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Preface

This volume (LNCS 12858) and its companion volume (LNCS 12859) contain the
proceedings of the fifth Asia-Pacific Web (APWeb) and Web-Age Information Man-
agement (WAIM) Joint Conference on Web and Big Data, called APWeb-WAIM.
With the increased focus on big data, the new joint conference is expected to attract
more professionals from different industrial and academic communities, not only from
the Asia-Pacific countries but also from other continents. The objective is to enable the
sharing and exchange of ideas, experiences, and results in the areas of the World Wide
Web and big data, thus covering web technologies, database systems, information
management, software engineering, and big data.

The fifth APWeb-WAIM conference was held in Guangzhou during August 23–25,
2021. As an Asia-Pacific flagship conference focusing on research, development, and
applications in relation to Web information management, APWeb-WAIM builds on the
successes of APWeb and WAIM: APWeb was previously held in Beijing (1998), Hong
Kong (1999), Xi’an (2000), Changsha (2001), Xi’an (2003), Hangzhou (2004),
Shanghai (2005), Harbin (2006), Huangshan (2007), Shenyang (2008), Suzhou (2009),
Busan (2010), Beijing (2011), Kunming (2012), Sydney (2013), Changsha (2014),
Guangzhou (2015), and Suzhou (2016); and WAIM was held in Shanghai (2000),
Xi’an (2001), Beijing (2002), Chengdu (2003), Dalian (2004), Hangzhou (2005), Hong
Kong (2006), Huangshan (2007), Zhangjiajie (2008), Suzhou (2009), Jiuzhaigou
(2010), Wuhan (2011), Harbin (2012), Beidaihe (2013), Macau (2014), Qingdao
(2015), and Nanchang (2016). The APWeb-WAIM conferences were held in Beijing
(2017), Macau (2018), Chengdu (2019), and Tianjin (2020). With the fast development
of web-related technologies, we expect that APWeb-WAIM will become an increas-
ingly popular forum that brings together outstanding researchers and developers in the
fields of the Web and big data from around the world.

The high-quality program documented in these proceedings would not have been
possible without the authors who chose APWeb-WAIM for disseminating their find-
ings. A total of 184 submissions were received and, after the double-blind review
process (each paper received at least three review reports), the conference accepted 44
regular papers (23.91%), 24 short research papers, and 6 demonstrations. The con-
tributed papers address a wide range of topics, such as graph mining, data mining, data
management, topic model and language model learning, text analysis, text classifica-
tion, machine learning, knowledge graphs, emerging data processing techniques,
information extraction and retrieval, recommender systems, and spatial and
spatio-temporal databases. The technical program also included keynotes by M. Tamer
Özsu (University of Waterloo, USA), Huan Liu (Arizona State University, Tempe,
USA), X. Sean Wang (Fudan University, China), and Xiaokui Xiao (National
University of Singapore, Singapore). We are grateful to these distinguished scientists
for their invaluable contributions to the conference program. As a joint conference,
teamwork is particularly important for the success of APWeb-WAIM. We are deeply



thankful to the Program Committee members and the external reviewers for lending
their time and expertise to the conference. Special thanks go to the local Organizing
Committee led by Yi Cai. Thanks also go to the workshop chairs (Yunjun Gao, An Liu,
and Xiaohui Tao), demo chair (Yanghui Rao), industry chair (Jianming Lv), tutorial
chair (Raymond Chi-Wing Wong), publication chair (Junying Chen), local arrange-
ment chairs (Guohua Wang and Junying Chen), and publicity chairs (Xin Wang and
Jianxin Li). Their efforts were essential to the success of the conference. Last but not
least, we wish to express our gratitude to the Webmaster (Jianwei Lu), for all the hard
work, and to our sponsors who generously supported the smooth running of the
conference.

We hope you enjoy the exciting program of APWeb-WAIM 2021 as documented in
these proceedings.

July 2021 Yi Cai
Tom Gedeon

Qing Li
Baltasar Fernández Manjón

Leong Hou U
Marc Spaniol

Yasushi Sakurai
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Abstract. Similarity-preserved hashing has become a popular tech-
nique for large-scale image retrieval because of its low storage cost and
high search efficiency. Unsupervised hashing has high practical value
because it learns hash functions without any annotated label. Previ-
ous unsupervised hashing methods usually obtain the semantic similar-
ities between data points by taking use of deep features extracted from
pre-trained CNN networks. The semantic structure learned from fixed
embeddings are often not the optimal, leading to sub-optimal retrieval
performance. To tackle the problem, in this paper, we propose a Deep
Clustering based Unsupervised Hashing architecture, called DCUH. The
proposed model can simultaneously learn the intrinsic semantic relation-
ships and hash codes. Specifically, DCUH first clusters the deep features
to generate the pseudo classification labels. Then, DCUH is trained by
both the classification loss and the discriminative loss. Concretely, the
pseudo class label is used as the supervision for classification. The learned
hash code should be invariant under different data augmentations with
the local semantic structure preserved. Finally, DCUH is designed to
update the cluster assignments and train the deep hashing network iter-
atively. Extensive experiments demonstrate that the proposed model out-
performs the state-of-the-art unsupervised hashing methods.

Keywords: Deep hashing · Unsupervised learning · Image retrieval

1 Introduction

With the rapid growth of visual data, how to index and retrieve them efficiently
has attracted increasing attention. Exact nearest neighbor search has large time
complexity when dealing with large-scale datasets. In contrast, approximate
nearest neighbor (ANN) search technique can save much time, at the same time
promising good search performance. Tree-based methods such as KD-tree [1]
and R-tree [9] utilize the tree-structured index to speed up the search proce-
dure. However, tree-based algorithms suffer from the curse of dimensionality in
high dimensional feature space. Therefore, researchers focus more on similarity-
preserved hashing algorithms in recent years. Generally, hashing maps the high
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-85899-5_1
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dimensional features into low binary codes while preserving the relative similar-
ities with high probabilities.

Hashing can be categorized into data-independent and data-dependent algo-
rithms. Locality sensitive hashing (LSH) [4,7,13] is a typical data-independent
method. The main idea of LSH is to increase the hashing collision probability
of adjacent data points while mapping the dissimilar data points into different
hashing buckets. Depart from data-independent methods, data-dependent hash-
ing algorithms try to learn hash codes from data. Such data-dependent hash-
ing algorithms can be further divided into supervised and unsupervised methods
according to whether they use the annotated semantic labels. Existing supervised
hashing methods [25,28,29,39] usually construct the semantic similarity supervi-
sion from human-annotated labels to guide the training procedure of hashing func-
tions. With the development of deep learning, many deep learning based super-
vised hashing methods [2,16–18,22,35] have been proposed. Those methods have
significantly improved the search performance compared to traditional models.

On the contrary, unsupervised hashing methods [8,10,24,26,33] usually train
the hash model without any supervised information. The key challenge of unsu-
pervised hashing methods is the lack of semantic labels. In real application, it is
hard to obtain such expensive labels, especially for large-scale datasets. Though
many previous works try to utilize the deep network to capture high-level seman-
tic structure, we found that existing unsupervised deep hashing methods usually
decouple the latent semantic relationship constructing and hash code learning
into individual procedure. For example, [6,12,30,36] first analyze the semantic
similarity through various ways, such as unsupervised clustering, constructing
nearest neighbor graph and word embedding, and then they optimize the hash
codes individually. Intuitively, the hash code learning procedure should be helpful
to the semantic structure learning task because their targets are uniform. One
supposed to make the similar points closer and one supposed to discriminate
similar and dissimilar points. Therefore, we propose a novel unsupervised deep
hashing model called DCUH in this paper. Our architecture alternates between
two stages: clustering and deep hash model learning. With learning more dis-
tinctive hash codes, the network will generate more distinctive deep features.
The optimized features used for clustering can help produce more accurate class
labels. The more accurate pseudo class labels guide to learn more distinctive
hash codes. The contributions of this paper can be summarized as follows:

– We propose a novel unsupervised hashing framework to jointly learn hash
codes and perform clustering. Compared to the existing methods who fix the
feature representation, our model can produce more accurate pseudo labels
to guide the learning of hash codes and generate more discriminative features
for clustering.

– We unveil and utilize the intrinsic semantic structure sufficiently. The hash
codes of the referenced image and its transformed counterpart are supposed to
be closer than arbitrary images. Meanwhile, to preserve the local aggregation
structure, image pairs from the same cluster are supposed to be closer than
those from different clusters.
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– Extensive experiments on three public benchmark datasets prove that our
model can achieve the best performance against the state-of-the-art baselines.

2 Related Work

2.1 Similarity-Preserving Hashing

Similarity-preserving hashing methods map data from high dimensional feature
space into Hamming space with the similarity preserved. Existing learning to
hash methods can be divided into supervised and unsupervised ways according
to whether they use the semantic labels.

Unsupervised hashing methods try to learn hash functions from unlabeled
training data. Spectral Hashing (SH) [33] is a classical traditional unsupervised
hashing algorithm, it preserves the similarity of original features by using the
Laplacian Eigenmaps. Anchor Graph Hashing (AGH) [26] and Discrete Graph
Hashing (DGH) [24] use anchor graph instead of the Laplacian matrix to improve
the computational efficiency and deal with larger scale data. K-means Hashing
(KMH) [10] combines hash codes learning with the k-means clustering algorithm.
Iterative Quantization (ITQ) [8] produces the low-dimensional features via prin-
cipal component analysis (PCA) and then iteratively find a rotation matrix to
map the data to binary codes with minimum quantization error. Supervised
methods aim to learn discriminative and compact hash codes by exploring the
supervised information. Minimal Loss Hashing (MLH) [28] learns hash functions
by minimizing the triplet loss modified from the hinge loss in SVM. Latent
Factor Hashing (LFH) [39], Supervised Hashing with Kernels (KSH) [25] and
Supervised Discrete Hashing (SDH) [29] learn discrete binary hash codes by
minimizing or maximizing the Hamming distances across similar or dissimilar
pairs.

Recently, deep learning based hashing methods have shown remarkable per-
formance in retrieval task. CNNH [35] is the first CNN based hashing algorithm,
it includes two separate stages: generating approximate hash codes by preserving
the pairwise similarities and then simultaneously learning the feature represen-
tation for images as well as the hash functions by predicting the learned hash
codes and discrete class labels. HashNet [2] is an end-to-end framework who
learns binary hash codes from imbalanced data pairs by continuation method.
However, those supervised deep hashing methods depend on human-annotated
semantic labels to train the network. Such labels are expensive to obtain, espe-
cially for large scale dataset. Unsupervised deep hashing methods adopt the
deep architectures to learn hash codes without annotations. Deep Hashing (DH)
[23] develop a multi-layer hierarchical non-linear transformations to map hash
codes. UH-BDNN [5] also build a deep network to encode binary codes and add
the decode layers to reconstruct the input samples. DeepBit [20] suppose the
hash code to be invariant with different rotations. The authors further apply
more geometry transformations including translation and scaling in paper [21].
To make the binary descriptors more distinctive, they also increase the distance
between the descriptors computed from arbitrary images. SADH [30] decomposes
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the learning procedure into three stages and alternates among them. Greedy-
Hash [32] adopt the greedy principle to directly optimize the discrete codes.
DistillHash [37] learns a distilled data set by distilling data pairs with highly
confident similarity signal. [19] propose a Bi-half Net that maximizes entropy
of the binary codes to make the values of the bit are uniformly (half-half) dis-
tributed.

3 Method

3.1 Problem Definition

Given a dataset of images X = {x1, x2, ..., xN}, the purpose is to learn the
binary hash codes B = {b1, b2, ..., bN} ∈ {−1,+1}L = sgn(hθ(X)). The model
generates the positive samples of each original image by applying a variety
of data augmentation transformations. The set of data-augmented images is
denoted as X̂ = {x̂1, x̂2, ..., x̂N} and the corresponding hash code matrix is
B̂ = {b̂1, b̂2, ..., b̂n} ∈ {−1,+1}L = sgn(hθ(X̂)), where x̂i = T (xi) and T (·)
denotes the random data augmentation operations, such as flipping, crop and so
on. As described in the introduction, the hash code should be invariant under
different data augmentations, i.e. B = B̂.

3.2 Framework

The overall framework of our proposed algorithm is shown in Fig. 1. The whole
algorithm consists of two stages. At the first stage, deep features are extracted
from convolutional network. Then those features are used to generate pseudo
labels via unsupervised clustering algorithms. At the second stage, the pseudo
labels are used to guide the softmax classifier training and update the param-
eters of the deep network at the same time. The output hi of the hidden hash
layer are used as the hash codes. The final output of the Softmax layer is the
class prediction y′

i of each sample. The model alternates between the clustering
procedure and the network training procedure. The loss functions of this model
mainly consist of two parts: the classification loss and the discriminative loss. The
classification loss is calculated through the labels predicted by the network and
the pseudo labels. The discriminative loss contains two kinds of discrimination.
The distance between hash codes of the referenced image and its transformed
one should be smaller than other random images from the whole dataset. And
the distance between pairs from the same category should be smaller than those
pairs from different categories. Intuitively, as shown in 1, the yellow solid circle
and dotted circle represent Image A and Image A’ respectively, the dark blue
solid circle and dotted circle represent Image B and Image B’ respectively, and
the baby bule solid circle and dotted circle represent Image C and Image C’
respectively. Dot A and A’ are closer than other points, dot B(B’) is closer to
C(C’) than to A(A’). Following most works, AlexNet [14] is used as the back-
bone network in our architecture. It can be easily replaced by any other network.
More details will be explained in the following subsections.
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Fig. 1. The framework of our proposed model.

3.3 Discriminative Loss

Previous studies [20,21] has demonstrated that effective hash codes being invari-
ant under different data-augmentations. In work [21], the authors minimize the
difference between hash codes which are computed from the referenced image and
the augmented one. Meanwhile, the distance between hash codes computed from
arbitrary images are increased. In this way, the hash codes of the instance-wise
similar images will be concentrated and the hash codes of instance-wise dis-
similar images will be separated. However, image retrieval tasks aim to return
a ranked list of candidate images according to their similarity to the query.
From this view, we suppose that the hash codes should further keep the local
aggregation similarity. That is to say, the images belong to the same cluster are
more similar than those in different clusters. Therefore, motivated by [34,38], a
softmax-variant loss function is used to learn discriminative hash codes. Here bi

denotes the hash code of the original image and b̂i denotes the transformed one.
The probability of bi and b̂i to be close is defined as:

P (bi, b̂i) =
exp(bT

i b̂i/τ)

ΣM
k=1exp(bT

k b̂i/τ)
(1)

where bk denotes the hash code of a negative sample randomly sampled from
the dataset and M is the number of selected negative samples. We choose the
small batch instead of the full dataset for dynamically updating the codes. On
the other hand, the probability of b̂i and other instance hash code bj (j �= i) to
be separated is defined as:

1 − P (bj , b̂i) = 1 − exp(bT
j b̂i/τ)

ΣM
k=1exp(bT

k b̂i/τ)
(2)
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Both (1) and (2) should be maximize. By taking the negative log likelihood of
those probabilities, the problem then becomes to minimize the following loss
function:

LI = −Σ
i
logP (bi, b̂i) − Σ

i
Σ
j �=i

log(1 − P (bj , b̂i)) (3)

Additionally, to preserve the above local aggregation similarity of samples,
The loss function can be written as:

LA = −
∑

i

log

∑
m∈A exp(bT

mbi/τ)
ΣM

k=1exp(bT
k bi/τ)

(4)

where the image set A consists of the images in the randomly selected batch who
belong to the same cluster where the i–th image belong to.

Optimizing the discrete codes directly is a NP-Hard problem, so we introduce
the slack variables instead of binary codes. Then the loss function becomes:

J1=α1(−Σ
i
logP (ui, ûi) − Σ

i
Σ
j �=i

log(1 − P (uj , ûi)))

+ α2(−
∑

i

log

∑
m∈A exp(uT

mui/τ)
ΣM

k=1exp(uT
k ui/τ)

)

+ α3(‖B − U‖22 +
∥∥∥B − Û

∥∥∥
2

2
)

(5)

where ui is the continuous vectors and it is L2 regularized; B = sgn(U+Û
2 ) ∈

{+1,−1}N×L is the hash code matrix.

Effectiveness Proof of the Loss Function. According to the definition of
hamming distance: disth(i, j) = L−bTi bj

2 , where L is the length of hash code.
When the value of bT

i bj becomes larger, the hamming distance between the two
hash codes becomes smaller and the hash codes are more concentrated. On the
contrary, with the value of bT

i bj becomes smaller, the hash codes become more
separated. In another view, bT

i bj/L can be regarded as the cosine similarity
between hash code bi and bj since the L2-Norm of each code is fixed to be

√
L.

The cosine similarity can be used to evaluate the distance between hash codes,
either. Unlike the pair-wise loss and the triplet loss who face the imbalance of
the positive and negative samples, our loss function naturally has discriminative
capacity. On the other hand, the pair-wise similarity loss calculates the loss of
every similar/dissimilar data pairs individually. Similarly, the triplet loss calcu-
lates the loss of every triple independently. Unlike those losses, for each sample,
our loss function considers all positive pairs and negative pairs together.

3.4 Classification Loss

The hash code is supposed to preserve the semantic structure in the original
space. Since there is no semantic labels, the model have to learn semantic rela-
tionship from the unlabeled images. Here the unsupervised clustering algorithm
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is used to generate the pseudo classification labels. After getting the initial deep
features of original images F (0) = {f

(0)
1 , f

(0)
2 , ..., f

(0)
N }, the initial cluster cen-

troids C(0) = {c
(0)
1 , c

(0)
2 , ..., c

(0)
K } can be calculated via K-Means++. For each

sample xi, its pseudo label is yi = argmin
k

dist(c(0)k , f
(0)
i ). The pseudo label

of the augmented image x̂i is assigned the same as xi because they represent
the same things in fact. The model tries to minimize the Cross-entropy loss of
prediction label y′

i, ŷ′
i and pseudo class label yi:

J2 = lCrossEntropy(Y ′, Y ) (6)

The predicted label matrix Y ′ = {y′
1, y

′
2, ...y

′
N , ŷ′

1, ..., ŷ
′
N}, and the pseudo label

matrix Y = {y1, y2, ...yN , y1, ..., yN}.
Combining the above Eqs. (5) and (6), the final objective function can be

obtained:
min J = J1 + βJ2 (7)

To optimize the above objective function, we calculate the gradient and use the
mini-batch stochastic gradient descent (SGD) method to train the network.

3.5 Cluster Reassignments

After updating the parameters of the network, the deep features of original
images can be recalculated as F (1) = {f

(1)
1 , f

(1)
2 , ..., f

(1)
n } and then the centroids

can be updated to C(1) by calculating the means of vectors in each cluster. Then
each sample is reassigned to its closest cluster according to the distance between
the centroids and the data points:

y
(1)
i = argmin

k
dist(c(1)k , f

(1)
i ) (8)

After getting the new pseudo labels, the network can be trained again by cal-
culating the gradient of Eq. (5). The whole learning procedure is summarized in
Algorithm 1.

4 Experiments

We conduct experiments on several public benchmark datasets and show the
results in this section. We first introduce the setup details and then analyze the
experimental results.

4.1 Datasets

We select three public datasets for image retrieval task, including the CIFAR-
10,1 Flickr-25k2 and MS-COCO.3

1 https://www.cs.toronto.edu/∼kriz/cifar.html.
2 http://press.liacs.nl/mirflick.
3 http://mscoco.org.

https://www.cs.toronto.edu/~kriz/cifar.html
http://press.liacs.nl/mirflick
http://mscoco.org
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Algorithm 1. Deep Clustering based Unsupervised Hashing
Input: Training dataset X = {x1, x2, ..., xN}, batch-size M , hyper-parameters α1, α2,

α3, β and hash code length L.
Output: Hash codes B.
1: Initialize the parameters of the network.
2: Extract the deep features of images and perform clustering to get the initial cluster

assignments.
3: for epoch = 0 to max epoch do
4: for iter = 0 to max iter do
5: Randomly sample a mini-batch from the training dataset. Apply random data-

augmentations on each sample.
6: Forward propagating both the original images and the data-augmented

images, predicting the class labels and calculating the hash codes.
7: Updating the parameters of the network via backward propagation by mini-

mizing Eq. 7.
8: end for
9: Recalculating the deep features and the cluster reassignments.

10: end for
11: return B.

– CIFAR-10 is a standard dataset with 60,000 RGB images in 10 classes. Each
class contains 6,000 images with size of 32 × 32. As usual, we randomly select
100 images from each class as the queries and 1,000 images from each class
as the training set. All images except the test set are treated as the retrieval
set.

– Flickr contains 25,000 images collected from the Flickr website. Each image
is annotated with at least one of the 38 concepts provided. We randomly
sample 2,000 images as the test set and the rest images are regarded as the
retrieval set. From the retrieval set, we randomly select 10,000 images as the
training set.

– MS-COCO is a dataset for image recognition, segmentation and captioning.
The current release contains 82,783 training images and 40,504 validation
images. Each image is labeled by some of the 80 categories. Like [2], we
combine the training and validation images and obtain 12,2218 images after
pruning images with no category information. We randomly choose 5,000
images as queries and the rest images are treated as the retrieval set, from
which we randomly sample 10,000 images as the training set.

4.2 Baseline Methods

We compare our DCUH with several state-of-the-art methods, i.e., six shallow
methods: AGH [26], LSH [4], BRE [15], SH [33], SpH [11] and ITQ [8]; six
deep unsupervised hashing methods: UH-BDNN [5], Deepbit [20], SSDH [36],
GreedyHash [32], DistillHash [37] and Bi-half [19].

For all the shallow methods, the codes implemented with MATLAB are
kindly provided by the authors. For the deep method UH-BDNN, we run the



Unsupervised Deep Hashing via Adaptive Clustering 11

experiments with the released code. In order to have a fair comparison, we cite
the results of Deepbit, SSDH and DistillHash on CIFAR-10 and Flickr from the
literature [37]. For GreedyHash [32] and Bi-half [19], we also run the experiments
with the released code by the authors.

4.3 Evaluation

To evaluate the performance of all the hash methods, we adopt three stan-
dard evaluation criteria: Mean Average Precision (MAP), Precision-Recall curves
(PR) and Precision curves with respect to different numbers of top returned sam-
ples (P@N). The MAP is a popular criteria to evaluate the accuracy of retrieval
results. It can be calculated as follows:

mAP =
1

|Q|
∑

q∈Q

(
1
T

R∑

r=1

(δ(r)Precision@r)) (9)

where T denotes the number of ground-truth relevant samples in the database
for the query and R is the length of the returned ranking list. δ(r) indicates that
whether the rth result is relevant to current query and Precision@r denotes the
precision for the top r retrieved samples; Q is the query set. We adopt standard
MAP for all the datasets, R is equal to the size of the database. The Precision-
Recall curve is drawn by computing the Precision and Recall at each position in
the ranking list. And the Precision curve is drawn by computing the Precision
with respect to different numbers of top returned samples. The semantic labels
are adopted as ground truth. If two images share at least one semantic label,
they are considered to be relevant, otherwise they are irrelevant.

4.4 Implementation Details

We initialize the parameters of conv1 − conv5 and fc6, fc7 using the AlexNet
pre-trained on the ImageNet. We add a fully connected hash layer and a Softmax
classification layer. The number of nodes for the hash layer is the length of hash
codes. We set the number of clusters to K = 10, K = 5 and K = 50 for CIFAR-
10, Flickr and MS-COCO, respectively. The learning rate is fixed as 0.001 and
the momentum, batch size and weight decay are set to 0.9, 512 and 0.0005,
respectively. The hyperparameters α1, α2, α3, β are set to 1, 1, 0.5 and 1.8.

For fair comparison, we adopt the deep features extracted from the fc7 layer
of the pretrained AlexNet for all the shallow methods and UH-BDNN as inputs.
The raw pixels are used as the input for our model. We resize the images into 224
× 224. Our proposed model is implemented in PyTorch.4 The data augmenta-
tion methods include RandomResizedCrop, RandomGrayscale, ColorJitter and
RandomHorizontalFlip.

There have been several research results that unsupervised learning benefits
more from bigger models than its supervised counterpart [3]. Therefore, we also
test our model on the CIFAR-10 and Flickr datasets with VGG16 Net [31] to
compare with other deep methods.
4 https://pytorch.org/docs/stable/index.html.

https://pytorch.org/docs/stable/index.html
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4.5 Result Analysis

Results on VGG16. The MAP results of deep methods on VGG16 with dif-
ferent lengths of hash bits on two benchmark datasets are presented in Table 1.
Our experimental settings are the same as DistillHash [37] for fair comparison. It
is clear that our method outperforms the state-of-the-art deep hashing methods
in most time. It can be observed that from Table 1: (1) With the growth of code
length, the performance of our method increases significantly. (2) Compared
with the best baseline deep method Bi-half [19], we achieve improvements 2.22%
on CIFAR-10 dataset with 128 bits and 1.13% in average MAP for different
bits on the Flickr dataset. (3) Compared with other deep methods, our method
achieves greater improvements. Through analyzing the results, we get some con-
clusions: (1) Compared to other methods, GreedyHash and Bi-half have better
performance. It proves that the quantization error have an obvious effect on the
retrieval performance. (2) The MAP of our method nearly doubles that of SSDH
on CIFAR-10 dataset. We think that the main reason is because SSDH try to
construct the similarity graph by evaluating the distances between data points
and deciding whether two samples are similar or dissimilar according to fixed
thresholds. The performance difference between our model and SSDH proves
that adaptively adjusting the learned semantic structure is important.

Table 1. Mean Average Precision (MAP) of Deep Methods with VGG16.

Methods CIFAR-10 Flickr

16 bit 32 bit 64bit 128 bit 16 bit 32 bit 64bit 128 bit

Deepbit [20] 22.04 24.10 25.21 25.30 59.34 59.33 61.99 63.49

SSDH [36] 25.68 25.60 25.87 26.01 66.21 67.33 67.32 67.71

DistillHash [37] 28.44 28.53 28.67 28.95 69.64 70.56 70.75 69.95

GreedyHash [32] 28.50 31.67 34.53 37.28 63.26 63.13 66.50 68.35

Bi-half [19] 41.03 43.61 45.94 47.72 71.66 72.05 72.79 73.77

DCUH-VGG 39.57 45.09 47.08 49.90 72.06 72.83 73.88 75.14

Results on AlexNet. The MAP results with different lengths of hash bits on
three benchmark datasets are presented in Table 2. From this table, it can be
observed that: (1) It is clear that our method outperforms all baselines for all the
datasets. For example, for CIFAR-10 dataset, compared to the best unsupervised
non-deep hashing methods, i.e. ITQ, we achieve improvements of 8.11%, 9.11%
and 6.7% for 32, 64 and 128 bit, respectively. For Flickr dataset, we achieve abso-
lute boosts of 2.76%, 3.17% and 3.84% for 32, 64 and 128 bit, respectively. And
for MS-COCO dataset, we achieve improvements of 1.56%, 2.63% and 3.36%
for 32, 64 and 128 bit, respectively; (2) For most methods, with the growth of
length of hash codes, the performance first increase obviously and then slowly
pace down or even begin to decrease. However, AGH is the special one among
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Table 2. Mean Average Precision (MAP) of Hamming Ranking for Different Number
of Bits.

Methods CIFAR-10 Flickr MS-COCO

32 bit 64bit 128 bit 32 bit 64bit 128 bit 32 bit 64bit 128 bit

AGH [26] 23.32 20.57 19.66 61.47 61.24 59.53 43.63 42.01 42.54

LSH [4] 15.39 17.34 19.37 56.46 57.65 59.12 37.92 40.42 41.72

BRE [15] 22.77 25.37 25.64 59.48 61.75 63.44 42.70 43.58 47.10

SH [33] 18.23 18.16 17.97 58.21 57.92 57.51 40.02 40.43 40.20

SpH [11] 21.50 22.59 23.76 59.82 60.97 61.70 42.67 43.99 45.40

ITQ [8] 27.61 29.10 30.50 62.90 62.98 63.47 47.52 48.65 49.27

UH-BDNN [5] 26.23 27.20 29.13 62.28 62.29 62.48 47.00 48.36 48.41

DCUH 35.72 38.21 37.57 65.66 66.15 67.31 49.08 51.28 52.63

those methods, its performance is better when the hash code length is shorter;
(3) The performances of deep methods are better in most case. By comparing the
shallow methods and deep methods, we can see that deep method UH-BDNN
can surpass shallow methods except ITQ; (4) Through analyzing the experi-
mental results of the three datasets, we found that our model can achieve more
improvements on single-label dataset than multi-label dataset. For example, the
improvements on the CIFAR-10 dataset are much more remarkable than on the
MS-COCO. Maybe it is because that discovering semantic information in single-
label dataset can help more than multi-label dataset.

(a) Precision curve w.r.t. top-N

(b) Precision-recall curve

Fig. 2. The curves of DCUH and other methods on the CIFAR-10 dataset. (Color
figure online)
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Also, we draw the precision-recall and TopN-precision curves for all methods
in Fig. 2 and Fig. 3. The Precision curve (P@N) presents the Precision results over
top-n returned neighbors and Precision-Recall (PR) curve presents the Precision
results over Recall. The full lines denote the deep methods and the dotted lines
denote the shallow models. It clear that DCUH outperforms other methods by
large margins in these figures. For example, Fig. 2 (a)–(b) show the Precision
results over top-n returned neighbors and Precision-Recall curve with 32, 64
and 128 bit hash code length on CIFAR-10 dataset, where n ranges from 1 to
5,000. Figure 3 (a)–(d) show the Precision curve and Precision-Recall curve with
32 and 64 bit hash code length on Flickr dataset, where n ranges from 1 to 5,000.
Figure 3 (e)–(h) show the Precision results over top-n returned neighbors with
32 and 64 bit hash code length on MS-COCO dataset, where n ranges from 1
to 20,000. In all the figures, the result curve of our method (blue) is always the
best one.

(c) Precision-recall curve @ 32 bit(a) Precision curve w.r.t. top-N @ 32 bit (b) Precision curve w.r.t. top-N @ 64 bit (d) Precision-recall curve @ 64 bit

(g) Precision-recall curve @ 32 bit(e) Precision curve w.r.t. top-N @ 32 bit (f) Precision curve w.r.t. top-N @ 64 bit (h) Precision-recall curve @ 64 bit

(a) - (d) Curves on Flickr dataset

(e) - (f) Curves on MS-COCO dataset

Fig. 3. The curves on the Flickr and MS-COCO datasets. (Color figure online)

4.6 Discussion

Visualization. We visualize the hash codes produced by DCUH, ITQ and UH-
BDNN in Fig. 4 by t-SNE [27]. It can be clearly observed that the hash code
generated by DCUH have more discriminative structures than ITQ and UH-
BDNN, and hash codes of images in different categories are more separated.

Ablation Study. In this section, we analyze the influence of different part in
the loss function: the hash code invariant loss, the classification loss and the local
structure loss. We remove them from the objective function separately and the
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(a) DCUH (b) ITQ (c) UH-BDNN

Fig. 4. t-SNE of hash codes learned by DCUH, ITQ and UH-BDNN

results are shown in Table 3. DCUH-LI means that applying our model with the
hash code invariant loss removed from the objective function. The performance
is degraded by 2.56%, 2.98% and 1.38% with 32, 64 and 128 bits, respectively.
DCUH-LA means that applying with local structure loss removed and the results
is slightly lower than the complete model. DCUH-LC means that applying the
model without classification loss. The performance decline sharply by 7.55%,
9.42% and 7.67% with 32, 64 and 128 bits, respectively. Through analyzing the
results, we can find that the classification loss is the most important one.

Table 3. Ablation study of DCUH on the CIFAR-10 dataset.

Methods MAP

32 bit 64bit 128bit

DCUH-LI 0.3316 0.3523 0.3619

DCUH-LA 0.3447 0.3660 0.3676

DCUH-LC 0.2817 0.2879 0.2990

DCUH 0.3572 0.3821 0.3757

5 Conclusion

This paper presented a novel unsupervised deep hashing architecture who learns
the semantic structure and hash codes simultaneously. It first clusters the data
points into several clusters first. And then it learns the deep hash function by
keeping hash codes of data-augmented images to be invariant, minimizing the
classification loss via pseudo labels and preserving the local structure. Finally, it
recalculates the deep features and clusters the data points again. The proposed
model alternates among the above stages with convergence guarantee. The exper-
iment results on three popular benchmark datasets have demonstrated that the
proposed algorithm outperforms the state-of-the-art baselines.
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Abstract. This paper presents FedMDR, a federated model distillation
framework with a novel, robust aggregation mechanism that exploits
transfer learning and knowledge distillation. FedMDR adopts a weighted
geometric-median-based aggregation with trimmed prediction accuracy
on the server-side, which orchestrates communication-efficient training
on both heterogeneous model architectures and non-i.i.d. data. The
aggregation provides resilience to sharp accuracy drop of corrupted mod-
els. We also extend FedMDR to support differential privacy by adding
Gaussian noise to the aggregated consensus. Results show that FedMDR
achieves significant robustness gain and satisfactory accuracy, and out-
performs the existing techniques.

Keywords: Federated learning · Knowledge distillation · Aggregation
mechanism · Differential privacy

1 Introduction

Federated learning (FL) [15] has emerged as a leading deep learning paradigm
where a multitude of clients participate collaboratively to construct a global
model under the orchestration of a central server. In each communication round
of FL, clients synchronize with the server and compute an update on their pri-
vate data. The update is uploaded to the server and averaged to produce the
updated global model. This process repeats until convergence. Clients in feder-
ated learning never explicitly share their private training datasets, thereby keep
their local data autonomy and ensure a basic level of privacy. Federated learning
is also optimized to reduce communication overheads among participants of a
variety of scales [18,24,25].

Nevertheless, federated learning still faces various challenges [12]. Among
them, the heterogeneity problem that occurs in the learning process is on the
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top [11,17]. This includes 1) system heterogeneity, where bandwidth and com-
putational powers of participants vary considerably, 2) statistical heterogeneity
(i.e., non-i.i.d.-ness) [3,10,13], where privately-owned data may come from dis-
tinctive distributions, and 3) model heterogeneity [5,21,27], i.e., the structural
disparity of local models, which is the focus of this paper.

On its original purpose, federated learning asserts that all participants agree
on the particular architecture of a shared global model [15]. In typical customer-
oriented applications, where the clients are a massive number of low-capacity
mobile devices, this assumption holds. However, it is not true in most indus-
trial domain-specific scenarios, where participants are usually eager to design
and utilize their own models [11]. Ergo, the local models are heterogeneous or
even act as black boxes since their details may be concealed by participants for
intellectual property and privacy concerns, which makes the standard practice
of FL inapplicable.

Recently, federated model distillation (FedMD) [11] is introduced, which
enables participants to learn collectively on both heterogeneous models and
private data. With the help of knowledge distillation [8], FedMD establishes
a “translation protocol” for deep neural networks to understand the knowledge
of the others by uploading their logits instead of weight parameters. It is done
without explicitly sharing data or model architectures. FedMD also addresses
the data shortage problem by implementing an additional transfer learning [23]
phase in the pre-training stage. Results on the FEMNIST dataset show a con-
siderable performance gain for individual local models, compared to training
without collaboration.

However, FedMD has its limitations in fault tolerance. Since the heterogene-
ity of models and data, during the collaboration phase, occasional yet sharp
performance fluctuations can occur on one or more local models, which we call
accuracy drop. As shown in Fig. 1(a), in each iteration of FedMD, uploaded logits
are aggregated by an element-wise mean, which is sensitive to model corruption
since the accuracy drop of an individual client may be propagated to the others,
preventing the global model from convergence. Figure 1(b) indicates that con-
vergence become even difficult as the number of training rounds or participants
increases. Therefore, a robust aggregation mechanism is urgently required.

In this paper, we address this problem by introducing a weighted version of
geometric median, which is combined with trimmed mean. During each itera-
tion of the collaborative phase, each party does prediction on a labeled public
dataset. The prediction, together with the model’s accuracy, are transmitted
to the server. A trimmed weight is then evaluated from the accuracy results.
The server subsequently computes an updated consensus such that the sum of
weighted Euclidean distances from the consensus to each model is minimized, i.e.,
the weighted geo-median. Extensive experiments show that our method outper-
forms the original FedMD, mainstream byzantine-tolerant techniques, and näıve
geo-median in both accuracy and robustness.
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Contributions of this paper are as follows:

1. We present FedMDR, a federated model distillation framework with robust
aggregation based on weighted geometric median. It is robust to heteroge-
neous data and model architectures as well as participant scale.

2. We demonstrate the effectiveness of FedMDR on heterogeneous neural
networks and non-i.i.d. data by extensive experiments on the FEMNIST
dataset. Our framework achieves a significant robustness and accuracy gain
of local models, outperforming the original FedMD and some other related
approaches.

3. We further extend our FedMDR framework to privacy-preserving settings
by adding Gaussian noise to the aggregated consensus. We show that the
extended framework satisfies the Rényi [16] differential privacy, and validate
its performance of privacy-preserving on different privacy budgets.

2 Robust Federated Model Distillation

In this section, we first give an overview of our robust federated model distilla-
tion framework, which is denoted as FedMDR in short. Then, we introduce the
weighted geometric median based aggregation mechanism. Finally, we present a
privacy-preserving extension of our framework.

2.1 Problem Statement

We consider the federated learning on a collection of n clients. Each client i owns
a private dataset Di, which can be either with or without the same distribution.
A relatively large labeled public dataset Dpub is accessible to all the clients. For
each client, a local classification model Mi of specific architecture is trained.
Neither the private data nor the parameters of all local models are allowed to
share among clients.

Under this setting, a collaborative framework is adopted to improve each
local model’s performance by utilizing the knowledge of the other clients [11].
Our goal is to ensure such a framework maintains high robustness under various
client scales, heterogeneous model architectures, and non-i.i.d. data.

(b) FedMD (n = 20)(a) FedMD (n = 10)

Fig. 1. Illustration of sharp accuracy
drop impacting convergence. Here, the
orange boxplots indicate accuracy distri-
bution of all local models, and the green
curve represents the accuracy values of a
corrupted local model.

Fig. 2. Performance comparison of
FedMDR with mainstream byzantine-
resilient aggregations. Our method
significantly outperforms Krum and
GeoMed in test accuracy.
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Fig. 3. The collaborative phase of FedMDR. Each client model is pre-trained locally.
The straight lines represent the local data flow, and the curves represent the flow of
updates between clients and the server.

2.2 The FedMDR Framework

Our FedMDR framework is illustrated in Fig. 3 and described in Algorithm 1. It
consists of two phases: the pre-training phase and the collaborative phase.

The pretraining phase utilizes transfer learning to deal with the shortage of
local data. It is performed on every client before the collaborative phase starts.
Pretraining is completed locally: each client i trains its self-designed local model
Mi first on the public dataset Dpub, then on its private data Di.

In the collaborative phase, all clients share the knowledge of their local mod-
els via doing prediction on a fixed-size subset Daux ∈ Dpub called the auxiliary
dataset, which is randomly sampled by the server from the public dataset. The
auxiliary dataset is introduced in practice to control the training cost. The entire
public dataset can be used instead, if the data size is not too large. We show
in experiments that our framework can achieve accurate prediction with a sig-
nificantly smaller (public) auxiliary dataset. In general, the collaborative phase
provides a federated realization of model distillation. During each iteration t of
training, the following four steps are repeated until convergence:

1. Evaluate. Each client evaluates its local model Mi on the auxiliary dataset
Daux. The prediction yt

i on Daux along with its accuracy at
i is transmitted to

the central server.
2. Aggregate. The server calculates an updated global prediction yt+1 based

on the local predictions Y t = {yt
1, ..., y

t
n} and accuracies At = {at

1, ..., a
t
n}, by

performing weighted geometric median based aggregation: yt+1 = Aggre-

gate (Y t, At). The updated global prediction yt+1 is subsequently shared
with all the clients as a public consensus.
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Algorithm 1. FedMDR
Input: Public dataset Dpub, private datasets Di

Output: Trained local models Mi, i = 1, 2, ..., n
1: function Main(Dpub, {Di}n

i=1, {Mi}n
i=1)

2: Pretrain()

3: for Each iteration t do � Loop continues till converges
4: CollaborateOnce()

5: end for
6: return {Mi}n

i=1

7: end function
8: function Pretrain

9: for each client i do
10: Train Mi till convergence on the public dataset Dpub

11: Train Mi on its private dataset Di

12: end for
13: end function
14: function CollaborateOnce

15: Randomly draw an auxiliary dataset Daux from Dpub

16: Evaluate: Each client evaluates local model Mi on Daux, then sends prediction
yt

i and accuracy at
i to the central server

17: Aggregate: Server collects Y t = {yt
i}n

i=1 and At = {at
i}n

i=1, performs
Aggregate

(
Y t, At

)
, then redistributes updated consensus yt+1

18: Digest: Each client aligns Mi to yt+1 by training Mi on Daux till convergence
19: Revisit: Each client improves Mi on Di

20: end function

3. Digest. Each client aligns its local model Mi to the public consensus yt+1

by training Mi on the labeled Daux. Therefore, the knowledge of each client
is shared with the other clients without explicitly exposing its private data.

4. Revisit. Each client improves its local model Mi on its private data Di within
a few epochs.

2.3 Robust Aggregation Mechanism

The procedure of our weighted geometric median based aggregation is described
in Algorithm 2. It utilizes trimmed softmax as the weighting function. Basically,
the aggregation returns a global prediction yt+1 that minimizes the sum of the
weighted Euclidean distances from yt+1 to each individual local prediction.

The weights W t = {wt
1, ..., w

t
n} are used as adjustment terms to the clients’

distances, where models with lower accuracies contribute less or not at all to the
aggregation. The weights are computed by mapping the local accuracies At =
{at

1, ..., a
t
n} to a distribution using trimmed softmax. Here, we use a dynamic

threshold to exclude local models with sharp accuracy drop from the aggregation.
Note that our method is different from byzantine-resilient methods [2], where
the outliers are eliminated by distance. The threshold T is derived from the first
quartile Q1 and the third quartile Q3 of At, specifically,
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Algorithm 2. Weighted geometric median based aggregation
Input: Predictions Y t = {yt

1, . . . , y
t
n} and accuracies At = {at

1, . . . , a
t
n} of local models

Output: The updated global consensus yt+1

1: function Aggregate(Y t, At)
2: W t ← TrimmedSoftmax

(
Y t, At

)

3: yt+1 ← arg miny

∑n
i=1 wt

i

∥
∥yt

i − y
∥
∥
2

4: return yt+1

5: end function
6: function TrimmedSoftmax(At)
7: Calculate the threshold T from At

8: for each client i do
9: if at

i ≤ T then
10: wt

i ← 0
11: Remove at

i from At
i

12: end if
13: end for
14: for each at

i in At do
15: wt

i ← σρ

(
at

i

)

16: end for
17: return W t = {wt

1, ..., w
t
n}

18: end function

T = Q1 − 1.5(Q1 − Q3). (1)

The accuracies At are processed by a softmax function σρ to derive the
corresponding weights:

wt
i = σρ

(
at

i

)
=

exp(ρ · at
i)∑

at
j∈At

tr
exp(ρ · at

j)
. (2)

The hyperparameter ρ is introduced to adjust the weight distribution. Empir-
ically, a larger ρ enables the models with higher accuracy to obtain larger weights.

Any model with a weight below the threshold will be reset to a zero weight.
That is,

wt
i =

{
0, if trimmed, i.e., wt

i < T,

σρ (at
i) , otherwise

. (3)

The distance between the supposed global prediction y and each local predic-
tion yt

i is defined as ‖yt
i − y‖2, where ‖·‖2 represents the Euclidean norm. The

sum of weighted distances between y and Y t by weights W t is as follows:

n∑

i=1

wt
i

∥
∥yt

i − y
∥
∥
2
. (4)
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Therefore, the updated consensus yt+1 is evaluated by solving the following
optimization problem:

arg min
y

n∑

i=1

wt
i

∥
∥yt

i − y
∥
∥
2
. (5)

In our experiments, we show that our trimmed softmax aggregation outper-
forms the original FedMD and some other existing techniques under heteroge-
neous architectures of models and non-i.i.d. data.

2.4 FedMDR with Differential Privacy

In federated learning, differential privacy is the de facto standard approach to
prevent clients’ private information from inference attacks. Here, we show our
FedMDR framework can realize global differential privacy with slight modifica-
tion. Specifically, we add a Gaussian noise with variance β2 to the aggregated
global consensus, that is,

yy+1
DP = yy+1 + N (0, β2). (6)

We will show that FedMDR follows the definition of Rényi differential
privacy [16]. Rényi differential privacy is a natural relaxation form of (ε, δ)-
differential privacy [7]. It is well-suited for expressing guarantees of privacy-
preserving algorithms and for composition of heterogeneous mechanisms. In what
follows, we first introduce the Rényi divergence, which is a metric of two possi-
bility distributions and can be regarded as the generalization of KL-divergence.

Definition 1. (Rényi divergence) [16]. For two possibility distributions P and
Q (with probability density functions p(x) and q(x), respectively) defined over R,
the Rényi divergence of order α > 1 is

Dα(P ||Q) � 1
α − 1

ln
∫

R
q(x)(

p(x)
q(x)

)αdx (7)

The Rényi differential privacy is defined as follows:

Definition 2. (Rényi differential privacy) [16]. A randomized mechanism f :
X �→ Y is said to have (ε)-Rényi differential privacy of order α, or (α, ε)-RDP
for short, if for any adjacent inputs X,X ′ ∈ X , it holds that

Dα(f(X)||f(X ′)) ≤ ε (8)

To show that our weighted geometric median based aggregation with dif-
ferential privacy satisfies Rényi differential privacy, we denote the collection of
clients as C. Since the public dataset Dpub is available to all clients, our aggre-
gation mechanism can be regarded as a randomized query f : C �→ Dpub, which
maps the clients to the predictions of clients’ local models, and the Gaussian
noise N (0, β2) can be regarded as an offset to C. Then, we have



FedMDR: Federated Model Distillation with Robust Aggregation 25

Theorem 1. The weighted geometric median based aggregation with Gaussian
noise N (0, β2) satisifes (α, α

2σ2 )-RDP.

Proof. The Rényi divergence between a Gaussian distribution N (0, β2) and its
offset distribution N (μ, β2) is

Dα(N (0, β2)||N (μ, β2))

=
1

α − 1
ln

∫ ∞

−∞

1
σ
√

2π
exp(

−αx2

2σ2
)

exp(
−(1 − α)(x − μ)2

2σ2
)dx

=
1

α − 1
ln(

σ
√

2π

σ
√

2π
exp(

(α2 − α)μ2

2σ2
))

=
1

α − 1
(α2 − α)μ2

2σ2
=

αμ2

2σ2
.

(9)

The divergence between two adjacent clients is upbounded by

Dα(f(C)||f(C ′)) ≤ sup
C

(Dα(N (0, β2)||N (μ, β2))) =
αμ2

2σ2
. (10)

In classification tasks, the output prediction f(C) is within the range [0, 1]. Set
μ = 1 and subsequently we have

Dα(f(C)||f(C ′)) ≤ α

2σ2
= ε. (11)

It can be shown that the privacy budget εRDP in (α, ε)-RDP can be converted
to the budget εDP in (ε, δ)-DP as follows [16]:

εDP = εRDP − ln 1/δ

α − 1
. (12)

3 Performance Evaluation

3.1 Experimental Setup

We evaluate the FedMDR framework on the MNIST and FEMNIST datasets.
Specifically, MNIST is shared by all clients as the public dataset, and a small
subset of FEMNIST is selected by each client as its private dataset. We consider
the non-i.i.d. case, that is, each client is assigned the letters written by a certain
writer in the training phase [11], while classifying the letters of all writers in the
testing phase.

A collection of 10/20 clients are selected in each experiment. Each client
employs a convolutional neural network (CNN) as its local model for classi-
fication, and all CNNs differ in their numbers of layers and channels, which
represents the heterogeneously designed models in the real world. Starting with
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the transfer learning phase, each model is first pre-trained on the public dataset
till convergence, which typically achieves a test accuracy of 99% on MNIST. It
is then trained on its private dataset. Following that, the models go through
the collaborative training phase. In each iteration of the collaborative training
phase, an auxiliary dataset (i.e., a subset of the public dataset) with a default
size of 5000 is randomly selected. For weighted aggregation, we set the hyper-
parameter ρ = 10 if without extra specification. An Adam optimizer is applied
with an initial learning rate η = 0.001.

In experiments, we mainly evaluate the robustness of FedMDR, and compare
it with existing methods including FedMD [11], Krum [2] and GeoMed [4], in
terms of the accuracies of local models. Results are presented by box plots. Par-
ticularly, we focus on the median and the variance of accuracies. Median reflects
the overall performance of clients (or models), and variance reflects the stable-
ness of the global consensus (the consensus is more stable if the predictions of
local models are more consistent with each other). Methods of higher robustness
are expected to have larger median and smaller variance.

3.2 Experimental Results

Performance on Auxiliary Datasets of Different Sizes. Among the chal-
lenges of federated model distillation, the lack of public data is on the top. Public
datasets in industry depend heavily on cost-expensive manual extracting from
papers and public databases (e.g. the ADMET database [6] for drug discovery)
and labeling. We compare our FedMDR framework with the original FedMD
on auxiliary datasets of different sizes s = 4000, 5000, 6000 and 10000 respec-
tively, with n = 20 clients. The results are shown in Fig. 4. We can see that
FedMD requires a considerably large auxiliary dataset to reach convergence. On
the other hand, our method gets stable and consistent performance on datasets
of different sizes, thus is more robust. In Fig. 4(d), both methods converge at s
= 10000, while our method achieves slightly higher accuracy than FedMD.

Performance Comparison with Other Aggregation Methods. Here we
compare our aggregation method with two other distance-based aggregation
mechanisms: Krum [2] and GeoMed [4]. Krum is a byzantine-resilient aggre-
gation. Given n participants where f are corrupted, Krum requires n ≥ 2f + 3.
At any iteration t after updates (γt

1, ..., γ
t
n) are transmitted to the server, for

each γt
i , the distance from it to each of the n-f -2 closest other updates are

added up to output a score. The update with the smallest score is then chosen
as Krum’s consensus. GeoMed aggregates the local updates in three steps: (1)
partitioning all received local updates into k batches where the mean of each
batch is computed, (2) computing the geometric median of the k batch means,
and (3) taking the geometric median as the new consensus.

The results are shown in Fig. 2 and Table 1. We can see that FedMDR per-
forms best among the three aggregation methods. GeoMed can converge but
its accuracy is much low, partly because of (1) using no weighting and (2) the
batch operation that fails to work well in heterogeneous settings. Krum cannot
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(a) s = 4000 (b) s = 5000

(c) s = 6000 (d) s = 10000

Fig. 4. FedMDR vs. FedMD with 20
clients and 4000, 5000, 6000 or 10000 sam-
ples respectively in the auxiliary dataset.

(a) FedMDR, n = 10 (b) FedMD, n = 10

(c) FedMDR, n = 20 (d) FedMD, n = 20

Fig. 5. FedMDR vs. FedMD for differ-
ent scales of clients and different privacy
budgets. Here, accuracy median values of
local models are illustrated.

Table 1. Performance comparison of different aggregation methods

Method Acc. Med. Acc. Var.

FedMDR 0.813 0.0025

Krum 0.447 0.0120

GeoMed 0.760 0.0021

converge because it rashly excludes benign models from the aggregation. Further
discussion will be given in Sect. 4.

Performance Comparison Under Differential Privacy Settings.
Although federated learning provides basic guarantee on privacy, differential pri-
vacy can protect clients from inference attacks [1]. Here, we compare our method
with FedMD under differential privacy settings of different privacy budgets. The
global budget is set to εRDP = 50, 10, 1 respectively, and then evenly distributed
to each round. Both methods are trained with 10 or 20 clients for 40 rounds.
Results are illustrated in Fig. 5 and Table 2. Our method performs robustly in
differential privacy settings with a marginal accuracy loss, while FedMD fails
to converge even under the lowest privacy budget. We note in Table 2 that the
variance under a larger privacy budget can be slightly higher than a small one
(e.g., pb = 10 and 50). This presumably occurs since the variance is influenced
by both the privacy budget and the heterogeneity of models. The latter takes
the dominance under a larger budget.

Ablation Study. To investigate the effectiveness of geo-median and weighting
in FedMDR, we compare the three settings: FedMDR, FedMDR without geo-
median and FedMDR without weighting. The results are shown in Fig. 6 and
Table 3. By comparing Fig. 6(b) and (d), we can see that weighting can improve
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(d) n = 20

(b) n = 10(a) n = 10

(c) n = 20

Fig. 6. Results of ablation study with
10 or 20 clients. Left: FedMDR vs.
arithmetic mean with weighting. Right:
FedMDR vs. geometric median without
weighting.

Corrupted model

FedMD

Weight+GM (ours)

GM

Most benign models

Few other benign models

Fig. 7. PCA results of predictions show
the difference between benign and cor-
rupted models. Gray dots represent the
predictions of local models and colored
squares represent consensuses of different
aggregation mechanisms.

robustness when there are fewer participants, which is common in real-world
business-oriented tasks. On the other hand, by comparing Fig. 6(a) and (c), we
can see that geo-median takes the dominant role in aggregation as the number
of participants grows. Our method is robust on different sizes of clients because
of combining the merits of both techniques.

Visualization. We train FedMDR with n = 20 and s = 5000. We freeze the
models after 5 communication rounds and collect the update logits of each local
model. The logits represent the soft-labeled predictions on the shared auxiliary
dataset. We flatten the logits by concatenating all the predictions, and perform
principal component analysis (PCA) on the flattened logits of each model, then
visualize the predictions with the first two principal components in Fig. 7. Here,
each gray dot means the prediction of a local model. The value under the dot
is the corresponding model’s prediction accuracy. Dots without label have an
accuracy above 0.7, indicating benign models.

The visualization is to illustrate the difference between benign and corrupted
clients. Most benign clients have predictions more consistent with the consensus,
so they form a cluster (the blue eclipse) in Fig. 7. Some other benign clients (in
the orange eclipse) may temporarily have slightly different predictions from the
consensus due to the heterogeneity of model architecture, making them stay a
little away from the cluster. On the other hand, corrupted clients (in the red
eclipse) often appear as isolated points. The aim of our aggregation is to exclude
the corrupted models while including as many benign models as possible, as
discussed in Sect. 4.

We further illustrate the consensuses of different aggregation mechanisms by
squares of different colors. The orange square indicates the consensus of FedMD
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Table 2. Performance comparison of FedMDR and FedMD for different scales of clients
and different privacy budgets

n pb FedMDR FedMD

Acc. Med. Acc. Var. Acc. Med. Acc. Var.

10 50 0.794 0.0010 0.639 0.0053

10 0.784 0.0004 0.626 0.0042

1 0.761 0.0012 0.561 0.0090

20 50 0.785 0.0005 0.550 0.0046

10 0.775 0.0019 0.573 0.0040

1 0.742 0.0012 0.574 0.0061

Here, n: number of clients, pb: privacy budget. Fed-
MDR has larger accuracy median and smaller accu-
racy variance than FedMD, which means that the
local models of FedMD have worse performance and
more difficult to reach consistent predictions.

Table 3. Results of ablation study

Method n = 10 n = 20

Acc. Med. Acc. Var. Acc. Med. Acc. Var.

FedMDR 0.803 0.0006 0.813 0.0025

W/o weighting 0.738 0.0012 0.811 0.0003

W/o geo-median 0.798 0.0022 0.585 0.0060

aggregated by arithmetic averaging, and the red square is the result of geometric
median (GM). The consensus of our method is the blue square. We can see that
our consensus is farther from the corrupted model while nearer to the center
of cluster formed by most benign models than those of GM and FedMD. This
shows that our aggregation mechanism is more robust.

4 Discussions

Why Combining Weighting and Geo-Median? We try to handle the sce-
narios with clients of different sizes. Geometric median is a mechanism to orches-
trate a large number of participants, while in typical business-oriented tasks with
a relatively small number of participants, weighting is more effective, where each
client plays a relatively larger role in the global consensus, and the negative effect
of a corrupted client may be magnified. We use weighting to alleviate or even
eliminate the negative effect of corrupted models so that the benign models dom-
inate the aggregation result. FedMDR can therefore be stable with even a very
small number of clients.
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About the Weighting Function. The weighting function can be of various
forms. We replace the softmax in our weighting function with sigmoid, and
achieve roughly similar performance. The choice of weighting function depends
on how local models perform. For instance, softmax assumes that few clients
have significantly higher accuracy than the others in the initial communication
rounds, and thereby the weighting function should assign them larger weights.
On the other hand, other weighting functions may assume that a portion of
clients can perform relatively well, which should be assigned a larger weight.
Although such a diversity exists, in most cases where only occasional corrupted
clients occur, we do not expect a significant difference among different weighting
functions.

The Limitation of Eliminating Corrupted Clients by Distance. Cor-
rupted participants usually behave as isolated points lying far away from the
consensus cluster center. Some mainstream byzantine-resilient aggregation tech-
niques [2,26] aim to eliminate the corrupted clients by distance. Such methods
work in conventional federated learning, where the same model is employed.

However, when the architectures of models are heterogeneous, isolated mod-
els are not necessarily corrupted, because the heterogeneous nature can allow
multiple “correct answers”. In other words, although the corrupted models are
commonly outliers, well trained models with higher accuracy (which should be
kept in the aggregation) may also lie outside the cluster, as illustrated in Fig. 7.
Such a situation happens especially in the early of collaborative training phase.
Considering this reason, the central server should not rashly exclude all the iso-
lated models from the aggregation, for wrong exclusion could lead to significant
damage to the model’s performance.

5 Related Work

Federated Frameworks Using Knowledge Distillation. Some existing
works are based on the idea of knowledge distillation. For instance, compressed
federated distillation (CFD) [20] is a novel communication-efficient scheme by
exchanging soft-label predictions instead of model parameters. FAug [9] imple-
ments effective federated model distillation with user-generated non-i.i.d. sam-
ples by augmenting the local data via a collaboratively trained general model.
These works share common grounds with ours in that all share model outputs
instead of parameters. However, these works mainly aim to reduce communica-
tion overheads, none of them considers model heterogeneity.

The recently proposed FedDF [14] is an ensemble distillation scheme for
model fusion, where the heterogeneous settings of models and data are discussed.
In their work, the server distills the ensemble of local teacher models to one
single server student model. Our method is different from FedDF in that the
distillation is performed locally instead of on the server-side, without any extra
global training involved. FedMD-NFDP [22] is a modified FedMD [11] with the
guarantee of local differential privacy. These works, however, are still exposed to
the risk of corrupted accuracy drop, which our method tries to solve.
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Aggregations. In the literature there are some aggregation mechanisms, includ-
ing trimmed mean, Krum, and GeoMed [2,4,26], which are all byzantine-
resilient. Trimmed mean performs aggregation by coordinate-wise arithmetic
averaging, while a fixed fraction of the largest and smallest elements are removed.
Krum and GeoMed are both based on Euclidean distance. We have discussed
them in detail in Sect. 4.

The work of [19] is related to ours, where a geo-median-based aggregation is
proposed. It shows that federated learning can be made robust against byzantine
adversaries by replacing the weighted arithmetic mean with an approximate
geometric median. However, it is different from ours in at least three aspects:
(1) it focuses on robustness against adversarial behaviors, while our work does
not consider adversary. (2) It assumes a shared global model and i.i.d. data across
the clients, while our method focuses on heterogeneous local model architectures
and non-i.i.d. datasets. (3) It assigns the benign clients a fixed weight (equal to
the number of client’s samples), while in our work the weights are dynamically
evaluated from accuracy results.

6 Conclusion

In this paper, we present FedMDR, a robust federated model distillation frame-
work that allows communication-efficient training on heterogeneous model archi-
tectures and non-i.i.d. data, leveraging the idea of transfer learning and knowl-
edge distillation. FedMDR uses a weighted geometric median-based aggregation
by trimmed weights on the server-side, thus provides resilience to sharp accuracy
drop of corrupted models. By extensive experiments, we show that FedMDR can
achieve significant robustness gain and decent accuracy, outperforming the orig-
inal federated model distillation and mainstream byzantine-resilient techniques.
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Abstract. Data augmentation aims to generate new and synthetic fea-
tures from the original data, which can identify a better representation of
data and improve the performance and generalizability of downstream
tasks. However, data augmentation for graph-based models remains a
challenging problem, as graph data is more complex than traditional
data, which consists of two features with different properties: graph
topology and node attributes. In this paper, we study the problem of
graph data augmentation for Graph Convolutional Network (GCN) in
the context of improving the node embeddings for semi-supervised node
classification. Specifically, we conduct cosine similarity based cross oper-
ation on the original features to create new graph features, including new
node attributes and new graph topologies, and we combine them as new
pairwise inputs for specific GCNs. Then, we propose an attentional inte-
grating model to weighted sum the hidden node embeddings encoded by
these GCNs into the final node embeddings. We also conduct a disparity
constraint on these hidden node embeddings when training to ensure that
non-redundant information is captured from different features. Experi-
mental results on five real-world datasets show that our method improves
the classification accuracy with a clear margin (+2.5%–+84.2%) than the
original GCN model.

Keywords: Data augmentation · Graph Convolutional Network ·
Semi-supervised classification

1 Introduction

Data augmentation can create several new feature spaces and increase the amount
of training data without additional ground truth labels, which has been widely
used to improve the performance and generalizability of downstream predictive
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models. Many works have proposed data augmentation technologies on different
types of features, such as images [7,15,28], texts [12,29], vectorized features [6,18],
etc. However, how to effectively augment graph data remain a challenging prob-
lem, as graph data is more complex and has non-Euclidean structures. Graph Neu-
ral Network (GNN) is a family of graph representation learning approaches that
encode node features into low-dimensional representation vectors by aggregating
local neighbors’ information, it has drawn increasing attention in recent years, due
to the superior performance on graph data mining [10,24,25].

For graph-based semi-supervised classification, the goal is to use the given
graph data to predict the labels of unlabeled nodes. The given graph data usu-
ally consists of graph topology, node attributes (also called node features in some
literature, we use node attributes to avoid the confusion with graph feature), as
well as the labels of a subset node. Despite the labels, graph data can be specif-
ically described as two graph features: an adjacency matrix of graph topology
A ∈ R

N×N and a node attribute matrix X ∈ R
N×d, where N is the total number

of nodes, and d is the dimension of node attribute. GNN models conduct on both
of these two features simultaneously and fuse them into the final node embedding
by stacking several aggregation layers. The whole model can be formulated as a
multi-layer graph encoder Z = G(A,X), where Z ∈ R

N×h is the output node
embedding matrix and h is the dimension of node embedding. In this work, we
consider the most popular and representative GNN: Graph Convolutional Net-
work(GCN), proposed by Kipf et al. [10], which is the state-of-the-art model for
semi-supervised node classification. It uses an efficient layer-wise propagation
rule based on a first-order approximation of spectral convolutions on graphs.
The encoder function Z = G(A,X) of a L-layers’ GCN can be specified as:

Z = G(A,X) = σ(Â...σ(Âσ(ÂXW (0))W (1))...W (L)) (1)

where L is the number of layers. W (i) is the weight matrix of the i-th layer of
GCN, σ denotes an activation function. Â = D̃− 1

2 ÃD̃− 1
2 , Ã = A+ IN , IN is the

identity matrix and D̂ is the diagonal degree matrix of Ã.
However, a fact is that as the pairwise input for the GCN model, both the

original features A and X may not be positive correlated with the node labels,
while GCN can not adequately learn the importance of these two features to
extract the most correlated information, which dampens the performance of
GCN on the classification task. Data augmentation can create new feature spaces
and preserve the information in original graph data in multiple facets, some of
which may contribute useful information to node classification. This leads to the
question: besides the original graph features A and X, can we create new pairs of
adjacency matrices and attribute matrices and adaptively choose some effective
ones as new feature inputs for GCN models?

Many prior studies [6,21] in data augmentation are to capture the interac-
tions between features by taking addition, subtraction, or cross product of two
original features, which are suitable for tensorial features. The major obstacle in
graph data is that the original features, graph topology, and node attributes, are
two types of data, one is usually encoded by position in Euclidean space, while
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the other is encoded by node connectivity in non-Euclidean space. It is difficult
to take combination operations on these two features to create new features.
Some work [16,20,26] proposes different strategy of adding or removing edges
to improve the robustness of GCN. However, these augmentation methods are
limited to modifying just a part of the node featuring in the graph, which is
unable to create a brand new feature space of the whole graphs for GCN.

In this paper, we first create multiple new graph topologies and node
attributes from the given graph data and propose different combinations of them
as inputs for specific GCN models. Then, the output node embeddings of dif-
ferent GCN models are assigned with different weights via an attention mecha-
nism, to sum up to the final node embeddings. In the training, an independence
measurement-based disparity constraint is integrated into the objective function
to capture diverse information from different features. In this way, extensive
information from the original graph is encoded into the final node embeddings
to improve the semi-supervised node classification task. The main contributions
of our work are summarized as follows:

1. We propose a graph data augmentation strategy to create new pairwise graph
inputs for the GCN model by designing new node attributes and graph topolo-
gies from the original graph features.

2. We propose an attentional integrating model, which can learn the importance
of different hidden node embeddings encoded from various pairwise graph
inputs via specific GCNs, and integrate them into the final node embeddings.

3. We propose a Hilbert-Schmidt independence criterion-based disparity con-
straint to increase the independence between the node embeddings encoded
from various pairwise graph inputs and capture more diverse information.

4. We conduct experiments to evaluate the performance of our proposed method
on five datasets. Our improvement over original GCN is +2.5%–+84.2%.

2 Proposed Method

In this section, we introduce the graph data augmentation strategies for GCN,
then we investigate the availability of our augmented features by intuitive cases.
Finally, we introduce the whole model including the attentional integrating
model and the disparity constraint.

2.1 Data Augmentation Strategy

Given the original features A and X of graph data, we aim to reconstruct the
whole graph topology and node attributes. A naive and widely used way of data
augmentation operation is cross operation, we first conduct cosine similarity-
based cross operation on A and X to create two new features, which carry the
information of global proximity of nodes with others in the views of local topol-
ogy and node attributes. Specifically, for each row in A and X, we calculate the
cosine similarities of it with all the other rows and concatenate these similarities
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as new features of its corresponding node. Finally, the new features matrices AC

and XC of the graph can be formulated as:

ACij
=

Ai · Aj

‖Ai‖‖Aj‖ , XCij
=

Xi · Xj

‖Xi‖‖Xj‖ . (2)

where AC ∈ R
N×N , XC ∈ R

N×N , ACij
and XCij

is the element in the i-th row
and j-th column of AC and XC respectively, Ai and Xi is the i-th row of A and X
respectively. We consider AC and XC as new node attribute matrices, as for each
node, its corresponding row in AC preserves the information of global structural
proximity with other nodes, and that in XC preserves the information of global
proximity of attribute with other nodes. To some extent, these information can
be regarded as different types of node attributes.

Further, we use the obtained AC and XC to construct k-nearest neighbor
graphs AT ∈ {0, 1}N×N ,XT ∈ {0, 1}N×N , that is, we set the largest k elements
in each row as 1 and set other elements as 0. AT and XT are considered as new
adjacency matrices, where each edge in AT represents the connecting nodes are
similar in local topology and each edge in XT represents the connecting nodes
are similar in node attribute.

Finally, we combine these attribute features and adjacency features to create
9 different inputs for GNN model, as shown in the Table 1:

Table 1. Different combinations of six graph features A,X,AC , XC , AT , XT as inputs
for GNN model. Adj. means the adjacency matrices, Att. means the attribute matrices.
Gi(·, ·) represent the specific GNN encoder for the i-th combination of features.

Adj. Att.

X AC XC

A G1(A,X) G2(A,AC) G3(A,XC)

AT G4(AT , X) G5(AT , AC) G6(AT , XC)

XT G7(XT , X) G8(XT , AC) G9(XT , XC)

Noted that the adjacency matrix is usually very sparse, making the cosine
similarity matrix sparse, too. So before the process of data augmentation, we
first use the update rule proposed in [3] through the original adjacency matrix
A to build new edges between neighbors within 2-hop links, and upgrade A as a
denser high-order adjacency matrix.

2.2 Feature Availability Investigation

To further investigate the availability of the attribute features AC , XC and the
adjacency features AT , XT , we use a simple yet intuitive case to show the distri-
bution and topology of these augmented features and the original graph feature
A and X. Specifically, we first generate a naive graph consisting of 90 nodes,
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and randomly assign 3 labels to these nodes. The edge between every two nodes
with the same label is created with the probability of 0.03, and that between
every two nodes with different labels is created with the probability of 0.01. Each
node has a feature vector of 50 dimensions. We use the Gaussian distribution
to generate the node features, the Gaussian distributions for the three classes
of nodes have the same covariance matrix, but three different centers far away
from each other. Then, we can obtain A and X of this graph and augment new
features AC , XC , AT , and XT via the operations described above. As shown in
Fig. 1, the first line shows the node distribution of the attribute features X, AC ,
and XC , we use t-SNE to project them into 2-dimensional spaces. In the second
line, we draw edges between nodes via the adjacency features A, AT , and XT to
show their different graph topologies, where the node positions are set to be the
same as X.

(a) X (b) AC (c) XC

(d) A (e) AT (f) XT

Fig. 1. Visualization of attribute features: X, AC , and XC , and adjacency features: A,
AT , and XT .

