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Abstract. The integration of Artificial Intelligence (AI) in manufacturing is often
pursued as technology push. In contrast, this paper looks upon the AI-human
interaction from a viewpoint that considers both to play an important role in
reshaping their individual capabilities. It specifically focuses on how humans can
play an important role in enhancing AI capabilities. The introduced concepts are
tested in an industrial case study of vision-based inspection in production lines.
Furthermore, the paper highlights the need to consider relevant implications for
work design for AI integration. The contribution can be of practical value for
system developers and work designers in how to target at the design stage the
human contribution in AI-enabled systems for production environments.

Keywords: Human-in-the-loop · AI ·Work design · Industry 4.0

1 Introduction

Modern manufacturing environments are not simply technical systems but complex
sociotechnical ones. In sociotechnical systems, human actors hold a key role with impli-
cations for system performance, alongside the physical technical systems. However,
while the interaction between human and non-human actors in sociotechnical systems
has been broadly explored, there is still a lack of understanding regarding the inclusion
of Artificial Intelligence (AI) actors within sociotechnical systems. Aiming at narrowing
this gap in the literature, this paper critically assesses human engagement with AI. It
then proposes a model of human-AI interaction that goes beyond augmentation, and
applies that on an industrial case study to show how selected aspects of these interaction
can positively affect outcomes. This can be of practical value for system developers and
work designers in how to effectively integrate human-centric AI in production environ-
ments at the design stage of such a process. This paper is structured as follows. Section 2
analyses related work and the role of human and AI actors in sociotechnical produc-
tion environments. Section 3 outlines key aspects of integrating human and non-human
actors to enhance AI capabilities. Section 4 applies elements of the proposed concepts
on an industrial case study. Section 5 outlines work design implications and concludes
outlining next steps for the research.
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2 Human and AI Actors in Sociotechnical Systems

The joint consideration of human and technical actors in sociotechnical systems has
been studied for long, going back to the early years of Human System Engineering
(HSE). HSE refers to the application of principles, models, and techniques to system
design, taking into account human capabilities and limitations [1]. Increasingly literature
accepts that human actors can be more effective when they act upon a shared context
(“situational awareness”) of work activities, which is a “collective activity” view of
work environments [2]. A collective activity is not merely the sum of individual parts
but is shaped up from interacting actors. The nature of these interactions is now deeply
influenced by the introduction of AI in production activities [3]. The integration of
human and AI actors in manufacturing can be looked upon as a collective activity.
It is therefore justified to consider not only how processes can be automated, or how
humans can be augmented by AI [4], but also to capitalize on the emergent outcomes
of the evolving human-AI interaction. These outcomes become more powerful when
the opportunities offered by humans augmenting the AI [5] or by integrating the human
cognitive capabilities in the AI loop are designed-in the systems [6]. Human cognitive
capabilities have been part of the design of artificial cognitive system architectures [7]
but are not often sufficiently integrated in AI deployments in manufacturing. Human-AI
interaction can drive radical changes in the affordances of the human and non-human
actors in such environments. The term “affordance” is used in different disciplines and
broadly “denotes action possibilities provided to the actor by the environment” [8]. The
significant expansion of interaction affordances arising from the human-AI integration
has not received sufficient attention when dealing with AI in manufacturing. This adds
to the growing acceptance that, since the application of Industry 4.0 technologies in
production systems changes the role of workers in unprecedented ways [9], there is a
need to address challenges to enhance both operational performance and work design
and human effects. As a result, human-centricity, which emphasises the need to pay
attention to human workers during the design and adoption of sociotechnical systems, is
now pointing towards human-centric design approaches, and human-centered principles
in the design of AI, within the view point of work design [10]. While the role of humans
regarding changes in work and work organization has received ample attention in the
literature in the context of today’s technological change [11], for many practitioners the
human implications of integrating AI within the technology toolset of their operating
environments remains a black box. Part of the difficulty lies with the relative lack of
understanding regarding the nature of human-AI interaction. This in turn limits both the
effectiveness of the integration of humans in the AI loop, as well as the perspectives
of work design towards integrating more effective human-AI synergies in production
environments. These are looked upon in further detail next.

