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Abstract. The paper focuses on the redundancy resolution in kinematic control of
anew type of serial manipulator composed of multiple tensegrity segments, which
are moving in a multi-obstacle environment. The general problem is decomposed
into two sub-problems, which deal with collision-free path planning for the robot
end-effector and collision-free motion planning for the robot body. The first of
them is solved via discrete dynamic programming, the second one is worked out
using quadratic programming with mixed linear equality/non-equality constraints.
Efficiency of the proposed technique is confirmed by simulation.
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1 Introduction

In robotics, kinematic control of compliant serial manipulators attracted much attention
recently [1-3]. Because of their specific design including not only rigid components
but also elastic elements, such manipulators allow achieving excellent flexibility and
ability of shape-changing in under the environment. However, kinematic control of such
manipulators is not a trivial problem, which requires redundancy resolution considering
possible collisions of the robot end-effector and its body with the obstacles.

The considered manipulator is composed of multiple tensegrity segments, each of
which contains two rigid triangle parts connected by a passive joint and two elastic
edges with controllable preload [4]. In practice, to achieve the desired target location of
the end-effector, both the end-effector and the manipulator body must avoid touching
the obstacles. The latter imposes very essential constraints on the redundancy resolu-
tion, which is usually resolved via the kinematic model linearization and the classical
quadratic programming with the linear equality constraint applied to the end-effector
[5, 6]. In this paper, it is proposed to solve the problem sequentially, generating the
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collision-free path for the robot end-effector first, and collision-free motion for the robot
body at the second stage. Relevant techniques are based on the discrete dynamic pro-
gramming and the quadratic programming with mixed equality constraints applied to
the end-effector, and the non-equality constraints applied to the manipulator segments.

2 Problem Statement

Let us consider a serial manipulator composed of n similar segments based on dual-
triangle tensegrity mechanisms, composed of rigid parts connected by passive joints
whose rotation is constrained by two linear springs as shown in Fig. 1. It is assumed
that the mechanism geometry is described by two triangle parameters (a, b), and the
mechanism shape is defined by the central angle ¢, which is adjusted through two control
inputs influencing on the lengths of the springs L; and L. More details concerning the
manipulator kinematics is given in our previous paper [4], here we concentrate on the
control issues and the redundancy resolution.

Fig. 1. Kinematic structure of the multi-segment serial manipulator.

For this manipulator, the direct kinematics equations can be written as follows

i—1 j i—1 j
X; =b+2bz cos(Zqi) 5 Vi =2bZ sin(Zqi) coi=1,...,n
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where ¢; are the joint angles, (x;, y;) denote the position of the ith joint center and
(xe, ye) is the end-effector position. Corresponding Jacobians involved in the differential
kinematics can be presented in the following way
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Obviously, for n > 2 this manipulator is kinematically redundant since the desired
end-effector location can be achieved in an infinite number of ways. So, the principle
problem considered here is how efficiently to use this kinematic redundancy in a multi-
obstacle environment, i.e. to ensure the end-effector displacement to the given end-
effector location (xf , yf,f) with minimum joint motions Ag;, i = 1, ..., n while avoiding
possible collisions of the manipulator body and the end-effector with the obstacles. In
this paper, it is proposed to decompose these general problems into two sub-problems
sequentially dealing with (i) collision-free path planning for the robot end-effector and
(ii) collision-free motion planning for the robot body. More strict formalization of these

problems and their solutions are presented in the following chapters.

3 Path Generation for the Manipulator End-Effector

To find the best collision-free path for the end-effector let us apply the discrete dynamic
programming technique allowing to generate the shortest trajectory in the obstacle-dense
task space, which connects the initial and target points p°, p¢ and avoids collisions with
the obstacles. To apply this technique, let us discretize the task space (x, y) and present
it as a two-dimensional set of nodes defined in the following way

LG, j) = (xo +Ax-j, Y+ Ay- i), i=0,1,..mj=0,1,.n @)
where Ax, Ay are the discretization steps such that the index j = O corresponds to
the initial point p® and the index j = n corresponds to the target point p¢. Using such
presentation the desired trajectory can be presented as the sequence of the nodes

L(ip,0) - L@, 1) » ... > L(@,—1,n — 1) > L(i,, n) ®)]

with the purely geometric definition of the distances between the successive nodes as

dist{LGi,j), LG j+ D} = /Ay - (@ = )? + AC ©)

To take into account possible collisions between the robot end-effector and the workspace
obstacles, let us also define the binary matrix B of size m x n whose elements B(i, j) €
{0, 1} are equal to zero if there is no collision between the manipulator end-effector
and the workspace obstacles at the node L(i, j), (otherwise, it is equal to one). It is worth
mentioning that the above presentation neglects the robot end-effector dimensions and
presents it as a point. For this reason, while computing the matrix B it is reasonable
to modify slightly the obstacle models and increase their dimensions by the value of
v/a% + b2, where a, b are the geometric parameters of the manipulator segments (see
Fig. 1).