Attribute Features Analysis. The attribute features are X, AC , and XC .
First, we can observe that when X is correlated with labels, XC can preserve
the label correlation better, the nodes with the same labels are located in smaller
groups and with different labels are farther away from others, we believe that
is because XC preserve the global attribute similarity of nodes with others, and
the global information can better improve the node distribution for classifica-
tion. We can also observe that AC can preserve the label correlation inherited
from A, but it presents a totally different node distribution with X as they con-
tain different information. So when the graph topology is correlated with labels
and the original attribute X is not, AC may further improve the accuracy of
classification if it is chosen as node attributes.
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Adjacency Features Analysis. The adjacency features are A, AT , and XT .
We can observe that comparing with A, the topology structure in the augmented
feature AT can preserve the label correlation better, the intra-class connections
are denser than the inter-class connections, that may also because AT preserve
the global structural similarity of nodes with others, and the global informa-
tion can better improve the graph topology for classification. Also, XT provide
another edge generation method that nodes with the higher similar attribute
are more likely to connect each other. So when the node attributes are related
with labels and graph topology is not, XT may further improve the accuracy of
classification if it is chosen as the adjacency matrix.

To summarize, the augmented graph features AC , XC , AT , and XT broaden
the availability of the original graph features X and A, which is important
because the augmentation may improve the distribution of original features for
classification by introducing the global information on the one hand, on the
other hand, when the distribution of some features are not correlated with the
node labels, these information can provide more input choices for GNN model
than the original input pair (A,X), and some of them may contribute more than
(A,X) for the final task.

2.3 Attentional Integration Model

After generating the new inputs for the GNN model, the next question is how
do we select useful features. In the real-world, the graph data is complex, it is
hard to know which of the augmented features and original features is correlated
with the final task, and time-consuming to manually choose the related ones. So
we proposed an attentional integration model, which can automatically assign
high weights on features with high correlation for the final task.

Specifically, given the nine combinations of GNN inputs augmented above,
we use the traditional GNN encoder, Graph Convolutional Network described
in Sect. 2, to encode the i-th inputs into the node embedding matrices Zi:

Zi = Gi(Adji, Atti) (3)

where Zi ∈ R
N×h, h is the dimension of output node embedding, (Adji, Atti) is

the i-th pairwise input specified in Table 1, Gi(·, ·) represent the GNN encoder
for the i-th combination of input, Noted that these nine GNN encoders do not
share parameters, this help to better extract the information of different features,
but without increasing the time complexity and space complexity because the
parameters just increase linearly. Now we obtain the nine output of node embed-
ding matrices: {Z1, Z2, ..., Z9} from the nine GNN encoders. Considering they
may have different correlations with the node labels, we use an attention mecha-
nism on them to learn their corresponding importance weight and weighted sum
them into the final node embedding matrix:

Z = α1 · Z1 + α2 · Z2 + ... + α9 · Z9 (4)
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where {α1, α2, ..., α9} ∈ R
N×1 indicate the attention weights of n nodes with

embeddings {Z1, Z2, ..., Z9}, respectively. To calculate αi, We firstly transform
the embeddings through a nonlinear transformation, and then use one shared
attention parameter vector q ∈ R

h′×1 to get the attention value ωi as follows:

ωi = qT · tanh(Wi · (Zi)T + bi). (5)

where ωi ∈ R
N×1, Wi ∈ R

h′×h is the weight matrix and bi ∈ R
h′×1 is the

bias vector for embedding matrix Zi. Then we can get the the attention values
{ω1, ω2, ..., ω9} for embedding matrices {Z1, Z2, ..., Z9}, respectively. We then
normalize the attention values {ω1, ω2, ..., ω9} for each node by softmax function
to get the final importance weight:

αj
i = softmax(ωj

i ) =
exp(ωj

i )∑9
i=1 exp(ωj

i )
(6)

where αj
i and ωj

i represent the j-th element of αi and ωi, respectively. The larger
αj
i implies the corresponding node embedding in Zi is more important for the

j-th node and should contribute more to its final embedding.

2.4 Objective Function

Disparity Constraint. Firstly, we use the Hilbert-Schmidt Independence Cri-
terion (HSIC) [17], a widely used dependency measurement [13,30], as a penalty
term in the objective function to ensure the nine output node embeddings
{Z1, Z2, ..., Z9} encoded from nine inputs can capture non-redundant informa-
tion. HSIC is simple and reliable to compute the independency between variables
and the smaller the value is, the more independent they are. The HISC of any
two embeddings Zi and Zj is defined as:

HSIC(Zi, Zj) = (n − 1)−2tr(KiHKjH), (7)

where Ki,Kj ∈ RN×N are the Gram matrices with Ki
uv = ki(Zi

u, Zi
v),Kj

uv =
kj(Zj

u, Zj
v), Ki

uv is the element in u-th row and v-th column of Ki, Zi
u is the

u-th row of Zi, and ki(·, ·) is the kernel function. H = I − n−1eeT , where e is
an all-one column vector and I is an identity matrix. In our implementation, we
use the inner product kernel function. Then we set the disparity constraint Ld

by minimizing the values of HISC among nine output nodes embeddings:

Ld =
∑

i�=j

HISC(Zi, Zj). (8)

Optimization Objective. For semi-supervised multi-class classification, We
feed the final node embeddings Z into a linear transformation and a softmax
function. Denote classes set is C, and the probability of node i belonging to class
c ∈ C is Ŷic, the prediction results on whole nodes Ŷ = [Ŷic] ∈ R

N×C can be
calculated as:
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Ŷ = softmax(W · Z + b), (9)

where softmax(x) = exp(x)
∑C

c=1 exp(xc)
is actually a row-wise normalizer across all

classes. Then the cross-entropy loss L for node classification over all labeled
nodes is represented as:

Ll = −
∑

l∈YL

C∑

c=l

YlclnŶlc. (10)

Where YL is the set of node indices that have labels, for each l ∈ L the real
one-hot encoded label is Yl.

Finally, combining the node classification task and the disparity constraints,
we have the following overall objective function:

L = Ll + λLd. (11)

where λ is parameters of the disparity constraint terms. We use a mini-batch
Adam optimizer to minimize L and optimize the parameters in the whole model.
Noted that we use HISC to calculate the pairwise independence, it would take
C2

9 times of calculation of HISC among Z1 to Z9 in each training step, which we
think is unnecessary. We use a sampling strategy to reduce the computation that
randomly selecting t pairs of the output embeddings and summing their HISC as
the disparity constraints loss in each training step. Through multiple iterations,
all combinations of embeddings should be sampled and all embeddings should
be trained to be independent of each other.

Table 2. The statistics of the datasets

Dataset Nodes Edges Classes Attribute

Citeseer 3327 4732 6 3703

UAI2010 3067 28311 19 4973

ACM 3025 13128 3 1870

BlogCatalog 5196 171743 6 8189

Flickr 7575 239738 9 12047

3 Experiments

3.1 Experiment Setting

To adequately examine the effectiveness of our proposed data augmentation
method, we evaluate the performance of our framework on five real-world bench-
mark datasets: Citeseer [10] is research paper citation network, UAI2010 [23] is
a dataset for community detection, ACM [24] is research paper coauthor net-
work extracted from ACM dataset, BlogCatalog [14] is a social network with
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bloggers relationships extracted from the BlogCatalog website, Flickr [14] is a
social network with users interaction from an image and video hosting website.
Basic statistics of these datasets are summarized in Table 2.

We compared our method with some GCN and node classification related
baselines: GCN [10] is a classical semi-supervised graph convolutional network
model, which obtains node representation through multi-layer neighbor aggre-
gation. Chebyshev [4] learns rich feature information by superimposing multiple
Chebyshev filters with GCN. GAT [22] is a graph neural network model that
aggregates node features through multiple attention heads with different seman-
tics. DEMO-Net [27] proposes a generic graph neural network model which for-
mulates the feature aggregation into a multi-task learning problem according
to nodes’ degree values. MixHop [1] utilizes multiple powers of the adjacency
matrix to learn the general mixing of neighborhood information, including aver-
aging and delta operators in the feature space. We also compare our method with
some related graph data augmentation based methods for semi-supervised node
classification. GAug [31] is to leverage information inherent in the graph to pre-
dict which non-existent edges should likely exist, and which existent edges should
likely be removed in the original graph to produce modified graphs to improve
the model performance. MCGL [5] assigns pseudo-labels to some nodes in each
convolutional layer, and improves the performance of the model by expanding
the training set.

The weights of parameters are initialized like the original GCN [10] and input
vectors are row-normalized accordingly [8]. For our model, we train nine 2-layer
GCNs with the same hidden layer dimension(h1) and the same output dimension
(h2) simultaneously, where h1 of the UAI2010, BlogCatalog, and Flickr is 256
and the out dimension h2 is 128. The h1 and h2 of ACM and Citeseer are 512
and 256 respectively. We use 5e − 4 learning rate with Adam optimizer, the
dropout rate is 0.5, weight decay is 1e − 4. In addition, the hyper-parameter k
for constructing k-nearest neighbor graphs is 4, t for sampling embeddings pairs
is 8. For the baselines, we set the dimension of node embeddings in five datasets
same as the setting of out method, and the other hyper-parameter setting are
based on default values or the values specified in their own papers. We choose
the number of labeled nodes per class as 20/40/60 respectively for training, and
500 nodes are used for validation and 1000 nodes for testing. All methods are
repeatedly run 5 times, the average results are reported to make sure the results
can reflect the performances of methods.

3.2 Semi-Supervised Classification

The semi-supervised node classification results are reported in Table 3. We report
the Accuracy (ACC) and macro F1-score (F1) of the classification results. From
the results, we can observe that (1) our proposed method achieves the best perfor-
mance on all datasets with all label rates, showing the superiority of our method
in improving the semi-supervised node classification. (2) Our method consis-
tently outperform the original GCN on all five datasets, the improvement of ACC
over Citeseer, UAI2010, ACM, BlogCatalog, Flickr is {3.0%–6.1%, 41.3%–44.9%,
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Table 3. Results of semi-supervised node classification(%). (Bold: best. L/C is the
number of labeled nodes per class. The results of some baselines are taken from [25].)

Datasets Citeseer UAI2010 ACM BlogCatalog Flickr

L/C Method ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

20 GCN 70.30 67.50 49.88 32.86 87.80 87.82 69.84 68.73 41.42 39.95

Chebyshev 69.80 65.92 50.02 33.65 75.24 74.86 38.08 33.39 23.26 21.27

GAT 72.50 68.14 56.92 39.61 87.36 87.44 64.08 63.38 38.52 37.00

DEMO-Net 69.50 67.84 23.45 16.82 84.48 84.16 54.19 52.79 34.89 33.53

MixHop 71.40 66.96 61.56 49.19 81.08 81.40 65.46 64.89 39.56 40.13

GAug 73.30 70.12 52.96 49.82 90.82 89.44 77.60 75.43 68.20 67.55

MCGL 66.88 63.26 42.56 24.78 90.95 91.01 54.22 50.15 15.67 15.54

Ours 74.60 70.20 72.20 60.87 91.90 91.81 84.10 84.60 76.30 76.27

40 GCN 73.10 69.70 51.80 33.80 89.06 89.00 71.28 70.71 45.48 43.27

Chebyshev 71.64 68.31 58.18 38.80 81.64 81.26 56.28 53.86 35.10 33.53

GAT 73.04 69.58 63.74 45.08 88.60 88.55 67.40 66.39 38.44 39.94

DEMO-Net 70.44 66.97 30.29 26.36 85.70 84.83 63.47 63.09 46.57 45.23

MixHop 71.48 67.40 65.05 53.86 82.34 81.13 71.66 70.84 55.19 56.25

GAug 74.60 71.32 55.26 53.36 91.24 91.01 79.46 77.79 73.24 72.28

MCGL 69.48 65.98 41.93 25.72 91.10 91.13 54.74 51.24 17.82 17.06

Ours 75.50 71.58 75.10 69.70 92.10 91.94 89.20 89.06 80.10 79.36

60 GCN 74.48 71.24 54.40 34.12 90.54 90.49 72.66 71.80 47.96 46.58

Chebyshev 73.26 70.31 59.82 40.60 85.43 85.26 70.06 68.37 41.70 40.17

GAT 74.76 71.60 68.44 48.97 90.40 90.39 69.95 69.08 38.96 37.35

DEMO-Net 71.86 68.22 34.11 29.05 86.55 84.05 76.81 76.73 57.30 56.49

MixHop 72.16 69.31 67.66 56.31 83.09 82.24 77.44 76.38 64.96 65.73

GAug 75.48 72.22 55.92 54.08 92.06 91.81 81.81 79.84 75.68 74.24

MCGL 74.02 70.69 44.30 22.46 92.03 92.04 55.24 49.41 22.36 21.28

Ours 76.70 72.88 76.90 69.79 92.80 92.75 89.70 89.53 82.29 82.85

2.5%–4.6%, 20.4%–25.1%, 71.5%–84.2%}, respectively. Indicating that the aug-
mented graph features contain more useful information than original graph fea-
tures and help to node classification. (3) We noticed that two graph augmentation
methods GAug and MCGL perform well on some datasets, but also fail in some
datasets, while our method consistently performs well on all datasets, showing that
our whole framework is robust on different types of graphs.

We further report the visualization of learned node embeddings of the Cite-
seer, UAI2010, and ACM datasets in Fig. 2. We use t-SNE to project the final
node embeddings of our method and original GCN into 2-dimensional spaces
and color nodes differently according to their labels. We can observe that the
boundaries between different classes in our method are sharper than the original
GCN, and nodes in the same class are more concentrated, especially in the Cite-
seer dataset, which proves our method can learn better node representations to
improves the node classification performance of original GCN.
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(a) GCN(Citeseer) (b) GCN(UAI2010) (c) GCN(ACM)

(d) Ours(Citeseer) (e) Ours(UAI2010) (f) Ours(ACM)

Fig. 2. Visualization of the learned final node embeddings on ACM, UAI2010, and
Citeseer datasets. (L/C = 20)

3.3 Attentional Integration Model Analysis

We design nine combinations of features as inputs of GCN models and learn
nine specific node embeddings for each node, then each embedding is associated
with the corresponding attention values by our proposed attentional integrating
model. Thus, we conduct attention distribution analysis on the ACM, UAI2010,
and Citeseer datasets in Fig. 3, we report the Box-plots of the learned attention
value distributions of all nodes respectively for nine GCN models {G1, ..., G9}.
We can observe that the average of attention values for nine input combinations
are evidently different, some of the combinations may have larger attention val-
ues than others, For example in ACM, the attention values of G1, G5, and G9 are
larger than others, which implies that the corresponding augmented inputs of
(A,X), (AT , AC), and (XT ,XC) contain more valuable information than other
inputs for the classification task. Also, we can observe that between different
datasets, the same combination input may be quite different in attention values,
which proves that our proposed attentional integrating model is able to adap-
tively find and assign larger attention value for the important information on
different datasets.

In Fig. 4, we further analyze the changing trends of attention values for dif-
ferent input combinations in the increasing of training epochs. We report the
results of ACM, UAI2010, and Citeseer datasets as examples, we can observe
that the average attention values of different combinations gradually increase or
decrease when training, and finally converge to a relatively stable value. This
phenomenon proves that the proposed attentional integrating model has a great
fitting capability to learn attention values on different datasets.



44 Z. Tang et al.

(a) Citeseer (b) UAI2010 (c) ACM

Fig. 3. Analysis of attention distribution. (L/C = 20)

(a) Citeseer (b) UAI2010 (c) ACM

Fig. 4. The attention changing trends w.r.t epochs. (L/C = 20)

(a) G1(A,X) (b) G2(A,AC) (c) G3(A,XC)

(d) G4(AT , X) (e) G5(AT , AC) (f) G6(AT , XC)

(g) G7(XT , X) (h) G8(XT , AC) (i) G9(XT , XC)

Fig. 5. Visualization of hidden node embeddings on ACM datasets. (L/C = 20)
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We also demonstrate the distribution of the output node embeddings of nine
combination inputs when the model has converged. Figure 5 shows the embed-
ding distributions of the ACM dataset projected by t-SNE. It can be observed
that the node embeddings Z1, Z5, and Z9 encoded from G1(A,X), G5(AT , AC),
and G9(XT ,XC) is obviously well classified into three classes, so the learned
attention of them in Fig. 3 is larger than others. It proves that our designed
graph features can also capture useful information for node classification and
the attentional integration model can adaptively integrate different information
from multiple input features to improve the final classification results. Also,
the distributions of nine node embeddings are significantly different from each
other, showing the effectiveness of our designed disparity constraint in keeping
the dependency of different embeddings.

3.4 Parameter Sensitivity

The parameter k introduced in Sect. 2.1 is used to adjust the sparsity of our
augmented features AT and XT . In Fig. 6, we evaluate how the k impacts the
performance of our method on ACM, UAI2010, and Citeseer datasets with the
number of training nodes as 20/40/60, respectively. We report the ACC of our
method with various numbers of k ranging from 2 to 9 and other parameters
remaining the same. From the figures, we observe that when k was small, the
accuracy performance of our model is relatively limited, demonstrating that a
smaller size of k led to the augmented adjacency features sparser and information
loss. When k is increased to 4 or 5, our model can gain the highest accuracy
results. However, when k is too large, the performance decreases slightly, which
may probably because denser augmented adjacency features may introduce more
noisy edges. In summary, properly setting the size of k can help to generate
robust features to improve the performance of our method.

(a) Citeseer (b) UAI2010 (c) ACM

Fig. 6. Analysis of parameter k.

4 Related Works

Graph data augmentation has drawn increasing attention in graph learning
recently, it can create new graph data to improve the generalization of graph
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models, especially the GNN models. Existing graph augmentations mainly focus
on augmenting graph structures by modifying local graph structure [2,9,16].
[32] introduce data augmentation on graphs and present two heuristic algo-
rithms: random mapping and motif-similarity mapping, to generate more weakly
labeled data for small-scale benchmark datasets via heuristic modification of
graph structures. [11] propose a simple but effective solution, FLAG, which iter-
atively augments node features with gradient-based adversarial perturbations
during training, and boosts performance at test time. [25] construct a feature
graph and propose an adaptive multi-channel graph convolutional networks to
improve the node embeddings. [31] shows that neural edge predictors can effec-
tively encode class-homophilic structure to promote intra-class edges and demote
inter-class edges in given graph structures, and their leverages these insights to
improve performance in GNN-based node classification via edge prediction. [26]
present the Node-Parallel Augmentation scheme, that creates a ‘parallel uni-
verse’ for each node to conduct data augmentation. [19] proposed GINN that
uses supervised and unsupervised data to construct a similarity map between
points in the dataset, and rebuild them to expand the dataset.

5 Conclusion

In this paper, we study to improve the performance of GCN on semi-supervised
classification via graph data augmentation. We create new attribute and adja-
cency features base on original graph features and pairwise combine them as
inputs for specific GCNs, then use attention mechanism and disparity constraint
to integrate diverse information from the GCNs’ outputs to the final node embed-
dings. From the experiments, our proposed method can better extract the rich
information of graphs and improve the qualities of node representations.
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Abstract. In this paper, we study the task of generating long and coher-
ent text. In the literature, Generative Adversarial Nets (GAN) based
methods have been one of the mainstream approaches to generic text
generation. We aim to improve two aspects of GAN-based methods in
generic text generation, namely long sequence optimization and semantic
coherence enhancement. For this purpose, we propose a novel Multi-Level
Generative Adversarial Networks (MLGAN) for long and coherent text
generation. Our approach explicitly models the text generation process at
three different levels, namely paragraph-, sentence- and word-level gen-
eration. At the top two levels, we generate continuous paragraph vectors
and sentence vectors as semantic sketches to plan the entire content.
While, at the bottom level we generate discrete word tokens for realizing
the sentences. Furthermore, we utilize a Conditional GAN architecture to
enhance the inter-sentence coherence by injecting paragraph vectors for
sentence vector generation. Extensive experiments results have demon-
strated the effectiveness of the proposed model.

Keywords: Generative Adversarial Network · Text generation

1 Introduction

The task of generic text generation is aimed to generate realistic text without
inputting any condition or constraint. A main challenge for generic text gen-
eration is that it places too much burden on the generative model to capture
complex semantic and structural features underlying the data distribution [5].
Recurrent Neural Network (RNN) based methods maximize the log-likelihood of
each ground-truth word given prior observed words. It has shown that they are
likely to suffer from exposure bias [6]. Hence, error accumulates as the sentence
grows in length, resulting in limited capacities in generating long text.
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In recent years, Generative Adversarial Nets (GAN) [2,7,21,40] have been
applied to improve the quality of the generated text. GAN matches the distribu-
tion of real data by introducing an adversarial game between a generator and a
discriminator. However, there are still two major issues with GAN based meth-
ods on text generation. First, it is difficult to optimize GAN over long sequences
with sparse, delayed rewards [7]. In prior studies [40], the discriminator can only
provide the signal whether a sequence is real or not. Such a kind of feedback
signal is not effective to sufficiently improve the generator, especially in a dis-
crete generation process. Second, it is not easy to enforce the semantic coherence
of long text in existing GAN-based approaches. Since these approaches usually
decode the token in a sequential manner, the overall semantics of the generated
text are likely to be divergent for generated text.

Considering these two issues, we design a multi-level generation process for
improving GAN-based generic text generation methods. Our solution is inspired
by the writing way of real users. For example, a writer usually first conceives
the main idea (level 1), then designs the content flow or structure (level 2), and
finally considers the grammar and word usage (level 3). Indeed, it has been widely
recognized that there are multiple levels in the writing process [14,32], where
level 1 and 2 are usually referred to as content planing and level 3 is referred
to as sentence realization. In order to generate high-quality text, we believe an
ideal text generation method should be able to mimic the real writing process and
fulfill the goal at each level. Based on such an idea, we consider a three-level text
generation process, where a paragraph vector (i.e., embedding) is first generated
to summarize the overall semantics of the content, then sentence vectors (i.e.,
embeddings) are further generated based on the paragraph vector, and finally
sentences are realized by word generation. Via such a process, we would like to
enhance the capacity of GAN-based approaches on long text generation.

To this end, in this paper, we propose a novel Multi-Level Generative Ad-
versarial Networks (MLGAN) for long and coherent text generation. As shown
in Fig. 1, our approach explicitly models the text generation process at three dif-
ferent levels, namely paragraph-, sentence- and word-level generation. At the top
two levels, we generate continuous paragraph and sentence vectors as semantic
sketches to plan overall semantics of the entire content (i.e., content planning).
While, at the bottom level we generate discrete word tokens for realizing the
sentences (i.e., sentence realization). In this way, we decompose long text gener-
ation into multi-level smaller tasks, which are easier to learn. In order to enforce
the coherence, the inter-sentence coherence has been enhanced by Conditional
GAN [30] which can incorporate high-level paragraph vectors in the generation
of sentence vectors. Each discriminator is designed to provide two kinds of sig-
nals, i.e., whether the outputs are realistic or not and the outputs go well with
the conditions or not. Finally, for sentence realization, we adopt the Gumbel-
Softmax trick [10] for training the word generator on discrete data. It has been
shown that Gumbel-Softmax can deal with the non-differentiable issue with the
discrete data and overcome the unstable training in reinforcement learning [29].

To our best knowledge, it is the first GAN-based model that follows a multi-
level text generation process for generating long and coherent text. We effectively
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address the two issues of existing GAN-based text generation models through
long sequence optimization and semantic coherence enhancement. Extensive
experiments on Chinese poetry and movie review datasets demonstrate that
our proposed model is more capable of producing high-quality text compared
with several competitive baselines.

2 Preliminaries

We consider the task of generating long text in the form of paragraphs consisting
of multiple sentences, denoted by p = {si : 〈wi,1, · · · , wi,t, · · · , wi,ni

〉}m
i=1, where

wi,t (from vocabulary V) denotes the t-th word of the i-th sentence si, ni is the
length of the i-th sentence and m is the number of sentences in a paragraph
p. For convenience, we adopt bold-fonts notations wi,t, si and p to denote the
low-dimensional representations of word wi,t, sentence si and paragraph p, called
word vectors, sentence vectors and paragraph vectors, respectively. Such vectors
can be learned or inferred using various text representation learning methods [3,
26].

Different from prior GAN-based studies on long text generation [7], our text
generation process is planned at three different levels: a paragraph vector is
first generated to summarize the overall semantics of the content, then sentence
vectors are further generated conditioned on the paragraph vector, and finally
sentences are realized by word generation. Such a generation process naturally
follows the way how regular writing is performed by real users. To model this
process, we design a multi-level generative adversarial network, where different
generators and discriminators are incorporated for producing paragraph vectors
(continuous), sentence vectors (continuous) and words (discrete). Formally, we
let GP

θP
/DP

φP
, GS

θS
/DS

φS
and GW

θW
/DW

φW
denote the generator/discriminator com-

ponents at the paragraph, sentence and word levels, respectively, which are with
different parameters θ∗ and φ∗.

In text generation, content planning is an essential stage that refers to how
to select, arrange and structure the content [8,28]. However, such a stage has sel-
dom been considered by previous GAN-based approaches of a single generation
process. As a comparison, our approach explicitly generates paragraph vectors
and sentence vectors to plan the content flow. Different from previous work [19]
that adopts topic words or keyphrases as semantic sketches, our sketches are
continuous embeddings (i.e., paragraph and sentence vectors), which are more
flexible and can be automatically learned.

3 Methodology

In this section, we present the proposed Multi-Level Generative Adversarial
Networks (MLGAN) for long and coherent text generation. Figure 1 presents
an overview illustration of the proposed model. Next, we will first discuss how
to produce paragraph vectors and sentence vectors (called semantic sketch) to
instruct the generation of the entire content flow, and then describe the sentence
realization conditioned on semantic sketch.
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Fig. 1. Overview of the proposed Multi-Level Generative Adversarial Network.

3.1 Semantic Sketch Generation

In this part, we study how to generate the paragraph vectors and sentence vec-
tors. The generated paragraph vector, encoding the core semantics for the entire
content, will be used to enforce the inter-sentence coherence, and the generated
sentence vectors are used to instruct the word generation.

Paragraph Vector Generation. Following a similar way for image genera-
tion [41], we adopt the adversarial learning for generating paragraph vectors,
where a generator generates fake samples and a discriminator tries to discrimi-
nate between real and fake samples. In order to obtain real samples (paragraph
vectors), we need to encode real texts. Here, we adopt the state-of-the-art bi-
directional language model, BERT [3], to extract the paragraph-level features of
texts. For a real (training) paragraph p, we feed p into BERT encoder and obtain
the paragraph vector p ∈ R

dP . Note that the implementation of the paragraph
encoder is flexible and indeed independent of our approach, and we can adopt
XLNet [39] or other hierarchical text encoders [35] for learning embeddings of
longer text.

The paragraph generator GP
θP

is built upon a Multi-Layer Perceptron (MLP)
based network. We first sample a noise input z ∈ R

dZ from a normal distribution
N (0, 1). Then, we pretrain GP

θP
to produce fake paragraph vectors for fitting the

real distribution by utilizing Euclidean distance as follows:

min
θP

E
z∼N (0,1)

min
pj∼ppara,1≤j≤b

‖GP
θP

(z) − pj‖2, (1)

where ppara denotes the real distribution of paragraph vectors, and the latter
min function means finding the nearest pj to GP

θP
(z) among b samples. In order

to improve efficiency, we employ an efficient nearest neighbor search in high-
dimensional space algorithm [9]. Finally, we utilize the discriminator DP

φP
to

distinguish fake paragraph vectors from the realistic ones. In the adversarial
training, the generator and discriminator play a minimax game as follows:

min
θP

max
φP

E
p∼ppara

[
log(DP

φP
(p))

]
+ E

z∼N (0,1)

[
log(1 − DP

φP
(GP

θP
(z)))

]
. (2)
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Sentence Vector Generation. Similar to paragraph-level generation, we can
set a sentence generator GS

θS
and sentence discriminator DS

φS
, and generate the

sentence vectors in a sequential manner. Here, we adopt the same method as
paragraph vectors to extract the ideal sentence vectors of texts. To be specific, we
apply an LSTM-based RNN to implement the sentence generator. Considering
the paragraph vector contains the overall information of a text, we take p as
input in sentence generator at each time step, which further enhances the inter-
sentence coherence. Let hS

i ∈ R
dS denote a dS-dimensional hidden vector for the

i-th sentence, which is computed via:

hS
i = LSTM(hS

i−1,p). (3)

Then we use an affine transformation to generate the i-th sentence vector
ŝi ∈ R

dS :ŝi = W S
l hS

i + bS
l , where W S

l and bS
l are the learnable parameter

matrix or vector. We compute the Euclidean distance between the real and
generated sentence vectors as the pretrained loss function of GS

θS
:

Lpre(GS
θS

) =
m∑

i=1

‖si − ŝi‖2, (4)

where m is the number of sentences in a paragraph.

Enforcing Inter-Sentence Coherence. Given the sentence generator
described above, we can follow Eq. 2 for adversarial training. However, such
a way is likely to generate incoherent text, since coherence is explicitly modeled.
Therefore, we propose to utilize the conditional adversarial training for sentence
vector generation conditioned on paragraph vectors. In this way, the discrimi-
nator DS

φS
would not only determine whether the sequence of sentence vectors

(denoted by ŝ) is realistic or not, but also distinguish whether ŝ is matched
with the paragraph vector p or not. Specially, we adopt the Conditional Gen-
erative Adversarial Nets (CGAN) [27,30] in our approach. We decompose DS

φS

into two parts: unconditional loss representing whether ŝ is real and conditional
loss representing whether ŝ and p are matched. To implement the discriminator,
we utilize Convolutional Neural Networks (CNN) [12] to extract sentence fea-
tures of ŝ, denoted by cS . To obtain the unconditional loss, we apply an affine
transformation followed by a sigmoid function via:

DS
φS

(ŝ) = σ(wS
u � cS + bS

u), (5)

where σ(x) = 1
1+e−x and “�” denotes the element-wise product. To determine

whether p and ŝ are matched, the conditional loss is computed as follows:

DS
φS

(ŝ,p) = σ(wS
c � [

(W S
p cS) � p

]
+ bS

c ). (6)
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where “�” denotes the element-wise product. Hence, the objective function of
the discriminator consists of two parts:

L(DS
φS

) = − E
s∼psent|para

[
log(DS

φS
(s))

] − E
ŝ∼GS

[
log(1 − DS

φS
(ŝ))

]

− E
s∼psent|para

[
log(DS

φS
(s,p))

] − E
ŝ∼GS

[
log(1 − DS

φS
(ŝ,p))

]
, (7)

where psent|para denotes the distribution of real sentence vectors given a par-
ticular paragraph vector and GS denotes the generated distribution of sentence
vectors. Finally, the generator GS

θS
is trained to generate both realistic and eli-

gible sentence vectors that match p. Accordingly, the loss function of GS
θS

is
computed as follows:

L(GS
θS

) = − E
ŝ∼GS

[
log(DS

φS
(ŝ))

] − E
ŝ∼GS

[
log(DS

φS
(ŝ,p))

]
. (8)

3.2 Sentence Realization

Given the generated sentence vectors, we now study how to realize the sentences
by word generation. In specific, we only discuss the case of a single sentence,
i.e., how to generate the words 〈wi,1, · · · , wi,t, · · · , wi,ni

〉 in the i-th sentence si

based on sentence vector si.

Word Generation. Different from the above process, word generation is a
discrete process. Following [40], we adopt the classic LSTM-based RNN as the
word generator. For sentence si, let hW

i,t denote a dW -dimensional hidden vec-
tor for the t-th word token, which is computed via: hW

i,t = LSTM(hW
i,t−1,xi,t),

where xi,t = si ⊕ wi,t−1, and wi,t−1 denotes the embedding of the previous
word wi,t−1, si denotes the current sentence vector, and “⊕” denotes the vector
concatenation. In this way, the semantics encoded in sentence vector si can be
utilized at each time step, enforcing the intra-sentence coherence. We apply an
affine transformation followed by a softmax function to derive the generative
probability of the t-th word wi,t:

oi,t = WWhW
i,t + bW , (9)

ŷi,t = softmax(oi,t), (10)

where oi,t is the output logits and ŷi,t is the probability distribution of |V|-
dimension. Therefore, we aim to boost the log likelihood of the generation prob-
ability in the pretraining process:

Lpre(GW
θW

) =
m∑

i=1

ni∑

t=1

H(yi,t, ŷi,t), (11)

where yi,t is the one-hot vector representation of word wi,t and H denotes the
cross entropy loss function.
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Word-Level Adversarial Training. When generating sentence words, the
discrete outputs from the generator make it difficult to pass the gradients from
the discriminator to the generator, so-called non-differentiable issue. To deal
with this issue, we apply the Gumbel-Softmax, a continuous distribution on the
simplex that can approximate categorical samples [10]. We first sample a vector
gi,t from the i.i.d. standard Gumbel distribution. Then, the sampling in Eq. 10
can be reparametrized by relaxing the discreteness of softmax function as follows:

ŷi,t = softmax
(oi,t + gi,t

τ

)
, (12)

where ŷi,t ∈ R
|V| denotes the reparametrized probability and τ > 0 is a tunable

parameter to make a balance between the generation quality and diversity [29].
With the Gumbel-Softmax relaxation, we are able to back-propagate from the
discriminator DW

φW
to the generator GW

θW
. According to the distribution ŷi,t, we

can derive the corresponding embedding for the t-th token by a weighted average
of word embeddings:

ŵi,t = E · ŷi,t, (13)

where E ∈ R
dW ×|V| is the word embedding lookup matrix.

Similar to sentence vector generation, we adopt CGAN to improve our word-
level discriminator conditioned on the given sentence vector si. In the discrim-
inator, we first obtain the word embedding for each word wi,t (Eq. 13) in the
sentence si, and then combine them as a sequence of word embeddings, denoted
by {ŵi,t}. We compute the unconditional loss to determine whether the sequence
of word embeddings is realistic or not, as well as, the conditional loss to distin-
guish whether {ŵi,t} and si are matched or not. Similar to Eq. 5 and 6, we
apply a CNN-based feature extractor to extract features cW

i from the i-th sen-
tence {ŵi,t} and then make the judgement based on cW

i to implement the word
discriminator:

DW
φW

({ŵi,t}) = σ(wW
u � cW

i + bW
u ), (14)

DW
φW

({ŵi,t}, si) = σ(wW
c � [

(WW
p cW

i ) � si

]
+ bW

c ).

The loss functions for optimizing discriminator and generator are in a similar
way as in Eq. 7 and 8.

3.3 Discussion and Learning

We decompose the generic text generation process into three different levels.
Instead of only relying on the words, we utilize paragraph and sentence vectors
learned from text encoders (e.g., BERT) as additional supervision signals for
generating high-level semantics. In order to associate the three levels, we uti-
lize the Conditional GAN to incorporate higher-level semantics into lower-level
generation. Another benefit is that we can focus on the content generation in a
single sentence. Since only word-level optimization is discrete in our approach,
it becomes more controllable and easier to learn in a shorter sequence.
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Table 1. Statistics of our datasets. ASPP denotes the average numbers of sentences
per paragraph, AWPS denotes the average numbers of words per sentence and AWPP
denotes the average numbers of words per paragraph.

Datasets #Paragraph #ASPP #AWPS #AWPP #Vocabulary

Chinese poetry 67,498 8 8 64 7,982

Moive review 70,808 5 17.4 87.4 18,391

During training, based on Eq. 1, 4 and 11, we first pretrain generative models
at each level independently. We directly use the real paragraph vectors, sentence
vectors and word vectors in pretraining process. Afterwards, we employ adver-
sarial training between G∗

θ∗ and D∗
φ∗ of each level independently.

At last, for inference, we apply our model in a pipeline way: we first infer the
paragraph-level vector, then predict the sentence-level vectors conditioned on the
paragraph vector and finally generate each word using sentence vectors. During
word-level generation process, we introduce two special symbols “Start” and
“End” to denote the start and end of a sentence, respectively. Once we generate
the symbol “End”, the word generation process will be stopped.

4 Experiments

In the following section, we first set up the experiments, and then report the
results and analysis.

4.1 Experimental Setup

Datasets. To test our model’s ability and quality to generate long text, the
two common datasets Image COCO and EMNLP2017 WMT News [23] have
limitation on sentence length (no more than 51). Instead, we use two datasets
containing longer sentences, including Chinese Poetry1 and Movie Review,
to evaluate our model. For Chinese Poetry, we select all the seven-character
octaves as our dataset, i.e., each paragraph contains eight sentences and each
sentence contains eight words (plus a punctuation), and keep all the words as
vocabulary. For Movie Review, we first randomly crawl millions of reviews
from IMDb2, then select the paragraph with five sentences as our dataset, and
finally remove the infrequent words occurring fewer than six times. The detailed
statistics of the two datasets (after preprocessing) are summarized in Table 1.

Implementation Details. For Chinese Poetry dataset, we employ the
BERT-Small Chinese model 3 to extract 384-dimensional paragraph vectors and

1 https://github.com/chinese-poetry/chinese-poetry.
2 https://www.imdb.com.
3 https://github.com/brightmart/albert zh.

https://github.com/chinese-poetry/chinese-poetry
https://www.imdb.com
https://github.com/brightmart/albert_zh
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Table 2. Performance comparisons of different methods for text generation under two
domains. “*” denotes the improvement is statistically significant compared with the
best baseline (t-test with p-value < 0.05).

Datasets Models Generation Coherence

Length BLEU-2 BLEU-3 BLEU-4 Sen-Sim WLCS-l

Chinese
poetry

MLE 64.0 0.743 0.196 0.016 0.666 0.146

SeqGAN 64.0 0.768 0.200 0.015 0.687 0.145

RankGAN 64.0 0.713 0.160 0.010 0.706 0.127

MaliGAN 64.0 0.654 0.145 0.007 0.676 0.134

LeakGAN 64.0 0.772 0.201 0.016 0.695 0.147

MLGAN 64.0 0.819* 0.270* 0.029* 0.718* 0.154

Movie
review

MLE 88.0 0.924 0.619 0.299 0.904 0.097

SeqGAN 70.5 0.946 0.654 0.305 0.898 0.103

RankGAN 74.5 0.959 0.719 0.377 0.901 0.102

MaliGAN 61.9 0.899 0.538 0.228 0.891 0.098

LeakGAN 81.3 0.952 0.725 0.439 0.918 0.103

GPT-2 79.3 0.790 0.587 0.325 0.891 0.104

MLGAN 96.5* 0.968* 0.791* 0.515* 0.949* 0.106

sentence vectors. For Movie Review dataset, we employ the BERT-Medium
English model [3] to extract 512-dimensional paragraph vectors and sentence vec-
tors. In the paragraph level, we utilize 5-layer MLP with 384/512-dimensional
hidden layer and ReLU activation function for the two datasets, respectively.
In the sentence and word levels, the dimension of CNN features and the size
of word embeddings are set to 1400 and 64, respectively. Finally, we adopt the
Adam optimizer with the default hyper-parameters to train our model.

Baseline Models. We compare our model against a number of baseline models:

• MLE applies an RNN-based model to minimize the cross-entropy between
the true and generated word distributions.

• SeqGAN [40] regards the text generation as a sequential decision making
process, and applies policy gradient with Monte Carlo search to train the
generator based on the guidance of a binary discriminator.

• RankGAN [21] adopts the similar reward as in SeqGAN, while changes the
discriminator into a ranking model, i.e., taking a softmax output over the
expected cosine distances from the generated sequences to the real data.

• MaliGAN [2] uses importance sampling combined with the discriminator
output to stabilize the training process and reduce the potential variance.

• LeakGAN [7] involves a high-level module and a low-level module in gener-
ator, and is guided with the leaked feature extracted by the discriminator,
which aims to address the sparse reward signal in long text generation.
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• GPT-2 [33] is a pretrained language model trained on large-scale corpus
using Transformer decoder [37]. Since GPT-2 is originally trained on English
corpus, we adopt the base version of GPT-2 and only fine-tune it on Movie
Review dataset.

We utilize text generation toolkit TextBox [16] to implement baselines.

Evaluation Metrics. To evaluate the performance of long text generation,
we compute the average length of generated texts, and a common automatic
generation metrics, BLEU-2/3/4 [31], which measures the ratios of the co-
occurrences of n-grams between real and generated texts. In order to evaluate
the coherence of generated texts, we adopt two automatic coherence metrics
including Sen-Sim and WLCS-l. Sen-Sim [13] calculates the average cosine simi-
larity between any two sentence embeddings (from BERT) among each para-
graph as: Sem-Sim(p̂) = 1

M

∑
i,j cos-sim(si, sj), where M is the number of

sentence pairs 〈si, sj〉 in p̂, and WLCS-l [22] measures the extent of sequence
overlapping between the real and generated texts based on Weighted Longest
Common Sequence (WLCS) as: WLCS-l(p, p̂) = (1+β2)RwlcslPwlcsl

Rwlcsl+β2Pwlcsl
, Rwlcsl =

f−1(WLCS(p,p̂)
f(n) ), Pwlcsl = f−1(WLCS(p,p̂)

f2(n) ), where n is the text length, β = 1.0,
and f is a weighting function of consecutive matches.

4.2 Results and Analysis

In this part, we conduct experiments to verify the effectiveness of the proposed
model for long text generation.

Main Results. Table 2 presents the performance of different models for the
two groups of metrics First, there exists some performance gap between the
two datasets for BLEU metrics. Compared with review texts, Chinese poems,
created by ancient poets, are specialized and more difficult to be fitted by these
methods. Second, GPT-2 does not achieve satisfactory performance on metrics
such as BLEU-2 and Sen-Sim. The reason might be that, GPT-2 is trained on
large-scale corpus and has “memory” of training data, thus, it cannot fit the
given dataset very well. Third, the performance of RankGAN or MaliGAN is
unstable on the two datasets. We speculate that their learning processes are
more unstable, which is not well-trained with our datasets. Moreover, LeakGAN
outperforms the other baselines for both kinds of metrics. A major reason is
that LeakGAN is specially designed for generating long texts, while the rest
methods may not be effective in capturing long-range semantic dependency in
text generation. Finally, our model performs better than all the baselines by
a large margin. The major difference between our model and baselines lies in
that we design a multi-level generation process for both long and coherent text
generation. Though designed for long text generation, LeakGAN lacks the overall
consideration of semantic coherence. While, other baselines do not explicitly
model the two aspects for text generation.
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Table 3. Ablation analysis on Chinese Poetry dataset.

Models BLEU-2 BLEU-4 Sen-Sim

LeakGAN 0.772 0.016 0.695

MLGAN 0.819 0.029 0.718

w/o Paragraph Vector 0.792 0.018 0.695

w/o Sentence Vector 0.812 0.026 0.713

w/o BERT, w Bi-LSTM 0.788 0.018 0.692

Table 4. Human evaluation on Movie Review dataset.

Models MLE LeakGAN MLGAN Gold

Coherence 2.81± 1.07 3.25± 1.04 3.48±0.94 3.98± 0.93

Fluency 3.22± 0.84 3.52± 0.85 3.80±0.77 3.94± 0.83

Ablation Analysis. The major novelty of our model lies in the multi-level
generation process, where we utilize paragraph vectors and sentence vectors
as semantic sketches. To examine the contribution of these semantic sketches,
we compare our model with two variants by removing either of the two kinds
of vectors. Moreover, we have utilized BERT as the text encoder to generate
the ground-truth vectors to train our model. We replace BERT with a Bi-
LSTM encoder for examining whether our approach is effective with various
text encoders. In Table 3, we can see that both kinds of vectors are important
to improve the final performance, and paragraph vectors seem more important
in our task. In our model, paragraph vectors encode the main idea of texts and
essential for enhancing the inter-sentence coherence. Furthermore, based on the
Bi-LSTM encoder, our model still outperforms the best baseline model, Leak-
GAN, both on generation and coherence metrics, which proves the effectiveness
of our proposed hierarchical architecture.

Human Evaluation. We continue to conduct human evaluation on Movie
Review dataset by using Amazon Mechanical Turk, in order to further evalu-
ate the quality of generated texts. Following [42], we randomly choose 200 sam-
ples generated from different models, and then invite three experienced movies
fans to score the texts with respect to two aspects of fluency and coherence.
Fluency means how likely the text is produced by human, which can reflect
some text properties such as logic and readability. Coherence evaluates how con-
tent is coherent considering both intra- and inter-sentence correlation of a para-
graph [18]. The scoring mechanism adopts a 5-point Likert scale [20], ranging
from 5-point (“very satisfying”) to 1-point (“very terrible”). Finally, we calcu-
late the average score among the three judges (with Cohen’s Kappa of 0.78). As
shown in Table 4, MLGAN produces more coherent and fluent text than other
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(a) Four sample paragraph clusters (b) Four sample sentence clusters (c) Generated review sentences by MLGAN

Fig. 2. Visualization of paragraph vectors, sentence vectors, and generated movie
review sentences by MLGAN. The numbers denote the relative sentence positions in a
paragraph. Keywords from sentence clusters in sentences are in bold font.

methods. The major reason is that we utilize semantic sketches and CGAN mech-
anism to effectively plan the text content, which indeed improves the fluency and
coherence.

Case Study. Here, we further present a qualitative example to illustrate how
the three-level generation process works in our approach. We first randomly gen-
erate 5,000 review texts for Movie Review dataset, and keep the intermediate
paragraph and sentence vectors. These paragraph vectors are projected into two-
dimensional vectors for visualization with t-SNE [24]. We further cluster these
paragraph vectors, and select four sample clusters for visualization. To under-
stand the semantics of each cluster, we apply the RAKE [34] and Textrank [25]
algorithms to extract high-quality keyphrases or keywords, respectively, from
the generated paragraph text. As shown in Fig. 2(a), distant paragraph clus-
ters reflect different semantics (e.g., actual, zombie), while close clusters share
similar keywords (e.g., kid, young). To further understand the sentence vectors
generated by our approach, we perform the similar visualization procedure. For
each paragraph from the fourth cluster (in red color), we select its five sen-
tence vectors for visualization in Fig. 2(b). Specially, we utilize different colors
to denote different sentence positions (i.e., 1 ∼ 5) in a paragraph. It can be
observed these sentence vectors naturally form four coherent clusters according
to their relative positions in a paragraph, indicating a good content planning.
Specially, the semantics of sentence clusters can be considered as multi-topic fine-
grained decomposition for the semantics of the paragraph clusters. Our model
effectively enforces the inter-sentence coherence, since sentence clusters are rel-
evant to each other, which together explain the semantics of paragraph vectors.
Finally, we present several generated sentences from the selected paragraph clus-
ter in Fig. 2(c). As we can see, they are fluent and informative by covering the
same keyphrases or keywords of sentence clusters. These examples show that our
approach is effective to capture the main semantics and content flow.
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5 Related Work

Text Generation. Generic text generation is critical to many natural lan-
guage processing applications, such as machine translation [38] and dialogue
system [15]. Recently, due to the powerful Transformer architecture [37], pre-
trained language models such as GPT-2/GPT-3 [1,33], and CTRL [11] have
demonstrated the feasibility of generating high-quality text [17]. Besides, there
have also been considerable efforts that generate long text with a multi-stage
approach, such as review generation [19], story generation [4], and text genera-
tion [36]. However, these methods are mainly trained by MLE, which is likely to
suffer from the exposure bias problem [6]. As a comparison, we focus on improv-
ing GAN-based generic text generation with a multi-level generation process, and
study how to develop the hierarchical architecture under the GAN framework.

GAN-Based Text Generation. Many variants of GANs, including Seq-
GAN [40], RankGAN [21], MaliGAN [2], and LeakGAN [7], have been proposed
for text generation since adversarial learning has its advantage in optimizing
over sequence data (e.g., alleviating the exposure bias). Typically, they address
the non-differentiable issue by reinforcement learning (RL) or making continu-
ous approximation. Most RL-based GAN methods formulate text generation as
a MDP, where the generator is trained with policy gradient and the discrimi-
nator provides reward signals. Considering the sparse and weak reward signal,
several GAN methods reformulate the problem in continuous space and adopt
the Gumbel-Softmax trick [10]. However, these methods mainly consider word-
level generation, and there are seldom studies that characterize a hierarchy of
paragraph-sentence-word as in our approach.

6 Conclusion

In this paper, we proposed a multi-level text generation model MLGAN for gen-
erating long and coherent text. Our approach followed a three-level generation
process, where we generate paragraph vectors and sentence vectors as semantic
sketches to instruct the word generation. We enforced the inter-sentence coher-
ence by utilizing a conditional GAN architecture. Experiment results on two
datasets have shown the effectiveness of our approach on long text generation.
Currently, we consider a three-level generation process. As future work, it is
natural to extend our approach to model a more complex hierarchy, i.e., multi-
paragraph generation. Besides, we will also consider combining other semantic
features (e.g., keywords) for content planning in order to obtain a better perfor-
mance.
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Abstract. In the past few years, more and more data marketplaces for
personal data transactions sprung up. However, it is still very challenging
to estimate the value of privacy contained in the personal data. Espe-
cially when the buyer already has some related datasets, he is able to
obtain more privacy by combining and analyzing the bought data and
the data he already has. The main research motivation of this work is
to reasonably price the data with privacy concern. We propose a rea-
sonable data pricing mechanism which prices the personal privacy data
from three aspects and is different from the existing work, we propose a
new concept named ‘privacy cost’ to quantitatively measure the privacy
information increment after a data transaction rather than directly mea-
suring the privacy information contained in a single dataset. In addition,
we use the information entropy as an important index to measure the
information content of data. And we conduct a set of experiments on
our personal data pricing method, and the results show that our pricing
method performs better than the alternatives.

Keywords: Data pricing · Differential privacy · Data marketplace

1 Introduction

Data commodities and related analysis services are increasingly offered by the
online data marketplaces in recent years, which collect personal data with pri-
vacy from data owners, process and sell them to data consumers. The privacy
contained in data reflects not only the unique value but also the key information
of individual like his name, age, gender, even his credit card number, therefore,
the access to it should be highly restricted. As for the privacy protection, differ-
ential privacy is a standard for data releasing [10]. But we must admit that the
introduced noise will perturb the personal data and lead to the inaccuracy.

What is more important, data buyer may have bought some datasets before,
which may be related to the dataset he wants to buy this time and are called
background datasets. Obviously, the consumer with background datasets could
do some operations to obtain more privacy than another data buyer who spends
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the same amount of money but does not have any background dataset. It is
unfair and we call this as “privacy increment issue”. At present, there is not
existing a pricing mechanism that can address this issue.

Based on the problems above, we propose a novel personal data pricing mech-
anism based on differential privacy, which takes the privacy concern into account.
For the first time, we regard the background dataset as an important factor
affecting the privacy cost and introduce a new personal data pricing concept
named privacy cost to quantitatively measure the privacy increment caused by
the union of new and old datasets.

2 Related Work

The general pricing method is subscription, however, this methods can’t meet
the diverse needs of users. Therefore, Koutris et al. proposed a query-based data
pricing framework [4] which allows data buyers to issue different queries for
the view. However, the query-based data pricing model does not give guidance
on how to price the basic view. Niyato et al. combined the Stackelberg model
and the classification algorithm [8]. By using the utility function, the service
provider can determine the amount of data to be bought from the data provider,
thereby maximizing their own profits. In addition, information entropy, as an
important indicator to measure the amount of information contained in the
data, has also been introduced into the data pricing model [9]. Li et al. proposed
to use information entropy as a new data pricing indicator [6].

As to methods with privacy pricing, Jung et al. [3] introduced a negotiation
mechanism, in which data providers and purchasers negotiate on noise scale
and unit data price. Nget et al. [7] proposed the concept of data mart based on
differential privacy data publishing mechanism. Li et al. [5] proposed a framework
for assigning prices to noisy query answers, as a function of their accuracy, and
for dividing the price amongst data owners who deserve compensation for their
loss of privacy.

However, the above pricing mechanisms are not perfect, especially for the
privacy increment issue brought by data union, none of the above mechanisms
consider it.

3 Personal Data Pricing Mechanism

3.1 System Model

In this section we describe the basic architecture of proposed pricing mechanism,
illustrated in Fig. 1.

The data publisher ui sends a personal dataset Di to the trusted data mar-
ketplace M. Then M inserts different scales of noises into raw personal datasets
to do differential privacy with different privacy budgets. Finally, the data buyer
bj issues a request Qj(fj , εj) which includes an analysis function fj and a data
accuracy εj he can accept.
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Definition 1 (data accuracy). A privacy mechanism M gives ε-differential
privacy, where ε ∈ (0, 1) means privacy budget. Less privacy budget means more
noises and implies the personal datasets will be less accurate. Therefore, the
privacy budget has the same change tend with data accuracy and is positively
correlated to it. So, in some extensis, data accuracy could be represented by
privacy budget.

Fig. 1. Trading framework for personal data

One thing needs to be noted is that based on differential privacy [2], the
risk of privacy leakage is related to the analysis function. Therefore, our pricing
scheme considers not only data accuracy ε but also the analysis function f .

After receiving a data request Qj(fj , εj), M will first find the personal dataset
VP with right privacy budget version buyer is interested in. Then the dataset
price P is calculated which will be described in details in the next subsection.

3.2 Personal Privacy Data Pricing Function

In this subsection, we will explain our pricing mechanism by detailing every of
three prices and the corresponding computing methods for them.

P = Pd + Pp + profit. (1)

Data Value. Pd is the use value. According to [6], information entropy H(V )
is a more reasonable factor to measure information content and data value Pd is
positively correlated with H(V ).

Also, we must attention one important thing. As we do differential privacy
with different data accuracies ε, the data marketplace will insert different scales
of noises Vs to dataset V , so the data has become not accuracy as it was at first
[1]. There must be a accuracy loss δ after inserting noises. We use normalization
of root mean square error(RMSE) to describe the accuracy loss δ and give the
definition as follows:
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Definition 2 (accuracy loss). For a dataset Dm×n, the data in it is xij, and
the D′ is obtained by inserting some noises Ds to the D as Eq. (9), the data in
D′ is x′

ij, and the function f is a normalized function, the accuracy loss δ we
define as Eq. (7):

D′ = D + Ds, (2)

RMSE =

√∑m
i=0

∑n
j=0(x

′
ij − xij)2

m × n
, δ = f(RMSE). (3)

According to Eq. (7), δ ∈ [0, 1]. In our paper, inserted noise obeys Laplace dis-
tribution, namely Ds ∼ Lap(Δ(f)/ε).

We use H(V ) to represent the use value of V , and the data value Pd can
be obtained by H(V ) subtracts the accuracy loss which is brought by inserted
noises. And the function Pd = D(H(V ), δ), we design as follows:

Pd = 100 · (1 − δ) · log2(H(V ) + 1). (4)

Privacy Cost. Pp indicates the privacy content of personal dataset. We have to
pay attention to another thing that different data buyers, who bought the same
personal dataset, may obtain different amounts of privacy. Because different
data buyers may own different background datasets. When they merge the new
dataset they bought and the background dataset, they may get different privacy
increments.

Because of the background dataset, different data buyers will obtain different
amount of privacy increments, that means the risks of data owners’ privacy
disclosure are different. Therefore, data buyer who gets more privacy increments
Δθ, should pay more privacy cost Pp, and we give initial definition of privacy
content as follows:

Definition 3. For any random function f and a dataset D with n tuples {ti|i =
1, ..., n}, the privacy contents of ti and D are defined as:

θ(ti) = supS,D|log Pr(f(D) ∈ S

Pr(f(ti)) ∈ S
|, (5)

θ(D) =
n∑

i=1

θ(ti), (6)

where S is all possible outputs of f.

However it is difficult to compute the privacy content by Definition 3, because
the possibility is hard to evaluate. Chao et al. compared the output of a function
with and without one data item xi and imposed a upper bound for privacy loss
[5]. The privacy loss they proposed has the same meaning with our privacy
content θ, therefore, we transform the formula and introduce it into our paper.
We define the function to measure θ as follow:
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Definition 4 (privacy content). For any random function f and a dataset D,
we assume the function f will execute on one attribute X, the privacy content of
D is defined as:

θ(D) ≤ γ

Δ(f)/ε
|D|, (7)

where γ = supx∈X |X|.
Now let us compute privacy increment Δθj . Let’s suppose that data buyer

bj owns background dataset Bj and wants to buy dataset Vp, and then after
this transaction, he will own three datasets: Bj , Vp and Uj which is obtained by
doing some operations on Bj and Vp (in our paper, we restrict the operation as
union which is a commonly used operation), and also owns three privacy content:
θ(Bj), θ(Vp) and θ(Uj). However, bj have paid for θ(Bj) when he bought dataset
Bj . So the privacy increment Δθj he obtains in this transaction is as follows:

Δθj = θ(Uj) + θ(Vp). (8)

There is no doubt that Pp is positively related with Δθj , and the more privacy
increment Δθj buyer gets, the more he should pay. In our paper, we design the
function Pp = P (Δθj) as follows:

Pp =

√
50 + 50Δθj

100
. (9)

Profit. The data marketplace should get some remuneration as the middleman
between the data publisher and data buyer. In our paper, profit represents the
income of data marketplace, we just define profit as follows:

profit = (Pd + Pp) ∗ l, (10)

where l ∈ (0, 1) is a coefficient and is decided by the data marketplace itself. In
our paper, we set l as 0.25.

4 Experiments

4.1 Experimental Data and Setup

We use two personal datasets from UCI1 contain 14 attributes as the data com-
modities listed on data marketplace. One is the dataset D1 with 7840 records
and the second one is the dataset D2 with 14720 records, which are both about
annual income in the USA.

There are two data buyers. b1 wants to know the average age of the people
in D1 and b2 wants to learn the age dispersion in D2. We assume b1 has no
background datasets and b2 has a background dataset B with 10000 records.
For simplicity, B has the same attributes with D2 and that means b2 can easily
merge D2 with B. And we name the transaction on D1 as experiment 1 and the
other one is experiment 2. We compare our pricing mechanism with the baseline
method and other alternatives.
1 https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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Baseline Pricing Mechanism. Just as the analysis in Definition 1, data accu-
racy ε is positively related with personal dataset price P . For simplicity, we
consider the relationship between ε and P in the baseline pricing mechanism as
direct ratio, and the function of it is defined as follows:

P = m ∗ ε, (11)

where m is a coefficient and in our paper we set m as 1000.

Comparison Pricing Mechanism. We use two pricing mechanisms in our
comparison experiments, one is information entropy-based data pricing mecha-
nism [6] and the other is balanced pricing mechanisms [5].

4.2 Experimental Results

Simulation Experiment. We first simulate personal dataset transactions (Fig.
2) when data buyers choose different data accuracy ε. Figure 2a shows that data
value Pd increases as ε increases. And the data value Pd increases dramatically
when ε is 0∼0.4 but then increases slightly when ε is 0.4∼1.0. This pattern
is reasonable in practice. We consider that with inserting noises into original
personal dataset, the scale of noise may reach a certain threshold, then the
availability of dataset will be greatly reduced, and even the dataset is no longer
available.

Figure 2b shows the correlation between privacy cost Pp and ε. There is no
doubt privacy cost Pp increases as the ε increases, for that higher ε means less
privacy protection and data buyer will obtain more privacy. Remarkably, we can
see that two curves in Fig. 2b are not exactly the same. When ε approaches 0,
Pp of two transactions are particularly close, with a difference of less than $10.
When ε is close to 1.0, there is a large gap between Pp of the two transactions.
We consider that when ε is low, even if the data buyer has background datasets,
it is still difficult to obtain a large privacy by the background dataset. But when
personal dataset is accurate, the data buyer with background datasets can easily
to obtain more privacy, so they should pay more.

The last Fig. 2c shows that P increases as ε increases. According to Eq. (1),
P is the sum of data value Pd, privacy cost Pp and transaction profit. Because
profit is constant, so P change trend is the function synthesis of Pd and Pp.

Comparison Experiment. We next compare the result of our personal data
pricing mechanism with these of baseline pricing mechanism and other pric-
ing mechanisms described before (Fig. 3 and Fig. 4). We can see no matter
how ε changes, the P of information entropy-based pricing mechanism remains
unchanged. Obviously, from the perspective of data accuracy, it is not reason-
ablepaper5 for that if two data buyers bought the same personal data with
different data accuracies, and they spent the same amount of money. Also, it is
not reasonable that P is just linearly related to ε just as what baseline pricing
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(a) Data value Pd and (b) Privacy cost Pp and (c) Query price P and

Fig. 2. Our pricing mechanism simulation

mechanism shows. When ε gets closer and closer to zero, the use value of personal
dataset has plummeted, like what our personal data pricing mechanism and bal-
anced pricing mechanism show. That means personal dataset has no meaning
for data buyers, when data accuracy is too small, so in our pricing mechanism,
it is not recommended data buyers choose too smaller ε.

Fig. 3. Query price vs. ε on Experiment 1 Fig. 4. Query price vs. ε on Experiment 2

At last, we do simulations about the above mechanisms described before
based on Experiment 2 to show how P changes when data buyers have the same
Q(f, ε) but different scales of background datasets.(Fig. 5). We can see that no
matter how the scale of background dataset changes, the P of baseline pricing
mechanism and other pricing mechanisms remain unchanged. However, from the
perspective of privacy increment, this is not reasonable.

Fig. 5. Trading framework for personal data
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5 Conclusion

In this paper, a reasonable data pricing mechanism for the personal data trans-
actions from many aspects is proposed. In the pricing mechanism, we allow data
buyers to choose data accuracy, which will meet their different demands. More-
over, to solve the problem of privacy increment brought by background datasets,
for the first time, we propose a new concept, privacy cost, and provide the mea-
surement method for it, which is based on differential privacy. Additionally, we
consider the influence of inserted noises on the data value, which pricing data
value from the perspective of information entropy and accuracy loss. Our data
pricing mechanism satisfies the three requirements proposed in Section I and the
rationality of it was validated by the simulation and comparison experiments.
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Abstract. Querying associative entities is to provide top ranked entities
in knowledge graph (KG). Many entities are not linked explicitly in KG
but actually associated when incorporating outside user-generated data,
which could enrich entity associations for the query processing of KG. In
this paper, we leverage user-entity interactions (called user-entity data)
to improve the accuracy of querying associative entities in KG. Upon the
association rules obtained from user-entity data, we construct the associ-
ation entity Bayesian network (AEBN), which facilitates the representa-
tion and inference of the dependencies among entities. Consequently, we
formulate the problem of querying associative entities as the probabilistic
inferences over AEBN. To rank the associative entities, we propose the
approximate method to evaluate the association degree between entities.
Extensive experiments on various datasets verify the effectiveness and
efficiency of our method. Experimental results show that our proposed
method outperforms some state-of-the-art competitors.

Keywords: Knowledge graph · Association entity · Association rule ·
Bayesian network · Probabilistic inference

1 Introduction

Recently, with a great thrive and wide applications of knowledge graph (KG),
such as search engine [21] and recommender system [18], querying associative
entities (AEs) over a KG has gained much attention in both academic and indus-
trial areas [3]. Specifically, it is desirable to find a top ranked list of AEs in KG
w.r.t. the query entity (QE). For example, Avatar,Deadpool, T itanic could be
found as the AEs w.r.t. the QE Terminator on the KG in Fig. 1.

In view of the flexible structure and rich semantics of KG, most of the existing
methods query AEs by formulating structured queries like SPARQL1 and using
keyword search [21]. However, in the scenario of KG applications, it is difficult to
use these structure-based methods to query the diversified AEs accurately and
holistically, since the relatively static domain knowledge in KG may not satisfy
the intent of user queries. For example, a user may search the action movies
1 https://www.w3.org/TR/rdf-sparql-query/.
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Terminator
<action>

James Cameron
<director>

Avatar
<action>

Deadpool
<action>Tim Miller

<director>

Titanic
<love>

User1: Terminator, Avatar, Titanic, Deadpool
User2: Terminator, Avatar
User3: Terminator, Avatar, Deadpool

•••

Avatar˄Titanic→Terminator
Confidence = 0.3

Avatar˄Deadpool→Terminator
Confidence = 0.7

Avatar→Terminator
Confidence = 1

••• 1. Avatar
2. Deadpool
3. Titanic

•••

KG

Query entity
<Terminator>

User-entity data

KG with respect to Terminator

Movies preferred by different users

Association rules

Ranking
list

Associative entity
Bayesian network

Fig. 1. Overview of our method.

directed by James Cameron w.r.t. Terminator, which are actually the answers
from realistic records of social ratings, but could not be found in KG.

Undoubtedly, latent knowledge is implied or reflected in the rich user-entity
interaction data, called user-entity data. For example, latent preferences could
be found from the user-item interactions, and latent links between users could be
found from user behavior interactions on the co-occurrence of entities [6]. This
means that AEs are also implied in user-entity data outside KG, and this provides
a beneficial supplement to the aforementioned structure-based methods to query
AEs in KG. Simultaneously, the quantitative association degree between entities
could be obtained from the user-entity data. For convenience of expression, both
the explicit associations in KG and the implicit associations in user-entity data
are called dependence. In this paper, we aim to obtain better ranked AEs in
KG w.r.t. the given query by modeling the dependence among entities from the
user-entity data.

It is worth noting that the dependence among entities is always not crisp but
uncertain [10]. For example, Avatar is more likely to associate with Terminator
than Titanic, since Avatar has a higher probability to co-occur with Terminator
in the user-entity data shown in Fig. 1. Without loss of generality, the uncer-
tainty, which could be obtained from user-entity data, reflects the association
degree between entities, by which the ranking of AEs could be fulfilled. To this
end, we will address the following problems:

(1) How to represent the qualitative and quantitative dependence among rele-
vant entities w.r.t. the QE by incorporating KG and user-entity data?

(2) How to evaluate the association degree between entities effectively for AE
ranking?

It is known that Bayesian network (BN), including a directed acyclic graph
(DAG) and conditional probability tables (CPTs) to quantify the dependence
among random variables, is widely used to represent and infer uncertain knowl-
edge [9,22]. By adopting BN as the framework, we propose the concept of asso-
ciation entity Bayesian network (AEBN) to represent the dependence among
entities and infer the implicit AEs effectively. In an AEBN, the entities w.r.t.
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the QE are regarded as nodes, and the dependence among entities are described
as edges. Importantly, we discuss the construction of AEBN from KG and user-
entity data.

First, to construct the DAG w.r.t. the given QE, we propose a weighting
function to score each entity in KG and obtain the candidates. Furthermore,
we employ the classic frequent pattern mining algorithm [4] to find the frequent
candidate entities, from which the association rules w.r.t. the QE could be gen-
erated. To achieve the dependence from the sparse user-entity data w.r.t. the
QE and avoid the invalidity of classic BN learning algorithms, we employ the
branch and bound algorithm to obtain the optimal set of association rules with
the maximal confidence summation. Then, we express the optimal rules as Horn
clauses [13], which are then transformed equivalently to the DAG of the AEBN.
Following, based on the logical constraints specified by the Horn clause of each
node in AEBN, we normalize the frequencies of frequent entities from user-entity
data and give the method to calculate the conditional probability parameters to
constitute the CPTs.

To rank AEs w.r.t. the given QE, we formulate the problem of KG query pro-
cessing as the problem of probabilistic inferences over AEBN, so the association
degrees between QE and AEs could be evaluated. To obtain the top ranked AEs,
we propose the approximate algorithm for probabilistic inferences over AEBN
based on rejection sampling [15].

Generally, the contributions of this paper are as follows:

• We provide an effective method to discover the qualitative and quantitative
dependence among entities in KG by leveraging the association rules and
corresponding Horn clauses in user-entity data.

• We cast the problem of querying AEs into the problem of probabilistic infer-
ences over AEBN, and propose an efficient approximate inference algorithm
over AEBN to obtain the top ranked AEs.

• We conduct extensive experiments on real-life and synthetic datasets. The
results show that our framework significantly improves the accuracy of query-
ing AEs of KG.

2 Related Work

Query Processing of KG. Query processing of KG could be regarded as the
matching problem based on the highest-ranking score [17] among k subgraphs
matched in KG. Jayaram et al. [7] proposed GQBE to query KG by example
entities and obtained top-k tuples approximated to the maximum query graph.
Jin et al. [8] proposed GStar to improve the efficiency of top-k star queries in large
KGs with billions of nodes. However, these subgraph matching based methods
could not describe the implicit associations among entities, which are critical
to explore the diversified search intent. Many researchers embedded KG into a
continuous vector space [14] to discover implicit associations among entities. But
those embedding-based methods do not consider explicit logical semantics and
usually have low performance in querying top-1 AEs.
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Discovery of AEs. In most of the existing methods, AEs are discovered by
measuring the relatedness between entities in KG. For example, Ponza et al. [12]
created a small weighted subgraph that is dynamically grown around two query
entities, and then used further selection or combination of known relatedness
metrics to compute the weights in the subgraph. Cao et al. [1] used the hetero-
geneous information network to represent KG to capture the hidden semantic
relations between seed entities and proposed a novel method for entity expan-
sion based on the concatenated meta path. To discover AEs from outside data,
some researchers connect implicit entities to KG based on their text-description
[16] and online encyclopedias[20]. These methods show the effectiveness of dis-
covering AEs by introducing entity associations from external data, but the
quantitative associations between indirect AEs could not be achieved effectively.