3 The Role of Human Actors in Enhancing AI

There is barely a single definition ofwhat constitutesAI, but to the extent that intelligence
characteristics are associated with thought processes and behaviours, the expectations
for an AI agent would be to exhibit at least some of those characteristics. The thought
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processes viewpoints are typically looked upon from the cognitive systems and logic
viewpoints, while the behavioural onesmay result from applying concepts, methods, and
practice related to machine learning, knowledge representation and reasoning, natural
language processing, and agent-based systems [12]. While AI has the potential to take
on human tasks [13], there is a growing consensus to design human-centric technologies
which integrate rather than eliminate humans and their capabilities [6, 14, 15]. While
the majority of such human-in-the-loop scenarios consider how AI augments humans
[16], the opposite (humans aiding AI) also holds significant potential for the success-
ful integration of humans and AI in manufacturing [5, 6, 15]. The advances made in
the practical application of AI, involving scenarios of automation and augmentation of
human work [13], create the need to better understand the interactions between human
and AI actors. Human augmentation in manufacturing has benefitted from a range of
technology enablers and the established paradigm shift to ubiquitous computing [17].
Contributing enables include multimodal interfaces [18], augmented [19] and virtual
[20] reality, context-adaptive computing [21], exoskeletons for physical augmentation
[22] and natural interfaces, including speech [23] and brain – computer interfaces [24].
Yet, the potential contribution of humans towards AI agents [5] can be beneficial across
the whole process workflow of data-driven machine learning. Considering this from a
software-based systems perspective [25], the workflow of activities wherein humans
can have a distinct role can be outlined in the waterfall diagram of Fig. 1. The diagram
illustrates the five typical phases of such a software engineering process. While the

Fig. 1. Machine learning waterfall diagram outlining human actions
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requirements and integration and system testing phases are certainly relevant to human
involvement, the interest is nonetheless placed on the design, implementation and test-
ing, and operation and maintenance, to outline key human involvement with machine
learning, rather than the system or software process.

Table 1 shortlists specific human involvement activities for the design stage, while
the corresponding activities for the implementation and operation stages are seen in
Table 2 and 3 respectively. Both domain and data/AI experts have distinct roles there.

Table 1. Humans aiding AI actors - design

Activities Application perspective Machine learning perspective

Problem definition Set application targets (e.g.
recommend actions, classify
states, estimate values)

Translate application to ML targets
(ML problem formulation)

Data design Link aims to data collection
Ensure data are representative of
the problem domain states
Explore and assess veracity of
data (visual analytics, statistics)
Labeling data records
Enrich data with domain-relevant
contextual information
Domain-specific data attributes

Ensure appropriate statistical
representation of data in samples
Design data types and structures
Determine data quality
management (for example missing
values policy)
Produce recommendations for data
management activities
Design ML-specific data features
Feature selection/extraction for
ML

ML model design Domain-relevant abstract model
of problem (for example, time
series, spatial or other; decision or
recommender system, etc.)
Impose constraints/relations on
models (for example “forced”
associations in relational models
according to application specific
knowledge)

Select family of ML models to
address problem needs (for
example a Time-Delayed network
for times series, a Convolutional
Neural network for vision, an
explainable model for model
transparency, etc.)
Select method for initialising
structure of models (for example,
how many layers, how many
computational nodes per layer, the
type of function that nodes
perform)

(continued)
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Table 1. (continued)

Activities Application perspective Machine learning perspective

ML algorithm design Consider the “physical” source of
knowledge about the data and
feedback on ML performance (for
example penalty / rewards for
reinforcement learning, error
estimation through real,
model-based, or simulation
systems)

Performance metrics selection
Training [off line,
streaming][unsupervised,
supervised, reinforcement,
semi-supervised]
Method to initialise weights/costs
for ML
Method to set algorithmic
hyperparameters
Select how outcomes are derived
(activation functions, decision
thresholds etc.)
Select performance assessment
data policy (e.g.
sampling/training/test/validation
data)
ML process flow (i.e. data batch
sizes, epochs, algorithm
termination criteria etc.)

