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Abstract. In this paper, we propose a two-tier mixed integer linear programming
(MILP)model, composed of aggregate production planning (APP) and family dis-
aggregation planning (FDP), to solve the hierarchical production planning (HPP)
problem with nontrivial setup times. In addition to disaggregating the aggregate
plan in the first period into detailed lot sizing plans as traditional models do, the
proposed FDP model optimally adjusts the aggregate plan and eliminates infea-
sibility arising from the positive setup times. The performance of the proposed
model is validated with a case study. Results of the validation show that the pro-
posed model leads to significant cost savings and efficiencies in the supply chain
compared to traditional HPP models.

Keywords: Hierarchical production planning · Aggregate production planning ·
Setup time · Supply chain management · Prescriptive analytics

1 Introduction

In the past few decades, companies have increased their product variety to satisfy cus-
tomized demands and enhance competitiveness. Unfortunately, increases in product
variety create negative effects on operations, such as high inventory level, demand fore-
casting bias [1], buffer capacity, frequent changeover, and workforce fluctuations. To
face challenges of a volatile and smart market demand characterized by customization
in the era of Industry 4.0 [2], manufacturers have to elaborately plan their production
usingmodern systems such as Seru, CellularManufacturing, and Toyota Production Sys-
tem. With higher product variety, shorter product life cycles, and faster responsiveness,
mixed-model and small-batch production continue to dominate the production strategy
in the supply chain of modern manufacturing companies. Therefore, the production
planning problem (PPP) becomes too complex to be solved easily.

Two approaches are traditionally used to model the PPP: monolithic and hierarchi-
cal. The monolithic approach produces more accurate results for individual items, but
the time-consuming and expensive forecasts for the sporadic demand of thousands of
items and the solution of the large-scale monolithic model discourage its wide applica-
tion. This approach has long been rejected in the literature [3, 4]. On the other hand,
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the hierarchical approach decomposes PPP into several layers of sub-problems that are
easier to solve. Proper product aggregation can reduce the forecast bias and variability
for the highly volatile and smart product demands. In most studies on HPP the informa-
tion flow between two consecutive levels is hierarchical, with the APP model imposing
constraints on the FDP model. Traditional HPP systems [4–6] employ the rolling hori-
zon procedure to coordinate the interaction between them at the end of current period
when the completion condition of the aggregate plan in the period has been determined.
However, the feedback information cannot be capitalized on to adjust the APP in the
current period, missing an opportunity to globally optimize the production plans in the
planning horizon. Furthermore, the aggregate plan becomes infeasible after considering
setup times in the FDP model, since the setup times consume some capacity.

In this study, a novel iterative optimization mechanism is proposed to optimally
adjust the aggregate plan in the current period with the feedforward information from
the FDP model and further optimize the production plan in the planning horizon. The
mechanism also eliminates the infeasibility brought about by the non-trivial family setup
times, which consume production capacity but are often ignored in the APP.

2 Literature Review

The theoretical and practical benefits of the HPP approach have been documented in the
literature [3, 4, 6–9]. These HPP systems belong to the classical hierarchical class of
models since they observe a strict top-down open loop solution procedure without regard
to the interaction between the production tiers. However, efficient feedback procedures
for anticipating the influence of lower planning levels on higher ones can improve infor-
mation accuracy and bridge the production asymmetry between the two levels of HPP
systems.

In order to optimize the performance of hierarchical systems, Schneeweiss [9] pro-
poses an interaction scheme that considers feedback from and anticipation of the lower-
level system. The interaction scheme is widely applied to HPP and other hierarchical
systems, such as supply chain [10]. In the HPP system proposed by Qiu et al. [11], the
concept of expected setup costs and anticipation of lower-level decision are incorporated
into the aggregate planning level resulting in better production decisions than the tra-
ditional HPP system [12]. The feedback from lower-level systems is achieved through
inaccurate anticipation, and therefore the effectiveness of the iterative optimization is
questionable. Moreover, the influence of nontrivial setup times on aggregate plans is not
considered in these HPP systems.

Omar and Teo [8] propose a three-level HPP and scheduling approach considering
production planning and setup activities for each family, but the solution complexity of
the model is large due to the inclusion of setups in all periods of the planning horizon.
Jozefowska and Zimniak [13] propose a decision support system for short-term produc-
tion planning and scheduling. The setup times occupy production capacity in the model,
but their effects on the upper-level decision are not considered.

In HPP system [4], the capacity and inventory levels generated in APP impose con-
straints on the production and inventory in master production scheduling (MPS). InMPS
model, setup times are included, but overtime is required to extend the production capac-
ity, losing the opportunity of making the optimal adjustment resulting from setup times
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in the APP. Alvarez et al. [7] focus on improving the consistency in their hierarchical
tactical and operational planning models, and ignores the infeasibility brought about by
setup times.