Uncertainty Evaluation Among Entities. Uncertainty among entities can
be evaluated by the confidences of association rules from the rich facts in KG
[2]. Zhang et al. [23] used association rules to produce large amounts of evi-
dence, based on which a factor graph could be constructed and the uncertainty
between entities could be inferred. To infer new facts efficiently and accurately,
Wei et al. [19] employed an embedding-based model to generate candidate sets
of instances, and evaluated the uncertainty among entities of candidate sets
by running a data-driven inference algorithm on the Markov logic network. To
evaluate uncertainty among entities from textual Web contents, Li et al. [11]
proposed EABN to represent and infer latent entity associations as well as the
probabilities of associations. These methods show the effectiveness of evaluating
the uncertainty among entities in KG and data, but do not consider the impact
of user behaviors on the uncertainty of entity associations.

3 AEBN Construction

We first give the definitions of KG, user-entity data and AEBN as the basis of
later discussions.

Definition 1. A KG is a directed graph denoted as G = (E,R,Λ), where E is
a set of entities represented as nodes and R is a set of relations between entities
represented as edges. Λ(e) represents the attributes of an entity e (e ∈ E).

Definition 2. User-entity data are characterized as a set of pairs Ω = {< u, d >
|u ∈ U, d ⊆ E}, where U denotes the set of users, d denotes the set of the entities
of E, and the pair < u, d > indicates that there is an interaction between user
u and entity set d.

Definition 3. An AEBN is a pair B = (G, θ), where

• G = (V, E) is a DAG, where V is the set of nodes and E is the set of edges. A
node (i.e., variable) in V represents an entity or a conjunction of entities of
G, and E represents the set of dependence among the variables in V .

• θ is the set of probability parameters of the variables in V . For ease of expres-
sion, we use 1 and 0 to denote the occurrence of e in Ω or not, from which
we assume that the variables in V are binary.
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3.1 Generating Rules for AEBN Construction

For the given KG G = (E,R,Λ) and the QE eq, we first extract candidate
entities that may be associated with eq in Ω. Considering the sense of AEs, the
association between a pair of entities should satisfy the following properties:

(1) A shorter hop between two entities in G leads to a larger association degree.
(2) An entity with frequent attributes is likely to be more associative with QE

than that with sparse attributes in G. For example, a user who queries
James Cameron is more likely to search Terminator and Avatar instead of
Titanic, since most of his works are action movies.

Following, we give the weighting function that satisfies the above two prop-
erties to score an entity e in G, as follows:

W (e) =
log (Fr (e) /Fr (G))

√
len (e)

(1)

where len(e) represents the length of the shortest path between e and eq, Fr(e)
represents the frequency of Λ(e) in G, and Fr(G) represents the size of Λ in G.

By scoring the entities in G respectively, we could obtain candidate entities
with the m highest scores. By employing the Apriori algorithm [4], the frequent
candidates satisfying the minimum support could be obtained and denoted as
L, from which the confidence of an association rule Eu → Ev could be achieved:

conf (Eu → Ev) =
support(Eu ∪ Ev)

support(Eu)
(2)

where Eu and Ev represent two different itemsets of entities of G respectively,
support(Eu ∪ Ev) is the number of d in Ω containing the entities in Eu or Ev,
and support(Eu) is the number of d in Ω containing the entities in Eu.

According to the basic idea of association rule mining [15], we obtain the
association rules from L. By generating all nonempty subsets of each frequent
itemset l in L. Furthermore, for each nonempty subset ls of l, we generate the
rule ls → (l − ls) if support(l)

support(ls)
≥ min conf , where min conf is the threshold of

the minimum confidence.
Based on the association rules generated w.r.t. eq, we assume that each asso-

ciation rule between the n frequent candidate entities and eq is described as
Eq. 3, called query entity rule (QER):

e1 ∧ e2 ∧ . . . ∧ en → eq (3)

where ei ∈ L (1 ≤ i ≤ n).
Actually, the confidence in Eq. 2 reflects the association between Eu and

Ev, which motivates us to construct the AEBN based on the association rules
with the confidence as maximal as possible. It is necessary to select a set of
optimal QERs, since the intersection may exist among different subsets of QERs.
Let Q denote the set of all QERs, Qi represents the i-th QER in Q, and Si
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represents the set of candidate entities of Qi. Now we consider selecting a subset
of association rules by taking the total confidence as the objective function:

max
|Q|∑

i=1

cixi (4)

where ci represents the confidence of Qi, xi ∈ {0, 1} represents whether Qi is
selected.

Then, we employ the idea of the branch and bound algorithm to solve this
optimal problem to obtain a subset of Q.

Solution Tree. The solution tree is a binary tree, where the i-th layer of the
binary tree corresponds to the selection of Qi, and the left and right child means
whether Qi is selected or not. The properties of a node in the solution tree are
shown in Table 1.

Table 1. Properties of a node in the solution tree.

Property Description

level The layer of a node

child The left or right child

tmpc The summation of confidence

tmps The set of selected entities

Bound. We regard the confidence as the weight of a QER, and rank all the
QERs in Q by the average weight of Qi (i.e., ci/|Si|). Suppose that a node is
in the i-th level of the subset tree (i = 0, 1, . . . , |Q| − 1), and the upper bound
corresponding to this node is the sum of tmpc and the maximum weights of the
selectable candidate entities:

tmpc + |L − tmps| × (ci+1/|Si+1|) (5)

Max Heap. In the max heap, the root has the top priority to be selected.
The above ideas are given in Algorithm 1. The execution time of steps 3–15 is

O(2|Q|). The execution time of InsertToHeap is O(log|Q|). In the worst case, the
complexity of Algorithm 1 is O(log|Q| × 2|Q|), which is far from being achieved
in our experiments since a certain amount of QER cannot be generated in the
sparse user-entity data.

3.2 Structure Construction

To construct the structure of AEBN that represents the dependence among
entities, we consider expressing all the QERs of Qbest as Horn clauses, which
could be transformed into the graphical structure equivalently by the logical
implication. To this end, each QER e1 ∧e2 ∧ . . .∧en → eq is expressed as a Horn
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Algorithm 1. Generating the optimal QERs
Input: Q, the set of QERs; L, the set of frequent entities
Output: Qbest, the set of optimal QERs
1: Initialize h and a subset tree, sort QERs of Q // h is the max heap
2: i ← 0; best ← 0; tmpc ← 0; tmps ← {}; Qbest ← {} // best is the value of the objective

function
3: while i < |Q| do
4: if Si ∩ tmps = ∅ and tmpc + ci > best then
5: best ← tmpc + ci; tmps ← tmps ∪ Si; i ← i + 1
6: InsertToHeap(h, i, tmpc + ci, tmps, 1) //Generate the left child
7: else
8: up ← tmpc + |L/tmps| × (ci+1/|Si+1|)// Calculate the upper bound up of the i-th node
9: if up > best then
10: i ← i + 1; InsertToHeap(h, i, up, tmps, 0) //Generate the right child
11: end if
12: end if
13: node ← DeleteMax(h)
14: i ← node.level; tmps ← node.tmps; tmpc ← node.tmpc
15: end while
16: for each Qi ∈ Q do
17: if node.child = 1 then
18: Qbest ← Qbest ∪ Qi; node ← node.parent
19: end if
20: end for
21: return Qbest

clause H = e1 ∨ e2 ∨ . . . en ∨ eq. Meanwhile, H implies e1 ∧ e2 ∧ . . . ∧ en → eq

and e1 ∧ e2 ∧ . . . ∧ en → ei(1 ≤ i ≤ n), by which H could be transformed as
e1∨e2∨. . . en∨e1 ∧ e2 ∧ . . . ∧ en∨eq equivalently, and we denote e1 ∧ e2 ∧ . . . ∧ en

as Core. Next, we are to construct the DAG for H, as the structure specified in
Definition 3 to represent the dependence between eq and candidates in H.

In an AEBN B = (V, E , θ), each node in V represents an entity or a con-
junction of entities of H, and the node Vq represents eq. Furthermore, from
two different variables ei and ej , if ei → ej is implied in H, there would be
a directed edge from Vi to Vj in B. Thus, H could be transformed into the
logically-equivalent DAG, shown as G1 and G2 in Fig. 2. The above ideas are
given in Algorithm 2.

...

1 ... nV V

1V nV

qV

(a) G1

iV

qV

(b) G2

qV

1V 2V 3V 4V

1 2V V 3 4V V

1 2V V 3 4V V

(c) G3

Fig. 2. An illustrative example of DAGs constructed by QERs

Each DAG in Σ describes the dependence among entities of the corresponding
QER. It is necessary to combine the DAGs in Σ to obtain the ultimate DAG
of AEBN, by which the dependence between eq and all the candidates in Qbest
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Algorithm 2. Constructing DAG for each QER
Input: Qbest, the set of optimal QERs
Output: Σ, the set of DAGs
1: Transform each QER in Qbest as e1 ∨ e2 ∨ . . .∨ en ∨ e1 ∧ e2 ∧ . . . ∧ en ∨ eq equivalently; Σ ← {}
2: for each e1 ∨ e2 ∨ . . . ∨ en ∨ e1 ∧ e2 ∧ . . . ∧ en ∨ eq in Qbest do
3: Construct a DAG Gq as G1 of Fig. 2; Σ ← Σ ∪ Gq

4: end for
5: for each el ∨ eq in Qbest do
6: Construct a DAG Gq as G2 of Fig. 2; Σ ← Σ ∪ Gq

7: end for
8: return Σ

could be described. To this end, we first replace Vq → Corei and Vq → Corej

by Vq → Corei and Vq → Corej respectively. Simultaneously, we introduce
identically-false node ⊥ and make ⊥ point to Corei, Corei, Corej , and Corej .

For example, suppose there exist e1 ∧ e2 → eq and e3 ∧ e4 → eq in Qbest,
the DAGs obtained by Algorithm 2 for the two QERs can be combined into the
structure shown as G3 in Fig. 2.

3.3 Parameter Learning

In this section, we calculate the CPT of each node, including the node without
parents and that with parents, to obtain the AEBN. Suppose Vi is a node in B
and Pa(Vi) is the set of the parent nodes of Vi. Conditional probability param-
eters in the CPT quantify the dependence between Vi and Pa(Vi). We use the
conditional probabilities, denoted as P (Vi|Pa(Vi)), to evaluate the CPT of Vi

quantitatively. Moreover, all the variables are binary, (i.e. the value of Vi is vi

or vi), which represents whether Vi occurs or not respectively.
If Vi is a node without parents in B, it is straightforward to obtain the prior

probabilities by normalizing the frequencies of frequent entities from user-entity
data, (i.e., vi = N(Vi)/|Ω|), where N(Vi) denotes the number of the entity
corresponding to Vi in Ω.

If Vi is a node with parents, P (Vi|Pa(Vi)) is simply evaluated by the logi-
cal OR constraints represented by Boolean expressions. We give the following
function to evaluate the CPT of Vi:

P (Vi = vi|Pa (Vi) = (y1, . . . , yz)) = fViPa(Vi) =
{

1, vi = y1 ∨ . . . ∨ yz

0, otherwise
(6)

where Pa(Vi) is the set of the parents nodes of Vi, vi, yj ∈ {0, 1}(1 ≤ i, j ≤ z).

4 Ranking AEs by Approximate Inferences over AEBN

In an AEBN, the variable corresponding to an AE is denoted as Va. To rank
AEs w.r.t. Vq, we obtain P (Va = 0|Vq = 1) to evaluate Va depending on Vq

quantitatively according to G3 in Fig. 2.
Rejection sampling [15] is an effective method to produce samples of binary

variables, by which the samples w.r.t. Vq = 1 could be obtained the pairs of
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Algorithm 3. Ranking AEs by the approximate inference over AEBN
Input: B = (V, E, θ), the AEBN, where V is the set of variables of all the nodes; Vq(Vq ∈ V ), the

variable in V corresponding to the QE; η, the number of samples to be generated
Output: Lp, a set of top ranked pairs < Ak, P (Ak = 0|Vq = 1) >
1: Generate a value in {0, 1} for Vi(i = 1, 2, . . . , |V |);Lp ← {};N(Ak) ← 0 // N(Ak) is the counter

of Ak and A(A ⊆ V ) is the set of variables in V corresponding to AEs
2: for j ← 1 to η do
3: Repeat //Generate samples
4: for i ← 1 to |V | do
5: Generate a random number ρ ∈ [0, 1]
6: if ρ ≤ P (Vi|Pa(Vi)) then
7: Vi = 0
8: else
9: Vi = 1
10: end if
11: end for
12: Until Vq = 1
13: for k ← 1 to |A| do

14: if Ak = 0 then
15: N(Ak) ← N(Ak) + 1
16: end if
17: end for
18: end for
19: for k ← 1 to |A| do

20: P (Ak = 0|Vq = 1) ← N(Ak)/η

21: Lp ← Lp ∪ {(Ak, P (Ak = 0|Vq = 1))}
22: end for
23: Sort Lp by P (Ak = 0|Vq = 1)
24: return Lp

top-k AEs with association degrees by sorting P (Va = 0|Vq = 1) in descending
order. The process of approximate inferences is shown in Algorithm 3.

The time complexity of steps 4 ∼ 11 and steps 2 ∼ 18 is O(|V |) and O(η)
respectively. Suppose the complexity of generating samples Vi = 1 in steps 3 ∼ 12
is O(|T |). Then, the complexity of Algorithm 3 is O(T ×|V |×η). The estimation
of rejection sampling will be converged as more samples are collected [15], which
theoretically ensures the effectiveness of Algorithm 3.

5 Experiments

5.1 Experiment Setup

Datasets. Our experiments are conducted on two datasets: (1) users movie rat-
ing data from MovieLens [5], and (2) a user-item behavior dataset from Taobao
called UserBehavior2. Table 2 summarizes the statistics of the two datasets. For
each dataset, we adopt 70% as training data and 30% as test data. We extract
part of the training data to construct KG. Specifically, in MovieLens, we create
the relationship “like” between the user and movie if the ratings are greater than
4.0 (in the range between 0 and 5.0). In UserBehavior, the behavior types (click,
buy, cart, favor) are served as the relationships between users and items.

2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
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Table 2. Statistics of datasets.

Dataset Users Items Categories Records

MovieLens 162,541 62,423 1,093,360 25,000,095

UserBehavior 978,994 4,162,024 9,439 100,150,807

Evaluation Metrics

• Precision, recall, and F1-score are adopted to test the effectiveness of
discovering AEs by probabilistic inferences over AEBN. Specifically, upon
the ground truth provided by two datasets, P@k denotes the proportion of
the correctly discovered AEs over all top-k discovered AEs. R@k denotes
the proportion of the correctly discovered AEs over all correct matches [24].
F1@k is the harmonic mean of P@k and R@k:

F1@k =
2 × P@k × R@k

P@k + R@k
(7)

• MAP (Mean average precision) is adopted to measure the precision of
top-k results after each relevant result is retrieved, defined as:

MAP =
1

|Qs|
|Qs|∑

1

k∑

i=1

P@i × reli

R (8)

where reli equals to 1 if the result at rank i is in R and 0 otherwise, Qs is
the set of queries, and R is the number of the AEs in the test data.

Comparison Methods

• GBQE [7] discovers a weighted hidden maximum query graph based on input
query tuples, and then finds and ranks the top approximate matching answer
graphs and answer tuples.

• TSF [12] is a two-stage framework for Wikipedia by first generating a weight
subgraph w.r.t. two query entities and then computing the relatedness on the
subgraph.

• Association rule [4] discovers AEs by mining frequent patterns from user-
entity data, and the confidence evaluates the association degree.

• Jaccard similarity is used to find AEs from KG and user-entity data,
denoted as Jaccard-KG and Jaccard-D, respectively. The association degree
between entities could be obtained by calculating Jaccard similarity coeffi-
cient.

Implementation
We implement all the algorithms in Java on a machine with a 3.7 GHz Intel Core
i9-10900X CPU and 128 GB of RAM.

The parameters minimum support, size of candidate, min conf to 800, 100,
and 0.7 on MovieLens and 5, 180, and 0.7 on UserBehavior. Each experiment is
repeated for 5 times, and the average is reported.
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5.2 Effectiveness Tests

To test the effectiveness of our method, we compare the precision and MAP of
the top-k queries with the comparison methods. The results are shown in Table 3
and Fig. 3, respectively. We observe that:

Table 3. P@k on two datasets.

Dataset k GQBE TSF Association rule Jaccard-KG Jaccard-D AEBN

MovieLens 2 0.428 0.192 0.381 0.194 0.054 0.553

6 0.235 0.201 0.353 0.177 0.079 0.501

10 0.232 0.308 0.137 0.309 0.062 0.442

UserBehavior 2 0.001 0.013 0.066 0.003 0.044 0.084

6 0.002 0.007 0.049 0.002 0.032 0.073

10 0.001 0.005 0.039 0.003 0.030 0.056

(1) AEBN performs the best among all methods on both datasets. Specifically,
in the top 2, 6, and 10 queries, precision could be improved via AEBN by
12.4%, 14.7%, and by 13.4% on MovieLens, and by 1.9%, 2.3%, and 1.7%
on UserBehavior, respectively, compared with the second-highest method.
Moreover, an average improvement in MAP could be achieved via AEBN
by 7.5% and 3.5% on MovieLens and UserBehavior respectively.

(2) The precision and MAP of the comparison methods (GQBE, TSF, and
Jaccard-KG) on UserBehavior are lower than those on MovieLens, since the
strong randomness of the user behaviors leads to weak entity associations
in the constructed KG. On the contrary, AEBN could be used to query the
AEs more accurately in UserBehavior than the traditional structure-based
methods by incorporating user-entity data.

(3) Compared with other comparison methods (association rule and Jaccard-
D), AEBN achieves better results in terms of the precision and MAP, since
the AEBN ranks AEs by probabilistic inferences based on the prior prob-
ability of entities within the user-entity data, and AEs cannot be ranked
with the same confidence or Jaccard similarity coefficient.

(a) MovieLens (b) UserBehavior

Fig. 3. MAP on two datasets.
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Table 4. R@k on two datasets.

Dataset k GQBE TSF Association rule Jaccard-KG Jaccard-D AEBN

MovieLens 2 0.238 0.111 0.174 0.223 0.130 0.203

6 0.331 0.276 0.370 0.440 0.299 0.406

10 0.466 0.426 0.459 0.500 0.474 0.500

UserBehavior 2 0.133 0.166 0.246 0.175 0.215 0.139

6 0.396 0.218 0.424 0.248 0.353 0.345

10 0.500 0.250 0.487 0.498 0.492 0.413

To further test the effectiveness of our method, we set k to 2, 6, and 10
respectively to test the recall and F1-score. Table 4 shows the effectiveness of
AEBN for recalling AEs. Generally, the recall increases with the increase of
k. We can see from Table 5 that AEBN performs best compared with other
competitors in most cases. Specifically, AEBN improves the F1-score by 8.7%
and 9.9% on MovieLens, and by 3.2% and 2.7% on UserBehavior, when k is 6
and 10 respectively.

Table 5. F1@k on two datasets.

Dataset k GQBE TSF Association rule Jaccard-KG Jaccard-D AEBN

MovieLens 2 0.306 0.141 0.239 0.207 0.077 0.297

6 0.275 0.232 0.362 0.252 0.131 0.449

10 0.324 0.300 0.369 0.215 0.110 0.469

UserBehavior 2 0.002 0.024 0.103 0.003 0.073 0.092

6 0.003 0.013 0.088 0.002 0.057 0.120

10 0.002 0.009 0.072 0.028 0.056 0.099

To test the effectiveness of query processing with different sized candidate
entities, we test the precision by varying the size of candidate entities. As shown
in Fig. 4(a) and Fig. 4(b), the precision increases with the increase of candidate
entities. Specifically, precision increases by 10% when the size increases from
300 to 500 on MovieLens. On the contrary, Fig. 4(c) and Fig. 4(d) show that the
recall decreases when the candidate entities increases. The recall decreases by 7%
when the size increases from 300 to 500 on MovieLens. The impact of the size of
candidate entities on precision and recall is fluctuating, since the UserBehavoir
dataset consists of sparse user-entity behavior interactions with the randomness
of real-world.

Table 6. P@k of AEBN with various QERs.

Datasets Optimal QERs P@2 P@6 P@10

MovieLens Yes (Algorithm 1) 0.623 0.503 0.442

No (Random) 0.413 0.356 0.238

UserBehavior Yes (Algorithm 1) 0.084 0.049 0.037

No (Random) 0.009 0.031 0.035
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(a) MovieLens (b) UserBehavior (c) MovieLens (d) UserBehavior

Fig. 4. P@k and R@k with various sizes of candidate entities on two datasets.

To test the effectiveness of the optimal QERs obtained by Algorithm 1 to
improve the probabilistic inferences over AEBN, we compare the precision with
the AEBN constructed by randomly selected QERs. The results are shown in
Table 6. Actually, the precision of selecting the optimal QERs increases by 21%,
14.7%, and 20.4% over the set of random QERs on MovieLens when k is set
to 2, 6, and 10 respectively. Moreover, the precision of selecting the optimal
QERs increases by 7.5%, 1.8% and 0.2% over the set of random selected QERs
on UserBehavoir when k is 2, 6, and 10 respectively. The results indicate the
effectiveness of Algorithm 1 to obtain the optimal QERs for AEBN construction.

5.3 Efficiency Tests

Next, we test the efficiency of AEBN construction with different sized KGs and
various parameters. Specifically, we construct KGs with the interaction records
of 500, 700, and 900 users on MovieLens, and 3000, 7000, and 10000 users on
UserBehavior respectively. Upon different sized KGs, we test the impact of the
size of candidates and minimum support on the execution time of AEBN con-
struction, shown in Fig. 5(a)–Fig. 5(d) respectively. We can see that the execution
time increases with the increase of the candidate entities but decreases with the
increase of the minimum support. The reason is that both a large sized set of
candidates and a small minimum support are helpful to find more AEs from data.
Moreover, under the same constraints of the minimum support and the size of
candidates, there would be taking more time to construct an AEBN based on
a larger KG. Precisely, the execution time of AEBN construction from the KG
built by 500 users would take 3.2 times longer on average than from the KG built

(a) MovieLens (b) MovieLens (c) UserBehavior (d) UserBehavior

Fig. 5. Execution time of AEBN construction.
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by 900 users on MovieLens. The execution time of AEBN construction from the
KG built by 3000 users would take 1.9 times longer on average than from the
KG built by 10000 users on UserBehavior.

6 Conclusions and Future Work

In this paper, we introduce AEBN to represent and infer the dependence between
the QE and AEs with uncertainties. By expressing association rules as Horn
clauses, the AEBN could be constructed from the sparse user-entity data w.r.t.
the QE. By incorporating KG and user-entity data, AEBN facilitates discovering
AEs with higher precision than traditional structure-based methods and provides
better top ranked AEs.

Currently, only one QE is concerned in the query processing of AEBN, which
should be further extended since multiple query entities are given to determine
the most desirable AEs. Moreover, we consider incorporating large-scaled user-
entity data based on the embedding-based methods.
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Abstract. The scenario that one entity contains other entities is known
as nested entities. Nested named entity recognition is a fundamental and
challenging task in various NLP applications. The state-of-the-art nested
NER approach first enumerates all the text spans in a sentence and then
performs classification. We realize that a large proportion of entities con-
tain only one token which cannot be nested, and most text spans in a
sentence are not entities and the full enumeration is thus costly and
unnecessary. In this paper, we propose an efficient selective enumeration
approach named BOUNCE. We decompose the nested NER task into two
subtasks for identifying unit-length entities and the others respectively.
We develop a delicate model for each subtask and perform joint training
for both of them. To improve the efficiency, we employ a head detection
module to locate the start points of entities, which acts as a filtering step
before enumeration. We provide a detailed analysis on the time complex-
ity of the existing nested NER techniques and conduct extensive experi-
ments on two datasets. The results demonstrate that BOUNCE outper-
forms various nested NER techniques and achieves higher efficiency than
the state-of-the-art method with comparable accuracy performance.

Keywords: Named entity recognition · Sequence labeling · Multi-task
learning · Classification

1 Introduction

Named Entity Recognition (NER) is an essential and fundamental task in Nat-
ural Language Processing which aims to identify entities or entity mentions –
text spans with proper semantic types such as Person or Location. This task is
often treated as a sequence labeling problem where each token is tagged with a
specific label and the labels indicate the recognized entities [12,19,27].

However, it has been found [16] that sequence labeling approaches fall short
in dealing with nested entity mentions in texts, where one entity mention may
include other entity mentions. As shown in Fig. 1, the Protein entity men-
tion “interleukin-2” is nested in a DNA entity mention “Mouse interleukin-2
receptor alpha gene”. While posing great challenges to the NER task, nested
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 90–105, 2021.
https://doi.org/10.1007/978-3-030-85899-5_7
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Fig. 1. An example of two nested entity mentions of Protein and DNA. “B” and “-”
indicate the heads of the span regions and the others, respectively.

entities are very common in practice, especially in the biomedical domain. In
the well-known ACE2005 [8] and GENIA text corpora [17], more than 20% of
the sentences involve nested entity mentions. Therefore, it is crucial to develop
effective approaches to the nested NER problem that can further facilitate many
downstream applications such as relation extraction [13,39], reading comprehen-
sion [7,32] and translation [10,33].

There have been many attempts to recognize nested named entities, includ-
ing layered sequence labeling methods [2,14], region-based classification meth-
ods [28,38] and neural methods with proprietary structures [22,24]. The layered
sequence labeling methods [2,14] stacked multiple flat NER layers where inner-
most entity mentions are recognized in the first layer and outer entity mentions
are identified in the following layers. One disadvantage of such methods is that
the final performance suffers from error propagation through layers, which means
the performance of a layer could be compromised if its previous layer extracts
wrong entities. Later on, the region-based NER method [28] and its enhance-
ment [38] proposed to decompose the recognition of nested entities into two
steps. They first employ a single-layer sequence labeling model to detect the
boundaries of entity mentions, producing candidate entities in texts. They then
apply a region classification model to predict the entity type of each candidate.
However, the sentence labeling model is insufficient to handle conflicting labels.
For instance, the “interleukin-2” should be tagged with “B” and “I” at the
same time, due to the existence of two nested entities. Some works exploited the
dependencies among nested entities and developed proprietary structures such
as mention hypergraph [22] or bipartite flat-graph [24], but can only achieve
marginal performance improvement.

Recently, Pyramid [15] has been reported to achieve the state-of-the-art per-
formance for nested NER. It organizes text spans of different lengths into a
pyramid shape with a stack of L layers. The l-th layer predicts whether a text
span of length l in the input sentence is an entity mention. The consecutive layers
are inter-connected following the containment relationship of text spans, which
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captures the dependencies among entities explicitly. The detected entity men-
tions are then fed into a region classifier to predict the entity types. In general,
Pyramid employs an enumeration-classification framework, where all the possi-
ble text spans (up to a length of L) are enumerated and examined exhaustively
before the final classification. While the full enumeration is critical to reduce the
false negatives, this results in high time cost during inference stages. Specifically,
the time complexity of the full enumeration in an input sentence is O(N2), where
N is the number of tokens in the sentence. Their low inference speed hinders
their practical application when facing massive text data to be processed.

In this paper, we would like to ask the following question: can we develop
an efficient enumeration-classification approach that reaches comparable perfor-
mance as Pyramid with lower time complexity? Our work is motivated by two
important observations. First, in practice, a number of entity mentions con-
tain only one token, e.g., over 30% of entities have a unit length on GENIA,
ACE2005 datasets. Since unit-length entities cannot be nested, conventional
sequence labeling methods [1] are proficient in recognizing them with a linear
time complexity of O(N). This inspires us to break down the nested NER prob-
lem into two subtasks, to handle unit-length entities and the others separately.
Second, not all the tokens in a sentence are the start points of certain entities.
Instead of enumerating all the possible text spans, it would be useful to first clas-
sify whether a token is the head of at least one entity. This step plays a filtering
role to locate possible entities in a sentence. After that, the enumeration could
be performed over each of head tokens rather than all the tokens as Pyramid.
Figure 1 illustrates the enumeration given the only head token “Mouse” in the
sentence. Supposing the number of tokens that are heads of certain entities is S,
the additional filtering step can reduce the enumeration complexity from O(N2)
to O(SN), and in practice S is much smaller than N .

Following our observations, this paper introduces an efficient approach named
BOUNCE for nested NER. The key idea of BOUNCE is to selectively enumer-
ate text spans rather than examine all the possible text spans exhaustively. To
do this, we divide entity mentions into two types according to their lengths.
We refer to entity mentions with a single token and multiple tokens as unit
regions and span regions, respectively. For instance, in Fig. 1, the entity men-
tion “interleukin-2” is a unit region and “Mouse interleukin-2 receptor alpha
gene” is regarded as a span region. In a nutshell, BOUNCE solves two subtasks
to recognize unit regions and span regions respectively. The two subtasks are
trained jointly via multi-task learning, which enables the information sharing
among entities. BOUNCE identifies unit regions by a sequence labeling model
that is widely used for extracting flat (non-nested) entities. As for span regions,
it first detects the head of span regions via sequence labeling and then enu-
merates the potential text spans (with more than one token) starting from the
detected heads. As illustrated in Fig. 1, after the first token “Mouse” is detected
as the only head, we enumerate N − 1 text spans starting from it as the candi-
date entity mentions to be classified afterwards (N is the sentence length). All
the other text spans are ignored without examination, leading to high efficiency.



BOUNCE: An Efficient Selective Enumeration Approach 93

BOUNCE can be trained in an end-to-end manner via error backpropagation.
To summarize, this paper makes the following major contributions.

– We propose an efficient selective enumeration approach named BOUNCE for
nested NER. It separates entity mentions into unit regions and span regions,
and adopts multi-task learning to detect both types of regions effectively. For
span regions, BOUNCE quickly filters text spans by locating the heads of
entities, which avoids the expensive full enumeration.

– We also provide a detailed analysis on the time complexity of various existing
techniques for nested NER.

– We conduct extensive experiments on two real datasets. The results demon-
strate that BOUNCE outperforms various existing nested NER approaches,
and it achieves comparable performance as the best-performing method Pyra-
mid with much higher efficiency1.

2 Related Work

Deep neural networks have shown remarkable performance in plenty of applica-
tions [5,10,32,37]. Recent efforts have been devoted to developing neural net-
work models to deal with flat named entity recognition [19,23]. However, these
approaches fall short in handling nested entities where one token may refer to
different entity types. Nested entities are very common in practice [21,36]. There
are generally three different categories of approaches to nested NER. The first
category is stacked sequence labeling methods [2,14]. Ju et al. [14] developed mul-
tiple decoding layers to label nested entities. Each layer identifies entities based
on the labeling performed in the previous layers. However, the performance suf-
fers from error propagation through layers. Joseph et al. [9] dynamically merged
text spans at different encoding layers to learn higher level representation and
identified the entity types of the corresponding text spans. The second category
is region-based classification approaches [4,28,34]. The key idea is to identify
possible entity mentions in a sentence and classify them into entity types. Zheng
et al. [38] detected all potential entities based on the BIEO tag scheme and
applied single-layer model to determine the entity types of those potential enti-
ties. Lin et al. [20] tackled this problem by detecting anchor words first and then
determining boundaries of entities around anchor words. The third category of
works used proprietary structures such as hypergraph [22] to deal with nested
entities. Muis et al. [25] constructed a hypergraph structure based on multigraph
representation to address the spurious structures problems.

Pyramid [15], stacking multiple LSTM and convolution layers, is a recent
stacked sequence labeling method. While Pyramid has been reported to achieve
the state-of-the-art performance, the time complexity of enumerating all the text
spans for nested NER is high. In this paper, we propose to separate entities into
unit regions and span regions. And we selectively enumerate text spans based
on the detected head tokens that are the start points of at least one entities,
leading to high efficiency.
1 Our code is available at https://github.com/LiujunWang/BOUNCE.

https://github.com/LiujunWang/BOUNCE
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Table 1. The summary of notations.

Notation Description

N The length of sentence

C The set of entity types

hi The hidden state of i-th token in a sentence

[hi; hj ] The concatenated representation of hi and hj

σ ReLU activation function

∗ 1D convolutional operator

3 BOUNCE Approach to Nested NER

In this section, we present our BOUNCE approach to nested NER. We divide
entity mentions into two types, unit region and span region, according to their
lengths. The unit region entities contain only one token and the span region
entities involve more than one tokens. It is important to notice that unit region
entities cannot be nested. At a high level, BOUNCE aims to selectively enu-
merate text spans and classify their entity labels to reduce the inference time
costs. Figure 2 depicts the BOUNCE architecture, which consists of three major
modules: (i) unit region classification is responsible for identifying unit region
entities and associating them with correct entity types; (ii) span region head
detection tries to locate the head of possible entities; and (iii) span region clas-
sification enumerates span region entities according to the detected heads and
classify them into types. There are two novel attempts in BOUNCE. First, we
decompose the challenging nested NER task into two subtasks for handling unit
region entities and span region entities, respectively. This allows us to tailor
more appropriate models to each subtask. Second, we enumerate possible entity
mentions following the detected region span heads, which is beneficial to reduce
false alarms and enhance the efficiency. It is worth mentioning that BOUNCE is
fully differentiable and can be optimized via error backpropagation. In what fol-
lows, we present the details of our BOUNCE approach. Table 1 summarizes all
the notations used throughout the paper.

3.1 Token Representation

We consider a N -length sentence {t1, t2, · · · , tN} as the raw input. Initially, each
token ti(1 ≤ i ≤ N) is encoded using the one-hot vector. We transform it into
the context-aware latent vector. First, we compute the word-level embedding xw

i

of ti as: xw
i = Ew(ti), where Ew is the word embedding lookup matrix. We

initialize Ew with pre-trained language models as in [15].
Second, we consider the character-level embedding xc

i of ti following [19],
which are useful to capture the orthographic and morphological features of
the tokens and represent out-of-vocabulary words. Let cij be the j-th character
in token ti. We compute the initial embedding of cij as Ec(cij), where Ec is the



BOUNCE: An Efficient Selective Enumeration Approach 95

Span region head detection ( 3.3)

LayerNorm

Span region classification ( 3.4)

Unit region classification ( 3.2)

Token
Rep ( 3.1)

t1

w c

t2

w c

t3

w c

∙∙∙

w c
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tn-1
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∙∙∙

Dropout
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Classifier

MeanPooling MaxPooling

∙∙∙

Fig. 2. Model architecture of our BOUNCE model. h represents the hidden states of
inputs. The superscript and subscript of h denotes the layers of bi-LSTM, position of
tokens respectively.

character embedding lookup table and we initialize it randomly. We then supply
the character sequence of ti into a bidirectional LSTM [11]. The character-level
embedding xc

i of ti is computed by concatenating the last hidden states of the
bi-LSTM as follows:

xc
i = [

−−→
h|ti|;

←−−
h|ti|] (1)

Finally, we employ a stack of L bi-LSTM layers to transform the two-level
embedding xi = (xw

i , xc
i ) of ti into its context-aware latent vector. The first-layer

transformation is formulated as follows:
−→
h1
i =

−−−−→
LSTM

(
xi,

−−→
h1
i−1;

−→
θ1

)

←−
h1
i =

←−−−−
LSTM

(
xi,

←−−
h1
i+1;

←−
θ1

)

h1
i = [

−→
h1
i ;

←−
h1
i ]

(2)

where i ∈ [1, N ] and θ terms denote the parameters to be learned. The l-th layer
simply replaces xi in Eq. (2) with the corresponding hidden state hl−1

i in the
lower layer. The output of the L-th layer is {hL

1 , hL
2 , · · · , hL

N}, where hL
i is the

context-aware token representation of ti. Henceforth, we use hi to denote hL
i for

ease of description.

3.2 Unit Region Classification

The unit region classification module aims at identifying unit region entities.
The input to this module is the context-aware token representations H =
{h1, · · · , hN}. Let C denote the set of entity types. We try to predict the label
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sequence for H, where the labels belong to C∗ = C ∪ {none} and none means
the token is not a named entity. One way is to apply conditional random field
(CRF) [18] to predict the label sequence, which is capable of capturing label
dependencies [19]. However, in our setting, the unit region entities may be scat-
tered over the sentence and the label dependency between consecutive tokens is
weak. For the efficiency concern, we use the simple softmax operation to pre-
dict the label of each token independently [35]. Specifically, we feed each token
representation hi into a fully-connected layer as follows:

zuniti = W (σ(hi)) + b (3)

where zuniti ∈ R
|C∗|, W and b are model parameters, and σ is the activation

function. We use the rectifier ReLU in this paper if not otherwise specified.
We then apply the softmax classifier to compute the probability of the token ti
belonging to each type in C∗. Formally, we have:

yunit
ij = P (cj ∈ C∗ | hi) =

exp(zunitij )
∑|C∗|

k=1 exp(zunitik )
(4)

where yunit
ij is the probability of the token ti belonging to type cj .

We compute the cross-entropy loss to optimize this module, and the loss for
H is formulated as:

Lunit(H) = −
N∑
i=1

|C∗|∑
j=1

ỹunit
ij log yunit

ij (5)

where ỹunit
i is the truth unit region label vector of the token ti.

3.3 Span Region Head Detection

We propose to enumerate span region entities (with more than one tokens) in
a selective manner. The span region head detection module is to identify the
head (i.e., the first token) of at least one span region entities. The input to this
module is the token representations H = {h1, · · · , hN}. We adopt a sequence
labeling model to assign each token with a binary label indicating whether it is
a head or not. We first perform layer normalization followed by a dropout layer
over each token representation hi in H:

h̃i = Dropout (LN(hi)) (6)

To capture the label dependency between adjacent tokens, we further apply 1D
convolution with a window size of two over H̃:

zheadi = W c ∗ [h̃i−1; h̃i] + bc (7)

where ∗ denotes the convolutional operator. W c and bc are respectively the kernel
matrix and bias to be learned.
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We then feed zheadi into a fully-connected layer followed by a softmax layer,
which is formulated as follows:

yhead
i = softmax(W (σ(zheadi )) + b) (8)

where yhead
i ∈ [0, 1]2 and W ∈ R

|hi|×2 and b are model parameters.
Similar to Eq. (5), we adopt the cross-entropy loss to optimize the span region

head detection module, which is defined as:

Lhead(H) = −
N∑
i=1

2∑
j=1

ỹhead
ij log yhead

ij (9)

where ỹhead
i is the ground-truth binary label vector of the token ti being the

head of any span region entities.

3.4 Span Region Classification

Based on results predicted by the span region head detection module, we con-
struct candidate span regions as illustrated in Fig. 1. Specifically, for each
detected head token, we enumerate all the text spans starting from it till the last
token in the sentence, which are regarded as candidate span region entities. The
span region classification module takes each candidate as input and produces its
entity type in C∗. Note that we leverage the ground-truth labels of tokens being
the head of any span regions during training, while the actual predicted head
labels are used for testing. It is also worth mentioning that our method does not
require to construct a pyramid-like structure to propagate information among
candidate entity mentions, which is time-consuming. Instead, we avoid unneces-
sary enumeration and classification of span region candidates, and capture the
dependencies among entities through shared token representation module and
the overall joint training paradigm.

To deal with the problem that candidate span region entities have differ-
ent lengths, a commonly adopted strategy to obtain the representation of span
regions is simply averaging the representations for the involved tokens like in [38].
However, applying average pooling directly would dismiss the local features of
entities. Hence, in our design, we first employ the convolution neural network
with different kernel sizes to extract local features of candidate span regions.
We consider a candidate region span entity with the token representations
Hc = (hc1, · · · , hck), where c1 is the index of the head token and ck is the
index of the end token, satisfying ck − c1 = k − 1 (a continuous text span).

To simply the description, we define the convolutional operator with a win-
dow size of two as an illustration, which is the following:

zspanci = W cs ∗ [hc(i−1);hci] + bcs (10)

where ∗ is the convolutional operator. W cs and bbs are model parameters. Then
we utilize both max-pooling and mean-pooling to normalize the candidate repre-
sentations into the same dimension and further concatenate the pooling results,
which are defined in the following equations:
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Hmax
c = Fmax([zspanc1 : zspanck ]) (11)

Hmean
c = Fmean([zspanc1 : zspanck ]) (12)

H̄c = Hmax
c ⊕ Hmean

c (13)

where [zspanc1 : zspanck ] denotes the output of the convolutional operator. Fmax

and Fmean are the two pooling operations. ⊕ means the concatenation.
Now that we obtain the representation of the candidate region span entities

H̄c, we supply it to the softmax classifier to produce its type in C∗. Formally,
we have:

yspan
c = softmax(W (σ(H̄c)) + b) (14)

where yspan
c is a |C∗|-dimensional vector. The loss function of the span region

classification module is defined as follows:

Lspan = −
∑
c

|C∗|∑
j=1

ỹspan
cj log yspan

cj (15)

where ỹspan
cj denotes the ground-truth label vector of the candidate.

Overall, the loss function to optimize the parameters of all the modules con-
sists of three parts in Eq. (5), Eq. (9) and Eq. (15), which is defined as follows:

L = α1Lunit + α2Lhead + α3Lspan (16)

where α terms are used to reweigh the losses of the respective modules.

3.5 Time Complexity Analysis

In this section, we discuss the time complexity of the main computational blocks
in processing one sentence, including bi-LSTM layer, convolution layer, pooling
layer and fully connected layer. We ignore other layers like embedding layer since
the main computational blocks are the dominate factors in the time complexity.

Given token representations of a sentence with length N , the time complex-
ity of the computational blocks to obtain the sequence representation is O(N).
Therefore, the time complexity of bi-LSTM layer, pooling layer and convolu-
tion layer are O(N). For N candidate entities, the time complexity of the fully
connected layer predicting tokens’ labels is also O(N).

Similarly, the time complexity of the Pyramid-Basic model [15] is O(LN)
since it stacks L layered bi-LSTMs and L convolution layers, which will pro-
duce LN candidate entities with L being the number of the stacked layers. They
set L to 16 in their experiments, and hence the time complexity of Pyramid-
Basic is approximately O(MN), where M is the maximum length of entity men-
tions. Assuming the number of head tokens is S, our BOUNCE model produces
SN candidate span region entities. Besides, we only need to process N -length
sequence once to obtain all the pooling results of candidate span region enti-
ties which share the same head token during pooling step. Therefore, the time
complexity of our BOUNCE approach is O(SN). We also discuss the time com-
plexity of various existing NER methods. The analysis results are summarized
in Table 4.
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Table 2. The statistics of the datasets used in the experiments. A sentence is considered
as nested if it contains nested entities.

ACE2005 GENIA

Train Dev Test Train Dev Test

#sentences 7285 968 1058 15022 1669 1855

#nested sentences 2797 352 339 3222 328 448

(38%) (36%) (32%) (21%) (20%) (24%)

#entities 24708 3218 3029 47006 4461 5596

#unit region entities 13625 1793 1671 21863 1507 2132

(55%) (56%) (55%) (47%) (34%) (38%)

#span region entities 11083 1425 1358 25143 2954 3464

(45%) (44%) (45%) (53%) (66%) (62%)

Maximum entity length 51 31 31 20 20 15

4 Experiments

4.1 Datasets and Experimental Settings

Datasets. We evaluate our model on two nested NER datasets2: ACE2005,
GENIA. Table 2 provides the statistical details of the datasets.

– ACE2005 involves 7 fine-grained entity types. We used the same splits of
documents (8:1:1 for train/dev/test sets) as in the previous work [15].

– GENIA is from GENIAcorpus3.02p3. Following the previous studies [15,22],
we split it into 8.1:0.9:1 for train/dev/test sets. It contains 5 entity types. The
DNA, RNA and protein subtypes are collapsed into DNA, RNA and Protein
respectively, while cell line and cell type are kept.

Comparison Methods and Metrics. We compare our proposed BOUNCE
approach with 15 different NER methods as listed in Table 4. We use precision
(P), recall (R) and F1-score (F1) as the performance metrics. An entity mention
is recognized correctly if its start index, end index and entity type are all predicted
correctly. We also measure the inference speed by the number of processed tokens
per second for efficiency comparison.

Model Settings. Table 3 summarizes the hyperparameters and their values
used in our experiments. We adopted the stochastic gradient descent (SGD)
as our optimizer for model training. For GENIA dataset, we initialized the
word embeddings with pre-trained 200-dimensional vectors [6] like the previ-
ous works [15,38]. For ACE2005 datasets, we used the publicly pre-trained 100-
dimensional GloVe word embeddings [26]. All the dropout rates in our experi-
ments were set to 0.5. We set all the α terms in Eq. (16) to be one by default.
2 The NNE and ACE2004 datasets are inaccessible due to lack of license.
3 http://www.geniaproject.org/genia-corpus/pos-annotation.

http://www.geniaproject.org/genia-corpus/pos-annotation
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Table 3. Hyperparameters used in our experiments. When two values are given, they
are used for ACE2005, GENIA datasets, respectively.

Hyperparameter Value

Token embedding size 100, 200

Char embedding size 30, 50

Dropout rate 0.5

bi-LSTM hidden size 200

Stacked bi-LSTM layers 2

Batch size 4

Learning rate 0.015, 0.004

Momentum 0.9

Gradient clipping 5.0

We updated the learning rate by time decay, where the decay rate was set to
0.05. We also performed early stopping to prevent overfitting. Pyramid-Full,
containing an inverse pyramid, is an enhancement of Pyramid-Basic. All the
performance results of the comparison methods are directly obtained from the
original papers.

Experimental Environment. We conducted the experiments on a 64-bit
Linux machine with a Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz pro-
cessor and a NVIDIA TITAN Xp with 12 GB of available RAM. We ran all the
experiments 10 times and reported the averaged results.

4.2 Comparison Results

Performance Evaluation. Table 4 shows the performance comparison results
of different methods on two datasets. Missing results on some datasets represent
that corresponding model has no evaluation on that datasets. We have the fol-
lowing key observations. First, our BOUNCE approach consistently outperforms
all the existing NER methods except Pyramid on the two datasets, which proves
the effectiveness of our selective enumeration method in handling nested enti-
ties. Though Seq2seq is trained using train+dev sets on GENIA, it is still inferior
to our method. Second, BOUNCE achieves comparable performance to the two
Pyramid methods on GENIA, and the performance is slightly below Pyramid on
ACE2005. This is because Pyramid constructs a pyramid structure to explicitly
capture the dependencies among entities and enumerates all the text spans to
avoid false negatives. However, the time complexity of Pyramid is higher than
BOUNCE, and hence our BOUNCE approach is more desirable when the effi-
ciency is a major concern. Third, all the approaches report the highest F1-score
on GENIA. The possible reasons are that GENIA contains more training data,
and its maximum entity length is much smaller than those in ACE2005. Besides,
we present the performance of our span region head detection module on two
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Table 4. Performance comparison results on ACE2005, GENIA. M is the maximum
length of entity mentions and N refers to the sentence length. For time complexity,
Q and S denote the average numbers of entity mentions and span region entities per
sentence, respectively. K denotes the average number of anchor words [20] per sentence
(S < Q < K < M < N and Q � N). The time complexity of Cascaded-CRF is not
listed as it varies over datasets.

ACE2005 GENIA Time complexity

P R F1 P R F1

Hypergraph [22] 66.3 59.2 62.5 74.2 66.7 70.3 O(N)

Multi-hypergraph [25] 69.1 58.1 63.1 75.4 66.8 70.8 O(N)

Multi-CRF [19] 69.7 61.3 65.2 73.1 64.9 68.8 O(N)

FOFE [34] 76.9 62.0 68.7 74.0 65.5 69.5 O(N2)

Transition [31] 74.5 71.5 73.0 78.0 70.2 73.9 O(N)

Cascaded-CRF [14] 74.2 70.3 72.2 78.5 71.3 74.7 –

LH [16] 70.6 70.4 70.5 79.8 68.2 73.6 O(N)

SH [30] 76.8 72.3 74.5 77.0 70.3 75.1 O(N2)

Exhaustive [28] – – – 73.3 68.3 70.7 O(N2)

Merge & Lable [9] 75.1 74.1 74.6 – – – O(N)

Anchor-region [20] 76.2 73.6 74.9 75.8 73.9 74.8 O(N + KN)

Boundary-aware [38] – – – 75.9 73.6 74.7 O(N + Q2)

Seq2seq [29] – – 75.4 – – 76.4 O(N)

BiFlaG [24] 75.0 75.2 75.1 77.4 74.6 76.0 O(N + M2)

Pyramid-basic [15] 79.27 79.37 79.32 77.91 77.20 77.55 O(MN)

Pyramid-full [15] 80.01 78.85 79.42 78.60 77.02 77.78 O(2MN)

BOUNCE 80.46 75.20 77.74 77.80 76.10 76.94 O(SN)

Table 5. Results of the span region head detection module on ACE2005 and GENIA.

Head detection ACE2005 GENIA

P R F1 P R F1

B 90.7 84.6 87.5 82.3 85.4 83.8

datasets in Table 5. The head detection accuracy on GENIA is slightly lower
than that on ACE2005. This is reasonable since GENIA contains more span
regions in the test set. However, the final performance of BOUNCE on GENIA
shows that the slightly inferior performance of the head detection is acceptable.

Efficiency Evaluation. We evaluate the inference speed of our BOUNCE app-
roach and the best-performing methods Pyramid-Basic and Pyramid-Full using
different batch sizes on ACE2005 and GENIA datasets. We keep the same dimen-
sions in token representation and hidden state of bi-LSTM for all the methods.
The inference efficiency of Pyramid was measured in the same experimental
environment as BOUNCE. The results are provided in Fig. 3.

We can observe that BOUNCE achieves the highest inference speed on both
datasets. On average, the inference speed of BOUNCE is about 3.3× and 5×
than those of Pyramid-Basic and Pyramid-Full respectively for all the batch
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sizes on GENIA. The efficiency improvements are more significant on ACE2005,
which contains smaller number of span region entities. As the batch size becomes
larger, the efficiency improvement of BOUNCE tends to decrease slightly. This is
reasonable as the bi-LSTM used for token representation occupy more time cost
in the total inference time. Besides, Pyramid-Full runs slower than Pyramid-
Basic on all the cases because it contains an inverse pyramid, which means that
the time complexity of Pyramid-Full is about twice as much as Pyramid-Basic.

Fig. 3. Efficiency comparison results on ACE2005 and GENIA datasets.

Table 6. Ablation study results on GENIA dataset.

P R F1 ΔF1

BOUNCE 77.80 76.10 76.94

w/o separation 77.09 75.30 76.19 (−0.75)

w/o character 77.45 74.19 75.78 (−1.16)

w/o max-pooling 78.01 74.73 76.33 (−0.61)

w/o mean-pooling 77.80 75.42 76.60 (−0.34)

w/o layerNorm 77.00 76.09 76.54 (−0.40)

4.3 Ablation Study

We conduct ablation study on GENIA dataset to verify the benefits of separat-
ing entity mentions into two types according to their lengths and confirm the
effectiveness of different components in BOUNCE including character-level bi-
LSTM in Eq. (1), max-pooling layer in Eq. (11), mean-pooling layer in Eq. (12)
and layer normalization in Eq. (6). We present the results in Table 6. And all
these components have positive effects on the final performance of our model.
The separation can improve the F1-score to a certain extent and it can also
avoid invalid enumeration. Character-level features provide significant contribu-
tions because it captures orthographic and morphological information of tokens.
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Max-pooling layer achieves larger improvement gain than mean-pooling layer
in term of F1-score, which demonstrates that max-pooling reserves more dis-
criminative features than mean-pooling in our model. Layer normalization also
improves the F1-score and it can speed up the training process [3].

5 Conclusion

In this paper, we propose an efficient selective enumeration approach named
BOUNCE for nested NER. BOUNCE divides named entities of different lengths
into two types, unit region and span region. It devises delicate models to identify
each type of entities effectively and performs joint training for better information
sharing. BOUNCE follows the filtering-enumeration-classification framework for
identifying span region entities, thus avoiding unnecessary text span examina-
tion. We further analyze the time complexity of various existing NER techniques
and prove the efficiency of BOUNCE. Our experiments on two real datasets
demonstrate that our BOUNCE approach can achieve comparable performance
to the best-performing Pyramid method, with much higher inference speed.
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Abstract. With the growing popularity and application of knowledge-
based artificial intelligence, the scale of knowledge graph data is dramat-
ically increasing. A Regular Path Query (RPQ) allows for retrieving ver-
tex pairs with the paths between them satisfying regular expressions. As
an essential type of queries for RDF graphs, RPQs have been attracting
increasing research efforts. Since the complexity of RPQs is in polynomial
time with respect to the scale of the knowledge graphs, currently, there
has been no efficient method to process RPQs on large-scale knowledge
graphs. In this paper, we propose a novel indexing solution by leveraging
frequent path mining. Unlike the existing RPQ processing methods, our
approach makes full use of frequent paths as the basic indexing facility.
The frequent paths extracted from data graphs will be indexed to accel-
erate RPQs. Meanwhile, since no RPQ benchmark available, we create a
micro-benchmark on synthetic and real-world data sets. The experimen-
tal results show that PAIRPQ improves the query efficiency by orders of
magnitude than the state-of-the-art RDF storage engines.

Keywords: Knowledge graphs · Path index · Regular path queries

1 Introduction

With the proliferation of Knowledge Graphs (KG), the applications of KGs have
a rapid growth in recent years. In the Semantic Web community, the Resource
Description Framework (RDF) [1] becomes a de facto standard format for KGs
and has been extensively applied. As an essential type of queries for RDF graphs,
Regular Path Queries (RPQs) have been attracting increasing research efforts.
RPQs explore RDF graphs in a navigational manner, which is an indispensable
building block in most graph query languages. SPARQL 1.1 [2] is the standard
query language on the RDF graphs, providing the property path [3] feature which
is actually an implementation of RPQ semantics. In particular, answering an
RPQ Q = (x, r, y) over an RDF graph G is to find a set of pairs of resources
(v0, vn) such that there exists a path ρ in G from v0 to vn, where the label of ρ,
denoted by λ(ρ), satisfies the regular expression r in Q.
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Although theoretical aspects of RPQs have been well studied, few practi-
cal techniques exist, such as efficient RPQ evaluation and optimization. Several
methods with prune and filter techniques are proposed to tackle RPQs, such as
the approach in [4]. However, the existing methods focus on the query optimiza-
tion approaches rather than consider the statistics of data, leading to differences
in the query performance over different KGs. In contrast with other path index
methods, the path indexes built by PAIRPQ are on the top of frequent paths
existing in the KGs, which will alleviate the query performance differences over
data sets since the indexed items are adaptive to the data.

For capturing the statistical features of the data, we adopt the path index
technique, which has been successfully applied in the area of XML and semistruc-
tured data management. For constructing this index, we consider frequent paths
that exhibit in the KG, as shown in Fig. 1. It is noteworthy that PAIRPQ only
captures the frequent paths and leaves the rare paths not indexed, which will
save the storage space. To deal with various kinds of queries, two tables, PST
and PTS, are constructed to record the paths, source vertices, and target ver-
tices, while the first two columns of PST and PTS are indexed using B-tree. For
the paths in the input query statements, we divide them into several indexed
paths to make full use of the query efficiency advantages of PAIRPQ. The join
order between the several parts of the divided paths is determined by the his-
togram of the data. The detailed method for path division is presented in Sect.
4.3. The processed query statements are executed over PAIRPQ to obtain the
subgraphs that conform to the specified paths, and the final results are output
in the form of a relation table.
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Fig. 1. The overflow of PAIRPQ

Our contributions in this paper can be summarized as follows:

(1) In order to accelerate RPQs, path indexes on frequent paths are built, i.e.,
PAIRPQ, which takes advantage of statistics of the underlying KGs. With
the path indexes, all RPQs will be divided into several indexed parts, reduc-
ing intermediate calculations and improving query efficiency.

(2) The Brzozowski’s derivatives [5] is utilized to divide paths into parts, while
the join order between the several parts is determined by the histogram of
the data, leading to high efficiency.
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(3) Since there are no explicit benchmarks targeted for RPQs over RDF graph
yet, we provide a micro-benchmark over synthetic and real-world data sets
to measure the performance of the query processing method proposed.

(4) Extensive experiments are carried out to verify the effectiveness and effi-
ciency of the proposed methods. The experimental results show that
PAIRPQ and the query processing algorithm over PAIRPQ outperform the
state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 reviews related works.
In Sect. 3, we introduce preliminary definitions. In Sect. 4, we describe the
PAIRPQ index method for RPQs on RDF graphs and query processing tech-
niques over PAIRPQ in detail. Section 5 shows the experimental results, and we
conclude in Sect. 6.

2 Related Work

In this section, we discuss the related works, including path index methods and
RDF storage engines.

2.1 Path Index

Recent years have witnessed great advances in path index techniques, which
can be classified into the following categories: (1) DataGuide (2) T-index (3)
k-bisimilarity index.

DataGuide. A DataGuide [6,7] for an data graph d is an summary graph s
such that every label path of d has exactly one data path instance in s, and
every label path of s is a label path of d. Moreover, Strong DataGuide is a
class of DataGuide that is more restrictively, where each label path that shares
the same extent in the DataGuide is exactly the set of label paths that shares
the same target set in the source. Nevertheless, DataGuide requires a powerset
construction over the underlying database. Moreover, DataGuides only follows
the structural information from the data graphs, however, paths that are queried
frequently should be attached more weights when building indexes, which is one
of our key contributions in PAIRPQ.

T-Index. T-index [8] (template index ) is proposed to answer queries for specified
path template. The most simple template index, 1-index, is a rooted and labeled
summary graph s where nodes are equivalence classes of the nodes in the original
data graph d, assuring that for each edge in d there exists an edge in s. In 2-
index, each node represents the equivalence class for a 2-length path. T-index,
generalizing both 1-index and 2-index, only builds indexes on those having high
percentage accessed queries rather than indexing all the paths. T-index leverages
query logs to filter out the paths that should be indexed, however, query logs
are not available in several data sets, which hinders the wider application of
T-index. In contrast with T-index, all the requirements can be extracted from
the data graphs in PAIRPQ, which assures the availability of PAIRPQ.
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k-Bisimilarity Index. DataGuide and T-index, which are designed to answer
RPQs accurately, leads to increased size and complexity with little added value.
To deal with the shortcomings of DataGuide and T-index, A(k)-index [9], D(k)-
index [10], and M(k)-index [11] are proposed based on k-bisimilarity. In A(k)-
index, vertices are grouped based on the incoming paths of length up to k. For
paths no longer than k, A(k)-index could get exact answers. While for paths
longer than k, the A(k)-index becomes approximate. D(k)-index is an adaptive
structural summary utilizing the query load, which can dynamically adjust its
structure optimally to achieve reduced index size and improved performance.
M(k)-index allows different k values for different index vertices having the same
label, which makes M(k)-index not over-refined for irrelevant indexes or data
vertices. Compared with the aforementioned methods, we not only consider the
statistical features of data graphs but also reduce the dependence on query log,
ensuring the applicability of PAIRPQ.

2.2 RDF Storage Engine

With the widespread application of knowledge graphs, various RDF storage
engines have emerged. Virtuoso [12] is a commercial open source RDF stor-
age engine based on a SQL engine, facilitating multi-model data management,
and supporting the property path feature in SPARQL 1.1. However, due to the
defects of structural features, the query efficiency over Virtuoso is unsatisfac-
tory. In addition, gStore [13] is a prototype system that uses VS*-tree to speed
up query processing and supports SPARQL 1.1. Nevertheless, not all syntax in
SPARQL 1.1 can be parsed in gStore, particularly, the property path is beyond
the ability of gStore system. Moreover, KGDB [14] is another prototype system
that accommodates RDF graphs and property graphs and supports basic queries
of SPARQL and Cypher, in which property path is allowed. However, no query
optimization methods for RPQs are available in KGDB, which limits the query
efficiency of RPQs. Virtuoso and KGDB, which facilitate the property path, are
included in the experiments to verify the effectiveness and efficiency of PAIRPQ.

3 Preliminaries

In this section, we introduce the definitions of relevant background knowledge.
Table 1 gives the main notations used throughout this paper.

Definition 1 (RDF Graph). Consider three disjoint infinite sets U , B, and
L representing Uniform Resource Identifiers (URI), blank nodes, and literals,
respectively. RDF graph is a finite set of RDF triples (s, p, o) ∈ (U ∪ B) × U ×
(U ∪ B ∪ L), in which s is the subject, p is the predicate, and o is the object.
A triple (s, p, o) is a statement of a fact, which means there is a connection p
between s and o or the value of property p for s is o.

Given an RDF graph G = (V,E,Σ), where V , E, and Σ denote the set of
vertices, edges, and edge labels in G, respectively. Formally, V = {s | (s, p, o) ∈
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Table 1. List of notations.

Notation Description

t = (s, p, o) A triple t in knowledge graph G
a−1R The derivative of regular expression R
minSup Minimum support threshold for frequent path mining
λ(ρ) The labels of path ρ
Sρ The source vertices of path ρ
Tρ The target vertices of path ρ

T} ∪ {o | (s, p, o) ∈ T}, E = {(s, o) | (s, p, o) ∈ T} and Σ = {p | (s, p, o) ∈ T}. In
addition, we define an infinite set Var of variables that is disjoint from U and
L. An example RDF graph G is shown in Fig. 2(a), which consists of 21 triples
(i.e., edges). For instance, (v1, a, v4) is an RDF triple as well as an edge with
label a in G, V = {vi | 1 ≤ i ≤ 14}, and ΣG = {a, b, c}.

Definition 2 (Regular Path Queries). Let Q = (x,R, y) be a regular path
query over an RDF graph G = (V,E,Σ), where x, y ∈ Var are variables, and
R is a regular expression over the alphabet Σ. Regular expression R is recur-
sively defined as R ::= ε | p | R/R | R|R | R∗, where p ∈ Σ and /, |,
and ∗ are concatenation, alternation, and the Kleene ’s closure, respectively.
The shorthands R+ for R/R∗ and R? for ε|R are also allowed. L(R) denotes
the language expressed by R and λ(ρ) is the label of path ρ. The answer set
of Q under the standard semantics, denoted by [[Q]]G, is defined as {(x, y) |
∃ a path ρ in T from x to y s.t. λ(ρ) ∈ L(R)}. The set of source vertices of path
ρ is defined as Sρ = {x | ∃ a path ρ in T from x to y s.t. λ(ρ) ∈ L(R)}, while the
set of target vertices is Tρ = {y | ∃ a path ρ in T from x to y s.t. λ(ρ) ∈ L(R)}

Definition 3 (Frequent Path Mining). Given an RDF graph G = (V,E,Σ)
and a minimum support threshold minSup, the problem of frequent path mining
over G is to find a set of paths P = {ρ1, ρ2, . . . , ρn}. P can be divided into
m multiple equivalence classes C1, C2, . . . , Cm, within which each path has a
similar structure, assuring that the size of each equivalence class should larger
than minSup, i.e., |C1|, |C2|, . . . , |Cm| > minSup.

Definition 4 (Regular Expression Derivatives). For any given regular
expression R and any string u, the derivative u−1R can be computed recursively
as follows:

(ua)−1R = a−1(u−1R) for a symbol a and a string u

ε−1R = R

Using the previous two rules, the derivative with respect to an arbitrary string
is explained by the derivative with respect to a single-symbol string a. The latter
can be computed as follows:
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a−1ε = φ

a−1φ = ε

a−1b =
{

ε if a = b
φ otherwise

a−1(R)∗ = (a−1R)R∗

a−1(R/S) =
{

(a−1R)S + a−1S if R can be ε
(a−1R)S otherwise

a−1(R|S) = (a−1R)|(a−1S)

4 Path Index for Regular Path Queries

In this section, we propose a path index for RPQs on KGs, which employs the
frequent paths in graphs. First, we describe the frequent path mining method
on KGs, then the path index building approach will be presented. Finally, we
explain the query processing algorithm adapted to the path index.

4.1 Frequent Path Mining

Although there exists several Frequent Path Mining (FPM) algorithms, most
of them are applied to the scenario where multiple data graphs are involved.
Among single graph-based FPM algorithms [15], few of them can be directly
adopted to KG. In order to support the path index building process and the
benchmark queries, a greedy FPM algorithm is introduced in this paper.

Generally speaking, the SPARQL queries with a low number of triples (from
0 to 2) have a significant noticeable share within the total amount of queries per
data set [16]. Therefore, in order to minimize the execution time and complexity
of Algorithm 1, we only consider the paths ρ that |λ(ρ)| ≤ 3, i.e., up to 3 labels
involved in the path.

Algorithm 1 presents the greedy FPM method adopted in PAIRPQ. Intu-
itively speaking, JOIN two edges with larger number of occurrences will get more
results than the few number of occurrences ones. Thus, we assume that the fre-
quent paths only exist in the JOIN results of two edges that appear more than
minSup times. Given a KG G, Algorithm 1 traverses the triples, extracts edges
between entities, and records the number of the appearance of each edge label
(line 1–4). The edge labels will be processed in descending order of the number of
occurrences (line 5–11). A JOIN operation will be executed on each pair of edges
(line 7). If the number of occurrences of the candidate paths Pcandidate obtained
after the JOIN operation is greater than minSup, Pcandidate would be included
in the result (line 9–11). The calculation will be executed repeatedly until the
number of occurrences of any edge label participating in the JOIN operation is
less than or equal to minSup. Algorithm 1 shows the method for mining 2-length
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frequent paths. For frequent paths longer than 2, we can use an iterative method
to continuously increase the length of frequent paths.

Algorithm 1: Frequent Path Mining on KG
Input: Knowledge graph G = {t | t = (s, p, o)} and a minimum support

threshold minSup
Output: Frequent paths P

1 for each t = (s, p, o) do
2 if p is not rdf:type and o /∈ L then

// p represents for the action between two entities

3 count[p]++;
// count the appearance of the edge labels

4 sort(count);
// sort the edge labels in descending order of the number of

occurrences

5 p1, p2 ←getProNext(count);
// retrieve two edge labels with highest number of occurrences (p1, p2

can be same)

6 while count[p1] > minSup and count[p2] > minSup do
// the number of occurrences of the two edge labels involved in

the calculation is greater than the threshold

7 Pcandidate ← {(s1, p1p2, o2) | ∀t1 = (s1, p1, o1), t2 = (s2, p2, o2) ∈ G ∧ o1 =
s2};

8 n ← |Pcandidate|;
// join the two edge and record the appearance of the joined path

9 if n > minSup then
10 P ∪ Pcandidate;

11 p1, p2 ←getProNext(count);

12 return P ;

Complexity Analysis. The time complexity of the greedy FPM algorithm on
KG is bounded by O

(
(1 + log (|E|)) |E| + m2

)
, where |E| is the number of edges

in KG, m is the number of edge labels that occur more than minSup times.

Proof. (Sketch) The time complexity of greedy FPM algorithm on KG consists
of three parts: (1) The algorithm firstly traverses the graph by edges, which
complexity is O(|E|); (2) The edges are sorted by descending order of the number
of occurrence, with complexity of O (|E| log (|E|)); (3) The edges that occur more
than minSup times will be joined, with complexity of O(m2). Hence, the overall
time complexity of the proposed algorithm is O

(
(1 + log (|E|)) |E| + m2

)
. ��

Example 1. As shown in Fig. 2, given minSup = 6 and a graph G, Algorithm
1 will traverse G to obtain the statistics in Fig. 2(b). In a greedy way, the edges
will be joined and determined by minSup. The frequent paths shown in Fig.
2(c) will be available after the FPM procedure completed. As illustrated in Fig.
2(c), there are two kinds of frequent paths in Fig. 2(a), i.e., paths with label a/b
and b/a.
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Fig. 2. Greedy FPM on KG

4.2 Index Scheme

To cope with the frequent paths extracted from data, we propose a path index
method, i.e., PAIRPQ. We assume that the queries and the data show a consis-
tent distribution, thus, with most frequent paths indexed, PAIRPQ will acceler-
ate most RPQs.

Example 2. As shown in Fig. 3, the frequent paths are recorded twice in two
relation tables (i.e., PST and PTS), so that the path indexes can adapt to queries
with fixed subjects or objects. The first two columns of PST or PTS relation tables
are indexed using B-tree, thus, the contents of the same entries will be placed
together, increasing query efficiency. The first column of PST and PTS records the
labels λ(ρ) of the paths ρ, which is extracted from data graphs as frequent paths,
while the second column is about Sρ (or Tρ), and the third column indicates Tρ

(or Sρ).
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(b) Path Target Source tables (PTS)(a) Path Source Target tables (PST)

Fig. 3. PAIRPQ index

B-tree is usually used for equivalent and range queries on sortable data,
so it is suitable for indexing ID columns that are often stored in the digital
form. In order to utilize the convenience of B-tree and compress the storage
space PAIRPQ requires, the URIs of the vertices and edges in PST and PTS are
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encoded by the global appearance order of edges or vertices. During the traversal
part of Algorithm 1 (line 1–4), if we encounter a newly added edge or vertex,
a globally unique key would be attached to it. Therefore, we can guarantee the
global uniqueness of the IDs of the vertices or edges, while saving storage space
and being feasible to the construction of PAIRPQ.

It should be noted that updates pose an interesting problem in the pres-
ence of a path index. In fact, the modification of edges or vertices will leave
little impact on the statistical feature of data graphs, which is locally sensitive.
Specifically, the influence scope of the modifications depends on the length of the
longest indexed path. As mentioned above in Sect. 4.1, according to the query
analytical study [16], we only consider paths ρ that |λ(ρ)| ≤ 3, thus, there will
be few statistics that need to be recalculated, which is acceptable. Therefore,
the modifications of the data will not affect the performance of PAIRPQ.

4.3 Query Processing

With PAIRPQ, it is obvious that the most paths in data graphs should be
indexed and the paths can be divided into parts with lengths ranging from 1 to
3. According to the analytical study mentioned above, the indexed items should
be able to solve the vast majority of queries. However, in order to improve the
applicability of PAIRPQ, we still need to consider the processing method for
longer-length queries.

