe that this approach can turn out to be fruitful for other
graph related questions that appear in Computational Social Choice.

1 Introduction

Liquid Democracy (LD) is a voting paradigm that has emerged as a flexible
model for enhancing engagement in decision-making. The main idea in LD mod-
els is that a voter can choose either to vote herself or to delegate to another voter
that she trusts to be more knowledgeable or reliable on the topic under consider-
ation. A delegation under LD, is a transitive action, meaning that the voter not
only transfers her own vote but also the voting power that has been delegated to
her by others. Experimentations and real deployments have already taken place
using platforms that support decision-making under Liquid Democracy. One of
the first such systems that was put to real use was Župa, intended for a student
union for the University of Novo Mesto in Slovenia. Another example is Liq-
uidFeedback that was used by the German Pirate party (among others). Other
political parties (such as the Flux Party in Australia) or regional organisations
have also attempted to use or experiment with LD, leading to a growing prac-
tical appeal. Even further examples include the experiment run by Google via
Google Votes, as well as Civicracy and, the more recently developed, Sovereign.
We refer to [23] for an informative survey on these systems.

The interest generated by these attempts, has also led to theoretical studies
on relevant voting models and has enriched the research agenda of the commu-
nity. The goals of these works have been to provide more rigorous foundations
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and highlight the advantages and the negative aspects of LD models. Starting
with the positive side, LD definitely has the potential to incentivize civic par-
ticipation, both for expert voters on a certain topic, but also for users who feel
less confident and can delegate to some other trusted voter. At the same time,
it also forms a flexible means of participation, since there are no restrictions
for physical presence, and usually there is also an option of instant recall of a
delegation, whenever a voter no longer feels well represented.

Coming to the critique that has been made on LD, an issue that can become
worrying is the formation of large delegation paths. Such paths tend to be unde-
sirable since a voter who gets to cast a ballot may have a rather different opinion
with the first voters of the path, who are being represented by her [16]. Secondly,
LD faces the risk of having users accumulating excessive voting power, if no con-
trol action is taken [5]. Furthermore, another undesirable phenomenon is the
creation of delegation cycles, which could result to a waste of participation for
the involved voters. Despite the criticism, LD is still a young and promising field,
for promoting novel methods of participation and decision-making, generating
an increasing interest in the community. We therefore feel that several aspects
have not yet been thoroughly studied, and new models and ideas are worth fur-
ther investigation. Such efforts can help both in tackling some of the existing
criticism but also in identifying additional inherent problems.

Contribution. We focus on a model, where voters can have approval-based
preferences on the available actions. Each voter can have a set of approved dele-
gations, and may also approve voting herself or even abstaining. Our main goal is
the study of centralized algorithms for optimizing the overall satisfaction of the
voters. For this objective, under our model, it turns out that it suffices to focus
only on delegations to actual voters (i.e., delegation paths of unit length). Even
with this simpler solution space, the problems we study turn out to be com-
putationally hard. In Sect. 3, we start with the natural problem of minimizing
the number of dissatisfied voters, where we establish a connection with clas-
sic combinatorial optimization problems, such as set cover and dominating
set. we present approximation preserving reductions which allow us to obtain
almost tight approximability and hardness results. The main conclusion from
these is that one can have a small constant factor approximation when each
voter approves a small number of possible representatives. A constant factor
approximation can also be obtained for the variant of maximizing the number
of satisfied voters, through a different approach of modeling this as a constraint
satisfaction problem. Moving on, in Sect. 4, we consider the design of exact algo-
rithms for the same problems. Our major highlight is the use of a logic-based
technique, where it suffices to express properties by formulas in Monadic Second
Order logic. In a nutshell, this approach yields an FPT algorithm, whenever
the treewidth of an appropriate graph-theoretic representation of our problem
is constant. Under the same restriction, polynomial time algorithms also exist
when adding certain secondary objectives on top of minimizing (resp. maximiz-
ing) dissatisfaction (resp. satisfaction). To our knowledge, this framework has



362 E. Markakis and G. Papasotiropoulos

not received much attention in the social choice community and we expect that
it could have further applicability for related problems.

1.1 Related Work

To position our work with respect to existing literature, we note that the works
most related to ours are [15] and [12]. In terms of the model, we are mostly based
on [15], which studies centralized algorithms and where voters specify possible
delegations in an approval format. Coming to the differences, their model does
not allow abstainers (which we do), but more importantly, [15] studies a different
objective and no notion of satisfaction needs to be introduced (in Sect. 4 we
also examine a related question). Our main optimization criteria are inspired
mostly by [12], which among others, tries to quantify voters’ dissatisfaction.
Our differences with [12] is that they have voters with rank-based preferences
and their optimization is w.r.t. equilibrium profiles and not over all possible
delegations (in Sect. 5, we also provide a game-theoretic direction with some
initial findings). We note also that these works, like ours, are agnostic to the final
election outcome (preferences are w.r.t. delegations and not on actual votes).

More generally, the LD-related literature within computational social choice
concerns (i) comparisons with direct democracy models, (ii) game-theoretic sta-
bility of delegations, (iii) axiomatic approaches. Concerning the first topic, local
delegation mechanisms, under which every voter independently is making a
choice, have been explored in [8,18]. For the second direction, one can view
an LD framework as a game in which the voters can make a choice according
to some given preference profile. Such games have been considered in [12,13].
At the same time, game-theoretic aspects have also been studied in [4] and,
for the case of weighted delegations, in [27]. Concerning the third direction, a
range of delegation schemes have been proposed to avoid delegation cycles [19],
accumulation of high power in the election procedure [15] and existence of incon-
sistent outcomes [9]. Related paradigms to LD have also been considered, e.g. in
[1,7,10].

2 Preliminaries

2.1 Approval Single-Step Liquid Model

We denote by V = {1, . . . , n} the set of agents who participate in the election
process and we will refer to all members of V as voters (even though some of
them may eventually not vote themselves). In the suggested model, which we
refer to as Approval Single-Step Liquid model (assl), each voter i ∈ V needs to
express her preferences, in an approval-based format, on the options of (i) cast-
ing a ballot herself, (ii) abstaining from the election, (iii) delegating her vote to
voter j ∈ V \{i}. Namely, a voter may approve any combination of
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– casting a ballot herself. We let C denote the set of all such voters.
– abstaining from the voting procedure (e.g., because she feels not well-informed

on the topic). We let A denote the set of all such voters.
– delegating her vote to some other voter she trusts. For every v ∈ V , we denote

by N(v) the set of approved delegatees of v.

Note that we place no restriction on whether a voter accepts one or more
of the above options (or even none of them). Hence, in a given instance it may
be true that C ∩ A �= ∅ or that C ∪ A = ∅ or that v ∈ C and at the same
time N(v) �= ∅, etc. It is often natural and convenient to think of a graph-
theoretic representation of the approved delegations. Hence, for every instance,
we associate a directed graph G = (V,E), such that N(v) is the set of out-
neighbors of v, i.e., deg+(v) = |N(v)|, where deg+(v) is the out-degree of v. This
will be particularly useful in Sect. 4.

Let a delegation function d : V → V ∪ {⊥} express the final decision for
each voter. We say that d(v) = v, if voter v votes, d(v) = ⊥ if she abstains, and
d(v) = u ∈ N(v), if she delegates to voter u. Given a delegation function d(·),
we refer to a voter who casts a ballot as a guru. The guru of a voter v ∈ V ,
denoted by gu(v), can be found by following the successive delegations, as given
by a delegation function d(·), starting from v until reaching a guru (if possible).
Formally, gu(v) = u if there exists a sequence of voters u1, . . . , u� such that
d(uk) = uk+1 for every k ∈ {1, 2, . . . , � − 1}, u1 = v, u� = u and d(u) = u.
Obviously, gu(v) = v if v votes. In case the delegation path starting from v ends
up in a voter u for which d(u) = ⊥ then we say that v does not have a guru
and we set gu(v) = ∞. Additionally, we do the same for the case where the
successive delegations starting from some voter v form or end up in a cycle.

We say that a voter v is satisfied with the delegation function d(·) if v
approves the outcome regarding her participation or her representation by
another guru-voter. This means that either d(v) = v and v ∈ C or that d(v) = ⊥
and v ∈ A or that d(v) = u, with u �= v, u �= ⊥ and gu(u) ∈ N(v). In all
other cases, the voter is dissatisfied. Our work mainly deals with the problem of
finding centralized mechanisms for the following computational problems:

minimum social cost (min-sc)/maximum social good (max-sg)

Given: An instance of assl, i.e., the approval preferences of n voters
regarding their intention to vote, abstain and delegate

Output: A delegation function that minimizes the number of
dissatisfied voters/maximizes the number of satisfied voters

2.2 Warm-Up Observations

We start with some observations that will help us tackle the algorithmic problems
under consideration. Given an instance of assl, let G be the corresponding
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graph with the approved delegations, as described in the previous subsection. A
delegation function d(·), induces a subgraph of G that we denote by G(d), so that
(u, v) is an edge in G(d) if and only if d(u) = v. Clearly, the out-degree of every
vertex in G(d) is at most one and thus it can contain isolated vertices, directed
trees oriented towards the gurus, but in general it can also contain cycles, the
presence of which can only deteriorate the solution. The next claim shows that
we can significantly reduce our solution space. Its proof together with any other
missing proof are deferred to the full version of the work.

Claim 1. Consider a solution given by a delegation function d(·). There always
exists a solution d′(·) which is at least as good (i.e., the number of satisfied
voters is at least as high) as d(·), so that G(d′) is a collection of disjoint directed
(towards the central vertex) stars, and voters that abstain form isolated vertices.

Claim 1 justifies the name assl. One may discern similarities with proxy
voting models (see e.g. [2]), under which every voter is being represented by
her delegator, since no transitivity of votes is taken into account. Nevertheless,
we still like to think of our model as a Liquid Democracy variant, because it
is precisely the objectives that we study together with the centralized approach
that enforce Claim 1. When discussing decentralized scenarios or game-theoretic
questions (as we do in Sect. 5), longer delegation paths may also appear.

The next claim shows that for certain voters, we can a priori determine their
action, when looking for an optimal solution and that we can be sure about the
action of any voter who is dissatisfied under a given delegation function.

Claim 2. Consider a solution given by a delegation function d(·). There always
exists a solution which is at least as good (i.e., the number of satisfied voters is
at least as high) as d(·), in which (i) every voter in C casts a ballot and (ii) if
any voter is dissatisfied, it is because she is casting a ballot without approving it.

Claim 2 takes care of voters in C. We cannot state something similar for the
rest of the voters, since it might be socially better to dissatisfy a certain voter by
asking her to cast a ballot so as to make other people (pointing to her) satisfied.
In practice, this can also occur in cases where voting may be costly (in time or
effort to become more informed) and one member of a community may need to
act in favor of the common good, outweighing her cost.

3 Approximation Algorithms and Hardness Results

In this section we will mainly focus on min-sc, but we will also examine max-sg
in Sect. 3.2 and further related questions in Sect. 3.3. We pay particular attention
to instances where every voter approves only a constant number of other voters,
i.e., Δ = maxv |N(v)| = O(1). We find this to be a realistic case, as it is rather
expected that voters cannot easily trust a big subset of the electorate.
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3.1 Social Cost Minimization

We start by showing that the problem is intractable even when each voter
approves at most 2 other voters. In fact, we show that our problem encodes a
directed version of the dominating set problem, hence, beyond NP-hardness,
we also inherit known results concerning hardness of approximation.

Theorem 1. Let Δ = maxv∈V |N(v)| ≥ 2. When Δ is constant, it is NP-
hard to approximate min-sc with a ratio smaller than max{1.36,Δ − 1}. For
general instances, it is NP-hard to achieve an approximation better than ln n −
Θ(1) ln lnn.

Since hardness results have been established for Δ ≥ 2, it is natural to
question whether an optimal algorithm could be found for the case of Δ ≤ 1.
This scenario is far from unexciting. Consider for instance a spatial model where
voters are represented by points in some Euclidean space, interpreted as opinions
on the outcomes of some issues. If each voter approves for delegation only the
nearest located voter to her, we have precisely that Δ = 1. The following theorem
provides an affirmative answer in the above stated question (its proof is actually
a direct Corollary of Theorem 5 from Sect. 4).

Theorem 2. When Δ ≤ 1, min-sc can be solved in polynomial time.

For higher values of Δ, we can only hope for approximation algorithms. As we
show next, we complement Theorem 1 with asymptotically tight approximation
guarantees by reducing min-sc to the set cover problem.

Theorem 3. Let Δ = maxv∈V |N(v)| ≥ 2. When Δ is constant there is a
polynomial time algorithm for min-sc with a constant approximation ratio of
(Δ + 1). For general instances, the problem is (ln n−ln lnn+Θ(1))-approximable.

Proof. We will present a reduction that preserves approximability to the set
cover problem. In an unweighted set cover instance, we are given a universe
U and a collection F of subsets of U , and ask to find a cover of the universe
with the minimum possible number of sets from F . From an instance I of min-
sc we create an instance I ′ of set cover as follows: We create a universe of
elements U by adding one element for every voter, except for certain voters for
which there is no such need. In particular, U contains one element for every
v ∈ V \ (C ∪ A ∪ {u : ∃u′ ∈ N(u) ∩ C}). This means that in U we have excluded
voters who can be satisfied without delegating to someone else as well as voters
who can be satisfied by delegating to members of C (observe that because of
Claim 2 (part (i)), all voters of C will be assigned to vote). Furthermore, to
describe the collection F of sets in I ′, for every voter v ∈ V \ C we add the set
Sv = U ∩ ({u : v ∈ N(u)} ∪ {v}). If some Sv turns out to be the empty set, it
can be simply disregarded (e.g. for a voter v with N(v) ∩ C �= ∅).

