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Abstract. We study a perishable inventory system controlled by a (T, S)
periodic review order up to level policy. Items have a general lifetime distri-
bution and the lead time is assumed to be constant. The demands arrive
according to a Poisson process with rate k. The customer is impatient. If he is
not served, he will leave the queuing systems. Using the approximate solution of
the steady-state probabilities, we are able to obtain the cost components’ ana-
lytical expression. Next, we compare the analytical results of our model with the
simulation results. Finally, we perform a sensitivity analysis to evaluate the
effect of the lifetime variation and cost parameters on the optimal cost and stock
level S. Our model is an extension of an exponential distribution case. With the
general lifetime distribution, we are able to have total flexibility for setting the
lifetime variability. This approximation is closer to reality, especially in random
environment conditions. Obtained results, from the analytical approximation
model, are close to those of the optimal policy with an average accuracy of 7%.
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1 Introduction

Nowadays, the management of perishable products such as food, blood, and pharma-
ceutical products, has become one of the major global issues in terms of cost opti-
mization. A new study done by the Food and Agriculture Organization (FAO) indicates
that 13.8% of the total produced food in the world is lost [1]. Product perishability is also
one of the critical problems in the healthcare field, especially that most of the phar-
maceutical goods and all blood products have a limited lifetime. The use of an outdated
product in this field puts human life at risk, which makes the problem very serious.
The AABB members estimate that the total number of outdated blood components, in
blood centers and hospitals in 2013, was 932,000 units. In fact, 4.64% of all processed
blood components are perished this year [2].
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In today’s competitive global market, it is mandatory for companies managing
perishable products to reduce these losses in order to remain competitive in their
industrial fields. The root cause for this intriguing problem can be explained by the
stochastic nature of demand, the limitation and the variability of lifetime, and the high
customer service requirement. Due to the importance of this issue, perishable inventory
has received significant attention from researchers and the scientific community [3, 4].

In the absence of an optimal policy to manage this type of goods, our challenge is to
find an analytical approximation that considers the real faced constraints. By doing so,
we will be able to make a balance between satisfying customer and decreasing product
perishability. So, the question is: How to deal with perishable products when facing
several constraints and get an analytical approach sufficiently close to the real system
that can evaluate the system performance before making a decision.

This work tackles the above-described problem by investigating the case of a
perishable periodic inventory model with general lifetime distribution and proposing an
analytical solution to the steady-state probabilities and the cost components. This
model can be considered more realistic reflecting the stochastic nature of the lifetime
and the demand. The main contribution of this paper is the extension of the analytical
approximation given by Kouki [5] to the model in which the lifetime has a general
distribution. In addition, since most blood platelets are managed by periodic inventory
control, our model can be used as an alternative to existing models, where blood life is
typically assumed to be either fixed or exponentially distributed with an average of time
units.

The remainder of the paper is organized as follows. Section 2 introduces the
relevant literature review of perishable inventory management. Section 3 presents the
proposed inventory model. In Sect. 4, we compare the obtained analytical results to the
simulation results and we provide a sensitivity analysis to evaluate the impact of
different parameters (lifetime variability, Lead time, …) on the inventory average and
the operating cost. Finally, Sect. 5 draws conclusions and suggests potential further
research directions.

2 Literature Review

Perishable inventory management is becoming increasingly complex. Products are
becoming perishable due to various factors such as product characteristics, nature of
demand, and changing customer expectations. Due to the importance of this problem,
researchers are focusing on the optimal policy identification.

The literature concerning perishable inventory systems can be classified into var-
ious classes depending on whether the inventory is controlled continuously or peri-
odically, products’ lifetime is assumed to be constant or random, the lead time is
positive or instantaneous, and whether demand is deterministic or stochastic. Nahmias
[6] classifies perishable inventory management in two basic categories: Periodic or
Continuous Review. Under the continuous review system, the inventory level is known
and tracked continuously, requiring more resources and investment. This case is not
detailed in this work. We refer readers to [3].
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However, the periodic review is inexpensive since inventory evaluation takes place
at specific times. These models can be classified according to the lifetime character-
istics: fixed and random lifetime. For more details, Nahmias [6] and Goyal [7] pre-
sented an interesting review of perishable inventory management based on this
classification.