Interaction design Data, features, model and
algorithms selection

Integrate human interaction
designs into ML designs and
enable outcomes validation

Table 2. Humans aiding AI actors - Implementation

Activities Application perspective Machine learning perspective

Data ingestion Physical data integration Link ML models with data
sources

Model building Deploy trained models with
operational workflows

Develop different ML models
Trained model selection

Algorithm building Deploy implemented algorithms Implement selected algorithms

Interaction building Select recommendations based on
domain-specific knowledge

Include interaction interfaces in
ML process

The human role in shaping AI is not static. AI-enabled systems and human operators
have their affordances reshaped as a result of their interaction, as they benefit from
each other’s capabilities. The superiority of human cognitive capabilities over AI in
performing cross-domain activities is not a controversial statement and the same applies
regarding the superiority of AI in repetitive and data-intensive tasks. Efforts to bridge
the deficiency of AI to perform only within narrow contexts have been mostly focused
on transfer learning [26] aiming to transfer the learned capabilities from the original
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Table 3. Humans aiding AI actors – operation and maintenance

Activities Application perspective Machine learning perspective

Track performance Monitor if targets are met Monitor ML performance

Data generation, curation Curate/label new data and assign
data to cases

Manage and adjust data
distributions for ML (e.g.
train/test/validate)

Choices and actions Assess adequacy of assumptions
and recommend adjustments
Define priorities, utility values
Choose ‘costs’ for outcomes
Interpret, select, validate
recommendations
Select/execute actions

Generate multiple alternative
ML models to meet performance
targets
Evaluation of actions based on
defined ‘utility
values’/predictions
Trigger Data, Model, Algorithm
revisions

domain of the learning to a new one. There have been various examples of integrating
human knowledge to machine learning [27]. Additionally, there is increased interest in
the empowering effect that human and AI-driven non-human actors can have on each
other [28]. Additionally, the concept of meta-human learning systems [29] has been
proposed to refer to emergent “learning” capabilities of a sociotechnical system and
this can be seen also from the prism of collective activity mentioned in Sect. 2. Starting
from key concepts about humans-AI interaction proposed in [28] and incorporating ideas
about introducing human cognitive capabilities in the AI loop [6], the way the two types
of actors interact to maximise outcomes of their collective activity is illustrated in Fig. 2.
Human actors, capabilities and interaction affordances are marked in green. AI-driven
technical actor capabilities are marked with blue.

Fig. 2. Human and AI-enabled actors benefiting from each other’s capabilities

All actors exhibit capabilities which are expressed in interaction affordances in the
operating environment. Technical actors empower humans to expand their capabilities,
inform them about relevant processes or knowledge, train them on certain tasks, explain
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outcomes or recommendations, but also bound their affordances within an admissible
range of actions. Human actors can exert control over AI and perform a range of actions
listed in Tables 1, 2 and 3, such as labelling or enhancing the knowledge range of the
machine learningmodel. Through their interaction both actors’ capabilities are enhanced,
resulting in higher added value outcomes as part of collective activity.

4 Humans and AI in Vision-Based Quality Inspection

To illustrate some of the earlier concepts, an industrial use case of vision based quality
inspection in consumer goods manufacturer production lines is selected. The manufac-
turer aims to automate part of the quality inspection via a human-cobot solution. Quality
inspection cobots are equipped with digital cameras. AI capabilities aim to distinguish
between good and bad quality components. Thus, the vision is to automate the repetitive
task of checking each product by a human and instead introduce different human roles to
undertake more cognitive demanding tasks. To explore this, tests were conducted with
an image pool of labeled samples. The aim was to explore tasks that can be undertaken
by AI and assess possibilities offered by integrating the human in the AI loop. The setup
comprised 400 samples, equally divided between good and bad quality products. An
example is shown in Fig. 3.

Fig. 3. Vision-based quality inspection showing good (left) and bad (right) quality products.
Source: courtesy of Philips, through STAR project, ID: 956573, www.star-ai.eu.