The query processing method for dividing the paths into independent parts
for processing is often applied in distributed query processing scenarios. Inspired
by this, we exploit Brzozowski’s derivative [5] to query over PAIRPQ. As shown
in Sect. 3, the derivative of a regular expression with respect to a character
computes a new regular expression that matches the same results as the original
one, assuming the character as the prefix of the original regular expression.

In order to reduce the complexity of query processing and increase the query
efficiency, we only consider the first few steps in Kleene’s closure. For other types
of operators in regular expressions, we use derivatives denoted in Definition 4 to
compute the final results in a prefix-matching way. The division and assemble
method can be found in [17], which leverages histogram of the data to obtain
the optimal path division results and join order.

Algorithm 2 presents the path division method utilized in this paper. For
a regular expression containing alternation operators, a prefix-matching proce-
dure is first applied to extracted the prefix by the Brzozowski’s derivative to
reduce the intermediate calculation and speed up the query processing (line 2–
3). To obtain the final result, path division algorithm described in [17] will be
recursively called and executed for each sub-part (line 6–7).

Complexity Analysis. The time complexity of the Algorithm 2 is bounded by
O

(
l2

)
, where l is the max length of the sub-parts of R separated by alternation

operators.
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Proof. (Sketch) The time complexity of Algorithm 2 consists of three parts: (1) If
there exists alternation operators ‘|’, the regular expression is divided into parts
by complexity of O (1). (2) The algorithm finds the longest common sub-string
of each part that seperated by alternation operators, which complexity is O

(
l2

)
.

(3) For each part, the path division problem can be regarded as a knapsack
problem, with complexity of O(l2). Hence, the overall time complexity of the
proposed algorithm is O

(
l2

)
. ��

Algorithm 2: Path division algorithm divide(R)

Input: regular expression R
Output: modified regular expression R′

1 if R = R1|R2| . . . |Rα then
// R contains alternation operators ‘|’ and can be divided into α

parts that connect with ‘|’
2 if the prefix of R1, R2, . . . , Rα can be the same string S then
3 R′ ← S/

(
divide

((
S−1R1

) | (S−1R2

) | . . . | (S−1Rα

)))

4 else
5 R′ ← divide(R1)|divide(R2)| . . . |divide(Rα);
6

7 else
// R does not contains alternation operators ‘|’

8 R′ ← R1/R2/ . . . /Rβ ;
// R1/R2/ . . . /Rβ are the optimal division results of R according

to the histogram of the data

9 return R′;

Example 3. As shown in Fig. 4, the original regular expressions in the query
statements will go through three phases and be divided into indexed paths: (1)
The common prefix will be extracted to reduce intermediate computation; (2)
Path division algorithm will be recursively applied to sub-parts separated by
alternation operators; (3) By assembling the path division results of each sub-
part, the final path division result will be obtained.
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5 Experiments

In this section, we implement our method and verify the effectiveness and effi-
ciency of PAIRPQ, and compare with the baselines on several data sets.

5.1 Experimental Settings

The proposed path index method was implemented on the top of KGDB [14],
which is deployed on a single-node server. The server has an 8-core Intel(R)
Xeon(R) Platinum 8255C@ 2.5 GHz CPU, with 32 GB of memory, running 64-
bit CentOS 7.6 operating system.

Data Sets. Our experiments were conducted on both benchmark and real-
world data sets. LUBM [18] consists of customizable and repeatable synthetic
data, and allows users to define the size of the data set. Five LUBM data sets
of different sizes (i.e., LUBM10, LUBM20, LUBM30, LUBM40 and LUBM50)
are adopted in the experiments. DBpedia [19] is a real-world data set extracted
from Wikipedia. In our experiment, a subset of the DBpedia data set is used.
The statistics of the data sets is presented in Table 2.

Table 2. Data sets.

Data set #Triples #Vertices #Edges

LUBM10 1,316,700 207,429 630,757
LUBM20 2,782,126 437,558 1,332,030
LUBM30 4,109,002 645,957 1,967,309
LUBM40 5,495,742 864,225 2,630,657
LUBM50 6,890,640 1,082,821 3,298,814
DBpedia 23,445,441 2,257,499 6,876,041

Baselines. We compare the efficiency and effectiveness of PAIRPQ against two
KG databases. Virtuoso [12] is a hybrid database management system that sup-
ports a variety of data models. KGDB [14] is a KG database, which implements
a unified storage scheme for KGs that can accommodate both RDF graphs and
property graphs.

Benchmark Queries. To evaluate PAIRPQ and the query processing method
proposed, 16 benchmark queries1 on LUBM and DBpedia are created, respec-
tively. As shown in Table. 3, the queries are proposed in accordance with the
result of FPM mentioned in Sect. 4.1. The precedence of all operators in the
regular expression is based on the rules in SPARQL 1.1 [2], without brackets
changing the precedence, i.e., the regular expression containing brackets needs
to be rewritten to obtain support. According to the nature of RPQ, the bench-
mark queries proposed are mainly chain queries, while star and complex queries
are also included.
1 https://github.com/tjuliubaozhu/PAIRPQ.

https://github.com/tjuliubaozhu/PAIRPQ
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Table 3. Benchmark queries.

Query Type Feature Diagrami

Q1 chain 2-length index
Q2 star type-limited, 2-length index t

Q3 chain 3-length index
Q4 chain 2-length index, not-indexed item
Q5 chain 2-length index, not-indexed item, literal variable
Q6 chain without index, closure operator

Q7 complex 3-length index, alternation operator
Q8 chain 2-length index, not-indexed item, closure operator

i The solid circles represent the edge labels, the dotted circles represent the en-
tity variables (dotted circle with t means the entity is type-limited), the dotted
squares represent the literal variables, the rings represent the closures, and the
lines with options represent the alternation operators.

5.2 Experimental Results

Exp 1. Index Construction. As shown in Fig. 5, with the amount of data
increasing, the storage space and FPM time required for index construction also
increase with a linear trend. The construction of PAIRPQ is closely related to the
results of FPM. In the selected data sets of LUBM, the final size of all indexes
are basically the same as the space occupied by the original data. Although
PAIRPQ is not dominant in the storage space, the overhead paid on the index
is worthwhile to compare to the gain in the efficiency of queries.
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Fig. 5. The experimental results of storage space and time

As shown in Fig. 5(b), on LUBM data sets, with the scale of the data sets
increasing, the increasing trend of the construction time and space of the 3-
length path index is gradually lower than that of the 2-length path index, which
proves that it makes sense for us to focus on shorter paths. For the real-world
data set, DBpedia, the time required to construct a 2-length or 3-length path
index is basically the same.
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Fig. 6. The results of query execution time on LUBM (logarithmic scale)

Exp 2. Query Efficiency. As shown in Fig. 6 and Fig. 7, for all the benchmark
queries we create, PAIRPQ can increase the query efficiency by three orders of
magnitude than Virtuoso on LUBM. Moreover, for most queries, PAIRPQ can
inprove the query efficiency by one order of magnitude on average than KGDB
on LUBM, in which no path indexes are constructed. PAIRPQ can deal with Q6
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in the same execution time as KGDB, since Q6 does not involve path indexes.
For DBpedia, the query efficiency of PAIRPQ is at least double that of KGDB
and more than three times that of Virtuoso.

In Virtuoso, all data is stored in the form of triple tables, i.e., a three-column
table is built to accommodate all KG data. To accelerate query processing, five
index structures are built in Virtuoso, including PSOG, POSG, SP, OP, and GS
indexes. (S, P, O, and G stands for subject, property, object, and graph, respec-
tively.) Obviously, when a query involving multiple edges is executed in Virtuoso,
more time-consuming JOIN operations are required, since the relation table with
more rows is involved. Unlike Virtuoso, all KG data is classified and stored
according to the types of vertices or edges in KGDB, while the B-tree indexes
being constructed on the IDs of the vertices or edges. By this type-based storage
scheme, the query efficiency of KGDB is significantly improved, which is also
adopted in PAIRPQ and further improved by constructing the path indexes.

6 Conclusion

In this paper, we propose PAIRPQ, a path index method for RPQs on knowl-
edge graphs. With frequent paths extracted using a greedy FPM algorithm,
path indexes are built, which takes advantage of the statistics of underlying
KGs. Furthermore, the Brzozowski’s derivatives are utilized to divide paths, and
the join order between the several parts is determined by the histogram of the
data. Micro-benchmarks over LUBM and DBpedia are proposed to verify the
efficiency and effectiveness of PAIRPQ and the query processing method. The
experimental results show that PAIRPQ and the query processing algorithm
over PAIRPQ outperform the state-of-the-art methods by orders of magnitude.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (2019YFE0198600) and National Natural Science
Foundation of China (61972275).



120 B. Liu et al.

References

1. Consortium, W.W.W., et al.: RDF 1.1 concepts and abstract syntax (2014)
2. Consortium, W.W.W., et al.: SPARQL 1.1 query language (2013)
3. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property
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Abstract. The task of entity linking aims to correctly link mentions in a text frag-
ment to a reference knowledge base. Most existing methods apply single neural
network model to learn semantic representations on all granularities in contex-
tual information, which neglecting the trait of different granularities. Also, these
solely representation-based methods measure the semantic matching based on the
abstract vector representation that frequently miss concrete matching information.
To better capture contextual information, this paper proposes a new neural network
model called Hybrid Semantic Matching (HSM) for the entity linking task. The
model captures two different aspects of semantic information via representation
and interaction-based neural semantic matching models. Furthermore, to consider
the global consistency of entities, a recurrent random walk is applied to propagate
entity linking evidences among related decisions. Evaluation was conducted on
three publicly available standard datasets. Results show that our proposed HSM
model is more effective compared with a list of baseline models.

Keywords: Entity linking · Hybrid Semantic Matching · Joint Model

1 Introduction

Entity Linking (EL) is the task of assigning entity mentions in a text to corresponding
entries in a knowledgebase (KB). For example, theword “Florida” can refer to theFlorida
city, university of Florida or Florida Gators football. With specific context in a phrase
“The Supreme Court in Florida today refused the application”, the mention “Florida”
should be linked to Florida city. In general, entity linking is typically performed in
two steps: obtaining candidate entities for each mention and identifying true entities to
reference knowledge bases.

A key challenge for successful entity linking is the need to capture semantic and
background information at various levels of granularity. Recently, the studies of EL
have evolved from the conventional statistical models to the neural network-based mod-
els in virtue of the excellent capacity of encoding semantic representation. Gupta et al.
[1] leveraged a LSTM model as local context encoder to learn a unified dense repre-
sentation for each entity. Xue et al. [2] and Agarwal et al. [3] utilized a CNN and Bert
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model respectively to learn semantic representation among various granularities to mea-
sure similarity. Except from considering local contextual information only, some other
researches propose to measure the relevance among all entities in a document. Le et al.
[4] treated relations among mentions as latent variables to model the relevance between
different EL decisions, and Cao et al. [5] utilized a graph convolutional network to mea-
sure the topical coherence throughout the entire document. Through the combination
of local features and global evidences, the disambiguation information can be better
obtained. However, these methods tend to utilize solely model as the encoder that are
incapable to take advantage of trait of different granularities to capture the representa-
tion of local information. Meanwhile these representation-based methods neglect some
concrete matching information, which can help to measure the compatibility between
mentions and entities as the complement.

In this paper, an end-to-end neural collective model called HSM is proposed, which
take both representation semantic matching and word-level abstract concrete matching
information into account tomeasure relevance.The representation-basedmethod inHSM
hybrids the convolution neural network and Bert to consider the trait of each granularity
among mention surfaces, local contexts, mention text in datasets and Wikipedia page
of entities. Then a bilateral multi-head attention method is introduced to obtain the
concrete matching information between two pieces of texts. After that, two matching
models work jointly to measure conditional probability of a mention referring to a
specific entity. To consider global consistency of entities, a recurrent random walk layer
is applied to propagate the EL decisions among related entities. In that case, both local
semantic correspondence between mentions and entities and global interdependence
between different EL decisions can be fully exploited.

The main contribution of this paper lies on the following aspects: 1) A new model
HSM is proposed by utilizing the characteristics of different models to capture the
semantic representation of local information in various granularities. 2)A bilateralmulti-
head attention-based method is incorporated into the HSM model to capture word-level
concrete information betweenmentions and entities. 3) Extensive experiments show that
the HSM model outperforms baseline methods on three publicly available datasets.

2 Related Work

Entity linking (EL) can be typically regarded as a task of linking a mention to its correct
entity in a reference knowledge base (KB). Most researches contain two main lines of
approach to resolve the EL problems, namely local approach, and global approach. The
local component focuses on modeling the semantic relatedness between mentions and
candidate entities. Early studies tackled this task based on lexical matching between the
mention’s surrounding words and entity description text [6, 7]. However, these methods
could only capture the surface matches, with incapable to obtain deep semantic relation-
ship. Recently, with the development of neural network, semantic matching powered by
DNN showed promising improvement on entity linking task. The common approaches
were to learn latent representations of local context and entity, respectively. Then, the
semantic matching between a mention and an entity was conducted by utilizing similar-
ity measures [8, 9]. Radhakrishnan et al. [10] proposed ELDEN model to improve the
entity embedding by using information available on the web to enhance the structure of
an original knowledge base.
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Apart from the methods that training the embeddings of mention and entity to eval-
uate similarity, some researches resorted to neural network as encoder to learn semantic
representation tomeasure the relevance. For example, Sun et al. [11] and Francis-Landau
et al. [12] leveraged the rich parameterization of convolutional networks to exploit var-
ious kinds of text information. Gupta et al. [1] utilized a LSTM model as encoder to
form local context and document-level representation of mentions. These neural models
had been proposed as a way to support better generalization over sparse features, never-
theless it still lacked of capturing complex text features. Recently, modern pre-trained
language models such as ELMO, BERT, ALBERT, etc., were used widely for NLP tasks
by providing rich text representations through replacing static word embeddings with
deep contextualized word embeddings. The current trend in research was to investi-
gate all aspects of these language models or their applications to various domains. In
entity linking task, Sevgili et al. [13] summarized widely-used entity embedding tech-
niques and novel applications of EL for enhancing word representation models like Bert.
Yamada et al. [14] and Washio et al. [15] used Bert model to produce contextualized
embeddings for words and entities in input text and trained models as a masked entity
prediction task. Broscheit et al. [16] and Zhao et al. [17] proposed an extreme simplifica-
tion of the entity linking setup to cast it as a per token classification over the entire entity
vocabulary, and treated the EL task as an end-to-end model. These methods improved
the capacity of models to learn semantic representation of mention and entity. Although
these methods had achieved considerable performance on EL task, they mainly focused
to utilize NN model to learn semantic representation of various text granularities like
context or document, with little attention on measuring concrete word-level match infor-
mation. Guo et al. [18] discussed the differences of semantic matching and relevance
matching. Further, Nie et al. [19] introduced the relevance matching in EL and proposed
representation-based and interaction-based neural matching model, these two different
aspects of semantic information could work jointly for entity disambiguation.

These works treated each entity as a separate unit with little attention paid on the
interdependence between these different EL decisions. To tackle this problem, some
approaches based on global entity consistency had been proposed. Yang et al. [20] uti-
lized structured gradient tree boosting algorithm to produce globally optimized entity
assignments for mentions in a document. Belief propagation (BP) and its variant loopy
belief propagation (LBP) had been used by [21] and [5] respectively. By virtue of using
random walks, Guo et al. [22] leveraged indirect connections between nodes in the dis-
ambiguation graph tomeasure similarity.Guo et al. [23] utilized randomwalkwith restart
on a graph to propagate information along the edges and Xue et al. [2] further employed
recurrent random walk to model the semantic interdependence between different EL
decisions by introducing external knowledge. Note that modeling entity-entity coher-
ence is very challenging, as the long-range dependencies between entities correspond to
exponentially large search space.

To address the method that solely relied on semantic matching, this work exploits
a hybrid neural network model to enhance the semantic representation learning from
contextual information. Differ from these exiting methods, our model considers the
traits of different text and applies different models for different granularities. Then, an
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interaction-based method is applied to build local interactions (e.g., word-level similar-
ity) between two pieces of text. These two matching methods work jointly to reinforce
the capacity of model to capture disambiguation information.

3 The HSMModel

This paper proposes a new model named Hybrid Semantic Matching (HSM) for the
entity linking task. The model can be divided into two components: one is to model
semantic and concrete matching information between mentions and entities, and the
other to capture relationships between global entities using an external knowledge base,
as shown in Fig. 1.More specifically, the semantic representation ofmentions and entities
is firstly learned on multiple granularities through hybrid CNN and Bert models, which
is designed to capture abstract -level semantic matching information. Then, apart from
merely measuring similarity based on semantic representation, an interaction-focused
method is introduced to capture the concrete matching information. These two methods
are combining with other statistical features to measure conditional probability of a
mention referring to a specific entity. Then, in the global model, a probability graph
model based on randomwalk is applied tomodel the global dependence between entities,
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which can propagate the evidences among related decisions with the help of external
knowledge base to adjust the score obtained by the local model.

3.1 Local Mention-to-Entity Model

To better describe our model, some annotation information to be used in model is
first defined. We use d to denote the original text where the mention is, m(d) =
{m1,m2, . . . ,mN } to represent the set of all mentions contained in a document. In addi-
tion, for each mention mi, its candidates set is defined as T (mi) = {e1, e2, . . . , eN },
where each entity ej has a corresponding Wikipedia page pj.The semantic information
of mention mi is represented at three granularity levels: si, ci, di, where si represents the
surface string of mi, ci is the context within a predefined window of mi, and di is the
entire document containsmi. For the entity, the entity description text bj in theWikipedia
page is used to represent it. Each word is mapped to its embedding via the pre-trained
embedding GloVe1. Using ELmodel, the exception is to map correctly for each mention
to its corresponding entity in the reference knowledge base.

Hybrid CNN and Bert
For each granularity, we consider to conceive different methods based on its text charac-
teristic to better capture the semantic representation. For si and ci, a convolution neural
network is applied to convert the sequence of words in the surface and context into a
distributed representation. Given a sequence of wordsw1,w2, ..,wn, eachwordwi is rep-
resented as an embedding vector vi fixed to h-dimension. Then, the sequence of words
is transformed to a matrix representationM , whereM = (v1, v2, . . . , vn) ∈ Rh∗N . Here
N is the word number of each granularity text. The convolution operation is performed
onM with a filter bankMl ∈ Ru×h, where window size is l and u is the number of filters.
Then the result of each filter is concatenated and applies the rectified linear unit (ReLU)
function to obtain the feature matrix H ∈ R(u∗(n−l+1)):

−→
hj = max{0,Mj(j+l)} (1)

H = [−→h1 ,
−→
h2 , ...,

−−−→
hn−l+1 (2)

In the equations, the v(j:j+l) is a concatenation of the givenword vectors and themax is
element-wise. Each convolution granularity (si, ci) has a distinct set of filter parameters.
From above process, the word-level n-gram features from the text are captured. Then
the average pooling function is utilized to transform feature matrixH into a fixed length
vector to represent the semantic embedding of si and ci.

For di and ej, these granularities equipped with more rich and complex text features
need to be captured. Thus, a pre-trained language model Bert is introduced to better
learn the text distributed representation. Firstly, the model represents the sequence as a
sequence of input embeddings contains standard components: wordpiece vectors, posi-
tion and segment embeddings, one for each token, and generates a contextualized output
embedding for each token by using a stack of Transformer layers. Please note that, the

1 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/.
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output of model is the average value of each token output embedding ti to represent
the semantic embedding of di and ej rather than merely using the output embedding of
[CLS] token. Then, a fixed length vector for di and ej are obtained, which the dimension
is equaled with si and ci in convenience for subsequent cosine similarity calculation. N
denotes the number of tokens.

Avgoutput = 1

N

N∑

i=1

ti (3)

After obtaining the embedding above, the cosine similarity function is used to
calculate the local similarity among the above granularities.

sim(mi, pj) = [cos(scnni , bbertj ), cos(ccnni , bbertj ), cos(dberti , bbertj )] (4)

In the equation, the scnni , ccnni , dberti , andbbertj denote the distributed representation
of si, ci, di, bj respectively and themodel that it used. Through aforementionedmethods,
the HSM model can capture the rich contextual information to represent the semantic
representation of different granularities.

The Bilateral Multi-head Attention
Even though the above models can capture distinguishable information from both men-
tions and entities side, some concrete matching information are lost (e.g., exact match),
since the matching between two texts is generated through their abstract semantic repre-
sentations. The interaction-focused method tries to build local interactions (e.g., word-
level similarity) between two pieces of text, and then uses neural networks to learn
the final matching score based on the local interactions. To enhance the representation-
based method, a bilateral multi-head attention method is introduced to measure the
relevance between di and ej. Before that some pre-processes are done to make the raw
text included as a bag of words in the document that are non-stop words. Then, given a
sequence of words [wd

1 , . . . ,wd
n ] ∈ D and [we

1, . . . ,w
e
m] ∈ E, where D,E represents the

document of mention and Wikipedia page of entity respectively. For each word wd
i , the

method of dot product attention model is leveraged to calculate the inner product of the
embedding vector of we

j to express the similarity between two words. The output matrix

Matt ∈ R
n×m is the concatenation of similarity vector of each wd

i , which represents the
word-level similarity between two granularities. Then, the max similarity score for each
we
j as follows:

u(we
j ) = max

i∈n xdi
T
xej (5)

x represents the embedding of each word. The max operation is from the intuition
that the weight is high if the word in Wikipedia page is strongly related to at least one
word in document of mention. Also, to reduce the noisy of non-informative words, the

Top K words with the highest scores u
(
we
j

)
are left to form the relevance information

and then transform it to attention weights as follows:

e = {w ∈ E|u(w) ∈ topK(u)} (6)
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{
a(we

j ) = exp[u(we
j )]∑

k∈e exp[u(we
k )] , if w

e
j ∈ e

0, otherwise
(7)

Finally, an attention weighted of entity side text-level embedding is obtained as:

xe =
∑

j∈e
a(we

j ) ∗ xej (8)

The bilateral means that both the entity side and document side are considered.
The same process above is utilized to produce a document side text-level embedding
xd , except the matrix Matt which is calculated by xej

T · xdi . Then the two vectors are
concatenated and feed into a two linear layerwith the rectified linear unit (ReLU) activate
function in the middle. Finally, the output unit is feed into a sigmoid function to get the
interaction-based bilateral attention score att_score(d , e).

After the above steps, through the combination of representation-based and
interaction-based methods, the abundant relevance information of local mention-to-
entity compatibility can be obtained. The next step is to propagate this information
by leveraging the global consistency of all entities in a document.

3.2 Global Model

Considering the global consistency of the candidate entities, a recurrent random-walk
layer is utilized to propagate EL evidence to capture the global dependencies between
different EL decisions. To transfer the evidence of different EL decisions, a N ∗ N
transition matrix T is defined, where N represents all candidate entity sets under a
document and Tij is calculated by hyperlinks of each entity to represent the evidence
propagation ratio from ei to ej.

To be specific, for two candidate entity ei and ej, the traditional Wikipedia Link-
basedMeasure (WLM) formula is used to calculate the semantic relevance score between
entities:

Simhyperlink(ei, ej) = 1 − log(max(|I |, |J |)) − log(|I ∩ J |)
log(|W |) − log(min(|I |, |J |)) (9)

I and J are the sets of all entities that links to pi and pj in Wikipedia respectively,
and W is the size of entire Wikipedia. Then normalize these relevance scores by entity
to generate T :

Tij = sim(ei, ej)∑
j′∈Nei

sim(ei, ej′)
(10)

Nei is the set of neighbor entities of entity ei. Note that, in order to reduce the error
of introducing unrelated entities, the top 4 candidate entities with the highest scores
generated by local model are only considered to propagate the evidence. By leveraging
the transition matrix T, the random walk layer is used to propagate the information
between different EL decisions. The formula is as follows:

p(k+1)(∗|m(i)) = λplocal(∗|m(i)) + (1 − λ)T (k) · plocal(∗|m(i)) (11)
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In the equation, the plocal
(∗|m(i)

)
is the predicted entity distribution of mi at the k

iteration. Both the weighted parameter λ and the transition matrix T are updated with the
training process to obtain the optimal value of the hyperparameter. By using the random
walk layer as global model, the dependency relationship between global entities can be
captured, so as to update the score obtained under the local model.

4 Experiments and Results

4.1 Datasets

To evaluate the performance of the proposed HSM model, various datasets are utilized.
The training dataset is AIDA-CoNLL, which is a widely adopted corpus consisting of
946 documents for training (as AIDA-train). Three popular publically available datasets
includingAQUAINT,MSNBC, andACE2004 are used for testing. AQUAINT,MSNBC,
and ACE2004 are three datasets utilizing Wikification, which is the process of trans-
forming plain content into understandable, linked, interactive content suitable for a wiki.
The statistical characteristics of the datasets are presented in Table 1.

Table 1. The statistics of a training dataset AIDA-train and three test datasets.

Datasets #mentions #documents #mentions
per doc

#words
per doc

AIDA-train 18448 946 19.5 217

ACE2004 257 36 7.1 430

AQUAINT 727 50 14.5 243

MSNBC 656 20 32.8 632

Wikipedia Dump2 on December 2019 is used as the reference knowledge base. The
first 200 words in eachWikipedia page of an entity are utilized as entity description. The
English word tokenizer in NLTK by default is used to tokenize each Wikipedia page.
The mentions in the above datasets that have no matched entities in theWikipedia Dump
are excluded.

4.2 Settings

Our proposed HSM model is compared with the following baseline models:

• Hofmann et al. [8] introduced a Local Model with Neural Attention and implemented
LBP network as a global model.

• Le et al. [4] treated relations as latent variables in a neural entity-linking model and
optimized an entity-linking system in an end-to-end manner.

2 https://dumps.wikimedia.org/.

https://dumps.wikimedia.org/.
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• Yang et al. [20] presented a gradient-tree-boosting-based structured learning model
for jointly disambiguating named entities in a document.

• Yang et al. [24] proposed a simple yet effective model called Dynamic Context
Augmentation (DCA) for collective entity linking, requiring only one passthrough
mentions in a document.

• Feng et al. [25] proposed a method named FGS2EE to inject fine-grained semantic
information into entity embeddings to reduce the distinctiveness and to facilitate the
learning of contextual commonality.

• Yamada et al. [15] treated the entity linking task as predicting randomly masked
entities in entity-annotated texts obtained from Wikipedia with a Bert model.

In order to match the dimensionality of CNN to bert output, we used 768 filters with
thewindowsize as4 for the convolutionoperationand thenon-linear transformation func-
tion ReLUwhen employed CNN to learn the distributed representations of inputs.Mean-
while, to learn the entity representation byBert through utilizing the entity descriptions in
Wikipediapages,first512wordsareused tofit to theBERTmodel.TheCNNmodel isused
to learn distributed representation at two granularities: mention surfaces and local con-
texts.Foreachgranularity, theCNNkernelsizeisset to2and4,respectively.Thebert-base-
uncased version is chosen as our Bert model (L= 12,H = 768,A= 12, and total parame-
ters=110M).Particularly,wekeep top10candidates foreachmentionbasedon theirprior
probabilities, while keep top 3 candidates for eachmentionmi according to plocal(∗|m(i))

duringpropagating theevidence.The learningrateα is set to1e−5andAdamasoptimizer.
The pretrained Glove word embedding is used to map each word into a distributed

representation. The entity embedding is captured from [8] and Wikipedia2Vec3 which
are publicly released. The dimensionality of the word and entity embedding is set to
300. Note that the embedding is updated during training.

The assessment of entity linkingmethods is usually performed in terms of evaluation
measures, such as precision, recall and F1-measure. Given the ground truth T and output
of entity linking systems O, the standard precision, recall and Micro F1 are calculated
as follows:

Precision = |T ∩ O|
|O| (12)

Recall = |T ∩ O|
|T | (13)

Micro F1 = 2 × Precision × Recall

Precision + Recall
(14)

4.3 Results

For optimizing the parameter K as the number of random-walk layers, it is set from 0 to
4 with an incremental interval of 1 each time. The Micro F1 scores of the HSM model
on the three test datasets are reported in Fig. 2. Note that no random-walk is available

3 https://github.com/wikipedia2vec/wikipedia2vec.

https://github.com/wikipedia2vec/wikipedia2vec
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when K is set to 0. The model achieves the best performance when K = 2. This result
indicates that graph-based evidence propagation makes contribution to the improvement
of our HSM model.
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Fig. 2. Performance of the HSM model using different numbers of random-walk layers as K on
the three test datasets.

To evaluate the effectiveness of utilizing the global model and the local model, a
comparison experiment by using the local model and the global model separately is
conducted. As shown in Table 2, the global model outperforms the local model by
0.4%, 1.8% and 2.8%, respectively on the three test datasets. Also, to investigate the
effectiveness of the global model more specifically, wrong output mentions in the local
model but correct in the global model after propagating decisions are analyzed. For
example, the mention Italy in a test text is originally linked to entity Italy (city) from the
output of the local model. However, the mention accompanies with the mention FIFA
and World Cup in the same text context. By considering the global consistency of all
entities, the link to the wrong entity Italy (city) is corrected to Italy nation football team.

Table 2. Performance of the local and global model in terms of F1 score on the three test datasets.

ACE2004 AQUAINT MSNBC

Local model 0.936 0.901 0.884

Global model 0.940 0.919 0.912

To explore the effective of our hybrid strategy in combining CNN and Bert using
different granularities of local information, solely CNN model and Bert model are used
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to encode the semantic representation of four granularities. The compression result is
report in Table 3. The hybrid strategy obtains performance gains and achieves the best
result on all three datasets. The performance of using the hybrid strategy outperforms
the best results of the solely models by 1.3%, 1.6 and 1.9% respectively on the three
test datasets. The text of mention surfaces and contexts is relative short. The Bert model
with complex parameters tends to be overfitting in learning semantic representation on
these two granularities. Meanwhile, for long text of documents and Wikipedia pages,
the convolution network captures contextual dependence within fixed window size, thus
it is incapacity to learn semantic dependence of long-distance words. Through the com-
bination of the two models, the HSM model can take advantages of the trait of each
granularity and strength the semantic representations.

Table 3. Performance comparison of using the CNN model, the Bert model, and the hybrid
strategy.

ACE2004 AQUAINT MSNBC

CNN only 0.923 0.885 0.865

Bert only 0.920 0.880 0.860

Hybrid strategy 0.936 0.901 0.884

To analyze the difference between the two semantic matching methods empirically,
an experiment by comparing using the representation-based method and the hybrid
method (representation+ interaction-basedmethod) is conducted. The result, as reported
in Table 4, shows that the hybrid representation method obtains various improvement
and achieves the best performance on all the three test datasets by 0.9%, 1.3% and 1.0%,
respectively. To be specific, the interaction-based method captured the concrete match
information (e.g., word-level similarity) between text content of mention and entity.
For example, considering a mention named Bremen, which is a city of German, in a
document of AIDA-train dataset. This document contains thewords like airfreight, flown
and airports which are similarity with the word airport, airfield, flights that appeared in
Wikipedia page of entity Bremen Airport. By capturing the word-level similarity feature
to measure relevance, the entity Bremen Airport is expected to output as the correct
candidate entity of mention Bremen. The result also demonstrates the benefits when
combining the two semantic matching methods.

Table 4. Performance comparison of using representation-based method and the combination
method.

ACE2004 AQUAINT MSNBC

Representation-based method 0.927 0.888 0.874

Representation + interaction-based method 0.936 0.901 0.884
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The performance of our HSM model is compared with all the baseline methods
on the test dataset. As shown in Table 5, Yamada (2020) obtains a Micro-F1 score of
0.907 on the Ace2004, and a Micro-F1 score of 0.915 on the AQUAINT. Our HSM
model achieves an improvement of 3.3% and 0.40% on the two datasets, respectively.
On the dataset MSNBC, the DCA model of Yang (2019) achieves the best performance
as 0.948. To investigate the reason, we analyze the model in the experiments. The model
mainly focuses on designing the globalmodel to capture the relatedness between entities.
For example, the multi-relational model [4] utilizes the relations between mentions in
a document to decide if linking decisions are compatible. In comparison, our HSM
model mainly focuses on capturing local features by utilizing the hybrid strategy and
two semantic matching methods. Table 1 presents that the number of mentions per
documents of MSNBC dataset is the largest, which indicates that the consistency of
global entities can provide rich disambiguation evidence. While the number of mentions
in per documents of former two datasets are smaller, thus the local feature plays a more
important role to disambiguate and our HSM model achieves the improvement.

Table 5. Performance comparison on the three test datasets using the Micro F1 score.

Ace2004 AQUAINT MSNBC

LBP Hofmann et al. (2017) 0.888 0.889 0.938

Multi-relational model Le et al. (2018) 0.903 0.888 0.941

SGTB Yang et al., (2018) 0.892 0.905 0.924

DCA Yang et al. (2019) 0.901 0.887 0.948

FGS2EE Feng et al. (2020) 0.903 0.889 0.944

Contextual model Yamada et al. (2020) 0.907 0.915 0.941

HSM model 0.940 0.919 0.912

5 Conclusion

This paper proposed a novel end-to-end neural network HSM for collective entity link-
ing. In contrast to existing methods, HSM model devised different models for different
text granularities to learn rich semantic information. To reinforce the methods based
on solely semantic matching, an interaction-based method was introduced to capture
local concrete match information between two pieces of text. The two different aspects
of semantic information work jointly for disambiguation. Finally, both local semantic
match information and global interdependence were incorporated. Experiment results
demonstrated the effectiveness of the proposed HSM model for entity linking.
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Abstract. Knowledge graph question answering (KG-QA) accesses the
substantial knowledge to return a comprehensive answer in a more user-
friendly solution. Recently, the embedding-based methods to KG-QA
have always been hot issues. Traditional embedding-based methods can
not make full use of knowledge since they incorporating the knowledge by
using a single semantic translation model to embed entities and relations.
Semantic translation models based on non-Euclidean spaces can capture
more kinds of latent information because they can focus on the charac-
teristics of different aspects of knowledge. In this paper, we propose the
multi-space knowledge enhanced question answering model and mine the
latent information of knowledge in different embedding spaces to improve
the KG-QA. In addition, Transformer is used to replace the traditional
Bi-LSTM to obtain the vector representation of question, and specially
designed attention mechanism is used to calculate the score of candidate
answers dynamically. The experiment conducted on the WebQuestions
dataset shows that compared with other state-of-art QA systems, our
method can effectively improve the accuracy.

Keywords: Question answering · Knowledge graph · Embedding
model

1 Introduction

Knowledge graph question answering (KGQA) [10] involves answering questions
posed in natural language using existing knowledge graphs, given natural language
questions, the goal of KGQA is to automatically find answers from the KG. The
approach to tackle the KGQA task can be classified into two main groups: semantic
parsing based (SP-based) approaches and information retrieval based (IR-based)
approaches. IR-based approaches can scale better to large and complex KGs since
they do not need hand-made rules [7]. However, the use of knowledge graph embed-
ding methods in IR-based approaches is inadequate. Existing approaches mainly
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 135–140, 2021.
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choose to use knowledge graph embedding methods based on semantic transla-
tion in euclidean space, of which the TransE model [3] is the most representative
method, whereas embedding methods in other spaces is neglected.

We assume that different embedding spaces are helpful for better represent-
ing knowledge graphs. Specifically, models in complex vector space are more
suitable for knowledge reasoning and models in hyperbolic space can better cap-
ture structural information of knowledge graphs. Compared to existing KGQA
methods that use the traditional TransE [3] model to encode knowledge graph
into euclidean space, we introduce a novel attention network that comprehen-
sively utilize information of knowledge graph in different embedding spaces. To
this end, we choose models in three different embedding spaces to represent the
knowledge graph in answer end. Built on top of that, we design a attention net-
work to dynamically adjust the weights of embedding vectors in different embed-
ding spaces. Besides, we apply a stacked transformer network [9] to obtain the
representation of the input question. The candidate answers are represented in
four different aspects and the input question is used to help calculate the weights
of different answer aspects.

In summary, we highlight our contributions as follows: 1) we prove that the
embedding spaces of knowledge graph have certain influence on the KGQA task,
which is caused by differences of spatial features; 2) we propose a novel atten-
tion network for the task of KGQA, which is intended to simultaneously utilize
information of knowledge graph in multiple embedding spaces; 3) the experi-
mental results on the WebQuestions dataset demonstrate the effectiveness of
our approach.

2 Our Approach

The overview of our model is shown as the Fig. 1. The top part is the stacked
Transformer neural networks for question representation learning. The bottom
part is the KG embedding matrix and attention networks. We use deep neural
network based on Transformer to learn the representations of questions and the
representation of input question q is denoted as q. The whole knowledge graph
is embedded into three different vector spaces, traditional euclidean space E,
complex vector space V and hyperbolic space H. For every candidate answer a
in Cq, four different aspects are applied to represent it and they are denoted as
ae, ar, at and ac. Then we get twelve vector representations in three embedding
spaces and four answer aspects to help represent the candidate answer, vector
embeddings in euclidean space are denoted as Ee, Er, Et, Ec, vector embeddings
in complex vector space [8] are denoted as Ve, Vr, Vt, Vc, vector embeddings in
hyperbolic space [6] are denoted as He, Hr, Ht, Hc. Two attention networks
are employed to learn the representation of the candidate answer, one attention
network is called answer aspect attention and is used to aggregate the informa-
tion in different answer aspects, the other attention network is called multi-space
attention and is used to aggregate the information in different embedding spaces.
Finally, we can compute the score for the question-answer pair (q, a).
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Fig. 1. The whole architecture of our model.

2.1 Answer Aspect Attention Network

In terms of answer aspects, since the extent of attention should be measured by
the relatedness between representation of input question q and answer aspect
embeddings Ei, Vi,Hi, i ∈ {e, r, t, c}. We calculate the weights using the following
formulas:

αi =
exp (ηi)∑

j∈{e,r,t,c} exp (ηj)
(1)

ηi = f
(
WT

1 [q;Ei;Vi;Hi] + b1
)

(2)

Here, [u; v] denotes the concat of vector u and vector v, WT
1 ∈ R

4d×d denotes
an intermediate matrix and b1 is the offset. The intermediate matrix and offset
are randomly initialized and updated in the training process. The vector q is
the representation of input question and is output by the Transformer network.
f(·) is an activation function which is non-linear and j ∈ {e, r, t, c} is the answer
aspect. αi denotes the weight of answer aspect, which indicates the importance
of the aspect towards question.

2.2 Multi-space Attention Network

In terms of vector spaces, we calculate the weights with all the information of
answer while the information of question is abandoned since question has no
direct connection with the vector space. The formulas we propose is as follows:

βs =
exp (θs)∑

s∈{E,V,H} exp (θs)
(3)
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θs = f
(
WT

2 [Se;Sr;St;Sc] + b2
)

(4)

Here, WT
2 ∈ R

4d×d is also an intermediate matrix and b2 is the offset. s ∈
{E, V,H} denotes the vector space and βs is the weight of it. Since we have
calculated the weights of answer aspects and vector spaces, the final vector rep-
resentation of candidate answer can be calculated by:

a =
∑

s∈{E,V,H}
βsγs (5)

γs =
∑

i∈{e,r,t,c}
αisi (6)

The similarity score of the question q and candidate answer a can be defined as
follows:

S(q, a) = h(q, a) (7)

Here, h(·) denotes the inner product of the vectors of question q and candidate
answer a.

2.3 Model Training

For every input question q, we divide the candidate answer set Cq into correct
answer set Rq and wrong answer set Wq. For every correct answer a ∈ Rq, we
randomly select k wrong answers a′ ∈ Wq and use them as negative examples.
Then we can using the training data to conduct pairwise training. To be more
specific, the training loss is a hinge loss as follows:

L (q, a, a′) = [m − S(q, a) + s (q, a′)]+ (8)

Here, s(·) is the scoring function, m is the margin parameter used to regularize
the gap between positive and negative examples and [z]+ means max(0, z). The
objective function is:

min
∑

q

1
|Rq|

∑

a∈Rq

∑

a′∈Wq

L (q, a, a′) (9)

Moreover, stochastic gradient descent (SGD) based on minibatch is applied as
optimizer in the training process.

3 Experiments

The WebQuestions dataset and FB2M knowledge graph are used to conduct
experiments to evaluate our model. As for baseline, we focus on the information
retrieval based approaches proposed in recent years. In the training process, we
perform the knowledge graph embedding models and question answering model
in turn. All the knowledge graph embedding models utilize pair-wise training
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strategy, we use the provided code in their papers to perform the training process
and the embedding dimension is set to 250. For the question answering training
part, we also set the embedding size d = 250. The minibatch size and learning
rate are set to 50 and 0.01, respectively. Negative sample number k is set to 1000
and the margin parameter m is set to 0.7. Besides, hyperbolic tangent function
is used as the activation function f(·).

3.1 Performance Comparison

Table 1. Results on the WebQuestions dataset.

Methods Macro F1

Bordes et al., 2014 39.2± 1.8

Dong et al., 2015 40.8± 1.2

Bordes et al., 2015 42.2± 0.7

Hao et al., 2017 42.9± 0.9

Our approach 44.1± 0.6

To evaluate the effectiveness of our approach, we compare F1 of our model with
state-of-art IR-based methods. Bordes et al., 2014 [1] apply subgraph embed-
dings for answer representation, while the learning process of both question and
answer is a simplified bag of word model. Dong et al. [4] improve the ability
of question representation by using multi-column convolutional neural network
and the answer representation contains the information of answer path, answer
type and answer context. Bordes et al., 2015 [2] introduce a much larger dataset
called SimpleQuestions and use the Memory Network to construct their model.
Note that they also conduct experiments on WebQuestions and achieve higher F1
score. Hao et al. 2017 [5] use answer aspects to help represent question and apply
Bi-LSTM to get the embedding vector of question. Besides, they employ TransE
to combine the global KG information. We utilize three embedding spaces to
enhance knowledge in answer end, Transformer network in question end and
attention network to calculate final score.

As is shown in Table 1, our method achieve higher F1 score than baseline
methods on WebQuestions. Our model takes the advantage of attention network
proposed by Hao et al. [5], while we improve the way of combing the global
KG information. Hao et al. focus on using the answer aspect information to help
represent question and they apply TransE to encode the KG in order to combine
global knowledge. Based on the previous work done by Zhang et al. [11], we
realize that the euclidean space of TransE is not the best way to embed knowledge
graph and the spatial information in different embedding spaces differs, so we
employ three embedding spaces to enhance the information of answer in KG and
design a novel attention network to dynamically aggregate information in these
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embedding spaces. Besides, we replace the Bi-LSTM with Transformer network.
The results show that our proposed approach can achieve the best performance
compared with other state-of-art methods.

4 Conclusion

In this work, we propose a novel model that comprehensively utilizes informa-
tion in knowledge graph for the task of KGQA. Firstly, we consider the impacts
of different embedding spaces on KG representation, and design a multi-space
attention network to aggregate information in three embedding spaces. Then, we
represent candidate answer through different answer aspects and apply question
vector to help represent candidate answer. Finally, we improve the neural net-
work in question end according to the latest sequential model. The experiments
on the WebQuestions dataset show that the proposed approach achieves better
performance compared with other state-of-art methods.
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Abstract. The recent proposal of the learned index leads us to a new
direction to optimize indexes. With the help of learned models, it has
demonstrated promising performance improvement compared with tradi-
tional indexes. However, the skewed query distribution and ever-changing
data distribution common in real-world workloads pose additional chal-
lenges to the learned index. The missing consideration of these ‘distri-
butions’ can notably obscure the learned index’s high performance. To
solve this issue, we propose a Distribution-Aware Training scheme for the
learned index (called DATum). DATum can produce a tuned model for a
specific query and data distribution. Central to DATum are two designs.
First, it stretches the training data according to access frequencies to
incorporate the skewed query patterns. Second, it combines a model
cache and a classic grid search to efficiently find the best model archi-
tecture for the ever-changing datasets. Our experimental results show
that, DATum can improve the learned index’s performance by 51.1%
and reduce its model rebuilding time to less than 1%.

Keywords: Learned index · Skewed query · Data distribution
shifting · Model training

1 Introduction

The recent study of the learned index [11] presents us with a novel way of building
indexes with the help of machine learning models. Range indexes can be seen as
mappings from keys to positions. The basic idea is to leverage machine learning
models such as neural networks to overfit the mappings. Hence, to perform a
query, it first predicts a position with the learned model; then it employs a
local search surrounding the predicted position to find the target record. The
learned index shows excellent performance. It achieves up to 3× performance
than B-Tree while saving more than 90% memory footprint [11].

Although the learned index and successive works [4,8,9,16] have shown
promising performance compared with traditional indexes, we argue that existing
model training schemes yield poorly learned models, thus unsatisfactory perfor-
mance under real-world workloads. The model training scheme plays a critical
role in learned indexes as the trained model directly determines their perfor-
mance. Under real-world workloads, the query distribution tends to be skewed
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 143–157, 2021.
https://doi.org/10.1007/978-3-030-85899-5_11
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(some keys are more frequently accessed than others), and data distribution
is constantly evolving due to inserts and removes [3,7,12,22]. However, exist-
ing training schemes lack the consideration of these distributions. First, under
skewed query distribution, the performance can drop greatly if hot models (i.e.,
sub-models containing hot keys) are poorly learned. Typical learned indexes
(e.g., RMI [4,11,16]) need to construct a hierarchy of sub-models, with each
sub-model responsible for a small range of the total dataset. The model errors
differ across different leaf-stage sub-models. The performance can drop substan-
tially if the leaf-stage sub-models with a large error are frequently accessed,
which is also confirmed in [16]. Second, the best model architecture varies for
different data distributions. A number of hyperparameters can be used to tune
the model architecture, such as the number of sub-models, the type of each sub-
model (from simple linear regression to complex neural networks). The complex
model can provide better accuracy for complex data distribution, but is also
penalized by high computation costs. Hence, using a fixed model architecture
gives unsatisfactory performance after the change of data distribution.

To tackle this issue, we propose DATum, a Distribution-Aware Training
scheme for learned indexes. At its core, DATum achieves distribution awareness
in two ways. First, to incorporate the skewed query distribution of real-world
workloads, DATum adopts a novel method named data stretching. It improves
the accuracy of hot models by augmenting the distances between keys according
to their access frequencies. Second, to accommodate the ever-changing data dis-
tribution, DATum employs a model cache and the classic grid search to efficiently
find the best model architecture for each dataset. The model cache buffers pre-
tuned models, thus avoiding costly grid search when a similar data distribution
is encountered again. The preliminary results show the effectiveness of DATum.
With the model trained by DATum with data stretching, the learned index can
achieve up to 51.1% performance improvement under skewed query patterns.
By reusing previously trained models, DATum can reduce the model rebuilding
time of the learned index to less than 1%.

In summary, this paper makes the following contributions:

– An in-depth analysis to manifest that, the learned index’s performance is
sub-optimal without considering query and data distribution while training.

– A distribution-aware training system for learned indexes, which unleashes the
performance through data stretching and model cache.

– A set of experimental results that demonstrates the effectiveness of DATum.

The following of this paper is organized as follows: Sect. 2 introduces the
basic background of the learned index; Sect. 3 quantitatively shows the issue of
the existing training scheme. Section 4 presents our system with the data stretch-
ing (Sect. 4.1) and the model cache (Sect. 4.2); Sect. 5 presents some evaluation
results; Sect. 6 summarizes related works, and Sect. 7 concludes this paper.
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2 The Learned Index

In this section, we give some basics of the learned index [11].
Kraska et al. [11] observe that traditional range indexes such as B-Tree can

be regarded as models: they map keys to positions in sorted order. However, B-
Tree constructs this mapping using a hierarchy of nodes and does not exploit the
characteristics of the data. Base on this, they propose to replace the hierarchical
nodes with machine learning models such as neural networks, thus leading to the
novel index structure called the learned index1. Specifically, assuming an array
of records sorted by keys, the learned index leverages machine learning models to
approximate the cumulative distribution function (CDF) of the data. With the
estimated CDF F , the position p of a key K can be predicted as p = �F (K)∗N�,
where N is the total number of keys.

To put this idea into practice, several key techniques have been proposed.
First, the learned index uses a local search around the predicted location to

accommodate the prediction errors of models. Since models may not perfectly
learn the CDF, it could predict a wrong position. The learned index corrects
this wrong prediction by a local search. During training, it maintains the max-
imum error max err and the minimum error min err. Then for any key whose
predicted position is pos, the target record is guaranteed to reside within the
range [pos+min err, pos+max err] if it exists. Hence, for each lookup, a simple
binary search within the bounded error range is used to locate the records. The
error bound, which equals log2(max err+min err), determines the effectiveness
of the learned model.

Second, the learned index introduces a new model structure called Recur-
sive Model Indexes (RMI) to improve the prediction accuracy and thus the
performance. Using a single model over the entire CDF can result in a large
error bound, degrading lookup efficiency. To overcome this, the RMI constructs
multiple levels (termed stage) of models (termed sub-model in the following),
and assigns different parts of the CDF into different leaf-stage sub-models. Each
leaf-stage sub-model only needs to approximate a small range of the entire CDF,
which means a better prediction accuracy. The sub-models in the leaf stage also
maintain the minimum and the maximum error of the corresponding CDF range.
In an RMI, each internal sub-model takes a given key as input and picks the
sub-model in the next stage, while each leaf-stage sub-model gives the predicted
CDF value. The specific RMI architecture is determined by the number of stages,
the number of models and the choice of each sub-model2. It can be tuned for
each data distribution during model training. For example, sub-model in the
upper stages can use complex models to learn a wide range of complex CDF,
while the bottom ones can use simple linear regression models.

The learned index shows excellent performance compared with traditional
indexes [11]. It achieves up to 3× performance than B-Tree with orders of
1 We focus on the range index in this paper.
2 The choice of each sub-model can vary, ranging from the simplest model such as

a linear regression model, to a more complex model such as a multi-layer neural
network.



146 Y. Wang et al.

magnitude smaller index size. Many successive works have been proposed
to further boost its performance under a wide range of scenarios [4,5,8–
10,13,14,16,20]. For all these systems, the model training process is critical
as 1) many of them [4,9,16] require frequent model retraining after data modi-
fications to fully employ the indexing capabilities of learned models, and 2) the
trained model directly determines their performance. However, no work has been
done to improve the performance of the learned index through a better training
scheme. We show that existing training schemes do not fully exploit the per-
formance benefits, and a distribution-aware training scheme can obtain better
performance.

3 The Problem

In this section, we present the problem of existing training schemes under real-
world workloads in detail through some experiments.

We use a two-staged RMI to illustrate the challenges, which is also the default
configuration in [11]. The second stage of the RMI contains 200 K linear regres-
sion models. We vary the type of sub-model in its first stage and use the follow-
ing three model architectures in experiments: LIN (linear regression model) and
NN8/NN16 (one-hidden-layer neural network of width 8/16). Four datasets are
used in our experiments; each of them is generated by randomly sampling from
several normal distributions with different parameters (σ ∈ [0, 10], μ ∈ [0, 1]).
The numbers are scaled to 1 B (i.e., 109) as done in [11]. Each dataset has 200M
integer keys. Figure 1 shows their CDFs.
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Fig. 1. The CDFs of datasets D1, D2, D3 and D4. The x-axis indicates the key space,
and the y-axis is the normalized CDF for each dataset.

The training process plays an important role in the learned index’s high
performance, especially under real-world workloads. The real-world workloads
consist of skewed queries and ever-changing data distribution. However, existing
training schemes are not distribution-aware. Without considering the query
and data distributions during training, the learned index can yield
sub-optimal performance.

3.1 Query Distribution

The performance is unpredictable under skewed query distribution, as it is domi-
nated by these hot models’ error bound. In a typical RMI, there can be thousands
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Table 1. Latency (in nanoseconds) of different model architectures under different
skewed query workloads. The dataset is D1 (Fig. 1a) The skewed workloads (Skewed 1,
Skewed 2 and Skewed 3) have 95% queries reading 5% hot keys, but in different ranges.
The Uniform workload access all keys with equal probability.

Model arch Workload

Skewed 1 Skewed 2 Skewed 3 Uniform

LIN 1120 252 331 406

NN16 321 310 282 375

of sub-models in the leaf stage, and the error bounds of these sub-models differ.
The hot model is defined as the leaf-stage sub-model that holds the hot (fre-
quently accessed) keys. If the hot models have a large error bound, the learned
index needs to binary search within a larger range. More memory references are
required with the increasing search range, thus degrading the performance. On
the other hand, the learned index can achieve excellent performance if the hot
models have a small error bound, even though all the other ‘cold’ models are
poorly learned.

To better illustrate the problem, we evaluate the performance of the learned
index with two different model architectures (LIN and NN16) under skewed
query patterns. In skewed workloads, 95% of queries only access 5% of keys in
different ranges. The hot range is 0th to 5th, 20th to 25th, and 60th to 65th
percentile of the sorted keys array for Skewed 1, Skewed 2 and Skewed 3. Table 1
presents the query latency under workloads, and Fig. 2 shows the error bounds
of the two model architecture among the key space. The performance variance
across different workloads is large even with the same model architecture. LIN
performs 37.9% better under Skewed 2 than under Uniform. But under Skewed
1, the query latency of LIN is 75.8% higher than under Uniform, which is even
82.8% higher than B-Tree (396 ns). The differences in error bounds cause this
performance fluctuation. As shown in Fig. 2, the error bound of the key range
from 0 B to 0.23 B (which covers the hot range of Skewed 1) is much larger
than the average error bound (24 vs. 6.58). Comparing the two different models,
NN16 has better performance than LIN under Uniform workload (375 ns vs. 406
ns). But under skewed workloads, NN16 can perform worse than LIN (310 ns vs.
252 ns under Skewed 2). The reason is that, NN16 has a smaller average error
bound than LIN (5.32 vs. 6.58). However, for the key range from 0.35 B to 0.46
B (which covers the hot range of Skewed 2), LIN’s error bound is smaller than
NN16’s (4.56 vs. 4.86, which is zoomed out in the figure).

Existing works [4,9,16] all assume a uniform access pattern while building
machine learning models. Therefore, they can suffer from performance issues
under skewed query distribution. PGM-Index [8] is the only learned index so
far that considers query distribution while training. However, it couples with
the design of the Piecewise Geometric Model, thus can not serve as a general
training scheme for various model architectures.
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3.2 Data Distribution

Without considering data distribution during training, learned indexes may use
a sub-optimal model architecture, thus obtaining a sub-optimal performance.
Frequent write requests cause the shifting of data distribution, but the best
model architecture varies for different data distributions. On the one hand, even
with a small hyperparameter space (e.g., the number of sub-models, type of
sub-models), we can easily obtain hundreds even thousands of different model
architectures. On the other hand, complex models are not always a good choice.
The complexity of data distributions varies. Complex models (e.g., neural net-
works) can approximate complex CDFs more precisely, thus expecting a smaller
average error bound. However, the performance of learned indexes is not only
directly correlated with the accuracy of the model (i.e., binary search cost),
but also with the complexity of the model (i.e., inference cost). Complex mod-
els introduce higher computation costs, which can cancel out its advantages in
binary search time. Figure 3 shows query latency breakdown (which consists of
binary search time and model computation time) with different model architec-
tures under dataset D1. With the increase of complexity of the first-stage model
(from LIN to NN2-12), the binary search time decreases. But the model infer-
ence costs also increases dramatically. This tradeoff makes it hard to choose the
best model architecture for different data distributions.

Table 2 shows the best model architecture and the corresponding query
latency under different datasets. The best architecture differs across different
datasets and even different workloads. For example, for dataset D3, though
NN16 spends less time in binary search than LIN (317 ns vs. 336 ns), LIN
still has lower query latency than NN16 (350 ns vs. 367 ns). NN16 is penalized
by the high inference cost (50 ns vs. 14 ns).
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Table 2. The best model architecture and its corresponding average search time (in
nanoseconds) under different datasets and workloads.

Dataset Workload

Skewed 1 Skewed 2 Skewed 3 Uniform

Arch Time(ns) Arch Time(ns) Arch Time(ns) Arch Time(ns)

D1 NN16 321 LIN 252 NN16 282 NN16 375

D2 NN8 319 NN8 316 NN8 301 LIN 344

D3 LIN 293 LIN 281 LIN 278 LIN 350

D4 NN8 314 LIN 289 LIN 288 NN8 376

Hence, under real-world workloads where data distribution is constantly
evolving, using a fixed model architecture can result in sub-optimal performance.
The best architecture should be detected during model retraining. Intuitively,
we can apply some basic search techniques such as grid search to find the best
model architecture upon the change of data distribution. However, it can eas-
ily take 10–100× the model training time [1], which significantly impacts the
responsiveness of learned indexes.

4 DATum

To unleash the performance of the learned index, we propose a distribution-aware
training system for learned indexes called DATum.

Figure 4 shows the architecture of DATum. It consists of three main compo-
nents: Dataset Augmentor, Model Tuner and Model Trainer. DATum adopts two
key mechanisms to achieve distribution-awareness while training models. First,
DATum “stretches” the dataset according to query patterns and trains models
with a stretched dataset to improve the performance of hot models (Dataset
Augmentor and Model Trainer, Sect. 4.1). Second, DATum reuses the pre-found
best model architecture for the same data distribution to avoid the costly grid
search once the data distribution changes (Model Tuner, Sect. 4.2).

The overall workflow of DATum is as follows. The Dataset Augmentor first
stretches the dataset according to the query pattern and generates the new
training dataset. Then Model Tuner finds the best model architecture for the
stretched dataset through Model Cache (previously been found) or Auto-tuner
(not found in the cache). The Model Tuner returns the tunned model to Model
Trainer. Finally, Model Trainer retrains the leaf-stage sub-models of the tunned
model with the original dataset to repair the position information.
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Fig. 4. Architecture of DATum.

4.1 Data Stretching

Our key observation is that, improving the performance under skewed workloads
requires reducing hot models’ error bounds instead of improving the prediction
accuracy of individual keys. This insight comes from an intuition solution, which
increases the contribution of hot keys during training. To incorporate query pat-
terns, the intuitive solution duplicates hot keys in the training set according
to their access frequency. For example, for a dataset with three keys {a, b,
c} in a sorted order, if the access frequencies of the keys are 0.25 : 0.5 : 0.25,
then we can simply create two copies of b to generate the training set. The
final training set becomes {(a, 0), (b, 1), (b, 1), (c, 2)}, in the format
of (key, position) pairs. Then, the hot key b can contribute two times than
the other keys during training, which is much more likely to improve its pre-
diction accuracy. We evaluate this solution under the three skewed workloads
(Table 2), but find that the performance rarely improves compared to previous
best model architectures. The underlying reason is that the intuitive solution
hardly improves hot models’ error bounds, which actually determines the search
time.

Base on the observation, DATum adopts a novel approach called data stretch-
ing to incorporate the query distribution. The goal of data stretching is to
reduce the number of keys handled by hot models in the leaf stage, as leaf-
stage sub-models tend to have smaller error bound with fewer keys. To achieve
this, DATum increases the distance between these hot keys and their neighbors
(i.e., keys before and after them). It simply shifts the position labels accord-
ing to the access frequencies. For the above training set {(a, 0), (b, 1), (c,
2)} with access ratio of 0.25 : 0.5 : 0.25 (i.e., 1:2:1), DATum will augment it to
{(a, 0.5), (b, 2), (c, 3.5)}. Figure 5 shows the effect of data stretching
on dataset D1 under workload Skewed 3. The hot range is stretched according
to the query pattern, as shown in the right CDF. More formally, we define the
query pattern as Q = {(ki, fi)}i=1,...,n where 0 < fi < 1 is the access ratio, and
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Fig. 5. The left figure shows the CDF of the original dataset D1. The corresponding
CDF of D1 after stretching is shown in the right figure.

cdf as the stretched CDF. Then DATum will augment the dataset to satisfy the
following formula:

cdf(ki+1) − cdf(ki)
cdf(ki) − cdf(ki−1)

=
fi+1 + fi
fi + fi−1

, ∀i > 1 (1)

Then in the augmented CDF, the distances between any adjacent keys are deter-
mined by their access ratios.

The Dataset Augmentor takes query patterns and dataset as input. It applies
the above data stretching to the dataset and generates the augmented train-
ing set. Then it sends the training set to Model Tuner to get a tuned model
(Sect. 4.2). Since the position labels in the stretched training set differ from
the real dataset, DATum needs to repair these position information at the final
step. It retrains the leaf-stage sub-model of the returned model with the original
dataset in Model Trainer, and finally outputs the ready-to-use model.

4.2 Model Cache

DATum leverages a model cache and the classic grid search to efficiently find the
best model architecture upon data distribution shifting (Model Tuner in Fig. 4).
The model cache maintains mappings from data distribution to the already-
found best model architectures and parameters. DATum uses grid search to find
the best model architecture for a new data distribution given a hyperparameter
search space, then adds the search result to the model cache. When a similar
data distribution is encountered again, DATum just directly returns the entry
in the model cache, thus avoiding the costly grid search.

The Model Tuner contains three modules that work synergistically: Extrac-
tor, Model Cache, Fine-tuner and Auto-tuner.

The Extractor extracts the distribution information of the dataset by uni-
formly sampling K keys from the augmented training set. Empirically, choosing
a higher sample rate can bring higher fidelity as to the real distribution, but also
means higher storage and computation overhead.
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Table 3. The query latency (in nanoseconds) of the learned index using different
methods to incorporate the read access pattern. Origin does not consider the query
distribution while training. Baseline refers to the method which simply creates multiple
copies of hot keys.

Workload Origin (ns) Baseline (ns) Stretching (ns)

Skewed 1 321 288 157

Skewed 2 252 260 222

Skewed 3 282 270 237

The Model Cache maintains pre-trained models for already-seen data dis-
tributions. Each entry in the cache consists of a sampled dataset and the cor-
responding tuned model. When getting a new dataset from Extractor, it tries
to find an entry in the cache with the most similar data distribution based on
two-sample tests such as Kolmogorov–Smirnov test. If the similarity is larger
than a user-given threshold, the cache simply returns the found model to Fine-
tuner. Otherwise, DATum will start a grid search in the background, which is
conducted by Auto-tuner.

The Fine-tuner gets the pre-trained model from Model Cache. It incremen-
tally trains the model with the augmented training set.

The Auto-tuner is used to perform the grid search. It starts a grid search in
the background to find the best model architecture for a given data distribution
and stores the result into the cache asynchronously. Based on the observation
shown in Fig. 3, Auto-tuner tries to find the best tradeoff between model com-
plexity and accuracy. Specifically, given a hyperparameter search space, Auto-
tuner increases the complexity of the model (such as increasing the number of
stages/models, using a neural network with more layers) until the increase in the
model inference cost overwhelms the reduction in binary search cost. Though not
the focus of this paper, this process can also be optimized by techniques such as
parallel execution and early abort [6].

5 Experiments

In this section, we present preliminary evaluation results of DATum to show its
effectiveness. The default setup is the same as that in Sect. 3. All the experiments
are run on a server with two 20-core Intel Xeon E5-2650 v3 CPUs, each with 25
MB LLC.

5.1 Data Stretching

Table 3 shows the query latency of the learned index under dataset D1 (Fig. 1a)
after incorporating the read access pattern. Baseline refers to the intuitive
method mentioned in Sect. 4.1, which simply increases the frequency of hot keys
in the training set. Origin is the original method without considering the read
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Table 4. The execution time of Model Tuner under different configurations. The ratio
column represents the ratio between the execution time of Model Tuner and the time
of using the grid search.

Sample size # of entries in Model Cache

1K 5K 10K

Time(s) Ratio(%) Time(s) Ratio(%) Time(s) Ratio(%)

1K 0.01 0.01 0.02 0.01 0.05 0.03

10K 0.05 0.03 0.25 0.13 0.51 0.27

50K 0.23 0.12 1.24 0.65 2.54 1.32

100K 0.51 0.26 2.55 1.30 4.88 2.49

200K 0.95 0.48 4.78 2.41 9.48 4.77

access pattern. Note that we only present the optimization result based on the
best model architecture under Origin (NN16 for Skewed 1 & 3, LIN for Skewed 2).
From the table, we can see that data stretching can improve the query latency of
the learned index by 51.1%, 11.9%, 15.9% for the three workloads, respectively.
For the workload Skewed 1, the average error bound of the hot models after
data stretching is 7.76, which is 24.9% smaller than that of Origin (10.34). As
a comparison, Baseline barely improves the performance and even increases the
query latency for Skewed 2. For the workload Skewed 1, the average error bound
of Baseline is 10.08, similar to that of Origin. This is because Baseline tries to
improve the prediction accuracy of hot keys, but fails to reduce the error bound.
The error bound of one model is only determined by the keys with the worst
accuracy (the minimum and the maximum error elaborated in Sect. 2), which
decides the search time.

5.2 Model Cache

Next, we conduct experiments on the model cache. In this experiment, we first
populate the cache by employing grid search to find the best model for different
datasets. The datasets are generated by randomly replacing half of the existing
elements in one normal distribution with different normal distributions. The
parameter of normal distributions are the same as those in Sect. 3, and the
average size is 1M. Then we use existing datasets as input to ask Model Tuner
for the best model. To narrow down the search space for the grid search, we
use a two-stage RMI and set only two kinds of hyperparameters: the number of
sub-models in the second stage (10K to 500K, with a step of 10K) and the type
of each sub-model (including the root-stage model).

Table 4 shows the execution time of Model Tuner under different configura-
tions, namely sample size and the number of entries in Model Cache. Overall,
DATum can find the tuned model architecture quickly. DATum can reduce the
model rebuilding time to less than 1% of the classic grid search in most cases.
With the increasing sample size and the number of entries, the execution time
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Table 5. The execution time of Model Trainer with different configurations.

Data size # of models in the leaf stage

10K 50K 100K 200K

10M 0.06 s 0.07 s 0.08 s 0.09 s

50M 0.33 s 0.30 s 0.31 s 0.34 s

100M 0.68 s 0.63 s 0.60 s 0.61 s

200M 1.36 s 1.21 s 1.25 s 1.22 s

tends to increase. When the sample size is 200K, and the number of entries is
10K, it accounts for up to 4.77% of the grid search. This is because DATum
has to find the entry in Model Cache with the most similar data distribution to
the input dataset, which currently requires iterating over all the entries. As to
memory consumption, it consumes more space with the increase of sample size
and entry size. When the sample size is 10K, and the number of entries is 5K,
DATum requires around 0.49 GB space. The storage cost increases to 15.1 GB
for 200K sample size and 10K entries. A larger sample size introduces longer exe-
cution time and larger storage consumption, but brings higher accuracy. Small
sample size may break the distribution, which leads to DATum finding a sub-
optimal model in the cache (i.e., a model with a different data distribution). For
example, when the sample size increases from 10K to 100K, the average percent
of finding the wrong entry is reduced from 10% to 4%.

Table 5 present the execution time of Model Trainer under different data sizes
and different numbers of leaf-stage sub-models in the RMI. The Model Trainer
only needs to retrain the leaf-stage sub-models with the original datasets, which
takes less time than retraining the whole RMI model. For example, it only takes
4 µs to train a linear model with 1000 keys. As a result, we can conclude that
the total execution time of DATum is still far shorter than that of the grid search
within a given space.

6 Related Works

Learned Indexes. The proposal of the learned index [11] has stimulated a surge
of researches on indexes. Some works [5,8] have tried to improve performance
under skewed query distributions. PGM-Index [8] proposes a Piecewise Geomet-
ric Model (PGM), which orchestrates an optimal number of linear models in a
recursive structure. It can train a PGM based on the query distributions. Com-
pared with it, DATum is a general model training framework that can apply
to all types of model architectures. Tsunami [5] is a learned multi-dimensional
index specially optimized for data correlation and query skew, while our work
focuses on one-dimensional indexes. There are also some works [4,8,16] that
consider the dataset shifting at runtime. XIndex [16] provides an efficient and
non-blocking compaction (including data sorting and model retraining) scheme
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for the learned index to handle writes under concurrent scenarios. ALEX [4]
constructs an adaptive RMI for indexing, where data are stored in leaf nodes
with a gapped array layout for insertions. XIndex and ALEX both adopt some
structure adjustment strategies such as node split to accommodate workload
characteristics at runtime. As a comparison, our work is orthogonal to theirs as
1) we provide a new way of training model with better accuracy, which can be
applied to existing systems to further boost their performance; and 2) we do not
pose any additional restrictions to the data structure layout.

Besides, works have been done for the learned index on other different
aspects. FITing-Tree [9] uses piecewise linear functions to approximate an index
with bounded error. It allows a DBA to tune the index to balance performance
and space overhead. Shift-Table [10] provides an enhancement layer for learned
indexes to improve the precision of a learned model which contains the drift
values to correct predictions. LIPP [20] leverages a tree structure to make the
prediction of the model precise, thus eliminating the ‘last mile’ search. LISA [13]
makes use of the learned index to accelerate spatial query processing. Flood [14]
builds multi-dimensional indexes with the help of machine learning models. SIn-
dex [18] is a learned index specially optimized for string keys. BOURBON [2]
applies the learned index into an LSM-based key-value store based on a series
of in-depth measurements and analyses. XStore [19] uses the learned index as
the client-side cache for RDMA-based key-value stores and leverages a hybrid
structure to handle writes. All of them focus on different scopes compared with
ours, and our approaches can be used to achieve more performance benefits.