Such formalization operating with the discretized task space {L(i, j)}, which includes
the obstacles defined by the binary matrix B, allows us to present the original problem of
the collision-free path planning for the manipulator end-effector as the classical shortest-
path searching on the graph: find the optimal path (5) on the graph connecting adjacent
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columns of {L(i, j)}, which (1) connects the given nodes L(io, 0)and L(iy,, n), (ii) passes
through allowable nodes only B(i, j) = 0 and (iii) satisfies the optimization criterion

n—1

> dist{L(ij. j), Lj1.j+ 1D} — min
1

Jj=0

i=m
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Fig. 2. Generation of the obstacle-free path using discrete dynamic programming
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Fig. 3. Example of obstacle-free path generation for the robot end-effector.

It should be noted that for such presentation the desired trajectory is defined by the
sequence of the row indices {iy, i, ..., i}, Where both ip and i,, are given (they are defined
by the initial and target points). It is clear that this shortest-path problem can be solved
via the discrete dynamic programming that is based on the following expression

dz (i) = nllin[dj*(i) +dist{LG.j), LG.j+ 1)}}, Vi=0,1,...m (8
where d; (i) denotes the shortest distance between the initial node L(ig, 0) and the node
L(i, j) corresponding to the optimization of the lower dimension (j < n). This expression
is applied sequentially starting from j = 1 and ending with j = n-1, and memorizing the
row indices {i X e i;l"fl } obtained from (5) and corresponding to all intermediate optimal
paths. At the final step, a single node L(i, n) corresponding to the desired endpoint is
selected, and the desired solution is obtained through the backtracking allowing to find the
remaining row indices {ii‘, I 1} describing the optimal path. Geometric explanation
of this technique is given in Fig. 2, where the spatial location of the initial and target
points corresponds to the motion “from left to right”.
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The efficiency of this technique has been confirmed by the simulation study. An
example of obstacle-free path generation with the discretization of 20 x 20 is presented
in Fig. 3. It should be mentioned that here, to take into account the end-effector size, the
obstacles were slightly increased. As follows from this study, for such relatively rough
discretization the algorithm is very fast. However, for finer discretization the computing
time may increase significantly.

To overcome this difficulty, a two-step modification of the path-generation algorithm
was also proposed. The basic idea of the proposed modification (leading to the algorithm
speed-up) is to find first an initial solution with the rough discretization, and to improve
it further using a relatively small discretization step (and applying at both steps the
same numerical technique based on the discrete dynamic programming). Geometric
explanation of this approach is presented in Fig. 4, where at the first step the task space
is divided into several big areas S(u, v), u C {0, 1, ...m},v = {0, 1, ...n}.

Then after applying the proposed technique, the confident areas in every column in the
task space could be found, which contain the possible points for connecting the shortest
path, and the corresponding trajectory could be obtained with the indices expressed as
S(up,0) — S(u1, 1) - ... => S(uy—1,n — 1) = S(uy, n). As the second step, it is
only necessary to search for the points L(i,, v) € S(u,, v) inside of the confident areas
obtained from the first step. It is clear that this approach allows us to increase significantly
the computing speed.

(. Obstacle

Uy
Possible areas
[ ] for the 1st searching step
target —p _Possible paths
u node for the Ist searching step
—_— Shortest path
initial tfrom the 2nd searching step
— (] Possible nodes
o B A ® Optimal nodes

Fig. 4. Speed-up of the algorithm for obstacle-free path generation for the robot end-effector

