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Abstract. This paper focuses on an industrial lot-sizing and scheduling
problem that arises in the food industry and includes lost sales, over-
times and sequence-dependent setups on parallel machines. We propose
a preliminary version of a three-phase iterative approach to optimize sep-
arately the affectation, the sequencing and the production of items. Our
first numerical results suggest that with some additional improvements,
this approach could be use in real-life by planners to reduce their costs.
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1 Introduction

This paper presents a new heuristic to solve a lot-sizing and scheduling problem
that arises in practical cases from the food industry. The problem we address is
large and complex, which real-life applications often involve multiple production
machines and specific constraints, which makes this problem complex to solve
and motivates the planners to use optimization tools in order to reduce the costs
incurred during their production process. However, modeling such complex sys-
tems leads to large mathematical formulations that are (in general) intractable
with commercial solvers for Mixed Integer Programs (MIP). As a consequence,
we aim to develop new approaches that enable us to obtain solutions to this prob-
lem in a quick and efficient fashion. Our work focuses on a multi-item capacitated
lot-sizing problem including lost sales, safety stock, overtimes and sequence depen-
dent setups on parallel machines. The discrete lot-sizing is a classical problem in
the Operations Research literature since the work of Wagner and Whitin [13] and
it has since been enriched with various additional considerations in order to model
more accurately practical situations. Limited production capacity is among the
most popular extensions of the original problem and has been the topic of multi-
ple surveys, see e.g. [9] and [12]. The model we consider further generalizes this
setting to include lost sales and shortage costs, as in [2] where the authors intro-
duce new classes of valid inequalities. Parallel resources production is more and
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more common in the literature, with a distinction between identical [3] and non-
identical [8] machines. We focus on the latter in this paper.

The integration of lot-sizing and scheduling constraints greatly increases the
complexity of the problems, which often leads researchers to propose heuris-
tic solutions. Notable ones include [7], who develop a MIP-based neighborhood
search heuristics to address a lot-sizing and scheduling problem on parallel
machines. [4] present an industrial problem in which setup times depend on
the sequence of production and propose a solution procedure based on sub-
tour elimination and patching. [6] reviews the main modeling techniques for this
class of problems and compare the efficiency of several solution methods. Iter-
ative heuristics has been studied in the literature for the capacitated lot-sizing
and scheduling problem in [11]. In [5], the authors used a two-level method to
deal with the lot-sizing and the scheduling phases separately. In the related field
of Production Routing problem, [1] use a two-phase method to dissociate the
production and the distribution part.

In this paper, we propose a three-phase iterative method for the production
problem described above, that has been introduced in [10] and is referred to as
CLSSD-PM for multi-item capacitated lot-sizing problem with lost sales, safety
stock, overtimes, and sequence-dependent setups on parallel machines. Section 2
describes the notations and assumptions. In Sect. 3, we present an original three-
phase iterative method, with a quick description of each phase. In Sect. 4, we suc-
cinctly present the preliminary results obtained on a set of instances generated
from industrial data. Finally, we propose some ideas to improve the procedure
as well as perspectives for future research in the Sect. 5.

2 Notations and Assumptions

The problem studied in this paper is directly related to the problem originally
presented in [10]. For an extensive presentation, the reader can refer to this
paper. In this problem, we consider N different items that can be produced over
a discrete finite horizon of T periods and M non-identical parallel machines. We
denote N , M and T the set of items, machines and periods, respectively. For all
items i ∈ N , we consider a deterministic demand dit in each period t ∈ T , which
is either satisfied from on-hand inventory or lost. We denote τ i

m the production
time of one unit of item i on machine m. Sequence-dependent setup times are
denoted λij