Workload-Aware Data Structures. Skewed access pattern exhibits itself in
common real-world workloads. A hybrid index structure [22] has been proposed
to deal with skewed patterns, which uses a flexible structure to index hot records
and a compact and read-only structure to hold the cold data. H-Store [3] uses
“anti-caching” to detect hot and cold tuples and moves cold data to disk to save
memory space. VoltDB [15] employs a similar approach but uses virtual memory
paging to swap data to disk. Siberia [12] uses sampling to detect hot/cold data
and uses SQL Server’s buffer pool to swap the data to/from disk as needed.

Data Augmentation. Data Augmentation is a commonly used yet powerful
technique to avoid overfitting and increase the generalization performance of
machine learning models. Hundreds of methods have been explored, such as geo-
metric and photometric transformations [17], example interpolation [21], random
erasing [23]. Different from them, our data stretching does not improve generaliz-
ability, but improves the prediction accuracy of frequently accessed sub-models.

7 Conclusion

This paper presents a new way to improve the learned index’s performance
under real-world workloads through a distribution-aware training scheme. The
Distribution-Aware Training system, called DATum, takes both the query dis-
tribution and data distribution into consideration while training model. Exper-
imental results have shown the effectiveness of DATum’s designs.
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Abstract. Recently, adopting large cache blocks has received widespread
attention in server-side storage caching. Besides reducing the management
overheads of cache blocks, it can significantly boost the I/O throughput.
However, although using large blocks has advantages in management over-
head and I/O performance, existing fixed-size block management schemes
in storage cache cannot effectively handle themunder the complicated real-
world workloads. We find that existing fixed-size block management meth-
ods will suffer from the fragmentation within the cache block and fail to
identify hot/cold cache blocks correctly when adopting large blocks for
caching.

Therefore, aiming to solve this problem, we propose AIR cache, which
is a variable-size block cache based on fine-grained management method.
AIR cache contains three major parts, Multi-Granularity Writer (MGW),
Multi-Granularity Eviction (MGE) and Fine-Grained Recorder (FGR)
where FGR is dedicated to record the data popularity using fine-grained
data sections, MGW writes data at different granularity, and MGE is
responsible for evicting the data at dynamic granularity. Our experiments
with real-world traces demonstrate that AIR cache can increase the read
cache hit ratio by up to 6.97X and the cache space utilization rate by up to
3.63X over the traditional fixed-size block management methods.

Keywords: Storage cache · Fine-grained management · Variable size
block

1 Introduction

Storage cache is a component that resides in a relatively fast but expensive
device and is used to store recently used data [1,3,4,13,15,16,21]. In this way,
future requests can quickly access commonly used data without having to access
them from slower devices. Nowadays, storage cache is a must-have component of
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various storage systems [19,20,22]. For example, in datacenters, SSDs are used as
storage cache of HDD; in distributed systems, a portion of local memory/storage
is used as storage cache for remote data access. Cache block is the basic data
processing unit of storage cache, and existing cache management methods set
its size as 4KB for a long time [2,5,6,11,12,17,18,23].

Recently, adopting large blocks for caching has attracted widespread atten-
tion for three important reasons. First, with the advancement in storage tech-
nology, storage devices are moving towards high capacity and low cost. When
the size of the device to be used for caching is large, increasing the block size
can significantly reduce the total number of blocks and the associated overhead
of managing these blocks. Second, with the explosive growth of data and the
popularity of big data applications, more and more users are pursuing high I/O
throughput. Increasing the size of cache block can achieve higher data read/write
bandwidth and increase I/O throughput. Third, some storage devices no longer
support processing relatively small data units. For example, with the develop-
ment of semiconductor technology and the improvement in flash memory man-
ufacturing technology, the page size of some NAND Flash SSDs has steadily
increased from the original 2 KB or 4 KB to 8KB and 16 KB [8,10].

Although using large blocks has benefits in management overhead and I/O
performance, existing cache management methods in storage cache cannot effec-
tively use large cache blocks. The main limitation is that it manages data with a
fixed-size block granularity. When the cache block becomes larger, it is difficult
to effectively utilize the cache space for the two problems.

The first problem is the internal fragmentation of the cache block. Existing
cache management methods in storage cache process cache data in block gran-
ularity and operating any part of the cache block requires operations on the
entire cache block. Therefore, when data is written to the cache, the data needs
to be touched as a whole block. If the size of written data is smaller than cache
block size, some parts of the cache block are not used, thus causing the internal
fragmentation problem. Obviously, this internal fragmentation will result in low
cache utilization. In addition, the larger the cache block, the worse the internal
fragmentation, and the lower the cache space utilization rate. Our preliminary
studies show that most large blocks have internal fragmentation. In particular,
the cache space utilization rate using the traditional ARC algorithm is only
56.2% when the cache block size is 16 KB (see Sect. 2).

The second problem is that hot/cold cache blocks cannot be identified cor-
rectly. Existing cache management methods record data popularity in block gran-
ularity. It means that no matter how much data is accessed, they will increase the
popularity of the entire cache block. This makes it difficult to capture accurate
data access patterns. Our preliminary studies show that the cache block partial
hits (only a part of the block is accessed) account for an average of 52.43% of
the total hits (see Sect. 2). As a result, when the cache is full, it is difficult to
find the correct cold block to delete. Sometimes the blocks to be deleted from
the cache may be hotter than the blocks to be retained. In this case, the block
replacement algorithm is inefficient and reduces cache performance.



160 Y. Li et al.

Based on these observations, we propose a variable-size block cache based
on fine-grained management method, called AIR cache. It consists of three com-
ponents, Fine-Grained Recorder (FGR), Multi-Granularity Writer (MGW) and
Multi-Granularity Eviction (MGE). FGR focuses on recording data access pop-
ularity based on fine-grained data sections in each block, which can help better
capture data access patterns and correctly record access popularity. MGW is
responsible for writing multi-granularity data according to the size of the I/O
requests of the upper-layer applications. When the cache is full, MGE focuses on
evicting multi-granularity cold data. It selects the cold data to delete based on
the access popularity recorded by the FGR. Combing FGR, MGW, and MGE,
AIR cache can effectively manage variable-size cache blocks to make full use of
cache space and improve cache performance.

To evaluate our AIR cache approach, we have implemented an AIR cache
prototype and integrated two modified cache replacement algorithms based on
the traditional replacement algorithms LRU and ARC, called AIR-LRU and
AIR-ARC, respectively. Our experiments through the FIU [9] trace show that
AIR-LRU and AIR-ARC outperform LRU and ARC [14], by up to 6.97X in
read cache hit ratio, with an average of 3.21X, and up to 3.63X in cache space
utilization rate, with an average of 1.77X.

2 Related Work

Caching has been widely used as a performance accelerator. Over the years,
many cache replacement algorithms have been proposed to capture the char-
acteristics of different workloads. LRU algorithm is the most widely used algo-
rithm at present. In the existing system, basically LRU algorithm or LRU-like
algorithm is adopted. However, LRU has some limitations, such as not consid-
ering the frequency. Variants of LRU such as 2Q [7], MQ [23], LIRS [18]and
ARC [14] are proposed to improve LRU. 2Q has two queues, one is the FIFO
queue and the other is the LRU queue. On the first reference to a page, the 2Q
algorithm places it in the FIFO queue. If a page in the FIFO queue is refer-
enced, the page is moved to the LRU queue. Otherwise, it will be removed from
the FIFO queue. MQ uses a skewed frequency distribution in the second-level
buffer cache to enhance high-frequency blocks to improve cache hit ratios. LIRS
retains data with a small reuse distance and replace data with a large reuse
distance, because data with a small reuse distance is more likely to be accessed
in the future. ARC is anti-scanning. It consists of two partitions. On a hit, it
upgrades the block from one partition to another and resizes the partition to
fit the workload. Although these cache replacement algorithms can potentially
significantly improve cache performance, there are still gaps in effectively man-
aging large cache blocks because they process all cached data with a fixed size
block granularity without exception. Our work, the AIR cache, can bridge this
gap by managing and storing cached data in cache blocks of multiple sizes.
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3 Motivation

Existing cache management methods based on a fixed-size cache block design
and managing cache data with a fixed-size block granularity cannot effectively
utilize large cache blocks. Specifically, writing a small amount of data to a large
cache block causes fragmentation within the cache block, while fixed-size cache
data processing units will have difficulty capturing accurate data access patterns,
which will lose the ability to identify hot/cold blocks. Next, we will describe these
two issues in detail.

3.1 Internal Fragmentation

Problem Description. In storage cache, the purpose of using large cache
blocks is to improve I/O throughput by accessing large amounts of data at once.
However, if the requested data is smaller than the cache block, the entire block
still needs to be touched. Specifically, when a request is missing, it needs to read
the data from the underlying storage system into the cache. At this time, if the
data written to the cache is smaller than one block, it needs to be written to the
entire block. As a result, except for the data part, other parts of the cache block
are not used, which may cause severe fragmentation inside the cache block. We
call a cache block with unused portions named fragmented block.

A fragmented block occupies the space of the entire cache block, but contains
less useful data. Obviously, storing these fragmented blocks wastes cache space.
In addition, the larger the cache block, the larger the fragmentation of the block.
Using large blocks for caching can cause very low cache utilization. At the same
time, as the intensity of modern workloads increases, the demand for cache
capacity is bound to grow rapidly. The cache space is so precious that we need
to explore it effectively. However, reviewing existing cache management methods,
they process cached data with a fixed-sized block granularity, regardless of how
much valid data exists in each block. Therefore, it is not efficient to use fixed-size
block management methods to manage large cache blocks.

Statistical Evidence. To evaluate the internal fragmentation of cache block,
we implement a storage cache in DRAM using the traditional replacement algo-
rithms LRU and ARC with fixed-size cache blocks. In our preliminary studies,
we evaluated the cache space utilization and cache hit ratios using WebVM from
the FIU trace. The characteristics of the workload are described in Table 2 in
Sect. 4. The cache size is set to 20%, 30%, 40% of the working set size and the
size of the cache block is set from 8 KB to 64 KB.

Figure 1 shows the cache space utilization rate. As shown in Fig. 1, no matter
what the cache block size is, it cannot use the LRU or ARC algorithm to com-
pletely occupy the cache space. For example, when the cache size is 30% of the
working set size and the block size is 8KB, the cache space utilization rate using
LRU algorithm is only 83.95% and using ARC algorithm is only 78.30%. When
the block size is increased to 16 KB, 32 KB and 64 KB, the cache space utiliza-
tion rate using the LRU algorithm is reduced to 66.57%, 49.48%, 34.43%, and
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(a) LRU (b) ARC

Fig. 1. Cache space utilization rate of LRU and ARC as a function of the block size
and cache size.

the cache space utilization rate using the ARC algorithm is reduced to 57.18%,
40.36%, and 27.55%. These results show that when the block size increases from
8 KB to 64 KB, there are much more fragmented blocks in the cache. It proves
that the larger the cache block, the more severe the fragmentation, and the lower
the cache space utilization rate.

(a) LRU (b) ARC

Fig. 2. Read hit ratios of LRU and ARC as a function of the block size and cache size.

To evaluate the impact of cache space utilization on cache performance, we
further evaluate the read hit ratios using the same experimental settings as the
cache space utilization rate. Figure 2 shows the experimental results, the read
hit ratio decreases as the block size increases. For example, when the block size
is 8 KB and the cache size is 40% of the working set size, the read hit ratio using
the ARC algorithm is 28.04%. But when the block size increases to 16 KB, the
read hit ratio using the ARC algorithm is only 16.56%, and when the block size
is increased above 16 KB, the ratio continues to decrease. This is because as the
block size increases, block fragmentation becomes worse. It results in less useful
data being stored in the cache and fewer requests can be served by the cache.
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3.2 False Positives in Identifying Hot Cache Blocks

Problem Description. Existing cache management methods use access fre-
quency and access recency to identify hot/cold cache blocks, like LRU and ARC
algorithms. The main limitation of these methods is that they track access fre-
quency and access recency at a fixed-size block granularity. That is, for each
cache block, if any data content is accessed recently, the whole block is labeled
as recently accessed. They do not care about how much data is accessed in the
cache block and what data is accessed. In fact, each time a different amount of
the access data and different actual access data content have different effects on
the access popularity of the entire cache block. It is incorrect to calculate the
popularity of local data access in each block as the popularity of the entire block
access. This can lead to many false positives on identifying hot cache blocks,
especially if the cache block is large.

Fig. 3. An example of incorrectly identifying hot/cold blocks.

Figure 3 uses an extreme example to illustrate this situation. In the figure,
there are three blocks, A, B, and C, in the cache, and each block contains four
data parts. The number marked in each part represents the corresponding ref-
erence count. For blocks B and C, since their first part is frequently accessed
(reference count are 6 and 5, respectively), even if most of their data parts are
cold, they are still identified as hot blocks and promoted to the MRU position.
In addition, when using the LRU algorithm to select a block as the victim block,
although block A is a real hot block, it will be evicted from the cache first, which
will reduce the cache hit ratio.

These misidentified hot blocks will affect the cache performance for two rea-
sons. First, these misidentified hot blocks can pollute the cache space. This is
because these blocks may contain data that will never be accessed. Therefore,
storing this cold data wastes cache space. Second, these misidentified hot blocks
can affect the cache hit ratio. This is because when the cache is full, these blocks
will not be evicted to make room, but deleting other blocks that are indeed
hotter than these misidentified hot blocks, thereby hurting the cache hit ratio.
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(a) LRU (b) ARC

Fig. 4. Partial hit ratios of cache block.

Statistical Evidence. Using the same experimental setup as evaluating block
fragmentation, we evaluated false positives on identifying hot cache blocks.
Figure 4 shows the partial hit ratios of the cache block (accessing only part
of the data in the cache block). Here, we define that each request accesses less
than 50% of the cache block data as a cache block partial hit. As can be seen
from the Fig. 4, in most cases, there are a large number of partial cache block
hits in LRU and ARC. For example, when the cache size is set to 20% of the
working set size and the cache block is 16 KB, the partial hits of the cache block
using the LRU algorithm account for 43.34% of the total hits, and the partial
hits of the cache block using ARC algorithm account for 41.37% of the total
hits. When the block size is increased to 32 KB, the partial hit ratio is increased
to 63.29% and 62.58% respectively. These results indicate that in existing fixed-
size block management methods, there are many partial cache block hits, and
treating these partial cache block hits as the entire cache block hit will generate
many false positives when identifying hot cache blocks.

These observations motivate us to propose a variable-size block cache based on
fine-grained management method to support variable-sized data caching instead
of using one fixed-size cache blocks as existing block management method. In
fact, with the diversification of storage devices and data applications, the size of
read/write request units has become more and more diverse. Using cache blocks of
variable sizes can better capture data access patterns and increase cache hit ratios.
Therefore, it is necessary for storage cache to provide cache blocks of variable sizes
to support variable-size data caching. In the next section, we will describe our pro-
posed cache management method AIR-cache in detail.

4 AIR Cache Design

Existing cache management methods manage the data at a fixed-size block granu-
larity, leading to internal fragmentation problems and inability to correctly iden-
tify the hot/cold cache blocks. To address these two problems, we propose a
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variable-size block cache based on fine-grained method, called AIR cache. In this
section, we will describe in detail the three components of the AIR cache: Fine-
Grained Recorder, Multi-Granularity Writer, and Multi-Granularity Eviction.

4.1 Fine-Grained Recorder

To manage variable sized blocks to store variable size data, the AIR cache uses
Fine-Grained Recorder (FGR) to record the data access status and popularity
of small data portions within each block. Specifically, FGR divides each block
into multiple small portions and uses an array to record the access count of each
portion. The access count for each portion represents the data popularity of each
portion, which can help identify and delete the cold data with finer granularity.
The size of each small data portion can be preset or set dynamically based on
feedback of the data access characteristics.

Fig. 5. Function of FGR.

Figure 5 shows an example to illustrate the function of FGR. FGR divides
the block A into four portions and records the access count of each portion.
There are two cases in FGR. In the first case, when the block first reaches the
cache, only one bit is needed per portion to identify whether to store data. As
shown in Fig. 5, when Block A arrives, the first three portions have valid data,
and their corresponding access count is set to 1, and the last portion is not used,
so the corresponding access count is set to 0. In the second case, when the block
is accessed again, FGR records the access count. Here the FGR only increases
the access frequency number of the re-accessed data, and does not increase the
entire block as in the traditional cache management method. As shown in Fig. 5,
only the second and the third portion of the Block A are accessed again, so
only the access count of these two portions are increased from 1 to 2. Note that
block A here is a fragmented block because the fourth data portion is not used.
Next, we will show how AIR cache uses Multi-Granularity Writer to resolve this
fragmentation problem.
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4.2 Multi-Granularity Writer

Multi-Granularity Writer (MGW) is responsible for finding the appropriate cache
space to store variable-size data written. To reduce the internal fragmentation
of the cache block, the size of the cache space allocated to write data must be
close to the size of the data itself. Therefore, MGW uses the following two steps
to find and allocate cache space.

In the first step, MGW uses the access status recorded by the FGR to check
whether there are some cached blocks, whose unused portion size is close to the
incoming data size. If such a cache block exists, the MGW will directly write
data to the unused portions of the found cache block, and then update the access
record. This can help reduce internal fragmentation of cache blocks. However, if
such cache block does not exist, the MGW will switch to the second step to find
other cache block.

In the second step, MGW needs to allocate a new cache block and create a
new record to store the access status with the help of FGR. When the cache is
full, it waits for the MGE component to delete some cold data to free space. In
addition, if the written data is too large, MGW will use multiple cache blocks
to store the data; on the contrary, if the written data is too small, MGW will
still allocate the smallest size cache block provided by the AIR cache to store
it. Generally, the minimum block size is usually equal to the size of the data
portion of each block set by the FGR.

Fig. 6. A working example of MGW.

Figure 6 provides an example to illustrate how MGW works. For simplicity,
the cache here can only store 32 KB of data; each portion of the cache block is
set to 4 KB. Before new data enters the cache, it has stored four blocks, namely
Block A (8 KB size), Block B (16 KB size), Block C (4 KB size), and Block D
(4 KB size). At time T1, Data E (4 KB size) needs to enter in the cache, and
MGW performs the first step to find a cache block whose unused portion size
is close to the size of data E. Since the remaining unused space of the Block
B is 4 KB, the MGW writes the data E into the unused portion of Block B
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and updates the corresponding access status. At time T2, data F (8 KB size) is
written to the cache. At this time, the MGW cannot find a cache block with an
appropriate unused space close to the size of the data F, so the MGW needs to
perform the second step to allocate a new cache block of 8KB to store the data F.
Before allocating new blocks, the AIR cache needs to use the MGE component
to evict cold blocks Block C and Block D to make room for data F.

4.3 Multi-Granularity Eviction

Multi-Granularity Eviction (MGE) is responsible for finding and deleting cold
data to free space when the cache is full. It uses the access status recorded by the
FGR component and combines the access frequency and recency of small data
portions within each block to help identify the cold/hot data. Specifically, MGE
is composed of two parts, namely Cold Data Identification (CDI) and Cold Data
Removal Multi-Grained Removal (MGR), which will be described below. As a
side note, because MGE uses the same method to identify all hot and cold data
of all cache blocks of various sizes, when describing MGE, we did not specify the
block size and the number of data segments in each block.

Cold Data Identification. Cold Data Identification (CDI) is responsible for
identifying cold data. CDI is dedicated to identifying the cold data of the cache
block located at the LRU (last recently used) location, because in the traditional
algorithm, the block at the LRU location is considered the coldest block. Using
the block access count recorded by the FGR component, CDI takes three steps
to process each block that reaches the LRU location. Algorithm 1 shows how it
works, while Table 1 defines the symbols used in the algorithm.

Table 1. Symbols definition.

Symbol Definition

C Cache

Bi A block in cache

BL The block in the LRU position in cache

Pi A data portion in the cache block

APi The access count of Pi

Ave The average access count of all Pi in cache

λ The threshold to measure cold data portions

FPtr The starting address used to store new data

FP(Bi) Find the size of multiple consecutive and invalid portions in Bi

As a first step, CDI will reduce the number of accesses to all portions of the
block. The reduced value is equal to the average access count for all portions of
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the cache. This is because when a block reaches the LRU position, the entire
block is likely to be deleted in the traditional algorithm. Therefore, when the
block reaches the LRU position, CDI first reduces the access count of all portions
of the block by the same value to reduce its popularity.

In the second step, CDI checks the access count of each portion and identify
cold data portions in the block. For each portion, if the access count is less than
the preset cold threshold, CDI will directly identify the portion as a cold data
portion and set the access count to zero; otherwise, if the access count is not less
than the preset cold threshold, CDI will not change its access count.

In the third step, CDI moves the block based on the cold data recognition
results. There are two cases. First, if all data portions are identified as cold
data portions, or if the access count of all data portions are zero, the block
are identified as cold block and CDI will move the block to the candidate free
list. Otherwise, for the second case, if the access count of some data portions is
larger than the preset cold threshold, the entire block will be moved to the MRU
position and have a chance to remain in the cache.

Algorithm 1: The pseudocode of CDI
Input: A list of cache block in C.
Initialization: Set Bi = BL;
foreach Pi in Bi do

APi = APi - Ave;
if APi ≤ λ then

APi = 0;
Pi will be marked as a cold data portion;

if Each APi in Bi is 0 then
Bi will be marked as a cold block;
Remove Bi to the candidate free list;

else
Move Bi to the MRU position;

Multi-Grained Removal. Multi-Grained Removal (MGR) is responsible for
removing cold data with multiple granularity through CDI. MGR works when new
data is written to the cache but there is no free space in the cache. MGR focuses
on removing cold data located at the LRU position. For each block at the LRU
position, if the CDI identifies a portion of the block as a cold portion, MGR will
invalidate the data portion. When the size of the invalid portion in the block or
the cumulative size of multiple consecutive portions is not less than the size of the
newly written data, or when all portions of the entire block are invalidated and
the cumulative size of multiple cold blocks in the candidate free list is not less than
the size of the newly written data, MGR will remove these related cold portions or
cold blocks to make room for the new data. Otherwise, the MGR will continue to
check the block at the LRU position until enough space is found to store new data
written to the cache. Algorithm 2 shows how it works.
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Algorithm 2: The pseudocode of MGR
Input: The size of cache space for writing new data.
Output: FPtr
Initialization: Set Bi = BL,FPtr=NULL;
while FPtr is NULL do

foreach Pi in Bi do
if APi is cold then

Pi will be marked as a invalid data portion;

FPtr=FP(Bi);
if FPtr is not NULL then

return FPtr;

else
Find next Bi in the LRU position;

5 Experimental Evaluation

5.1 Experimental Setup

Prototype Built. We have built an AIR cache prototype in Linux, based on
block device virtualization. To evaluate the performance of the AIR cache, we
implemented it based on stack algorithm LRU and non-stack algorithm ARC,
called AIR-LRU and AIR-ARC, respectively. When using the AIR-LRU and
AIR-ARC algorithms, the MGE component of the AIR cache determines the
LRU and MRU locations based on the traditional LRU and ARC algorithms. In
addition to the AIR cache, we also built another conventional cache prototype
that manages and operates cache data with a fixed-size cache block granularity
and integrates traditional LRU and ARC algorithms as baseline methods.

Experimental Workload. We have replayed the public FIU [9] traces to eval-
uate the performance of the AIR cache. These traces were collected from a VM
hosting the departmental websites for webmail and online course management
(WebVM), a file server used by a research group (Homes), and a departmental
mail server (Mail). Table 2 shows the statistical characteristics of these traces.
In our experiments, we set the cache size to 20% to 80% of the working set size.
In addition, since the I/O request size in the FIU trace is only 4 KB, we merge
I/O requests with consecutive source addresses to generate larger I/O requests
for larger cache blocks.

Table 2. Statistical characteristics of the datasets.

Name Total I/Os(GB) Working Set(GB) Write-to-read ratio Unique Data(GB)

WebVM 54.5 2.1 3.6 23.4

Homes 67.3 5.9 31.5 44.4

Mail 1741 57.1 8.1 171.3
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Performance Metrics. We compared the AIR cache with the baseline method
on two performance metrics: hit ratio and cache space utilization rate.

Cache hit ratio is a key indicator of cache performance for cache management
methods. A cache with a higher cache hit ratio means faster access to more data
to reduce data access latency. In addition, since the size of each I/O request is
variable in our experiments, the hit ratio here is defined as the amount of hit
data divided by the amount of requested data, not the number of hits in the
cache divided by the total I/O requests. We compared the read hit ratio, write
hit ratio, and the total hit ratio of both the AIR cache and baseline methods.

Cache space utilization rate is defined as the amount of data stored in the
cache divided by the total size of the cache. Generally, if all cache blocks are
fully used, the cache space utilization rate is 1. Cache space utilization rate is less
than 1 when some fragmented blocks exist. Therefore, the cache space utilization
rate is an indicator of the severity of fragmentation within the cache block.

5.2 Performance Results

In this section, we will compare the performance results of AIR cache using
AIR-LRU and AIR-ARC algorithms and the baseline methods using traditional
LRU and ARC algorithms in terms of cache hit ratio and cache space utilization
rate. For the AIR cache, we show the experimental results when the maximum
size of used cache blocks is 8 KB, 16 KB, and 32 KB respectively. For the base-
line method, because it uses a fixed-size block granularity to manage cached
data instead of using multiple-sized cache blocks, we show the experimental
results when the block sizes are 8 KB, 16 KB, and 32 KB respectively. There-
fore, a performance comparison between the AIR cache and the baseline method
is performed only when the maximum block size of the AIR cache is equal to
the block size used by the conventional cache. In addition, in the AIR cache,
the FGR component divides each block into 4 KB sized data parts (because the
minimal size of the I/O request size 4 KB in FIU trace), and the preset threshold
is set to the average number of accesses to all data parts in the cache.

Read Hit Ratios. Figure 7 compares the read hit ratios of AIR-ARC and ARC,
AIR-LRU and LRU with WebVM, Mail and Homes traces, when the block size
is from 8 KB to 32 KB and the cache size is set to 20% to 80% of the working
set size. It can be seen from the results that for all cache settings and all three
datasets, the read hit ratios of AIR-ARC and AIR-LRU are higher than ARC
and LRU, respectively. Especially for WebVM, AIR-ARC and AIR-LRU have
much higher read hit ratios than ARC and LRU, respectively. For example, when
the blocks size is 8 KB (here the 8KB block size is the maximum cache block size
used by AIR cache and the fixed block size used by the baseline method) and
the cache size is 30%, the read hit ratios of AIR-ARC and AIR-LRU are 2.46X
and 1.54X higher than the read hit ratios of ARC and LRU respectively. The
high read hit ratios of AIR-ARC and AIR-LRU can be contributed to the AIR
cache, which can correctly identify and delete cold data, and retain the correct



AIR Cache: A Variable-Size Block Cache 171

(a) Block Size: 8KB (b) Block Size: 16KB (c) Block Size: 32KB

(A)WebVM

(d) Block Size: 8KB (e) Block Size: 16KB (f) Block Size: 32KB

(B)Homes

(g) Block Size: 8KB (h) Block Size: 16KB (i) Block Size: 32KB

(C)Mail

Fig. 7. Read hit ratios of WebVM, Homes and Mail with block sizes from 8KB to
32KB.

hot data in the cache to improve the hit ratio. In addition, by analyzing the
experimental results, the AIR cache has two other characteristics in improving
the read hit ratios.

First, as the cache size increases, the improvement in the AIR cache’s read
hit ratios becomes more pronounced compared to the baseline method. Taking
the results of the WebVM dataset as an example, when the cache size is set to
20% of the working set size and the block size is 16KB, compared with LRU and
ARC, the read hit ratios of AIR-LRU and AIR-ARC have increased by 1.22X and
1.65X respectively. When the cache size has increased to 30% of the working set
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(a) Block Size: 8KB (b) Block Size: 16KB (c) Block Size: 32KB

Fig. 8. Write hit ratios of WebVM with block sizes from 8KB to 32KB.

(a) Block Size: 8KB (b) Block Size: 16KB (c) Block Size: 32KB

Fig. 9. Overall hit ratios of WebVM with block sizes from 8KB to 32 KB.

and the block size is still 16 KB, the read hit ratios of AIR-ARC is 3.34X higher
than ARC, and when the cache size has increased to 50% of the working set size
and the block size is still 16 KB, the read hit ratios of AIR-LRU is 5.04X higher
than that of LRU. This is because, for the baseline method, the cache blocks
have worse internal fragmentation, and when the cache size becomes larger, more
cache space in the cache block is left blank due to internal fragmentation issues.
Therefore, as the cache size increases, the baseline method cannot significantly
improve the read hit ratio. However, for the AIR cache, it has much less internal
fragmentation. Therefore, when the cache size becomes larger, AIR cache can
better explore the increased cache space and store cache data more efficiently,
thereby significantly improving the read hit ratios and cache performance.

Second, when the cache size is fixed, as the block size increases (the largest
block size used by the AIR cache and the fixed block size used by the baseline
method), the advantage of the AIR cache in terms of read hit ratio becomes
more apparent. Taking WebVM as an example, when the cache size is set to
60% of the working set size and the block size is 16 KB, compared with LRU
and ARC, the read hit ratios of AIR-ARC and AIR-LRU have increased by
2.43X and 1.12X respectively. When the block size increases to 32 KB and the
cache size is still 60% of the working set size, compared with LRU and ARC, the
read hit ratios of AIR-ARC and AIR-LRU have increased by 6.97X and 1.27X
respectively. This significant improvement is because AIR cache makes full use
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of the cache space by identifying and deleting the right cold data and reducing
internal fragmentation. Unlike the AIR cache, the baseline method manages
the cache data with a fixed-sized block granularity, and a mismatch between
the size of the I/O request and the size of the cache block can cause serious
internal fragmentation issues and failure to identify the cold data. In addition,
the larger the cache block, the larger the size mismatch between the cache block
and the data request, so it is more difficult for the baseline method to explore the
cache space and effectively manage the cache data. Therefore, compared with
the baseline method, as the block size increases, AIR cache can better improve
the read hit ratios.

Write Hit Ratios and Overall Hit Ratios. Figure 8 and Fig. 9 show the
write hit ratios and overall hit ratios of the WebVM dataset using the AIR-ARC,
AIR-LRU, ARC and LRU algorithms. Due to the high similarity, the results of
Mail and Homes traces are not shown here. As can be seen from the Fig. 8, these
results show three characteristics. First, the write hit ratios of the AIR-ARC and
AIR-LRU algorithms are only slightly higher than that of the ARC and LRU
algorithms. Second, the write hit ratios produced by all replacing algorithms are
high. Third, when the cache size is increased to 30% or 40%, the write hit ratios
will reach 90%, and it will not increase as the cache size continues to increase.
These results come from two reasons. First, most write requests from WebVM
access large amounts of data. When the baseline method is used, almost all sized
blocks have no internal fragmentation, and since the size of each write request
is large and not smaller than the size of the cache block, the hot/cold data
identification can be correct. Therefore, compared to the baseline methods, the
AIR cache has a limited effect on improving the write hit ratio. Second, most
write requests from WebVM have a strong access locality. Therefore, when the
cache size is 30% or 40%, all cache replacement algorithms can produce a high
write hit ratio.

In Fig. 9, compared to LRU and ARC, the overall hit ratios of AIR-ARC and
AIR-LRU increase in the same trend as the increase of read hit ratios. The only
difference is that the improvement in overall hit ratio is not significant compared
to the increase in read hit ratio, which can be attributed to two important rea-
sons. First, in our experimental dataset, write requests are very dense, and all
cache replacement algorithms can handle them well, so the AIR cache’s improve-
ment in write hit ratio is very limited. Second, the proportion of write requests
is much higher than the proportion of read requests(see Table 2), so the con-
tribution of the read hit ratio to the overall hit ratio is much smaller than the
write hit ratio. Therefore, the AIR cache does not improve the overall hit ratio
as significantly as the read hit ratio.

Cache Space Utilization Rate. Figure 10 shows the cache space utilization
rate of AIR-ARC and ARC, AIR-LRU and LRU with WebVM, Homes and
Mail traces. Cache space utilization rate measures the internal fragmentation of
blocks stored in the cache. It can be seen from the results that the cache space
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(a) Block Size: 8KB (b) Block Size: 16KB (c) Block Size: 32KB

(A)WebVM

(d) Block Size: 8KB (e) Block Size: 16KB (f) Block Size: 32KB

(B)Homes

(g) Block Size: 8KB (h) Block Size: 16KB (i) Block Size: 32KB

(C)Mail

Fig. 10. Cache space utilization rate of WebVM, Homes and Mail with block sizes from
8 KB to 32KB.

utilization rate of AIR-ARC and AIR-LRU is higher than that of LRU and ARC
in all cases. On average, AIR-LRU and AIR-ARC outperform LRU and ARC by
1.18X and 1.15X for 8 KB blocks, 1.39X and 1.51X for 16 KB blocks, 1.65X and
2.09X for 32KB blocks, respectively. These results clearly show that AIR cache
generates much less fragmentation than the baseline methods because the data
is written to AIR cache at different granularity. In addition, the results of cache
utilization have two other characteristics. First, regardless of the AIR cache or
baseline method, the performance of ARC related algorithms is usually worse
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than that of LRU related algorithms. As can be seen from the Fig. 10, the cache
space utilization rate of AIR-ARC and ARC is lower than that of AIR-LRU
and LRU respectively. This is because in ARC, there are two lists, T1 and T2,
and the T2 list is used to capture data with high temporal locality have retained
many fragmented blocks, so the cache space utilization rate is lower. In addition,
we compared the cache space utilization rate of the blocks stored in the T1 list
and the T2 list in Fig. 11. As shown in Fig. 11, regardless of the block size and
cache size, the cache space utilization rate of the blocks in the T2 list is always
lower than the blocks in the T1 list.

(a) Block Size: 8KB (b) Block Size: 32KB

Fig. 11. Cache space utilization rate of the blocks in T1 list and the blocks in T2 list
for WebVM.

Second, although the cache space utilization rate of AIR-ARC and ARC
is lower than that of AIR-LRU and LRU respectively, the hit ratios of AIR-
ARC and ARC are higher than that of AIR-LRU and LRU respectively. This is
because, for these traces, there are a large amount of I/O scan requests, especially
scan read requests. Therefore, non-stacked ARC related algorithms that excel
at processing scan I/O request can produce higher hit ratios than LRU related
algorithms.

6 Conclusion

Existing server-side storage caching methods process all cached data by a fixed-
size block granularity. As a result, operating any part of the cache block is treated
as touching the entire cache block. This behavior results in a large amount
of cache blocks with internal fragmentation and incorrectly identifies hot/cold
cache blocks, especially when the cache block becomes large. Therefore, in this
work, we proposed AIR cache, which is a variable-size block cache based on
fine-grained management method. It consists of three components, Fine-Grained
Recorder (FGR), Multi-Granularity Writer (MGW) and Multi-Granularity Evic-
tion (MGE). FGR is dedicated to recording data popularity using fine-grained
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data parts. MGW is responsible for writing multi-granularity data to eliminate
internal fragmentation in large blocks. MGE is used to accurately identify and
evict cold cache data. Our extensive experimental results show that the AIR
cache is very effective in improving the cache hit ratio and cache space utiliza-
tion rate. Compared to the existing fixed-size block management methods driven
by real-world datasets, the AIR cache can increase the read cache hit ratio by
up to 6.97X and the cache space utilization rate by up to 3.63X.
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Abstract. Indexes are crucial for the efficient processing of database workloads
and an appropriately selected set of indexes can drastically improve query pro-
cessing performance. However, the selection of beneficial indexes is a non-trivial
problem and still challenging. Recent work in deep reinforcement learning (DRL)
may bring a new perspective on this problem. In this paper, we studied the index
selection problem in the context of reinforcement learning and proposed an end-
to-end DRL-based index selection framework. The framework poses the index
selection problem as a series of 1-step single index recommendation tasks and
can learn from data. Unlike most existing DRL-based index selection solutions
that focus on selecting single-column indexes, our framework can recommend
both single-column and multi-column indexes for the database. A set of com-
parative experiments with existing solutions was conducted to demonstrate the
effectiveness of our proposed method.

Keywords: Index selection · Deep reinforcement learning · Performance tuning

1 Introduction

Database indexes are additional data structures that can provide fast access to the desired
data and are one of the most important aspects of database physical design. Although
indexes may be beneficial, they also consume storage space, and need to be maintained,
i.e., having more indexes is not always a better choice. Thus, it is important to choose
an appropriate index configuration (i.e. a set of indexes) for the database to ensure an
overall performance improvement. And the term Index Selection Problem (ISP, also be
referred to as index tuning or index recommendation) is defined to address this problem
and still one of the most important problems in the field of database physical design and
database performance tuning.

ISP is challenging for many reasons: Firstly, ISP can be considered an optimization
problem and has already been proven to be NP-Hard and even hard to approximate [1].
In ISP, the number of possible index configurations grows exponentially along with the
size of the database schema (for example, the number of database tables and columns),
and it’s also expensive and impractical to choose an optimal index configuration by
evaluating all configuration candidates. Secondly, there are possible interactions between

© Springer Nature Switzerland AG 2021
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indexes, both positively and negatively [2]. For example, several indexes can be used
together via index intersection to answer a single query, while a single query can also be
answered using different individual indexes. Thirdly, most ISP solutions are dependent
on the optimizer’s cost estimation, but the optimizer of modern DBMS is complex,
and inaccurate cost estimation (may come from the errors of cardinality estimation and
cost model [3]) may cause performance regressions [4], i.e. the real performance of the
DBMS may degrade despite an expected improvement by the optimizer.

The importance and challenges of the ISP have interested researchers for continuous
exploration, yet existing methods all have their limitations. Most traditional automated
ISP solutions (e.g. AutoAdmin [5], DB2Advis [6], Relaxation [7]) use heuristics to
reduce configuration search space and guide the searching process of the optimal index
configuration. However, these methods often miss good configurations, since they rely
on manually-designed heuristics which are fixed and unable to learn from past experi-
ences. Recent work in deep reinforcement learning may bring a new perspective on this
problem since data-driven DRL solutions can learn a flexible strategy tailored to data
and workloads. Many researchers [8–10] have proposed their DRL-based solutions for
index recommendation, but most of them only considered single-column indexes. How-
ever, multi-column indexes like covering indexes canmake index-only accesses possible
and greatly reduce the time to fetch desirable data without table lookups. Hence it is
important to support the selection of multi-column indexes when designing and training
an agent for index selection. Although Hai Lan et al. [10] addressed the recommendation
of multi-column indexes, that paper lacks details of agent modeling and training, which
makes it hard to follow up.

In this paper, we study the ISP in the context of reinforcement learning and develop
an end-to-end DRL-based framework to recommend indexes. The main contributions of
this paper can be summarized as follows:

(1) We formulate the ISP as a Markov Decision Process and proposed an end-to-end
DRL solution, where both single-column indexes and multi-column indexes are
considered.

(2) We design workload-dependent state representations for indexes and a reward
formulation that considers the possible interactions among indexes.

(3) We conducted comparative experiments with several index selection solutions to
demonstrate the effectiveness of our proposed solution.

2 Problem Formalization

The traditional index selection problem is about finding a set of indexes for a given
workload that has the maximum benefit for the workload while considering certain
constraints, like the storage constraint or the tuning time constraint. Before we give a
formal definition of the index selection problem, we introduce terminologies used in this
paper. A database D contains a set of relations (tables) {T1,T2, . . . ,Td }, each of which
contains a set of attributes (columns) {c1, c2, . . . , cm}, and a workload W is a set of
SQL statements {q1, q2, . . . , qn}. A set of indexes {i1, i2, . . . , ik} is termed as an index
configuration I for the database, which may contain different single-column or multi-
column indexes from different tables. A set of certain constraints of ISP are denoted as
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{
b1, b2, . . . , bj

}
and the benefit of a configuration over a query (workload) GI (W ) is

defined as the reduced execution time of a query (workload) under that configuration.
We now give a formal definition of the index selection problem as follows:

Definition 1. (Index Selection Problem, ISP). Given a database D = {T1,T2, . . . ,Td }
and a workload W = {q1, q2, . . . , qn}. The aim is to find an index configuration I∗ =
{i1, i2, . . . , ik} such that I∗ = argmax

I
GI (W ) while satisfying all constraints B =

{
b1, b2, . . . , bj

}
.

3 Learning Index Selection

3.1 ISP as a DRL Problem

We formulated the ISP as an episodic reinforcement learning task, i.e. broke the agent-
environment interaction naturally into subsequences (called episodes) [11]. In each round
of interaction between the agent (index tuner) and the environment (DBMS), the agent
will take one action (recommend one index) according to current state and policy, and
the environment (DBMS)will assign a reward to the agent as an evaluation of that action.
When reaching the terminal state of an episode (e.g., getting an index configuration), an
episode ends, then the environment is reset (drop all recommended indexes, and reset the
state) and a new episode begins. This training process continues until the stop criterion
is met, e.g., the policy (a mapping from states to probabilities of selecting each possible
action [10], which tells the agent to select an index) stabilizes, and the expected return
converges. Once the training is done, the recommending of index configurations for a
new workload can be computed leveraging the policy. This process is end-to-end and
can be “in-sync” with the optimizer (since an index is only beneficial when the optimizer
uses it to answer queries), which can improve the efficiency and maintainability of the
solution.

3.2 Index Agent for Indexes

In our design, the action space of the index selection agent is consistent with the search
space of all possible beneficial indexes in the database. Since the state observed by
the agent determines the action of the agent, we include two parts of information in
our state representation: 1) the current index configuration of the database. The current
index configuration indicates the indexes that already existed in the database, since it is
meaningless for an agent to recommend existed indexes, and the action to recommend
an existed index should be discouraged. 2) the selectivity of indexes. The selectivity, or
the filter factor of an index, is a good indicator of possible future benefits since an index
with a high filter factor can filter out a large portion of undesirable records in advance
and reduce the fetching time of the desired data.

A single-column index can be identified by the only index key, which is chosen
among all columns in the database schema. In this situation, an index can be intuitively
represented as a one-hot vector, where the 1-valued slot indicates the indexed column
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(the index). Then an index configuration (denoted as Iconf ) can be represented as a 0–1
vector by adding all representations of the indexes included in the configuration.

However, a multi-column index contains plural index keys, and the order of the
index keys also matters, i.e., each permutation of the index keys represents a distinct
index. Therefore, we developed a strategy to build a one-to-one correspondence between
possible indexes and the combinatorial numbers (i.e. a combinatorial number system,
and there are already many algorithms that can do this [12]). The size of index vectors
will be the size of the number system and the rest can be handled similarly as for the
case of the single-column indexing scheme. Hence, both single-column indexes and
multi-column indexes can be encoded and considered by the index agent.

We design a selectivity matrix is designed to include the information of both the
workload and the index keys:

Seln∗m =
⎡

⎢
⎣

sel(q0, c0) · · · sel(q0, cm−1)
...

. . .
...

sel(qn−1, c0) · · · sel(qn−1, cm−1)

⎤

⎥
⎦ (1)

Seli = [
sel(qi, c0), . . . , sel(qi, cm−1)

]
1∗m, 0 ≤ i ≤ n − 1 (2)

sel
(
qi, cj

) =
{

count(cj,qi)
count(cj)

, if there′re predicates on cj in qi,

1, otherwise.
(3)

Where n is the number of queries in the workload, andm is the number of columns in the
database, the count

(
cj, qi

)
is the number of records returned if there are predicates on

the column cj in the query qi, and the count
(
cj

)
is the total number of records in the table

with column cj, so sel
(
qi, cj

)
implies the filtering effect of the index key cj for the query

qi, and Seli, Seln∗m describes the selectivity of index keys for query qi and the whole
workload respectively (the selectivity of a multi-column index is implicitly represented
in the selectivity of corresponding index keys). Now, the state S can be represented as
a concatenation of these two parts: S = Seln∗m ⊕ Iconf .

When the index agent selects an index according to the current state and current
policy, the corresponding position of the new index in Iconf will be set to 1. Then the
agent will be assigned a reward for this index and finish a round of interaction. To handle
the huge space of state and action, we use a neural network to represent the policy of
the agent, where the input to the neural network is the representation of the state and the
output is the representation of the recommended index.

3.3 Reward Design

The use of a reward signal to formalize the idea of a goal is one of the most distinctive
features of reinforcement learning, and the success of a reinforcement learning applica-
tion strongly depends on how well the reward signal accesses progress in reaching the
goal [11]. The goal of the ISP is to select a set of indexes to decrease the execution time
of the workload to the maximum, so we use the reduction of cost after the deployment
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of recommended indexes as the reward signal:

R(
Iconf

) = max

(
cost(∅)

cost
(
Iconf

) − 1, 0

)

(4)

Where cost(∅) means the cost of workload execution when there are no indexes in the
database, the cost

(
Iconf

)
means the cost of the workload after the recommended indexes

have all been deployed. The maximum function guarantees that the reward is always
non-negative in case of some run-time fluctuations.

In our design, the intermediate reward is always 0 and the reward is only computed
and assigned when an episode ends. This design is based on the following thinking:
there are possible interactions among indexes, and if a positive reward is assigned per
episode step, the reward of one step will be correlated with the future steps. Hence, it
needs careful reward shaping to avoid biasing the learning, which is rather tricky [13].

3.4 Reinforcement Learning Training

After all elements of reinforcement learning have been modeled, a reinforcement learn-
ing algorithm is needed to train the agent, then the agentwill learn to recommend indexes.
Due to the combinatorial explosion of candidate indexes, the state space is huge. There-
fore, traditional tabular reinforcement learning methods become inefficient to maintain
a large value table (or action-value table) and fill them accurately [11]. Thus, we use
DRL to address this problem, i.e., a neural network is used as an approximation function
to deal with the large search space problem. Specifically, we adopted Proximal Pol-
icy Optimization (PPO) [14] to train the index selection agent, which is a policy-based
off-the-shelf state-of-the-art DRL technique. The main advantage of PPO are (1) it can
converge fast and (2) it has reliable performance.

4 Experiments

4.1 Experimental Setup

Implementation. We have implemented our proposed index advisor in Python on an
Ubuntu machine with an Intel Xeon 6240 CPU@2.6 GHZ and 768 GB RAM. Post-
greSQL is our DBMS of choice and we used the HypoPG1 extension of PostgreSQL to
provide a similar what-if index mechanism [15] of AutoAdmin (i.e. we use cost estima-
tion of the optimizer to compute rewards in the training process, and avoid the overhead
of actual query execution and index creation). For reinforcement learning, we design
the RL environments on the top of the OpenAI Gym2 package, use TensorFlow, Ray
(RLlib) package3 to train agents.

1 https://github.com/HypoPG/hypopg.
2 https://gym.openai.com/.
3 https://github.com/ray-project/ray.

https://github.com/HypoPG/hypopg
https://gym.openai.com/
https://github.com/ray-project/ray
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Experimental Data and Workload Generation. The data of DBMS were gener-
ated with a scale factor of 1 following the standard procedure of the TPC-H
benchmark. The workload queries were randomly generated following a pattern of
SELECT tbl_x.col_y FROM . . . WHERE . . .. In the WHERE clause, predicates
can be an equality selection (e.g., l_discount = 0.01) or a range selection (e.g.,
l_quantity > 46) or a join (l_partkey = p_partkey). The target column (col_y) and
the target table (tbl_x) were randomly selected from the tables in the FROM clause. The
training and testing workloads are generated both with 20 queries.

Comparative Algorithms. We used the evaluation platform of traditional ISP algo-
rithms developed by Jan Kossmann et al. [16], which includes the implementation of
AutoAdmin [5], DB2Advis [6], Relaxation [7] (a top-down index recommendation
approaches). We measured the performance improvement of workload runtime (i.e.
improvement rate) after the deployment of recommended indexes as used in AutoAd-
min [5], since the improvement rate, as a metric, alleviates the influence of hardware on
the execution of queries to a degree.

4.2 Reinforcement Learning Training Details

We designed the policy as a multiple-layered neural network. In this neural network,
there are 3 hidden layers, each hidden layer is composed of 8 neurons with the RELU
activation function, and the activation function of the output layer is SOFTMAX. To
evaluate our RL modeling approach, we measured the convergence of RL training using
the logged statistics. We set the maximum number of indexes in a configuration to 3 in
the following experiments. The agent was trained with RLlib in 500 iterations, which
took around 2.8 h.

Figure 1 shows the changes in the episode reward during the training process, where
the middle line is the mean value of episode rewards bounded by the maximum and min-
imum value of episode rewards. We can see that, as the number of time steps increases,
the performance of the algorithm improves. The maximum value of the rewards reaches
the peak quickly, and the fluctuating minimum value of the reward indicates the contin-
uous exploration behavior of the agent. At around the 300th iteration, the mean value of
the episode reward begins to stabilize and converge.

4.3 Performance Comparative Evaluation

In this section, we describe comparative evaluation experiments between selected tradi-
tional ISP solutions and our proposed solution (denoted as PPO-MC). For those solutions
that take storage consumption as a constraint parameter, we pick their best configuration
with comparative storage consumption for comparison.

We tested our solution considering the recommendation of multi-column indexes.
As we can see from Fig. 2 and Fig. 3, PPO-MC performs best both in the improvement
rate and the algorithm runtime performance. In Fig. 4, although the storage consumption
of our solution is not the smallest, however, we argue that we trade reasonable storage
consumption for better performance.
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Fig. 1. Episode reward Fig. 2. Improvement rate

Fig. 3. Algorithm runtime Fig. 4. Storage consumption

5 Conclusions

Index selection is one important aspect of physical database design. In this paper, we
proposed an index advisor based on deep reinforcement learning, which is capable
of learning to recommend beneficial indexes under various situations. The design of
our index advisor proposal takes into account the challenges of ISP. Our solution can
recommend both single-column and multi-column and shows very promising results.

To further explore the possibilities of employing DRL to the ISP, the investigation of
a more sophisticated design of agent modeling and reward shaping is worthwhile. The
exploration of more advanced DRL techniques is also our current and future work.
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Abstract. In the past few years, the number of sensors is rapidly
increasing on the edge of the network. IoT(Internet of things) devices
play not only data producers but also data consumers. It is valuable
to deploy a distributed database on the edge of the network. However,
flash memory is the mainstream storage medium on the edge, which is
different from cloud environment. Flash memory can wear out through
repeated writes while large amount of data are written on the edge per
day. Thus, in this paper, SardineDB is presented, which is a decentralized
distributed database optimized for edge. The engine of SardineDB is Sar-
dineCore, which is a flash-optimized key-value separation storage based
on LevelDB. SardineCore has low GC (garbage collection) burden, which
can be used to low the write amplification and improve the write perfor-
mance on the edge. From evaluation results, the write performance and
random read performance of SardineDB have great advantages compared
with existing distributed databases on the edge. As a result, SardineDB
is very suitable for edge because it has high write performance, low GC
burden and low write amplification.

Keywords: IOT · Edge computing · LevelDB · Distributed database ·
Sensor · Flash memory

1 Introduction

Nowadays, IoT devices play a role of not only data producer, but also data
consumer. Some ways for data processing on the edge are presented such as fog
computing [5] and edge computing [10]. They both move data processing tasks to
the edge of the network, in which data are stored and processed on the edge. In
order to store and manage data on the edge, a new way for storage has emerged:
edge storage [9]. Edge storage is a new type of distributed storage for big data
on the edge of the network [6]. Compared to the cloud storage, edge storage
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reduces data transmission distance during the process of production, processing
and consumption. The network traffic produced on the edge will be reduced
drastically by edge storage which means network transmission delay and network
fluctuation will be reduced. Hence, the performance of applications on the edge
will be improved by edge storage. Edge storage is different from cloud storage
in terms of storage mediums, hardware performance and application scenarios.
These differences bring new challenges to existing data storage technologies.

There are already some databases designed for edge storage. The most pop-
ular open-source product for edge storage is RedisEdge. RedisEdge is a purpose-
built, multi-model database for the demanding conditions at the edge. Based
on Redis, RedisEdge provides many modules including streams, time series and
AI. In industry, Microsoft provides Azure SQL Database Edge [11], which is
a relational database system(RDBMS) optimized for IoT devices on the edge.
Almost all current databases can be split into three types according to their data
management choices on the edge: Redis-based database, B-tree-based database
and LSM-tree-based (Log-structured merge tree-based) [8] database.

However, Redis is closer to an in-memory database (IMDB), as the number
of items grows, the memory allocation of Redis is big while the size of the device’s
memory is always small on the edge. Moreover, persistence of Redis relies on Redis-
RDB, which is not steady as there is a delay before data persistence. B-tree and
LSM-tree are designed for external storage and commonly used in classic hard-disk
drivers (HDD). But the storage medium is usually flash memory [3] on the edge.
B-tree and LSM-tree lead to big write amplification which can wear out the flash
memory quickly. Therefore, in this paper we design SardineDB, a new distributed
database for data on the edge of the network. SardineDB is optimized for the stor-
age medium of edge storage and it also has high performance when processing data
on the edge. Moreover, SardineDB is generic and easily extensible, which can be
deployed in most applications on the edge.

As a database on the edge of network, SardineDB has these main features:

– Flash optimized: SardineDB is designed for flash memory such as NAND.
Thus, SardineDB has a low write amplification to decrease the life deterio-
ration of the flash memory. Moreover, SardineDB is optimized to take full
advantage of the flash memory.

– Data synchronization: SardineDB is a decentralized distributed database,
data synchronization can happen between any two nodes in the cluster of Sar-
dineDB so that all ways for data processing can work well upon SardineDB.

– IoT optimized: For data on the edge, simple key-value database is not
enough. Most data on the edge is IoT data which belongs to time series
data. Therefore, SardineDB can work as a time series database to manage
IoT data better. Moreover, in order to adapt to existing applications on the
edge, SardineDB is universality and flexible, providing many different ways
to manage data.

– High performance: Performance is most important for a database. As the
frequency of writes is much higher than the frequency of reads on the edge
of the network, SardineDB is designed as a high write performance database
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and its read performance also meets the requirement of applications on the
edge.

The rest of this paper is organized as follows. Section 2 explains architec-
ture of SardineDB. Then, the performance evaluation of SardineDB is shown in
Sect. 3. At last, we conclude the work in Sect. 4.

2 Architecture of SardineDB

Fig. 1. The architecture of SardineDB

2.1 Architecture of SardineDB

The architecture of a node of SardineDB is shown in Fig. 1. It can be seen that
a node of SardineDB is composed of these parts:

– SardineCore: SardineCore is the engine of SardineDB. It is developed based
on LevelDB. Compared to LevelDB, SardineCore reduces write amplification
by key-value separation so that it is more suitable to use in flash memory.

– SardineLib: Based on SardineCore, SardineLib is a programming library
which has richer APIs and various data structures such as hash map, sorted
set and queue.

– NIO Network Service: NIO Network Service is an independent TCP net-
work service based on NIO. It provides network interfaces by calling APIs in
SardineLib. All upper layer services are implemented based on NIO Network
Service.

– RESP Service: Based on NIO Network Service, we implement RESP [2]
protocol which is the protocol for redis client. Therefore, SardineDB can be
visited easily by redis clients and some convenient redis tools can be used in
SardineDB directly.

– Time Series Service: Time Series Service provides time series APIs so that
users can manage data in SardineDB by time series.

– Synchronization Service: Synchronization Service is used for synchronous
replication between nodes of SardineDB. Master-slave synchronization and
multi-master synchronization are supported by this service.

– Push Service: Push Service is an active pushing service developed based
on NIO Network Service. It is necessary for a database on the edge of the
network because there are many messages which should be pushed to the
cloud actively in the scenario of IoT applications.
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Fig. 2. The architecture of SardineCore

2.2 Architecture of SardineCore

To improve the lifetime of flash memory, SardineCore adopts a key-value sepa-
ration architecture. The design of SardineCore is shown in Fig. 2. SardineCore
is composed of these modules: Memtable, Immutable Memtable, Sorted String
Table(SST) files, Manifest files and the Current file, which is similar to LevelDB.
However, Log file of LevelDB is replaced by Value Logs Module in SardineCore.
The obviously differences between SardineCore and LevelDB are shown as follow:

– Log file is replaced by Value Logs Module: Value Logs Module is a
module composed of many value logs. Values of SardineCore are saved in value
logs with their keys. Every value log file is ordered by its unique ValueLogId in
Value Logs Module. In addition, similar to the log file, when the log function
is used, the value log file in the Value Logs module is also a write-ahead log
(WAL). All data written to SardineCore will be written to the value log file
in the form of key-value pairs before being written to Memtable.

– Data in Memtable, Immutable Memtable and SST files are key-
address pairs: After an item is written to Value Logs Module, the address
of the item in Value Logs Module will be sent to Memtable with its key.
Key-address pairs will be sorted in Memtable. Once the size of the Memtable
reaches the threshold, the Memtable will be transferred to the Immutable
Memtable. Then, the Immutable Memtable will be transferred to a SST files
which is saved in external storage.

– Content of Manifest file is different between SardineCore and Lev-
elDB: Compared to LevelDB, the VersionEdit of SardineCore saves three
additional parameters: The first parameter is CurrentValueLog, which is used
to identify current value log file. The second parameter is LatestAddress,
which shows the address of latest item in external storage. The last parame-
ter is LogInfo, which is a table and is used to control Garbage Collection(GC).
For each item of LogInfo, the key is ValueLogId, the value is composed of two
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integer: GarbageNumber and GCProgress. GarbageNumber is the number of
items which can be removed in the value log file. GCProgress is the number
of items which has been scanned in the value log file.

When writing an item, key-value pair is written to the current value log in
Value Logs Module. Then, SardineCore gets three messages from the Value Logs
Module: the id of current value log, the position of the item in current value
log and the size of the item in current value log. Next, SardineCore generates
an address of the item by combining these messages. Next, key-address pair is
written to Memtable. When the size of Memtable reaches the threshold, the
full Memtable will be transferred to the Immutable Memtable. Any data in
Immutable Memtable cannot be edited again. Finally, the Immutable Memtable
will be saved in the external storage as a SST file. In Value Logs Module, the
maximum size of a value log is fixed which is configured by users. Once the size
of current value log reaches the maximum size, it will be replaced by a new value
log. The old value log will not be deleted until the GC condition is met. There
are many advantages of SardineCore’s GC on the edge of the network:

– GC is triggered by the number of removed items. SardineCore does not scan
the whole database, which lows the impact of GC, the probability of per-
formance fluctuation is reduced. The performance overhead of GC can be
ignored in SardineCore.

– The progress of GC is maintained by VersionEdit and Manifest files, which
will not effect LSM-tree. The unnecessary write amplification is avoided.

– In most realistic scenarios on the edge, data which should be removed is often
centralized in a part of records, GC of SardineCore is very effective in this
scenario as only one or several value logs are impacted by GC.

3 Experiments

3.1 Experimental Setup

All experiments happen in NanoPC-T4 [1]. NanoPC-T4 is a type of RK3399
mainboard. To emulate scenes of most devices on the edge, memory for testing
is limited to 1 GB and all data are saved in external 32 GB TF card, which is a
commonly storage medium on the edge. All program run in docker [7] container
to ensure the consistency of environment in tests.

To show the performance of this platform clearly, we test read/write perfor-
mance of this platform by 30000 data blocks whose size is 8 KB. The speed of
write is about 13.7 MB/S and the speed of read is about 60.2 MB/s. These data
can be a contrast for performance of databases.
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3.2 Performance of SardineCore

SardineCore is a standalone static library so we evaluate the performance of
SardineCore compared with LevelDB. The benchmark tool provided by LevelDB
is used in this test. Random read/write and sequential read/write are tested. The
result is shown in Table 1.

Table 1. Performance of SardineCore and LevelDB

Kernel Evaluation type

Random write
(MB/s)

Sequential write
(MB/s)

Random read
(MB/s)

Sequential read
(MB/s)

LevelDB 2.1 7.5 7.8 247.2

SardineCore 7.8 12.8 9.1 47.6

From the result, it can be known that SardineCore has advantages in ran-
dom write, sequential write and sequential read compared to LevelDB. This
result meets our expectations. Benefited by the reducing of write amplification,
the random write performance of SardineCore is much higher than LevelDB.
Moreover, the sequential write performance of SardineCore is very high and it is
close to the write performance of hardware platform. For random reads, the per-
formance of SardineCore has a little advantage compared with LevelDB because
each level of LSM-tree can accommodate more items of SardineCore, the depth
of SardineCore is smaller than LevelDB. In addition, items of SardineCore is
smaller compared with LevelDB, thus Memtable of SardineCore can save more
items, which lows the read amplification of external storage. The sequential read
performance of SardineCore is lower than LevelDB because of its sequential read
amplification. It is acceptable as the frequency of writes is higher than reads on
the edge.

3.3 Performance of SardineDB

To evaluate the performance of SardineDB, we compare its performance with
MySQL and Redis using YCSB (Yahoo! Cloud Serving Benchmark) [4] at the
IoT device. YCSB is an open source standard benchmark tool for almost all
mainstream RDBMS and NoSQL. In this test, SardineDB works in RESP mode.
Considering the realistic scene of data on the edge, Sizes of test cases are 0.5 KB,
1 KB, 4 KB, 16 KB and 64 KB. Table 2 summarizes performance evaluation result
of SardineDB.

From the results of evaluation, the write performance of SardineDB and
Redis is totally higher than MySQL on the edge. Moreover, SardineDB has a
little advantage compared with Redis because of its low write amplification.

For random reads, as the memory is small, SardineDB still has best per-
formance because more items of SardineDB can be held in the memory. The
random read speed of SardineDB is about two times of MySQL.
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Table 2. Performance evaluation result of SardineDB

Evaluation type Database Test cases

0.5KB 1KB 4KB 16KB 64KB

Random write (KB/s) MySQL 8.09 15.72 51.68 113.12 252.16

Redis 74.11 158.96 594.6 1481.92 4271.36

SardineDB 107.76 216.21 833.6 2333.76 5142.4

Random read (KB/s) MySQL 89.78 165.32 497.16 1908.8 4049.28

Redis 156.895 295.56 855.16 2600.32 6409.6

SardineDB 244.725 499.92 1696 3870.4 7244.16

Sequential read (KB/s) MySQL 3745 7870 14280 25760 46080

Redis 455 670 1680 7520 23680

SardineDB 505 990 2360 8000 15360

For sequential read performance, RDBMS has a natural advantage because
traditional RDBMS is optimized for sequential read performance. Thus, com-
pared with SardineDB and Redis, MySQL has a very high sequential read per-
formance. However, as write performance of RDBMS is less than satisfactory
on the edge, it is also meaningful to pay attention to Redis and SardineDB
although their sequential read performance is not as high as MySQL. Both Sar-
dineDB and Redis are NoSQL databases, the sequential read performance of
SardineCore and Redis are very close. When test cases are smaller, the sequen-
tial read performance of SardineDB is better. Considering most data are small
on the edge, SardineDB is more suitable for data on the edge. As the sequential
read performance of Redis is acceptable on the edge. It can be inferred that the
sequential read performance of SardineDB is also enough for applications on the
edge.

4 Conclusion

Nowadays, data are rapidly increasing on the edge of the network. A database
optimized for the edge is very valuable. In this paper, SardineDB is designed
as a decentralized distributed database for data on the edge and its engine
SardineCore is a low GC burden key-value separation storage optimized for
flash memory based on LevelDB. Compared with LevelDB, SardineCore lows
the write amplification and improves the write performance so that SardineDB
is more suitable for devices and scenes on the edge. Moreover, SardineDB has
higher write performance compared with many currently popular databases on
the edge and various different interfaces are supported by SardineDB so that
data can be managed more conveniently on the edge. Because the deployment
of SardineDB’s production environment is more difficult than traditional cloud
services, we hope to develop a unified publishing platform for edge networks in
the future, so that we can manage, maintain, and update edge applications like
SardineDB in a unified manner.
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Abstract. Graphs have been prevalently used to represent complex
data, such as social networks, citation networks and biological protein
interaction networks. The subgraph matching problem has wide applica-
tions in the graph data computing area. Recently, many parallel matching
algorithms have been proposed to speed up subgraph matching queries,
among which the filter-join framework is attracting increasingly atten-
tions in recent years. Existing filtering strategies are able to compress
candidate vertex sets to a certain size. However, quite a few invalid ver-
tices are still left, leading to unnecessary computation in later joining
phases. We observed that the shortest distance between vertices can act
as an important condition to further refine the candidate set. In this
paper, we propose a method of shortest distance estimation based on
the observation and design a new method based on distance coding. By
this means we improve the efficiency of subgraph matching. The exper-
imental results suggests that our method is more efficient and scalable
than the state-of-the-art method.

Keywords: Subgraph matching · GPU · Parallel computing · Shortest
diatance

1 Introduction

Graph is a powerful data structure that can depict relationships concisely and
powerfully. Graph database has been widely used as an important tool for model-
ing and querying complex graph data in many applications, e.g., social network,
semantic web and biological network. Finding all matching or embedding prob-
lems of query graph in large data graph has been widely used in various practical
applications, such as semantic query, program analysis and compound search.
To speed up this process, a number of algorithms have been proposed [1,3,5],
most of which greatly improve the efficiency of subgraph matching.

We observe that there is a problem in the existing “filter-join” framework:
when selecting candidate sets for query graph vertices in the filtering phase, the
positional relationship between vertices is not considered. Consider the query
graph Q and data graph G in Fig. 1. Whether we choose v2 or v7 as the mapping
vertex of u1, v13 cannot be a vertex in the matching result. This is because
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the length of the shortest path from v13 to v2 and v7 is 4 (the edge weights
are all considered as 1), while the upper limit of the shortest path from u1 to
other vertices of Q is 1. However, the existing filtering methods can not filter out
vertices like v13. Based on the above observation, we propose an efficient GPU
subgraph matching algorithm DLSM based on edge-oriented join strategy. We
use a “filter-join” framework that is more suitable for GPU.
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Fig. 1. An example of Data graph G and Query graph Q

2 Distance Label Based Subgraph Matching (DLSM)

2.1 Problem Definition

In this paper we study undirected graphs, where each vertex is labeled and each
edge is unlabeled. We use G = {V,E,L, Lv} to denote graph G, where V is the
set of all vertices in the graph, E is the set of edges, L is the set of vertex labels,
and Lv is the label function that maps each vertex in V set to the label in L.

Definition 1 (Subgraph Isomorphism). Given a query graph Q = {V,E,
L, Lv} and a data graph G = {V ′, E′, L′, L′

v}, and |Q| ≤ |G|. Subgraph isomor-
phism means finding an injective function H: V (Q) → V (G), which maps each
vertex of Q to a unique vertex of G, thus satisfying the following conditions: 1)
∀(u, v) ∈ E, (H(u),H(v)) ∈ E′; 2) item Lv(u) = Lv′(H(u)), Lv(v) = Lv′(H(v)).

Given a query graph Q = {V,E,L, Lv} and a data graph G =
{V ′, E′, L′, L′

v}, and |Q| ≤ |G|. The task of subgraph matching is to find
all subgraphs isomorphic to Q in G. For example, Fig. 1 (a) and Fig. 1 (b) are
given data graph G and query graph Q respectively, then all results on matching
with {u1, u2, u3} are: {v2, v1, v5}, {v2, v3, v5}, {v2, v4, v5} and {v7, v11, v5}.

Definition 2 (Shortest Distance). Given the vertices va and vb in a connected
graph M, we define the shortest distance between va and vb as SD(M,Va, Vb).
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2.2 Distance Label Based Filtering

Since a graph is a metric space, the shortest distance between any three ver-
tices on a graph satisfies the triangular inequality. In other words, for any three
dissimilar vertices vx, vy, vz in the data graph G, the following conditions are
satisfied:

|SD(G, vx, vz) − SD(G, vy, vz)| ≤ SD(G, vx, vy) (1)

We can easily extend the above inequality to multiple vertices. For example,
if we extend vz to n vertices vz1 , vz2 ...vzn , we can get the following results:

max
1≤i≤n

|SD(G, vx, vzi) − SD(G, vy, vzi)| ≤ SD(G, vx, vy) (2)

Theorem 1. If data graph G has subgraphs isomorphic to query graph Q, then
for any two vertices ux, uy in Q, their corresponding vertices vx = H (ux), vy =
H (uy) in G satisfy the following conditions:

SD(G, vx, vy) ≤ ϕ(ux) ∧ SD(G, vx, vy) ≤ ϕ(uy) (3)

Where ϕ(u) is the height of the breadth first spanning tree of vertex u (excluding
the root node).

Proof. The above two inequalities are equivalent. We only need to prove one
and then use symmetry to deduce the other. Here we give the proof of the first
inequality: we know that ϕ(ux) is the breadth first spanning tree height of the
query graph vertex ux (excluding the root node). In other words, ϕ(ux) can be
regarded as the maximum of the shortest path from ux to all other vertices of
the query graph Q, that is, SD (G, ux, uy) ≤ ϕ (ux). Since SD (G, vx, vy) ≤ SD
(G, ux, uy), it can be inferred that the above Theorem1 holds.

Theorem 2. If data graph G has subgraphs isomorphic to query graph Q, then
for any vertex ux, uy, uz in Q and their corresponding vertices vx, vy, vz in G,
there must be:

|SD(G, vx, vz) − SD(G, vy, vz)| ≤ ϕ(ux) (4)

Proof. Theorem 2 can be derived from inequality (1) and Theorem 1, as well as
the transitivity of inequality.

