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Abstract. Wireless indoor localization is fundamental tomany smartphone appli-
cations, appealing to a great deal of research efforts in the past decades. Among
them,RSSI based fingerprinting using existingWiFi infrastructures has become an
increasingly popular technique. However,WiFi fingerprinting still suffers from the
vulnerable and changeable wireless signal transmissions. To address this issue, we
propose a novel smartphone built-in sensors assisted WiFi fingerprinting method.
The data generated from the smartphone built-in sensors such as accelerometer
and gyroscope is utilized to estimate the user’s trajectory. Then an integrated
probability model combining the RSSI fingerprint and users’ trajectory is estab-
lished to implement fingerprint-location match. Performance evaluation results
show that the proposed method has higher location accuracy and better adaption
to changeable environment.

Keywords: RSSI fingerprint · Built-in sensors · Trajectory estimation ·
Integrated probability model · Indoor Positioning

1 Introduction

The popularity of mobile and pervasive computing stimulates extensive research on
wireless indoor localization. Now the solutions based on pervasive WiFi infrastructure
has dominated this field.ReceivedSignal Strength Indicator (RSSI) [1] based localization
technique is one of the cheapest and easiest methods to implement. However, RSSI is
extracted from the radio frequency signal at a per packet level and tends to fluctuate
according to changes in the environment or multipath fading.

To address this issue, RSSI-based fingerprinting [2, 3] is proposed, which uses a two-
stage mechanism. In offline phase, the signal strengths at the predefined RP (Reference
Point) from several access points are recorded and stored in a database along with their
coordinates. During the online locating, the current RSSI vector at an unknown location
is compared to those stored in the database and the user location is estimated though
some close match.

WiFi fingerprinting still suffers from the vulnerable and changeable wireless signal
transmissions. Any changes of the environment may change the fingerprint, which make
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the fingerprint obtained in online location different with the fingerprint stored in the
database during the offline survey.

Nowadays, smartphones are equippedwith various functional built-in sensors such as
IMU(inertialmeasuring unit).An IMUusually consists of the sensors like accelerometer,
gyroscope, and compass, which respectively reveal the acceleration, rotational velocity,
and direction of user motion. From IMUmeasurements, user’s moving trajectory can be
estimated.

The main idea of this paper is to improve the localization accuracy of WiFi fin-
gerprinting by leveraging the user’s trajectory information obtained from the built-in
sensors to determine the best location match during the online location. Besides finger-
print similarity, user’s trajectory is used to evaluate the location result to prevent possible
deviation caused by unstable RSSI information. An integrated probability model is pro-
posed, which utilizes the results and estimated errors of RSSI matching and trajectory
estimation to give the final position.

2 Related Work

Many approaches have been proposed to implement the WiFi fingerprinting matching
process such as RADAR [2] and Horus [3]. Machine learning technique such as SVM
(Support Vector Machines) is also proposed, which utilize data filtering rules obtained
through statistical analysis to improve the quality of training samples and thus improve
the quality of positioning model [4].

Multi-sensor infusion based methods are proposed to improve the positioning accu-
racy, especially utilizing the IMU already embedded in the most smartphones. Kalman
filter [5] and its extension [6] are proposed to combine WiFi positioning with PDR
(Pedestrian Dead Reckoning) positioning. It is hard for these methods to adapt the
complex indoor environment.

Particle filter based methods [7, 8] are proposed to add motion constrains to the
positioning model. However, the particle filter is unsuitable for real-time smartphone
positioning as it is computationally expensive and time-consuming.

Besides RSSI, many researches use CSI (Channel State Information) [9] finger-
print to improve positioning accuracy. Compared with RSSI, CSI can provide multi-
channel subcarrier phase and amplitude information to better describe the propagation
path of the signal. However, collecting CSI needs modifying operating system kernel
and customizing hardware drivers, which limits its applications significantly.

Motivated by recent advances in deep learning, some researchers utilize deep learning
based models such as CNN to overcome limitations of fingerprint-based localization
approaches [10, 11]. But these approaches suffer from the limitation of training labels
and only work well at the certain scenario.