Considering the fixed lifetime models’, the first analysis of optimal policies was
given by Van Zyl (1964) [6]. But until now, the adoption of the classic periodic
replenishment policy for perishable items with a fixed shelf life, a deterministic lead
time, and fixed order costs is very difficult to found [8].

But the assumption of a deterministic lifetime is not realistic especially when this
type of goods can be deteriorated at any moment in the period of its lifetime due to
random perturbation factors such as temperature, humidity, lightness, and packaging
location. Actually, disregarding the stochastic nature of the lifetime can be a source of
losses and costs. Kouki [5] gave a numerical investigation and showed that the igno-
rance of randomness of lifetime leads to higher costs.

The stochastic aspect can be illustrated by several probability distributions: Bino-
mial, Uniform, Normal, Exponential, and General. Most works that deal with random
lifetime use the exponential distribution, and the majority of these models were found
under a continuous review policy [5, 8]. Under the periodic review, the first model that
examined a perishable good with zero lead time and random lifetime, was given by
Vaughan [9], where the lifetime had a Gamma distribution. Kouki [10] analyzed a
periodic review inventory control system of a perishable product having random
lifetime with exponential distribution. To cover more cases, Kouki [8] considers that
item lifetimes follow an Erlang distribution. Another probability distribution model that
covers most cases is the general distribution. It considers Exponential distribution,
Gamma distribution, Normal Distribution, etc. The only one who used this distribution
was Nahmias [11]. He assumed that successive deliveries would outdate in the same
order of their arrival in inventory and showed that the structure of the optimal policy is
the same as in the case where the lifetime is deterministic. This model considered that
the lead time is zero, which is incoherent with reality [11].

The literature review of perishable inventory management is very rich, but the case
of a periodic review with general lifetimes and positive lead times has not been
investigated yet. The focus of this research will be the presentation of an analytical
approximation model that is close to the optimal policy with acceptable accuracy.

3 Model Description

In the absence of the optimal policy to manage perishable products, we propose an
approximate model with a periodic review ðT ; SÞ policy. The demand arrives following
a Poisson distribution with rate k and customers are impatient. The lifetime of each
product has a general distribution F with means m. Each time an order is triggered, it
arrives in stock after a constant lead time L� T . In this section, we describe the
approach made to get the expression of the total cost performance Z T ; Sð Þ. First, we
detail the steps made to get the steady-state probabilities P. Then, we calculate the
different cost components. Finally, we present the total cost.
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To compute the steady-state probabilities P ið Þ; of the inventory level i, i ¼ 0; . . .S;
at ntþ L; n ¼ 1; 2; . . .; we rely on the transient probabilities from state i to state j during
t. This transition occurs either through a demand arrival or a perished product. So, to
calculate these probabilities, we use the demand rate k and the rate at which items
perish, which we denote by cðnÞ. Given that, there are n items in the stock. Movaghar
[12] showed that for an :=M=1þG queue:

c nð Þ ¼ nUðn� 1Þ
UðnÞ � k ð1Þ

where U nð Þ ¼ R10 R x
0 1� F yð Þð Þdy� �n

e�kxdx:
In this case, we are interested in calculating the transient probability from the state i

to the state j during t time such that ntþ L� t\ðnþ 1Þtþ L: Regarding our model the
inventory items’ i can be modeled as an :=M=1þG queue whose service rate is 1

k,
whereas the “þG” represents the remaining lifetime, which follows the distribution F.

It should be noted that the actual lifetime for a given cycle T is, of course, different
from the lifetime given by the distribution F because it may happen that, for a given
cycle, some items remain in the stock when an order is received. So, the inventory age
is constituted by multiple age categories. In fact, there are items whose lifetime is
different from those having an age given by F. In our model, it is assumed that the
remaining lifetime for any cycle T is always the same, and it is given by F. This is true
if the lifetime follows an exponential distribution that has a memoryless property. For
any other lifetime distribution, our model approximates the distribution of the true
remaining lifetime by F.