m for a given machine m and for each pair (i, j) of items. Note that we
allow asymmetric setup times but assume they satisfy the triangle inequality. For
each machine m ∈ M, we consider a time-dependent capacity Cmt corresponding
to the total time available in period t. However, in some circumstances this
capacity can be exceeded up to a larger value Cmt which is the “true” available
time capacity in period t. In that case, Cmt −Cmt corresponds to the maximum
overtime allowed. Finally, we also impose that every production of item i have
to be greater than a minimum production quantity denoted qimin. The objective
is to minimize the costs incurred in the production problem. We denote pimt the
cost of producing one unit of item i in period t on machine m. In addition, we
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denote cmt the per-unit of time usage cost of machine m during period t. For
each unit of overtime, an additional cost c̄mt is applied. We define the safety
stock as an “optimal” inventory level to reach in each period. Inventory-related
cost are then defined with respect to its value, namely a deficit cost hi−

t and an
overstock cost hi+

t for each unit below or above the safety stock level. Finally, for
each unmet unit of demand for item i in period t, a shortage cost lit is incurred.

Throughout the remainder of this paper, we use the following decision
variables:

xi
mt ∈ R+ Quantity of item i produced in period t on machine m

yi
mt ∈ {0, 1} binary variables equal to 1 if item i is affected to machine m in

period t
Umt ∈ R+ Time usage of machine m in period t
Omt ∈ R+ Time in overtime of machine m in period t

Li
t ∈ R+ Quantity of lost sales for item i in period t

Iit ∈ R+ Inventory of item i on hand at the end of period t
Ii+t ∈ R+ Overstock (based on safety stock value) of item i at the end of

period t
Ii−t ∈ R+ Safety stock deficit of item i at the end of period t

zit ∈ {0, 1} Binary variable equals to 1 if the stock of item i is null at the end
of period t

3 Three-Phase Iterative Approach

In this section we present a three-phase iterative method to solve the problem
under study. The central idea is to decompose the original problem into three
(smaller) subproblems we can solve sequentially, where the output of a phase
serves as an input for the following one. Below is an overview of one iteration of
the heuristic:

– The first phase minimizes the costs induced by production and inventory
management, considering virtual sequence-independent setup times per item.
Capacity restrictions are also relaxed based on the information provided by
the other phases.

– The second phase proposes production sequences for the items affected to
each machine and period.

– The last phase decides the quantity to produce and pushes its output infor-
mation into the first phase of the next iteration as an additional constraint.

The procedure loops through these different phases until a stopping criteria
(either the time limit or a given number of iterations without improvement) is met.

First Phase: Assignment. We describe the first phase with a mathematical
model based on an aggregate formulation. In this phase, we do not consider the
sequence dependent setup times, which are approximated. For that purpose, we
introduce ST i

mt the setup time for item i for machine m at period t (set to 0
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at the first iteration). The aggregate formulation is expressed with the following
MIP:

min
∑

t∈T

∑

m∈M
(cmtUmt + c̄mtOmt)

+
∑

t∈T

∑

i∈N

(
hi+
t Ii+t + hi−

t Ii−t + litL
i
t +

∑

m∈M
pimtx

i
mt

)
(1)

s.t. Umt =
∑

i∈N
(τ i

mxi
mt + ST i

mty
i
mt) ∀m ∈ M,∀t ∈ T (2)

Umt ≤ Cmt + Omt ∀m ∈ M,∀t ∈ T (3)

Iit = Si
t + Ii+t − Ii−t ∀i ∈ N ,∀t ∈ T (4)

Iit = Iit−1 +
∑

m∈M
xi
mt + Li

t − dit ∀i ∈ N ,∀t ∈ T (5)

Iit ≤ Di
tT (1 − zit) ∀i ∈ N ,∀t ∈ T (6)

Li
t ≤ zitd

i
t ∀i ∈ N ,∀t ∈ T (7)

xi
mt ≤ Di

t−1,T yi
mt ∀i ∈ N ,∀m ∈ M,∀t ∈ T (8)

xi
mt ≥ qiminy

i
mt ∀i ∈ N ,∀m ∈ M,∀t ∈ T (9)

Li
t, I

i
t , I

i+
t , Ii−t ≥ 0 ∀i ∈ N ,∀t ∈ T (10)