The experiments involved training convolutional neural networks (CNN). Their grid-
type structure makes them appropriate for image processing [30]. Defining a kernel of
influence in the grid, a CNN is able to process image data in ways that are invariant to
unimportant changes in the data, for example the exact position of an object in an image,
or the exact angle of view when taking the image. There can be several convolutional
processing steps in a CNN. Each step includes a convolution stage (image transformation
into a different feature space). Defining the number of kernels of influence (neurons)
and their spread (size of kernel) are the key user-specified parameters that define the
convolution layer, which transforms the original data into an alternative “feature space”
and for that reason the next layer of processing is considered the “feature detector” layer.
This layer applies a nonlinear function on the features resulting from the convolution
layer. It is possible to have multiple feature detector layers at different abstraction layers.

http://www.star-ai.eu
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The final layer is the “pooling” when the processed features are combined to produce the
final output. Being one of the earliest examples of deep learning, CNNs have witnessed
a renaissance as their computational requirements ceased to be a challenge for comput-
ers with standard computing power. The experimental setup emulated active learning
interaction tasks [31]:

A. standard experiment with training, test and validation sets
B. emulation of data labeling by humans to expand the knowledge pool of the CNN
C. emulation of human-driven data resampling to emphasise hard to learn cases

These scenarios are now brought into the form of part of the Tables 1, 2 and 3: The
achieved performance on each scenario is presented in Table 5, where TP, TN, FP, and
FN standing for true positives, true negatives, false positive, and false negative cases.
These experiments served the purpose of illustrating that even a basic level of human
engagement in the AI loop can lead to notable AI performance enhancements. However,
assuming that human engagement in the AI loop is bound to be integrated into future
jobs, the next section takes a work design viewpoint of the studied problem.

5 Discussion on Work Design Consequences and Conclusion

The collective activity of human and AI-driven actors may pose certain physical, cog-
nitive and mental demands on humans that may affect the overall performance of the
operations [32]. Therefore, it is important to design the interaction in a way that the
resulting work characteristics lead to positive outcomes. This requires an analysis based
on work design theory. Various streams of work design theory came together in [33] and
overview is given in [10], including integrative perspectives that provide links between
the earlier streams.Work design theory provides a set of work characteristics that should
be considered when (re)designing jobs in response to technological and social changes
to achieve different individual and organizational purposes. As such, the design of the
human-AI interaction needs to pay attention to these characteristics. The focus is on
work characteristics related to the task environment (task and knowledge characteris-
tics) and the social environment (social characteristics), as these are affected when the
interaction is redesigned. The work characteristics related to the physical and organiza-
tional environment (contextual characteristics) are excluded. Adopting the terminology
from [34], key task characteristics to be considered are outlined next. Autonomy refers to
the amount of freedom that a human has during the work in terms of timing of the work,
choice ofmethods, and the ability tomake decisions. Jobs that lack autonomy are consid-
ered poorly designed. AI may impact autonomy in positive and negative ways [10]. Task
variety considers the range of tasks that humans need to perform in their job, while skill
variety relates to the required skills to perform the job. AI may replace routine cognitive
tasks, but also create new tasks, requiring new skills from humans who are interacting
with the system. The task and skills variety should match the abilities and needs of indi-
viduals. The same holds for job complexity: too little and the job lacks challenges; too
much creates fatigue and stress. AI may impact job complexity by altering the cognitive
demands. Feedback from the job i.e. being able to evaluate the quality of work while it
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Table 4. Humans aiding AI actors – operation and maintenance

Activities Application perspective Machine learning perspective

Problem definition Classify products quality Classification machine learning
setting

Data design Image data samples (good/bad)
Labeled data available in
sample

Sufficient quantities of
bad/good images
jpg image files (1024 × 1024
pixels)
Standard image preprocessing
(RGB)
200 images in training; 100 in
test; 100 in validation data sets
(scenario A)

ML model design N/A CNN initialised structure;
sigmoid activation in final layer
and relu in other layers

