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Abstract. As the COVID pandemic shows, infection spreads widely
across regions, impacting economic activity in unforeseen ways. We rep-
resent here how the geographic spread of the pandemic, by reducing the
workers’ participation to economic life, undermines the ability of firms
and as a result the entire supply networks to satisfy customers’ demands.
We model the spatio-temporal dynamics of the propagation of Covid-19
infection on population, transport networks, facilities and population
flows. The mathematical models will enable prospective analyses to be
performed reliably. Such models will be used in what-if scenarios to sim-
ulate the impact on both populations and supply chain activities in case
of future pandemics. The outcome should be useful tools for policymak-
ers and managers. Results from this research will help in understanding
the impact and the spread of a pandemic in a particular region and on
supply chains. The data will be from European regions and the expected
models will have validity in Europe.

Keywords: Spatial dynamics · Ripple effect · Propagation ·
Disruption · Graph theory · Network evaluation

1 Introduction

Covid-19 is a highly contagious virus-induced communicable disease, transmitted
via droplets and contaminated objects during close unprotected contact between
a healthy and an infected person [6]. As such infected people move away from
the location in which they were contaminated, uncontaminated locations farther
and farther away become centres of infection in their own right.

The Covid-19 pandemic has had huge human and economic consequences.
Thus, understanding how to reduce the spread of the disease and which specific
policies to implement in order to manage the pandemic is paramount
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As is well understood, the movement of infected people and the evolution of
the virus are fundamental to the spread of the pandemic. The flows of popu-
lations are represented depending on the granularity of the data and the level
of detail of the maps. When such movements are coupled with the incidence of
infection, insights can be obtained about the evolution in time and in space,
and causes may be inferred. As the level of detail increases, provided that the
corresponding data exists, further insights about the causes of the dispersion
of the virus and the corresponding infection intensity in the population can be
obtained. Thus, mapping how the infection spreads can shed light both on the
type of countermeasures and the impact on economic activity.

The European economy is dependent on international cooperation and on
the fact that goods can flow freely. Most of the firms’ supply chains are highly
interconnected, characterised by a high degree of complexity, long distances,
and a large number of intermediaries. According to a study, 75% of European
supply chains have been negatively affected by the crisis. The most important
bottlenecks are the inward flow of goods from suppliers (62%), lack of insight
into customer needs (60%), and the outward flow of goods to customers (50%).

We are therefore now in a largely unknown territory in relation to risk man-
agement in the supply chain. The challenge does not only include sharp fluctu-
ations on the part of customers with unknown and highly fluctuating demand
but also from supplies which can no longer be produced because specific inputs
are produced at slower rates or arrive sporadically.

The purpose of the study is to be able to identify the evolution of the pan-
demic and model its impact on supply chains. Several models approximating the
temporal spread of the pandemic [2] or of the effect of lockdown measures [8]
already exist but do not help in understanding the ripple effect on supply chains.

In the following, we present the state of research on the way a pandemic’s
effects spreads through supply chain networks and the proposed ways for man-
agers to control this impact on their firms’ activity. We then present two epi-
demiological models which explain the infection spread in a homogeneous pop-
ulation and its extension into the spread among various populations. In Sect. 5,
we model the impact of a pandemic on the various nodes of a supply network
in terms of productivity as workers get infected. We draw some conclusions and
present recommendations for future research in Sect. 7.

2 Ripple Effect Visualisation for Global Supply Chains

The phenomenon of the ripple effect has received great research interest in recent
years and more and more contributions have tried to model the dynamics of the
ripple effect through a supply chain network. The ripple effect occurs when a
major disruptive event, such as the lock-downs initiated by Covid-19 virus, trig-
ger a wave of simultaneous disturbances coming from several different directions
[7,12,13,15]. It occurs through the propagation of Low Frequency and High
Impact unforeseen disturbances [14].

