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Abstract. The COVID-19 pandemic is changing consumer behavior
and accelerating the interest for online grocery purchases. Hence, tra-
ditional brick-and-mortar retailers are developing omnichannel solutions
enabling online purchases in parallel to normal activities. Buy-Online-
Pick-up-in-Store concepts are flourishing in this context, and they are
the topic of this work.

In this paper we propose a novel application of the sequential order-
ing problem to model products picking throughout the store shelves.
The result is an optimized picking sequence that however takes also into
account the characteristics of the goods (fragility, weight, etc.). The aim
is to preserve goods integrity while allowing the pickers to optimize their
route through the shop. The approach is exemplified on historical online
orders of a real German shop.

Keywords: In-store order picking · Omnichannel Grocery Retailing ·
Sequential ordering problem

1 Introduction

Traditional factors such as a growing range of products, volatile demand behav-
ior, or scarce logistics and sales space have been affecting grocery retailing for
years. Thus, research has predominantly focused on demand and supply chain
planning [1], the in-store backroom sizing problem [2], efficient in-store pro-
cesses [3], as well as last-mile distribution [4]. Along with the COVID-19 pan-
demic, existing parameters were ex-tended through changing consumer behavior,
switching from offline to online purchases [5]. As a consequence, the design of
efficient operations to fulfill this online demand is a recent challenge for tra-
ditional brick-and-mortar (B&M) retailers that focused on offline sales during
the last decades [6]. For the design of these omnichannel operations, [7] differ
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between three typologies: (1) An integrated distribution center for online and
offline orders that enable bulk and single unit picking and delivery, (2) distribu-
tion centers exclusively utilized to fulfill online orders, and (3) grocery retailers
using their B&M structures for online order fulfillment, especially on the store-
level to fulfill online and offline demands. These stores are named Buy-Online-
Pick-up-in-Store concepts (BOPS) and are the argument of the remainder of
this paper. We position our research at the interface of BOPS together with the
optimization of operational efficiency in in-store order picking.

Observing the existing literature, BOPS and order picking are well-examined
fields of research in marketing and operations management. Form a marketing
perspective, focusing on, e.g., coupon promotions [8], customer behavior [9], or
pricing strategies [10]. Regarding order picking, an extensive body of research
investigates the human factor [11], batch assignment [12], and storage assignment
[13] with the aim of optimizing these laborious and costly operations. However,
approaches optimizing in-store order picking operations are scarce. In the exist-
ing literature, the grocery store order picking problem is treated as an open
Traveling Salesman Problem (TSP) [14] on an underlying graph representing
the location of the items within the shop. Therefore, the obtained solutions are
the shortest tours from the store entrance to the cashiers going through all the
nodes associated with goods of a given shopping list [15]. In a BOPS context, this
approach makes sense since in-store logistics is performed for the most part by
human operators and is considered a major cost-driver. It can account for up to
40% of all the activities executed during working hours [16]. Hence, a solution
minimizing the time required for order picking can reduce the impact of BOPS-
related movements on the overall logistics. However, when designing the layout
of a store, the factors considered are normally revenue maximization [7,17] and
customer satisfaction [18]. Thus, the product attributes analyzed are visibility,
position to maximize impulsive purchases, variety, and availability. Characteris-
tics like fragility or dimensions are simply left out of the equation when articles
are located within a shop. As a consequence, operating according to shortest
tours among the locations of the items without considering their characteristics
might lead to product damaging (e.g., storing bottles ending on top of fresh
fruit) or to a situation where the products can be placed into the final bags only
after the whole tour is finished, causing a rearranging over-head.

The objective of this study is to explore how adding precedence constraints
among the products to avoid the aforementioned issues alters the performance of
the TSP solver. The resulting optimization model to represent the order picking
is then a Sequential Ordering Problem (SOP) [19,20]. We will investigate the
time overhead associated with the (more realistic) SOP solutions with respect
to TSP solutions.