ML algorithm design Data ground truth available Confusion matric performance
assessment
Standard gradient-based CNN
training
Kernel sizes of 3 and 5
employed
Learning rate: 0.0005
Fixed choices for number of
epochs (100), batch sizes (20),
regularisation (holdout: 0.5)

Interaction design N/A Manual choices for ML Model
and Algorithm

Interaction implementation Selection of A; B; C scenarios Implementation of data
policies: (B: labeling of 10
additional data images per
class); (C: including 20 worst
performing images in training -
sampling)

Table 5. Performance without and with Human in the AI Loop

Scenario A Scenario B Scenario C

TP: 93.94% FP: 6.06% TP: 100% FP: 0% TP: 97.06% FP: 2.94%

FN: 20.41% TN: 79.59% FN: 2.38% TN: 97.62% FN: 0% TN: 100%
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is being performed, is another task characteristic. AI may contribute by providing more
insightful feedback. Poor tasks division between AI and humans may lead to weakened
opportunities for learning and impaired situational awareness. Specialization refers to
extent to which a job involves the performance of tasks requiring specific knowledge
and skill, and AI may empower humans to take on a variety of tasks by supplement-
ing knowledge and enhancing capabilities, but it may also shift human work to focus
on a narrow set of specialized tasks. Problem solving in the job is a task characteristic
which should be challenging, but not too challenging for the individual employee. AI
can execute routine problems allowing humans to focus on more complex ones. Infor-
mation processing is a task characteristic which should match the worker’s cognitive
capabilities and is enhanced by digitization. There are also characteristics related to the
social environment that may be impacted by AI. These characteristics reflect relations
among workers. However, they may also relate to interactions between humans and AI.
Interdependence refers to the extent that humans connect to each other, but may also
reflect the connection between humans andAI. Integrating humans in theAI-loop implies
dependency between both actors. Similarly, AI may facilitate social support by provid-
ing valuable connections between team members and enhancing their communication.
Similar effects may be expected for the enhancement of the amount of feedback from
other humans. Overall, designing the AI-human collaboration in production environ-
ments requires further research to establish methodologies for human-centric designs.
The added value of integrating the human in the AI loop was outlined conceptually, as
well as through an exploratory industrial case, arguing that to unleash the human-AI
interaction benefits, design approaches for the effective integration of human and AI
actors in manufacturing are needed (Table 4).

Acknowledgements. The research was supported through H2020 grant ID 956573. Sourcing the
image data in the project through Philips Consumer Lifestyle B.V. is gratefully acknowledged.

References

1. DOD: Manpower, personnel, training, and safety (MPTS) in the defense system acquisition
process. DoD Directive 5000.53, Washington, DC (1988)

2. Caroly, S., Barcellini, F.: A conceptual framework of collective activity in constructive
ergonomics. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA
2018. AISC, vol. 822, pp. 658–664. Springer, Cham (2019). https://doi.org/10.1007/978-3-
319-96077-7_71

3. Burggräf, P., Wagner, J., Saßmannshausen, T.M.: Sustainable interaction of human and arti-
ficial intelligence in cyber production management systems. In: Behrens, B.-A., Brosius, A.,
Hintze, W., Ihlenfeldt, S., Wulfsberg, J.J. (eds.) WGP 2020. LNPE, pp. 508–517. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-62138-7_51

4. Raisch, S., Krakowski, S.: Artificial intelligence and management: the automation–augmen-
tation paradox. Acad. Manage. Rev. 46, 192–210 (2021). https://doi.org/10.5465/AMR.2018.
0072

5. Grønsund, T., Aanestad, M.: Augmenting the algorithm: emerging human-in-the-loop work
configurations. J. Strateg. Inf. Syst. 29, 101614 (2020). https://doi.org/10.1016/j.jsis.2020.
101614

https://doi.org/10.1007/978-3-319-96077-7_71
https://doi.org/10.1007/978-3-662-62138-7_51
https://doi.org/10.5465/AMR.2018.0072
https://doi.org/10.1016/j.jsis.2020.101614