Umt, Omt ≥ 0 ∀m ∈ M,∀t ∈ T (11)

yi
mt ∈ {0, 1} ∀i ∈ N ,∀m ∈ M,∀t ∈ T (12)

zit ∈ {0, 1} ∀i ∈ N ,∀t ∈ T (13)

xi
mt ≥ 0 ∀i ∈ N ,∀m ∈ M,∀t ∈ T (14)

The objective (1) is to minimize the cost of production including line usage
costs, lost sales and inventory stocks. Constraints (2) define the total working
time of each machine which is equal to the production time and the approxi-
mated setup times. Constraints (3) define the time usage and overtime variables.
Constraints (4) define the inventory stock from the safety stock, the overstock
and the deficit. Constraints (5) are the inventory flow conservation equations
through the planning time horizon. Constraints (6) and (7) ensure that lost
sales for item i occur only when the corresponding stock is null. Constraints (8)
use the cumulative demand over the remainder of the horizon as an upper bound
on the quantity of each item produced on each machine in a given period. Con-
straints (9) force the production to be higher than its minimum value. Finally
constraints (10) and (14) define the domain of specific variables.

An additional constraint is necessary to link the information from the fol-
lowing phases after the first iteration. We denote ỹi

mt and x̃i
mt as the value of

the corresponding variables yi
mt and xi

mt decided in the previous iteration. In
addition, we also define for each machine m and period t the residual capacity
Capresmt as the remaining available machine time after the previous iteration of
the algorithm. Before the first iteration, we initialize these values as follows:
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ỹi
mt = 0, x̃i

mt = 0 and Capresmt = Cmt. The following constraints (15) then indi-
cate that for each item, the production time is bounded by the last solution but
can be increased or decreased depending on items that are added to/removed
from the assignment derived in the previous iteration and the residual capac-
ity. Parameters σi

mt then correspond to the proportion of the production time
available that is allocated to item i.

τ i
mxi

mt + (1 − ỹi
mt)ST i

mty
i
mt ≤ τ i

mx̃i
mt + (

∑

j �=i

x̃j
mt �=0

(1 − yj
mt)(τ

j
mx̃j

mt + ST j
mt)

+ Capresmt −
∑

j �=i

x̃j
mt=0

(τ j
mqjmin + ST j

mt)y
j
mt)σ

i
mt (15)

∀i ∈ N ,∀m ∈ M,∀t ∈ T

Second Phase: Sequencing. From the first phase, we obtain the assignment
of items to each pair machine-period (m, t). The goal of this phase is then to solve
M × T sequencing problems with a straightforward mathematical formulation
adapted from the TSP problem. For conciseness we do not detail it in this paper.

Third Phase: Production. The last phase solves the production problem.
We denote Λmt the sum of setup times on machine m in period t obtained
from the previous phase. If Λmt +

∑
i∈N qiminỹ

i
mt > Cmt, i.e. the capacity is

not sufficient to carry out the setup times and the minimum production for the
current affectation, we set Λmt = 0 and ỹi

mt = 0 for all i ∈ N . Otherwise, the
values Λmt and ỹi

mt remain the same. Note that since the assignment decisions
ỹi
mt are fixed in the first phase, they are considered as parameter in this step

and thus the only binary variables considered are zit to ensure a First-Come
First-Serve discipline, which make the problem easy to solve.

min
∑

t∈T

∑

m∈M
(cmtUmt + c̄mtOmt)

+
∑

t∈T

∑

i∈N

(
hi+
t Ii+t + hi−

t Ii−t + litL
i
t +

∑

m∈M
pimtx

i
mt

)
(16)

s.t. Umt =
∑

i∈N
τ i
mxi

mt + Λmt ∀m ∈ M,∀t ∈ T (17)

Umt ≤ Cmt + Omt ∀m ∈ M,∀t ∈ T (18)

Omt ≤ Cmt − Cmt ∀m ∈ M,∀t ∈ T (19)
Constraints (4)–(7)

xi
mt ≤ Di

t−1,T ỹi
mt ∀i ∈ N ,∀m ∈ M,∀t ∈ T (20)

xi
mt ≥ qiminỹ

i
mt ∀i ∈ N ,∀m ∈ M,∀t ∈ T (21)