Similarly, we can extend it to multiple vertices just like Theorem1. For exam-
ple, if we extend vz to n vertices vz1 , vz2 ...vzn , we can get the following results:

max
1≤i≤n

|SD(G, vx, vz1) − SD(G, vy, vz1)| ≤ ϕ(ux) (5)
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Fig. 2. Distance code of Data graph G

Constructing Distance Coding. From inequality (5), we can know that the
distance relationship between the vertices in the data graph and the height of the
breadth first traversal spanning tree of the vertices in the query graph is unequal.
The following is the construction method of distance coding in preprocessing.

(1) In the data graph G, any vertex v1 with the smallest degree is found as the
first fixed vertex;

(2) In the process of traversal, the distance from each vertex to v1 is filled in
the first column of the coding table. At the end of traversal, any vertex v2
which is farthest from v1 is selected as the second fixed vertex;

(3) In the same analogy, the next step n starts with vn for breadth first traversal.
In the traversal process, the distance from each vertex to vn is filled in the
nth column of the coding table. At the end of traversal, the vertex vn+1

with the largest sum of distances from any vertex to the first n vertices is
selected as the (n + 1)th fixed vertex and iterated in turn.

Figure 2 shows the coding situation when n = 4. We find that the good
filtering effect can be achieved when n = 4.

3 DLSM Overview

The framework of DLSM includes the filtering phase and joining phase. Our
solution follows the GPU friendly “filter-join” strategy. In the filtering phase, we
construct the candidate vertex set of V (Q); in the joining phase, we transform
the candidate vertex set of the query graph into the candidate edge set, which
will be connected according to the constraint of subgraph isomorphism (Fig. 3).

The overhead of parallel joining is closely related to the effect of candidate
set filtering in the previous phase. We establish candidate vertex set C (u) for
each query vertex u in query graph Q. In this work, we propose a distance based
approach to achieve efficient filtering and pruning. We design a four bit distance
code for each vertex in G, which is used to estimate the distance between any
two vertices in the query graph. The specific coding and usage will be given in
the fifth chapter. The candidate set of all query vertices can be found through
the filtering phase. In Fig. 1, the candidate sets are C(u1) = {v2, v7}, C(u2) =
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{v1, v3, v4, v11}, and C(u3) = {v5}. Because of the edge-oriented join strategy,
after the candidate vertex set is determined, the edges should be checked accord-
ing to the constraint conditions and converted to the candidate edge set C (E) of
each query edge E. We find the candidate set for each edge of the query graph.
The candidate set of edges (u1, u2) is {(v2, v1), (v2, v3), (v2, v4), (v7, v11)}, and the
candidate set of edges (u1, u3) is {(v2, v5), (v7, v5)}. Finally, all the final match-
ing solutions {v1, v2, v5}, {v3, v2, v5}, {v4, v2, v5} and {v11, v7, v5} are obtained
by joining the candidate sets of query graph edges.

4 Experimental Results

In this section, we will evaluate our method (DLSM) by comparing it with the
state-of-the-art subgraph matching algorithms. We compare our method with
the advanced algorithm GpSM [3] in the “filter-join” framework.

4.1 Experimental Setup

We perform the experiments on a computer with Intel Core i5-8250u CPU
(1.66GHz × 8), NVIDIA geforce MX150 GPU (6 GB), 8 GB RAM, Ubuntu 16.04
and CUDA 10.2 toolkit. The code is written by G++ 8.1.0, and all the algorithms
are implemented by C++.

Synthetic Data Sets. We use the RMAT model [2] to generate a synthetic
dataset, and the graph generated by this model follows a power-law distribution.
To match the computing power of the device, we set |V (Q)| from 4 to 32 and
|V (G)| from 1,000 to 10,000. The total number of label sets is set to 300, and
then a label is randomly selected from the label set and assigned to each vertex.
Our experiment changes |V (Q)| and |V (G)| to test the performance of DLSM
when other variables are constant.
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Real World Data Sets. A total of four real-world datasets were selected,
include Yeast, Human, HPRD and WordNet. They are all graphs with vertex
labels. Among them, the smallest is Yeast, which has 3,112 vertices and 12,519
edges, and the total number of label is 71. The largest is WordNet, which has
76,853 vertices and 120,399 edges, with a total number of 5 labels.

4.2 Results on Synthetic and Real World Datasets

Fig. 4. Experiment result on synthetic dataset (candidate set size)

Fig. 5. Experiment result on Human dataset

In the experiment of changing |V (G)| on the synthetic dataset, Fig. 4 shows
that the performance of DLSM is significantly better than that of GpSM. Let’s
recall the distance coding in chapter two, the global location information filter-
ing combination is more powerful than GpSM. Therefore, the filtration time of
DLSM is better than that of GpSM. In the real-world data experiment, Fig. 5
shows the experimental results on the human dataset. The selected evaluation
indexes are the total number of vertices and the total time (filter + join) of the
candidate set. DLSM is still better than GpSM in the total number of candidate
vertices, which is consistent with the results of the composite dataset.
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5 Related Work

The subgraph matching problem has been widely studied in recent year. [4]
designs a distributed algorithm based on recursive backtracking framework. Lai
et al. GpSM [3] works on GPU, and stands out among many algorithms through
breadth first search and edge-oriented join. GSI [5] proposes the improvement
in this idea, which changes the edge-oriented join into the vertex-oriented join,
so as to solve the problem of memory pre allocation.

6 Conclusion

This paper proposes a filtering method based on distance label coding to opti-
mize the sub graph matching problem based on the “filter-join” framework. We
call this method DLSM. The method can achieve fast subgraph matching query
by virtue of the high efficiency parallelism of graphics processor. DLSM consid-
ers global and local location information in the filtering phase, and achieves a
stronger filtering effect. The experimental results on a large number of synthetic
and real data sets show that the method is effective. In the future, we will further
solve some limitations of DLSM, such as how to deal with the non connected
graph data and try to adopt vertex-orient join strategy in the joining phase.
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Abstract. Frequent pattern mining (FPM) on a single large graph has
been receiving increasing attention since it is crucial to applications in a
variety of domains including e.g., social network analysis. The FPM prob-
lem is defined as finding all the subgraphs (a.k.a. patterns) that appear fre-
quently in a large graph according to a user-defined frequency threshold. In
recent years, a host of techniques have been developed, while most of them
suffers from high computational cost and inconvenient result inspection.
To tackle the issues, in this paper, we propose an approach to mining top-k
patterns from a single graph G under the distributed scenario. We formal-
ize the distributed top-k pattern mining problem by incorporating viable
support and interestingness metrics. We then develop a parallel algorithm,
that preserves early termination property, to efficiently discover top-k pat-
terns. Using real-life and synthetic graphs, we experimentally verify that
our algorithm is rather effective and outperforms traditional counterparts
in both efficiency and scalability.

1 Introduction

Frequent pattern mining, which is to find subgraphs whose appearances exceed a
user defined threshold, has been at the core of data mining research for a period.
Existing work considers the problem under two different settings: transactional-
based and single-graph-based. In recent years, more attention has been paid to the
latter setting, as it plays a crucial role in a variety of applications such as bioinfor-
matics, cheminformatics, web analysis, social network analysis, etc. Most of prior
methods follow the combinatorial pattern enumeration paradigm. In real world
applications such as social network analysis, the complete enumeration of patterns
is practically infeasible, as the mining results are explosive in size [18,31].

Indeed, it is often unnecessary to enumerate all the patterns. Consider a
frequent pattern Q, all its subgraphs must be frequent as well. If Q is returned,
why do we need to identify its sub-patterns? Moreover, users are often only
interested in a few typical patterns, instead of the overwhelmed pattern set [32].

Another challenge for the FPM problem lies in that large graphs are often
distributive stored, which hinders the application of centralized solutions and
c© Springer Nature Switzerland AG 2021
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Fig. 1. A distributed social graph G & a set of patterns along with their matches

calls for distributed techniques. Indeed, under the distributed scenario, costly
mining computation may benefit from parallel computation.

These highlight the need for distributed top-k pattern mining: given a dis-
tributed graph G, a support threshold θ and an integer k, it is to find k pat-
terns, that not only satisfy support constraint but also are most interesting to
the users. Furthermore, if an algorithm for the problem preserves the early ter-
mination property, i.e., it discovers top-k patterns without identifying the entire
pattern set, then we do not have to pay the price of costly pattern mining.

Example 1. A fraction of a social graph G is shown in Fig. 1 (a), where each
node denotes a person with name and job title (e.g., project manager (PM),
database administrator (DBA), programmer (PRG), business analyst (BA) and soft-
ware tester (ST)); and each edge indicates friendship, e.g., (Bob, Mat) indicates
that Bob and Mat are friends. As is shown, G is distributively stored at sites S1,
S2 and S3, respectively. To identify frequent patterns, centralized approaches
no longer work, e.g., one match G33 of the pattern Q3 (shown in Fig. 1 (b)),
that crosses S2 and S3 can not be identified, thus the support of Q3 may not be
correctly computed. Moreover, together with Q3, Q1 and Q2 (as sub-patterns of
Q3) are considered as redundant patterns, and unworthy to pay extra cost for
identification and inspection. ��

This example calls for techniques for distributed top-k pattern mining. To
tackle the issue, several questions have to be answered. (1) How to efficiently
perform frequent pattern mining in a distributed scenario? (2) How to develop
effective method such that mining computation can terminate as soon as k “best”
patterns have been identified? (3) What metric can be easily used to measure
goodness of a pattern?

Contributions. The paper investigates the distributed top-k pattern mining
problem and provides an effective approach for it.

(1) We introduce viable support and interestingness metrics to measure pat-
terns. Based on the metrics, we formalize the distributed top-k pattern mining
(TopKPM) problem (Sect. 2).

(2) We investigate the TopKPM problem and develop a parallel algorithm,
that is based on partial evaluation for it (Sect. 3). The algorithm has desirable
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performances: its computational cost is influenced by a factor n (number of pat-
tern extensions), that is often small in practice and it preserves early termination
property.

(3) Using real-life and synthetic graphs, we experimentally verify the per-
formance of our algorithms (Sect. 4). We find the following. (a) Our mining
algorithm scales well with the increase of processors (n): they are on average
1.94, 2.14 and 2.22 times faster than a counterpart on three real-world social
networks, when n increases from 4 to 20. (b) Our algorithm works reasonably
well on large graphs. For example, on a graph with 4 million nodes and 53.5
million edges, our algorithm spends less than 219 s to discover frequent patterns
using 20 processors.

Related Work. The problem of FPM on single large graphs has been well
studied and a host of techniques have been proposed. We next review them as
follows.

Centralized Techniques. Typical centralized FPM approaches can be classified
into two categorizes, i.e., [5,12,21] for static graphs and [4,24] for evolving
graphs. (I) On static graphs, a novel approach GRAMI is first introduced by [12].
GRAMI applies a minimum-image-based support metric, that preserves anti-
monotonic property and models FPM problem as a constraint satisfaction prob-
lem. To address the issue on weighted graphs, [5,21] proposed approaches to
mining weighted frequent subgraphs, on edge-weighted single large graphs. (II)
Over evolving graphs, [24] proposed an algorithm StreamFSM to continuously
discover frequent patterns. StreamFSM applies a strategy to cope with areas
with updates and supports batch updates only. [4] introduced another dynamic
algorithm IncGM+, which separates the input graph into frequent and infrequent
updated subgraphs and prunes the update area by adjusting the boundary sub-
graphs named “fringe”. This approach keeps small memory overhead.

Distributed Techniques. In recent years, distributed FPM techniques over single
large graphs are intensively studied. Typical methods are listed as follows. [26]
proposed a parallel subgraph listing framework PSgL, which deals with sub-
graph listing in a divide-and-conquer fashion, thereby avoiding the costly join
operation. Another distributed platform Arabesque [28] employs a high-level
filter-process model to facilitate mining computation. DISTGRAPH [27] uses a
set of optimizations and efficient collective communication operations to min-
imize total amount of messages shipped among different sites. [16] presents a
distributed framework with expressive graph API to effectively reduce mem-
ory overhead and improve system performance. [3] proposed a scalable sys-
tem ScaleMine. The system leverages the approximate and exact phases to
achieve better load balance and more efficient evaluation for candidate patterns.
Gemini [33] is another distributed and synchronous graph processing framework.
It uses a low-overhead edge-cut partitioning strategy to distribute graph data,
and applies a co-scheduling mechanism to alleviate the computing bottleneck.
Extended from [16], G-Miner [8] provides an expressive API as well as a novel
task-pipeline that removes the synchronization barrier and hides the overheads
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of network and disk I/O and achieves high performance. Similar to ours, [22]
introduced an approach to mining the top-k uncertain frequent patterns from
uncertain databases. This approach combines the mining and ranking phases as
a whole and proposes effective threshold raising strategies to enhance the min-
ing time and reduce the memory usage. [6] studied approximate k-vertex fre-
quent pattern mining on a dynamic graph with high probability in a given time.
PrefixFPM framework [30] fully utilizes the CPU cores in a multicore machine
and adopts the prefix projection approach pioneered by PrefixSpan to achieve
high performance. There also exist a host of techniques [7,11,20] developed on
MapReduce. [7] introduced FSM-H, a novel iterative MapReduce-based frequent
subgraph mining algorithm. Along the similar line, [11] introduces MR-SimLab,
a scalable approach for representative subgraph selection based on MapReduce.
In particular, MR-SimLab takes advantage of the similarity between node labels
to support approximate isomorphism checking. [20] describes Pegasus, a graph
mining system on top of MapReduce with the key component GIM-V.

Our work differs with [22,27] in the following: we leverage both partial evalu-
ation and asynchronous message passing to identify matches of candidate pattern
in distributive environment, instead of level-wise evaluation; moreover frequent
patterns are our intermediate results.

2 Graphs, Patterns and Pattern Mining

In this section, we first review graphs, patterns, graph pattern matching; we
then formalize the pattern mining problem.

2.1 Graph Pattern Matching

Graph. A data graph (or simply graph) is defined as G = (V,E,L), where (1) V
is a set of nodes; (2) E ⊆ V × V is a set of undirected edges ; and (3) each node
v in V carries a tuple L(v) = (A1 = a1, · · · , An = an), where Ai = ai(i ∈ [1, n])
represents that the node v has a value ai for the attribute Ai, and is denoted as
v.Ai = ai, e.g., v.name = “Bill”, v.job title = “PM”.

A graph G′ = (V ′, E′, L′) is a subgraph of G = (V,E,L), denoted by G′ ⊆ G,
if V ′ ⊆ V , E′ ⊆ E, and moreover, for each v ∈ V ′, L′(v) = L(v).

Distributed Graph. In practice a big graph G is often fragmented into a collec-
tion of subgraphs and stored in different sites [19,25]. A fragmentation F of
a graph G = (V,E,L) is (F1, . . . , Fn), where each fragment Fi is specified by
(Vi ∪ Fi.O, Ei, Li) such that (a) (V1, . . . , Vn) is a partition of V , (b) Fi.O is
the set of nodes v′ such that there exists an edge e = (v, v′) or e = (v′, v) in E,
v ∈ Vi and node v′ is in another fragment; we refer to v′ as a virtual node, e as
a crossing edge and cEi as the set of crossing edges; and (c) (Vi ∪ Fi.O,Ei, Li)
is a subgraph of G induced by Vi ∪ Fi.O.

For the fragmentation, we denote Vf =
⋃

i∈[1,n] Fi.O as the set of all virtual
nodes in F , Ef as the set of all crossing edges in F , and |F| as the number of
fragments in F .
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Pattern. A pattern Q is defined as a graph (Vp, Ep, fv), where Vp and Ep are
the set of nodes and edges, respectively; for each u in Vp, it is associated with
a predicate fv(u) defined as a conjunction of atomic formulas of the form of
‘A = a’ such that A denotes an attribute of the node u and a is a value of A.
Intuitively, fv(u) specifies search conditions imposed by u.

A pattern Q′ = (V ′
p , E

′
p, f

′
v) is subsumed by another pattern Q = (Vp, Ep, fv),

denoted by Q′ � Q, if (V ′
p , E

′
p) is a subgraph of (Vp, Ep), and function f ′

v is a
restriction of fv. Then, Q′ is referred to a sub-pattern of Q if Q′ � Q.

Graph Pattern Matching. Consider graph G and pattern Q, a node v in G
satisfies the search conditions of a pattern node u in Q, denoted as v ∼ u, if for
each atomic formula ‘A = a’ in fv(u), there exists an attribute A in L(v) such
that v.A = a.

We adopt subgraph isomorphism [10] as the matching semantic. A match of
pattern Q in graph G is a bijective function ρ from the nodes of Q to the nodes
of a subgraph G, such that (1) for each node u ∈ Vp, ρ(u) ∼ u, and (2) (u, u′) is
an edge in Q if and only if (ρ(u), ρ(u′)) is an edge in G. When an isomorphism ρ
from pattern Q to a subgraph Gs of G exists, we say G matches Q, and denote
Gs as a match of Q in G. Abusing notations, we say v in Gs as a match of u in
Q, when ρ(u) = v.

We denote by M(Q,G) the set of matches Gs of Q in G. Then, for each node
u in Ep, we derive a set {v|v ∈ ρ(Q), ρ(Q) ∈ M(Q,G), v = ρ(u)} from match set
M(Q,G), and denote it by img(u). Intuitively, img(u) contains a set of distinct
nodes v in G as matches of u in Q.

Example 2. Recall graph G in Fig. 1 (a). It is distributed into three sites i.e., S1,
S2 and S3. Taking S1 as example, it maintains not only local nodes and edges, but
also a crossing edge (Mat, Walt) that connects a virtual node Walt. Given patterns
Q1, Q2 and Qs in Fig. 1 (b), one may verify that Q1, Q2 are subsumed by Q3, and
moreover, M(Q1, G) = {G11, G12, G13, G14}, M(Q2, G) = {G21, G22, G23, G24}
and M(Q3, G) = {G31, G32, G33}.

DFS Tree. Given a pattern Q, its DFS tree TQ can be built via a depth-first
search in Q from a node u. Then, edges that are in TQ are referred to as forward
edges and the remaining edges in Q are denoted as backward edges.

Thus, the forward extension on a pattern Q essentially introduces a new edge
from one node in Q; while the backward extension includes a new edge from two
existing nodes. For example, a pattern Qc with edge set {(BA, DBA), (DBA, PRG)}
can be generated via forward extension from a pattern with edge (BA, DBA); with
Qc, another pattern Q1 (shown in Fig. 1(b)) is generated via backward extension.

We will use the following notations. (1) The size |G| of G (resp. |Q| of Q)
is |V | + |E| (resp. |Vp| + |Ep|), the total number of nodes and edges in G (resp.
Q). (2) A graph G (resp. pattern Q) is a complete graph (resp. pattern), if there
exists an edge for each pair of nodes in it. (3) In a directed tree T , the height
of a node v is the length of the longest downward path to a leaf node from v.
Then the height h of T is the largest height among all tree nodes.
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2.2 Frequent Pattern Mining

We start from the support metric, followed by the frequent pattern mining
problem.

Support. The support of a pattern Q in a single graph G, denoted by sup(Q,G),
indicates the appearance frequency of Q in G. Analogous to the association rules
for itemsets, the support metric for patterns should be anti-monotonic, i.e., for
patterns Q and Q′, if Q′ � Q, then sup(Q′, G) ≥ sup(Q,G) for any G, to facilitate
search space pruning.

Several pattern-based anti-monotonic support metrics exist, e.g., minimum
image (mni) [12], harmful overlap [14] and maximum independent sets [17]. In
this work, mni is used, since it can be more efficiently calculated.

sup(Q,G) = min{|img(u)| | u ∈ Vp}, (1)

where img(u) is the image of pattern node u in G. It can be easily verified that
this support measure is anti-monotonic.

Example 3. Recall graph G, pattern Q1 and its matches in Fig. 1. It can be easily
verified that for Q1, img(DBA) = {Mat, Fred, Roy}, img(BA) = {Jean, Nancy, Amy},
img(PRG) = {Dan, Bill, Tim}, which leads to sup(Q1, G) = 3 rather than 4.

Problem. The frequent pattern mining (FPM) problem can be stated as follows.
Given a graph G and support threshold θ, it is to discover a set S of frequent
patterns Q in G such that sup(Q,G) ≥ θ for any Q in S.

In practice, FPM problem faces three big challenges: (1) the underlying
graphs G are typically very large, moreover the FPM problem is intractable,
it is hence very costly to identify all the frequent patterns on such large graphs;
(2) big graphs are often distributively stored, thus centralized approaches for
the FPM problem no longer work; and (3) it is not easy to set a viable sup-
port threshold θ, as a large (resp. small) θ will lead to too few (resp. many)
patterns [31]. In light of these, we study the distributed top-k pattern mining
(TopKPM) problem.

2.3 Problem Formalization

We introduce the interestingness metric, along with the formalization of the
problem.

Interestingness. As observed by [31], on a large graph, there may exist exces-
sive frequent patterns, which brings trouble to the investigation and applica-
tion, in the meanwhile, people are more interested in those patterns which are
top ranked. This calls for a metric to measure the interestingness of a pattern.
Indeed, a host of interestingness metrics have been introduced. For example, a
formalization of subjective interestingness was first introduced by [29], followed
by several similar counterparts, all of which were based on information theory
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and are very costly for evaluation. In contrast to subjective interestingness, [9,18]
proposed an objective metric which is a combination of “closeness” and “max-
imality”, and essentially closely related to the pattern size. Motivated by this,
we propose the following metric to measure how interesting a pattern Q is.

itrs(Q) = |Q| (2)

Intuitively, the interestingness of a pattern Q is defined as its size, indicting
that patterns with large size are more favored. This is reasonable since informa-
tion brought by smaller patterns is less than that of larger ones.

Problem. The distributed top-k pattern mining (TopKPM) problem is stated as
follows.

– Input: A distributed graph G, support threshold θ and integer k.
– Output: A set Sk of patterns Q in G such that |Sk| ≤ k, sup(Q,G) ≥ θ for

any Q in Sk and argmaxSk⊆S

∑
Q∈Sk

itrs(Q).

The TopKPM problem is to find at most k (specified by users) patterns that
not only satisfy support constraint but also are most interesting.

3 Distributed Top-k Pattern Mining

In this section, we first show hardness of the TopKPM problem. Nonetheless, we
next present a parallel algorithm, with early termination property to discover
top-k patterns.

Proposition 1: The decision problem of TopKPM is NP-hard. ��

To see Proposition 1, observe that the subgraph isomorphism (ISO) problem
is embedded in TopKPM problem, thus TopKPM problem must be at least as
hard as ISO problem. Since ISO is an NP-complete problem [10], thus TopKPM
problem must be NP-hard.

Intuitively, one may develop such an algorithm to identify top-k patterns. The
algorithm, denoted as Naive, applies a “find-all-select” strategy: it discovers a
complete set S of frequent patterns, ranks them according to their interestingness
values and picks k best ones. Though straightforward, this algorithm has to mine
all the frequent patterns and hence is costly for big graphs. While one can rectify
this by incorporating early termination property.

Theorem 2. Given a graph G, a parameter θ as support threshold and an inte-
ger k, there exists a parallel algorithm for the TopKPM problem, that finds a set
Sk of patterns such that (a) sup(Q,G) ≥ θ for each Q in Sk and ΣQ∈Sk

itrs(Q) is
maximized, (b) the support computation is in O(|V |n ·nn+1) time (n refers to the
expansion times), and (c) can terminate as soon as k patterns are discovered.

Proof. We show Theorem 2 by presenting an algorithm as a constructive proof.
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Algorithm DisMiner /* executed at the coordinator */

Input: Fragmented graph = {F1, · · · , Fn} of G, support threshold θ and k.
Output: A set of no more than k patterns.
1. initialize S[1]:=∅; T1 := ∅; T2 := ∅; Sk := ∅; flag := false; as an empty tree;
2. collect partial results Si

e from each worker Si; S[1] := i∈[1,n] S
i
e;

3. remove Q from S[1] if sup(Q, G) < θ; update ;
4. while (flag = True) do
5. L := TreeGen(S[1], );
6. P := P LMiner(L, θ, ); /*executed at each worker in parallel*/
7. for each pattern Qc in L do
8. for each map in P do

Ib, frq from (Qc); T1 := T1 ∪ Ib; T2 := T2 ∪ frq;
10. ParEva (T1, Qc); SuppEva (T2, Qc);

T1, T2; update with Qc (support ≥ θ);
12. if is not updated then flag := true;
13. Sk := TopkSch( ,S[1], θ, k);
14. return Sk.

Procedure TopkSch

Input: A tree , a set S[1], support threshold θ, k.
Output: A set of patterns.
1. initialize Terminate:=false; Sk := ∅; h as the height of ;
2. while (Terminate = True) do
3. for each v at level h do
4. Lp:=NonTreeGen(Q[v],S

[1], );
5. for each Qc in Lp do
6. if Qc was not generated before then

Qc in parallel;
8. if Qc is a qualified pattern then Sk := Sk {Qc};
9. if termination condition is satisfied then
10. Terminate:=true; update Sk; break ;

9. retrieve

11. update

7. verify support of

11. update h;
12. return Sk;

Fig. 2. Algorithm DisMiner

The algorithm is denoted as DisMiner and shown in Fig. 2. It implements
parallel computation by employing one processor as coordinator (Sc) and a set
of processors as workers (Si). In contrast to the traditional BSP-based models,
DisMiner (a) combines parallel mining with partial evaluation [13] to ease min-
ing processing; and (b) incrementally identifies top-k patterns in a step-by-step
manner. We next illustrate the details of the algorithm.

Algorithm. DisMiner takes a fragmented graph F , support threshold θ and k
as input and outputs a set Sk of patterns with |Sk| ≤ k, sup(Q,G) ≥ θ for each
Q in Sk and maximized

∑
Q∈Sk

itrs(Q).
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Fig. 3. A tree T showing the hierarchical structure of candidate patterns

Messages. In the distributed scenario, messages are broadcast between the coor-
dinator and workers. In particular, each worker Si sends local frequency of each
candidate pattern to Sc. The local frequency of a pattern Q at Si is defined as
follows.

frq(Q,Fi) = {(u, |img(u)|) | u ∈ Vp} (3)

Initialization. DisMiner first initializes a set of parameters: set S[1] for maintaining
single-edge (a.k.a. “seed”) patterns, sets T1 and T2 for recording intermediate
results, set S for keeping track of top-k patterns, a Boolean variable flag to
control while loop and an empty tree T (line 1). It then invokes each worker to
perform local evaluation to identify the support of “seed” patterns, in parallel
and collects all the local frequencies (line 2). After global supports are calculated,
DisMiner removes those “seed” patterns whose supports are below θ and expands
the tree T with nodes, who correspond to “seed” patterns in S[1] (line 3).

Tree Pattern Mining. Based on S[1], DisMiner repeatedly produces “tree” pat-
terns and verifies their supports, following a level-wise strategy (lines 4–12).
During the iteration, LMiner is employed by each worker for local mining (line
6). We now present details.

In each round iteration, DisMiner firstly generates a set L of “tree” patterns as
candidates with procedure TreeGen (not shown). Specifically, TreeGen produces
candidate patterns by expanding frequent “tree” patterns that locate at the
top level of T with “seed” patterns in S[1], following forward expansion (line
5). The coordinator Sc then broadcasts L to all workers and invokes LMiner at
each worker for local mining (details of LMiner will be given shortly). After local
mining, the response from each worker consists of the following two types of
information for each candidate pattern Qc (line 6).

– frequency frq(Qc, Fi) of Qc at Si.
– virtual match G̃[Qc] of Qc, which is a set of node pairs with special elements

(u, x). Here, (u, x) indicates that there does not exist a local match of u at
Fi, but may exist an unknown match x at other site (details of virtual match
will be illustrated shortly).



212 X. Wang et al.

For each candidate Qc in L, DisMiner retrieves a pair 〈Ib, fre〉 from map H, and
gathers its local frequencies and “virtual matches” in sets T1 and T2, respectively
(lines 8–9). Using T1 and T2, two procedures ParEva and SuppEva (not shown)
are invoked for partial evaluation and global support calculation (line 10). When
the support of Qc is obtained, DisMiner sets T1 and T2 as empty sets and updates
T with Qc if sup(Qc, G) ≥ θ (line 11). After current round finished, if T has not
been updated, the Boolean flag flag is then changed to false, indicating that the
while loop does not need to continue (line 12).

Example 4. On graph G of Fig. 1 (a), DisMiner employs a coordinator Sc along
with workers S1, S2, S3 to identify candidate patterns. At Sc, it first assembles
partial results from each worker and initializes the set S[1] with patterns Q1–
Q7 (shown in Fig. 3), as their supports all equal to 3. Then, DisMiner applies
TreeGen to generate candidate patterns following forward extension, in a level-
by-level manner. For example, using pattern Q1, Sc generates candidate patterns
by enlarging Q1 with other frequent single-edge patterns and produces L =
{Q11, Q12, Q13, Q14}. Four levels of “nontrivial” candidate patterns (patterns
without duplicate node labels) are shown in Fig. 3, where patterns marked with
blue are considered infrequent (with support less than 3).

Top-k Mining. Using frequent “tree” patterns, DisMiner employs procedure
TopkSch (shown in Fig. 4) to mine top-k patterns. More specifically, TopkSch first
initializes a Boolean variable Terminate, an empty set Sk and an integer h as the
height of T (line 1). It then simulates the procedure for discovering “tree” pat-
terns to repeatedly identify qualified non-tree patterns (lines 2–11). In each round,
TopkSch selects a node v, which corresponds to a “tree” pattern Q[v], at level h of T ,
and generates a set Lp of candidate patterns with procedure NonTreeGen (line 4).
Note that NonTreeGen works in the similar way as TreeGen, but only enlarges pat-
tern Q[v] with “seed” patterns via backward expansion. For each candidate pattern
Qc in Lp, TopkSch verifies whether Qc has been generated before and computes
its support along the same line as before (line 7). To facility existence verification
of a pattern, we apply a heuristic strategy for fast pruning. For each pattern Q,
that is generated before, we record its statistic information, e.g., label distribu-
tion, degree distribution, diameter and use it for comparison. If Qc is a qualified
pattern, TopkSch then enriches Sk with it (line 8). TopkSch next verifies whether
the termination condition, specified by Proposition 3, is satisfied.

Proposition 3: Given parameters θ, k and a tree T , whose nodes correspond
to the set St of frequent “tree” patterns, a k-element set Sk is the top-k pattern
set, if (1) sup(Q,G) ≥ θ for each Q in Sk, and (2) min{itrs(Q)|Q ∈ Sk} ≥
max{itrs(Q̂t)|Qt ∈ S

t \ Sk}). ��

Here Q̂t indicates a complete pattern that is expanded from a tree pattern Qt

in S
t\Sk. Intuitively, Proposition 3 states that when the minimum interestingness

value of a pattern in Sk is already no less than the maximum interestingness of
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Procedure LMiner /* executed at each working site Si in parallel */
Input: Fragment Fi, a set L of candidate patterns, support threshold θ, tree .
Output: A map .
1. initialize an empty map ;
2. for each candidate pattern Qc in L do
3. identify a parent Qc of Qc in ; Ib := ∅;
4. for each match Gs of Qc do
5. if Gs can be locally extended as a match of Qc then
6. M(Qc, Fi) := M(Qc, Fi) ∪ {Gs};
7. elseif Gs can not be locally determined as a match of Qc then
8. Ib := Ib ∪ G̃[Qc];
9. compute frq(Qc, Fi); (Qc) := Ib, frq ;
10. return ;

Fig. 4. Procedure LMiner

any pattern possibly generated from existing tree patterns, then
∑

Q∈Sk
itrs(Q)

is already maximized and no further exploration is needed.
If the termination condition is satisfied, TopkSch sets Terminate as true, elim-

inates redundant patterns in Sk if |Sk| > k, breaks the while loop (line 10) and
returns Sk as final result (line 12). Otherwise, after all the nodes on level h are
processed, TopkSch decreases h by 1 for next round iteration (line 11).

Example 5. To identify the top-1 pattern, TopkSch first generates new candidate
patterns, e.g., Q33411, Q33412, Q33413 by expanding Q3341, at the top level (h =
3) of T via backward extension. Assume that these candidates have not been
generated before, TopkSch then evaluates their supports following the descending
order of itrs and obtains Sk = {Q33413}. The above process can terminate until
candidates generated from “tree” patterns at level 2 are all processed, as the
remaining candidates can not have higher itrs values.

Local Mining. When a set L of candidate patterns are generated, the coordina-
tor sends L to all workers and invokes procedure LMiner at each worker for local
mining. At a working site Si, LMiner takes Fi, L, θ and T as input, and works as
follows. It first initializes an empty map H, which is used for maintaining local
supports of candidate patterns (line 1). It then computes the local support for
each candidate pattern Qc (lines 2–9). Specifically, LMiner identifies one parent
node Q′

c of Qc in T , whose matches will be used for support evaluation and
initializes an empty set Ib, which is used for recording “virtual matches” (line
3). For each match Gs of Q′

c, LMiner checks whether Gs can be extended as a
match G′

s of Qc and includes G′
s in match set M(Qc, Fi) if G′

s exists (lines 5–6).
Otherwise, LMiner includes the “virtual match” G̃[Qc] in Ib (lines 7–8). When
all the matches of Q′

c are processed, LMiner computes local support frq of Qc

and initializes H(Qc) with a pair 〈Ib, frq〉 (line 9). The map H is returned as
final result after all the candidate patterns are evaluated (line 10).
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Partial Evaluation. For a candidate pattern Qc and its sub-pattern Q′
c, when a

match Gs of Q′
c can not be locally determined as a match of Qc, Gs is referred

to as a partial match of Qc and has to be verified from global perspective. To do
this, we introduce a method based on partial evaluation [13] as follows.

At each worker Si, it first constructs a “virtual match” G̃[Qc] of Qc and then
sends G̃[Qc] along with pattern Qc to the coordinator. Here, G̃[Qc] (or simply G̃
when it is clear from context) is defined as below:

G̃[Qc] = {(u, v)|u ∈ V ′
c , v ∈ Vs}

⋃
{(ũ, x)|ũ ∈ Vc\V ′

c}, (4)

where Vc, V ′
c and Vs are the node sets of Qc, Q′

c and Gs, respectively, and x is
a variable indicting a possible match of node ũ of Qc.

At the coordinator, Sc first collects all the “virtual matches” of each candidate
pattern and then checks whether all the variables in G̃ can be instantiated with
concrete nodes in G. This is warranted by the fact that if partial matches from
different workers can be merged as a whole, all the variables in G̃ must be able
to instantiated by nodes from neighbor sites (add proof if necessary).

Example 6. Recall Example 4. Upon receiving a candidate pattern Q123, LMiner
at S2 first identifies its “parent” Q12 on tree T along with its local matches
Gs1 : (Walt, Mat, *), Gs2 : (Walt, Fred, Rei), Gs3 : (Walt, Fred, Lisa). Here,
“*” in Gs1 indicates that it is a virtual match of ST at S2. Then, LMiner
repeatedly enlarges Gs1 − Gs3 with Q1 − Q7. After loop, a new match
(Walt, Fred, Rei, Bill) of Q123, which is enlarged locally from Gs2, is gen-
erated, while global extension on Gs1 and Gs3 are still needed. Thus, S2

generates two “virtual matches”, i.e., {(PM, Walt), (DBA, Mat), (ST, *), (PRG, x)},
{(PM, Walt), (DBA, Fred), (ST, Lisa), (PRG, x)} from Gs1, Gs3, and sends them
along with local frequency to Sc.

Correctness. The correctness of DisMiner is warranted by the following obser-
vations. (1) DisMiner will never miss any qualified pattern. (2) The support
computation with partial evaluation is correct. (3) The strategy used by top-k
pattern selection will never choose a pattern whose interestingness is less than
any top-k pattern.

Complexity. For a pattern Qc with vertex set Vpc
, there may exist at most |V ||Vpc |

matches in a graph G. Thus, it takes O(|V ||Vpc |+1) time to identify matches of
a candidate pattern Q′

c (Qc � Q′
c). If Qc is a “tree” pattern, there may gen-

erate at most |Vpc
||L| candidate patterns after forward extension; otherwise, at

most O(|Vpc
|2) candidate patterns will be generated through backward exten-

sion. In the meanwhile, it still needs O(|V ||Vpc |+1 · (|Vpc
| + 1)|Vpc |+1) time to

verify whether Qc has been generated before, since at most |V ||Vpc |+1 candidate
patterns may be generated before and each round isomorphism checking needs
O((|Vpc

| + 1)|Vpc |+1) time. By induction, it takes DisMiner
∑

i∈[1,n](|Vpc
| + i −

1)|V | · |V ||Vpc |+i(1+ (|Vpc
|+ i)|Vpc |+i) times to verify all the subsequent patterns

for a candidate Qc, where n refers to the extension times and is bounded by
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|V |, |L| and |Vpc
| are bounded by |V |. As the iteration starts from single-edge

patterns Qc and at most |V |2 different Qc exists, hence DisMiner is bounded by
O(|V |n · nn+1) time.

The analysis above completes the proof of Theorem 2. ��

4 Experimental Study

Using real-life and synthetic data, we conducted comprehensive experimen-
tal studies to evaluate: efficiency, data shipment and scalability of algo-
rithm DisMiner.

Experimental Setting. We used three real-life graphs: (a) Amazon [1], a prod-
uct co-purchasing network with 0.55 million nodes and 1.79 million edges. The
total size of Amazon is 0.95GB. (b) Pokec [2], a social network with 1.63 million
nodes, and 30.6 million edges. Its size is 2.2 GB. (c) Google+ [15], a social graph
whose size is 2.6 GB, has 4 million entities and 53.5 million links.

We designed a generator to produce synthetic graphs G=(V,E,L), controlled
by the numbers of nodes |V | and edges |E|, where L is taken from an alphabet
of 1K labels.

Algorithms. We implemented the following, all in Java. Algorithm DisMiner, com-
pared with (a) GRAMIND, which is a naive distributed algorithm, that ships all
fragments to the coordinator, and applies centralized technique GRAMI [12] to
find all frequent patterns and then select top-k ones; and (b) GRAMID, another
distributed FPM algorithm that works as follows. At Sc, GRAMID first requests
each worker to compute support of single-edge patterns, in parallel. After assem-
bling the results from workers, Sc identifies infrequent single-edge patterns and
notifies all the workers to perform local update, i.e., eliminate local edges corre-
sponding to infrequent patterns and ship updated fragments to the coordinator.
The coordinator then merges updated fragments together and invokes GRAMI to
find frequent patterns in a centralized way and choose k best patterns.

Graph Fragmentation and Distribution. We used the algorithm of [23] to parti-
tion a graph G into n fragments, and distributed them to n sites (n ∈ [1, 20]).
Each site is powered by 8 cores Intel(R) Xeon(R) 2.00 GHz CPU with 128 GB of
memory and 1 TB hard disk, using Debian Linux 3.2.04 system. Each experiment
was run 5 times and the average is reported.

Experimental Results. We next report our findings. Note that we used the
logarithmic scale for the y-axis in the figures for RT (response time).

Varying n. Fixing k = 50 and θ = 0.3K, 3K and 0.8K for Amazon, Pokec and
Google+, respectively, we varied n from 4 to 20 in 4 increments and evaluated
efficiency and data shipment of DisMiner vs. GRAMID and GRAMIND.

Figures 5(a)–(c) report the RT of all the algorithms on Amazon, Pokec and
Google+, respectively, which tells us the following. (1) The more sites (proces-
sors) that are available, the less time DisMiner takes. This is because DisMiner
gains benefits from parallel computation. For example, DisMiner is, on average,
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1.94, 2.14 and 2.22 times faster than GRAMID when n increases from 4 to 20 on
Google+, Pokec and Amazon, respectively. Moreover, DisMiner requires only 219
s to identify frequent patterns over Google+, when it is distributed over 20 sites.
(2) GRAMIND and GRAMID are indifferent to n since they ship local fragments
from each worker to the coordinator and apply a centralized algorithm to identify
the matches. However, GRAMID is, on average, 2.94 times faster than GRAMIND,
as it effectively reduces local fragment at each worker.

Figures 5(d)–(f) show the results w.r.t.DS (data shipment) of the algorithms
over Amazon, Pokec and Google+, respectively. We find that DisMiner ships, on
average, 17.2% (resp. 13%, 14.2%) data of GRAMID, on Amazon (resp. Pockec
and Google+). The DS of GRAMIND trivially equals to the size of entire graph,
hence is not reported.

Varying θ. Fixing n = 4 and k = 50, we varied the support threshold θ from

0.1K to 0.5K in 0.1K increments, 2K to 4K in 0.5K increments and 0.6K to
1.0K in 0.1K increments on Amazon, Pokec and Google+, respectively.

Figures 5(g)–(i) show results on RT and reveal the following. (1) All the
algorithms take longer with a small θ, because more candidate patterns and their
matches have to be verified. (2) DisMiner outperforms GRAMID and GRAMIND
in all cases and is less sensitive to the increase of θ because DisMiner maximizes
parallelism for support computation, while GRAMID (resp. GRAMIND) simply
assembles a part of (resp. entire) fragment from each worker and verifies support
with the costly centralized method.

The results given in Figs. 5(j)–(l) show the results of DS over Amazon, Pokec
and Google+, respectively. We find that (1) DisMiner and GRAMID ship less data
when θ increases, since larger θ means stronger constraint and less verification
cost; and (2) DisMiner incurs 14.8% DS of GRAMID, on average, the reason for
this lies in that DisMiner only ships necessary information for global verification,
rather than assembling a large part of fragment from each worker.

Varying k. Fixing n = 4 and θ = 0.3K, 3K and 0.8K for Amazon, Pokec and
Google+, respectively, we varied k from 10 to 50 in 10 increments, and compared
DisMiner with GRAMID and GRAMIND, w.r.t. RT and DS.

Results shown in Figs. 5(m)–(o) tell us following. (1) DisMiner runs much
more efficiently than GRAMID and GRAMIND, owing to its early termination
property. For example, at google+, DisMiner only takes on average 49.4% time of
GRAMID. (2) DisMiner is sensitive to the increase of k, since it has to verify more
candidate patterns before termination condition can be satisfied. (3) GRAMID
and GRAMIND are insensitive to the change of k, as both of them apply the naive
“find-all-select” strategy.
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Fig. 5. Performance of DisMiner on real-life graphs

Figures 5(p)–(r) report results on DS of all the algorithms. We find the fol-
lowing. (1) Unlike the trend on RT, DisMiner is not very sensitive to the increase
of k w.r.t. DS, as it needs slightly more information to verify supports of candi-
dates which are introduced by the increase of k. (2) GRAMID and GRAMIND are
not influenced by the varying of k w.r.t. DS, since the data shipment remains
unchanged for both of them.
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Varying |G| (Synthetic). Fixing n = 4, k = 50 and θ = 1K, we varied |G| from

(10M, 20M) to (50M, 100M) with 10M and 20M increments on |V | and |E|.
As shown in Figs. 6(a) and (b), (1) all the algorithms take longer time and ship
more data on larger graphs, as expected; and (2) DisMiner is less sensitive to |G|
than others, w.r.t. RT and DS, showing better scalability.
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Fig. 6. Scalability of DisMiner

5 Conclusion

We have proposed a distributed technique to identify top-k patterns from large
graphs. To do this, we have introduced a metric to measure “interestingness” of
a pattern; we have also developed an algorithm with early termination property
to efficiently discover top-k patterns. In particular, the algorithm combines the
strategy of “look-ahead & backtracking” and “partial evaluation” to discover
frequent pattern. Our experimental study has verified the efficiency, effectiveness
and scalability of the algorithm. We hence contend that our approach yields a
promising tool for big graph analysis.

The study of TopKPM is still in its infancy. One topic for future work is
to diversify patterns such that patterns identified are not only interesting but
also as diverse as possible. Another topic concerns early pruning for generation
and supports verification of candidate patterns. The third topic is to develop
techniques to efficiently maintain top-k patterns from frequently updated graphs.
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Abstract. The goal of Knowledge Tracing (KT) is to trace student’s
knowledge states in relation to different knowledge concepts and make
prediction of student’s performance on new exercises. With the grow-
ing number of online learning platforms, personalized learning is more
and more urgently required. As a result, KT has been widely explored
for recent decades. Traditional machine learning based methods and
Deep Neural Network based methods have been constantly introduced
for improving prediction accuracy of KT models and have achieved some
positive results. However, there are still some challenges for KT research,
such as information representation of high-dimentional question data,
consideration of personalized learning ability, and so on. In this paper
we propose a novel Student attention-based and Question-aware model
for KT (SQKT), which can address the challenges by estimating student
attention on different type of questions through history exercise trajec-
tory. Firstly, we devise a weighted graph and propose a weighted deep-
walk method to get the question embedding which is combined with the
correlated skills as question representation. Secondly, we propose a novel
student attention mechanism, which is dedicated for the updating of
student’s knowledge state. Finally, comprehensive experiments are con-
ducted on 4 real world datasets, the results demonstrate that our SQKT
model outperforms the state-of-the-art KT models on all datasets.

Keywords: Knowledge Tracing · Deep learning · Graph embedding ·
Attention-based model

1 Introduction

Knowledge Tracing (KT) [5] aims to estimate student’s mastery of knowledge
and predict student’s future performance, which is a combination of artificial
intelligence (AI) and education. As KT is one of the basic techniques for student
behavior analysis, it can be widely used for knowledge recommendation, person-
alized learning path generation and learning evaluation, etc. Recently, with the
c© Springer Nature Switzerland AG 2021
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Fig. 1. A simple example of knowledge tracing process. Left shows a the exercising
records of a student, where he has done question A, B, C and E, the right box shows
the corresponding skills of each question, knowledge tracing is used to predict his
performance on the new coming question D.

popularity of various online learning platforms, personalized learning is more
and more urgently required. As a result, KT has attracted wide attention from
related researchers for recent decades.

Generally, the data for KT mostly comes from student’s behaviors on the
online learning platforms, which contain the questions, responses, timestamps,
etc. The questions are usually tagged to skills which is introduced to better
represent the knowledge concepts, as is shown in Fig. 1. The algorithm of KT
would utilize student’s history behaviors and the info or structures about skills
for study to predict student’s future performance. During early-stage, the tra-
ditional machine learning methods is devised for KT. Representative work is
Bayesian Knowledge Tracing (BKT) [5] which models knowledge states as a set
of binaries, each representing the student’s mastery of a single knowledge con-
cept. In recent years, the Deep Neural Network (DNN) [21]-based methods is
widely explored. Long short-term memory (LSTM) [8], as its sensitivity for time
sequence, has been successfully introduced to update knowledge state at each
timestamp. Moreover, skills and their relationships can be modeled as graph and
Graph Neural Network (GNN) [24] based-methods is devised to aggregate the
student’s knowledge state of related skills.

Although the combination with LSTM and GNN has make KT more effective
and accurate, challenges for KT research still remain: 1) Due to the high dimen-
sion and sparsity of questions data, most of existing methods only use related skills
to represent a question. To a certain extent, skills can roughly replace questions
for its closer relevance to Knowledge Concepts (KC), and the skills-based methods
have achieved a fine empirical performance. However, the abandon of characteris-
tics of questions may cause much information loss and performance degrade. For
instance, in Fig. 1, question B and C have the same skills, but they are 2 totally
different questions. Therefore, the feature extraction and utilization of questions
is very important. 2) The existing KT models lack the ability to trace the latent
variation of student’s knowledge state. Either a set of binaries or a memory matrix
can not fully represent the knowledge states of a student. We noticed that student
havs attention when doing exercises, keep practicing on same-type questions can
make student more concentrated on the type of questions. 3) The existing GNN
based methods have a high dependence on dataset, thus lack of scalability.
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In this paper, we devise a novel knowledge tracing model to address the above
challenges. Specifically, our model provides a graph-based embedding method for
feature extraction and question representation, which can consider comprehen-
sive info of student behaviors on various questions. Additionally, we propose a
novel attention mechanism to estimate the student’s learning ability on different
knowledge concepts and this attention mechanism is dedicated for the updating
of student’s knowledge state. Our main contributions are summarized as follows:

1) To comprehensively represent the questions, we devise a weighted graph, pro-
pose a weighted deepwalk method to get the question embedding and combine
it with the correlated skills as question representation. Our question represen-
tation can catch the latent relevance while solve the high dimension problem.

2) To enhance the ability of tracing the latent variation of student’s knowledge
state, we propose a student attention mechanism to add an attention weight
when updating the knowledge state. Our student attention mechanism can
cooperate with the traditional attention methods well.

3) Extensive and comprehensive experiments are conducted on 4 real world
datasets, the experimental results demonstrate the effectiveness of proposed
SQKT model. And the comparison to the state-of-the-art KT methods shows
that our model achieves higher prediction accuracy.

2 Related Work

In this section, we introduce the progress of the development of Knowledge
Tracing methods.

Traditional Knowledge Tracing Methods. Traditional machine learning
methods always use logistic regression to classify the questions and skills by regard-
ing each question or skill as a binary variable thus can signify whether the student
has mastered the skill or not. Bayesian Knowledge Tracing (BKT) [5] is probably
the most popular model in traditional knowledge tracing methods, which update
the knowledge state for each student through a Hidden Markov Model (HMM).
Based on the BKT model, Pardos et al. [18] introduced the item difficulty to the
knowledge tracing model, and Baker et al. [2] utilized contextual estimation of slip
and guess probabilities to improve the accuracy. Student individualization is also
modeled as an implementation in IBKT [28] and MIBKT [17,28]. Factor Analy-
sis models aim to learn common relations between different features such as (user,
skills) pair, and use these common factors as predictors in logistic regression. E.g.
Item Response Theory (IRT) [7] model simply use the difference between the mas-
tery degree of student and the difficulty of skill. Multi-dimensional Item Response
Theory (MIRT) [6] model has extended the IRT model to multidimensional abili-
ties. Additive factor model (AFM) [3] has taken the student’s number of attempts
into account, on the basis of AFM, Pavlik et al. propose Performance Factors Anal-
ysis (PFA) [19] model which utilizes different bias for the number of the successful
and failed attempts.
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The methods of logistic regression have strong interpretability and expansi-
bility and the traditional KT models based on BKT [5] have performed reason-
ably well. However, the explosion of educational data in recent times naturally
benefited the deep neural network (DNN) models.

Deep Neural Network. Deep Knowledge Tracing (DKT) [21] first applies deep
neural network in knowledge tracing, which utilizes a Recurrent Neural Network
(RNN) [27] for KT that can extract the variation of the knowledge state from
student’s past learning history. Dynamic Student Classification Memory Net-
works (DSCMN) [12] model, as an extension of DKT, takes the side informa-
tion of question difficulty into consideration. Dynamic Key-Value Memory Net-
works (DKVMN) [29] model proposes a Memory-Augmented Neural Network
(MANN) [23] instead of traditional RNN. On the basis of DKVMN, Sequential
Key-Value Memory Networks (SKVMN) [1] model uses a Hop-LSTM layer that
can jump ahead in a sequence of related history records when training. Self-
Attentive Knowledge Tracing (SAKT) [15] model utilizes the relevance of past
interactions as attention for high-performance in sparse data. Relation-aware
self-attention for Knowledge Tracing (RKT) [16] model takes the time interval
between two interactions into account to improve the accuracy. Exercise-aware
Knowledge Tracing (EKT) [9,25] framework proposes a EERNNA model which
uses a bi-directional LSTM to learn the hidden word state of questions in order
to distinguish different questions.

With the development of Graph Neural Network (GNN) [24], some GNN-
based methods are proposed. Graph-based Knowledge Tracing (GKT) [14]
method structures a graph to represent skills and uses GNN to aggregate the
student’s knowledge state of related skills. On the basis of EKT, Hierarchical
exercise Graph for Knowledge Tracing (HGKT) [26] model utilizes a hierarchi-
cal graph to tackle with the question representation problem. Both of the two
models use the text of the questions while no public dataset contains these text.
Therefore, these two models can only test their effectiveness on specific datasets,
which means the methods are not universally adaptable.

The SQKT model proposed in this paper differs from all models above, which
uses a Weighted Graph Neural Network to represent the high-dimension question
data and adds a global attention mechanism to focus on both student attention
and question attention. To the best of knowledge, our SQKT model is the first
work to propose the idea about weighted graph embedding and student attention
mechanism.

3 Problem Formulation

In an Interactive Educational System (IES) with |S| students and |Q| questions,
each question contains one or more knowledge skills, every interaction of student
will be recorded, our goal is to trace student’s knowledge state based on his
history records.

Here we denote the history records of one student as Rs = {(q1, a1, t1), (q2, a2,
t2), ..., (qN , aN , tN )}, s ∈ S, where qn ∈ Q represents the n-th question in the
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history record of student s , an ∈ (0, 1) represents the correctness, if the student
answers correctly, an equals to 1, else an equals to 0, and tn represents the
timestamp when student answers the question. To trace student’s mastery of
each knowledge unit, knowledge skills are used to represent knowledge units. The
knowledge skills that are included by the questions was counted by the online
educational platform. Each question qn can contain one or more corresponding
knowledge skills s1, s2, ...sk, while a knowledge skill can be included by many
questions. Generally, the amount of knowledge skills is far less than the amount
of questions.

Based on the above description, the problem about KT can be formally defined
as follows: given the history record of a student Rs = {(q1, a1, t1), (q2, a2, t2), ...,
(qn−1, an−1, tn−1)} and the knowledge skills related to each question Sq =
s1, s2, ..., sk, our goal is to trace student’s mastery of knowledge and predict
whether the student can answer the coming question qn correctly.

4 The SQKT Method

In this section, we introduce the specific improvements of our SQKT model.
The overall framework is shown in Fig. 2. We first construct a weighted graph
by the relationship of questions, then use weighted-deepwalk to learn question
representations. After get the question representations, we use Recurrent Neu-
ral Network (RNN) [27] with both student attention and question attention to
update the knowledge state of the student and to predict his performance on
the coming question. Here we just explain the main idea of the model, the detail
about question representation and student attention mechanism is described in
Sect. 4.1 and Sect. 4.2.

Fig. 2. An illustration of SQKT, which use a weighted graph and a Recurrent Neural
Network (RNN) with question and student attention mechanism to get prediction.
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4.1 Question Representation

From the perspective of pedagogy, whether a student can answer a question
correctly depends on both the question and the student’s ability. For question
representation, we not only use the related skills, but also focus on the latent
relationship that can not be represented by skills. To catch the unique features
of each question, we construct a weighted graph G = (V,E) that shows the
latent relevance between questions. In the weighted graph, each node represents
a question, when question qi and qj follows |ti − tj | < T , we add 1 on the weight
wij of edge eij between node vi and node vj . Figure 3 shows the overview of
question representation process.

Fig. 3. The overview of question representation process: (a) Students’ exercise records,
the dashed line means the time span of two exercise exceeded the threshold; these
records are used to construct the weighted graph; (b) The weighted graph, where the
number on the edges represents the weights; (c) The sequences generated from the
weighted graph, the larger the weight, the more likely the edge will be chosen; (d) Use
Skip-Gram algorithm to get question embedding

In the weighted graph, nodes represent questions and the weight of edges
represent the correlation degree between the nodes at both ends. Improved on the
basis of DeepWalk [20], we use a weighted deepwalk method to get the structural
characterization of our weighted graph. We take each node as a starting point
for random walk with the transition probability defined as:

p(vi|vj) =
wij∑

k∈Ni
wik

(1)

After generating the question sequences by random walk, we utilize the Skip-
Gram [10,11] algorithm to learn the embeddings, which maximizes the co-
occurence probability of two questions in an obtained sequence. The optimization
goal is as follow:

minimize
Φ

− log
i+s∏

j=i−s,j �=i

Pr (vj | Φ (vi)) (2)

where s is the window size of the context questions in the sequences.
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The embeddings of nodes in the weighted graph can reflect the latent rel-
evance between questions, for each interaction at timestamp t, we concatenate
the node embedding q̃t with the one-hot encoding of related skills st and project
to d-dimension through a non-linear transformation as complete question repre-
sentation:

qt = ReLU (W ([q̃t, st]) + b) (3)

4.2 Student Attention Mechanism

Learning is a very complicated process. During the process of education, edu-
cators always divide the questions into lectures and teach systematically. Gen-
eralized by experience, keeping practice on questions of same lecture can be
more effective than picking up questions randomly. Therefore, we assume that
the learner’s absorption of knowledge is based on his attention which generated
from his history exercise record in a period of time. The devise of the student
attention mechanism can guarantee that learners whose attention is on the same
question type can absorb more knowledge than those who are not.

We first choose a hyper parameter T as the time threshold, at each timestamp
tn+1, the history question record qk ∈ Rs would be regarded as an influence
to students’s attention if |tn+1 − tk| < T . The influence of history record on
student’s current attention is related to the time gap, the shorter time gap is,
the more influence it will have. We use the following formulation to measure the
extent of k-th history record’s influence on student’s current attention:

Ek = RelU(W
1

tn+1 − tk
+ b) (4)

where Ek presents the influence extent of k-th history record on student atten-
tion. Then we add the influence of all eligible history record with the coefficient
of its influence extent to get students’s current attention:

Attts =
∑

ti>t−T

Ei ∗ qi (5)

where t is the current timestamp and qi can be calculated by Eq. (3).
Finally we use the cosine similarity between student’s current attention Attts

and current question qt as attention weight to measure his absorption of the
question when updating knowledge state:

W t
att = cos(Attts, qt) (6)

As is shown in Fig. 4, orange nodes present questions from lecture A, green nodes
present questions from lecture B, red nodes present student’s attention. The blue
thick line depicts student’s exercise sequence while the red dotted line depicts
student’s attention sequence calculated by the equations above. When student
transits from lecture A to lecture B when doing question 3, the attention weight
W 3

att declines correspondingly.
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Fig. 4. Student attention sequence generated from his exercise records.

4.3 Modeling Process of SQKT

In this section, we will systematically elaborate SQKT modeling process. SQKT
use weighted graph to better represent the questions, trace and update student
knowledge state by RNN with both student attention and question attention
mechanism.

Question-Answer Embedding. In SQKT model, we maintain a weighted
graph which represent the latent relationship of questions, and use a weighted
deepwalk method with Skip-Gram [11] algorithm to get the question embedding.
When student has done a new question at timestamp t, the triplet (qt, st, at)
would be generated, we get the question embedding Qt with dimension dv from
qt and st through the weighted graph, extent the embedding vector to dimension
2dv through at:

Q̃t =
{

[Qt ⊕ 0] if at = 1
[0 ⊕ Qt] if at = 0 (7)

where 0 = (0, 0, ..., 0) is a vector of all zeros with dimension dv and ⊕ means
concatenate, the embedding vector Q̃t is the question-answer embedding which
represent the complete triplet (qt, st, at).

Knowledge State Evolution. After we get the question-answer embedding
Q̃t, we use LSTM [8] to trace the knowledge state of student:

it = σ
(
Wi

[
Q̃tht−1, ct−1

]
+ bi

)
(8)

ft = σ
(
Wf

[
Q̃t,ht−1, ct−1

]
+ bf

)
(9)

ot = σ
(
Wo

[
Q̃t,ht−1, ct−1

]
+ bo

)
(10)

ct = ftct−1 + it tanh
(
Wc

[
Q̃t,ht−1

]
+ bc

)
(11)

ht = ot tanh (ct) (12)

where it, ot, ft, ct, ht represents input gate, output gate, forget gate, cell state,
hidden state respectively.
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We introduce the concept of student attention, which can measure student’s
absorption of knowledge state. Using student attention when updating knowl-
edge state, the Eq. (12) can be updated to:

ht = W t
attot tanh (ct) (13)

where W t
att is the attention weight calculated by Eq. (6)

Prediction Output. Through markov property, we use student’s current
knowledge state ht to predict whether he can answer question qt+1 correct or
not, the prediction probability can be calculated as follow:

yT+1 = ReLU (W1 · [hT ⊕ xT+1] + b1) (14)

where W1, b1 are parameters and ⊕ is concatenation operation.
Note that questions have attentions too and students may get similar score

on similar questions. We consider the knowledge state ht as a weighted sum
aggregation of history questions based on its similarity with current question:

hT
att =

T∑

i=1

αihi (15)

where αi = cos(xT+1, xi). After obtaining the attention mechanism, Eq. (14)
can replace the ht with ht

att:

yT+1 = ReLU
(
W1 · [

hT
att ⊕ xT+1

]
+ b1

)
(16)

We use the Sigmoid function σ(x) = 1
1+exp(−x) to normalize the result as pre-

diction probability:
ỹT+1 = σ (W2 · yT+1 + b2) (17)

The student’s answer to this question will be predicted to be correct if ỹT+1 >
0.5, else will be predicted to be wrong.

4.4 Optimization

We use gradient decent to optimize the parameters in our model. The overall
loss can be formulated as:

L = −
T∑

t=1

(at log ỹt + (1 − at) log (1 − ỹt)) (18)

where at is the actual binary score, while ỹt is our predicted score.

5 Experiments

In this section, we conduct several experiments to evaluate the performance of
our model on the following aspects: 1) The accuracy of prediction comparison
between SQKT and the other baseline models. 2) The representation ability of
proposed question embedding method based on weighted graph. 3) The effec-
tiveness of our student attention mechanism.
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5.1 Datasets

To evaluate the prediction accuracy, we test the proposed SQKT model and other
baseline methods on 4 real world datasets. The datasets were carefully selected
that comprehensively covers mathematics, programming and many other fields.

Mynereus1 is a dataset collected from Mynereus programming Platform, with
a total of 86772 records from 202 students on 184 questions. There are 48 skills
about these questions.

ASSISTments20092 is a dataset collected from the ASSISTments online tutor-
ing platform during the school year 2009–2010. Due to the duplicated record
problem, we removed the duplicated records and the rest dataset has 4151 stu-
dents with 110 questions on 123 type of skills.

ASSISTments20153 is collected from the same tutoring platform with
ASSISTments2009 during year 2015–2016. In ASSISTments2015 dataset, each
question only related to one skill. After dataprocess for duplicated records, there
are 161,723 records from 4,210 students reserved in the dataset.

Ednet4 is a dataset collected over 2 years by Santa, which is a multi-platform
AI tutoring service. The dataset includes total 131,441,538 interactions from
784,309 students and 13,169 questions on 293 type of skills. Since the Ednet
dataset is too large, we randomly choose 5,000 students with 1,079,483 records.

The dataset statistics are shown in Table 1.

Table 1. Dataset statistics

Dataset #Questions #Students #Skills #Records

Mynereus 184 202 48 86,772

ASSISTments2009 13016 4,151 110 325,637

ASSISTments2015 9073 4,210 100 161,723

Ednet 11187 5000 187 1,079,483

5.2 Baselines

The following KT models are chosen as baselines to measure the performance of
the proposed SQKT model:

– BKT [5] models knowledge state as a set of binaries and use a Hidden Markov
Model to update knowledge state.

1 Mynereus: http://code.mynereus.com.
2 ASSISTments2009: https://sites.google.com/site/assistmentsdata/home/assistment-

2009-2010-data/skill-builder-data-2009-2010.
3 ASSISTments2015: https://sites.google.com/site/assistmentsdata/home/2015-assist

ments-skill-builder-data.
4 Ednet: https://github.com/riiid/ednet.

http://code.mynereus.com
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://github.com/riiid/ednet
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– KTM [22] is the most comprehensive factor analysis model of KT, which has
taken much side information into consideration.

– DKT [21] is the first deep learning KT method, which utilize a Recurrent
Neural Network to extract the variation of the knowledge state.

– DKVMN [13] as an expansion of DKT, proposed a Mempry-Augmented
Neural Network (MANN) [23] to represent the knowledge state of a student.

– SKVMN [1] as an expansion of DKVMN, use Hop-LSTM network in its
sequence modeling.

– GKT [14] is a Graph Neural Network (GNN) based KT model, which casting
the knowledge structure as a graph.

5.3 Metrics

We use AUC (the area under the Receiver Operating Characteristic (ROC) curve)
to evaluate the KT models’ prediction accuracy. The AUC score varies from 0 to
1, the higher the number is, the better the model performs. When the AUC score
equals 0.5, the predictive model’s accuracy is as same as random guess.

5.4 Model Evaluation

During experiments, each dataset was split into two parts: 70% for training and
validation and 30% for testing. We used 5-fold cross validation to separate each
training and validation subset, we divide the subset into 5 equal-sized parts, use
4 parts for training and 1 part for validation in turn.

Here the hyperparameters are chosen by grid search, we chose 0.01 as the
learning rate, 0.1 as the epsilon value for Adam optimizer, 0.5 as the lambda for
L2 loss, 5000 as the time threshhold, 5 as the window size of deep walk, and 100
as question embedding dimension.

Table 2. The AUC score of all KT models on all Datasets

Model Mynereus ASSISTments09 ASSISTments15 Ednet

BKT 0.7132 0.6271 0.6304 0.7401

KTM 0.7854 0.7169 0.6830 0.7829

DKT 0.8082 0.7961 0.7131 0.8519

DKVMN 0.8187 0.8157 0.7268 0.8721

GKT 0.8023 0.7940 0.7172 0.8790

SKVMN 0.8174 0.8348 0.7469 0.8760

SQKT 0.8312 0.8416 0.7527 0.8841

The overall performances of all KT models are shown in Table 2 and Fig. 5.
From the result, we can sum up the following conclusions.

First of all, deep learning models generally outperform the traditional knowl-
edge tracing models with an average improvement of 9.36% on AUC score, due
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Fig. 5. The AUC score results of 7 KT models over 4 datasets

to the deep neural network’s ability to learn complex student learning patterns.
Second, the existing graph-based KT model such as GKT [14] and other DL
models have advantages and disadvantages of each, GKT has a better score on
Ednet dataset, while DKVMN and SKVMN performs better on ASSISTments
datasets, which shows that the existing graph based methods are not perfect.
Third, DL models with memory structure (such as DKVMN [29] and SKVMN
[1]) performs better than no memory structure models (such as DKT), which
shows the effectiveness of memory structure in storing student knowledge units.
Last but not least, the proposed SQKT model outperforms all other existing
models on all 4 datasets, the usage of question information and student attention
have enhanced the prediction accuracy with an average of 0.8% in comparison
to the state of art SKVMN model.

5.5 Ablation Studies

We also designed several ablation studies to further investigate the effect of our
question representation and student attention module.

First, we compare our question representation module with 3 other methods,
separately using random generalized embedding matrix, GCN (Graph convolu-
tional network) and GAT (Graph attention network) to get the question embed-
dings. We denote these models as SQKT-Rand, SQKT-GCN and SQKT-GAT.
The comparative experiment on 3 models is shown in Table 3.

Table 3. The AUC score of 3 comparative models and SQKT on all datasets

Dataset SQKT-Rand SQKT-GCN SQKT-GAT SQKT

Mynereus 0.8210 0.8307 0.8311 0.8312

ASSISTments09 0.8371 0.8386 0.8392 0.8416

ASSISTments15 0.7480 0.7516 0.7511 0.7527

Ednet 0.8769 0.8820 0.8824 0.8841
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Next, we remove the student attention module, treat student’s attention
weight on all questions as the same, and denote this model as QKT. The com-
parative experiment result on QKT and SQKT model is shown in Table 4.

Table 4. The AUC score of QKT and SQKT on all datasets

Dataset QKT SQKT

Mynereus 0.8301 0.8312

ASSISTments09 0.8357 0.8416

ASSISTments15 0.7461 0.7527

Ednet 0.8760 0.8841

From the results, we can find that our question representation method
achieved the best auc score among all 4 methods, while the attention module
has proved to be effective through ablation experiment. It is worth mentioning
that the student attention mechanism achieves a better improvement on larger
dataset with longer time span. The comparative and ablation experiments have
demonstrate the effectiveness of the modules we have proposed.

Fig. 6. The visualization of student attention through a student’s exercise record

Figure 6 visualizes the variation of a student’s attention during his learning
process from Ednet [4] dataset. We intercepted the first 50 questions of the stu-
dents’ exercise record, and shows the attention on each question on the picture.
The darker the red is, the more attention the student get, which means he can
learn more on the question. The 50 questions are from 3 different lectures and
the student finish these 3 lectures in turn. From the Fig. 6, we can see that the
student attention have a clear reduction when he switch to a new lecture (around
question 21 and 37). This phenomenon is very close to the actual human learn-
ing process, that keeping practice systematically on same-type questions can be
more effective than practising randomly.
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6 Conclusion

In this paper, we introduced a novel Student attention-based and Question-aware
model for Knowledge Tracing (SQKT). In SQKT model, we first proposed a
question representation method, which use Weighted Deep Walk method with
Skip-Gram algorithm based on a weighted graph constructed from questions rela-
tionship. Then we introduced a student attention mechanism to measure atten-
tion weight when updating student knowledge state. Finally we use RNN with
question attention to predict student’s performance on the new coming question.
Abundant experiments and ablation studies were conducted on SQKT model,
the experiment result shows that SQKT model outperformed the state-of-the-art
models over all datasets, and the ablation study proves the reasonableness and
effectiveness of the proposed methods. For future work, more side information
could be taken into consideration, and the structure of RNN network can be
further optimized.

Acknowledgments. This work was supported by NSFC 61401155.