Human in the AI Loop in Production Environments 341

6. Emmanouilidis, C., et al.: Enabling the human in the loop: linked data and knowledge in
industrial cyber-physical systems. Annu. Rev. Control. 47, 249–265 (2019). https://doi.org/
10.1016/j.arcontrol.2019.03.004

7. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: research issues and challenges.
Cogn. Syst. Res. 10, 141–160 (2009). https://doi.org/10.1016/j.cogsys.2006.07.004

8. Kaptelinin, V., Nardi, B.: Affordances in HCI: toward a mediated action perspective. In:
CHI ’12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Austin, Texas, USA, pp. 967–976 (2012). https://doi.org/10.1145/2207676.2208541

9. Neumann,W.P.,Winkelhaus, S., Grosse, E.H., Glock, C.H.: Industry 4.0 and the human factor
– a systems framework and analysis methodology for successful development. Int. J. Prod.
Econ. 233, 107992 (2021). https://doi.org/10.1016/j.ijpe.2020.107992

10. Parker, S.K., Grote, G.: Automation, algorithms, and beyond: why work design matters more
than ever in a digital world. Appl. Psychol. (2020). https://doi.org/10.1111/apps.12241

11. Cimini, C., Pirola, F., Pinto, R., Cavalieri, S.: A human-in-the-loop manufacturing control
architecture for the next generation of production systems. J. Manufact. Syst. 54, 258–271
(2020). https://doi.org/10.1016/j.jmsy.2020.01.002

12. Russel, S., Norvig, P.: Artificial Intelligence: AModern Approach. Pearson, NewYork (2020)
13. Raisch, S., Krakowski, S.: Artificial intelligence and management: the automation-

augmentation paradox. Acad. Manage. Rev. 46(1), 192–210 (2020). https://doi.org/10.5465/
2018.0072

14. Kadir, B.A., Broberg, O.: Human-centered design of work systems in the transition to industry
4.0. Appl. Ergon. 92, 103334 (2021). https://doi.org/10.1016/j.apergo.2020.103334

15. Romero, D., et al.: Towards an operator 4.0 typology: a human-centric perspective on the
fourth industrial revolution technologies. In: CIE 2016: 46th International Conferences on
Computers and Industrial Engineering, Tianjin (2016)

16. Raisamo, R., Rakkolainen, I., Majaranta, P., Salminen, K., Rantala, J., Farooq, A.: Human
augmentation: past, present and future. Int. J. Hum. Comput. Stud. 131, 131–143 (2019).
https://doi.org/10.1016/j.ijhcs.2019.05.008

17. Lampe, M., Strassner, M., Fleisch, E.: A Ubiquitous computing environment for aircraft
maintenance. In: Proceedings of the 2004 ACM Symposium on Applied Computing - SAC
2004, p. 1586 (2004). https://doi.org/10.1145/967900.968217

18. Washburn, C., Stringfellow, P., Gramopadhye, A.: Using multimodal technologies to enhance
aviation maintenance inspection training. In: Duffy, V.G. (ed.) ICDHM 2007. LNCS,
vol. 4561, pp. 1018–1026. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
73321-8_114

19. Schwald, B., DeLaval, B.: An augmented aeality system for training and assistance to main-
tenance in the industrial context. In: WSCG 2003, International Conference in Cent. Europe
Comput. Graph., Vis. Comput. Vision, pp. 425–432 (2003). https://doi.org/10.1007/119413
54_29

20. Li, J.R., Khoo, L.P., Tor, S.B.: Desktop virtual reality for maintenance training: an object
oriented prototype system (V-REALISM). Comput. Ind. 52, 109–125 (2003). https://doi.org/
10.1016/S0166-3615(03)00103-9

21. Papathanasiou, N., Karampatzakis, D., Koulouriotis, D., Emmanouilidis, C.: Mobile person-
alised support in industrial environments: coupling learning with context - aware features. In:
Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IAICT, vol.
438, pp. 298–306. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44739-
0_37