2 Problem Description

The idea behind the operational problem treated in this paper can be outlined
as follows: in order to implement efficient in-store picking operations for online
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orders, the shortest path analysis is required for a given set of articles to be
picked, given the store layout settings (topology of the shop and positioning
of the products in the shelves). This operation has been proven effective in
improving the pickers’ efficiency in the BOPS model. However, a rearrangement
of the articles is often required at the cashier to reposition fragile articles and/or
to save final packaging space. Therefore, we propose to score the articles by
characteristics and divide them into several sub-groups with different priorities.
By adding these precedence constraints, the in-store picking problem can be
solved as an SOP. In the following section, we discuss the scoring model in
Sect. 3.1 in detail and explain how to solve the in-store picking problem as an
SOP in Sect. 3.2.

3 Methodology

3.1 The Scoring Model

An order usually contains the following information for each of its articles: name
of and producer, quantity, volume/weight, and the type of packaging. In order to
have a complete set of data with normalized units of measurement, we select size,
heaviness, and resistance (internal and external) as the main characteristics to be
considered during an in-store picking tour. Size and heaviness are represented by
the volume and mass of a product, that are the characteristics usually considered
in determining the picking order for items. Another important characteristic is
fragility, which is influenced by the internal and external resistance to pressure.
Therefore, density and packaging type are considered as further attributes. All
the attributes contribute to a weighted sum, and to have a reliable result, it is
important to normalize the different attributes in the scoring system.

The scores for the packaging type are assigned based on estimated sturdi-
ness. The scores for mass, volume, and density are defined by ad-hoc piecewise
functions to take into account that the impact of these attributes varies based
on their value. For example, when the volume of an article is small, it will not
affect the picking order significantly. Hence, the associated coefficient is expected
to be extremely value. On the contrary, when the volume of an article exceeds a
certain threshold, people tend to collect it first, as it is a large item. In this case,
the coefficient of volume should amplify its magnitude. The scoring function of
the attributes we have derived by simulating real-world scenarios in common
sense, are defined as follows:

SizeSC =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if V olume ≤ 0.15L

1 + [(V olume − 0.05)/0.10], if 0.15L < V olume ≤ 0.85L

3 + [(V olume − 0.15)/0.10], if 0.85L < V olume ≤ 1.50L

11 + 2 · [V olume/0.50], if V olume > 1.50L

HeavSC =

⎧
⎪⎨

⎪⎩

1 + [Mass/0.10], if Mass ≤ 1Kg

3 + 2 · [Mass/0.25], if 1Kg < Mass ≤ 2Kg

5 · [Mass/0.25] − 20, if Mass > 2Kg
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DensSC = 2 + 2 · [Density/0.30]
PackSC = bag 2; tube 4; pack 6; carton 7; glass 10; can 14; bottle 18

With the scores defined in the same standard unit, the attributes are then
combined in a weighted sum model. The priority of an article increases as the
result of the weighted sum increases (e.g., the article with the highest output
value has to be collected first). To achieve the proper model, the coefficients
(weights) of the attributes have manually adjusted based on real-world simula-
tions until satisfying picking lists were obtained. The resulting coefficients are
incorporated in the following formula, which implement our scoring system:

Score = SizeSC · 0.15 + HeavSC · 0.15 + DensSC · 0.30 + PackSC · 0.40

An example of a random order and the attributes associated with its articles is
presented in Table 1. The attributes of each article are shown together with the
score received by the article according to the scoring system.