Lemma 1. Let OPT (I), OPT (I ′) be the costs of the optimal solutions in the
instances I and I ′ respectively. Then OPT (I ′) ≤ OPT (I).
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Proof of Lemma 1. Let there be k dissatisfied voters in the optimal solution of
the min-sc instance I. By making use of Claim 2, we can assume that these are
members of V \ C who are assigned to cast a ballot. Hence, for a dissatisfied
voter v there exists a corresponding set Sv in I ′. We will argue that by selecting
these k sets that correspond to dissatisfied voters, we have a feasible solution for
the set cover problem. Towards contradiction, assume that there is an element
in I ′ that has not been covered by any of these sets. Because of the definition
of U , there must exist a voter v in I who corresponds to that element and who
only accepts to delegate to some voters who are not in C, i.e., each u ∈ N(v) has
a corresponding set Su in F since u ∈ V \ C. Moreover, v should be satisfied in
I, otherwise the set Sv would have been selected in the solution we constructed
for I ′ and v would have been covered. Therefore, at least one of her approved
voters, say u, is a guru, and the set Su covers v, which is a contradiction. �
Lemma 2. Given a feasible solution with cost SOL(I ′) of the produced instance
I ′, we can create a feasible solution of I, with cost SOL(I) ≤ SOL(I ′).

Proof of Lemma 2. Say that we are given a solution for I ′ with cost SOL(I ′) = k,
which means that by selecting a number of k sets, it is possible to cover every
element of U . Consider a delegation function d(·) which asks every voter from
V \ C whose corresponding set has been selected in the cover, to cast a ballot.
Following Claim 2, it also asks every voter from C to cast a ballot. From these,
only the former k voters are dissatisfied, who vote but do not belong to C. We
will argue that we can make all the remaining voters satisfied and hence we will
have a solution with k dissatisfied voters.

Consider a voter v ∈ V \C, whose set Sv was not included in the set cover
solution. If v ∈ A, then v is assigned to abstain and she is satisfied. So, suppose
that v ∈ V \ (A ∪ C) and also that N(v) �= ∅ (otherwise, with N(v) = ∅, then
Sv would have been selected in the cover). There are now two cases to consider:

Case 1: N(v)∩C �= ∅. Then v can delegate to a member of C and be satisfied.
Case 2: N(v) ∩ C = ∅. Then by the construction of the universe U , we have
that v ∈ U . Since we have selected a cover for U , v is covered by some set.
Additionally, we have assumed that Sv was not picked in the cover, hence
v is covered by some other set, say Su, which means that u is a voter who
is assigned to cast a vote and v ∈ Su. But then v can delegate to u and be
satisfied. �
By combining Lemma 1 and Lemma 2, we have that if we run any α-

approximation algorithm for the set cover instance I ′, we can find a solution
for the min-sc instance I, with the same guarantee since SOL(I) ≤ SOL(I ′) ≤
αOPT (I ′) ≤ αOPT (I). Recall that there exists a well known f -approximation
algorithm for set cover, where f is the maximum number of sets that con-
tain any element. Note also that in our construction, each element of I ′ that
corresponds to a voter v of I, belongs to at most |N(v)| + 1 sets. This directly
yields a (Δ + 1)-approximation for our problem. Alternatively, when Δ is not
bounded, we can use the best currently known approximation algorithm for the
set cover problem, presented in [25], to obtain the desired result. �
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3.2 Social Good Maximization

In all voting problems that involve a notion of dissatisfaction, one can study
either minimization of dissatisfactions or maximization of satisfactions. The min-
imization version is slightly more popular, see e.g., [12] (also, in approval voting
elections, it is more common to minimize the sum of distances from the optimal
solution than to maximize the satisfaction score). Clearly, for assl, if we can
solve optimally min-sc, the same holds for max-sg. The problems however can
differ on their approximability properties.

Looking back on our findings for min-sc, we note that the results from The-
orem 1 immediately yield NP-hardness for max-sg. The hardness of approxima-
tion however does not transfer. The result of Theorem 2 also applies.

Corollary 1. Let Δ = maxv∈V |N(v)|. Then max-sg is NP-hard even when
Δ = 2, and it is efficiently solvable when Δ ≤ 1.

Next, we also provide a constant factor approximation for constant Δ, albeit
with a worse constant than the results for min-sc. The main insight for the
next theorem is that we can exploit results from the rich domain of Constraint
Satisfaction Problems (csps) and model max-sg as such.

Theorem 4. Let Δ = maxv∈V |N(v)| ≥ 2. When Δ is constant there is a poly-
nomial time algorithm for max-sg with an approximation ratio of 1

(Δ+2)Δ+2 .

We leave as an open problem the question of whether there exist better
approximations or whether one can establish hardness of approximation results.

3.3 Further Implications: Instances with Bounded Social Cost

We conclude this section by discussing some implications that can be derived
by the reductions presented in Sect. 3.1, on relevant questions to min-sc. Let us
start with the special case where the optimal cost of an instance I is zero, i.e.,
it is possible to satisfy all voters. Can we have an algorithm that detects this? It
would be ideal to compute a delegation function that does not cause any dissat-
isfactions, and this is indeed possible. If OPT (I) = 0, then any approximation
algorithm for min-sc of finite ratio will necessarily return an optimal solution.
If OPT (I) > 0, the approximation algorithm will also return a positive cost.
Hence, by using Theorem 3 we have the following:

Corollary 2. Given an instance of assl, there exists a polynomial time algo-
rithm that decides if it is possible to satisfy all voters, in which case it can also
construct an optimal delegation function.

Taking it a step further, suppose now we ask: Given an instance I, is it true
that OPT (I) ≤ k, for some positive constant k? This time, we can construct a
set cover instance I ′ using the reduction presented in the proof of Theorem 3,
and then we can enumerate all possible collections of subsets of size at most k. If
a solution is found, it corresponds to a set of at most k dissatisfied voters. Hence,
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we can solve the problem in time nO(k). But now we can question whether there
is hope for a substantially better running time. To answer this, we exploit the
reduction used in Theorem 1 from Directed Dominating Set. In particular,
it is known by [14] that dominating set is W [2]-hard when parameterized
by the solution cost, even in graphs of bounded average degree. Given that
the directed version of dominating set inherits the hardness results of the
undirected version in combination with the proof of Theorem 1, we get:

Corollary 3. Unless W [2] = FPT , min-sc cannot be solved in time f(k)nO(1)

even for the case where Δ is constant, where f(k) is a computable function
depending only on the minimum possible number k of dissatisfied voters.

4 Exact Algorithms via Monadic Second Order Logic

The goal of this section is to focus on special cases that admit exact poly-
nomial time algorithms. Our major highlight is the use of a logic-based tech-
nique for obtaining such algorithms. To our knowledge, this framework has not
received much attention (if at all) from the computational social choice com-
munity despite its wide applicability on graph-theoretic problems. We therefore
expect that this has the potential of further deployments for other related prob-
lems.

4.1 Optimization Under Bounded Treewidth

The general methodology involves the use of an algorithmic meta-theorem (for
related surveys see [17] and [21]) to check the satisfiability of a formula that
expresses a graph property, defined over an input graph of bounded treewidth.
Roughly speaking, the treewidth is a graph parameter that indicates the “tree-
likeness” of a graph. It was introduced independently by various authors mainly
for undirected graphs (see [24] for an extended exposition of the origin of the
notion) but its definition and intuition can be extended to directed graphs as
well [3]. In our case, we will require bounded treewidth for the directed graph
associated to an instance of assl.

The approach presented here was initiated by Courcelle [11], who used
Monadic Second Order (MSO) logic to define graph properties. These, typically
ask for some set of vertices or edges subject to certain constraints. For express-
ing a property in MSO, we can make use of variables for edges, vertices as well
as for subsets of them. Apart from the variables, we can also have the usual1

boolean connectives ¬,∧,∨,⇒, quantifiers ∀,∃, and the membership operator
∈. The resulting running time for deciding properties expressible in MSO turns
out to be exponentially dependent on the treewidth and the size of the formula.

1 For ease of presentation, we will also use some set operations that although they are
not explicitly allowed, they can be easily replaced by equivalent MSO expressions.
For instance, x /∈ A \ B ≡ ¬((x ∈ A) ∧ ¬(x ∈ B)) and A ⊆ B ≡ (∀x ∈ A ⇒ x ∈ B).
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After Courcelle’s theorem, there have been several works that extend the
algorithmic implications of MSO logic. Most importantly, and most relevant to
us, the framework of [3] can handle some types of optimization problems. Con-
sider a formula φ(X1, . . . , Xr) in MSO, having X1, . . . , Xr as free set variables,
so that a property is true if there exists an assignment to the free variables
that make φ satisfied. Then, we can optimize a weighted sum over elements that
belong to any such set variable, subject to the formula φ being true (one needs
to be careful though as the weights are taken in unary form). A representative
example presented in [3] (see Theorem 3.6 therein for a wide variety of tractable
problems w.r.t. treewidth) is minimum dominating set in which we want to
minimize |X| subject to a formula that enforces the set X to be a dominating
set.

We note that the results we use here require to have a representation of the
tree decomposition of the input graph. But even if this is not readily available,
its computation is in FPT w.r.t. the treewidth [6].

Our first result in this section shows that min-sc and max-sg are tractable
when the treewidth of the associated graph is constant.

Theorem 5. Consider an instance of assl, and let G be its corresponding
graph. Then min-sc and max-sg are in FPT w.r.t. the treewidth of G.

Proof. It suffices to solve min-sc since this yields an optimal solution to max-
sg as well. In order to apply a framework of MSO logic, we first make a small
modification to the graph G. We add a special vertex denoted by a and we add
a directed edge (v, a) for every v for which v ∈ A. In this manner, abstainers will
be encoded by “delegating” their vote to a. Let G′ = (V ′, E′) be the resulting
graph, where V ′ = V ∪{a} and E′ = E ∪{(v, a) : v ∈ A}. We observe that these
additions do not affect the boundedness of the treewidth.

Lemma 3. If G has bounded treewidth, so does G′.

We will create an MSO formula φ(D,X) with 2 free variables, D and X,
encoding an edge-set and a vertex set respectively. The rationale is that φ(D,X)
becomes true when the edges of D encode a delegation function and X denotes
the set of voters who are dissatisfied by the delegations of D. To write the
formula, we also exploit the fact that the framework of [3] allows the use of a
constant number of “distinguished” sets so that we can quantify over them as
well (apart from quantification over V ′ and E′). We will use V , along with C
and A (of voters who approve casting a ballot or abstaining respectively), as
these special sets here. To proceed, φ(D,X) is the following formula:

D ⊆ E′ ∧ X ⊆ V \ C ∧
(∀v ∈ V ′ (deg+D(v) ≤ 1)) ∧ (∀u, v, w ∈ V ′((u, v) ∈ D ⇒ (v, w) �∈ D))∧
(∀v ∈ C (deg+D(v) = 0)) ∧
(∀v ∈ V (v ∈ X ⇔ (deg+D(v) = 0 ∧ v /∈ C)))
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The term deg+D(v) = 0 can be expressed in MSO logic in a similar way to the
more general term of deg+D(v) ≤ 1, which we define formally as

deg+D(v) ≤ 1 ≡ (∃u ∈ V ′ (v, u) ∈ D) ⇒ ¬(∃w ∈ V ′ ((v, w) ∈ D ∧ w �= u)).

Concerning the construction of φ(D,X), the second line expresses the fact
that D is a union of disjoint directed stars so as to enforce Claim 1. Anyone with
out-degree equal to one within D either delegates to some other voter or abstains
(i.e. delegates to vertex a), whereas those with out-degree equal to zero in D
cast a vote themselves. The third line of φ(D,X) also enforces Claim 2 (part (i))
so that members of C always cast a vote. The fourth line expresses the fact that
the vertices of X are dissatisfied voters. By Claim 2 (part (ii)), the only way to
make a voter v dissatisfied is by asking her to cast a ballot when v �∈ C. Indeed,
voters who are not asked to cast a ballot, have out-degree equal to one in D, so
they either abstain or delegate. This means that either (v, a) ∈ D or (v, u) ∈ D
for some u ∈ V . In the former case, v is satisfied because v ∈ A (if v �∈ A then
the edge (v, a) would not exist in E′ and could not have been selected in D). In
the latter case, v approves u (otherwise the edge (v, u) would not exist) and u
casts a vote since D contains only stars. Hence v is again satisfied.

The final step is to perform optimization w.r.t. |X| subject to φ(D,X) being
true. To that end, we can assign a weight w(v) to every vertex v such that
w(a) = 0 and w(v) = 1,∀v ∈ V ′ \{a}. Hence

∑
v∈X w(v) = |X|. Using the result

of [3], we can find a delegation function d(·), as given by the edges in D, that
minimizes the number of dissatisfied voters within the feasible solutions. �

4.2 Adding Secondary Objectives

We continue with exhibiting that MSO frameworks can be useful for tackling
other related problems as well. For the cases when we can solve min-sc (and
max-sg) optimally, we are investigating whether we can find such a solution
with additional properties (whenever the optimal is not unique). Motivated by
questions studied in [12,13] and [15] we consider the following problems:

1. Among the optimal solutions to min-sc (or max-sg), find one in which a
given voter v casts a vote, or answer that no such solution exists.

2. Ditto, with having voter v abstain in an optimal solution.
3. Among the optimal solutions to min-sc (or max-sg), find one that minimizes

the number of abstainers.
4. Among the optimal solutions to min-sc (or max-sg), find one that minimizes

the maximum voting power over all gurus, i.e. the number of voters that she
represents (or equivalently that minimizes the maximum in-degree).