The first step to get the transition probability from i to j is to write the Kol-
mogorov’s Eqs. 2:

p
0
i;j tð Þ ¼

�ðkþ c ið ÞÞpi;j tð Þ; i ¼ j
�ðkþ c jð ÞÞpi;j tð Þþ � ðkþ c jþ 1ð ÞÞpi;jþ 1 tð Þ; j\i� S

�
ð2Þ

Using the Laplace transform, we obtain

zþ kþ c ið Þð Þpi;j zð Þ ¼ 0; i ¼ j
zþ kþ c jð Þð Þpi;j zð Þ ¼ ðkþ c jþ 1ð ÞÞpi;jþ 1 zð Þ; j\i� S

�
ð3Þ

We can show by induction that the solution of the above equations is:

pi;j zð Þ ¼ 1
kþ cðjÞ

Yi
k¼j

kþ cðkÞ
zþ kþ cðkÞ ð4Þ

and the inverse of Laplace transform of the above equation gives the transition prob-
ability from any state i to j and time t; nT þ L� t\ nþ 1ð ÞT þ L; n ¼ 1; 2; . . .

A Periodic Inventory Model for Perishable Items 229



pi;j tð Þ ¼
Yi

n¼jþ 1

ðkþ cðnÞÞ
 !Xi

k¼j

ð�1Þi�je�tðkþ cðkÞÞ Yi
n¼j;n 6¼k

1
cðkÞ � cðnÞ

 !
ð5Þ

We can now find the steady-state probability P using the relation:

P ¼ P� A� B ð6Þ

where A ¼ pi;j Lð Þ
0� i� S;0� j� S

and B ¼ pi;j T � Lð Þ
0� i� S;0� j� S

Now we are ready to derive the cost components. The inventory average is given
by:

E Ið Þ ¼ 1
T

XS
i¼1

Xi
j¼1

P ið Þ
Z T

0
jpi;j tð Þdt

¼ 1
T

XS
i¼1

Xi
j¼1

Xi
k¼j

jP ið Þ
Yi

n¼jþ 1

kþ c nð Þð Þ
 !

�1ð Þi�j 1� e�T kþ c kð Þð Þ� �
kþ c kð Þ

Yi
n¼j;n 6¼k

1
c kð Þ � c nð Þ

 ! ð7Þ

Similarly, the expected outdated quantity is:

E Oð Þ ¼ 1
T

XS
i¼1

Xi
j¼1

P ið Þ Z
T

0

c jð Þpi;j tð Þdt

¼ 1
T

XS
i¼1

Xi
j¼1

Xi
k¼j

c jð ÞP ið Þ
Yi

n¼jþ 1

kþ c nð Þð Þ
 !

�1ð Þi�j 1� e�T kþ c kð Þð Þ� �
kþ c kð Þ

Yi
n¼j;n6¼k

1
c kð Þ � c nð Þ

 !
;

ð8Þ

and finally, the expected lost sales can be written as:

E Sð Þ ¼ kP 0ð Þ
T

þ k
T

XS
i¼1

Xi
j¼1

P ið Þ kþ c 1ð Þð Þ Z
T

0

T � tð Þpi;j tð Þdt

¼ kP 0ð Þ
T

þ k
T

XS
i¼1

P ið Þ kþ c 1ð Þð Þ
Yi
n¼2

kþ c nð Þð Þ
 !Xi

k¼1

�1ð Þi�1 �1þ e�T kþ c kð Þð Þ þ T kþ c kð Þð Þ� �
kþ c kð Þ½ �2

Yi
n¼1;n6¼k

1
c kð Þ � c nð Þ

 !