Table 1. An example of an order with the scores attributed to the articles

Product Volume Mass Density Packaging Score

1L Bottle 1.00 1.02 1.02 Bottle 13.24

2L Bottle 2.00 2.05 1.03 Bottle 15.86

Energy Drink 0.50 0.52 1.04 Can 10.02

Chips 1.00 0.13 0.13 Bag 3.73

Eggs 0.90 0.38 0.42 Carton 6.54

Milk 1.00 1.05 1.05 Carton 8.94

Instant Noodles 0.40 0.12 0.30 Package 4.61

Pasta 1.40 0.50 0.36 Package 6.95

Jam 0.20 0.37 1.85 Glass 9.38

Wine Bottle 0.75 1.20 1.60 Bottle 14.09

3.2 The Route Planner

With the scoring model described in Sect. 3.1, articles in the shopping list have
different priorities to be picked. The in-store order picking problem formalized
in this work can therefore be modelled as a Sequential Ordering Problem. Given
a weighted graph, the SOP is a TSP with precedence constraints between pairs
of vertices. The objective is to find a Hamiltonian Path with minimum cost that
satisfies the precedence constraints.

An instance of the SOP is represented by two graphs: a cost graph and a
precedence graph. The cost graph is a weighted directed graph G = (V,E) where
V is the set of vertices (corresponding to articles in our case), E = {(i, j)|i, j ∈
V } is the set of edges, and each edge (i, j) ∈ E has a cost tij . The precedence
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graph is a directed graph H = (V, P ) where V is the same set of vertices. When
an edge (i, j) ∈ P , vertex vi must precede vertex vj in any feasible solution. A
Hamiltonian Path is a permutation of the full set of vertices that each vertex
appears exactly once in the given graph. For a solution S, the cost is defined
as

∑
(i,j)∈S tij . Given a start and a final vertex, the objective of the SOP is to

find the Hamiltonian path with minimum cost that satisfies all the precedence
constraints. It corresponds to the picking order in our application. However, if
we strictly follow the precedence constraints, a lot of back-and-forth movements
are expected, and a long time might be required to complete the task. This
inefficiency is not the original aim of using the SOP model, but rather a side
effect to the benefits of a SOP solution. Therefore, we propose also a relaxed
SOP model to have a trade-off between priorities and total picking time. We
define a limited number of precedence classes based on the scores. Precedences
among articles in a same class are relaxed, assuming they are basically equivalent
in terms of score. The number of classes can be adjusted according to the actual
situation. In this work, we divide the articles into four precedence classes, in such
a way that class 1 contains articles with a score up to 5.00; class 2 the articles
with a score between 5.00 and 8.50; class 3 the articles with a score between 8.50
and 12.00; class 4 the articles with a score higher than 12.00.

Fig. 1. Layout of a real store with numbers corresponding to zones containing products
of different categories and a path indicating the optimal relaxed SOP solution of a given
shopping list.

4 Experimental Simulation

In this section, we present methods and results for an experimental simulation
of a real store in German. The layout of the store is presented in Fig. 1, with
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the numbers corresponding to areas/zones containing products of different cat-
egories. A path representing the optimal relaxed SOP tour for a given shopping
list, is also depicted. Zone 1 includes the entrance and Zone 15 includes the
cashier desks, they are the fixed starting and ending points in our model. Each
article is associated with the zone containing it, and zones are used to estimate
travel times. The travel time tij from zone i to zone j is calculated assuming a
walking speed of 0.85 m/s and considering the shortest path. The travel time
between two articles in the same zone is set to zero. The time to pick up arti-
cles is not considered, since it has no influence on the total time spent moving
in the shop. In the simulation, we compare the time required to pick all the
articles on the shopping lists when the given lists are ordered in different ways.
Ten representative online orders, consisting of 36.6 items on average and with a
standard deviation of 6.12, are considered. The original shopping lists received
are in random order (no optimization solution). The second picking sequence is
calculated as the optimal TSP solution [14] (this solution ignores fragility and
dimensions issues). The third list considered is ordered according to the opti-
mal SOP solution, strictly following precedence constraint. For example, in the
shopping list presented in Table 1, we follow the descending order of the Score
value to pick the corresponding item, with 2L bottle being the first and chips
being the last to be picked. This solution only optimizes the articles’ sequence
but not the picking path. The fourth list is ordered according to the relaxed
SOP solution (Sect. 3.2, see also Fig. 1), which optimizes a trade-off between the
characteristics of the articles and the total travel time. The SOP optimal solu-
tions can be obtained by the algorithm described in [19]. To summarize, four
scenarios are analyzed: (1) no optimization; (2) articles ordered according to the
TSP solution; (3) articles ordered according to the SOP solution; (4) articles
ordered according to the relaxed SOP solution.