The fourth problem is quite important in models of LD, given also the critique
that often applies on such models that may accumulate excessive power on some
voters. Below we start by addressing the first three problems together.
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Theorem 6. Consider an instance of assl, and let G be its corresponding
graph. It is in FPT w.r.t. the treewidth of G to find an optimal solution to
min-sc and max-sg, in which a given voter casts a ballot or abstains (if such a
solution exists). The same holds for minimizing the number of abstainers.

We come now to the fourth problem, which is the most challenging one. For
this, we will use yet another enriched version of the MSO framework, which
facilitates the addition of further constraints and helps in solving several degree-
constrained optimization problems. As these problems are in general more dif-
ficult [22], the results of [26] and [20] yield polynomial time algorithms w.r.t.
treewidth, but do not place them in FPT.

For the presentation we will stick to the terminology of [20]. Consider a
formula φ(X1, . . . , Xr) with free variables X1, . . . Xr. The main idea is to add
so-called global and local cardinality constraints and ask for an assignment that
satisfies both φ and the constraints. In the simpler version that we will use here,
a global cardinality constraint is of the form

∑
i∈[r] ai|Xi| ≤ b for given rational

numbers ai, i ∈ [k] and b (some of these numbers can be zero so that we constrain
the cardinality of only some of the free variables). On the other hand, a local
cardinality constraint for a vertex has to do with limiting the number of its
neighbors or incident edges that belong to a set corresponding to a free variable.
For example, if X1 is a free variable of φ that encodes a vertex set, and X2 is a
free variable encoding an edge set, we can have constraints of the form “for each
vertex v of G, the number of vertices in X1 adjacent to v belongs to a set a(v)”,
where a(v) contains the allowed values (e.g., could be an interval). Similarly, we
can express that the number of edges of X2 incident with v can take only specific
values from some set a′(v). A nice representative illustration for local constraints
in [20] is the capacitated dominating set problem, where one needs to pick
a dominating set D respecting capacity constraints for every v ∈ D.

Theorem 7. Consider an instance of assl where the associated graph G has
constant treewidth. Then among the optimal solutions to min-sc, we can find in
polynomial time a solution that minimizes the maximum in-degree of the gurus.

Proof Sketch. Starting from the directed graph G, let G′ = (V ′, E′) be the graph
used in the proof of Theorem 5, derived from G. Our first step is to use Theorem
5 and solve min-sc optimally so that we know the cost of an optimal solution.
Suppose that we have c unsatisfied voters in an optimal solution.

In order to proceed and utilize the extended MSO framework of [20], we need
to work with an undirected graph. To this end, we create an undirected graph
H = (V ′′, E′′) from the directed graph G′ by having each v ∈ V correspond
to 2 vertices, vin and vout in V ′′. In this manner, out-going edges from v will
correspond to edges incident with vout in H whereas incoming edges to v will be
incident to vin. The graph H will also include the node a for the abstentions, so
that in total V ′′ = Vin ∪ Vout ∪ {a}. Given this construction, it is easy to verify
that if G has bounded treewidth, so does H.
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The next step is to produce a formula for the undirected graph H, whose
satisfying assignments will correspond to valid delegation functions on the orig-
inal graph G. We will denote our formula by ψ(D,F,X), with the free variables
D,F,X. As in Theorem 5, the set D will be a subset of edges encoding a valid
delegation function. The set F will encode the set of voters who cast a ballot
themselves. Finally, the set X will encode the dissatisfied voters induced by D.

Following the framework of [20], we now add 2 classes of constraints that we
want to be satisfied in addition to ψ(D,F,X). The first one is a so-called global
cardinality constraint to ensure that the number of dissatisfied voters is no more
than the optimal. Since we have already solved min-sc and the solution is c, and
since X expresses the set of dissatisfied voters, the constraint will be |X| ≤ c.

Finally, we add the so-called local cardinality constraints. We will produce
a set of constraints depended on a fixed number d ∈ {0, 1, . . . , n} such that the
constraints will ensure that the maximum degree of every vertex in F is bounded
by d. By using [20], we can now decide for every d if there is an assignment to
the variables D,F,X that satisfies ψ(D,F,X) together with the global and local
cardinality constraints. To summarize, the steps of the overall algorithm are:

(1) Use Theorem 5 to find the optimal number of dissatisfied voters.
(2) Transform G to the undirected graph H and construct the formula

ψ(D,F,X).
(3) For d = 0 to n, decide if ψ(D,F,X) is satisfiable subject to the global and

local cardinality constraints introduced above. Stop in the first iteration
where this is true and create the delegation function from D and F . �

5 Discussion and Other Directions

We have presented a model that allows voters to express preferences over del-
egations via an approval set. Our main goal has been to optimize the overall
satisfaction of the voters, which implies that it suffices to focus only on direct
delegations to actual voters. Even under this simpler solution space, the prob-
lems we study are intractable, even when the out-degree is a small constant. On
the positive side, we have exhibited constant factor approximation algorithms for
graphs of constant maximum out-degree, as well as exact algorithms under the
bounded treewidth condition, even when secondary objectives are also present.
It is therefore interesting to see if any other parameter can play a crucial role
on the problem’s complexity.

All our results also hold under the generalized model where a graph G is
given so that the out-neighborhood N(v), of voter v, expresses the set of feasible
delegations which is a (possibly strict) superset of her approved delegations. On
the other hand, the case where the approved delegatees of a voter v are not
necessarily neighbors seems more complex (e.g., a voter approves some other
person but cannot directly delegate to her due to hierarchy constraints). Finally,
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the results of Sect. 3 also hold for weighted voters, whereas the results of Sect. 4
only hold if the weights are polynomially bounded in unary form.

Another worthwhile direction comes from the fact that the MSO framework
primarily serves as a theoretical tool for placing a problem in a certain complexity
class but yields impractical running times. One could proceed with a theoretical
and/or experimental study of tailor-made dynamic programming algorithms for
the problems presented in Sect. 4. Coming to our last result (Theorem 7), an
interesting approach for future work would be to provide algorithms with trade-
offs between the total dissatisfaction and the maximum voting power (instead
of optimizing one objective and keeping the other as a secondary objective).

5.1 Towards a Game-Theoretic Analysis

We conclude our work with a preliminary game-theoretic analysis, which can
serve as the basis for a more elaborate future study of these models. Motivated
by the approach of [12,13], we define the following simple game: Say that in an
instance of assl each voter v acts as a strategic player, whose strategy space
is N(v) ∪ {v,⊥}. The utility that she can earn from an outcome is either 1, if
she is satisfied with that outcome, or 0 otherwise. The first relevant question is
whether such games admit pure Nash equilibria, i.e., delegation functions under
which no voter is able to unilaterally change her strategy and increase her utility.
In contrast to the model of rank-based preferences of [12,13], in our case, Nash
equilibria are guaranteed to exist.

Proposition 1. In every instance of assl, there exists a pure Nash equilibrium,
which can be computed in polynomial time.

In order to evaluate the equilibria of a game (in terms of the derived social
good, or similarly in terms of social cost), we can use the Price of Anarchy
as a standard metric. This can be defined as the worst possible ratio between
the optimal solution for the social good against the number of satisfied voters
at a Nash Equilibrium. Unfortunately, we show below that strategic behavior
can lead to quite undesirable solutions and we note that this could act as an
argument in favor of using a centralized mechanism, as done in the previous
sections, to avoid such bad outcomes.

Proposition 2. The Price of Anarchy for the strategic games of the assl model,
can be as bad as Ω(n), even when Δ ≤ 1.

Finally, note that Proposition 2 raises the question of coming up with richer
game-theoretic models of the delegation process (e.g. richer utility functions or
repeated games) so as to understand thoroughly the effects of strategic behavior.
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Abstract. We study the question of dividing a collection of indivisible
items amongst a set of agents. The main objective of research in the
area is to achieve one of two goals: fairness or efficiency. On the fair-
ness side, envy-freeness is the central fairness criterion in economics, but
envy-free allocations typically do not exist when the items are indivisi-
ble. A recent line of research shows that envy-freeness can be achieved if
a small quantity of a homogeneous divisible item (money) is introduced
into the system, or equivalently, if transfer payments are allowed between
the agents. A natural question to explore, then, is whether transfer pay-
ments can be used to provide high welfare in addition to envy-freeness,
and if so, how much money is needed to be transferred.

We show that for general monotone valuations, there always exists an
allocation with transfers that is envy-free and whose Nash social welfare
(NSW) is at least an e−1/e-fraction of the optimal Nash social welfare.
Additionally, when the agents have additive valuations, an envy-free allo-
cation with negligible transfers and whose NSW is within a constant
factor of optimal can be found in polynomial time. Consequently, we
demonstrate that the seemingly incompatible objectives of fairness and
high welfare can be achieved simultaneously via transfer payments, even
for general valuations, when the welfare objective is NSW. On the other
hand, we show that a similar result is impossible for utilitarian social
welfare: any envy-freeable allocation that achieves a constant fraction
of the optimal welfare requires non-negligible transfers. To complement
this result we present algorithms that compute an envy-free allocation
with a given target welfare and with bounded transfers.

Keywords: Fair division · Welfare · Transfers

1 Introduction

The question of how to divide a collection of items amongst a group of agents has
remained of central importance to society since antiquity. Real-world examples
of this problem abound, ranging from the division of land and inherited estates,
border settlements, and partnership dissolutions, to more modern considerations
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such as the division of the electromagnetic spectrum, distribution of computa-
tional resources, and management of airport traffic. The predominant objective
of research in this area is to study the existence of allocations that achieve one
of two broad goals: fairness or efficiency. At a high level, the fairness goal is to
ensure that each agent receives its due share of the items, and the efficiency goal
is to distribute the items in a way that maximizes the aggregate utility achieved
by all of the agents.

The study of fair division burgeoned in the decades following its formal intro-
duction by Banach, Knaster and Steinhaus [29], and most of the early literature
focused on the divisible setting, where a single heterogeneous divisible item (con-
ventionally, a cake) is to be fairly shared among a set of agents with varying pref-
erences over its pieces. The second half of the last century saw the creation of
precise mathematical definitions for various fairness notions, and envy-freeness,
where every agent prefers its piece to any piece received by another agent, has
since emerged as the dominant fairness criterion in economics. More recently,
research has focused on the indivisible setting, where each item in a collection
must be allocated as a whole to some agent. It appears at first that envy-freeness
cannot be achieved in this setting; consider the simple example of two agents
and one item, where one agent is left envying the other in any allocation. Conse-
quently, a common theme in the indivisible setting is the study of weaker fairness
guarantees such as EF1 and approximate-MMS [14,26,27].

But is it necessary to restrict ourselves to these weaker guarantees? A recent
line of research shows, rather surprisingly, that it is possible to achieve canoni-
cal envy-freeness even in the indivisible setting simply by adding to the system
a small quantity of a divisible item, akin to money [13,24], or equivalently by
allowing the agents to make transfer payments between themselves. These trans-
fer payments can always be made alongside an allocation of the indivisible items
such that the result is envy-free. In this work, we ask and answer a natural
follow-up question: can this tool be made to do more? Can we use it to simulta-
neously guarantee full envy-freeness while also achieving high welfare, and if so,
how much in total transfer payments do we need for this?

1.1 Related Work

The formal origin of fair division dates back to the 1940s, when Banach, Knaster
and Steinhaus [29] devised the Last Diminisher procedure to fairly divide a
cake among n agents. Their fairness objective was proportionality, in which each
agent receives a piece of value at least 1

n of the value of the entire cake to that
agent. The pursuit of proportional cake divisions in different settings led to the
creation of popular algorithmic paradigms for cake-cutting such as the moving-
knives procedures [18,30]. In the following decades, envy-freeness (Gamow and
Stern [20], Foley [19]) emerged as the canonical fairness solution. Early non-
constructive results proved that, under mild assumptions, envy-free allocations
always exist in the divisible setting (Stromquist [30], Woodall [35], Su [31]),
and ensuing work produced finite and bounded protocols for computing these
allocations (Brams and Taylor [12], Aziz and Mackenzie [5]).
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The research efforts of the fair division community have undergone two major
shifts in recent years. The first of these is an increased focus on economic effi-
ciency. The most common type of economic efficiency is Pareto efficiency, in
which no agent’s allocation can be improved without making some other agent
worse off. A classical result of Varian [34] shows that in the divisible setting
there always exists an allocation that is both envy-free and Pareto efficient. A
different notion of efficiency arises when we maximize a welfare function that
measures the aggregate utility of all agents. The most common welfare functions
studied in the associated literature are the utilitarian social welfare (or simply
the social welfare), which measures the sum of the agents’ valuations, and the
Nash social welfare, which measures the geometric mean of these valuations. In
the divisible setting, Bei et al. [8] and Cohler et al. [17] study the problem of
maximizing social welfare under proportionality and envy-freeness constraints.

The second shift is towards the study of the indivisible setting, where m items
are to be integrally divided amongst n agents. Since neither envy-freeness nor
proportionality can now be guaranteed, a natural alternative is to provide relax-
ations or approximations of them. One such relaxation is the EFk guarantee. An
allocation is envy-free up to k items, or EFk, if no agent envies another agent’s
bundle provided some k items are removed from that bundle. The EF1 guar-
antee is particularly notable, as EF1 allocations exist and can be computed in
polynomial time if the valuation functions are monotone [27]. Two similar relax-
ations exist for proportionality, namely the Prop1 guarantee and the maximin
share guarantee, the latter of which is a natural extension of the two-agent cut-
and-choose protocol [14]. A large body of research produced over the last decade
aims to achieve these guarantees or approximations thereof (see e.g. [21,26]),
including many results that show that these fairness guarantees can be achieved
alongside Pareto efficiency [7] or high Nash social welfare [7,16].