4 Motion Generation for the Manipulator Body

To generate motions for the manipulator body it is necessary to use the best way of the
manipulator redundancy, which in our case can be treated as simultaneous achievement
of two goals: (i) minimization of the joint motions for the desired end-effector location;
(ii) ensuring safe distances between the manipulator segments and the obstacles. The
first of them can be presented as the minimization of the joint increments Aq

n
> Aq] - Aq — min )
i=1 Aq
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subject to the geometric constraint
Ap=1J.-Aq (10)

arising from the desired end-effector displacement Ap computing via the kinematic
Jacobian J, of the manipulator end-effector. It is known that these constraint optimization
problems can be easily solved analytically via the Jacobian pseudo-inverse

aq =17 (337) " ap (an

However, to take into account the second goal (collision avoidance), it is necessary
to impose some additional constraints arising from the safety distances between the
obstacles and the manipulator intermediate segments. It can be proved that these distances
can be computed in the following way

d;j 2 dist(p;, Opj) > djo, Vi=1,2,..n; Vj=1,2,...m (12)

where dj; denotes the distance between the ith joint center and the jth obstacle, and
d? is the allowable minimum value for the jth obstacle that takes into account its size
(equivalent radius). In more detail, these definitions are explained in Fig. 5, where the
joint axis locations are described by the points {p;, Vi} and the obstacles are approximated
by the circles with the centers {°p;} and radiuses {r;}.

Fig. 5. Computing the distances dij between the robot joints and obstacles.

To present these additional constraints more conveniently, let us use the linearized
expression Ap; = J;- Aq for the manipulator joints, where J; is computed from (2). Such
linearization allows us to present dist(p;, °p;) as the projection of the displacement vector
Ap; onto the line segment connecting the points p; and °p; (see Fig. 5), i.e.

dj =ef-Ji- Aq (13)

where the unit vector e;; is computed as e; = (p; — °p;)/IIp; — °pjll.
So finally, for the n segment manipulator with m different task space obstacles, the
m x n collision-free constraints can be rewritten as the following way

e Ji-Aq-d) =0, i=12_.nmn j=12 ..m (14)

where the safety parameter djo = rj + Va® + b? is computed taking into account both
the obstacle equivalent radius r; and the manipulator geometric parameters a, b.
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Fig. 6. Example of collision-free motion control for the multi-segment manipulator.

Hence, the original optimization problem with the quadratic objective (9) and linear
equality constraint (10) is transformed to a more general one, which includes both the
linear equality constraint (10) and a number of linear non-equality constraints (14). The
main particularity of this mixed optimization problem is related to the influence of the
non-equality constraints. In particular, some of them can be stronger than the other ones,
leading to the situation when a limited number of non-equalities are active. In this work,
it is proposed the following technique to solve this optimization problem:

1. First, try to release all non-equality constraints and find the optimal solution Aq* of
this reduced problem from (11).

2. For the obtained solution Aq*, verify all non-equality constraints (14) and find those
that are violated. If no one of the constraints is violated, the final solution is obtained.

3. If some of the non-equality constraints are violated, the strongest of them is selected
for each joint and transformed into the equality constraint.

4. Then the problem is solved for the extended set of equality constraints and the
obtained new optimal solution Aq* is evaluated by starting from step 2.

To find the optimal solution for the extended optimization problem at step 4, the
Lagrange technique can be applied dealing with the minimization of the function

L(Ag M w) = Aq"Aq+ T (T Aq— Ap) + Y py(e] - Ji- Ag - dP) > min
active

(15)
which leads to the following linear system
Aq—A - J—p" J,=0; J-Aq—Ap=0; J, - Aq—d,=0 (I6)

where the matrix J, and the vector d, are composed of elements eg - J; and d;) cor-
responding to the active constraints, and A and p are the Lagrange multipliers. It is
clear that this system can be solved in a usual way via the matrix pseudo-inverse. The
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efficiency of the develop technique is confirmed by the simulation results presented in
Fig. 6, where the manipulator end-effector must follow the curved path located inside
of the narrow gap between the obstacles.

5 Conclusion

The paper proposes a new method of redundancy resolution in kinematic control of a new
type of serial manipulator, which is moving in the multi-obstacle environment. Because
of their specific design including not only rigid components but also elastic elements,
such manipulators allow achieving excellent flexibility and ability of shape-changing
in accordance with the environment. However, kinematic control of such manipulators
requires redundancy resolution taking into account possible collisions of the robot end-
effector and its body with the obstacles. To find the desired robot motion, the general
problem is decomposed in two sub-problems, which deal with collision-free path plan-
ning for the robot end-effector and collision-free motion planning for the robot body.
The first of them is solved via discrete dynamic programming, the second one is worked
out using quadratic programming with mixed linear equality/non-equality constraints.
The efficiency of the proposed technique is confirmed by simulation. In the future, this
technique will be extended for the 3D manipulator with similar tensegrity segments.
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