Xue et al. [14] propose a full-space method that optimally integrates APP and FDP,
with consideration for sequence-dependent family setup times. Xue et al. [15] also incor-
porate their integrated model in the dynamic cellular manufacturing setting to generate
the optimal production plan and cell formation in each period. However, the solution
complexity and customized algorithm for this model may not meet the managers’ need
for lower solution efforts, thereby encumbering its efficacy.

Therefore, an iterative optimization of HPP systems which considers the influence
of family setup times on the feasibility of aggregate plans, adjusts the aggregate plan in
the current period with the feedback information from FDP model for global optima,
and considers the need of lower solution efforts in comparison with full-space method,
is needed. This paper bridges this gap in the HPP literature.

3 The Proposed HPP System

3.1 The Traditional APP Model

The traditional APP model considers most mid-term decisions, with the objective of
minimizing the total cost related to the lower-level decisions. Legend for all notations is
summarized as follows:

Indices
m = 1,…, M type.
t = 1,…,T period.
i = 1,…,I family.
Parameters
dmt net demand of type m in period t.
utm unit processing time of type m.
A capacity allowance percentage (used for breakdowns, rest, absenteeism, etc.).
po percentage of overtime hours permitted (used to limit maximum overtime hours).
pu percentage of underutilization.
uam space occupied by a unit of type m.
J (m) families pertaining to type m.
sti setup time of family i.
slm fill rate (β service level) of type m.
OS total available space for inventory storage.
V a large number.
sc cost per unit setup time.
hmt unit inventory holding cost of type m in period t.
cmt unit production cost (labor cost excluded) of type m in period t.
crt , cot regular time and overtime cost per man hour in period t.
csmt , cbmt unit subcontracting and backordering cost of type m in period t.
cht , cf t cost of hiring and laying off one man hour in period t.
CASmt maximum subcontracting capacity of type m in period t.
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αit , βit lower and upper proportions of family i to its type in period t.
Decision variables
Xmt production level of type m in period t.
Imt inventory level of product type m at the end of period t.
Rmt , Omt regular time and overtime hours consumed for type m in period t.
Smt , Bmt subcontracting and backordering quantity of type m in period t.
Ht , Ft man hours hired and laid off in period t.
Pit production quantity of family i in period t.
ARt , AOt added regular time and overtime hours in period t.
ASmt , ABmt added subcontracting and backordering quantity of type m in period t.
Auxiliary variables
TRt,TOt total regular time and overtime hours in period t.

The APP model, which is a mixed integer linear programming (MILP) model, can
be formulated as follows:

Min
∑T

t=1

[
chtHt + cftFt +

∑M

m=1
(cmtXmt + hmtImt + cbmtBmt + crtRmt + cotOmt + csmtSmt)

]

(1)

s.t.

Im,t−1 + Xmt + Smt − Imt + Bmt − Bm,t−1 = dmt ∀m, t (2)

∑M

m=1
utmXmt ≤ (TRt + TOt) · A ∀t (3)

∑M

m=1
utmXmt ≥ (1 − pu)TRt ∀t (4)

utmXmt = Rmt + Omt ∀m, t (5)

∑M

m=1
Rmt ≤ TRt · A ∀t (6)

Smt ≤ CASmt ∀m, t (7)

Bmt ≤ (1 − slm)dmt ∀m, t (8)

TRt − TRt−1 = Ht − Ft ∀t (9)

∑M

m=1
uamImt ≤ OS ∀t (10)

Xmt, Imt,Bmt, Smt ≥ 0 and integer ∀m, t (11)

Rmt,Omt,Ht,Ft ≥ 0 ∀m, t (12)
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In the model, constraints (2) are the inventory balance equations. Constraints (3) are
regular time and overtime capacity limits. In order to balance production in different
periods, constraints (4) set lower bounds for the utilization of available capacity. In
constraints (5), the total capacity consumed by each type in each period is defined.
The consumed total regular time will not exceed the available regular time capacity
in constraints (6). Constraints (7) and (8) are subcontracting and backordering limits.
Constraints (9) are the balance equations for the relationship between the change in
available regular time in two adjacent periods and the fluctuation value arising from
hiring or laying off man-hours. Constraints (10) are the inventory limits.

3.2 The FDP Model

In the FDP model proposed in this paper the optimal scheme to adjust the aggregate
plan in the first period is integrated. The model (1) determines the optimal production
quantity of each family, (2) minimizes the sum of setup costs and extra costs including
labor costs, subcontracting and backordering costs, arising from the adjustment of the
aggregate plan in the first period, and (3) transforms the infeasible aggregate plan to
feasibility. Furthermore, Xm1, TR1, TO1, Rm1, Om1, CASm1, Sm1, and Bm1 obtained from
the APP model facilitate the solution of the FDP model.