ð9Þ

The total cost is:

Z T; Sð Þ ¼ K
T

þ hE Ið ÞþwE Oð Þþ bE Sð Þþ c kþE Oð Þ � E Sð Þð Þ ð10Þ

Where K is the unit ordering cost, h is the holding cost per unit time, w is the outdated
cost, b is the lost sales cost, and c is the purchasing cost.
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4 Numerical Results

In this section, we conduct an extensive numerical study to identify the accuracy of our
model’s numerical results compared to the obtained simulation results using the sim-
ulation software Arena. In the second part, we conduct a sensitivity analysis to evaluate
how the lifetime variability of perishable items affects the optimal cost and the system’s
performance. We also show the impact of the different cost parameters on the optimal
total cost.

4.1 Comparison with the Simulation Model

In our numerical analysis, we assume that the lifetime follows a Gamma distribution
with mean 3. The scale and shape parameters are given respectively from the intervals
below: [2, 5, 10, 20, 50, 100, 150, 200, 300, 500, 1000, 2000, 5000] and [2, 5, 10, 20,
50, 100, 150, 200, 300, 500, 1000, 2000, 5000]. The demand rate is k = 2, and the lead
time is assumed to be constant, L = 1. 2500 MATLAB scenarios are done under
different parameters settings: the unit ordering cost per order K belongs to the interval:
[5,10,50,100], the unit holding cost per unit h is fixed to 1, the outdated cost W and the
purchasing cost c are respectively equal to 5 or 10, the lost sales’ cost b could be 50 or
100.

For the simulation model, we consider that the replication length is 10 000 units of
time. This number is enough to get a representative result. After getting the two results,
a comparative analysis of the obtained numerical results with simulation results is made
to identify the accuracy between the two models. We consider that the gap % is the
percentage of deviation between the analytical result given by our model TCa and
simulation results TCs. The accuracy of the total cost is evaluated using the Eq. 11:

gap% ¼ 100 � TCs� TCa
TCs

ð11Þ

Our model is exact when the lifetime follows an exponential distribution (alpha = 3
and beta = 1). The gap indicates that the optimal solutions obtained by both methods
(MATLAB and Arena) are the same. The Table 1 presents the results of the proposed
model and the simulation one for the 24 instances in the case of an exponential
distribution.
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Hence, we can conclude that our model is accurate, and guarantees global opti-
mality in the case of an exponential distribution.

For the other cases, the mean gap between the simulation and the MATLAB result
is 7%. Our obtained numerical results also indicate that in some conditions (T � 1.5,
S� 13), the gap is equal to zero. Still, in some other situations, the analytical solution
obtained by MATLAB is very close to that of the optimal solution obtained by Arena.
For example, in the case of T � 2, the mean of gaps is 1%. The root cause of this gap
can be explained by the approximation that we have done in our model. In reality, the
remaining lifetime of articles is not the same. Our model doesn’t consider the lifetime
spent in the system, which represents the inventory age and the remaining lifetime. If
T � 2, the risk of having different inventory age of product is even higher. To conclude,
the smaller T is, the more the risk of having a different inventory age decrease. For the
overall items, this risk can be reduced by having T < 2.

4.2 Sensitivity Analysis

In this section, we conduct a sensitivity analysis to evaluate the effect of the lifetime
variability and the cost parameters on the optimal stock level and the optimal total cost.

Table 1. Comparison of the proposed model with the (T, S) simulation model – case of the
exponential distribution