Existing work attempts to understand the effects by modelling the ripple
effect [13], and other related supply chain network redesign approaches [22].
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Baghersad and Zobel [3] examine the effects of supply chain disruptions on firms’
performance by applying a new quantitative measure of a disruption’s impact
adapted from the systems resilience literature. Li et al. [20] study and exam-
ine disruption propagations through simulating simple interaction rules of firms
inside the supply chain network by developing an agent-based computational
model.

The literature has thus attempted to understand the effects better by ripple
effect quantification and other related supply chain mapping approaches [16].
However, there is a niche for exploring other Ripple effect approaches, and our
study atemmpts to contribute towards the area of Ripple effect visualization.

3 The Classical SIS Model

The susceptible-infected-susceptible (SIS) epidemiological model represents one
of the simplest frameworks to analyze disease dynamics. The population, N ,
which is assumed to be constant, is composed of two groups: individuals who
are infected, It, and individuals who are not infected but susceptible to infection,
St. Infected individuals spontaneously recover from the disease at a speed δ > 0,
while susceptible individuals contract the disease at a rate α > 0 by interacting
through random matching with infected ones. Unhappily, as we now know [23],
individuals who have recovered from the infection can be re-infected, that is, after
a lapse of time they are susceptible again. This means that we cannot simply
use a SIR model (Susceptible, Infected, Recovered) as presented in [1,5,11,21].
The probability with which matching occurs depends on the actual spread of
the disease across the population [4,9,10,18,19]. The evolution of the number of
infectives and susceptibles is described by the following differential equations:

Ṡt = δIt − α
StIt

N
(1)

İt = α
StIt

N
− δIt, (2)

The above system can be simply recast in terms of the share of infectives, it = It
N ,

and the share of susceptibles, st = St

N , as follows:

ṡt = δit − αitst (3)
i̇t = αitst − δit. (4)

Since 1 = st + it, essentially, the epidemic dynamics can be completely charac-
terized by focusing on one of the two equations as follows:

i̇t = αit(1 − it) − δit. (5)

The above equation describes the evolution of the disease prevalence in the
entire population. Note that analyzing the equilibria for the above model is
rather straightforward. As discussed in the epidemiology literature, the long run
outcome solely depends on the basic reproduction number, R0, given by R0 = α

δ .
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4 A Reaction-Diffusion Time-Space SIS Model

We now focus on an extension of the basic SIS model to allow for geographical
heterogeneities and externalities by introducing a spatial dimension. We denote
with Sx,t and Ix,t, respectively the susceptibles and infectives in the position
x ∈ Ω, where Ω ⊂ R

2 is a compact set at date t ∈ R+.
The epidemic dynamics cannot be fully characterized by focusing only on the

evolution of the portions of infectives and susceptibles (ix,t and sx,t) rather than
the numbers of infectives and susceptibles (Ix,t and Sx,t). This is due to the fact
that the population is spatially distributed, N =

∫
Ω

Nx,t with Nx,t = Sx,t + Ix,t,
and thus it is not necessarily true that the shares of infectives and susceptibles
sum up to one in each location x (i.e., they do sum up to one over the whole
spatial domain). In particular, the share of infectives, ix,t = Ix,t

N , and the share
of susceptibles, sx,t = Sx,t

N , in each location x jointly determine the share of the
total population residing in that specific location, nx,t with nx,t = sx,t + ix,t,
while the sum of the shares of the total population residing in all locations is
one,

∫
Ω

nx,tdx = 1.
Therefore, we need to analyze the evolution of the share of infectives and

susceptibles over time and across space, and the spatial model can be repre-
sented through a system of reaction-diffusion partial differential equations (a
similar approach is used, for instance, in [17,24] to describe pollution diffusion)
as follows:

∂sx,t

∂t
= d∇2sx,t + δix,t − α

∫

Ω

sx′,tix′,tϕx′,xdx′, (6)

∂ix,t

∂t
= d∇2ix,t + α

∫

Ω

sx′,tix′,tϕx′,xdx′ − δix,t, (7)

where the term ϕx,x′ describes the probability that infected people at the location
x′ could spread the infection at the location x with x �= x′.