References

1. Abdelrahman, G., Wang, Q.: Knowledge tracing with sequential key-value memory
networks. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 175–184 (2019)

2. Baker, R.S.J., Corbett, A.T., Aleven, V.: More accurate student modeling through
contextual estimation of slip and guess probabilities in Bayesian knowledge tracing.
In: Woolf, B.P., Aı̈meur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS,
vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-69132-7 44

3. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for
cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan,
T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006).
https://doi.org/10.1007/11774303 17

4. Choi, Y., et al.: EdNet: a large-scale hierarchical dataset in education. In: Bitten-
court, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020.
LNCS (LNAI), vol. 12164, pp. 69–73. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-52240-7 13

5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of
procedural knowledge. User Model. User-Adap. Inter. 4(4), 253–278 (1994)

6. Desmarais, M.C., d Baker, R.S.: A review of recent advances in learner and skill
modeling in intelligent learning environments. User Modeling User-Adapted Inter-
act. 22(1), 9–38 (2012)

7. Embretson, S.E., Reise, S.P.: Item Response Theory. Psychology Press, London
(2013)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Liu, Q., et al.: EKT: exercise-aware knowledge tracing for student performance
prediction. IEEE Trans. Knowl. Data Eng. 33(1), 100–115 (2019)

https://doi.org/10.1007/978-3-540-69132-7_44
https://doi.org/10.1007/978-3-540-69132-7_44
https://doi.org/10.1007/11774303_17
https://doi.org/10.1007/978-3-030-52240-7_13
https://doi.org/10.1007/978-3-030-52240-7_13


SQKT Model for Knowledge Tracing 235

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. arXiv preprint
arXiv:1310.4546 (2013)

12. Minn, S., Desmarais, M.C., Zhu, F., Xiao, J., Wang, J.: Dynamic student clas-
siffication on memory networks for knowledge tracing. In: Yang, Q., Zhou, Z.-H.,
Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol.
11440, pp. 163–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16145-3 13

13. Minn, S., Yu, Y., Desmarais, M.C., Zhu, F., Vie, J.J.: Deep knowledge tracing and
dynamic student classification for knowledge tracing. In: 2018 IEEE International
conference on data mining (ICDM), pp. 1182–1187. IEEE (2018)

14. Nakagawa, H., Iwasawa, Y., Matsuo, Y.: Graph-based knowledge tracing: mod-
eling student proficiency using graph neural network. In: 2019 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), pp. 156–163. IEEE (2019)

15. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. arXiv
preprint arXiv:1907.06837 (2019)

16. Pandey, S., Srivastava, J.: RKT: relation-aware self-attention for knowledge trac-
ing. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 1205–1214 (2020)

17. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks
implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.)
UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13470-8 24

18. Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowl-
edge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.)
UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22362-4 21

19. Pavlik Jr, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis-a new alter-
native to knowledge tracing. Online Submission (2009)

20. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

21. Piech, C., et al.: Deep knowledge tracing. arXiv preprint arXiv:1506.05908 (2015)
22. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on

Data Mining, pp. 995–1000. IEEE (2010)
23. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning

with memory-augmented neural networks. In: International Conference on Machine
Learning, pp. 1842–1850. PMLR (2016)

24. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

25. Su, Y., et al.: Exercise-enhanced sequential modeling for student performance pre-
diction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32
(2018)

26. Tong, H., Zhou, Y., Wang, Z.: HGKT: introducing problem schema with hierarchi-
cal exercise graph for knowledge tracing. arXiv preprint arXiv:2006.16915 (2020)

27. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Comput. 1(2), 270–280 (1989)

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1310.4546
https://doi.org/10.1007/978-3-030-16145-3_13
https://doi.org/10.1007/978-3-030-16145-3_13
http://arxiv.org/abs/1907.06837
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
http://arxiv.org/abs/1506.05908
http://arxiv.org/abs/2006.16915


236 Q. Xie et al.

28. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowl-
edge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED
2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39112-5 18

29. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for
knowledge tracing. In: Proceedings of the 26th International Conference on World
Wide Web, pp. 765–774 (2017)

https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18


Comparison Question Generation Based
on Potential Compared Attributes

Extraction

Jiayuan Xie1,2, Wenhao Fang1,2, Yi Cai1,2(B), and Zehang Lin3

1 Key Laboratory of Big Data and Intelligent Robot (South China University
of Technology), Ministry of Education, Guangzhou, China

ycai@scut.edu.cn
2 South China University of Technology, Guangzhou, China

3 The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract. Question generation (QG) aims to automatically generate
questions from a given passage, which is widely used in education. Existing
studies on the QG task mainly focus on the answer-aware QG, which only
asks an independent object related to the expected answer. However, to
prompt students to develop comparative thinking skills, multiple objects
need to be simultaneously focused on the QG task, which can be used to
attract students to explore the differences and similarities between them.
Towards this end, we consider a new task named comparison question gen-
eration (CQG). In this paper, we propose a framework that includes an
attribute extractor and an attribute-attention seq2seq module. Specially,
the attribute extractor is based on Stanford CoreNLP Toolkit to recognize
the attributes related to the multiple objects that can be used for com-
parison. Then, the attribute-attention seq2seq module utilizes an atten-
tion mechanism to generate questions with the assistance of the attributes.
Extensive experiments conducted on the HotpotQA dataset manifest the
effectiveness of our framework, which outperforms the neural-based model
and generates reliable comparison questions.

Keywords: Question generation · Potential compared attributes
extraction

1 Introduction

Question generation (QG) is a dual task of question answering [2,11,19,22], which
aims to generate natural and relevant questions from natural language text [7,20].
It can generate various types of questions to help for the knowledge testing in edu-
cation [7,8]. Specially, there is a kind of question named comparison question that
is commonly featured in standardized tests, e.g., the English exams for middle and
high school, which is required to compare the differences and similarities between
multiple objects. According to the existing studies in the area of education, these
questions can be used as good materials for students to begin developing the com-
parative thinking skill [6], which is an important high-order thinking skill that can
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 237–252, 2021.
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Passage: Arthur’s Magazine (1844–1846) was an American literary periodical published in
Philadelphia in the 19th century. First for Women is a woman’s magazine published by Bauer
Media Group in the USA. The magazine was started in 1989. Radio City is India’s first private
FM radio station and was started on 3 July 2001...

Question: Which magazine was started first, Arthur’s Magazine or First for Women?
Answer: Arthur’s Magazine

Fig. 1. An example of comparison questions generation in HotpotQA dataset [25].
We highlight the compared objects in bold and underline fragments related to the
compared attributes.

help students achieve their highest potential [18]. Therefore, it is necessary for us
to investigate a new task named comparison question generation (CQG).

Existing studies on QG for knowledge testing are mainly focusing on the
answer-aware QG, which generates a question according to the given passage that
targets an expected answer [4,9,26,27]. Take the passage shown in Fig. 1 as an
example, annotators may generate a question (i.e., “when was First for Women
established?”) and an expected answer (i.e., “1989”) based on the passage, which
guides students to explore the attribute (i.e., “the date of establishment”) of the
object (i.e., “First for Women”) that related to the answer. We can find that
these studies only ask about certain attributes of an independent object related
to the expected answer. However, not only the multiple objects in a given passage
but also the attributes that can be used to explore the differences and similarities
between them should be taken into account when raising a comparison question,
which is quite different from the existing studies.

Comparing with conventional methods of the QG task, CQG has three unique
characteristics. Firstly, the CQG task needs to focus on multiple objects for
comparison at the same time while conventional methods only asking questions
about a single object. Secondly, the CQG task requires extracting some suit-
able potential compared attributes from all attributes related to each object
to explore the differences and similarities between them. However, conventional
methods mainly focus on the relationship between an object and its attribute
rather than the relationship between multiple objects. As shown in Fig. 1, an
appropriate attribute (i.e., DATE) related to the specific fragments (i.e., “1844–
1846” and “1989”) will be extracted from multiple attributes contained in the
passage, which can be used to explore the differences between the establishment
date of the different magazine. Thirdly, the CQG task demands to ensure that
the objects used for comparison and one of the potential compared attributes
can be included in the generated question while conventional methods on the
QG task lack relevant and effective mechanisms.

To tackle the characteristics mentioned above, we propose a novel framework
consisting of two modules, an attribute extractor and an attribute-attention
seq2seq module, which can simultaneously consider multiple objects. To extract
the potential compared attributes between the multiple objects, the attribute
extractor first utilizes the Stanford CoreNLP Toolkit [14] to recognize the types
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of entities in target sentences, which describes the relevant attributes of an object
in the passage. Specifically, we use the types of entities related to the com-
pared objects as the attributes of them, because each entity type is a descrip-
tion of the object in certain aspects, such as LOCATION, DATE, and COUN-
TRY. As shown in Fig. 1, we can recognize the types of entities COUNTRY and
DATE corresponding to the two entities “USA” and “1989” respectively in the
target sentence (the second sentence in the passage) as the attributes of the
object “First of Women”. In addition, to ensure that the generated question
is about comparing multiple objects on a certain potential compared attribute,
the attribute-attention seq2seq module utilizes an attention mechanism to focus
on the specific fragments of the input, e.g., the fragments related to potential
compared attributes and compared objects, to generate comparison questions.

To summarize, our contributions are as follows:

• We introduce a new task of comparison question generation (CQG), which is
crucial for students to develop comparative thinking skills in education and
can potentially provide datasets for future relevant research.

• We propose a novel framework for the CQG task by formulating the QG task
with an auxiliary task of compared attributes extraction, which can be used
to explore the differences and similarities between multiple objects.

• We conduct analytical experiments on the HotpotQA dataset to verify the effec-
tiveness of the proposed method. The experimental results prove the effective-
ness of our framework: the potential compared attributes extracted from the
attribute extractor are given more attention by the attribute-attention seq2seq
module, which can significantly improve the quality of the generated questions.

2 Related Work

Recently, question generation (QG) has mainly tackled with end-to-end
deep learning neural network, especially the encoder-decoder architecture
[4,9,20,26,27]. Du et al. [4] firstly use a sequence-to-sequence model with an
attention mechanism for the task of QG and achieve better performance than
most rule-based question generation methods [8]. However, these models only
use the passage information for question generation, which makes it difficult to
control the generation of the question for the specific fragments of the input.

After, a lot of studies add the answer information as assistance to generate
appropriate questions [9,21,27]. In detail, Zhou et al. [27] utilize some features
related to the answer (i.e., named entity recognition (NER) and part-of-speech
(POS) tagging [23]) for their model, which makes the generated questions related
to the target answer. Kim et al. [9] propose an answer-separate model that sepa-
rates the target answer from the passage to make better use of the answer informa-
tion. These methods generate questions based on a single passage-answer pair and
focus on how to better utilize passages to generate questions related to the answer.

In addition to utilizing the information of answer, Zhao et al. [26] propose
that more sentences or paragraphs should be used for question generation, which
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combined more abundant contextual information. Cho et al. [3] propose choosing
different tokens as the focuses in the passage and generating questions according
to different focus-answer pairs, which can make the generated questions more
specific and increase the diversity of questions. These methods provide more
information for question generation, but they still ask questions about an object.

In conclusion, the questions generated by the above methods all tested an inde-
pendent object in the passage. To the best of our knowledge, none of the previous
studies has focused on the issue that generates a comparison question, which needs
a model to generate questions based on multiple fragments and their relationships.

Fig. 2. Overview of our framework. The top half part is the attribute extractor, and
the bottom half part is the attribute-attention seq2seq module. The original input is
shown in green; the modules are shown in blue; the intermediate files to be generated
are shown in yellow; the generated question are shown in red. (Color figure online)

3 Framework

Given a passage Xp = (xp
1,...,x

p
n), an expected answer A = (xa

1 , ..., x
a
m) and k

compared objects O = {o1, ..., ok}, where oi = (xoi
1 , ..., xoi

w ) ⊂ Xp, CQG aims
to generate a question Y that compares a certain attribute of these compared
objects O and can be answered with the expected answer A. The overall frame-
work is shown in Fig. 2.

The framework can be divided into two parts from top to bottom: an attribute
extractor and an attribute-attention seq2seq module. The workflow starts from
the attributes extractor. Firstly, the attribute extractor extracts one or more tar-
get sentences related to each compared object from the given passages. Then, the
attribute extractor extracts the potential compared attributes among compared
objects from the target sentences and conveys them to the attribute-attention
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seq2seq module as assistance for question generation. Secondly, the attribute-
attention seq2seq module generates questions based on the target sentences. Con-
sidering that some specific fragments in the target sentences are crucial for gen-
erating comparison questions, e.g., the fragments related to potential compared
attributes, the module employs an attention mechanism to focus on the addi-
tional features, i.e., potential compared attributes, compared objects and expected
answers. In the following parts, we will introduce the two modules in detail.

3.1 Attribute Extractor

To generate questions that can attract students to explore the differences
and similarities between multiple objects, the model should extract attributes
that can reflect the differences and similarities between objects in the passage
before constructing the question. The attribute extractor uses Stanford CoreNLP
Toolkit [14] to recognize the entity types of entities other than the object itself
from the target sentences, where these target sentences are the sentences in the
passage corresponding to each compared object. Then we define these entity
types as the attributes of the object. As shown in Fig. 1, we identify related
entities (e.g., “USA” and “1989”) in the target sentence corresponding to the
compared object (i.e., “First of Women”), and then utilize the types of these
entities (i.e., COUNTRY and DATE) as the attributes of the object. Then, we
use the shared entity types in each target sentence as the potential compared
attributes. Specially, when the shared entity type is empty, we utilize all the
entity types that have appeared in each corresponding sentence to represent the
potential compared attributes.

3.2 Attribute-Attention Seq2seq Module

After extracting the potential compared attributes from the attribute extractor,
the attribute-attention seq2seq module (AAs2s) utilizes the potential compared
attributes, compared objects, and answers as additional features to generate
questions. AAs2s is based on a basic encoder-decoder framework, which consists
of three components: additional features encoder, target sentences encoder, and
decoder with attention. The overall framework is shown in Fig. 3. In the following
section, we will introduce AAs2s in detail.

Additional Features Encoder. We take a special token 〈s〉 to concatenate
the additional features, i.e., expected answer A, the compared objects O and the
potential compared attributes C as input Xa = [A, 〈s〉 , O, 〈s〉 , C]. The encoder
uses an one-layer bi-directional LSTM (bi-LSTM),
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−−−−→
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−−→
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←−
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[−→
ha
i ;

←−
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i

]
(3)
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where
−→
ha
i is the hidden state at time step i for the forward LSTM,

←−
ha
i for the

backward.

Target Sentences Encoder. Similarly, the same special token 〈s〉 is used to
concatenate the target sentences as input Xs = [s1, 〈s〉 , ..., sk] ⊂ Xp, where si
is the target sentence corresponding to oi. The encoder uses another individual
one-layer bi-LSTM, and the hidden state of the encoder in the last time step
hs
final is used to represent the whole input Xs,

−→
hs
j =

−−−−→
LSTM(Xs

j ,
−−→
hs
j−1) (4)

←−
hs
j =

←−−−−
LSTM(Xs

j ,
←−−
hs
j+1) (5)

s0 = hs
final =

[−→
hs
m;

←−
hs
m

]
(6)

where
−→
hs
j is the hidden state at time step j for the forward LSTM,

←−
hs
j for the

backward. The
−→
hs
m and

←−
hs
m are the hidden state at last time step.

Fig. 3. Overview of attribute-attention seq2seq module. The bottom left part is the
target sentences encoder, the bottom right part is the additional features encoder, and
the top half part is the decoder.

Decoder with Attention. After encoding the additional features and the
target sentences by encoders, the decoder uses a one-layer uni-directional LSTM
with attention modules to generate the questions employing the above encoded
features.

st = LSTM(yt−1, st−1, ct, o
l
t) (7)
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where yt−1 is the output token of previous time step, st−1 is the hidden state
of previous time step, ct is the context vector, olt is the keyword vector that
are passed through the decoder to compute the decoder hidden state at current
time step st. By the way, we initialize the decoder hidden state s0 with the final
hidden state of target sentences encoder hs

final.
The context vector ct is a representation of the content related to the addi-

tional feature. We obtain ct by calculating st−1 and ha
i ,

eti = vT tanh(Wast−1 + Uah
a
i ) (8)

αti =
exp(eti)∑n

k=1 exp(etk)
(9)

ct =
n∑

i=1

αtih
a
i (10)

where Wa and Ua are trainable matrices, vT is a trainable vector. eti is computed
as the matching score between st−1 and ha

i , αti is computed with normalization
and we take the weighted average of ha

i as context vector ct.
The keyword vector olt captures key information related to Xa in the target

sentences Xs. We obtain olt by attention mechanism termed keyword-net [9] as
follows,

o0t = ct (11)

pltj = Softmax((ol−1
t )Ths

j) (12)

olt =
∑
j

pltjh
s
j (13)

We initialize keyword vector in the first layer o0t with context vector of current
time step ct. Afterward, a normalization matching score between ol−1

t and hs
j

is computed and we take the weighted average of hs
i as keyword vector olt in

current layer l.
In order to make up for the shortcoming of the sequence-to-sequence model

which tends to memorize sequence patterns without reflecting the meaning of
words, Ma et al. [13] proposed a retrieval style word generation layer. Based on
the current decoder structure, we then replace the existing output layer in the
decoder with this word generator layer.

The generator layer utilizes the decoder hidden state st and the context vector
ct to calculate the query qt. Then, by querying qt to each of the word embed-
ding ek, we can calculate the correlation score between qt and ek. Finally, the
normalized value of the scoring function can be used to represent the generation
probability of each word,

qt = tanh(Wq[st; ct]) (14)

score(qt, ek) = qTt Wsek (15)

p(yt) = Softmax(score(qt, ek)) (16)

where Wq and Ws are the trainable matrices.
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4 Experiment

In this section, we discuss (i) the dataset we used in our experiment, (ii) imple-
mentation details, (iii) several evaluation metrics mainly used to assess the qual-
ity of generated questions, and (iv) the models for comparison.

4.1 Dataset

Our experiments are conducted on the HotpotQA dataset [25], which is con-
structed for the task of reading comprehension originally. Each sample includes
a passage, a question, two compared objects, and an expected answer. The ques-
tion can be answered according to the target sentences in the passage, which
correspond to the two compared objects. The expected answer to the question
includes “yes”, “no”, or one of the compared objects. According to the different
methods of constructing passages, the HotpotQA dataset includes two settings:
distractor and full-wiki.

(1) Distractor setting (D-s): The passage includes two target sentences
corresponding to the two compared objects and eight sentences retrieved from
Wikipedia using TF-IDF [15].

(2) Full-wiki setting (F-s): All sentences in the passage are retrieved from
Wikipedia and a compared object may correspond to multiple target sentences,
which will introduce noise.

The dataset contains 10,740 samples for training, 1,487 for testing under dis-
tractor setting, and 1,487 for development under full-wiki setting. We randomly
split the training set into 90% (9,666 samples) for training and 10% (1,074 sam-
ples) for validation.

4.2 Experimental Details

We implement our model in Tensorflow and train the model with a single GTX
2080 Ti. The hyperparameters of our proposed model are described as follows.

In AAs2s, the number of hidden units in two encoders and the decoder
is 350. For both encoder and decoder, we only keep 30k most frequent words
that appeared in the training corpus and replace the rest with <UNK> token.
Besides, 300-dimensional GloVe embeddings [17] pre-trained on 6 billion-token
corpus are used for initialization and frozen during training. Weight normaliza-
tion is applied to the attention module and the dropout layer with Pdrop = 0.4
is also applied for both LSTMs and the attention module. The layer size of the
keyword-net is set to 4.

During training, we optimize the cross-entropy loss function with the gradient
descent algorithm using Adam optimizer [10], with an initial learning rate of
0.001. The mini-batch size is set to 128 and the model is trained up to 10 epochs.

4.3 Evaluation

In order to evaluate the quality of the generated questions, we use automatic
metrics and human evaluation criteria.
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Automatic Metrics. We conduct an automatic evaluation using five metrics:
BLEU(1-4) [16] and ROUGE-L [12], which are standard evaluation metrics for
generating tasks, e.g., machine translation and text summarization. BLEU-n
measures the quality of the candidate by counting the matching n-grams between
the candidate and the reference text. ROUGE-L assesses the candidate based on
the longest common sub-sequence shared by both the candidate and the reference
text. Specially, we use an evaluation package released by [1] to compute them.

Human Evaluation Criteria. In addition to the automatic evaluation, we also
recruit human annotators to judge the quality of responses generated by different
models based on 100 samples [24]. We invite five volunteers with rich educational
experience to evaluate. The samples generated by different models are pooled
and randomly shuffled for each volunteer. Volunteers refer to the questions and
judge the quality of the responses according to the following criteria [5]:

+2: The question is meaningful and matches the compared objects described
in the passage.

+1: The question more or less is consistent with the differences and similar-
ities between the two compared objects described in the passage, or has little
mistakes (e.g., with little grammatical errors or UNK).

+0: The question neither makes sense nor matches the passage or compared
objects.

4.4 Comparative Models for Generation Task

To demonstrate the effectiveness of our framework, we make a comparison for
several generation models.

• S2S [4] uses the complete passage as input for the encoder-decoder model
with an attention mechanism to generate questions.

• NQG [27] selects all target sentences as input, and uses the attributes
extracted by attributes extractor as additional features for question gener-
ation based on S2S.

• S2S-A-AT-MP-GSA [26] utilizes complete passage as input, and includes
copy mechanism, maxout pointer mechanism and gated self-attention to gen-
erate questions based on S2S.

• Answer-Separated Seq2Seq (ASs2s) [9] selects all target sentences as
input, and utilizes the attention mechanism to pay more attention to the
answer information separated from the input for question generation based
on S2S.

• Attribute Extractor+Attribute-Attention Seq2Seq Module (AE+
AAs2s) is our proposed generation framework, which utilizes the attributes,
objects, and answers as additional features to generate a comparison question.

To prove the effectiveness of each part of the additional features, we also
did some ablation experiments based on Attribute-Attention Seq2Seq Module
(AAs2s) as follows:
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• AAs2s contains no additional feature, filled with “PAD”.
• AAs2s-o only contains the additional feature of two compared objects.
• AAs2s-a only contains the additional feature of the target answer.
• AAs2s-c only contains the additional feature of the potential compared

attributes.

5 Results and Analysis

To effectively evaluate the results of multiple models, we utilize automatic met-
rics and human evaluation to evaluate the results separately.

Table 1 gives the result of automatic metrics. We have several findings:

1) Performances of all models in D-s are better than F-s in terms of all the
five metrics. This is because each object in D-s is different from F-s that only
corresponds to one related sentence, which will not introduce other disturbing
sentences to bring the noise.

2) Performance of NQG is better than that of S2S in terms of all the five metrics,
which proves that the additional features we extracted can help the model
generate better comparison questions.

3) Performance of AE+AAs2s is better than that of NQG in terms of all five
metrics. We consider that AE+AAs2s utilizes the attention mechanism better
than the method of directly tagging the position of the fragments in the input
paragraphs.

4) Compared with ASs2s and S2S-A-AT-MP-GSA, our proposed model
AE+AAs2s produces the best results of all five evaluation metrics. This con-
firms the effectiveness of our proposed framework for comparison question
generation.

Table 1. Main automatic metrics results of baselines and our model on HotpotQA
dataset. Bold: the best performance in the column.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

F-s D-s F-s D-s F-s D-s F-s D-s F-s D-s

S2S 19.5 22.3 11.2 12.3 6.2 8.1 3.4 4.5 19.8 20.9

NQG 31.2 33.8 19.8 21.7 12.6 15.7 8.9 10.3 30.8 32.6

S2S-A-AT-MP-GSA 36.6 36.7 23.1 23.3 15.5 15.8 10.8 10.9 31.8 32.6

ASs2s 34.5 35.8 21.9 23.0 14.4 15.0 9.6 9.7 31.9 32.3

AAs2s 25.7 33.5 15.3 19.1 9.8 14.3 6.5 10.5 22.2 28.7

AAs2s-o 33.1 34.2 21.1 22.8 13.8 16.2 9.4 11.8 31.6 33.3

AAs2s-a 34.6 36.8 22.2 23.3 14.7 15.6 9.9 10.5 32.3 32.8

AAs2s-c 29.4 32.8 18.9 21.8 12.9 15.2 8.9 10.9 28.7 29.9

AE+AAs2s 47.8 48.1 31.6 32.2 19.9 21.8 14.5 16.2 47.8 49.2
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Table 2. The human evaluation results of baselines and our model in each category in
100 samples. Bold: the maximum value in the column.

Model +2 +1 +0 AVG

F-s D-s F-s D-s F-s D-s F-s D-s

NQG 66 86 167 153 267 261 0.60 0.65

S2S-A-AT-MP-GSA 71 78 159 162 270 260 0.60 0.63

ASs2s 59 73 142 151 299 276 0.52 0.59

AAs2s 56 81 172 162 272 257 0.57 0.65

AE+AAs2s 106 117 198 201 196 182 0.82 0.87

Table 2 shows the human evaluation result. We have the following findings:

1) The performance of AE+AAs2s is better than that of ASs2s in terms of the
human evaluation metrics. This indicates that ASs2s is making full use of the
information of the answer, but neglects to ensure that the compared objects
corresponding to the answer appear in the generated question, which leads
to poor results of human evaluation.

2) The performance of S2S-A-AT-MP-GSA is similar to that of NQG in terms
of the human evaluation metrics, which shows that using all the sentences in
the passage for question generation brings more noise while introducing more
information contained in the sentences.

3) The gap between NQG and AE+AAs2s will be smaller than the automatic
metrics. This shows that the question with attributes that are selected to
be different from ground truth for comparison among potential compared
attributes is also worth asking in human evaluation.

4) The average scores of automatically generated questions are all lower than the
value of “+1”, i.e., the generated questions only have certain fragments that
are consistent with the two objects described in the passage. This indicates
that there is still a large room for the question generation system to improve.

5.1 Additional Features

To demonstrate the effectiveness of the additional features (i.e., answer, com-
pared objects, and potential compared attributes), we performed compared
experiments on each of them.
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Table 3. The percentage result of
the accuracy (%) of different question-
types in AAs2s and AAs2s-a. Bold: the
best performance in the column.

Model what which are/is

D-s F-s D-s F-s D-s F-s

AAs2s 5.3 11.5 53.7 58.2 23.2 13.9

AAs2s-a 46.5 46.5 73.7 88.4 61.8 74.7

Table 4. The percentage result of the prob-
ability (%) that the two compared objects
appear in a generated question in AAs2s
and AAs2s-o. Bold: the best performance
in the column.

Model o1 o2 o1&o2

F-s D-s F-s D-s F-s D-s

AAs2s 69.8 71.9 70.2 73.2 66.1 68.9

AAs2s-o 93.7 95.0 92.4 93.7 86.5 89.7

Answer. As shown in Table 3, the accuracy of the question type (e.g.,
“what/which/ who/are/is”) of the questions generated by AAs2s-a is higher
than that of AAs2s. This shows that the target answer as additional features
can help our model to generate the same type of questions as the ground truth.
Besides, as shown in Fig. 5a, the weight of the words “dirty pretty things” in
input sentences will increase.

Compared Objects. As shown in Table 4, the question generated by AAs2s-o
contains compared objects (i.e., o1 and o2) with a higher probability than model
AAs2s under the two settings. This indicates that the keyword-net can help
AAs2s-o to focus on the compared objects in the target sentences for question
generation. As shown in Fig. 5b, when we use an object (e.g., “pretty things”)
as additional features, the weight of the words in the passage corresponding to
these two compared objects will be larger.

Compared Attributes. As shown in a case in Fig. 4, when we only utilize the
same attributes (i.e., COUNTRY) as the additional information for the ground
truth, AE+AAs2s can use the information to generate a question like ground-
truth. When the potential compared attribute COUNTRY as the additional fea-
tures, as shown in Fig. 5c, the weight of words “English” related to the compared
attribute in the sentences will increase.

5.2 Case Study

As shown in Fig. 4, we show the output question of our model AE+AAs2s and
other comparative models (i.e., NQG, S2S-A-AT-MP-GSA, and ASs2s) on an
example from the HotpotQA dataset. Firstly, the results generated by S2S-A-
AT-MP-GSA include “BBC”, which indicates that additional noise is introduced
when we take the complete passage as input. Secondly, ASs2s cannot ask two
compared objects in the question, which shows that the method of separating
the answers of the model will prevent the compared object corresponding to the
answer appearing in the question. Thirdly, our model AE+AAs2s can generate a
question similar to the ground truth, which proves the effectiveness of our model.
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Passage: Fireflight is an American Christian rock band formed in Eustis, Florida in 1999...In
2014 he announced the creation of his new band, The Tackals. Dirty Pretty Things were an
English band fronted by Carl Barât...In 2006, it was used as the theme tune to the BBC series
”sorted”.

Ground Truth: Which band is from England, Fireflight or Dirty Pretty Things?
Answer: Dirty pretty things.

NQG: Was Fireflight or Christian rock started first?
AAs2s-o: Who was announced first, Fireflight or Pretty Things?
S2S-A-AT-MP-GSA: Who was in BBC Fireflight or Fireflight?
ASs2s: Which band was formed first, Fireflight or Fireflight?

Potential Compared Attributes: LOCATION; DATE; NATIONALITY
AE+AAs2s: Which band is in England, Fireflight or Dirty Pretty Things?

Fig. 4. Case study of sample output questions generated by human (i.e., ground truth
questions), baselines and our models. We highlight the compared objects in blod.

Fig. 5. (a), (b) and (c) represent the score of the keyword-net after adding the target
answer, compared objects, and compared attributes from a text span in the passage of
the case in Fig. 4, respectively

6 Conclusions

In this paper, we conduct a preliminary study on the comparison question gen-
eration and discuss the challenges encountered when generating. The challenges
encountered are divided into two aspects: the first is how to extract potential
compared attributes that can be used to explore the differences and similarities
between multiple objects and the second is how to utilize the potential compared
attributes as additional information to generate a reliable comparison question.
To address these challenges, we propose a novel framework that can not only
effectively extract potential compared attributes through an attribute extractor,
but also effectively utilize these attributes as the additional feature to the CQG
task through an attribute-attention seq2seq module. Experiments demonstrate
the effectiveness of our method on HotpotQA, which can greatly outperform
benchmarks on QG tasks.
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Abstract. The task of retrieving across different modalities plays a critical role in
food-oriented applications. Modality alignment remains a challenging component
in the whole process, in which a common embedding feature space between two
modalities can be learned for effective comparison and retrieval. Recent studies
mainly utilize adversarial loss or reconstruction loss to align different modali-
ties. However, insufficient features may be extracted from different modalities,
resulting in low quality of alignments. Unlike these methods, this paper pro-
poses a method combining multimodal encoders with adversarial learning to learn
improved and efficient cross-modal embeddings for retrieval purposes. The core
of our proposed approach is the directional pairwise cross-modal attention that
latently adapts representations from one modality to another. Although the model
is not particularly complex, experimental results on the benchmark Recipe1M
dataset show that our proposed method is superior to current state-of-the-art
methods.

Keywords: Food-oriented computing · Cross-modal retrieval · Multimodal
encoders · Modality alignment

1 Introduction

Food plays a vital role in human’s daily life and is closely connected with our health.
With the increasing amount of multimodal data on the World Wide Web, people face
billions of food images, videos, and recipes [1]. Therefore, an appropriate method is
highly desired to retrieve accurate contents across different modalities. Cross-modal
retrieval aims to retrieve relevant items that are of different modalities [2, 3]. In this
task, the heterogeneity gap between different modalities leads to inconsistent feature
distributions. To solve this particular problem, modality alignment is necessary to make
the feature distributions of different modalities consistent [2–5]. The existing research
methods for modality alignment can be roughly divided into two categories. One type
of methods [6–8] uses adversarial loss [9] to map food images and recipes to eliminate
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the gaps between them. In this way, modalities can be corrected aligned to achieve
direct matching between different modalities. Another type of methods [7, 8, 10] mainly
uses reconstruction loss [11] to complement modality alignment. This group of methods
firstly assumes a fixed distribution and then regenerates the modal features according to
their respective distributions.

Despite the promising performance of the methods mentioned above, there are still
some shortcomings. 1) It is well-known that the adversarial learning methods are not
stable [9]. This makes the whole model difficult to train; 2) The reconstruction method
needs to regenerate the features based on predefined distributions [11], which is some-
what idealized. It can be found that modality alignment can be defined as two processes:
feature extraction and modality matching. While previous methods mainly focus on
the latter. However, if insufficient information is extracted, modality alignment will be
challenging.

Unlike previous methods that primarily focus on the modality matching process, we
emphasize the importance of feature extraction in this paper. We propose a method that
utilizes multimodal encoders to extract sufficient information from different modalities.
Then we adopt adversarial learning to achieve the modality alignment. The core of our
proposed method is directional pairwise cross-modal attention. Specifically, we use the
cross-modal attentionmechanism to latently adapt streams from onemodality to another.
Thenmultiplemultimodal encoders are stacked to reinforce the consistency between dif-
ferent modalities repeatedly. The self-attention mechanism [12] is also used to capture
the internal features in one modality. The modal features are repeatedly strengthened
through modal interaction in the whole process, and then the information is further con-
solidated and supplemented. Ultimately, sufficient feature information can be extracted
before the subsequent adversarial learning process. This makes the whole model rel-
atively stable. We conduct experiments on the benchmark Recipe1M [13], and results
demonstrate that the proposed method outperforms the state-of-the-art methods using
adversarial and reconstruction learning.

Our contributions in this paper can be summarized as follows:

(1) We propose to use multimodal encoders to capture the inter- and intra-modality
features. With adversarial learning, our method aims to enhance the very heart
component, i.e. modality alignment in cross-modal retrieval.

(2) We propose to use stackedmultiple encoders to improve the effect of feature extrac-
tion. Ablation experiments show that multiple encoders are pretty effective and
necessary.

(3) Experiments on a benchmark dataset show that our proposedmethod is significantly
superior to the state-of-the-art cross-modal retrieval methods with less sufficient
feature information extracted.

2 Related Work

Cross-modal retrieval aims to retrieve results in one modality by using queries from
another modality, such as using text to retrieve related images [1–3]. Due to the hetero-
geneous gap among different media types, the distributions of different modalities are
usually inconsistent. This makes it difficult to measure the similarity of different modal-
ities directly. Therefore, in cross-modal retrieval tasks [14, 15], the modality alignment
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method is crucial to make the distributions of features from different modalities consis-
tent. Adversarial learning commonly uses Generative Adversarial Networks (GAN) [9]
to map the features from different modalities to eliminate the gap between them [15].
The adversarial Cross-Modal Retrieval (ACMR) method [6] first proposes to use adver-
sarial learning to learn an effective common subspace for cross-modal retrieval. The
adversarial Cross-Modal Embedding (ACME) [8] method further improves the align-
ing process by introducing cross-modal translation consistency. Recipe Retrieval with
Generative Adversarial Network (R2GAN) method [7] is also a GAN-based method. It
consists of one generator and two discriminators. In this way, features may be aligned
to finish direct matching between different modalities.

Reconstruction methods encourage the embedding of one modality to cover the
corresponding information of another modality, enhance modality alignment during
this process. For example, in ACME, new images or texts are regenerated according
to existing features and then used to enhance modality alignment. Modality-Consistent
Embedding Network (MCEN) method [10] proposes to use the latent variable model to
reconstruct the latent representations with learned embeddings.

Although these approaches perform well, there are still some problems. It is well-
known that adversarial learning-based methods are not stable [9]. It makes the whole
model difficult to train. The reconstruction method needs to regenerate features based on
fixed distributions [10]. This makes the whole process complicated. It is also somewhat
idealized.

The attention mechanism is firstly proposed to use in machine translation for transla-
tion and alignment [12]. From amacro perspective, the attentionmechanism is borrowed
from the study of human visual perception [12]. In fact, humans selectively focus on parts
of a message, not all of it. In particular, the self-attention mechanism is quite effective
in various cross-modal tasks [16–18].

The co-attention mechanism has also been widely used in cross-modal tasks [19,
20]. For example, Zhang et al. [19] utilize the co-attention network to perform the
hashtag recommendation for multimodal microblogs. Cross-modal attention is initially
designed to study the problem of image-text matching [21]. Lee et al. [22] present a
stacked cross-attention mechanism to discover the whole latent alignments to infer the
image-text similarity. The MCEN method [10] uses cross-modal attention to capture
the semantic alignment relationships between images and recipes. Though effective,
there is a lack of studies on using multiple cross-modal attention and self-attention for
cross-modal retrieval.

The original Transformer [12] model is an encoder-decoder [23] structure for
sequence-to-sequence tasks, such as translation from one language to another. Inspired
by the powerful presentation capabilities of Transformer, it has now been extended to
the field of computer vision [24, 25] and multimodal tasks [26, 27]. However, unlike
the original Transformer structure, the multimodal encoders do not adopt an encoder-
decoder structure. Instead, it is based on the encoding of Transformer sequences and
consists of multiple stacked cross-modal attention blocks that are directional and appear
in pairs [12].

In recent years, multimodal encoders have been applied to some specific multimodal
tasks. For example, Tsai et al. [26] propose to apply multimodal encoders to the analysis
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of human multimodal languages. They adapt elements across modalities via the atten-
tion mechanism to achieve multimodal interaction on unaligned language sequences.
There are also studies on using multimodal encoders for image captioning [27]. Deep-
stacked attention blocks are used to perform complex multimodal reasoning to ensure
the accuracy of captions.

Transformers are pretty compelling. However, most of the previous work directly
replaces all complicated modules with Transformers. They have not been used as feature
extractors and in modality alignment before.

3 Model Framework

This section introduces the proposed cross-modal retrieval framework, which combines
multimodal encoders and adversarial learning to implement modality alignment.

3.1 Overview of the Overall Framework

Problem Formulation. Given a set of image-recipe pairs (vi,ri) for i = 1, 2, 3, . . . ,N ,
where a food image vi ∈ V and a recipe ri ∈ R (V and R correspond to the image
and recipe domains, respectively). The cross-modal retrieval task is to use the data
from one modality (such as vi) as a query to find the data in another modality (such
as ri) that related to it. Due to the heterogeneous gap between different modalities, the
feature distributions of vi and ri are usually inconsistent. Our goal is to make the feature
distributions of V → Ev and R → Er consistent after modality alignment, where
Ev ∈ R

d and Er ∈ R
d denote the distributions of d -dimensional image embedding

and recipe embedding, respectively. For simplicity purpose, in this paper, we use v to
represent a food image vi, and r to represent a recipe ri.

Overall Framework. The proposed framework is shown in Fig. 1. Our framework has
four components: initial embedding generation, multimodal encoders, modality align-
ment, and cross-modal learning. In the first component, images and texts are processed
to obtain their initial semantic vectors using traditional deep neural network models.
Then these vectors are input into the multimodal encoders to acquire sufficient inter-
and intra-modal feature information. These features are then passed through themodality

Fig. 1. Our proposed framework
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alignment component to make features from different modalities consistent and com-
parable. Finally, we use the cross-modal learning component to implement the retrieval
and sort the retrieval results.

3.2 Initial Embedding Generation

We now describe the four components in detail.We use the convolutional neural network
(CNN) ResNet-50 [28] to extract the initial features of food image v. We denote the
extracted vector by Sv. Unlike previous methods, we use the output of the last residual
block of ResNet-50 to facilitate the inputs into multimodal encoders. We denote the
output sequence as Sv = (vi1, vi2, vi3, . . . , vin), where vi1, vi2, vi3, . . . , vin represent the
elements in a n-dimensional visual vector.

The recipes typically consist of raw materials (in the form of words) and oper-
ation instructions (in the form of sentences). We process them separately. The oper-
ation instructions are extracted with LSTM [29], and the raw materials are trans-
formed into embedded vectors with bi-directional LSTM. The original feature embed-
ding of the recipes is the concatenation of vectors of operation instructions and raw
materials, denoted as S = (

Sins, Sing
)
, where Sins = (

S1ins, S
2
ins, . . . , S

m
ins

)
, Sing =(

S1ing, S
2
ing, . . . , S

t
ing

)
. The final recipe embedding is then obtained through a full con-

nection layer, denoted as Sr = (ri1, ri2, ri3, . . . , rin), where ri1, ri2, ri3, . . . , rin denote
the elements in a n-dimensional recipe vector.

3.3 Multimodal Encoders

Wenowdescribe the core of ourmethod.Theoverall structure of themultimodal encoders
is shown in Fig. 2. This component is composed of multi-layer cross-modal attention
modules together with a self-attention layer. It is worth mentioning that all the attention
mechanisms involved in this component are multi-head attention mechanisms. They
can capture more accurate latent relationships and contextual semantics from different
angles than the single-head attention mechanism [12]. The cross-modal attention mod-
ules repeatedly reinforce the sequence features in the target modality with the influence
of the source modality through the stacked network. The multi-layer structure makes
sure that the fine-grained features of both modalities can be extracted. After interactions
between different modalities, the self-attention layer further models the intra-modal
information inside each modality. The features can be further enriched to supplement
the semantic information by correctly capture long-range dependencies.

Asmentioned before, Sv and Sr obtained from the first component are taken as inputs
into the multimodal encoders. After passing through the cross-modal attention modules,
we can obtain a set of new feature vectors Zv′ and Zr′ . By further enhanced through
the self-attention layer with more intra-modal information considered, we finally get
the feature vectors Zv and Zr with sufficient semantic information. This process can be
viewed as the first alignment stage before we pass them through the modality alignment
component.

A cross-modal attention layer allows one modality to receive the information pro-
vided by the fine-grained relationships between itself and anothermodality. For example,
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Fig. 2. Cross-modal encoder component

“whole kernel corn” in a recipe (r) should correspond to the part of “corn kernels” in
a food image (v). According to these fine-grained relationships, more attention can be
paid to the corresponding parts from the source and the target modality. In this way, the
influence of the input order can be eliminated with much less computational load. The
cross-modal attention in the component is directional and pairwise. This means that the
recipe features can help to reinforce the food image features and vice versa. Besides,
stacked cross-modal attention modules ensure the feature information can be enhanced
through repeat interaction between modalities.

More formally, we define the Querys as Qv = SvWQv , Keys as Kr = SrWKr , and
Values as Vr = SrWVr , where WQv ∈ Rdv×dk , WKr ∈ Rdr×dk , and WVr ∈ Rdr×dk are
weights. The process of image features reinforce recipe features can be formulated as
follows:

Yr = MEv→r(Sv, Sr) = softmax

(
QvKT

r√
dk

)
Vr = softmax

(
SvWQvW

T
Kr
STr√

dk

)

SrWVr (1)

HereMEv→r is single-head cross-modal attention from image to recipe, the Querys are
from the image, and the Keys and Values are from the recipe.

Similarly, the process of recipe features reinforce image features can be formulated
as follows:

Yv = MEr→v(Sr, Sv) = softmax

(
QrKT

v√
dk

)
Vv = softmax

(
SrWQrW

T
Kv
STv√

dk

)

SvWVv (2)

Here MEr→v is also single-head cross-modal attention from recipe to image.
As shown in Eqs. (1) and (2), Querys come from the source modality, while Keys

and Values come from the target modality. When the multimodal encoders are stacked
withD layers, the calculation of the feed-forward network from layer 1 toD is as follows
(take image to recipe as an example):

Z [0]
v→r = Sr = S[0]r
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Ẑ [i]
v→r = ME[i],mul

v→r

(
LN

(
Z [i−1]
v→r

)
,LN

(
S[0]v

))
+ LN

(
Z [i−1]
v→r

)

Z [i]
v→r = f

θ
[i]
v→r

(
LN

(
Ẑ [i]
v→r

))
+ LN

(
Ẑ [i]
v→r

)
(3)

where fθ is a feed-forward sublayer parametrized by θ , andME[i],mul
v→r means amulti-head

version of MEv→r at layer i (1 ≤ i ≤ D).LN denotes the layer normalization.
Multimodal encoders contain a self-attention module in this last layer. This is used to

consolidate and supplements the features Zr′ = Z [D]
v→r , Zv′ = Z [D]

r→v to the final vectors Zv
and Zr . Note that the inputs to the self-attention layer come from cross-modality results
in only one direction (i.e., Zr′ or Zv′ ). It is defined as:

Zv = softmax

(
Qv′KT

v′√
dk

)

Vv′

= softmax

(
Zv′WQv′W

T
Kv′Z

T
v′√

dk

)

Zv′WVv′

(4)

Zr = softmax

(
Qr′KT

r′√
dk

)

Vr′

= softmax

(
Zr′WQr′W

T
Kr′Z

T
r′√

dk

)

Zr′WVr′

(5)

where Querys Qv′ come from the image feature Zv′ , calculated as Qv′ = Zv′WQv′ . Keys
and Values are also from the image feature Zv′ , calculated as Kv′ = Zv′WKv′ , Vv′ =
Zv′WVv′ .WQv′ ,WKv′ andWVv′ are weights. The notaions for Zr′ have the same meaning.

3.4 Modality Alignment

After we obtain the enhanced feature vectors from the multimodal encoders, adversar-
ial learning can be used to enforce the distribution consistency of the two modalities.
Specifically, the food image features and recipe features finally obtained are input into
the GAN for modality alignment. In this paper, WGAN-GP [9] is used to train the GAN.
For food images and recipes with similar semantics, adversarial learning tries to achieve
a feature representation such that a discriminator DZ cannot distinguish whether the
feature representation was obtained from the image or the recipe. Finally, features from
different modalities can be correctly aligned.

We define the loss function for the modality alignment component as follows:

LMA = Ev∼pimage [logDZ (Zv(v))] + Er∼precipe [1 − logDZ (Zr(r))] (6)

and solved by a min-max optimization:

min
Zv,Zr

max
Dz LMA
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Unlike previous works [7, 8, 30], the modal features inputted into this GAN net-
work[31] have been aligned by multimodal encoders. Compared with the unaligned
features, the aligned version can make adversarial learning more stable and accurate.
The reason for unstable comes from the fact that the distributions of true and false data
are distinct at the beginning of the training process. The discriminator can distinguish
them very quickly, leading to the result that the generator will optimize slowly or even
stop updating. In this paper, the pre-aligned features ensure that the distributions of two
modalities are not far away. They even have a certain amount of overlaps, so the discrim-
inator will be difficult to distinguish between these features, making the whole process
in a relatively stable state.

3.5 Cross-Modal Learning

After modality alignment, the final features Ev and Er are obtained through a full con-
nection layer with shared weights. We use the triplet loss with hard sample mining [8]
to minimize the distances between the embeddings of different modalities with similar
or identical semantic and maximize the distances between the embeddings of different
modalities with dissimilar semantic. A triplet comprises one feature embedding as an
anchor point in one modality, a positive and a negative feature embedding from another
modality. As shown in Eq. (7), Ev

a represents an anchor point from the food image fea-
tures, while Er

p and E
r
n represent a positive sample and a negative sample from the recipe

features correlated with the anchor point or uncorrelated with the anchor point, respec-
tively. The positive instance corresponds to the one we want to be similar to the anchor
point, and the negative instance should be dissimilar to the anchor point. In our case, we
also have another type of triplets by using the recipe feature as the anchor point. The
loss Ltri−loss is defined as:

Ltri−loss = min
Ev,Er (

∑

V

[
d
(
Ev
a,E

r
p

)
− d

(
Ev
a,E

r
n

) + α
]

+
∑

R

[
d
(
Er
a,E

v
p

)
− d

(
Er
a,E

v
n

) + α
]
)

(7)

Here d(.) is the Euclidean distance, subscripts a, p, and n refer to anchor, positive
and negative samples, respectively, and α is the margin of error. To improve learning
convergence, we use the triplet loss with hard sample mining to give preference to the
most distant positive instances and the closest negative instances during the training
procedure.

3.6 Training and Inference

The total training objective of our framework is formulated as:

L = λLMA + Ltri−loss (8)

where λ is the trade-off parameter. Cross-modal learning component Ltri−loss(Ev,Er)

receives two high-level feature vectors Ev for images and Er for recipes, and com-
putes the retrieval loss. Modality alignment component LMA(Zv,Zr) aims to achieve
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modality-invariance using an adversarial loss to align the two distributions. The feature
representations Ev and Er are used for retrieval tasks.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate the effectiveness of our proposed method on the benchmark Recipe1M
dataset. The dataset is made up of about a million food images and recipe pairs. It is
one of the largest collections of public available recipe data along with food images.
In this paper, we use the separation of the original data splits [13], using 238,999 pairs
of image-recipe pairs for training, 51,119 pairs of image-recipe pairs for validation and
51,303 pairs for testing.

We evaluate our proposed method and all baseline methods using widely adopted
metrics as in prior works [7, 8, 10]. We compute median rank (MedR) and recall rate at
topK (R@K) on sample subsets in the test partition to evaluate the retrieval performance.
MedRmeasures the median retrieval rank position of true positives over all test samples,
and the ranking position starts from 1. R@K refers to the percentage of queries for which
matching instances are ranked among the top K results. We report results on 1,000 (1K)
randomly selected pairs of samples and 10,000 (10K) pairs of samples in the test sets.
The L2 distances between the embedding vectors of one modality and the embedding
vectors of another modality are calculated. The ranking results are sorted in descending
order. Moreover, it should be noted that we do not incorporate the additional semantic
labels used by prior work [7, 8, 10], such as food-classes and labels of commonly used
ingredients.

Table 1. Main results.

Test-set size Baselines Image to recipe Recipe to image

MedR R@1 R@5 R@10 MedR R@1 R@5 R@10

1K CCA 15.7 14.0 32.0 43.0 24.8 9.0 24.0 35.0

R2GAN 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3

ACME 2.0 44.3 72.9 81.7 2.0 45.4 73.4 82.0

MCEN 2.0 48.2 75.8 83.6 1.9 48.4 76.1 83.7

Ours 1.0 56.8 80.6 88.4 1.0 57.5 80.6 89.3

10K R2GAN 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8

ACME 10.0 18.1 39.9 50.8 9.2 20.1 41.5 51.9

MCEN 7.2 20.3 43.3 54.4 6.6 21.4 44.3 55.2

Ours 4.0 24.2 59.9 79.7 4.0 26.1 60.6 79.1
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4.2 Baselines

We compare against several state-of-the-art baselines:
CCA [32]: In this method, cross-modal retrieval is calculated by Canonical

Correlation Analysis. It aims at maximizing the correlation between similar pairs.
R2GAN [7]: R2GAN is a GAN-based method for cross-modal retrieval. It consists

of a generator and two discriminators to learn cross-modal embeddings. At the same
time consider semantic dependencies.

ACME [8]: This method is a state-of-the-art method for cross-modal food retrieval
tasks. It improves the modality alignment and translation consistency by using multiple
GAN components.

MCEN [10]: This method uses a latent variable model to achieve interaction between
different modalities and enhance modality alignment by the reconstruction method.

4.3 Implementation

For the image initial embedding generation, ResNet-50 is used to embed the food images.
It consists of 7 × 7 = 49 columns of 2048 dimensional convolutional outputs. We
add a full connection layer to obtain an embedding with 1024 dimensions. For the
recipes, LSTM and bi-directional LSTM are used to encode the operation instructions
and raw materials of the recipe respectively. After concatenating, an embedding with
1024 dimensions was also obtained for recipes. We use three layers and four attention
heads for our multimodal encoders as it gives better results. We present the ablation
studies in Sect. 4.5 to analyze the effects of different layers. The margin of error α in
the triplet loss function of the cross-modal learning component is set to 0.3. In Eq. (8),
the trade-off parameter λ in the model loss function is set to 0.005.

(a) Image to Recipe                     (b) Recipe to Image

0
20
40
60
80

100

R@1 R@5 R@10

Image to Recipe

layer-1 layer-3 layer-5

0
20
40
60
80

100

R@1 R@5 R@10

Recipe to Image

layer-1 layer-3 layer-5

Fig. 3. Ablation study: multimodal encoders with different layers.
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4.4 Main Results

We present the results of our proposed method against various representative baseline
methods in Table 1. We show the results for image to recipe retrieval and recipe to
image retrieval separately. As can be seen from the table, the performance of the method
presented in this paper outperforms all baselines on all evaluation metrics with different
test sizes. On the 1K test dataset, we obtain the MedR value of 1.0, which demonstrates
the best performance. The performance of our method by using the R@K metric is also
better than all other methods. The value of R@1 is nearly 8% higher than the best-
performed baseline MCEN. The results in the top 10 of the retrieval results (R@10) are
nearly 5% higher. This indicates that our method can retrieve more number of matched
results in the top 10 results for both image to recipe and recipe to image retrieval tasks.
These results show that using multimodal encoders for enhanced modality alignment is
quite adequate for the cross-modal retrieval task. Sufficient semantic feature information
can be extracted by using this component to further help modality alignment on top of
adversarial learning.

We now turn to the results on the 10K setting. It is obvious that the performance of all
methods decreases significantly since the retrieval task becomesmuchmore challenging.
It may be caused by the difficulty of finding matched results in a large number of similar
samples. However, we notice that the performance decrease of our method is much less
than that of other methods. The value of MedR reaches 4.0, and the values of R@1
to R@10 are gradually increasing, more quickly when comparing with other baseline
methods. Although R@1 was only 4% (Image to Recipe) to 5% (Recipe to Image)
better than the best-performed baseline MCEN, the results of R@5 and R@10 are 16%
and 24% better than MCEN, respectively. It shows that in a larger dataset, our method
focuses more on the characteristics of different modalities from multiple angles. It can
use particular regions on images to locate the most similar samples.
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Fig. 4. Ablation study: results with and without multimodal encoders.
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4.5 Ablation Studies

The core part of our framework is the multimodal encoders. To evaluate the influence
of different sizes of cross-modal encoder layers, we conduct ablation studies on several
variants of architectures. As shown in Fig. 2, the cross-modal encoders are composed
of D layers. When the number of layers is 1, it means that initial embeddings are only
passed through cross-modal attention and a self-attention layer. The number of 3 or 5
layers indicates these cross-modal encoders are actually stacked. Figure 3 presents the
results of 1, 3 and 5 layers with different R@Kmetrics, where Fig. 3(a) shows Image to
Recipe retrieval, Fig. 3(b) shows Recipe to Image retrieval. In either direction, it can be
seen from the results that the method with 3 layers outperforms methods with all other
number of layers.

Intuitively, the larger number of layersmeans that themodel is deeper to capturemore
complex semantic relationships between different modalities. Henceforth, the extracted
information should be more sufficient than a shallow model. However, on the other side,
a deeper model means that there is a greater danger of overfitting. This is confirmed
in our experiments that the method with 5 layers works worse than the method with 3
layers. This may be due to the repeated extraction.

To demonstrate the importance of using multimodal encoders to extract information
before adversarial learning, we compare the performance of our full method with a
method that the multimodal encoders removed (denote as w/o ME).

The experimental results are shown in Fig. 4. We can see that our method is always
better than w/o ME in all R@K results. Removing multimodal encoders will lead to
insufficient feature information extraction. It is obvious that the multimodal encoders in
our method play a vital role in modality alignment.

5 Conclusion

In this paper, we propose a novel cross-modal retrieval method in the health domain.
We use multimodal encoders to capture the inter- and intra-modality features. With
adversarial learning, ourmethod aims to enhance the very heart component, i.e.,modality
alignment in cross-modal retrieval. Experiments on the benchmark Recipe1M dataset
with different evaluation metrics demonstrate the efficiency and effectiveness of our
proposed method. We also present ablation studies to examine the impact of different
numbers of layers and our multimodal encoders as a complete component. We aim to
thoroughly examine the pros and cons of using both multimodal encoders and decoders
for modality alignment for cross-modal retrieval purposes in the future.
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Abstract. Received Signal Strength Indication (RSSI) has been increas-
ingly deployed in indoor localization and navigation. Comparing with
traditional fingerprint-based methods, crowdsourced method can col-
lect RSSIs without expert surveyors and designated fingerprint collec-
tion points low-costly and efficiently. However, the crowdsourced RSSIs
may contain some false and incomplete data. In this paper, we focus on
two quality types of indoor crowdsourced RSSI sequences: missing values
and false values. For the received signal strength values, we propose a
RSSI sequences alignment and matching method to complete the missing
values. For the location labels, we construct an indoor logical graph to
capture the indoor topology and spatial consistent. To repair the miss-
ing and false location labels, we design a AP distribution based mapping
method to map crowdsourced RSSIs to floor plan.

Keywords: Data cleaning · RSSI · Indoor localization ·
Crowdsourcing

1 Introduction

Crowdsourcing is a low-cost and efficient way to collect the RSSIs of indoor space
from crowd participants without expert surveyors [5,6]. The RSSIs collected by
crowdsourced users are consist of received signal strength values and location
labels. However, the crowdsourced RSSIs may contain some false and missing
values, which hinder the process of further localization and navigation. Hence it
is of fundamental importance to clean the indoor crowdsourced RSSI sequences.
We use the following example to introduce the problem of indoor crowdsourced
RSSI sequences cleaning.

Example 1. Figure 1 shows a set of crowdsourced RSSI sequences S. Given m
APs, a RSSI is an m-dimensional vector of signal strength values received from
m APs with a partition-level location label. Assuming that topological floor plan
is known and shown in Fig. 2. The crowdsourced RSSI sequences data may have
some missing and false values: the RSSIs from f113 to f115 of u1 and f210 of u2

have missing received signal strength values. The RSSI f14 of u1 and f23 to f27
of u2 have missing location labels in single RSSI and continuous multiple RSSIs.
The RSSI f16 has false location label. The goal is to complete the missing values
and repair the false values. The ground truth is shown in Fig. 1.
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 267–275, 2021.
https://doi.org/10.1007/978-3-030-85899-5_20
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Fig. 1. Example of crowdsourced RSSI sequences with missing and false values.

To alleviate these above problems, we propose a cleaning method for the
missing and false values of indoor crowdsourced RSSI sequences. The main idea
is cleaning the location labels with the RSSI values and the logical floor plan,
and cleaning the RSSI values with location labels and the logical floor plan. To
complete the missing received signal strength values, we propose a RSSI sequence
alignment method to match the overlap segments of different RSSI sequences,
and estimate the missing values with the aligned RSSIs. To solve the device
diversity, we propose a novel RSSI distance metric. To detect the false location
labels, we construct a logical graph of floor plan to capture indoor topology and
spatial constraint. To repair the missing and false location labels, we propose a
mapping method which can map RSSIs to partitions of floor plan. We consider
the property of AP distribution and the order relationship of RSSI sequence.

Related Work. There are several work about indoor data cleaning [9]. Asif
[2] studied data cleaning for indoor RFID tracking data which focused on two
relevant tasks: temporal redundancy elimination and spatial ambiguity reduc-
tion. Asif [1] also presented a learning-based approach to clean raw indoor RFID
data. They proposed the Indoor RFID Multivariate Hidden Markov Model to
capture the uncertainties of indoor RFID data. However, these RFID data clean-
ing methods cannot clean the missing and false RSSI data and location labels.
At present, there is no work about RSSI data cleaning and crowdsourced RSSI
sequence cleaning. The most similar work is that Ge Yan [3] proposed a least
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square localization method for wireless sensor networks using RSSI with the aid
of the condition number of coordinate matrix to avoid the appearance of outliers.
However, this work can only avoid the outliers in RSSIs, and cannot repair the
false values and missing values.

2 Preliminaries and Problem Statement

In this section, we formalize the data cleaning for crowdsourced RSSI sequences.

Definition 1. Crowdsourced RSSI Sequence with Location Label: A
crowdsourced RSSI sequence si = {<fi1, pi1>, <fi2, pi2>, ..., <fin, pin>} is a
sequence of n crowdsourced RSSIs with location labels. Each RSSI fij in si is
a vector of received signal strength values received from m APs at location pi
denoted as < fi > =<(ri1, ri2, ..., rim)>, and fij has a time stamp tij and a
partition-level location label pij.

Definition 2. Data Cleaning for Crowdsourced RSSI sequences: Given
a set of crowdsourced RSSI sequences S = {s1, s2, ..., sn} where si =
{<fi1, pi1>, <fi2, pi2>, ..., <fik, pik>} and < fi, pi> = <(ri1, ri2,..., rim), pi>.
Some received signal strength values rij (1 ≤ j ≤ m) of single RSSI fi and some
{r1j, r2j,..., rsj} (1 ≤ s ≤ k) of continuous multiple RSSIs are missing, some
location labels pqj of single RSSI fq and some {p1j, p2j,..., ptj} (1 ≤ q, t ≤ k) of
continuous multiple RSSIs are missing or false. We want to complete the missing
rij, and repair missing and false pqj.

3 Cleaning the Received Signal Strength Values

In this section, we introduce how to clean the missing received signal strength
values in single RSSI and continuous multiple RSSIs. When the missing received
signal strength value is in single RSSI, we estimate the missing values with
average of the relative entries of two adjacent RSSIs.

3.1 Alignment and Matching of RSSIs in Different RSSI Sequences

To complete the missing received signal strength values in continuous multiple
RSSIs, we propose a RSSI sequence alignment and matching method and utilize
the RSSIs from aligned and matched RSSIs to estimate the missing values.

To solve the problem of device diversity, based on [4,7], we consider not only
absolute RSSI values, but also the signal strength differences from different APs.
We construct the signature vectors to measure signal difference between different
APs, where r̂ist = ris − rit and r̂jst = rjs − rjt (1 ≤ s ≤ m − 1, 2 ≤ t ≤ m). We
propose the RSSI distance metric as following and set α = β = 1/2.

dis(fi, fj) = α

√

√

√

√

m
∑

k=1

(rik − rjk) + β

√

√

√

√

m−1
∑

s=1

(r̂ist − r̂jst)
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Given two RSSI sequences, s1 = {f11, f12, f13, ..., f1p} and s2 = {f21, f22,
f23, ..., f2q}. We want to find the overlap RSSIs of s1 and s2. Given two RSSI
sequences s1 and s2, to match two different RSSI sequences, For f1,i in s1 and
f2,j in s2, we compute the following bound to restrict the aligned RSSIs.

bound =
1

4
(dis(f1,i, f1,i−1) + dis(f1,i, f1,i+1) + dis(f2,j , f2,j−1) + dis(f2,j , f2,j+1))

We compare dis(f1,i, f2,j) with bound. If dis(f1,i, f2,j) ≤ bound, we can
match and align f1,i with f2,j .

3.2 Cleaning Missing Values in Continuous Multiple RSSIs

Given a RSSI sequence si, there are missing values from fi,p+1 to fi,q−1 in si.
We align and match fi,p−1 and fi,q+1 of si with RSSI sequences in S, and get
k crowdsourced RSSI sequences S′ = {s1, s2,..., sk} whose segments are aligned
and matched with si. For each missing rij , we use the average of these k matched
RSSIs to estimate the missing values as rij = (

∑k
l=1 rlj)/k.

4 Cleaning the Location Labels

In this section, we introduce how to clean the missing and false location labels.

Fig. 2. Example of indoor floor plan. Fig. 3. The logical graph of the floor plan.

4.1 Logical Graph Gl: Topology and Constraints of Indoor Space

Given the topological floor plan, we divide the indoor space into partitions with
rooms and walls. Each partition pi is a small piece of independent space, pi is
represented as a node. There is an edge ek between two adjacent partitions pi
and pj . Then we can construct the logical graph Gl as shown in Fig. 3.
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Lemma 1. Given a RSSI sequence s and logical graph Gl, for each two adjacent
location labels pi and pj of s, if pi and pj are the same partition or there is an
edge ek between pi and pj in Gl, then s is spatial consistent for location labels.

With Lemma 1, given a RSSI sequence s and logical graph Gl, for each two
adjacent pi and pj in s, if they are not in the same partition and there is no
edge between them in Gl, then pi and pj are marked as candidate false location
labels. Those location labels which are marked twice are false location labels.

4.2 Repair of False and Missing Location Label for Single RSSI

For a false or missing location label, if its previous and next RSSIs are in the same
partition, we repair it with its previous RSSI. If they are in different partitions,
we utilize the following distance metric to compute their difference.

d(fi, fj) =

√

√

√

√

m
∑

k=1

(rik − rjk)2/(tj − ti) (1)

Given a RSSI fj and its previous RSSI and next RSSI are fi and fk, the location
labels of fi and fk are pi and pk. If d(fi, fj) < d(fj , fk), the location label of fj
is repaired as pi, otherwise, the location label of fj is repaired as pk.

4.3 Repair of False and Missing Location Labels for Continuous
Multiple RSSIs

To repair the false and missing location labels for continuous multiple RSSIs, we
transform the problem to map RSSIs without location labels to floor plan.

Definition 3. Floor Plan Mapping with Crowdsourced RSSI Sequence:
Given a RSSI sequence si = {fi1(ps), fi2, ..., fik(pe)}, the first and last RSSI
have position labels ps and pe. The topological floor plan is consist of indoor
partitions P = {p1, p2, ..., pj} which are connected together. We want to map
each RSSI fi in si to the partitions in P , and add partition label for each RSSI.

Since the APs are deployed in different partitions, we can construct the AP
distribution of RSSI sequence and connection path. Given a RSSI sequence s
with n RSSIs, base on the triangulation theory, we construct AP distribution of
RSSI sequence sap = {APi, ..., APk, ..., APl} which is the sequence of APs which
are the top-3 strongest signal strength APs for each fi in s. Given two vertexes
pi and pj in Gl, the connection path cp =< pi, pk, ..., pl, pj > from pi to pj is
a sequence of consecutive vertexes that can connect pi and pj on Gl. We can
also construct AP distribution for connection path cpap = {APj ,..., APp,..., APl}
which is the sequence top-3 strongest signal strength APs for each pi in cp.

Lemma 2. Given RSSI sequence s and connection path cp, their AP distribu-
tions are sap and cpap, if sap can match with cpap, then s can match with cp.
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Based on the observation that the similarity two adjacent RSSIs in two dif-
ferent partitions is smaller than that in the same partition, we can divided RSSI
sequence into segments and map the RSSIs in si to the partitions. Given a RSSI
sequence si, with Eq. 1, we can compute the difference sequence of each two
adjacent RSSIs in si as dseq = (d12, d23, ..., dn−1,n), where dij = d(fi, fj).

Lemma 3. Given a RSSI sequence s = {f1, f2, ..., fi, fj , ..., fn} and its dif-
ference sequence dSeq = {d12, d23, ..., dn−1,n}, if di,j > di−1,j−1 and di,j >
di+1,j+1, the si can be divided by fi and fj as s = {< f1, f2, ..., fi >, < fj, ...,
fn >}.

With Lemma 3, if knowing the number of segments nums of s, we can divide s
into nums segments by the top-(nums−1) RSSI distances dij . We match the AP
distributions of RSSI sequence and connection path, and divide s into segments
and match each segment with the partition pi in the floor plan. Algorithm 1
describes the procedure of mapping RSSIs to the indoor partitions.

Algorithm 1: Floor plan mapping for RSSI sequences
Input: A RSSI sequence s and topological floor plan graph Gl

Output: The mapping pairs < fi, pi > between fi in s and pi in Gl

1 Hdis ← ∞, nums ← 0, nump ← 0;
2 Find the non-redundant RSSI sequence s′ for s;
3 for each RSSI fi in s′ do
4 Find the {APi, APj , APk} which have the top-3 strongest signal strength;

5 Construct the AP distribution sap of s′;
6 Find the non-redundant connection paths CP={cp1, cp2,..., cpk} from ps to pe;
7 for each non-redundant connection path cpi do
8 Construct the AP distribution cpapi of cpi;
9 if hamDis(cpapi , sap) <= Hdis then

10 Hdis = hamDis(cpapi , sap);
11 Count the nump of cpi;
12 nums = nump;

13 for each RSSI fi in s′ do
14 Compute d(fi, fi+1);

15 Construct the difference sequence dseq;
16 Find the top-(nums-1) entries dij in dseq;
17 Divide s′ into nums segments with dij ;
18 Map the fi in each segment to the relative partitions pi;
19 return the mapping pairs < fi, pi >;

5 Experimentation and Evaluation

In the experiments, we use the following two real indoor RSSI data sets: UJIIn-
doorLoc Data Set [8]: We extract 500 RSSIs as crowdsourced RSSIs and con-
struct 50 crowdsourced RSSI sequences with 5 different devices. We select 9 APs



Data Cleaning for Indoor Crowdsourced RSSI Sequences 273

and use the RSSIs with coordinates as the ground truth. Wi-Fi Received Sig-
nal Strength measurements: The indoor RSSIs are collected in our building.
We select 5 APs and use four different mobile devices and collect 50 location-
tagged RSSIs sequences with total 500 location-tagged RSSIs as the ground
truth. For each data set, we randomly delete received signal strength values in
single RSSI and continuous multiple RSSIs of 50 RSSIs, and randomly delete
and modify location labels in single RSSI and continuous multiple RSSIs of 100
RSSIs. All the algorithms were implemented using C++. The experiments were
run on a PC with an Intel 2.93 GHz Quad Core CPU i7 and 4 GB memory with a
500 GB disk. RClean is our proposed method, where RClean-5 and RClean-
9 are with 5 APs and 9 APs. LSOP is the method proposed by [3]. L2 Dist
method locates user’s position with L2 distance without data cleaning.

5.1 Accuracy of Location Labels Cleaning

We evaluate the accuracy of the location labels cleaning by evaluating the accu-
racy of mapping RSSIs to floor plan. We compute the mapping average accuracy:

Mapping accuracy =
number of RSSIs repaired with right location labels

number of RSSIs with false and missing location labels

Figure 4(a) and Fig. 5(a) show the mapping accuracy when varying the number
of RSSIs. Label cleaning is the our propose location labels cleaning method.
Nearby cleaning is the method which directly uses the adjacent location labels
to repair the missing location labels. The accuracy of repairing RSSIs to right
location labels is larger than 95% with different number of RSSIs.
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Fig. 4. The result on UJIIndoorLoc data set.
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Fig. 5. The result on Wi-Fi Received Signal Strength measurements data set.
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5.2 Accuracy of Localization

To evaluate the accuracy of cleaning the missing received signal strength values,
we evaluate the average accuracy of indoor localization [7]. We compute the
Average accuracy with 100 randomly generated localization queries. Figure 4(b)
and Fig. 5(b) show the average accuracy when varying the number of RSSIs.
With the increase of RSSI number, the localization accuracy of out proposed
method is range from 80% to 90%.