Instance
T* S* Tca T*sim S*sim TCs

K c h w b
1 5 5 1 5 50 0.5 10 62.503 0.5 10 62.503
2 5 5 1 10 50 0.5 9 70.624 0.5 9 70.624
3 5 10 1 5 50 0.5 9 94.516 0.5 9 94.516
4 5 5 1 10 100 0.5 11 76.440 0.5 11 76.440
5 5 5 1 5 100 0.5 11 66.781 0.5 11 66.781
6 5 10 1 10 100 0.5 10 109.981 0.5 10 109.981
7 10 5 1 5 50 1 13 69.873 1 13 69.873
8 10 5 1 10 50 1 12 79.896 1 12 79.896
9 10 10 1 5 50 1 12 103.602 1 12 103.602
10 10 5 1 10 100 0.5 11 86.440 0.5 11 86.440
11 10 5 1 5 100 1 15 75.258 1 15 75.258
12 10 10 1 10 100 0.5 10 119.981 0.5 10 119.981
13 50 5 1 5 50 2 20 100.783 2 20 100.783
14 50 5 1 10 50 1.5 15 113.058 1.5 15 113.058
15 50 10 1 5 50 1.5 15 136.401 1.5 15 136.401
16 50 5 1 10 100 1.5 18 122.773 1.5 18 122.773
17 50 5 1 5 100 1.5 19 107.783 1.5 19 107.783
18 50 10 1 10 100 1.5 17 160.801 1.5 17 160.801
19 100 5 1 5 50 2.5 24 124.263 2.5 24 124.263
20 100 5 1 10 50 2 19 139.841 2 19 139.841
21 100 10 1 5 50 2.5 21 162.645 2.5 21 162.645
22 100 5 1 10 100 2 23 152.050 2 23 152.050
23 100 5 1 5 100 2 24 134.132 2 24 134.132
24 100 10 1 10 100 2 21 192.314 2 21 192.314

ledomnoitalumiSsretemaraPtsoC Proposed Model
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We start by analyzing the impact of the lifetime variability, which is presented by a
ratio CV. CV is defined as the ratio between the standard deviation and the expected
value of the lifetime

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Alpha � Beta2

p
Alpha � Beta ð12Þ

Impact of the CV
We observe that the optimal cost increases with increasing lifetime variability. For the
optimal stock level and the optimal period, we observe that the sensitivity level to CV
is the highest when CV is above 0.007. They are stable when CV is between 0.01 and
0.06. For a CV value higher than 0.07, S* and T* decrease with CV. This can be
explained that the higher of CV value is, the more the risk of perishability of the
products increases, and the shorter the article’s lifetime becomes, as shown in Fig. 1.

Impact of Different Parameters
The main objective here is to evaluate the effect of the variation of the different
parameters on the cost performance of our model. Firstly, considering the outdating
cost, we have concluded that the higher the expiration/outdating cost is, the higher the
total cost is. For the ordering cost K, it’s obvious that the total cost increases with K,
although the gap between the calculated total cost and simulation decreases. Next, we
analyze the evolution of the total cost compared to the lost sales cost. As expected, the
accuracy of the gap and the optimal cost increases with the lost-sales. This can be
explained by the fact that to reduce the number of lost sales, the decision-makers have
to buy more items. This will lead to more perished products and higher total cost.
Finally, we analyze the behavior of the total cost with the purchasing cost. We con-
clude that the gap decreases when C increases, but the total cost behaves the same.

By using this model, the management team of an industrial perishable products unit
can define the period and the inventory level that lead to the optimal cost based on the
value of the different cost parameters. They can also choose the supplier using the impact

Fig. 1. Sensitivity analysis
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of the ordering cost K in the total cost. The analysis of the effect of the different parameters
variations to the total cost shows that the decision should be made after an analysis phase
of all the cases that could appear (cost variations, lifetime variations, environment
variations…). The use of this model can help decision makers to get the optimal solution.

5 Conclusion

In this paper, we consider a (T, S) perishable inventory system with lost sales. The
lifetime of the product follows a general life distribution. Using the steady-state
probabilities, we first derived the different analytical expressions of the total cost
components. Next, we develop a MATLAB program that allows us to define the total
optimal operating cost in a well-defined case. Finally, we conduct a numerical study to
compare our analytical results with the simulation results. This allow us to conclude
that our model is quite close to the real model with a mean accuracy gap of 7%.

This model could be extended considering (S,s) policy or a (T,S) multi-echelon
model since in many sectors, the supply chain are more integrated, especially after the
appearance of the industry 4.0. It is more likely to find inventory management systems
that deal with perishable products in a multi-echelon chain rather than in a mono-
echelon model. So, extending this work to periodic multi-echelon model would be a
very interesting direction for future research.
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