Therefore, we still focus on utilizing RSSI and IMU measurements that are widely
available to improve the positioning accuracy. We build an integrated probability model
combining the RSSI-based positioning with user’s trajectory in a lightweight way that
makes it more suitable for resource-limited smartphones. It can improve the positioning
accuracy and adapt the changeable environment.
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3 Proposed Method

3.1 Overview

Figure 1 Trajectory estimation assisted WiFi Fingerprinting. shows the framework of
trajectory estimation assisted WiFi Fingerprinting, which consists of three modules,
RSSI matching, trajectory estimation, and integrated probability model.

Fig. 1. Trajectory estimation assisted WiFi fingerprinting.

RSSI matching module takes RSSI vector as input and outputs a list of candidate
RPs with corresponding probabilities. As shown in Fig. 1, when a user is at location L1,
L2, and L3, RSSI matching module outputs candidate RPs list {P1, P2, P3, P4}, {P5,
P6, P7, P8}, and {P9, P10, RP11, RP12} respectively. Due to signal fluctuation, some
RPs that have large deviations from the actual positions may be selected as candidate
RPs. For example, P6 is selected as candidate RP, which cause the estimated position
L2’ and the actual location L2 have a large deviation. There is also a large deviation
between L3’ and L3 since P12 is selected.

Trajectory estimation modules utilizes the IMU measurements to get the user’s tra-
jectory between the consecutive positions. As shown in Fig. 1, S12 is the estimated
trajectory between L1 and L2 and S23 is the estimated trajectory between L2 and L3.

Integrated probability model uses estimated trajectory to amend the selected candi-
date RPs list and determines the final position. The reachability of selected RP can be
evaluated based on estimated trajectory. We can remove the RP with low reachability
from candidate list or reduce its contribution to the final positioning result according its
reachability. For example, given the trajectory S12, a user is unlikely to reach P6. Its
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probability can be reduced greatly, which makes the final positioning result is closer to
the actual position.

3.2 RSSI Matching

Trajectory estimation assisted WiFi Fingerprinting does not require a specialized RSSI
matching algorithm. The only demand is the matching outcome should be a likelihood of
various RPs given observed RSSI measurements, which allows to estimate the centroid
of the all candidate RPs as the solution. The likelihood can be adjusted by trajectory
estimation to improve the positioning accuracy.

To determine the extent of likelihood adjustment, we need to estimate the RSSI
matching error. It is difficult to get a precise error estimating model in changeable
environments. Some positioning accuracy estimating methods based on offline training
data analyzing are proposed [12]. In real applications, it is hard to get the training data
covering all possible transmission conditions, which causes the error estimation cannot
adapt to environmental changes. Therefore we use average inter-candidate distance to
infer the positioning error from online measurements.

Average inter-candidate distance is the average distance between the best matching
candidate RP and the next k − 1 matching candidate RPs. The calculating process
contains the following steps:

1. Get the list of the k best matching candidate RPs outputted from RSSI matching
algorithm;

2. Compute the distance between the position of the best matching candidate RP and
all the other k − 1 matching candidate RPs;

3. Return the average distance as the estimated error, εfp.

3.3 Trajectory Estimation

Nowadays almost all smartphones have built-in IMU. Users’ orientation and velocity
can be determined with the measurements provided by accelerometers and gyroscopes,
and then the relationships between the users’ position and a known starting point can be
derived. It is known as inertial navigation, which can be used to track user’s trajectory.

The built-in sensors are noisy, which brings tiny errors in the measurement of accel-
eration in inertial navigation. What’s more, errors are integrated into progressively large
errors in velocity and even larger in position. This process is called integration drift. In
order to avoid errors accumulation caused by integration drift, instead of directly integrat-
ing acceleration twice over time, we count the steps through analyzing the acceleration
changing pattern when user walking. The step length is proportional to acceleration
changing in the direction that is perpendicular to the moving direction. This relation can
be utilized to determine the length of each step. The distance can be obtained by estimat-
ing the number of steps and the length of each step. Owing to high sampling frequency
of gyroscope, integrating its measuring value over time to get orientation only causes
small errors, so we utilize the gyroscope to estimate the user’s orientation.