The simulation results are reported in Fig. 2. We can observe that TSP solu-
tions performs the best in terms of travel time, as expected. Knowing the dis-
advantages of TSP solutions in terms of sequencing of the articles, our main
interest is to estimate the extra time required by the SOP solutions, which takes
into account mainly the correct sequencing of the articles. The results from Fig. 2
shows that with the optimal SOP solutions increase the time by 150% on aver-
age compared to TSP solutions, while relaxed SOP solutions increase the time
by only 71%, while retaining an operationally acceptable sequencing of the arti-
cle. This indicates that relaxed SOP solutions are considerable choice for this
problem.

Let us consider order 3 as an example to understand the characteristics of
the different solutions. The order contains 46 different articles from four different
zones. The articles are mainly located in Zones 10, 11, and 12, but one is in Zone
3 (Fig. 1). The list is ordered as the customer added the articles to the shopping
cart. Therefore, when no optimization is considered, the picker first heads to
Zone 11, then travels back and forth among Zones 11, 12, and 10 and finally
goes to Zone 3 to pick the last item before going to the cashier at Zone 15. It
takes 349 s travel time to finish the task, and yet more time is required to sort
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Fig. 2. Simulation of travel times for 10 representative online orders in four different
scenarios.

out the messy shopping cart at the cashier (there is also a risk of damaging the
goods, if the picker is not careful enough). When the TSP solution is considered,
the picker visits Zones 3, 10, 11, 12 in this order. It takes only 145 s travel time
to finish the task, but some more time is required to reorder the items for the
subsequent packing process, and extra care had to be taken by the picker not to
damage any product. When the list is ordered according to the SOP solution,
heavy and non-fragile articles are picked first, leaving light, small and fragile
articles for the end. The picker travels back and forth among Zones 11, 10 and
12, and goes to zone 3 at a certain point in the middle of the process. It takes
367 s travel time to complete the task (even more than the unsorted list), but
in this case no extra time is needed to rearrange the articles, since packing is
already sorted. When the list is ordered according to the relaxed SOP solution,
the has considerably fewer moves back and forth among the zones. It takes only
231 s travel time, and there is no need to rearrange the articles for a final packing.

In conclusion, the relaxed SOP solution shows a good compromise between
being very fast with unsorted (and potentially damaged) goods and producing
a ready-to-go package already while picking articles. Furthermore, it is worth to
mention that “scan as you pick” devices are becoming popular in grocery stores.
The receipts are ready at the end of the tour and the articles can be directly
packed in bags during picking. In this case, the benefit of SOP-based model is
even more straightforward.

5 Conclusions

The research on the optimization strategies for in-store order picking presented
in this paper aspires to contribute to the improvement of omnichannel in-store
logistics operations for brick-and-mortar grocery retails. We proposed an opti-
mization approach for the in-store order picking problem in the context of a
Buy-Online-Pick-up-in-Store system relying on human workforce. We discussed
the benefit of reordering shopping lists according to an ad-hoc precedence model
instead, which prevents potential dam-ages to the goods during the in-store
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picking phase and also makes the packaging task trivial, with benefit also for
customers, that have articles sorted in a correct order inside their bags. Exper-
imental simulations on a real-world store have been per-formed, demonstrating
the practicality and applicability of the approach, which has been shown to pro-
vide a good trade-off between efficiency and customer satisfaction. With the
increasing popularity of co-called “scan as you pick” devices, even further ben-
efits from this model can be foreseen.
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