The problem of achieving high utilitarian social welfare under fairness con-
straints was formally introduced by Caragiannis et al. [15]. The price of fairness
(that is, of envy-freeness, EF1, or any other fairness criterion) of an instance is
defined as the ratio of the social welfare of an optimal allocation without fairness
constraints, to the social welfare of the best fair allocation. Intuitively, it mea-
sures the necessary worst-case loss in efficiency when we add fairness constraints.
Caragiannis et al. [15] present bounds on the price of fairness (proportionality,
envy-freeness and equitability) in both the divisible and indivisible settings; we
remark, however, that their results for the indivisible case only consider the
special set of instances for which the associated fair allocations exist. For the
divisible setting, Bertsimas et al. [11] showed that the bounds of [15] are tight.
Followup work on the price of fairness in the indivisible setting by Bei et al.
[9] and Barman et al. [6] considers only the relaxed fairness guarantees (such as
EF1 and 1

2 -MMS) that are always achievable in the indivisible setting.
In now classical work, Svensson [32], Maskin [28], and Tadenuma and Thom-

son [33] studied the indivisible item setting and asked if it is always possible to
achieve an envy-free allocation simply by introducing a small quantity of a divis-
ible item, akin to money, alongside the indivisible items. Their positive results
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were mirrored in followup work by Alkan et al. [1], Aragones [2], Klijn [25] and
Haake et al. [23] which showed for various settings the existence of an envy-free
allocation with subsidy. However, all of the above papers considered the restricted
case where the number of items, m, is at most the number of agents n (or where
the items were grouped into n fixed bundles). It was only recently that Halpern
and Shah [24] extended these results to the general m-item setting, showing that
an envy-free allocation with subsidy always exists in general. Brustle et al. [13]
followed this up with upper bounds on the amount of money sufficient to sup-
port an envy-free allocation in all instances. Surprisingly, when the valuation
functions are scaled so that the marginal value of an item is at most one dollar
to any agent, at most n−1 dollars in the additive case and at most O(n2) dollars
in the general monotone case are always sufficient to eliminate envy [13]. Note
that the maximum required subsidy is independent of the number m of items,
an observation of particular relevance to our work. Several recent papers study
the problem of achieving envy-freeness alongside other properties via subsidies
and transfers, including Aziz [4], Goko et al. [22].

1.2 Results and Contributions

A salient question is whether the two ideas exposited in the prior discussion can
be combined: is it possible to find an allocation with subsidy that is simultane-
ously envy-free and guarantees high welfare? If so, how much subsidy is sufficient
to achieve this? These questions are the focus of this paper.

Thus, one contribution of our work is to extend the literature on subsidies
and their application. However, rather than subsidies, we analyze the related
concept of transfer payments between the agents for two reasons. First, a subsidy
is an external source of added utility which, in the context of welfare, would
bias any subsequent comparisons with the welfare-maximizing allocation without
subsidies. A transfer payment is neutral in this regard. Second, subsidies require
an external agent willing to fund the mechanism – a typically unrealistic hope.
In contrast, transfer payments require the consent only of the agents who are
already willing participants in the mechanism. Provided the cost of the payments
are outweighed by the benefits of participation then giving consent is reasonable.
We remark that subsidies and transfers are in a sense interchangeable. Given
an envy-free allocation with subsidies, subtracting the average subsidy from
each agent’s individual payment gives payments which sum to zero, that is,
transfer payments. Conversely, given transfer payments, adding an appropriate
fixed amount to each payment induces non-negative subsidy payments.1

A second contribution is to extend the research on the price of fairness. Specif-
ically, we impose no balancing constraint on the valuation functions of the agents.
To understand this, note that a common assumption in the price of fairness lit-
erature is that the valuation function of each agent is scaled so that the value
1 Of course, whilst the correspondence between subsidies and transfers is simple, the

switch to transfer payments does have a technical drawback: because transfer pay-
ments do not provide an (unnatural) external boost to welfare, obtaining welfare
guarantees for the case of transfers is generally harder than for the case of subsidies.
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of the grand bundle of items is equal for all agents. In the context of fairness,
this scaling is benign because it has no affect on the most widely used measures
of fairness. For example, it does not change the (relative) envy between any
pair of agents. However, in the context of efficiency or welfare, this scaling can
dramatically alter the welfare of any allocation by restricting attention to bal-
anced instances, where agents are of essentially equal importance in generating
welfare. This is important because it is the elimination of unbalanced instances
that allows non-trivial bounds on the price of fairness to be obtainable [6,9].
Indeed, as will be seen in this paper, it is the unbalanced instances that are
typically the most problematic in obtaining both fairness and high welfare.

We do, for simplicity, make the standard assumption in the literature on
subsidies [13,24], and assume that the maximum marginal value for an item for
any agent is always at most one dollar. We emphasize that this assumption is
benign with respect to both fairness and welfare: it does not affect the relative
envy between agents, and it does not affect the welfare of an allocation (as all
valuations can be scaled down uniformly). Expressing the transfers in dollar
amounts allows for a consistent comparison with earlier work on the topic, and
equivalent bounds for the original instance can be recovered by multiplying these
expressions by the maximum marginal value of an item for any agent.

We now present the main results in the paper. We study the trade-off between
fairness and efficiency in the presence of transfer payments for the class of ρ-
mean welfare functions, with particular focus on the two most important special
cases, namely the Nash social welfare and utilitarian social welfare functions.
An allocation is envy-freeable if it can be made envy-free with the addition of
subsidies (or, equivalently, transfer payments). Our first observation is that to
achieve both fairness and high welfare, it is not sufficient to simply find an envy-
freeable allocation – making transfer payments is necessary. In fact, no non-zero
welfare guarantee is achievable for all ρ without considering transfers in the
computation of the welfare. Letting Wρ denote ρ-mean welfare, we have:

Observation 1. For any ε > 0, there exist instances where the welfare of every
envy-freeable allocation A satisfies Wρ(A)

Wρ(A∗) ≤ ε.

Here A∗ is the welfare-maximizing allocation. The observation applies even in
the case of additive valuations with Nash social welfare functions. Consequently,
the focus on allocations with transfers is justified. For ρ-mean welfare functions,
we show that positive welfare guarantees are achievable with transfers.

Corollary 1. For subadditive valuations, there exists an envy-free allocation with
transfers (A, t) such that Wρ(A,t)

Wρ(A∗) ≥ 1
n and with a total transfer

∑
i |ti| of at most

2n2. This allocation can be computed in polynomial time.
Here n is the number of agents. Note that the total transfer is independent of

the number m of items. This implies, as m grows, that the transfer payments are
negligible in terms of the number of items (and of total welfare). In particular,
our ultimate objective is to obtain both envy-freeness and high welfare using
negligible transfers. Of course, the welfare guarantee of 1

n does not signify high
welfare. So we investigate whether improved bounds can be obtained for the
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important special cases of ρ = 0 (Nash social welfare) and ρ = 1 (utilitarian
social welfare). Strong guarantees on welfare can be obtained for the former.
Specifically, there exists an envy-free allocation with transfers with a Nash social
welfare that is at least an e−1/e ≈ 0.6922 fraction of the optimal welfare.

Theorem. For general valuations, there exists an envy-free allocation with trans-
fers (A, t) such that NSW(A,t)

NSW(A∗) ≥ e−1/e.
Furthermore, for additive valuations, such constant factor welfare guarantees

can be obtained with negligible transfer payments.

Theorem. For additive valuations, given an α-approximate allocation to max-
imum Nash social welfare, there exists a polynomial time computable envy-free
allocation with transfers (A, t) such that NSW(A,t)

NSW(A∗) ≥ 1
2α · e−1/e with a total

transfer
∑

i |ti| of at most 2n2.
In sharp contrast, for utilitarian social welfare, the factor 1

n welfare threshold
is tight. To achieve any welfare guarantee greater than 1

n requires non-negligible
transfer payments. Specifically, we show

Corollary. For any α ∈ [
1
n , 1

]
, there exists an instance with additive valuations

such that any envy-free allocation with transfers (A, t) satisfying SW(A,t)
SW(A∗) ≥ α

requires a total transfer
∑

i∈N |ti| of at least 1
4

(
α − 1

n

)2
m.

In fact, there exist instances for which any EFk allocation with k = o(m)
has a welfare guarantee of at most 1

n + o(1) (Lemma 3). This implies that EFk
allocations cannot provide higher welfare with moderate transfers.

On the positive side, we can design algorithms to produce envy-free allo-
cations with welfare guarantee α whose total transfer payment is comparable
to the minimum amount possible, quantified in terms of the maximum value
max

i
vi(A∗

i ) any agent has in the welfare-maximizing allocation.

Theorem. For additive valuations, for any α ∈ (0, 1], there is a polynomial time
computable envy-free allocation with transfers (A, t) such that SW(A,t)

SW(A∗) ≥ α with
total transfer

∑
i∈N |ti| ≤ n(α max

i
vi(A∗

i ) + 2).

Theorem. For general valuations, for any α ∈ (
0, 1

3

]
, there is an envy-

free allocation with transfers (A, t) such that SW(A,t)
SW(A∗) ≥ α with total transfer

∑
i∈N |ti| ≤ 2n2 (3α maxi vi (A∗

i ) + 2).
In Sect. 2, we present our model of the fair division problem with transfers.

Section 3 contains an exposition of the prior results in the literature that will
be useful, along with our preliminary results on the ρ-mean welfare of envy-
free allocations with transfers. In Sect. 4, we present our results on Nash social
welfare, and in Sect. 5 we present our results on utilitarian social welfare. Due
to length restrictions, the proofs are deferred to the full paper.

2 The Model and Preliminaries

Let M = {1, · · · ,m} be a set of m indivisible items and let N = {1, · · · , n}
be a set of agents. Each agent i has a valuation function vi : 2M → R, where
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vi(∅) = 0. We make the standard assumption that each valuation function is
monotone, satisfying vi(S) ≤ vi(T ) whenever S ⊆ T . Additionally, following
previous work on subsidies (see e.g. [13,24]), without loss of generality we uni-
formly scale the valuation functions by the same factor for each agent so that
the maximum marginal value of any item is at most 1. Besides general monotone
valuations, we are also interested in well-known classes of valuation function, in
particular, additive (linear) valuations where v(S) =

∑
g∈S v(g) for each S ⊆ M ,

and subadditive (complement-free) valuations where v(S ∪ T ) ≤ v(S) + v(T ) for
all S, T ⊆ M . We use [n] to denote the set {1, · · · , n}.

2.1 Fairness and Welfare

An allocation A = (A1, A2, · · · , An) is a partition of the items into n disjoint
subsets, where Ai is the set of items allocated to agent i. Our aim is to obtain
envy-free allocations with high welfare.

Definition 1. An allocation A = (A1, · · · , An) is envy-free if for each i, j ∈ N ,
vi(Ai) ≥ vi(Aj).

In other words, an allocation is envy-free if each agent i prefers its own bundle
Ai over any the bundle Aj of any other agent j. If agent i prefers the bundle of
agent j then we say i envies j. Unfortunately, envy-free allocations do not always
exist with indivisible item. This is evident even with two agents and one item,
since the agent without an item will always envy the other. Moreover, even
with two players and with identical additive valuations, determining whether
an envy-free allocation exists is NP-complete. Consequently weaker notions of
fairness have been introduced [14], most notably envy-freeness up to one item.

Definition 2. An allocation A is envy-free up to one item (EF1) if for each i, j
∈ N , vi(Ai) ≥ vi(Aj\g) for some g ∈ Aj.

Rather than approximate fairness, however, our focus is on obtaining envy-
freeness by adding one divisible item (money). Thus we have an allocation with
payments; in addition to the bundle Ai, agent i has a payment pi.

Definition 3. An allocation with payments (A, p) is envy-free if for each
i, j ∈ N , vi(Ai) + pi ≥ vi(Aj) + pj.

Furthermore, we say that an allocation A is envy-freeable if there exist pay-
ments p such that (A, p) is envy-free. An important fact is that, in contrast to
envy-free allocations, envy-freeable allocations always exist for monotone val-
uations [24]. There are two natural types of payment. First, we have subsidy
payments if pi ≥ 0. Second, we have transfer payments if

∑
i∈N pi = 0, To dis-

tinguish these, we denote a subsidy payment to agent i by si and a transfer
payment by ti. We define the total transfer of an allocation as the sum

∑
i |ti|.

We measure the welfare of an allocation A using the general concept of ρ-
mean welfare, Wρ(A) =

(
1
n

∑
i∈N vi(Ai)ρ

) 1
ρ . This class of welfare functions,
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introduced by Arunachaleswaran et al. [3], encompasses a range of welfare func-
tions including the two most important cases: ρ → 0, the Nash social welfare,
is the geometric mean of the values of the agents, denoted by NSW(A) =
(∏

i∈N vi(Ai)
) 1

n , and ρ = 1, the utilitarian social welfare or simply social wel-
fare (scaling by the number of agents), denoted by SW(A) =

∑
i∈N vi(Ai).

With transfer payments, our interest lies in utilities rather than simply valua-
tions. In particular, the ρ-mean welfare of an allocation with transfers (A, t) is

Wρ(A, t) =
(
1
n

∑
i∈N (vi(Ai) + ti)

ρ) 1
ρ .

2.2 Fair Division with Transfer Payments

In this paper, we study the following question.

Is there an allocation with transfers that simultaneously satisfies
(i) envy-freeness, (ii) high welfare, and (iii) a negligible total transfer?

We have seen that envy-freeable allocations always exist. Thus, with trans-
fer payments, we can obtain the property of envy-freeness. The reader may ask
whether transfers are necessary. Specifically, given the guaranteed existence of
envy-freeable allocation, can such allocations provide high welfare? The answer
is no. Even worse, no positive guarantee on welfare can be obtained without
transfers. This is true even for the case of additive valuations. To see this, con-
sider the following simple example for Nash social welfare.