Obviously, it is inevitable that there will be deviations in the estimation of walking
distance and orientation, which cause the error between estimated trajectory and real
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trajectory. We use εdis to represent this error. From previous research [13] and our own
experiments, the estimation errors are decided by users’ motion smoothness. We can
define motion smoothing factor f as follows:

φ = μ

δ
(1)

where μ represents user’s average speed and δ represents the mean square variation
of user’s speed. By using data fitting, εdis can be derived as follows:

εdis = a

φ
+ b (2)

The values of a and b can be calculated by using the result of data fitting as shown
in Fig. 2. Relationship between error and smoothing factor.

Fig. 2. Relationship between error and smoothing factor.

3.4 Integrated Probability Model

After obtaining the user’s trajectory and its error, we propose an integrated probability
model fusing the estimated trajectory and RSSI to improve the localization accuracy.

Integrating the Estimated Trajectory from Previous Location to Current Location
As shown in the left part of Fig. 3, there may be deviations between the real trajectory

−→
b

and the estimated trajectory −→a , we need to compute the conditional probability of the

real trajectory given the estimated trajectory,Pdsp
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)
, which consists of two parts,

the distance probability Pdst
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b
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)
and the orientation probability Pdir

(−→
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)
.

First, there are some constraints that the proposed distance probability model must
conform to:

1. The distance difference ‖�a‖−
∥∥∥�b

∥∥∥ is positively related with the distance probability.
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2. When the value of ‖�a‖ −
∥∥∥�b

∥∥∥ is fixed, the longer the distance is, the larger the

probability is.
3. Since the error of the estimated distance is mainly derived from the estimation of

strides, the positive difference has the same probability with the negative difference.

Thus, we can get the formula as:Pdst

(−→
b

/−→a
)

= Pdst

(−→a
/−→

b
)
.

O
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b
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Real trajectory Estimated trajectory

Fig. 3. Estimated trajectory and real trajectory.

We can define the distance probability as:

Pdst

(−→
b

/−→a
)

=
min

{∣∣−→a ∣∣,
∣∣∣−→b

∣∣∣
}

max
{∣∣−→a ∣∣,

∣∣∣−→b
∣∣∣
} (3)

Similarly, the probability of orientation also has the following constraints: the smaller

the angle between−→a and
−→
b is, the larger the probability is.And the probability decreases

rapidly while the angle increases. Hence, cos〈a, b〉 is adopted to indicate the probability
of orientation. When angle difference is greater than 90°, it could lead to the negative
value. So we set the probability value to 0 to avoid negative value in this situation. It isM
reasonable since this situation occurs very rarely. Therefore, the orientation probability
can be calculated as:

Pdir

(−→
b

/−→a
)

=
{
cos〈a, b〉, 〈a, b〉 ∈ [

0, π
2

]
0, 〈a, b〉 /∈ [

0, π
2

] (4)

Since distance information is derived from accelerator and orientation information is
stemmed fromgyroscope,we can assumedistance probability andorientation probability

are independent. Thus, Pdsp

(−→
b

/−→a
)
can be calculated as:

Pdsp
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b
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)

=

⎧⎪⎨
⎪⎩
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}

max
{|−→a |,∣∣∣−→b ∣∣∣

} cos〈−→a ,
−→
b 〉, 〈a, b〉 ∈ [

0, π
2

]

0, 〈a, b〉 /∈ [
0, π

2

] (5)

As depicted in the right part of Fig. 3, when a user walks from a known location O
to destination A, we can get an estimated trajectory −→a by using the method proposed
in previous section. Through RSSI matching, we also can get a candidate RP RA and its
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matching probability Ppf

(−−→
ORA

)
= Ppf

(
RA

/
sA

)
where sA is the RSSI vector measured

and collected at A. The integrated probability can be defined as:

Pcom

(−−→
ORA

)
= (1 − α)Ppf

(−−→
ORA

)
+ αPdsp

(−−→
ORA

/−→a
)

(6)

where α represents the contribution of the estimated trajectory probability to the
integrated probability. Its value is determined by the ratio of the accuracy of estimated
trajectory versus the accuracy of RSSI matching. Since we use εfp and εdis to represent
the error of RSSI matching and estimated trajectory respectively, α should satisfy:

εfp

εdis
= α

1 − α
(7)

Integrating the Estimated Trajectory Containing Multiple Locations
The positioning accuracy can be improved by integrating the estimated trajectory from
previous location to current location. However, if there is a large error in previous loca-
tion, the improvement may be limited. We now utilize the historical path containing
multiple locations to improve the positioning accuracy further.