By recalling that nx,t = sx,t + ix,t, it follows that nx,t solves the summation
of Eqs. (6) and (7), that is ∂nx,t

∂t = d∇2nx,t with Neumann boundary conditions
and initial conditions directly determined from those related to sx,t and ix,t.
This allows us to consider nx,t as a known exogenous variable, which thus can
be substituted in (6) and (7) by writing sx,t = nx,t − ix,t.

∂nx,t

∂t
= d∇2nx,t (8)

∂ix,t

∂t
= d∇2ix,t + α

∫

Ω

(nx′,t − ix′,t)ix′,tϕx′,xdx′ − δix,t. (9)

Notice that the expression of nx,t is known in closed-form once a specific shape
of the set Ω is assumed.
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In order to understand the disease dynamics, we can thus analyze the system
of partial differential equations (PDEs) given by (8) and (9), which generalizes
to a spatial dimension SIS model that accounts for population mobility across
locations.

Let us notice that whenever the kernel function ϕx′,x coincides with the
Dirac, the above model boils down to:

∂nx,t

∂t
= d∇2nx,t (10)

∂ix,t

∂t
= d∇2ix,t + α(nx,t − ix,t)ix,t − δix,t, (11)

with the Neumann boundary conditions ∂nx,t

∂n = 0 and ∂ix,t

∂n = 0.
To conclude, once the configuration of the network is known, the number

of infected per node (location) can be evaluated for every location and period
of time. Note that this description is computed directly, contrary to [11] which
requires an algorithm. When comparing this model with the estimation method
in [21], we purport that this one presents numerous advantages as it does not rely
on Bayesian mechanics (including having to evaluate multinomial distributions)
and yet could be applied using the same Baidu-Qianxi database of population
mobility.

5 Supply Chain Network and Total Productivity

The global supply chain is modelled by the means of a graph G = (V,E) with
M nodes, where V denotes the node set and E ⊂ V × V is the edge set. For
simplicity we identify each node v ∈ V of the network with its geographical
coordinates xv.

Given two nodes v, u ∈ V , 0 ≤ φvu ≤ 1 represents the degree of interaction
from node v to node u, summarizing the intensity of their reciprocal trade and
logistic relationships. The network is then described in compact form by the
triplet G = (V,E, φ) where φ is a M × M weighted matrix with the property
that φuv = φvu. The level of infected at each node v ∈ V , is modelled by ixv,t.
The local evolution of the infection is depending on both the local evolution of
the epidemics as well as the interaction with the adjacent locations.

If Γ (x) describes the per capita productivity at location x, the total pro-
ductivity index Γtot(t) of the supply chain network at time t depends on the
susceptible population at each node v ∈ V of the network and is defined as

Γtot(t) =
∑

v∈V

Γ (xv)sxv,t =
∑

v∈V

Γ (xv)(nxv,t − ixv,t). (12)

Let us notice that, in absence of epidemics,

Γtot(t) =
∑

v∈V

nxv,tΓ (xv). (13)
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The combination of the dynamics of the epidemic with the definition of the
network productivity leads to the following evolution equation of total Γtot(t):

Γ̇tot(t) =
∑

v∈V

Γ (xv)
∂sxv,t

∂t

=
∑

v∈V

Γ (xv)

(
d∇2(nxv,t − ixv,t) − α

∫

Ω

(nx′,t − ix′,t)ix′,tϕx′,xvdx′ + δixv,t

)

=
∑

v∈V

Γ (xv)

(
d∇2sxv,t − α

∫

Ω

sx′,tix′,tϕx′,xvdx′ + δixv,t

)
. (14)

6 Numerical Simulation

In this section we present a numerical simulation of the dynamic model:

∂nx,t

∂t
= d∇2nx,t (15)

∂ix,t

∂t
= d∇2ix,t + α

∫

Ω

(nx′,t − ix′,t)ix′,tϕx′,xdx′ − δix,t. (16)