Example 1. Take two agents and two items {a, b}. Let the valuation functions
be additive with v1,a = 1, v1,b = 1

2 for agent 1 and v2,a = 1
2 , v2,b = ε for agent

2. Observe there are only two envy-freeable allocations: either agent 1 gets both
items or agent 1 gets item a and agent 2 gets item b. For both these envy-freeable
allocations the corresponding Nash social welfare is at most

√
ε. In contrast, the

optimal Nash social welfare is 1
2 when agent 1 gets b and agent 2 gets a.

It follows that to find envy-free solutions with non-zero approximation guar-
antees for welfare we must have transfer payments. At the outset, if we restrict
ρ to be equal to 1, the result of Halpern and Shah [24] implies that the allo-
cation that maximizes utilitarian welfare can be made envy-free with transfer
payments. However, we show that this allocation can require arbitrarily large
transfers relative to the number of agents. The main point of concern in using
transfer payments to achieve envy-freeness is that it may be difficult for the
participants to include a substantial quantity of money in the system in order
to implement this solution. Consequently, this creates a third requirement, i.e.
to bound the total transfers. Thus the holy grail here is to obtain high welfare
using only negligible transfers: formally, we desire transfers whose sum (of abso-
lute values) is independent of the number of items m. In particular, we want
an allocation with transfers (A, t) such that the welfare of A is at least α times
the welfare of the welfare-maximizing allocation A∗ (for some large α ∈ [0, 1])
and

∑
i∈N |ti| = O(f(n)) for some function f . Specifically, the payments are

negligible in the number of items (and thus in the total welfare) as m grows.
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At first glance, this task seems impossible. If envy-freeable solutions cannot
themselves ensure non-zero welfare guarantees, how could negligible transfer
payments then induce high welfare? Very surprisingly, this is possible for some
important classes of valuation functions. However, it is indeed not always possible
for other classes. Investigating how and where the boundary of this dichotomy
lies is the purpose of this paper.

3 Transfer Payments and ρ-Mean Welfare

In this section we familiarize the reader with the structure of envy-freeable allo-
cations and transfer payments, and introduce our preliminary results. We begin
with the general case of ρ-mean welfare.

Lemma 1. For subadditive valuations, any envy-free allocation with transfers
(A, t) satisfies Wρ(A, t) ≥ 1

n Wρ(A∗).

The resultant welfare guarantee of α = 1
n is not particularly impressive.

But it is a strictly positive guarantee, which was unachievable without transfer
payments. The bound is also tight as shown by the following simple example.

Example 2. Take m = n items and n agents. Let the valuation functions be
additive with vii = 1 and vij = 0 for j �= i. Consider the allocation assigning the
grand bundle to agent 1. This is envy-freeable with transfer payments t1 = −n−1

n
and ti = 1

n , for any agent i �= 1. For social welfare (ρ = 1) the corresponding
welfare guarantee is α = 1

n .

But how expensive is it to obtain this welfare guarantee? To answer this, we
provide a short review concerning the computation of transfer payments. Recall
that an allocation A is envy-freeable if there exist payments p such that (A, p)
is envy-free. Furthermore, there is a very useful graph characterization of envy-
freeability. Given an allocation A we build an envy-graph, denoted GA. The
envy-graph is directed and complete. It contains a vertex for each agent i ∈ N .
For any pair of agents i, j ∈ N , the weight of arc (i, j) in GA is the envy agent i
has for agent j under the allocation A, that is, wA(i, j) = vi(Aj) − vi(Ai). The
envy-graph induces the following characterization.

Theorem 2 ([24]). The following statements are equivalent.

i) The allocation A is envy-freeable.
ii) The allocation A maximizes (utilitarian) welfare across all reassignments of

its bundles to agents: for every permutation π of N , we have
∑

i∈N vi(Ai) ≥∑
i∈N vi(Aπ(i)).

iii) The envy graph GA contains no positive-weight directed cycles.

In addition, we can use the envy-graph to compute the transfer payments.
It is known [24] how to find, for any envy-freeable allocation A, the minimum
subsidy payments s such that (A, s) is envy-free. Let l(i) be weight of a maximum
weight path from node i to any other node in GA. Setting si = l(i) for each agent
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i gives an envy-free allocation with minimum subsidy payments. We do not wish
to subsidize the mechanism, so we convert these subsidies into transfer payments.
To do this, let s̄ = 1

n

∑
i∈N si be the average subsidy. Then setting ti = si − s̄

for each agent gives a valid set of transfer payments, which we dub the natural
transfer payments. We remark that the natural transfer payments do not always
minimize the total transfer, but they will be sufficient for our purposes. We
are now ready to compute transfer payments for subadditive valuations in the
ρ-mean welfare setting. We begin with a theorem of Brustle et al. [13].

Theorem 3 ([13]). For monotone valuations there is a polytime algorithm to
find an envy-free allocation with subsidies (A, s) with si ≤ 2(n − 1) for all i.

Observe that any bound on the maximum subsidy for each agent also applies
to the maximum natural transfer for each agent. Combining this observation
with the previous result gives us the following corollary.

Corollary 1. For subadditive valuations, there exists an envy-free allocation
with transfers (A, t) such that Wρ(A,t)

Wρ(A∗) ≥ 1
n and with a total transfer

∑
i |ti|

of at most 2n2. This allocation can be computed in polytime.

Thus, we can quickly obtain an envy-free allocation with transfers whose
total transfer is negligible, i.e., independent of m. But, as stated, we only have a
low welfare guarantee for this general ρ-mean welfare class. In the next section,
we will show that high welfare and negligible transfers are achievable for the
special case of ρ = 0, that is, NSW. First, we conclude this section by presenting
a generalization of Theorem 3 that will later be useful. We say that an allocation
B has b-bounded envy if vi(Bj) − vi(Bi) ≤ b for every pair i, j ∈ N .

Lemma 2. Given an allocation B with b-bounded envy there is a polytime algo-
rithm to find an envy-free allocation with transfers (A, t) with

∑
i∈N |ti| ≤ 2bn2.

4 Transfer Payments and Nash Social Welfare

In the following two sections, we present our main results concerning Nash social
welfare and utilitarian social welfare. Here we show that, with transfers, excellent
welfare guarantees can be obtained for NsW. Conversely, in Sect. 5, we will see
that only much weaker guarantees can be obtained for utilitarian welfare.

4.1 NSW with General Valuation Functions

Now, recall from Example 1 that no positive welfare guarantee can be obtained
in the case of Nash social welfare for even the basic case of additive valuations.
Our first result for Nash social welfare is therefore somewhat surprising. With
transfer payments, constant factor welfare guarantees can be obtained for general
valuations. That is, envy-freeness and high welfare are simultaneously achievable.
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Theorem 4. For general valuations, there exists an envy-free allocation with
transfers (A, t) such that NSW(A,t)

NSW(A∗) ≥ e−1/e.

This theorem is rather noteworthy; for general valuation functions, with
transfers, it allows us to simultaneously obtain high Nash social welfare and
envy-freeness. But what of our third objective, negligible transfer payments?
The approach applied in the proof of Theorem 4 cannot guarantee negligible
transfers. Specifically, simply reallocating the bundles of the allocation A∗ that
maximizes Nash social welfare can require large transfers. In particular, the fol-
lowing example shows this method may require transfers as large as Ω(

√
m).

Example 3. Take an instance with two agents and m items. Assume the first
agent has a valuation function given by v1(S) = |S|, for each S ⊆ M ; assume
the second agent has a valuation function given by v2(S) =

√|S|, for each
S ⊆ M . The reader may verify that the Nash welfare maximizing allocation A∗

is to give the first agent 2m
3 items and the second agent m

3 items. This allocation
is also the allocation that maximizes utilitarian social welfare by reassigning the
bundles of A∗. Thus A = A∗. However, to make the allocation envy-free requires
a minimum transfer payment of Ω(

√
m), from the first agent to the second agent.

Of course, this example does not rule out the possibility that, for general
valuation functions, an envy-free allocation with transfers that has high wel-
fare and negligible payments exists. In particular, simply allocating each agent
half the items requires no transfer payments at all, and gives high Nash social
welfare. So simultaneously obtaining high Nash social welfare and envy-freeness
via negligible transfers for general valuation functions remains an open ques-
tion. Fortunately, we can show that these three properties are simultaneously
achievable for important special classes of valuation function.

4.2 NSW Guarantees with Negligible Transfers

Here we prove that for (i) additive valuations, and (ii) matroid rank valuations, it
is always possible to obtain envy-free allocations with high Nash social welfare
and negligible transfers. Furthermore, for additive valuations we can do this
using polynomial time algorithms.

Theorem 5. For additive valuations, given an α-approximate allocation to
maximum Nash social welfare, there exists a polynomial time computable envy-
free allocation with transfers (A, t) such that NSW(A,t)

NSW(A∗) ≥ 1
2α · e−1/e with a total

transfer
∑

i |ti| of at most 2n2.

We remark that, for additive valuations, polytime algorithms to find allo-
cations that α-approximate the maximum NSW do exist. Specifically, Barman
et al. [7] present an algorithm with an approximation guarantee of α = 1

1.45 .
Together with Theorem 5, we thus obtain in polytime an envy-free allocation
with negligible transfers and a Nash social welfare guarentee of 1

2.9e−1/e.
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Better existence bounds can be obtained for the additive case if we remove
the requirement of a polytime algorithm. A well-known result of Caragiannis et
al. [16] states that for additive valuations, the Nash welfare maximizing alloca-
tion is EF1. In fact, a recent result of Benabbou et al. [10] provides a similar
result for the case of matroid rank valuation functions, a sub-class of submod-
ular functions. A valuation function is matroid rank if it is submodular, and
the marginal value of any item is binary (i.e. for any set S of items and any
item x not in S, vi(S ∪ {x}) − vi(S) ∈ {0, 1}). Here, a NSW-maximizing allo-
cation is EF1[10]. Combining this with Lemma 2, the corresponding envy-free
allocation with transfers (A, t) has transfers satisfying

∑
i |ti| ≤ 2n2. Further,

by Theorem 4, we have NSW(A,t)
NSW(A∗) ≥ e−1/e as desired.

Theorem 6. For matroid rank valuations, there exists an envy-free allocation
with transfers (A, t) with NSW(A,t)

NSW(A∗) ≥ e−1/e and
∑

i |ti| ≤ 2n2. �

5 Transfer Payments and Utilitarian Social Welfare

To begin, recall that an allocation B has b-bounded envy if vi(Bj) − vi(Bi) ≤ b
for every pair of agents i, j ∈ N . Without transfers, allocations with b-bounded
envy may have very low welfare.

Lemma 3. For utilitarian social welfare, there exist instances with additive val-
uation functions such that any allocation with b-bounded envy has a welfare guar-

antee of at most 2
√

b
m + 1

n .

Lemma 3 implies that any EFk allocation in the given example, with k =
o(m), cannot provide a welfare guarantee that is significantly higher than 1

n .
The natural question to ask, now, is whether the problem inherent in Lemma 3
can be rectified with a small quantity of transfers. On the positive side, the
result of Brustle et al. [13] shows that a small quantity of subsidy independent
of the number of items is always sufficient to eliminate envy. A similar result also
extends to the corresponding natural transfer payments. Combining this result
with Lemma 1 tells us that a utilitarian welfare guarantee of 1

n can be achieved
alongside envy-freeness with a negligible total transfer. Unfortunately, for the
above example, the Iterated Matching Algorithm of [13] returns an allocation
whose social welfare is only a 1

n -fraction of the optimal welfare. The following
corollary shows that this was inevitable: unlike for NSW, in order to make any
improvement above this threshold, non-negligible transfers are required.

Corollary 2. For any α ∈ [
1
n , 1

]
, there exists an instance with additive valua-

tions such that any envy-free allocation with transfers (A, t) satisfying SW(A,t)
SW(A∗) ≥

α requires a total transfer
∑

i∈N |ti| ≥ 1
4

(
α − 1

n

)2
m.

So, for utilitarian social welfare, non-negligible transfers are required to
ensure both envy-freeness and high welfare. Recall, though, that balancing con-
straints on the valuation functions have been used in the literature to circumvent
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impossibility bounds on welfare. The reader may wonder if such constraints could
be used to bypass the result in Corollary 2: are negligible transfer payments suf-
ficient to obtain high welfare when the valuation functions are constant-sum?
The answer is no, as we shall see in the subsequent theorem.

In recent work, Barman et al. [6] considered the case of subadditive valuations
with the constant-sum condition, and gave a polynomial-time algorithm that
finds an EF1 allocation with social welfare at least Ω( 1√

n
) of the optimal welfare.

Applying the algorithm of Lemma 2 to the resulting allocation gives us an envy-
free allocation with negligible transfers and welfare ratio Ω( 1√

n
). Once again, we

show that this threshold cannot be crossed without non-negligible transfers.

Theorem 7. There exist instances with constant-sum additive valuations such
that any envy-free allocation with transfers (A, t) satisfying SW(A,t)

SW(A∗) ≥ α has a
total transfer

∑
i∈N |ti| ≥ (α − 2√

n
) m√

n
, for any α ∈ [ 2√

n
, 1].

So non-negligible transfer payments are required even assuming constant-sum
valuations. This adds to our collection of negative results for utilitarian social
welfare. Are any positive results possible? Specifically, can we at least match the
lower bounds on transfer payments inherent in the these negative results. We
will now show this can indeed be approximately achieved.