In RSSI-based positioning, the k candidate RPs with the highest matching prob-
ability can be obtained from each measurement at the online phase, it may lead
to multiple candidate paths as shown in Fig. 4. One candidate path can be repre-
sented by the points gathered from each measurement at online phase,

[
p1, p2, ..., pn

]
,

where pi is the candidate RP for the ith measurement. We can express a path as a
vector path = [−−→p1p2,

−−→p2p3, ...,
−−−−→pn−1pn

]
, where −−−→pi−1pi represents the path segment

corresponding to the estimated trajectory pi-1 to pi.

Fig. 4. An example of candidate paths

Considering the measurement is independent of each other, every segment of path
can also be regarded as independent. Consequently, the probability of candidate path is

Pcom(path) = Ppf
(
p1

/
s1

) n∏
i=2

Pcom
(−−−→pi−1pi

)
(8)
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where n represents the total times of measurement, and represents the matching
probability of RP p1. By setting a virtual predecessor p0 to the first RP p1, the above
equation can be generalized as:

Pcom(path) =
n∏

i=1

Pcom
(−−−→pi−1pi

)
(9)

where Pcom
(−−→p0p1

) = Pgf
(
p0

/
s1

)
.

After defining probability of candidate path, the next step is to compute the prob-
ability of candidate points. Intuitively, current candidate point can be reached through
many paths from prior RP when user is walking in the indoor environment. Thus, the
probability of current candidate point can be deduced as:

P(R) =
∑

path∈PATH (R)

Pcom(path) (10)

where PATH(R) is the set of paths ended with R. As depicted in Fig. 4, we take an
assumption that Rn-1,j and Rn,j are the candidate points for the n-1th and nth measurement
respectively. The above equation can be simplified as:

P
(
Rn,j

) =
k∑

i=1

∑

path∈PATH(Rn−1,i)

Pcom(path)Pcom

(−−−−−−→
Rn−1,iRn,j

)

=
k∑

i=1

⎛
⎝Pcom

(−−−−−−→
Rn−1,iRn,j

) ∑

path∈PATH(Rn−1,i)

Pcom(path)

⎞
⎠

=
k∑

i=1

P
(
Rn−1,i

)
Pcom

(−−−−−−→
Rn−1,iRn,j

)

(11)

Since the RSSI matching probability and the path probability of the k RPs should be
stored at each measurement, the space complexity of above algorithm is O(kn). More-
over, the P(Rn-1,j) has been calculated in n-1th measurement, the time complexity of
getting P(Rn,j) is reduced toO(k). Considering that there are k candidate points, the time
complexity of getting current location is O(k2).

4 Performance Evaluation

4.1 Setup

The experimental environment is illustrated in Fig. 5. There are 6 APs (indicated by
yellow dots) deployed in the experiment area. The grid of RPs in the operation area
includes 78 points with a spacing of 1.5m.Wherein the blue spots represent the positions
of the RPs, and the red spots represent the test positions during online period. During
offline phase, we measured 110 RSS training samples at each RP to build the radio map.
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Fig. 5. Experimental environment.

During online phase, we collected 10 real-time RSS vectors at each test position with a
sampling period of 250 ms.

Considering the user’s trajectory, we generate 200 movement paths through an algo-
rithm simulating the real human movement. We walk along the generated path 10 times
to obtain the sensor data.

The positioning accuracy is calculated by the following equation:

E =
√

(x − x0)2 + (y − y0)2 (12)

where (x, y) represents the positioning coordinate, and (x0, y0) represents the real
coordinate.