Constraints (10), (11), (13), (14)
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Update the Parameters of the First Phase. At the end of the third phase,
there is a crucial update step on the input parameters of the first phase. The
algorithm updates the individual setup times based on their marginal contri-
bution to the production sequence computed in the second step. That is, for
each item i in the sequence of production on machine m in period t, the setup
time ST i

mt corresponds to the additional time needed to insert this item is the
sequence based on its direct predecessor and successor. On the other hand, we
use the cheapest insertion time for all items that are not already included in the
current sequence. This idea is described more in details in [1]. Current affectation
decisions are stored in the variables ỹi

mt, while a priori production quantities x̃i
mt

are directly extracted from the production decisions xi
mt in the third phase. The

three-phase algorithm is presented in flowchart 1.

4 Experimental Results

In this section, we present the experimental results obtained with our three-
phase method. Our instances are designed from actual data from industrial
cases. We derived 48 different instances combining the following parameters:
N ∈ {20, 30, 40}, T ∈ {15, 30}, M ∈ {1, 2}. Note that these preliminary tests
are not representative of the industrial reality, where the number of different
items can be significantly larger than this benchmark. We use IBM Ilog CPLEX
v12.10.0 to solve each phase and set a time limit of 900 s as a stopping criterion.
If UB corresponds to the best feasible solution found by the method tested, the
gap is defined as follows:

Gap = 100 · UB − LB

LB
, (22)

where LB is the best lower bound obtained after 4 h with CPLEX. Table 1
presents a Gap comparison between the 3-phase method and a straightforward
MIP resolution in 900 s by CPLEX. We set σi

mt = 1/N in constraints (15).
Although the results suggest that our method needs refinement before we con-
sider applying it on larger instances, it shows some promises as a decision sup-
port tools for practitioners. In particular for larger instances, the 3-phase method
seems to be more robust to obtain adequate solution. We observe that the com-
putational time is mainly decided by the first and the second phase while the
third one is solved quickly. For instances with N ≥ 30, the second phase take a
significant amount of the total computational time (Fig. 1).

5 Perspectives

We study a problem encountered in the food industry. Since the problem is too
complex to obtain good solution using a straightforward MIP resolution, we base
our approach on an iterative resolution from a decomposition into three smaller
subproblems. Our first preliminary results suggest that some enhancement must
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Start

Initialize all parameters :
x̃i
mt,ỹ

i
mt ST

i
mt, Capresmt

Time limit or iteration
limit is reached

Yes

Stop

No
k = k + 1

Set iteration k = 0

Solve assignment phase
using (x̃i

mt,ỹ
i
mt ST

i
mt, Capresmt )

Update ỹimt

Solve the sequencing phase
using ỹimt

Update ST i
mt

Return Λmt

Solve production phase
using (ỹimt,Λmt)

Update (x̃i
mt,Capresmt )

Fig. 1. Flowchart of the 3-phase approach
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Table 1. Average gaps obtained with the 3-phase method

Problem size Avg. gap (%)

N-M-T 3-phase CPLEX

20-1-15 77.57 0.57

20-1-30 47.51 3.15

20-2-15 37.4 1.28

20-2-30 73.9 2.01

30-1-15 47.72 3.1

30-1-30 97.23 17.68

30-2-15 60.64 6.95

30-2-30 118.42 27.29

40-1-15 289.74 585.16

40-1-30 372.61 2051.43

40-2-15 112.14 16.76

40-2-30 154.04 1053.87

be implemented to improve the method. To that end, we could consider the
addition of diversification mechanisms in the first phase to speed up the con-
vergence. Another direction under investigation rely on the clustering approach
introduced in [10] to simplify the second phase and compute efficiently good
production sequences. Another research direction is to use heuristics or MIP-
heuristics in the first and second phases to speed up the resolution.
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