The FDP model can be formulated as follows:

Min
∑I

i=1
(sc · stiZi1) + cr1AR1 + co1AO1 +

∑M

m=1
[(csm1 − cm1)ASm1 + (cbm1 − cm1)ABm1] (13)

s.t.

∑
i∈J (m)

Pi1 = Xm1 − ASm1 − ABm1 ∀m (14)

∑I

i=1
stiZi1 = AR1 + AO1 +

∑M

m=1
utm(ASm1 + ABm1) (15)

AR1 ≤ TR1 · A −
∑M

m=1
Rm1 (16)

AO1 ≤ TO1 · A −
∑M

m=1
Om1 (17)

ASm1 ≤ CASm1 − Sm1 ∀m (18)

ABm1 ≤ (1 − slm)dm1 − Bm1 ∀m (19)

αi1Xm1 ≤ Pi1 ≤ βi1Xm1 ∀i ∈ J (m),∀m (20)

Zi1 ≤ Pi1 ≤ Zi1 · V ∀i (21)

Zi1 ∈ {0, 1},Pi1, Sm1,ABm1 ≥ 0 and integer ∀i, m (22)
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AR1,AO1 ≥ 0 (23)

In the model, constraints (14) indicate that the production quantity of a type in the
first period is not necessarily disaggregated into that of the families within the type
because some may be subcontracted or backordered. Constraints (15) show the options
to absorb setup times. Constraints (16) and (17) are the maximum idle regular time
and overtime in the first period. Constraints (18) and (19) are the maximum permitted
subcontracting and backlogging quantities. Constraints (20) set the lower and upper
bounds of the production quantity of each family in the first period. Constraints (21)
ensure that when family i is not produced in the first period, binary variable Zi1 is zero;
otherwise, Zi1 is 1.

There are four options to absorb the influences of family setup times: idle regular time
AR1, idle overtime AO1, or the released capacity resulting from added subcontracting
quantities ASm1, and added backordering quantities ABm1. Therefore, the aggregate plan
in the first period is adjusted and becomes feasible to implement.

4 Solution Heuristics

The APP model is solved first for types in order to obtain the production plans in the
planning horizon and the production plan in the first period is implemented. Then, the
proposed FDP model is solved with the adjustment feedback to the obtained production
plan in the first period. The inherent adjustment rule heuristics used on the unconsumed
capacity for single-type FDP model is summarized in Table 1. The assumption for the
heuristics is that the added regular time cost is less than the added overtime cost, which
is less than the added subcontracting cost and backlogging cost. These assumptions are
is prevalent in practice.

In order to simplify the expression, the consumed total regular time and overtime
are denoted as TR

′
t = ∑M

m=1 Rmt and TO
′
t = ∑M

m=1 Omt respectively, while the total
capacity consumed by the production of all types and setups between all families is set

to be TSPt = ∑M
m=1

(
utmtXmt + ∑I

i=1
∑

j∈J (m)

∑I
k=1 stijYijkt

)
. The inherent logic of

the heuristics is as follows:
Case I: when TSPt ≤ ARt · A, that is, the idle regular time capacity is enough to

absorb the setup times, TSPt − TR
′
t units of extra regular time and no overtime will

result. Since employing idle regular time is the most cost-saving option among the four
options, the idle regular time is first used to absorb the setup times.

Case II:when TSPt is between available regular time and total capacity, all idle regu-

lar time capacity
(
ARt · A − TR

′
t

)
and part of overtime capacity

(
TSPt − TRt · A − TO

′
t

)

are employed to absorb the setup times since overtime is the second most cost-saving
option except for regular time. Besides setup cost, the added costs include the labor costs
of all idle regular time and part of the idle overtime necessary to replenish the capacity
occupied by setup times.

Case III: when TSPt is larger than total capacity, all idle regular time capacity(
TRt · A − TR

′
t

)
and overtime capacity

(
TOt · A − TO

′
t

)
are not enough to absorb the
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setup times, and some of the setup times are absorbed by the capacity released by sub-
contracting or backordering some families scheduled for production. Besides the added
labor costs of regular time and overtime, the added subcontracting (backordering) costs
are the subcontracting (backordering) quantity multiplied by the difference between unit
subcontracting (backordering) cost and unit production cost. Since the unit subcontract-
ing costs are generally less than the unit backordering costs, subcontracting is preferred
to backordering for absorbing the family setup times.