22. Fox, S., Aranko, O., Heilala, J., Vahala, P.: Exoskeletons: comprehensive, comparative and
critical analyses of their potential to improve manufacturing performance. J. Manuf. Technol.
Manage. 31, 1261–1280 (2019). https://doi.org/10.1108/JMTM-01-2019-0023

https://doi.org/10.1016/j.arcontrol.2019.03.004
https://doi.org/10.1016/j.cogsys.2006.07.004
https://doi.org/10.1145/2207676.2208541
https://doi.org/10.1016/j.ijpe.2020.107992
https://doi.org/10.1111/apps.12241
https://doi.org/10.1016/j.jmsy.2020.01.002
https://doi.org/10.5465/2018.0072
https://doi.org/10.1016/j.apergo.2020.103334
https://doi.org/10.1016/j.ijhcs.2019.05.008
https://doi.org/10.1145/967900.968217
https://doi.org/10.1007/978-3-540-73321-8_114
https://doi.org/10.1007/11941354_29
https://doi.org/10.1016/S0166-3615(03)00103-9
https://doi.org/10.1007/978-3-662-44739-0_37
https://doi.org/10.1108/JMTM-01-2019-0023


342 C. Emmanouilidis et al.

23. Goose, S., Sudarsky, S., Zhang, X., Navab, N.: Speech-enabled augmented reality supporting
mobile industrial maintenance. IEEE Pervasive Comput. 2, 65–70 (2003). https://doi.org/10.
1109/MPRV.2003.1186727

24. Zhang, B., Wang, J., Fuhlbrigge, T.: A review of the commercial brain-computer interface
technology from perspective of industrial robotics. In: 2010 IEEE International Conference
on Automation and Logistics, pp. 379–384 (2010). https://doi.org/10.1109/ICAL.2010.558
5311

25. Somerville, I.: Software Engineering. Pearson, Harlow (2016)
26. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE. 109, 43–76

(2021). https://doi.org/10.1109/JPROC.2020.3004555
27. Deng, C., Ji, X., Rainey, C., Zhang, J., Lu, W.: Integrating machine learning with human

knowledge. iScience 23, 101656 (2020). https://doi.org/10.1016/j.isci.2020.101656
28. James Wilson, H., Daugherty, P.R.: Collaborative intelligence: humans and AI are joining

forces. Harv. Bus. Rev. 96(4), 114–123 (2018)
29. Lyytinen, K., Nickerson, J.V, King, J.L.: Metahuman systems = humans + machines that

learn. J. Inf. Technol., 0268396220915917 (2020). https://doi.org/10.1177/026839622091
5917

30. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The
Handbook of Brain Theory and Neural Networks, no. 10, p. 3361 (1995)

31. Monarch, M.: No TitleHuman-in-the-Loop Machine Learning. Manning (2021)
32. Kolus, A., Wells, R., Neumann, P.: Production quality and human factors engineering: a

systematic review and theoretical framework. Appl. Ergon. 73, 55–89 (2018). https://doi.org/
10.1016/j.apergo.2018.05.010

33. Oldham, G.R., Richard Hackman, J.: Not what it was and not what it will be: the future of
job design research. J. Organ. Behav. 31, 463–479 (2010). https://doi.org/10.1002/job.678

34. Morgeson, F.P., Humphrey, S.E.: Job and team design: toward a more integrative conceptual-
ization of work design. Res. Pers. Hum. Resour. Manage. 27, 39–91 (2008). https://doi.org/
10.1016/S0742-7301(08)27002-7

https://doi.org/10.1109/MPRV.2003.1186727
https://doi.org/10.1109/ICAL.2010.5585311
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1016/j.isci.2020.101656
https://doi.org/10.1177/0268396220915917
https://doi.org/10.1016/j.apergo.2018.05.010
https://doi.org/10.1002/job.678
https://doi.org/10.1016/S0742-7301(08)27002-7

	Human in the AI Loop in Production Environments
	1 Introduction
	2 Human and AI Actors in Sociotechnical Systems
	3 The Role of Human Actors in Enhancing AI
	4 Humans and AI in Vision-Based Quality Inspection
	5 Discussion on Work Design Consequences and Conclusion
	References