4.2 Results and Analysis

We first compare the positioning accuracy of our method with other methods like
RADAR, Horus and PF + IKNN. As seen in Fig. 6, our method has the best per-
formance. The mean localization errors of RADAR, Horus and PF + IKNN are 2.57 m,
1.18 m and 1.05 m respectively, our method reduces the mean localization error to
0.97 m. RADAR uses the KNN algorithm to determine candidate RPs, and simply take
the average value of these RPs’ coordinates as positioning results. That’s why RADAR
performs the worst. Horus and our method adopt statistical probability to build a radio
map and look for the fittest fingerprint during the online phase. Compared with Horus,
our method performs better because it reduces the contribution of RSSI-based results
with high matching probability but large deviation to the final positioning results. The
performance improvement is more significant when the location error is higher than
1.5 m.

PF + IKNN also has a close performance. Although the improved KNN reduces
the positioning time, particle filter is computationally expensive, which is unsuitable for
real-time positioning. Instead of using complex filtering mechanism, our method uses a
lightweight probability mechanism to adjust the contribution of fingerprinting and IMU
to the final results. The time complexity of particle filter is O(n2), where n indicates the
number of particles and is set to 700 in the compared research. And the time complexity
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Fig. 6. Cumulative distribution function of positioning error.

of our proposed method isO(k2), where k indicates the number of candidate RPs, which
is usually less than 10.

Fig. 7. Positioning error versus the accuracy of estimated trajectory.

Fig. 8. Positioning error versus the number of RPs.

We also analyse the effects of the accuracy of estimated trajectory on final positioning
results. We generate 8 estimated trajectories and then give them different accuracy.
Figure 7 shows that as the accuracy of estimated trajectory improve, the final positioning
result is more accurate. This can be easily explained according to Eq. 7 that the more
accurate the estimated trajectory is, the higher the corresponding weight is.
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Figure 8 showshow the number ofRPs affects the positioning accuracy. The proposed
method performs the worst when only one RP is matched per measurement. WiFi signal
is vulnerable to the changeable environment, if only one RP is selected, it is quite
possible to select a RP with significant deviation, which has bad influence on the final
result. When the number of matched RPs increases, the most selected RPs with high
matching probabilities have low deviation, which have a positive impact on accuracy.
The accuracy decreases when the number of RPs exceeds the number of 6, which is
similar with the case described in the literature [2]. That is because, with the number of
RPs increasing, the RPs with the larger deviation may be selected and contribute to the
calculation of final probability and furthermore, have a negative impact on final result.
Therefore, the number of RPs should be determined empirically according to the actual
environment.

Fig. 9. Positioning error versus the path length

The relationship between the path length and the positioning accuracy is shown in
Fig. 9. When we set the path length to 0, which means there is only one RP contained
in the candidate path, the sensor data makes no contribution to the final probability, and
the positioning result is only determined by the classical RSSI-based algorithm. So it is
vulnerable to the labile environment and have the worst performance. With the increase
of path length, the estimated trajectory makes contribution to the final probability. We
also find the positioning accuracy stays around 0.97 m when the length of path exceeds
8. It means the integrated probability model can ease the adverse effects of changeful
environment when the length of candidate path is long enough.

5 Conclusions and Future Directions

RSSI-based location is vulnerable to dynamic environment, which may introduce large
deviation to final result. To deal with this issue, an integrated probability model com-
bining the RSSI fingerprint and users’ trajectory is proposed to improve online position-
ing accuracy. Experimental results show that the proposed method can greatly reduce
the adverse effects of inconstant environment and meanwhile, it’s computationally
lightweight enough to be utilized in the smart phones.
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The error of users’ trajectory estimating and RSSI matching has great impact on the
performance of our method because it decides the contribution of a certain candidate
RP to the final positioning result. We will continue to develop more precise error model
that can adapt to dynamic human motions in different environment. New deep learning
methods will be considered. Now our method selects a fix number of candidate RPs. To
improve the accuracy, we also will study on adaptive candidate RPs selection.
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