5.1 Upper Bounds on Transfer Payments

To conclude the paper, we present results that upper bound the total transfer
required to obtain an envy-free allocation with a utilitarian social welfare guar-
antee. We give upper bounds for additive and general valuation functions. In
both cases, the bound we obtain is a function of the maximum value that an
agent receives in the welfare-optimal allocation. In particular, while the lower
bounds are obtained as functions of m, the upper bounds we get are functions of
the product of n and maxi vi(A∗

i ). In allocations that distribute utility uniformly
among the agents these expressions are comparable; even in the worst case, since
vi(A∗

i ) ≤ m for any i, they differ by some function of only n, and this difference
is independent of the number of items. We begin with the additive case.

Theorem 8. For additive valuations, for any α ∈ (0, 1], there is an envy-
free allocation with transfers (A, t) such that SW(A,t)

SW(A∗) ≥ α with total transfer
∑

i∈N |ti| ≤ n(α max
i

vi(A∗
i ) + 2).

Finally, we show how to upper bound the transfer payments in the case of
general valuation functions. Here, the welfare target is limited to the constant
factor 1

3 , and the gap between our lower and upper bounds widens by a factor
of n, but once again, this gap is independent of m.

Theorem 9. For general valuations, for any α ∈ (
0, 1

3

]
, there is an envy-

free allocation with transfers (A, t) such that SW(A,t)
SW(A∗) ≥ α with total transfer

∑
i∈N |ti| ≤ 2n2 (3α maxi vi (A∗

i ) + 2).
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Abstract. Liquid democracy has a natural graphical representation, the
delegation graph. Consequently, the strategic aspects of liquid democracy
can be studied as a game over delegation graphs, called the liquid democ-
racy game. Our main result is that this game has bicriteria approximation
guarantees, in terms of both rationality and social welfare. Specifically,
we prove the price of stability for ε-Nash equilibria is exactly ε in the
liquid democracy game.

1 Introduction

Liquid democracy is a form of direct and representative democracy, based on
the concept of delegation. Each voter has the choice of voting themselves or
transferring (transitively) its vote to a trusted proxy. Recent interest in liquid
democracy, from both practical and theoretical perspectives, was sparked by the
Pirate Party in Germany and its Liquid Feedback platform [2]. Similar initiatives
have subsequently been undertaken by the Demoex Party in Sweden, the Internet
Party in Spain, and the Net Party in Argentina.

There are many potential benefits of a transitive delegation mechanism. Par-
ticipation may improve in quantity for several reasons. The system is easy to use
and understand, induces low barriers to participation, and is inherently egali-
tarian: there is no distinction between voters and representatives; every one is
both a voter and a delegator. Participation may also improve in quality due to
the flexibility to choose different forms of participation: voters can chose to be
active participants on topics they are comfortable with or delegate on topics they
are less comfortable with. Accountability may improve due to the transparent
nature of the mechanism and because there is a demonstrable line of respon-
sibility between a delegated proxy and its delegators. The quality of decision
making may improve via a specialization to delegated experts and a reduction
in induced costs, such as the duplication of resources.

Our objective here is not to evaluate such claimed benefits, but we refer the
reader to [1,2,4,11,13] for detailed discussions on the motivations underlying
liquid democracy. Rather, our focus is to quantitatively measure the performance
of liquid democracy in an idealized setting. Specifically, can equilibria in these
c© Springer Nature Switzerland AG 2021
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voting mechanisms provide high social welfare? That is, we study the price of
stability of liquid democracy.

1.1 Background

As stated, vote delegation lies at the heart of liquid democracy. Furthermore, vote
delegation in liquid democracy has several fundamental characteristics: option-
ality, retractability, partitionability, and transitivity. So let us begin by defining
these concepts and tracing their origins [1,2].

The notion of optional delegation proffers voters the choice of direct partic-
ipation (voting themselves/choosing to abstain) or indirect participation (dele-
gating their vote). This idea dates back over a century to the work of Charles
Dodgson on parliamentary representation [9].1

Miller [17] proposed that delegations be retractable and partitionable. The
former allows for delegation assignments to be time-sensitive and reversible. The
latter allows a voter to select different delegates for different policy decisions.2

Finally, transitive delegation is due to Ford [11]. This allows a proxy to them-
selves delegate its vote and all its delegated votes. This concept is central to liquid
democracy. Indeed, if an agent is better served by delegating her vote to a more
informed proxy it would be perverse to prohibit that proxy from re-delegating
that vote to an even more informed proxy. Moreover, such transitivity is neces-
sary should circumstances arise causing the proxy to be unable to vote. It also
reduces the duplication of efforts involved in voting.

As noted in the sixties by Tullock [18], the development of the computer
opened up the possibility of large proxy voting systems. Indeed, with the internet
and modern security technologies, liquid democracy is inherently practical; see
Lumphier [16].

There has been a flurry of interest in liquid democracy from the AI com-
munity. This is illustrated by the large range of recent papers on the topic;
see, for example, [5–8,12–15,19]. Most directly related to our work is the game
theoretic model of liquid democracy studied by Escoffier et al. [10]. (A related
game-theoretic model was also investigated by Bloembergen et al. [3].) Indeed,
our motivation is an open question posed by Escoffier et al. [10]: are price of
anarchy type results obtainable for their model of liquid democracy? We will
answer this question for a generalization of their model.

1.2 Contributions

In Sect. 2, we will see that vote delegation has a natural representation in terms of
a directed graph called the delegation graph. If each agent i has a utility of uij ∈
1 Dodgson was a parson and a mathematician but, as the author of “Alice in Won-

derland”, is more familiarly known by his nom de plume, Lewis Carroll.
2 This option is particularly useful where potential delegates may have assorted com-

petencies. For example, Alice may prefer to delegate to the Hatter on matters con-
cerning tea-blending but to the Queen of Hearts on matters concerning horticulture.
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[0, 1] when agent j votes as her delegate then a game, called the liquid democracy
game, is induced on the delegation graph. We study the welfare ratio in the
liquid democracy game, which compares the social welfare of an equilibrium to
the welfare of the optimal solution.

Pure strategy Nash equilibria need not exist in the liquid democracy game,
so we focus on mixed strategy Nash equilibria. Our main result, given in Sect. 3
is that bicriteria approximation guarantees (for social welfare and rationality)
exist in the game.

Theorem 1. For all ε ∈ [0, 1], and for any instance of the liquid democracy
game, there exists an ε-Nash equilibrium with social welfare at least ε · OPT.

Theorem 1 is tight: the stated bicriteria guarantees cannot be improved.

Theorem 2. For all ε ∈ [0, 1], there exist instances such that any ε-Nash equi-
librium has welfare at most ε · OPT +γ for any γ > 0.

Theorems 1 and 2 imply that the price of stability for ε-Nash equilibria is ε.
An important consequence of Theorem 1 is that strong approximation guarantees
can simultaneously be obtained for both social welfare and rationality. Specif-
ically, setting ε = 1

2 gives factor 2 approximation guarantees for each criteria.

Corollary 3. For any instance of the liquid democracy game, there exists a
1
2 -Nash equilibrium with welfare at least 1

2 · OPT.

2 A Model of Liquid Democracy

In this section, we present the liquid democracy game. This game generalizes
the game-theoretic model studied by Escoffier et al. [10].

2.1 The Delegation Graph

In liquid democracy each agent has three strategies: she can abstain, vote herself,
or delegate her vote to another agent. So we can represent an instance by a
directed network G = (V,A) called the delegation graph. There is a vertex in V =
{1, · · · , n} for each agent. To define the sets of arcs, there are three possibilities.
First, if agent i votes herself the delegation graph contains a self-loop (i, i).
Second, if agent i delegates her vote to agent j �= i then there is an arc (i, j) in
G. Third, if agent i abstains then the vertex i has out-degree zero.

Now, because the out-degree of each vertex is at most one, the delegation
graph G is a 1-forest. That is, each component of G is an arborescence plus
at most one arc. In particular, each component is either an arborescence and,
thus, contains no cycle or contains exactly one directed cycle (called a delegation
cycle). In the former case, the component contains one sink node corresponding
to an abstaining voter. In the latter case, if the delegation cycle is a self-loop
the component contains exactly one voter called a guru; if the delegation cycle
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Fig. 1. A delegation graph.

has length at least two then the component contains no voters. An example of
a delegation graph is shown in Fig. 1.

Observe that, by the transitivity of delegations, if an agent i is in a component
containing a guru g then that guru will cast a vote on i’s behalf. On the other
hand, if agent i is in a component without a guru (that is, with either a sink
node or a cycle of length at least two) then no vote will be cast on i’s behalf. We
denote the guru j representing agent i by g(i) = j if it exists (we write g(i) =
∅ otherwise). Furthermore, its easy to find g(i): simply apply path traversal
starting at vertex i in the delegation graph.

For example, in Fig. 1 two components contain a guru. Agent 4 is the guru
of agents 1, 2, 3 and itself; agent 9 is the guru only for itself. The vertices in
the remaining three components have no gurus. There are two components with
delegation cycles, namely {(10, 11), (11, 10)} and {(5, 6), (6, 7), (7, 5)}. The final
component also contains no guru as agent 12 is a sink node and thus abstains.

2.2 The Liquid Democracy Game

The game theoretic model we study is a generalization of the model of Escoffier
et al. [10]. A pure strategy si for agent i corresponds to the selection of at most
one outgoing arc. Thus we can view si as an n-dimensional vector xi. Specifically,
xi is a single-entry vector with entry xij = 1 if i delegates to agent j and xij = 0
otherwise. Note that if xii = 1 then i votes herself (“delegates herself”) and that
xi = 0 if agent i abstains.

It immediately follows that there is a unique delegation graph Gx associated
with a pure strategy profile x = (x1,x2 · · · ,xn). To complete the description of
the game, we must define the payoffs corresponding to each pure strategy profile
x. To do this, let agent i have a utility uij ∈ [0, 1] if she has agent j as her
guru. Because of the costs of voting in terms of time commitment, knowledge
acquisition, etc., it may be that uii < uij for some j �= i trusted by i.3 We denote
the utility of agent i in the delegation graph Gx by ui(x) = ui,g(i). If agent i

3 Indeed, if this is not the case then liquid democracy has no relevance.
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has no guru then it receives zero utility.4 It follows that only agents that lie in
a component of Gx containing a guru can obtain positive utility.

For example, in Fig. 1 agent 9 is a guru so receives utility u9,9. Each agent
i ∈ {1, 2, 3, 4} has agent 4 as its guru so receives utility ui,4. All the remaining
agents have no guru and so receive zero utility.

An agent i is playing a best response at a pure strategy x = (x1,x2, · · · ,xn)
if he cannot increase his utility by selecting a different or no out-going arc.
The strategy profile is a pure Nash equilibrium if every agent is playing a best
response at x. Our interest is in comparing the social welfare of equilibria to
the optimal welfare in the game. To do this, let the social welfare of x be
SW(x) =

∑
i∈V ui(x) and let OPT = max

x

∑
i∈V ui(x) be the optimal welfare

over all strategy profiles. The price of stability is the worst ratio over all instances
between the best welfare of a Nash equilibrium and the optimal social welfare.

The reader may ask why could an equilibrium have low social welfare. The
problem is that delegation is transitive, but trust is not. Agent i may delegate to
an agent j where uij is large but j may then re-delegate to an agent k where uik

is small. Worse, agent i may receive no utility if the transitive delegation of its
vote leads to a delegation cycle or an abstaining voter. Unfortunately, not only
can pure Nash equilibria have low social welfare in the liquid democracy game
they need not even exist!

Lemma 4. There exist liquid democracy games with no pure strategy Nash equi-
librium.

Proof. Let there be three voters with u1 = (12 , 1, 0), u2 = (0, 1
2 , 1) and u3 =

(1, 0, 1
2 ). (A similar instance was studied in [10].) Assume x is a pure Nash

equilibrium and let S be the set of gurus in Gx. There are two cases. First, if
|S| ≤ 1 then there exists an agent i with zero utility. This agent can deviate
and vote herself to obtain utility of 1

2 > 0, a contradiction. Second, if |S| ≥ 2
then one of the gurus can delegate its vote to another guru to obtain a utility of
1 > 1

2 , a contradiction. Therefore, no pure Nash equilibrium exists. ��

2.3 Mixed Strategy Equilibria

Lemma 4 tells us that to obtain performance guarantees we must look beyond
pure strategies. Of course, as liquid democracy is a finite game, a mixed strategy
Nash equilibrium always exists. It follows that we can always find a mixed Nash
equilibrium in the liquid democracy game and compare its welfare to the optimal
welfare.

Here a mixed strategy for agent i is now simply a non-negative vector xi

where the entries satisfy
∑n

j=1 xij ≤ 1. Note that agent i then abstains with
probability 1 − ∑n

j=1 xij . However, because abstaining is a weakly dominated
strategy, we may assume no voter abstains in either the optimal solution or the
best Nash equilibria. Hence, subsequently, each xi will be unit-sum vector.
4 We remark that our results hold even when agents who abstain or have no guru

obtain positive utility.
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What is the utility ui(x) of an agent for a mixed strategy profile x =
(x1,x2, . . . ,xn)? It is simply the expected utility given the probability distri-
bution over the delegation graphs generated by x. There are several equivalent
ways to define this expected utility. For the purpose of analysis, the most useful
formulation is in terms of directed paths in the delegation graphs. Denote by
P(i, j) be the set of all directed paths from i to j in a complete directed graph
on V . Let Px(g(i) = j) be the probability that j is the guru of i given the mixed
strategy profile x. Then

ui(x) =
∑

j∈V

Px(g(i) = j) · uij

=
∑

j∈V

Px(∃ path from i to j) · Px(∃ arc (j, j)) · uij

=
∑

j∈V

⎛

⎝
∑

P∈P(i,j)

∏

a∈P

xa

⎞

⎠ · xjj · uij

To understand this recall that xi is a unit-sum vector. It follows that each
delegation graph generated by the mixed strategy x has uniform out-degree
equal to one. This is because we generate a delegation graph from x by selecting
exactly one arc emanating from i according to the probability distribution xi.
Consequently, j can be the guru of i if and only if the delegation graph contains
a self-loop (j, j) and contains a unique path P from i to j. The second equality
above then holds. Further, the choice of outgoing arc is independent at each
vertex i. This implies the third equality.