For simplicity we suppose that Ω is a 1-dimensional domain and it is nor-
malized to Ω = [0, 1] and that ϕx′,x = δx(x′) is the Dirac at the point x. We also
assume that the diffusion coefficient d is normalized to 1, the initial distribution
of infected people i0 is equal to 0.01x(1 − x) as shown in Fig. 1, and the initial
population nx,0 is homogeneous and normalized to 1. The solution to

∂nx,t

∂t
= d

∂2nx,t

∂x2
(17)

subject to the Neumann condition being known, is provided via the Fourier
expansion by:

nx,t =
∑

n≥0

Ane−(nπ)2dt cos (nπx) , (18)

where

A0 =
∫ 1

0

nx,0dx = 1, (19)

An = 2
∫ 1

0

nx,0 cos (nπx) dx = 0, (20)

which implies that nx,t = 1 for any x and t. The above model thus boils down
to

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ix,t)ix,t − δix,t. (21)

In this case, for any network G, the total productivity evolves accordingly to:

Γtot(t) =
∑

v∈V

Γ (xv)(1 − ixv,t). (22)
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Fig. 1. Initial profile of infected people: i0(x) = 0.01x(x − 1)

In the first numerical simulation we suppose that the infection rate α is equal
to 0.1328 and the recovery rate δ = 0.0476 (see [18]). The figure shows that after
an initial transition phase of growth, the number of infected people converges
to a long-run endemic and homogeneous equilibrium ix,∞. In this scenario, the
natural recovery rate δ is not big enough to guarantee a decrease of ix,t over
time.

In this case, let us observe that due to the presence of the pandemic, the
global productivity index Γtot will converge to (see Fig. 2):

lim
t→+∞ Γtot(t) = (1 − ixv,∞)

∑

v∈V

Γ (xv) <
∑

v∈V

Γ (xv) (23)

.
In the second numerical simulation, we suppose that the infection rate α is

still equal to 0.1328 but the implementation of treatment has raised the recovery
rate δ to 0.1428. In this case, as Fig. 3 shows, the number of infectives decreases
over time and it converges to the disease eradication in the long-run. Of course,
the interesting part is for intermediate periods where the number of infectives
may be non-homogeneous geographically: some locations will be more affected
than others.

Let us observe that in this case, instead, the global productivity index Γtot

will converge to:

lim
t→+∞ Γtot(t) = (1 − ixv,∞)

∑

v∈V

Γ (xv) =
∑

v∈V

Γ (xv) (24)

.
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Fig. 2. Long-run behavior of the disease: d = 1, α = 0.1328, δ = 0.0476

Fig. 3. Long-run behavior of the disease: d = 1, α = 0.1328, δ = 0.1428

7 Conclusion

In conclusion, we see how a pandemic spreads over regions, countries and conti-
nents in continuous time. We have modelled how such a pandemic infects workers
and how this effect slows the production in a supply network, thus impacting
the productivity of single production units and so the whole supply networks.

In this model, we have considered that the effect on production is simply
additive. Of course, in reality, once an upstream partner in a supply network is
impacted, all the downstream partners are also impacted. In a later refinement,
we could look at a model where the effect of a pandemic is exponential in terms of
the position of a node in the network. Another model might take into account the
possibility that the infection rate α has different values across regions, or time.
It is easy to include this in the model described in (9) as αx,t, so accommodating
variants to the original virus.

In contrast to other studies of spatial transmission of the pandemic men-
tioned here, the advantage of the model is to only build from well defined and
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understood parameters: the infection rate α, recovery rate δ, the layout of the
network, and population distribution in the various locations. The model takes
into account the fact that people can be re-infected (which means that SIR or
SIRD models are inadequate).

In this way, once a new virus is identified, knowing the characteristics of a
network, a policy maker ( manager) can build a forecasting model to evaluate the
spread of the infection in the regions under her purview (supply chain network).
Armed with such a model, a calibrated set of measures can be implemented
which might impose a lesser burden on populations in the case of public policy
or improve the resilience of the supply chain network.
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