Finally, the feedback information from theFDPmodel is used to adjust the production
plan in the first period and obtain the feasible and optimally adjusted production plan for
the period. Then the HPP system is implemented on a rolling horizon basis and a new
solution cycle starts at the end of the first period when updated information are available
to plan production in the following planning horizon.

However, it is nontrivial to solve the FDP model with the above heuristics in a mul-
tiple product production environment due to the different cost structures of the product
types. Moreover, the disaggregation function of the FDP also hampers its quick solution.
Therefore, some other optimizaiton method has to be introduced for the model. In this
paper, branch-and-bound approach in LINGO 8 [16] is used to solve the FDP model.

5 Case Study

The manufacturing system for our test plant is a typical multi-product, small-batch and
make-to-stock operation. Using data from the mold manufacturing plant, the APPmodel
in the planning horizon of 12 months and the proposed FDP model in the first month are
solved on a DELL OptiPlex GX-620 computer with 2.0 GHz RAM, W8400 Processor
80,547, Pentium 4 Prescott Dt 630. The integrated model proposed by Xue et al. [14]
contains 3207 variables (3099 integer variables) and 4103 constraints. However, the
integrated model could not reach optimality within a reasonable time frame.

In the MILP APP model proposed in this paper, there are 195 variables (96 integer
variables), and 170 constraints. Since the APP model only plans the production of two
types, its solution scale is drastically reduced and can be solvedwithin 2 s. In the proposed
MILP FDPmodel, only the production plan in the first month is disaggregated. The FDP
model only needs 22 variables (14 integer variables) and 31 constraints to optimally
adjust the aggregate plan in the first period and can be solved within 1 s.

From the solution, the aggregate plans for Types 1 and 2 in the first period, and the
disaggregation and adjustment results are summarized in Table 2. The objective function
of FDP model is $28,670, where the total setup cost is $1,220. In the production plan in
the first period, the available regular time and overtime that can be used to absorb family
setup times are 0 and 1364 h, respectively. Since the total family setup time is 61 h, the
1364-h overtime is enough to absorb the family setup times, which is also the result of
the FDP model. Therefore, the production plan in the first period, which is infeasible
due to the setup times, can be adjusted by using 61 h more of overtime in the first period.

In traditional HPP systems the extra cost resulting from the setup times is fixed at
$53,460, nearly two times that of the results in this paper. Therefore, the proposed FDP
model can adjust the aggregate plan in the first period to realize more cost savings.
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Table 2. The aggregate plan in the first period and its adjustment.

Aggregate plan in the first period

Total regular
time

Total
overtime

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Subcontracting
quantity

Backordering
quantity

Production quantity

3789 1516 0 0 0 0 125 82

Consumed
regular time

Consumed
overtime

Subcontracting
capacity

Maximum
backordering
quantity

Inventory quantity

3410 0 15 10 9 9 0 2

Input data for FDP model

Available
regular time

Available
overtime

Available
subcontracting
quantity

Available
backordering
quantity

0 1364 15 10 9 9

FDP model results

Added
regular time

Added
overtime

Added
subcontracting
quantity

Added
backordering
quantity

Total setup time

0 61 0 0 0 0 61

6 Conclusions and Future Research

This paper presents an iterative optimization approach of traditional HPP systems con-
sidering the feedback information from the FDPmodel. The proposed novel FDP model
minimizes the family setup costs and extra costs arising from the adjustment of aggre-
gate plans due to the existence of nontrivial family setup times. As is the case in most
FDP models the proposed FDP model disaggregates the aggregate plan of types in the
first period into detailed plans of families within the type. However, unlike other FDP
models, the proposed FDP model also eliminates the infeasibility of the aggregate plan
when setup times are nontrivial, and optimally adjusts the aggregate plan in the first
period. Moreover, the proposed iterative optimization mechanism based on HPP system
consummates the application of iterative method to the decomposition scenario of HPP
problems.

Data from a mold manufacturing plant is used to validate the performance of the
proposed FDP model. The results indicate that the proposed FDP model can optimally
adjust the corresponding aggregate plan in the first period and eliminate the infeasibility
arising from positive family setup times. The higher family setup times result in more
cost savings over the traditional HPP systems.Moreover, compared with traditional HPP
systems, the iterative optimization mechanism proposed in this paper can save over 37%
of its setup and adjustment costs for each problem set.
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This paper can be extended in twoways. First, the integration ofAPP andFDPmodels
can lead to real optimization of the HPP system. Although the FDP model adjusts the
aggregate plan optimally, the essence of sequential decisions of the two models impedes
the achievement of true optimization. Therefore, an integrated model of APP and family
disaggregation problems is worthy of further study. Second, the sequence dependency
of family setup times and the lot sizes of each family can be integrated into the FDP
model in the first period, since only sequence-independent setup times are considered
in this paper.
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