Regrettably, however, no welfare guarantee is obtainable even with mixed
strategy Nash equilibria.

Lemma 5. The price of stability in liquid democracy games is zero.

Proof. Consider an instance with three agents whose utility is given as u1 =
(δ, 1, 0), u2 = (0, δ, 1) and u3 = (1, 0, δ). The optimal welfare is OPT = 1 + 2δ
obtained by the first and second agent voting and the third agent delegates to
the first agent.

By a similar argument to Lemma 4, we know that no pure strategy Nash
equilibrium exists. It is straightforward to verify that this game has a unique
mixed strategy Nash equilibria x, where x1 = (δ, 1 − δ, 0), x2 = (0, δ, 1 − δ) and
x3 = (1 − δ, 0, δ).

The expected utility of agent 1 is then

u1(x) =
∑

j∈V

⎛

⎝
∑

P∈P(i,j)

∏

a∈P

xa

⎞

⎠ · xjj · uij

= x11 · u11 + x12 · x22 · u12

= δ2 + (1 − δ) · δ

= δ
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The case of agents 2 and 3 are symmetric, hence the social welfare of this equi-
libria is 3δ. Thus, the price of stability is 3δ

1+2δ which tends to zero as δ → 0.
��

Lemma 5 appears to imply that no reasonable social welfare guarantees can
be obtained for liquid democracy. This is not the case. Strong performance guar-
antees can be achieved, provided we relax the incentive constraints. Specifically,
we switch our attention to approximate Nash equilibria. A strategy profile x is
an ε-Nash equilibrium if, for each agent i,

ui(x) ≥ (1 − ε) · ui(x̂i,x−i) ∀x̂i

Above, we use the notation x−i = {xi}j �=i. Can we obtain good welfare
guarantees for approximate Nash equilibria? We will prove the answer is yes in
the remainder of the paper. In particular, we present tight bounds on the price
of stability for ε-Nash equilibria.

3 The Price of Stability of Approximate Nash Equilibria

So our task is to compare the social welfare of the best ε-Nash equilibrium with
the social welfare of the optimal solution. Let’s begin by investigating the optimal
solution.

3.1 An Optimal Delegation Graph

By the linearity of expectation, there is an optimal solution in which the agents
use only pure strategies. In particular, there exists an optimal delegation graph
maximizing social welfare. Moreover, this optimal graph has interesting struc-
tural properties. To explain this, we say that agent i is happy if she has strictly
positive utility in a delegation graph G, that is ui,g(i) > 0. A component Q in G
is jolly if every vertex in Q (except, possibly, the guru) is happy.

The key observation then is that there is an optimal delegation graph in
which every component is a jolly star.

Lemma 6. There is an optimal delegation graph that is the disjoint union of
jolly stars.

Proof. Let Q be a component in an optimal delegation graph G. We may assume
Q contains a guru. To see this, suppose Q contains an abstaining sink node j.
Then the graph Ĝ = G∪(j, j) where j votes herself is also optimal. On the other
hand, suppose Q contains a cycle C of length at least 2. Take an agent j ∈ C.
Then the graph Ĝ obtained by j voting herself instead of delegating her vote is
also optimal.

So we may assume each component contains a guru. Further, we may assume
each component is a star. Suppose not, take a component Q with guru j con-
taining an agent i that does not delegate to j. But then the graph Ĝ obtained
by i delegating her vote directly to j is optimal.
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Fig. 2. Welfare optimal delegation graph that is disjoint union of jolly stars.

Finally, we may assume each star is jolly. Suppose i is not a happy agent in
a star Q with guru j. Thus uij = 0. But then if i changes her delegation and
votes herself we again obtain an optimal solution. In this case i will form a new
singleton component which is trivially a jolly star. ��

Lemma 6 states that the optimal solution can be obtained by a pure strat-
egy x∗ whose delegation graph is union of jolly stars. The centre of each star is a
guru in the optimal solution and the leaves are the corresponding happy agents
who delegated to the guru. Denote the set of gurus in the optimal solution by
D∗ = {i ∈ V : x∗

ii = 1}, and let Lj = {i ∈ V \ D∗ : x∗
ij = 1} be the agents

who delegate to the guru j as illustrated in Fig. 2. It follows that the optimal
solution has welfare

OPT =
∑

j∈D∗

⎛

⎝ujj +
∑

i∈Lj

uij

⎞

⎠

3.2 A Stable Solution

In order to study the best ε-Nash equilibrium we now show the existence of
a “potentially” stable solution x whose definition is inspired by the set D∗ of
gurus in the optimal solution. In Sect. 3.3 we will prove that x is indeed an
ε-Nash equilibrium and also has high social welfare.

To obtain x we require the following definitions. Denote the standard set of
feasible mixed strategies for agent i as

Si = {xi ∈ R
n
+ :

∑

j∈V

xij = 1 }

Given a fixed strategy profile x−i = {xj}j �=i for the other agents, let the corre-
sponding best response for agent i be

Bi(x−i) = arg max
x̂∈Si

ui(x̂,x−i)

For each i ∈ D∗, we denote a restricted set of mixed strategies

S
R
i = {xi ∈ R

n
+ :

∑

j∈V

xij = 1 , xii ≥ ε}
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Then for a fixed strategy profile x−i, let

BR
i (x−i) = arg max

x̂∈S
R
i

ui(x̂,x−i)

be the best response for the agent i from amongst the restricted set of feasible
strategies. Next recall Kakutani’s Fixed Point Theorem.

Theorem 7 (Kakutani’s Fixed Point Theorem). Let K be a non-empty,
compact and convex subset of Rm, and let Φ : K → 2K be a set-valued function
on K such that:

(i) Φ(x) is non-empty and convex for all x ∈ K, and
(ii) Φ has a closed graph.

Then Φ has a fixed point, that is, there exists an x∗ ∈ K with x∗ ∈ Φ(x∗).

Here a set-valued function Φ has a closed graph if (xk, yk) → (x, y) and yk ∈
Φ(xk) implies that y ∈ Φ(x).

Theorem 8. There exists a strategy profile x such that:

(a) For all i ∈ D∗, we have xi ∈ BR
i (x−i), and

(b) For all j /∈ D∗, we have xj ∈ Bj(x−j).

Proof. Let the feasible set of strategy profiles be Ξ =
∏

i∈D∗
S

R
i × ∏

j /∈D∗
Sj , a subset

of Euclidean space. Without loss of generality, let D∗ = {1, 2, . . . , k}. Now define
a set valued function Φ : Ξ −→ 2Ξ by

x → (BR
1 (x−1), · · · , BR

k (x−k),
︸ ︷︷ ︸

D∗

Bk+1(x−(k+1)), · · · , Bn(x−n)
︸ ︷︷ ︸

V \D∗

)

That is, for each x ∈ Ξ we have Φ(x) ⊆ Ξ. Note the statement of the theorem
is equivalent to showing that Φ has a fixed point.

Observe that Φ satisfies the conditions of Kakutani’s Fixed Point Theorem.
Indeed Ξ is nonempty, compact and convex, since it is a product of non-empty,
compact and convex sets S

R
i and Sj .

Next let’s verify that Φ(x) �= ∅. This holds since, for each agent i, we have
BR

i (x−i) �= ∅ or Bi(x−i) �= ∅ by the continuity of ui( · ,x−i) and the Weierstrass
Extreme Value Theorem.

Furthermore, for all x ∈ Ξ the set Φ(x) ⊆ Ξ is convex. This is because, for
each i ∈ D∗ and j ∈ V \D∗, the sets BR

i (x−i) and Bj(x−j) are convex, and thus
Φ(x) is Cartesian product of convex sets. We must now show that both Bj(x−j)
and BR

i (x−i) are convex. The convexity of Bj(x−j) follows immediately by the
multilinearity of ui. Next take an agent i ∈ D∗. If yi, zi ∈ BR

i then, for all
λ ∈ [0, 1] and any x̂i ∈ S

R
i , we have

ui(λyi + (1 − λ)zi,x−i) = λui(yi,x−i) + (1 − λ)ui(zi,x−i)
≥ ui(x̂i,x−i)
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Observe λyi + (1 − λ)zi ∈ S
R
i since λyii + (1 − λ)zii ≥ λε + (1 − λ)ε = ε and

λ
∑

j∈V yij + (1 − λ)
∑

j∈V zij = 1. Thus λyi + (1 − λ)zi ∈ BR
i (x−i) for any

λ ∈ [0, 1], which implies BR
i (x−i) is convex.

Finally, Φ has a closed graph because each ui(xi,x−i) is a continuous function
of xi for any fixed x−i, and both sets SR

i and Si are compact. Thus, by Kakutani’s
Fixed Point Theorem, Φ has a fixed point x. Hence (a) and (b) hold. ��

3.3 Bicriteria Guarantees for Liquid Democracy

We will now prove that the fixed point x from Theorem 8 gives our main result:
there is an ε-Nash equilibrium with welfare ratio at least ε. First let’s show the
incentive guarantees hold.

Lemma 9. The fixed point x is an ε-Nash equilibrium.

Proof. Take an agent j /∈ D∗. Then for any x̂j ∈ Si we have

uj(xj ,x−j) ≥ uj(x̂j ,x−j) ≥ (1 − ε) · ui(x̂i,x−i)

The incentive guarantee for j follows immediately.
Next consider an agent i ∈ D∗. Take any x̂i ∈ Si and define a new strategy

yi as follows:

yij =

{
ε + (1 − ε) · x̂ii if j = i

(1 − ε) · x̂ij if j �= i

Observe that yi ∈ S
R
i because yii ≥ ε and

∑
j∈N yij = ε+(1− ε) ·∑j∈V x̂ij = 1.

Now for any path P = {a1, a2, · · · , ak} from i to j where ai are the arcs,
the probability of obtaining this path in the delegation graph generated by the
strategy profile {yi,x−i} is exactly ya1 · ∏

a∈P\a1

xa. Thus

ui(yi,x−i) =
∑

j∈V

Pyi,x−i
(g(i) = j) · uij

= uiiyii +
∑

j∈V \i

uijxjj ·
⎛

⎝
∑

P∈P(i,j)

ya1

∏

a∈P\a1

xa

⎞

⎠

≥ (1 − ε) · uiix̂ii + (1 − ε) ·
∑

j∈V \i

uijxjj ·
⎛

⎝
∑

P∈P(i,j)

x̂a1

∏

a∈P\a1

xa

⎞

⎠

= (1 − ε) ·
⎛

⎝uiix̂ii +
∑

j∈V \i

uijxjj ·
⎛

⎝
∑

P∈P(i,j)

x̂a1

∏

a∈P\a1

xa

⎞

⎠

⎞

⎠

= (1 − ε) · ui(x̂i,x−i)

But xi ∈ BR
i (x−i). Hence, ui(xi,x−i) ≥ ui(yi,x−i) because yi ∈ S

R
i . It follows

that ui(xi,x−i) ≥ (1 − ε) · ui(x̂i,x−i) and so the incentive guarantee for i. Thus
x is an ε-Nash equilibrium. ��
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Next let’s prove the social welfare guarantee holds for x.

Theorem 10. For all ε ∈ [0, 1], and for any instance of the liquid democracy
game, there exists an ε-Nash equilibrium with social welfare at least ε · OPT.

Proof. It suffices to prove that x has social welfare at least ε · OPT. We have

SW(x) =
∑

j∈V

uj(x)

=
∑

j∈D∗
uj(x) +

∑

j∈D∗

∑

i∈Lj

ui(x)

≥
∑

j∈D∗
ujj · xjj +

∑

j∈D∗

∑

i∈Lj

uij · xjj

≥
∑

j∈D∗

⎛

⎝ujj · ε +
∑

i∈Lj

uij · ε

⎞

⎠

= ε ·
∑

j∈D∗

⎛

⎝ujj +
∑

i∈Lj

uij

⎞

⎠

= ε · OPT

The first inequality follows since each agent i ∈ Lj satisfies ui(xi,x−i) ≥
ui(x̂i,x−i) for all x̂i ∈ Si. In particular, the deviation ŷi of delegating to the
guru j with probability 1 implies ui(xi,x−i) ≥ ui(ŷi,x−i) ≥ uijxjj . Finally, the
second inequality holds as we have xj ∈ S

R
j , for each j ∈ D∗. Therefore xjj ≥ ε

and the welfare guarantee holds. ��
We can deduce from Theorem 10 that strong approximation guarantees can
simultaneously be obtained for both social welfare and rationality. In particular,
setting ε = 1

2 gives factor 2 approximation guarantees for both criteria.

Corollary 11. For any instance of the liquid democracy game, there exists a
1
2 -Nash equilibrium with welfare at least 1

2 · OPT.

3.4 A Tight Example

We now prove upper bounds on the welfare guarantee obtainable by any ε-Nash
equilibrium. In particular, we show that the bicriteria guarantee obtained in
Theorem 10 is tight.

Theorem 12. For all ε ∈ [0, 1], there exist instances such that any ε-Nash equi-
librium has welfare at most ε · OPT +γ for any γ > 0

Proof. Take an instance with n+2 agents. Let agents {1, 2} have identical utility
functions with uij = δ if j = 1 and uij = 0 otherwise. The remaining agents
i ∈ {3, · · · , n + 2} have utilities

uij =

{
1 if j = 2
0 otherwise
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Observe that OPT = δ +n which is obtained by agents 1 and 2 voting while the
remaining agents delegate to agent 2. Now let x be an ε-Nash equilibrium. We
claim that x22 ≤ ε. To see this, note that x11 ≥ (1 − ε). If x11 < (1 − ε) then
u1(x) < (1 − ε)δ. But this contradicts the fact that x is an ε-Nash equilibrium,
as agent 1 can deviate and vote herself to obtain a utility of δ. Furthermore,
x11 ≥ (1 − ε) implies x21 ≥ (1 − ε) by a similar argument. Since

∑
j∈N x2j = 1,

we do have x22 ≤ ε. The social welfare of x is then

SW(x) ≤ δ + (1 − ε)δ + εn = 2(1 − ε)δ + εOPT

Letting γ = 2(1 − ε)δ gives the desired bound. Since δ can be made arbitrarily
small, γ can also be made arbitrarily small. ��
Together, Theorems 10 and 12 imply that the price of stability of ε-Nash equi-
librium is exactly ε in the liquid democracy game.

4 Extensions and Computational Complexity

4.1 Model Extensions

Our bicriteria results extend to the settings of repeated games, weighted voters,
and multiple delegates.

• Repeated Games. Recollect that an underlying motivation for liquid democ-
racy is that it can be applied repeatedly over time with agents having the
option of delegating to different agents at different times. Evidently, by repeat-
ing the delegation game over time, with different utility functions for the top-
ics considered in different time periods, the same bicriteria guarantees holds.

• Weighted Voters. In some electoral systems, different agents may have differ-
ent voting powers. That is, the voters are weighted. In this case, the number
of votes a guru casts is simply the sum of the weights of all the votes to which
it was delegated. Our bicriteria guarantees then follow trivially.

• Multiple Delegates. In some settings it may be the case that an agent is allowed
to nominate more than one delegate. That are two natural models for this.
First, an agent nominates multiple delegates but the mechanism can use only
one of them. Second, an agent splits its voting weight up and assigns it to
multiple delegates. In both cases our techniques can be adapted and applied
to give the same performance guarantees.

4.2 Computational Aspects

Let us conclude by discussing computation aspects in the liquid democracy game.
Recall, to find an ε-Nash equilibrium with a provably optimal social welfare
guarantee we solved a fixed point theorem. Moreover, solving the fixed point
theorem requires knowledge of the optimal set D∗ of gurus. But obtaining D∗ is
equivalent to finding an optimal solution to the liquid democracy game and this
problem is hard.
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Theorem 13. It is NP-hard to find an optimal solution to the liquid democracy
game.

Proof. We apply a reduction from dominating set in a directed graph. Given a
directed graph G = (V,A) and an integer k: is there a set S ⊆ V of cardinality
k such that, for each i /∈ S, there exists an arc (i, j) ∈ A for some j ∈ S. This
problem is NP-complete. We now give a reduction to the liquid democracy game.

Given the directed graph G = (V,A) let the set of agents in the game be V .
Define the utility function of an agent by:

uij =

{
1 if (i, j) ∈ A

0 otherwise

It immediately follows that there is a dominating set of cardinality at most k if
and only if the liquid democracy game has a solution with social welfare at least
n − k. This completes the proof. ��

So is it possible for the agents to compute a good bicriteria solution in poly-
nomial time? If we allow for sub-optimal approximation guarantees then this is
achievable. The idea is simple: the characteristics required of the agents to ensure
reasonable performance guarantees are narcissism and avarice.5 First, since D∗

is unknown, each agent i narcissistically assumes he himself is an optimal guru.
Consequently, he will vote with probability p. Thus, he will delegate his vote
with probability (1 − p). This he will do avariciously, by greedily delegating to
the agent i∗ that gives him largest myopic utility, that is i∗ = arg maxj∈V uij .

Theorem 14. For any ε ∈ [34 , 1], the narcissistic-avaricious algorithm is linear
time and produces an ε-Nash equilibrium with social welfare at least (1−ε)·OPT.

Proof. Consider the incentive guarantee for agent i for the strategy profile z
induced by the algorithm. As i votes with probability zii = p and delegates to
i∗ with probability zii∗ = (1 − p), his utility is

ui(zi, z−i) ≥ ziiuii + zii∗zi∗i∗uii∗

= p · uii + (1 − p) · p · uii∗

≥ (1 − p) · p · uii∗

≥ (1 − p) · p · ui(ẑi, z−i) ∀ẑi ∈ Si

Hence z is an ε-Nash equilibrium for

ε = (1 − p(1 − p)) = 1 − p + p2 =
3
4

+ (p − 1
2
)2

It follows that the narcissistic-avaricious algorithm can provide incentive guar-
antees only for ε ∈ [34 , 1]. Further, by solving the corresponding quadratic

5 This is not an unreasonable assumption for both pirates and many of the inhabitants
of Wonderland!.
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equation, to obtain such an ε-Nash equilibrium we simply select p =
1
2

(
1 +

√
1 − 4(1 − ε)

)
.

Now, let’s evaluate the social welfare guarantee for the narcissistic-avaricious
algorithm. As above, we have

SW(z) =
∑

i∈V

ui(zi, z−i)

≥
∑

i∈V

(1 − p) · p · uii∗

= (1 − p) · p ·
∑

i∈V

uii∗

≥ (1 − p) · p · OPT

Since p = 1
2

(
1 +

√
1 − 4(1 − ε)

)
this gives

SW(z) ≥ 1
4

(
1 − (1 − 4(1 − ε)

)
· OPT = (1 − ε) · OPT

Therefore, as claimed, the narcissistic-avaricious algorithm outputs a solution
whose welfare is at least (1 − ε) times the optimal welfare.

Finally, observe that implementing the narcissistic-avaricious strategy
requires that each agent i simply computes i∗ = arg maxj∈V uij . This can be
done for every agent in linear time in the size of the input. ��

We emphasize two points concerning Theorem 14. One, it only works for
weaker incentive guarantees, namely ε ∈ [34 , 1]. Unlike the fixed point algorithm
it does not work for the range ε ∈ (0, 3

4 ). Two, the social welfare guarantee is
(1 − ε). This is a constant but, for the valid range ε ∈ [34 , 1], it is much worse
than the ε guarantee obtained by the fixed point algorithm. A very interesting
open problem is to find a polynomial time algorithm that matches the optimal
bicriteria guarantees provided by Theorem 10 and applies for all ε > 0.
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Abstract. This paper provides, for the first time, a rich mathematical
framework for reward sharing schemes in mining pools through an eco-
nomic design perspective. We analyze and design schemes by proposing
a comprehensive axiomatic approach. We depart from existing literature
in various ways. First, our axiomatic framework is not on the consensus
protocols but on the mining pools in any of these protocols. Second, our
model is not restricted to a static single block, since various schemes in
practice pay the miners repetitively over time in various blocks. Third,
we propose reward sharing schemes and allocations not on the miners in
a pool but instead on the shares submitted by these miners.

We demonstrate the flexibility of this space by formulating several
desirable axioms for reward sharing schemes. The first condition ensures
a fixed total reward that the fee charged by the pool manager is the same
for any two rounds in a history. The second condition, ordinality, requires
that time-shifts should not affect the reward distribution, so long as the
order of shares is preserved. The third condition, budget limit, requires
the pool manager to charge a nonnegative fee. The fourth condition,
round based rewards, requires that the distribution of the rewards in a
round only depends on that round. Finally, we introduce two axioms
concerning fairness, absolute redistribution and relative redistribution,
which demonstrates how the rewards should be redistributed when the
round is extended by an additional share. We show that, together with
other axioms, each of these fairness axioms, characterize two distinct
classes of reward sharing schemes. Thereafter, we characterize the gener-
alized class of proportional reward schemes, i.e., k-pseudo proportional
schemes, which satisfy both of these axioms simultaneously. We introduce
a final condition, strict positivity, which guarantees positive rewards for
all shares, for any history. Imposing this additional condition single outs
the well-known proportional reward scheme. The full article is available
at: https://arxiv.org/abs/2107.05302.
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Abstract. We present a general framework for submodular prophet
inequalities in the model introduced by Rubinstein and Singla [1], in
which the objective function is a submodular function on the set of
potential values instead of a linear one, via greedy Online Contention
Resolution Schemes and correlation gaps. The framework builds upon
the existing work of [1], yielding substantially improved constant factor
competitive ratios for both monotone and general submodular functions,
for various constraints beyond a single matroid constraint. As an addi-
tional improvement, it can be implemented in polynomial time for several
classes of interesting constraints.

Along the way, we strengthen the notion of correlation gap for non-
negative submodular functions introduced in [1], and provide a fine-
grained variant of the standard correlation gap. For both cases, our
bounds are cleaner and tighter. Furthermore, we present a refined anal-
ysis of the Measured Continuous Greedy algorithm for polytopes with
small coordinates and general non-negative submodular functions, show-
ing that, for these cases, it yields a bound that matches the bound of
Continuous Greedy for the monotone case.

A full version of this paper is available at https://arxiv.org/abs/2107.
03662.

Keywords: Combinatorial prophet inequality · Submodularity ·
OCRS

Reference

1. Rubinstein, A., Singla, S.: Combinatorial prophet inequalities. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM
(2017), pp. 1671–1687. longer ArXiv version is at http://arxiv.org/abs/1611.00665

c© Springer Nature Switzerland AG 2021
I. Caragiannis and K. A. Hansen (Eds.): SAGT 2021, LNCS 12885, p. 410, 2021.
https://doi.org/10.1007/978-3-030-85947-3

https://arxiv.org/abs/2107.03662
https://arxiv.org/abs/2107.03662
http://arxiv.org/abs/1611.00665
https://doi.org/10.1007/978-3-030-85947-3


Vote Delegation and Misbehavior

Hans Gersbach, Akaki Mamageishvili, and Manvir Schneider(B)
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In this paper we study vote delegation and compare it with conventional vot-
ing. Typical examples for vote delegation are validation or governance tasks on
blockchains and liquid democracy. Specifically, we study vote delegation with
well-behaving and misbehaving agents under three assumptions. First, voting
is costly for well-behaving agents. That means, if a well-behaving individual
abstains or delegates his/her vote, s/he is better off than with voting as long
as his/her action does not affect the voting outcome. Second, the minority—
composed of misbehaving voters—always votes. The rationale is that this minor-
ity is composed of determined agents who have either a strong desire to disrupt
the functioning of the system, or to derive utility from expressing their minority
view. Third, the preferences of agents are assumed to be private information.
We evaluate vote delegation and conventional voting regarding the chance that
well-behaving agents win.

Results: We provide three insights. First, if the number of misbehaving voters is
high, both voting methods fail to deliver a positive outcome. Second, if the num-
ber of misbehaving voters is moderate, conventional voting delivers a positive
outcome, while vote delegation fails with probability one. Third, with numerical
simulations, we show that if the number of misbehaving voters is low, delegation
delivers a positive outcome with a higher probability than conventional vot-
ing. Formally, we find that for any cost of voting c, there are thresholds f∗(c)
and n∗(f) such that for any number of misbehaving voters f above f∗ and an
expected number of well-behaving agents above n∗, misbehaving voters will have
the majority of votes and will win.

Our results have immediate implications for blockchains, i.e. they infer that
vote delegation should only be allowed if it is guaranteed that the absolute
number of misbehaving agents is below a certain threshold. Otherwise, vote del-
egation increases the risk for negative outcomes. Our results can also help assess
the performance of vote delegation in democracy, a form of democracy known as
“liquid democracy”. Indeed, for a liquid democracy, our result is the worst-case
result when delegating agents cannot trust those to whom they delegate. In the
context of liquid democracy, we can view misbehaving voters as a determined
minority who will vote no matter the costs. Well-behaving agents are a majority
and balance costs of voting and impact on the outcome. Our result implies that
if the size of the determined minority is not too small, vote delegation can lower
the likelihood that the majority wins.

A Full Version of the Paper Can Be Found at https://arxiv.org/abs/2102.08823.
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We consider normal-form games with n players and two strategies for each player,
where the payoffs are i.i.d. random variables with some distribution F . For each
strategy profile, we consider the (random) average payoff of the players, called
average social utility (ASU). Most of the literature on games with random pay-
offs deals with the number of pure (or mixed) equilibria and its dependence on
the payoffs distribution. Here we consider a different issue, i.e., efficiency of equi-
libria.

We first show that the optimal ASU converges in probability to a determinis-
tic value that can be characterized in terms of the large deviation rate of F . Then
we move to examine the asymptotic ASU of the pure Nash equilibrium (PNE).
We start by considering the case in which F has no atoms. In this case, it is
well known that asymptotically the number of PNE has a Poisson distribution
with mean 1. This implies that we typically do not have many equilibria. We
show that, when equilibria exist, in the limit they all share the same ASU. We
then consider the case in which F has some atoms. Amiet et al. [1] show that
the presence of atoms in the distribution F dramatically changes the existence
issue: in this case, with probability converging to 1 as the number of players
grows to infinity, there will be exponentially many PNE. We show that in this
case the ASU of the best and the worst pure equilibrium converge in probability
to two values, which we call xbeq and xweq. Studying the best and worst PNE is
standard in algorithmic game theory, which is often preoccupied with worst-case
scenarios. The unusual phenomenon in our asymptotic framework is the high
number of PNE, so that it is also important to study the efficiency of “most”
equilibria. In this respect, we show that asymptotically all but a vanishingly
small fraction of equilibria share the same ASU, xtyp, which lies between the two
extrema xbeq and xweq. In other words, most PNE have the same asymptotic
ASU, but there exist also PNE having a quite different efficiency.1
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