5.3 Average Error Distance

We compute the distance between the localization position with the ground truth
position. Figure 4(c) and Fig. 5(c) show the average error distance when varying
the number of RSSIs. We can find that the average error distance is less than
4 m when the number of RSSIs is large than 300.

6 Conclusion

In this paper, we propose a cleaning method for the missing and false values of
crowdsourced RSSI sequences. To complete the missing received signal strength
values, we propose a RSSI sequences alignment and matching method. To repair
the missing and false location labels, we construct an indoor logical graph and
propose a floor plan mapping method.
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Foundation of China (62072088), Fundamental Research Funds for the Central Univer-
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Abstract. Interactions between users and videos are the major data
source of performing video recommendation. Despite lots of existing rec-
ommendation methods, user behaviors on videos, which imply the com-
plex relations between users and videos, are still far from being fully
explored. In the paper, we present a model named Sagittarius. Sagittar-
ius adopts a graph convolutional neural network to capture the influ-
ence between users and videos. In particular, Sagittarius differentiates
between different user behaviors by weighting and fuses the semantics
of user behaviors into the embeddings of users and videos. Moreover,
Sagittarius combines multiple optimization objectives to learn user and
video embeddings and then achieves the video recommendation by the
learned user and video embeddings. The experimental results on multi-
ple datasets show that Sagittarius outperforms several state-of-the-art
models in terms of recall, unique recall and NDCG.
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1 Introduction

In recent years, online streaming platforms develop rapidly. On the mainstream
online streaming platforms (e.g., YouTube and MX Player), the number of daily
active users can easily reach hundreds of millions, where users are constantly
changing their needs of cultural entertainment and tastes. In order to improve
user experience and increase user stickiness to platforms, video recommendation
becomes an indispensable part of the online streaming platforms.
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Video recommendation, in common with other item recommendation tasks,
has to face a large amount of sparse user-video interactions which contain multi-
ple user behaviors such as clicking, sharing and downloading videos. Further, we
note that the behaviors in the video recommendation more or less indicate user
preferences, although their roles differ from ones in the e-commerce scenarios
where some behaviors such as place-an-order clearly reveal the user preferences.

In general, the interactions between users and videos are the most important
data source for top-k video recommendation, since they imply user preferences on
videos and prevailing trends of videos. To maintain the characteristics of original
user-video interactions to the greatest extent, we plan to model interactions as
a bipartite user-video graph and learn embeddings of users and videos from the
graph first, and then achieve the video recommendations. Logically, the videos
interacted with a user can be used to enrich the user’s embedding, because these
interactions might reflect the user preference on the videos. On the other hand,
a group of users who have interacted with a video can also be regarded as the
side information of the video to measure the collaborative similarity between
videos, therefore they can also be used to enrich the embedding of the video.
For digging out the influence between users and videos from a large-scale sparse
bipartite user-video graph, we turn to a convolutional neural network on the
graph to learn embeddings of users and videos. As a result, we propose a model
named Sagittarius. The contributions of our work are summarized as follows.

• We highlight that the different user behaviors imply the different degrees of
user preferences on videos. To fully understand user preferences on videos, we
quantify the behaviors as weights on the edges while building the bipartite
graph, and then design a graph convolution network (GCN) to propagate the
embeddings of users and videos across the edges of the bipartite user-video
graph, so as to mine the influence between users and videos.

• We highlight that top-k video recommendation can be optimized from differ-
ent ranking metrics. Further, we adopt a combination of multiple optimiza-
tion objectives (including one major and two minor objectives) to guide the
embedding learning. In particular, we propose to add weights of user behav-
iors to optimization objectives.

• We conduct extensive offline experiments and online A/B tests. The offline
experimental results on five datasets show that Sagittarius outperforms sev-
eral state-of-the-art models in terms of recall, unique recall and NDCG. More-
over, we conduct online A/B test in MX Player. Sagittarius behaves better
than two existing models in MX Player, which proves the effectiveness of
Sagittarius in a real-world production environment.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 describes our Sagittarius model. Section 4 gives the experimental
results and analyses. Finally, the paper is concluded in Sect. 5.
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2 Related Work

Our work is related to the research under two non-orthogonal topics: GNN
(Graph Neural Network)-based collaborative filtering, video recommendation.

GNN-based collaborative filtering combines representation learning on
graphs [7] and collaborative filtering. The basic procedure is to model user-
item interactions as one or multiple graphs, design a graph neural network (e.g.,
a GCN) to learn the node embeddings, and then apply the learned embeddings
of items and users to achieve recommendation tasks.

Obviously, item graphs can be constructed from user-item interactions where
nodes denote the items that users interact with and directed edges indicate the
relations between two item nodes. For example, Equuleus [22] constructs a homo-
morphic video graph and then develops a node attributed encoder network to
generate video embeddings. SR-GNN [18] builds the directed item graphs for
interaction sequences and then develops a GNN to capture complex item transi-
tion and an attention mechanism to fuse user’s long-term and short-term inter-
ests. GC-SAN [19], an improved version of SR-GNN, borrows the self-attention
structure from Transformer and combines a multi-layer self-attention network
with original SR-GNN.

Besides item graphs subordinated to homomorphic graphs, heteromorphic
graphs can be built. Taking the work on bipartite graphs as an example, Berg et al.
present a graph auto-encoder GCMC [2], where the encoder contains a graph con-
volution layer that constructs user and item embeddings through message passing
on the bipartite user-item graph and the bilinear decoder predicts the labeled links
in the graph. Wang et al. propose NGCF [16] which models the high-order connec-
tivity on the bipartite user-item graph. By stacking multiple embedding propaga-
tion layers, NGCF can generate the embeddings of users and items on the user-
item graph, which encodes the collaborative signal between user and item. Wei et
al. propose MMGCN [17] for micro-videos, which constructs a bipartite user-item
graph for each modality, yields modal-specific embeddings of users and videos by
the message passing of graph neural networks, enriching the representation of each
node with the topological structure and features of its neighbors, and then obtains
final node embeddings by a combination layer. Moreover, MBGCN [9] builds a uni-
fied heterogeneous graph where an edge indicates the behavior between a user and
an item or the relation between items. In particular, the complex behavior-aware
message propagations are designed for the GCN in MBGCN.

Recently, for exploring the intrinsic relations of interaction data and/or fusing
various side information, some work develops different types of graphs, such as
semi-homogenous graphs in Gemini [20], the directed multigraph and the short-
cut graph in LESSR [4], the item graph, category graph, and shop graph in
M2GRL [15], and attribute graphs in Murzim [5].

In addition, He et al. propose LightGCN [8], a simplified version of NGCF,
which deletes feature transformation and nonlinear activation in NGCF so as to
decrease the unnecessary complexity of the network architecture. The authors
claim that LightGCN can achieve better recommendation performance than
NGCF. Similarly, Chen et al. propose LR-GCCF [3] which is a linear residual
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graph convolutional neural network based on graph collaborative filtering. By
removing nonlinear transformations in the network, it reduces multiple param-
eter matrices of different layers of the network into a single matrix, thereby
effectively reducing the amount of learnable parameters.

As for video recommendation, recent progress mainly depends on deep learn-
ing. For example, Gao et al. [6] adopt recurrent neural networks and consider
video semantic embedding, user interest modeling and user relevance mining in
a unified framework. Li et al. [11] present a model which is composed of a novel
temporal graph-based LSTM and multi-level interest layers to model diverse
and dynamic user interest and multi-level user interest. Moreover, Li et al. [10]
employ GCNs to recommend long-tail hashtags for micro-videos.

Video recommendation is also a hot spot in the industry. For example, Baluja
et al. [1] propose a random walk-based model for video click-through rate pre-
diction in YouTube, Xu et al. [21] adopt GATs (Graph Attention Networks)
and the knowledge graph to generate video recommendations for the store-shelf
and autoplay scenarios in Hulu, and Xue et al. [23] develop a spatio-temporal
collaborative filtering approach for offline on-demand cinemas of iQIYI.

Comparing to existing work, our Sagittarius model falls in the scope of GNN-
based collaborate filtering, and designs a new graph convolution network to dis-
tinguish user behaviors and employs multiple optimization objectives. Further,
differing from the recommendation models which exploits multi-behavior data,
our model adopts a lightweight way to fuse user behavior semantics.

3 Sagittarius Model

3.1 Problem Formulation

In the top-k video recommendation scenario, we model user-video interactions as
a bipartite user-video graph, denoted by G = (U ∪ V, E ,R), where U is the set of
users, V is the set of videos, and U ∪V constitutes the set of nodes. Edge (u, v, r) in
E represents that the type of the interaction between user u ∈ U and video v ∈ V
is r ∈ R, where R is a set of all interactive behavior types, including clicking,
giving a like, sharing, downloading and etc. In addition, we define a priori function
φ(r) : R → R, which maps an interactive behavior to a score. The function is used
to measure the degree of user preference by the user behavior, and higher scores
indicate greater user interest. Particularly, the score of non-interaction is set to 0.
While building the bipartite graph, we take the value of φ(r) as the weight Wuv

of edge (u, v, r). Our goal is to learn the embeddings of the users and videos and
apply the embeddings to recommending top-k videos for users.

3.2 Model Architecture

Sagittarius consists of the embedding layer, the convolution layers, the combi-
nation layer, and the prediction layer. Figure 1 shows the architecture of our
Sagittarius model.
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Embedding Layer. The embedding layer provides the initial embeddings of
users and videos. Formally, we denote the user embedding matrix by Eu ∈ R

|U|×d̄

and the video embedding matrix by Ev ∈ R
|V|×d̄, where d̄ denotes the initial

embedding size. Eu and Ev are initialized randomly. In this way, given the user u
and its ID one-hot vector xu ∈ R

|U|, its embedding eu ∈ R
d̄ is set to eu = ET

uxu.
Similarly, for the ID one-hot vector xv ∈ R

|V| of video v, its embedding is
expressed as ev = ET

v xv.

Fig. 1. The architecture of Sagittarius

Convolution Layers. Each convolution layer is responsible for performing the
convolution operation on each node and its neighbors of the bipartite graph so
that the embeddings will be passed and transformed across edges of the graph.
In particular, for a certain user-video interaction pair (u, v), in the l-th graph
convolution layer, we propagate embedding information from the neighbor node
v to the target node u by Eq. (1).

m(l)
u←v = cuve(l−1)

v (1)

In Eq. (1), m(l)
u←v denotes the message passed from node v to u, and e(l−1)

v is
the embedding of node v output by the (l−1)-th convolution layer. In particular,
e(0)v = ev, ev is the initial embedding of the video v output by the embedding
layer. cuv is the scaling factor, which is defined in Eq. (2) where Nu and Nv are
the sets of neighbors of node u and node v, respectively.
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cuv =

√
φ(r)

|Nu| |Nv|
e(l−1)
u

T
e(l−1)
v

||e(l−1)
u ||2||e(l−1)

v ||2
(2)

Further, we combine the aggregated neighbor information with the informa-
tion of the node u by Eqs. (3)–(4).

h(l)
u = e(l−1)

u ||
∑
v∈Nu

m(l)
u←v (3)

e(l)u = ReLU(W1h(l)
u ) (4)

In the above equations, || denotes the concatenation operation, e(l−1)
u is the

embedding of the node u output by the (l − 1)-th convolution layer, and matrix
W1 ∈ R

d̄×2d̄ maps h(l)
u to the d̄-dimensional embedding space, which is a learn-

able parameter. By these equations, e(l−1)
u is concatenated with the aggregated

information
∑

v∈Nu
m(l)

u←v, and then the concatenated result is sent to a nonlin-
ear transformation, obtaining the user embedding of the current layer.

Combination Layer. After the iterative operations of multiple convolution
layers, we can obtain the output of each layer of the L convolution layers, namely
{e(1)u , e(2)u , . . . , e(L)

u }. In order to improve the expressiveness of the embeddings,
we perform a layer-wise combination operation as follows.

hu = e(1)u ||e(2)u || · · · ||e(L)
u (5)

zu = W2hu (6)

Specifically, we apply the concatenation operation shown in Eq. (5) to con-
catenate the embeddings output by different layers, and perform the linear trans-
formation shown in Eq. (6) to combine the low-order embeddings extracted
from the low-level convolution layers and the high-order embeddings extracted
from the high-level convolution layers. The achieved effect is that the embed-
dings output by different layers can predict the score cooperatively. In Eq. (6),
W2 ∈ R

d×Ld̄ maps hu to a d-dimensional embedding space, where d is the dimen-
sion of the embeddings. Thus, the finally learned zu combines the information
of the user node u itself and the collaboration information from the multi-order
neighborhood nodes. In the same way, we can obtain the embedding zv of the
video v.

Prediction Layer. We adopt the following bilinear decoder to calculate the
affinity score of each user-video pair, sort videos by the score, and then filter the
videos that the user has interacted with to get top-k recommendations.

ŷu,v = g1(zu, zv) = zTuQ1zv (7)

In Eq. (7), Q1 is a parameter that needs to be learned, zu and zv are the
embeddings of the node u and the node v obtained from Eq. (6).
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3.3 Learning Objectives

Generally speaking, the recommended videos should be the top-k videos ranked
by a certain metric or score. We choose the probability of the next click on each
video as the metric, where the probability can be estimated based on the set
of videos that user has interacted with or based on the sequence of videos that
the user has interacted with. While employing a score, we can say that given a
specific user, the score of the video that the user has interacted with should be
greater than the score of the video that has not been interacted with. Therefore,
we construct three objective functions, i.e., video partial order preserving func-
tion, video click-through rate prediction function and next click video prediction
function.

Video Partial Order Preserving Function. In practical, we measure the
partial order between videos instead of total order of videos, not only because
the total order is often unavailable or costs high, but also because the partial
order relationship between videos is enough to determine the relative ranking of
recommended videos and alleviate the problem of positional deviation.

We adopt the BPR [13] loss function to optimize the partial order relationship
between videos. Thus, for each user-video interaction (u, v, r), i.e., one positive
sample, we randomly select 10 negative samples to construct a set O containing
10 quadruple (u, v, r, w), where user u performs no behavior on video w.

In addition, we regard the preference score difference between the positive
sample and the negative sample, i.e. Wuv −Wuw = φ(r)−0 = φ(r) as the weight
of this quadruple, where φ(r) is the function defined in Sect. 3.1.

Finally, we define the BPR loss function L1 for optimizing the ordering of
videos as follows:

L1 = − 1
|O|

∑
(u,v,r,w)∈O

φ (r) ln σ (g1 (zu, zv) − g1 (zu, zw)) (8)

In Eq. (8), g1 (zu, zv) = zTuQ1zv, and σ is the sigmoid activation function.
This function is our major learning objective.

Video Click-Through Rate Prediction Function. In the video recommen-
dation scenario, most of the user-video interactions are very sparse and mainly
focus on click behaviors. Considering that clicking can reflect the user’s degree
of interest in the video to a large extent, we recognize the necessity for optimiz-
ing the prediction of the click-through rate of users on the video. We adopt the
binary cross entropy loss function to predict the video click-through rate.

Specifically, we reuse the negative samples sampled for Eq. (8). For each
quadruple (u, v, r, w) ∈ O, we define the cross entropy loss function as follows.

L2=− 1
|O|

⎛
⎝ ∑

(u,v,r,w)∈O
φ (r) · log σ (g2 (zu, zv)) + log (1 − σ (g2 (zu, zw)))

⎞
⎠ (9)
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In Eq. (9), g2 (zu, zv) = zTuQ2zv where Q2 is a learnable parameter, and
φ(r) is used as the weight of the positive sample, and the weight of the negative
sample is set to 1.

Next Click Video Prediction Function. User-video interactions can be
viewed as a sequence which implies the change of user preferences on videos
over time. Therefore, we can set the prediction of the next click video by the
interaction sequences as an optimization objective.

Given that a user has the interaction sequence (v1, v2, . . . , vT ) ∈ S, where S is
the set of interaction sequences, for predicting the next click video, we apply the
standard single layer GRU, taking zv1 , zv2 , . . . , zvT−1 as input, and then regard
the hidden state representation output by the GRU at the last time step as the
embedding qvT

of the video sequence. Next, we send qvT
to a fully connected

layer and then apply softmax to predict the distribution of the next click video
vT . The corresponding equations are as follows.

qvT
= GRU(zv1 , zv2 , . . . , zvT−1) (10)

p (vT |v1, v2, . . . , vT−1) = softmax(WsqvT
) (11)

In Eq. (11), W|V|×d
s maps the sequence representation qvT

to the |V| dimen-
sion space of the video set. Furthermore, we take the negative log likelihood of
vT as the function to be optimized, i.e., the sequence loss, as shown below.

L3 = − 1
|S|

⎛
⎝ ∑

(v1,v2,...,vT )∈S
log p (vT |v1, v2, . . . , vT−1)

⎞
⎠ (12)

Loss Function. The loss function of the Sagittarius model is the weighted
summation of the three optimization functions, as shown below.

L = λ1L1 + λ2L2 + λ3L3 (13)

In Eq. (13), λ1, λ2 and λ3 denote the coefficients, which specify the impor-
tance of different functions, respectively.

3.4 Recommendation Acceleration

When facing large-scale users, it will take a lot of time to generate recommenda-
tion results if only using a single machine. In order to speed up the generation
of recommendation results, we perform the generation on Spark engine. The
detailed implementation is as Algorithm 1.

4 Evaluation

In this section, we evaluate the top-k video recommendation performance of
Sagittarius by conducting offline experiments and online A/B tests. We list corre-
sponding results and discussions, answering the following four research questions
(RQs):
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Algorithm 1. Generating top-k video recommendations
1: According to the obtained embeddings zu, zv, construct the list Y in the form of[

(u1, zu1) , . . . ,
(
u|U|, zu|U|

)]
, and form final video embedding matrix Z ∈ R

|V|×d.

2: For each user u ∈ U , obtain the historical interacted video collection Su, and then

organize them into the form of
[
(u1, Su1) , . . . ,

(
u|U|, Su|U|

)]
.

3: Perform a concatenation operation of Y in Step (1) with the result of Step (2),
and the result is like [(u, zu, Su), . . . ].

4: Broadcast parameters Z and Q1 in g1(zu, zv) = zTuQ1zv to each executor.
5: For each user u ∈ U , this is, each [(u, zu, Su), . . . ] in the result of Step (3), perform

the following Map operation:

5.1 According to zu,Z and Q1, calculate the affinity score g1(zu, zv) of u for each
video v ∈ V.

5.2 Traverse the set of videos which are sorted in descending order of the affinity
score. For each video v, if v ∈ Su then it is filtered, else it is added to the top-k
recommendation result. When the number of recommended videos reaches k,
the loop ends.

6: Perform the Reduce operation and output the recommendation result of each user
to the storage file (e.g., S3 in MX Player).

RQ1: How well does Sagittarius perform for the top-k video recommenda-
tion, compared to the state-of-the-art GNN models?

RQ2: What is the impact of the design choices of Sagittarius on the perfor-
mance of the top-k video recommendation?

RQ3: What is the impact of the hyper-parameters of Sagittarius on the
recommendation performance?

RQ4: How does Sagittarius perform in the live production environment, e.g.,
when serving MX Player, one of India’s largest streaming platforms?

4.1 Experimental Setup

Datasets. We adopt four publicly available datasets, i.e., MovieLens-100K and
MovieLens-10M from MovieLens [12], and Amazon-Beauty and Amazon-Digital
Music from Amazon Product Review[14]. For the latter two datasets, we filter
out items which are reviewed less than five times and users who give less than
five reviews. For these four datasets, we split them into train, validation and test
sets by a ratio of nearly 7:1:2.

Besides, we construct a dataset MXPlayer-4D-5M from the MX Player log,
which contains four-day data from Oct. 31st, 2020 to Nov. 3rd, 2020. We take
the data in the first three days as a train set from which we take 10% as a
validation set, and then take the data of the last day as a test set.

Table 1 lists the statistics of these five datasets. Roughly, we can classify
datasets by density into dense and sparse datasets, where MovieLens-100K
and MovieLens-10M belong to the former and Amazon-Beauty, Amazon-Digital
Music and MXPlayer-4D-5M datasets belong to the latter. In addition, as shown
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Table 1. Statistics of datasets

Dataset #User #Item #Ratings Density Rating levels

MovieLens-100K 943 1682 100, 000 0.0630 1, 2, . . . , 5

MovieLens-10M 69, 878 10, 677 10, 000, 054 0.0134 0.5, 1, 1.5, 2 . . . , 5

Amazon-Beauty 12, 008 3, 570 92, 512 0.0022 1, 2, . . . , 5

Amazon-Digital Music 4, 325 1, 662 38, 722 0.0054 1, 2, . . . , 5

MXPlayer-4D-5M 5, 534, 825 13, 463 29, 471, 665 0.0004 0.5, 1, 1.5, 2 . . . , 5

in the last column of Table 1, we set different φ(r) for different datasets. Taking
MXPlayer-4D-5M as an example, we set φ(r) to 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0, 4.5 and 5 for user’s single click, multiple clicks, watching whose duration is
between 10 s and 1 min, watching whose duration is between 1 min and 5 min,
favorite, watching whose duration is between 5 min and 30 min, watching whose
duration is greater than 30 min, sharing, like, and download, respectively.

Metrics. We adopt Recall@K, URecall@K (Unique Recall@K) and NDCG@K
(Normalized Discounted Cumulative Gain@K) as evaluation metrics. As for URe-
call@K, we say that for a user, if there is at least one positive sample among the
top-k recommended items, then the URecall@K is 1, otherwise it is 0. The Unique
Recall@K of the recommendation system is the average of Unique Recall@K values
of each user. That is, Unique Recall@K is equivalence to Hit@K.

4.2 Competitors

For each dataset, we search the optimal parameters for each model using the
train set and validation set, and then conduct the comparative experiments on
the test set using the models under optimal parameters.

We choose the following state-of-the-art models which are built on bipartite
user-item interaction graphs as the competitors:

1. GCMC [2]: a graph auto-encoder which predicts labeled links in the bipartite
user-item graph. To apply GCMC to our scenario, we treat different user
behaviors in our scenario as different labeled links in GCMC.

2. NGCF [16]: a GCN based method which refines embeddings of users and
items by embedding propagation.

3. LightGCN [8]: a simplified version of NGCF which omits the feature trans-
formation and nonlinear activation.

4. MMGCN [17]: a GCN based method which generates separate node embed-
dings for each modality and then combines them into the final ones. To apply
MMGCN to our scenario, we treat each category of user behaviors in our
scenario as a modality individually.

To be fair, for Sagittarius and all the above methods, we adopt 2-layer con-
volutional neural networks, set the dimensions of user and video embedding to
64, and set the number of negative samplings in BPR loss function to 10. We
adopt Adam optimizer, setting the learning rate to 0.01.



A Behavior-Aware GCN Model for Video Recommendation 289

4.3 Performance Comparison

We conduct performance comparison experiments, comparing Sagittarius with
four competitors. Table 2 lists the recommendation performance of Sagittarius
and all the competitors.

Table 2. Recommendation Performance. The best performance in each row is in bold,
and the second best performance in each row is underlined.

Datasets Metrics GCMC NGCF LightGCN MMGCN Sagittarius Improvement

MovieLens-100K Recall@10 0.0356 0.0361 0.0367 0.0343 0.0382 4.09%

URecall@10 0.4542 0.4657 0.4683 0.4497 0.4751 1.45%

NDCG@10 0.3207 0.3219 0.3285 0.3108 0.3392 3.26%

MovieLens-10M Recall@10 0.0068 0.0074 0.0073 0.0072 0.0076 2.70%

URecall@10 0.4651 0.5081 0.5058 0.4981 0.5142 1.20%

NDCG@10 0.2502 0.2863 0.2761 0.2714 0.2963 3.49%

Amazon-Beauty Recall@10 0.0362 0.0340 0.0357 0.0372 0.0445 19.62%

URecall@10 0.0661 0.0652 0.0658 0.0681 0.0768 12.78%

NDCG@10 0.0573 0.0562 0.0571 0.0587 0.0604 2.90%

Amazon-Digital Music Recall@10 0.0257 0.0251 0.0254 0.0265 0.0311 17.36%

URecall@10 0.0723 0.0701 0.0716 0.0713 0.0815 12.72%

NDCG@10 0.0995 0.0887 0.0913 0.1004 0.1016 1.20%

MXPlayer-4D-5M Recall@10 0.1653 0.1539 0.1367 0.1710 0.1794 4.91%

URecall@10 0.2975 0.2913 0.2748 0.3014 0.3147 4.41%

NDCG@10 0.2139 0.2094 0.1985 0.2172 0.2261 4.10%

From Table 2, we can make the following observations and inferences:

1. On dense datasets, Sagittarius, LightGCN and NGCF outperform GCMC
and MMGCN. However, on sparse datasets, Sagittarius and MMGCN behave
better than GCMC, LightGCN and NGCF, which shows that, in the scenarios
with sparse datasets, differentiating between different interactive behaviors
and model them separately are effective.

2. LightGCN does not perform as well as NGCF on datasets except MovieLens-
100K, Amazon-Beauty and Amazon-Digital Music. These results are different
from the ones in [8], which illustrate that deleting the feature transformation
and nonlinear activation will not always obtain the stable improvement in
performance and the actual effect of LightGCN might depend on the datasets
or scenarios.

3. Whether it is for dense datasets or sparse datasets, Sagittarius outperforms
other comparison models in all metrics. The reasons can be summarized as fol-
lows. Firstly, Sagittarius quantifies interactions of users on items and applies
the quantitative values to the messages needed to be propagated in the GCN.
Secondly, Sagittarius quantifies interaction behaviors in weights to guide the
objective function to pay more attention to samples with the high interac-
tion value. Thirdly, Sagittarius adopts a combination of multiple optimization
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objectives to tradeoff the relationship between different objectives, thereby
fully mining the information in the interactions and improving the concen-
tration level of the model.

4.4 Ablation Analyses

We conduct the ablation study to observe the effectiveness of different compo-
nents in Sagittarius including three optimization objectives (denoted as CTR,
Sequence, BPR, respectively), behavior weighting (denoted as Behavior). Table 3
shows the detailed results of the ablation study.

Table 3. Ablation study of Sagittarius. The best performance in each row is the number
in bold, and the worst performance in each row is underlined.

Datasets Metrics Sagittarius - CTR - Sequence - BPR - Behavior

MovieLens-100K Recall@10 0.0382 0.0376 0.0374 0.0362 0.0377

URecall@10 0.4751 0.4687 0.4652 0.4575 0.4691

NDCG@10 0.3392 0.3314 0.3279 0.3217 0.3354

MovieLens-10M Recall@10 0.0076 0.0074 0.0072 0.0069 0.0074

URecall@10 0.5142 0.5068 0.4976 0.4753 0.5117

NDCG@10 0.2963 0.2907 0.2883 0.2648 0.2935

Amazon-Beauty Recall@10 0.0445 0.0423 0.0378 0.0365 0.0382

URecall@10 0.0768 0.0751 0.0739 0.0724 0.0735

NDCG@10 0.0604 0.0591 0.0579 0.0571 0.0587

Amazon-Digital Music Recall@10 0.0311 0.0295 0.0274 0.0254 0.0287

URecall@10 0.0815 0.0783 0.0746 0.0703 0.0765

NDCG@10 0.1016 0.0967 0.0912 0.0897 0.0924

MXPlayer-4D-5M Recall@10 0.1794 0.1643 0.1624 0.1452 0.1712

URecall@10 0.3147 0.2916 0.2937 0.2758 0.3024

NDCG@10 0.2261 0.2105 0.2088 0.1936 0.2193

From Table 3, we find that removing the BPR optimization objective leads
to the largest drop in performance metrics and no matter which optimization
objective is removed, the performance decreases on all datasets, which shows
that combining multiple optimization objectives actually can help improve per-
formance.

On the other hand, on the sparse datasets, the performance of Sagittarius-
behavior which removes the weighting of interaction behavior is not as good as
the one of intact Sagittarius, which is our expectation. On the dense dataset, the
performance of the Sagittarius-behavior has not much difference from the intact
model. This shows that on sparse datasets, the behavior-aware strategy, i.e.,
differentiating from interaction behaviors and converting interaction behaviors
into weights to guide learning objectives to pay more attention to high-affinity
user-item pairs, can indeed improve recommendation performance.
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4.5 Impact of Hyper-parameters

In this section, we analyze the impact of hyper-parameters. Due to the limit of
space, we only select three important hyper-parameters, that is, λ1, λ2, and λ3,
and conduct experiments to observe the performance under different values of
λ1, λ2, and λ3.

For the convenience of experiments, we change one of three parameters from
0.7 to 1.3 with the increment of 0.1 while setting the rest parameters to 1.
Figures 2(a)–(c) show the results on MovieLens-100K and Figs. 2(d)–(f) show
the results on Amazon-Beauty, where all the blue lines with solid circles show
the performance under different λ1 but λ2 = 1 and λ3 = 1, all the orange lines
with solid squares show the performance under different λ2 but λ1 = 1 and
λ3 = 1, and all the grey lines with solid pentagons show the performance under
different λ3 but λ1 = 1 and λ2 = 1.

From Fig. 2, we find no matter which parameter is adjusted, the change trends
of different performance metrics are the same, that is, with the change of any
hyper-parameter value from small to large, the performance varies from a low
value to a high one and finally moves to a low one. This observation illustrates
that substantially increasing or decreasing the parameter value to emphasize or
weaken some objective will slow down the performance. In addition, as shown
in Fig. 2, when values of three parameters are within [0.9, 1.1], the performance
is relatively good. Therefore, we assign the same value (i.e., 1) to these three
parameters.
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Fig. 2. The influence of λ1, λ2 and λ3 on MovieLens-100K and Amazon-Beauty
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4.6 Online A/B Test

We have deployed Sagittarius in the production environment of MX Player to
serve top-k video recommendation scenarios. We observe the difference in per-
formance between Sagittarius and two existing recommendation models in MX
Player. One comparison model is to recommend top-k videos based on the videos
clicked by users recently, and the other one is to recommend videos according to
user profiles. Figure 3 shows the CTRs of three models recommending movie-type
videos from Sep. 13rd, 2020 to Sep. 23rd, 2020.
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Our Model Based on Related Videos Based on User Profiles

Fig. 3. Online A/B Test (Sep. 13th, 2020–Sep. 23th, 2020)

From Fig. 3, we can see that the CTRs of Sagittarius are significantly bet-
ter than the existing recommendation models. During the ten-day observation,
Sagittarius is always in the first place, which shows the effectiveness of Sagit-
tarius. Currently, the recommendation results obtained by Sagittarius are used
to generate user’s personalized card. This personalized card is entitled “Movies
Based on Your Viewing” and shown on the start screen in the MX Player App.

5 Conclusion

To improve the performance of top-k video recommendation in MX Player, we
propose a model named Sagittarius in the paper. Sagittarius extracts the collabo-
rative relations in the bipartite user-item graph to the node embeddings through
the convolution layers. Meanwhile, in Sagittarius, we quantify the behaviors in
the user-video interactions and apply them to guide the message propagation
and the optimization of the recommendation task. More importantly, for the
top-k video recommendation, we propose to choose the videos by multiple met-
rics and adopt a combination of three optimization objects to drive the training
of the model. Results from offline experiments and online A/B tests illustrate
that Sagittarius is suitable for top-k recommendation scenarios with sparse data,
in addition to MX Player.
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Abstract. Group recommendations extend individual user recommen-
dations to groups, which have become one of the most prevalent topics in
the recommender system and widely applied in catering, tourism, movies,
and many other fields. The key to group recommendation is how to aggre-
gate the preferences of different group members and calculate the group’s
preferences. However, the existing aggregation strategy is static and sim-
ple. First, they ignore that the preferences of members will change over
time. Second, they fail to consider that member’s influence is different
when the group makes decisions on different activities. To this end, this
paper proposes a new novel model for Group Recommendation using
Hierarchical Attention Mechanism (GRHAM), which can dynamically
adjust the weight of members in group decision-making. Our model con-
sists of two layers of attention neural networks, the first attention layer
learns the influence weights of members when the group makes the deci-
sion, and the second attention layer learns the influence weights between
group members. Besides aggregating the preference of group members,
we further learn group topic preferences from the historical data. We
conduct experiments on two real datasets, and the experimental results
show that our model outperforms other group recommendation models.

Keywords: Group recommendation · Recommender system ·
Attention mechanism · Preferences aggregation

1 Introduction

Recommender systems have played an important role in the information systems
owing to their excellent ability to handle the information overload issue. Recom-
mender systems can provide personalized information services for users and helps
service providers to adjust their strategy to gain more income, both users and ser-
vice providers benefit from it. At present, recommender systems have been widely
used in many fields, such as social networks, e-commerce, news, and information,
etc.

Existing research on recommender systems are mainly focused on rec-
ommending items to individual users, such as mobile recommender systems,
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context-aware recommender system, social recommender system and so on
[12,16,20,25]. However, the recommended items are not intended for personal
in many circumstances, but rather for group activities. For example, watching
movies with family, planning a trip with other travelers, having dinner with
friends. Therefore, the recommended item is extended from a user to a group,
and the system that recommends to the group is called the group recommender
system [11]. Personalized recommendation methods can be applied to group
recommendation by treated each group as a virtual user. However, they only
perform well for persistent groups with sufficient persistent group-item interac-
tion records, and perform poorly for occasional groups with only a few or even
no historical group-item interactions in group recommendation. Traditional per-
sonalized recommendation methods do not meet the demand of groups.

Different from individual recommendation systems, there are two key chal-
lenges in group recommendation. One is how to aggregate the preferences of all
the members for making group recommendation. Group recommendation needs
to consider the preferences of each member in the group and make the recom-
mendation results meet the needs of all members as much as possible. Another
one is how to model the complex and dynamic group decision-making process.
Each member plays a different role in the group, so it will show different influ-
ences when getting the final results in group decision-making process. Such as
user A may have a higher impact weight than user B when the group decides
on which place in Asia to travel, but have a lower impact weight than user B
when the group decides on which place in Europe to travel. Because user A often
travels to Asia, user B often travels to Europe. Besides, the interaction among
group members will also affect group decision-making. For example, user C has
a closer relationship with user A than user B, user C has more impact weight on
user A when the group makes a decision. In general, the preference aggregation
method can be divided into two categories: model aggregation and recommenda-
tion aggregation. The model aggregation is first to fuse the member preference
model according to a fixed strategy for generating a group preference model. The
recommendation aggregation is to first calculate a prediction score for each group
member and then use a predefined strategy to generate a group prediction score.
Existing approaches mainly applied a predefined and fixed strategy to aggregate
the preferences of group members, Such as average [3,11], least misery [1], max-
imum satisfaction [5], and so on. However, these aggregation strategies can not
dynamically adjust the weight of members’ decisions and capture the complex
and dynamic decision-making process. Recently, the neural attention mechanism
has been widely used in deep learning. Cao et al. [6] proposed a group recommen-
dation model based on attention mechanism, which uses attention mechanism
to dynamically adjust the weight of users in the group decision-making process
which is more flexible. But it ignores the interaction between group members
and not consider influence between group members.

To solve the above problems, we propose a novel model for Group Recommen-
dation using Hierarchical Attention Mechanism(GRHAM). It uses a hierarchical
attention mechanism to learn group preferences from the historical data that
included user-user interaction, user-item interaction, and group-item interaction.
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Our model consists of two layers of attention neural networks. The first attention
layer learns the influence weights of members when the group decides so that the
group members have different contributions and the group members’ weight can
adjust dynamically in the group decision-making, and the second attention layer
learns the weights of influence between group members. Besides aggregating the
preference of group members, we further learn group topic preferences from the
historical data. Furthermore, GRHAM explores the interactions between groups
and items with neural collaborative filtering for group recommendation. The
main contributions of this work are summarized as follows:

• We propose a novel model for the group recommendation called GRHAM,
which uses the hierarchical attention mechanism to implements group recom-
mendation.

• We develop a solution to compute the influence of weights between group
members by using the user-user interactions, which are aggregated with mem-
bers’ preferences to generate group preferences.

• We perform experiments on two datasets and demonstrate the effectiveness
of our model.

2 Related Work

2.1 Group Recommendation

Group recommendation has been aroused widely concern in recent years. In
general, existing group recommendations can be classified into two categories -
memory-based and model-based methods.

Memory-based methods can be further divided into score aggregation [18]
and preference aggregation [23]. The score aggregation first computes a score of
an item for each user and then aggregates the scores of members in a group via
predefined strategies to represent the group recommendation score of the item.
While preference aggregation first aggregate all user preferences and then employ
individuals recommendation techniques to make group recommendation. Aggre-
gation strategies can be divided into three types basic, weighted and mixed.
Basic aggregation strategies mainly include average, least misery, maximum sat-
isfaction. The weighting strategy is to assign different weights to each group
member according to the characteristics, role, influence and other factors of the
group members [2,4]. A mixed strategy is using multiple basic strategies to solve
the shortcomings of a single strategy [15]. But these aggregation strategies are
predefined and lack flexibility, they can not dynamically adjust the weight of
members’ decisions and capture the complex and dynamic decision-making pro-
cess.

Model-based methods explore the interaction among the group by modeling
the generative process of a group. The personal impact topic (PIT) [13] model
assumes that the most influential member should be representative of a group
and has the largest influence on making recommendations for the group. A prob-
abilistic model named COM [23] is proposed to model the generative process of
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group activities and make group recommendations. It assumes that the group
decided on the topic of a group’s preferences and its members’ preferences.Qin
et al. [17] divided a big group into different interest subgroups and proposed a
dynamic group aggregation scheme that integrate the recommended media lists
of all interest subgroups as the final group recommendation results.

2.2 Attention Mechanism for Recommendation

Deep learning is widely used in various fields [8,19,21], including recommenda-
tion systems. Attention mechanism is one of the most exciting recent advance-
ments in deep learning. Attention mechanism have been extensively applied in
recommender systems [6,9,10,24]. He et al. [13] propose an enhanced item sim-
ilarity model by distinguishing the different importance of interacted items in
contributing to a user’s preference via attention network. Chen et al. [9] propose
a novel CF framework named Attentive Collaborative Filtering (ACF) for multi-
media recommendation, which can automatically assign weights to the two levels
of feedback. The above studies are about the individual recommendation sys-
tem. It shows a good idea for the combination of attention mechanism and group
recommendation systems. Cao et al. [6] proposed the AGREE model, which uses
an attention mechanism to optimize groups’ representations and learns interac-
tions between groups and items under a neral collaborative filtering framework.
Another recent work is SIGR [22], which adopts the attention mechanism to
learn each user’s social influence and adapt their social influences to different
groups. But these methods ignores the interaction between group members, and
not consider influence between group members is dynamic.

3 GRHAM Model

In this section, we first present the notations and formulate the group recom-
mendation problem to be solved in Sect. 3.1. Then we introduce our proposed
model in Sect. 3.2. Lastly, we discuss the optimization method in Sect. 3.3.

3.1 Notations and Problem Formulation

Notations. We use bold capital letters (e.g., X) and bold lowercase letters (e.g.,
x) to denote matrices and vectors. We employ non-bold lowercase letters (e.g., x)
to represent scalars. Table 1 shows the notations and corresponding descriptions
used in this paper.

Problem Formulation. Suppose there are a set of users U , a set of groups G
and a set of items V in the group recommender system. The l-th group gl ∈ G
consists of a set of users. There are three kinds of observed interactions among U ,
V and G, that is user-item interactions, group-item interactions, and user-user
interactions. We use R to denote the user-item interactions, Y to denote the
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Table 1. Notations and denotations

Notation Description Notaion Description

U = {u1, u2, ..., un} User set V = {v1, v2, ..., vm } Item set

G = {g1, g2, ..., gs} Group set |gl| The size of group gl

Hl = {hl,1, hl,2, ...} Group gl members
with user indexes

Ki = {ki,1, ki,2, ...} User indexes with user
i

Dl = {dl,1, dl,2, ...} Group gl members
with item indexes

R = [rij ]n×m User-item interactions

Y =
[
ylj

]
s×m

Group-item
interactions

Z = [zik]n×n User-user interactions

group-item interactions, and Z to denote the user-user interactions (i.e., user
social network). Figure 1 illustrates the group recommendation task which we
address in this paper. Given a target group gt, our task is to recommend a ranked
list of items that group gt may be interested in. The group recommendation
problem can be defined as follows:

Input: Users U , groups G, items V, user-item interactions R, group-item inter-
actions Y and user-user interactions Z.

Output: A personalized ranking function that maps an item to a ranking score
for a target group fg : V −→ R

Fig. 1. Illustration of the input data of group recommendation task, which contains
user-item interactions, user-user interactions and group-item interactions.

3.2 Model Framework

This subsection introduces our proposed model for group recommendation. The
motivation of our model is to enable group-level recommendations by modeling
three kinds of interactions.
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Fig. 2. The architecture of GRHAM for group recommendation

Our proposed model is based on the representation learning (RL) framework.
In the RL framework, each entity is described as an embedding vector that
encodes the inherent preferences of the entity(e.g., the interest of a user or a
group). The embedding can be learned from historical data. Figure 2 illustrates
the architecture of GRHAM. Let um and vj be the embedding vector for user
um and item vj . Our target is to obtain an embedding vector gl for each group
to estimate its preference on item vj . Formally, it can be defined as:

gl(j) = fa
({um}m∈Hl

,vj

)
(1)

where gl denotes the representation learning of group gl which represents its
preference on item vj ; Hl contains the user indexes of group gl, and fa is the
aggregation to be specified. In GRHAM, we design the group embedding gl as
consisting of two components - user embedding aggregation ql and group topic
preference embedding pl.

gl = ql + pl (2)

Figure 3 illustrates user embedding aggregation and group topic preference
embedding, we next elaborate on the components.

User Embedding Aggregation. We perform a weighted sum on the embed-
dings of group gl’s member, where the coefficient β(j, t) denotes the influence of
member user ut in deciding the group’s choice on item vj . The user embedding
aggregation can be defined as:



Towards Group Recommendation Using Hierarchical Attention Mechanism 301

Fig. 3. Illustrates user embedding aggregation and group topic preference embedding

ql(j) =
∑

t∈Hl

β(j, t)ut (3)

ut =
∑

i∈Kt

α(t, i)ci + ct (4)

Embedding ut encodes the member user’s preference and embedding vj

encodes the member target item’s property, we parameterize β(j, t) as a neu-
ral attention work with ut and vj as the input:

β(j, t) = softmax(b(j, t)) =
exp b(j, t)

∑
t′∈Hl

exp b (j, t′)
(5)

b(j, t) = hT ReLU
(
W 1

vvj + W 1
uut + b

)
(6)

where W1
v and W1

u are weight matrices of the attention network that convert
item embedding and user embedding to the hidden layer, and b is the bias vector
of the hidden layer. We use ReLU as the activation of the hidden layer and
project it to a score b(j, t) with a weight vector h. Lastly, we normalize b(j, t)
using Softmax function.

In the group decision process, the user’s choice depends on self preference
and other user’s influences. We define the user embedding as formula 4. Where
ct, ci denote the member user ut and ui historical preference, the coefficient
α(t, i) represent weight the influence of member user ui to ut. Similar to the
first attention, the second attention score is also a two-layer network and is
formularized as:

α(t, i) = softmax(a(t, i)) =
exp a(t, i)

∑
t′∈Kt

exp a (t, t′)
(7)
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a(t, i) = hT ReLU
(
W 2

cct + W 2
uci + b

)
(8)

where W2
c and W2

u are weight matrices of the attention network that convert
user embedding and user embedding to hidden layer, and b is the bias vector of
the hidden layer. ReLU is utilized as the activation function of the hidden layer,
and is then projected to a score α(t, i) with a weight vector h.

Group Topic Preference Embedding. Besides aggregating the embeddings
of group members, we further take the topic preference of a group into account.
We define the group preference embedding as follow pl:

pl =
∑

t∈Dl

γ(j, t)vt (9)

γ(j, t) = softmax(r(j, t)) =
exp r(j, t)

∑
t′∈Dl

exp a (t, t′)
(10)

r(j, t) = hT ReLU
(
W 3

jvj + W 3
tvt + b

)
(11)

Where the coefficient γ(j, t) denote the correlation between item vj and item vt,
where W3

j and W3
t are weight matrices of the attention network that convert

item embedding and item embedding to the hidden layer, and b is the bias
vector of the hidden layer. ReLU is utilized as the activation function of the
hidden layer, and is then projected to a score γ(t, i) with a weight vector h.

The NCF applied to learn user-item interactions for item recommendation
can model interactions better than the simple inner product of vectors, In
GRHAM, the interaction learning procedure consists of two layers: a pooling
layer and a prediction layer.

Pooling layer: The pooling layer models the interaction behaviors between
groups and items. The pooling layer first performs element-wise product on their
embeddings, and then concatenates it with the original embeddings:

e0 = ϕpooling (gl(j), vj) =

⎡

⎣
gl(j) � vj

gl(j)
vj

⎤

⎦ (12)

Prediction layer: The score of a group gi for item vj can be predicted by

ŷij = Prediction (e0) (13)

where Prediction(*) is a fully connected layer with an activation function.

3.3 Model Optimization

Objective Function. We use the pairwise learning method for optimizing
model parameters, assuming that observed interactions are ranked higher than
their unobserved counterparts. We apply the regression-based pairwise loss:

L =
∑

(l,j,s)∈O
(yljs − ŷljs)

2 =
∑

(l,j,s)∈O
(ŷlj − ŷls − 1)2 (14)
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where yljs = ylj – yls, ŷljs = ŷlj – ŷls, and O is the set of training instances.
Each instance (l, j, s) in O means that there are interaction data between group
gl and item vj but no interaction data between group gl and item vs. The value
of each observed interaction to be 1, and the value of unobserved interaction to
be 0, we have yljs = ylj – yls = 1.

4 Experiments

In this section, we report experimental results of comparing GRHAM and state-
of-the-art techniques on two datasets. In general, the goal of our experiments is
to answer the following research questions (RQ):

• RQ1: How does GRHAM perform as compared to existing
advanced methods?

• RQ2: How do the hyper-parameters affect the performance of
GRHAM?

4.1 Datasets

We conduct experiments on two real-world datasets: Mafengwo and Douban-
Event. Mafengwo1 is a tourism website where users can record their traveled
venues, create or join a group trip. Douban-Event is one of the largest online
event-based social networks in China that helps people publish and participate
in social events. Mafengwo is from the paper [7], it retained the groups which
have at least 2 members and have traveled at least 3 venues, and collected
their traveled venues. Douban-Event does not contain explicit group informa-
tion, extracted the implicit group activities by assuming that if a set of users
who are connected on the social network attend the same event (or visit the
same restaurant). At the same time, they are members of a group and the cor-
responding activities are group activities. During pre-processing, we filter out
groups and venues with less than 3 interactions each. The detailed statistics of
these two datasets are shown in Table 2.

Table 2. Statistics of Mafengwo and Douban-Event

Statistics Mafengwo Douban-Event

# Users 5,275 1,698

# Items/Events 39,761 41,317

# Groups 995 851

Avg. # group size 7.19 4.84

Avg. # interactions per user 7.54 338.59

Avg. # friends per user 10.09 40.86

Avg. # interactions per group 3.61 5.85

1 https://www.mafengwo.com.

https://www.mafengwo.com
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4.2 Evaluation

We used the leave-one-out evaluation protocol, which has been widely used to
evaluate the performance of the top-k recommendation. To evaluate the perfor-
mance of the top-k recommendation, we employed the widely used metric—Hit
Ratio (HR) and Normalized Discounted Cumulative Gain(NDCG), large val-
ues indicate better performance. In the leave-one-out evaluation, HR measures
whether the testing item is ranked in the top-K list. The Hit ratio is defined as
follows:

Hits @K =
#hit@K

|Dtest | (15)

where # hit@K denotes the number of hits in the test set, and |Dtest | is the
total number of test cases in the test set. The higher Hits@K is denoted that
recommend result is well. NDCG accounts for the position of the hit by assigning
a higher score to hit at top positions. It is calculated as follows:

DCG =
N∑

i=1

2reli − 1
log2(i + 1)

(16)

NDCG =
DCG

IDCG
(17)

where reli = 1 if the ith item in the recommendation list is accepted by the group,
and reli = 0 otherwise. IDCG is the maximum possible discounted cumulative
gain (DCG) with the top N relevant items.

4.3 Baselines

To verify the effectiveness of our model, we compared it with the following state-
of-the-art methods.

• Consensus model(COM): COM is a generative model that considers the
group’s topic influence and individual preferences influences in the final group
decision.

• Neural Collaborative Filtering(NCF): NCF [14] is a state-of-the-art col-
laborative filtering model that uses a neural architecture to model the inter-
actions between users and items.

• NCF+avg: NCF+avg [3] is denote “NCF combined with average”. It is the
simplest aggregation strategy that averages the preferences of group mem-
bers as the group preferences, and it supposes that each member contributes
equally to the final group decision.

• NCF+lm: It adopts the least misery strategy [1] in which the least satisfied
member determines the final group decision, which is the well-known cask
principle.

• NCF+ms: It applies the maximum satisfaction strategy [5] and tries to
maximize the satisfaction of group members.



Towards Group Recommendation Using Hierarchical Attention Mechanism 305

• AGREE: AGREE [6] is the first to use the attention mechanism for group
recommendation. This model considers the group members have different
weights for different items in the final group decision.

• SoAGREE: SoAGREE [7] is extended by AGREE and the social followee
information is further incorporated into the user representation learning via
another attention network.

Table 3. Top-k performance both recommendation tasks for groups on Mafengwo

Ovrall Performance Comparison (Mafengwo)

Model HR@5 NDCG@5 HR@10 NDCG@10

COM 0.4420 0.2169 0.5434 0.3727

NCF 0.4701 0.3657 0.6269 0.4141

NCF+avg 0.4774 0.3669 0.6222 0.414

NCF+lm 0.4744 0.3631 0.6302 0.4152

NCF+ms 0.47 0.3616 0.6281 0.4114

AGREE 0.4814 0.3747 0.64 0.4244

SoAGREE 0.4898 0.3807 0.6481 0.4301

GRHAM 0.6603 0.5504 0.7025 0.5703

Table 4. Top-k performance both recommendation tasks for groups on Douban-Event

Ovrall Performance Comparison (Douban-Event)

Model HR@5 NDCG@5 HR@10 NDCG@10

COM 0.2301 0.1598 0.4569 0.2220

NCF 0.2401 0.1657 0.4641 0.2241

NCF+avg 0.2574 0.1669 0.4703 0.2260

NCF+lm 0.2544 0.1631 0.4682 0.2252

NCF+ms 0.2598 0.1616 0.4764 0.2285

AGREE 0.2996 0.1743 0.5064 0.2345

SoAGREE 0.3290 0.2010 0.5137 0.2423

GRHAM 0.3367 0.2077 0.5324 0.2543

4.4 Overall Performance Comparison(RQ1)

On Two datasets, we compared the GRHAM model with other baseline methods,
as shown in Table 2, 3. We have the following observations: (1) Our GRHAM
model achieves the best on all datasets, which is better than the current advanced
methods. This shows our model has clearly improved in terms of performance;
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(2) In the score aggregation-based solutions, there no obvious outstand solution.
An aggregation strategy might work well in some datasets but perform poorly in
others. For example, the least misery aggregation strategy outperforms the other
two predefined aggregations on Mafengwo dataset, while the average aggregation
achieves the best performance among the three predefined aggregation strategies
on Douban-Event dataset; (3) The performance of model use attention mecha-
nism batter than models that de not use attention mechanism, this demonstrates
the superiority of attention mechanism; (4) On the two dataset, the AGREE and
SoAGREE models are inferior to our GRHAM model, because they ignores the
interaction between group members and not consider influence between group
members (Table 4).

(a) HR@5 (b) NDCG@5

(c) HR@10 (d) NDCG@10

Fig. 4. Performance of GRHAM in each training iteration on two datasets.

4.5 Model Performances for Different Hyper-Parameters (RQ2)

In order to demonstrate the robustness and effectiveness of our proposed model,
we investigated the convergence of GRHAM and studied the sensibility of several
factors, such as the number of negative samples and Dimension of Embedding.

Convergence. We record the value of HR@5, HR@10, NDCG@5, NDCG@10
along with each iteration. Figure 4 shows the HR@5, HR@10, NDCG@5,
NDCG@10 with the increasing number of iterations on the two datasets. The
results show that our model GRHAM converges fast in the fast 20 interactions
and reaches its optimal results around the 45th iteration. This presents the ratio-
nality of our model.
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(a) MaFengWo (b) Douban-Event

Fig. 5. Impact of Dimension of Embedding: HR@5 and NDCG@5 of GRHAM model
on two datasets.

Impact of Dimension of Embedding. In order to study the effect of dimen-
sion of embedding, we test vary the dimension of embedding to investigate its
influence on recommendations on different datasets. The results are shown in
Fig. 5. The results show that increate dimension size in some range can help
improve performance, which indicates that a larger dimension size is likely to
encode more information.

(a) HR@5 (b) NDCG@5

Fig. 6. Impact of Number of Negative: HR@5 and NDCG@5 of GRHAM model on
Mafengwo.

Impact of Negative Samples: It randomly samples various numbers of miss-
ing data as negative samples to pair with each positive instance. To illustrate the
impact of negative sampling of GRHAM, we run the experiments where different
negative sample ratios on Mafengwo datasets. AS shown in Fig. 6. We have the
following observations: 1) It is obviously seen that one negative sample for each
positive instance is not optimal performance. 2) With more negative samples
selected, the performance of GRHAM reaches its optimal results.
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5 Conclusion and Future Work

In this paper, we proposed a new model GRHAM for group recommendation.
GRHAM considers the influences between its members. Instead of simply use
a user’s inherent preference as its preference in group. We dynamically learned
the impact weights of all members in a group for distinctly target items via the
attention mechanism. To validate the effectiveness of GRHAM, we conducted
a wide range of experiments on two real-world datasets, and the experimental
results demonstrate the effectiveness of our method.

In future work, we will further optimize the model and improve the model
recommendation performance. At the same time, we will focus on the cold start
problem of general preference modeling in group recommendation and study how
to solve this problem effectively to improve the accuracy and efficiency of group
recommendation.
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Abstract. Whether in the field of personalized advertising or recom-
mender systems, click through rate (CTR) prediction is a very impor-
tant task. In recent years, Alibaba Group has done a lot of advanced
research on the prediction of click through rate, and proposed a techni-
cal route includes kinds of deep learning models. For example, in the deep
interest network (DIN) proposed by the Alibaba Group, the sequence of
users’ browsing behaviors is used to express their interest features, and this
sequence is made up of items clicked by users. Usually, the item is mapped
into a static vector, but the fixed length embedded vector is difficult to
express the user’s dynamic interest features. In order to solve this prob-
lem, Alibaba Group introduced the attention mechanism in the field of
natural language processing (NLP) into deep interest network (DIN), and
designed a unique activation unit to extract the important informations
in the user’s historical behavior sequence, and use these important infor-
mations to express user’s dynamic interest features. In this paper, we pro-
pose a novel deep learning model: Multi-Interest Network Based on Dou-
ble Attention for Click-Through Rate Prediction (DAMIN), which based
on Deep Interest Network (DIN) and combined with multi-head atten-
tion mechanism. In the deep interest network (DIN), the attention weight
between the candidate item vector and the item vector of the user’s his-
torical behavior sequence is learned by fully connected neural network.
Different from deep interest network (DIN), we design a new method,
which uses the reciprocal of Euclidean Distance to represent the attention
weight between two item vectors. Then, the item vectors in user’s historical
behavior sequence are weighted by the attention weights and meanwhile
the candidate item vectors are also weighted by the attention weights. In
the next, we can obtain new item vectors by add the weighted item vectors
of user’s historical behavior sequence and weighted candidate item vectors,
and those new item vectors are used to represent user’s dynamic interest
feature vectors. In the end, the user’s dynamic interest features are send
into the three multi-head attention layers, which can extract users’ various
interest features. We have conducted a lot of experiments on three real-
world datasets of Amazon and the results show that the model proposed
by this paper acquires a better performance than some classical models.
Compared with DIN, the model proposed in this paper improves the aver-
age of AUC by 4%–5%, which proves that the model proposed in this paper
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is effective. In addition, a large number of ablation experiments have been
carried out to prove that each module of the proposed model is effective.

Keywords: Recommender system · Click-through rate prediction ·
Attention · Euclidean distance

1 Introduction

In deep interest network and other CTR models proposed by Alibaba Group[1],
the user’s historical behavior sequence is composed of the items that they have
clicked, and those sequences are regarded as user’s interest features. In traditional
deep learning models, the items are mapped into vectors with fixed length. How-
ever, user’s interests are variable and diverse, so the vectors with fixed length are
difficult to express the user’s dynamic interests. In order to solve this problem, a
very important activation unit in deep interest network is designed based on the
attention mechanism in the field of natural language processing. And the activa-
tion unit can calculate the attention weight with any two item vectors, then the
weight is used to weight the item vectors in user’s historical behavior sequence.
Since those weights are variable, the weighted user’s historical behavior sequence
can represent user’s dynamic interest features.

It is one of the biggest disadvantages that traditional recurrent neural net-
work (RNN) can not run in parallel, so the training speed of RNN model is
very slow. In order to solve this problem, Google Group proposed new model
named Transformer [2] in its paper Attention is all you need published in 2017.
The core of transformer model is multi-head attention layer, which is composed
of several parallel self-attention layers, so it can realize the parallel training of
the model. In addition, each self-attention layer can extract the context infor-
mation of words, so the multi-head attention layer composed of several parallel
self-attention layers can extract various semantic information of words in differ-
ent contexts. Similarly, in the scene related to the user browsing sequence, the
user’s interest features will change in different contexts. Therefore, this paper
introduces the multi-head attention mechanism and hopes to learn the user’s
interest features in different contexts.

This paper proposes a novel model: Multi-Interest Network Based on Double
Attention for Click-Through Rate Prediction (DAMIN), which based on Deep
Interest Network (DIN) and combined with multi-head attention mechanism.
And the main contributions of this paper are summarized as follows:

• We change the calculation method of activation unit in deep interest network,
and use the reciprocal of the square of Euclidean distance as the attention
weight of two item vectors in this paper, and the experimental results show
that Euclidean distance can effectively calculate the similarity between two
item vectors;
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• We set a part for calculate the attention weight between item vectors in user’s
historical behavior sequence and candidate items before the multi-head atten-
tion layers, and extract the user’s dynamic interest features as the input of
the multi-head attention mechanism, which can highlight the effective infor-
mation and suppress the useless information;

• In order to make the multi-head attention layer make full use of the infor-
mation of candidate item vector, we add the item vector in user’s historical
behavior sequence and candidate item vector, and the result is a new vector.
Then this new vector is weighted by the attention weight between item vec-
tor clicked by user and candidate item vector, and the new weighted vector
is used as the input of multi-head attention layer. By summing the weighted
candidate item vector with the weighted item vector clicked by user, the sim-
ilarity will be greater between the two similar item vectors in user’s historical
behavior sequence, and the difference will be also greater between the two
dissimilar item vectors in user’s historical behavior sequence.

2 Related Work

In the field of recommendation systems, collaborative filtering is one of the most
classic algorithms. Recommendation algorithms based on collaborative filtering
can be roughly divided into three categories, and first category algorithm is
user-based collaborative filtering (UCF) recommendation algorithm [3], second
category algorithm is item-based collaborative filtering (ICF) recommendation
algorithm [4], third category algorithm is model-based collaborative filtering
recommendation algorithm [5]. Collaborative filtering has a lot of advantages,
for instance, collaborative filtering can recommend new information for users and
find unknown interests not found by users. But at the same time, collaborative
filtering also has some weaknesses, such as data sparsity, cold start and so on.

In the field of click through rate (CTR) prediction and recommendation
systems, the early algorithms include logistic regression (LR) algorithm [6], naive
bayes algorithm [7] and gradient boosting decision tree (GBDT) [8] belongs to
tree models, etc. In 2014, the Facebook Group combined logistic regression (LR)
algorithm with GBDT algorithm [9], and achieved good performance in the
actual production environment. The main idea is to use the output of GBDT
as the input features of LR, which saves the time and steps of manual feature
searching and feature interaction.

In 2010, factorization machines (FM) algorithm [10] proposed by Osaka Uni-
versity has achieved a great success and become one of the most classic algo-
rithms in the field of click through rate (CTR) prediction and recommenda-
tion systems. Among them, the logistic regression algorithm only realizes a lin-
ear weighted interaction of all features, and does not consider the relationship
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between features. And factorization machines algorithm focuses on the relation-
ship between different features and realizes the interaction of different features.
So, factorization machines can improve the learning ability of model and obtains
a better performance than logistic regression. However, the factorization machine
algorithm also has some disadvantages, such as: (1) Due to the limitation of com-
puting power, the factorization machine algorithm only realizes the second-order
feature interaction, and does not realize the higher-order feature interaction; (2)
Every feature interaction is regarded as equivalent in factorization machine algo-
rithm, but in fact, not all feature interactions are effective. On the contrary, some
interactions of different features are harmful noise for the model, and may make
the performance of the model worse.

Deep learning has gradually become popular after 2015, and the combination
of factorization machines algorithm and deep learning has become a mainstream
research trend. The common factorization machines algorithm only realizes the
second-order feature interaction, but after combining the factorization machines
algorithm with deep learning, it can easily realize higher-order feature interac-
tion, and improve the learning ability of model. And the relevant deep learning
models include: Wide & Deep [11], PNN [12], DeepFM [13], xDeepFM [14], etc.

In recent years, attention mechanism has been successfully applied in natural
language processing, recommendation system, computer vision and other fields,
and achieved a good performance. In order to solve the problem that the factor-
ization machine algorithm can’t distinguish the importance of different feature
interactions, attention mechanism is successfully applied in relevant recommen-
dation algorithms and CTR models. By combining attention mechanism with
factorization machine algorithm based on deep learning, the attention weight
of the interaction of different features can be calculated. And the relevant deep
learning models mainly include AFM [15], FAT-Deep-FFM [16] and so on.

For the processing of discrete features, the traditional method is using the
one-hot coding to map discrete features into one-hot vectors, but one-hot coding
has some very serious disadvantages, such as: (1) There are a lot of 0 values in
one-hot vectors, so this encoding method wastes storage space; (2) The cosine
similarity between any two one-hot vectors is 0 and so on. In order to solve this
problem, Google Group opened a tool named word2vec [17] in 2013. The main
function of the tool is to map words or other discrete features into vectors, and
it can well calculate the similarity weights between word vectors. Among them,
mapping words into vectors is an embedding process. In formally, embedding is
to transform high-dimensional and sparse data into low-dimensional and dense
space.

The algorithms related to factorization machine algorithm mainly focus on
the interaction of features, and do not involve the scenes related to sequence. And
there are a large number of user’s browsing and clicking behaviors in Taobao,
Tmall and other online shopping platforms. The items clicked by users constitute
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the user’s behavior sequence, which can be used to express the user’s interest
features. User’s behavior sequence is a kind of typical data with time sequence
characteristics, because the items clicked by users have sequence. So how to mine
the user’s interests from the user’s behavior sequence is an urgent task. In order
to solve this problem, Alibaba Group proposed the deep interest network (DIN)
in 2018, and other deep learning model such as DIEN [18], DSIN [19], BST [20],
DMIN [21] are also proposed base on DIN.

3 Model of This Paper

This paper proposes a deep learning model: Multi-Interest Network Based on
Double Attention for Click-Through Rate Prediction (DAMIN), which consists
of two attention parts. And first attention part is used to extract users’ dynamic
interest features, second attention part is used to acquire users’ multi interest
features base on first attention part. The innovation of this paper is first atten-
tion part, which uses the reciprocal of Euclidean distance square between item
clicked by user and candidate item as their attention weight. Finally, the experi-
mental results show that the computing method of attention weight in this paper
achieves better performance than the computing method of attention weight in
deep interest network. Therefore, Euclidean distance can mine the relationship
in any two item vectors very well. Besides, the attention weight in deep interest
network (DIN) is learned through several full-connected neural network layers.
So, it needs more memory space to store training variables, and consumes more
computing and time resources. On the contrary, the calculation method of atten-
tion weight in this paper directly calculates the attention weight of any two item
vectors and without some training variables to store, so this calculation method
of attention weight spends less time in training process.

3.1 Embedded Layer

Usually, the embedding layer is the first layer in most deep learning models, and
its main function is to map high-dimensional sparse discrete features into low
dimensional dense vectors. In this paper, we use the API named Embedding in
tensorflow 2.x to transform high-dimensional and sparse discrete features. For
instance, we can map the item id into a dense vector, and the item id can be
expressed as the vector xb = [x1, x2, ..., xd], d is the dimension of the vector.

Figure 1 is the architecture of the model in this paper, it contains three
parts, include embedding layer, user’s dynamic interest extraction layer and
multi interest extraction layer. And the attention unit is used to calculate the
reciprocal of the square of Euclidean distance as the attention weight of two item
vectors.
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Fig. 1. The architecture of DAMIN.

3.2 Users’ Dynamic Interest Features Extraction Layer

In this paper, we use the reciprocal of the Euclidean distance square between the
candidate item vector and the item vector clicked by user as the attention weight
w of the two item vectors. From the viewpoint of geometric, if the Euclidean
distance of the two item vectors is smaller, the similarity of the two item vectors
is higher. So, we use the reciprocal of its Euclidean distance square as the atten-
tion weight between item in user’s behavior sequence, and the attention weight
defined as:

w =
1

(x1 − y1)2 + (x2 − y2)2 + ... + (xd − yd)2
, (1)

Where, {x1, x2, ..., xd} denotes the embedding vector of item clicked by user,
{y1, y2, ..., y3} denotes the vector of the candidate item, d denotes the dimension
of the embedding vector.

Then, we can use the attention weight to weight the item vectors in user’s
behavior sequence and use the weighted item vectors to express user’s dynamic
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interest features. In deep interest network (DIN), users’ dynamic interest features
defined as:

I = {w1 ∗ xb1, w2 ∗ xb2, ..., wn ∗ xbn} , (2)

Where, w1, w2, ..., wn denote the attention weight between items, xb1, xb2,
..., xbn denote the embedding vector of items clicked by users, n denote the
length of user behavior sequence. Note that the attention weight w is calculated
through the method in Deep Interest Network.

In this paper, we think it is very important to weight the candidate item
vector and the item vector clicked by users at the same time, then add the
two weighted item vectors to get a new vector. The user’s behavior sequence
composed of the new vectors can better represent the dynamic interest features of
users. And we think such user’s interest features can carry on more informations
of candidate item vectors. The calculation formula of user’s dynamic interest
features as follows:

I = {w1 ∗ (xb1 + y), w2 ∗ (xb2 + y), ..., wn ∗ (xbn + y)} , (3)

Where, y represents the embedding vector of candidate item, xb represent
the item vectors in user’s behavior sequence, n represents the length of user’s
historical behavior sequence.

The details of the whole user’s dynamic interest feature extraction layer are
shown in Fig. 2, every item vector clicked by user and candidate item vector are
weighted by their attention weights. In the end, we add the weighted item vector
clicked by user and the weighted candidate item vector to get new vectors.

3.3 Multi-interest Extraction Layer

The model named transformer proposed by Google Group in 2017 solved this
problem that RNN [22], LSTM [23] and GRU [24] can not be trained in parallel,
and the core part of this model is the multi-head attention mechanism. In the
scene of machine translation, multi-head attention mechanism can be used to
extract various semantic informations of some words in different contexts.

Similarly, in the scenario of click-through rate prediction, user’s interests
are also diverse in different contexts. So, we can use the multi-head attention
mechanism to extract users’ kinds of interest features. And multi-head atten-
tion mechanism is composed of several parallel self-attention networks, every
self-attention network may learn different user’s interest features. Finally, the
learning results of those parallel self-attention networks are concated as the out-
puts of multi-head attention layer. In order to parallelize the computation, we
concat item vectors {xb1, xb2, ..., xbn} clicked by users into a matrix. At the same
time, the matrix is copied into three matrixs for the convenience of calculation
and expressed by Q, K and V respectively . The outputs of single self-attention
layer as follows:
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Fig. 2. The architecture of users’ dynamic interest feature extraction layer.

headi = Softmax(
Q ∗ KT

√
dk

) ∗ V, (4)

Where, dk is the dimension of the item embedding vector, Q * KT is the
attention weights matrix , and Q * KT is used to weight the matrix V to get
the result of every self-attention. Finally, the weighted matrix V of several self-
attention layers are concated as the outputs of multi-head attention layer.

Moreover, the multi-head attention network of this paper includes three
multi-head attention layers, and every multi-head attention layer is composed
of four parallel self-attention layers, and the dimension of the item embedding
vector 128. At the same time, we add residuals in two multi-head attention layer,
residuals is an important part of the residuals neural network [25]. In the end,
experimental results show that those settings achieves the best performance.

3.4 Loss Function

Click-through rate prediction (CTR) is a typical binary classification task.
Therefore, the classical cross entropy is chosen as the loss function of the model
in this paper. And cross entropy is defined as:

Loss = − 1
n

(
n∑

i=1

yilogf(xi) + (1 − yi)logf(1 − f(xi))) (5)
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Where, n is the size of samples in training sets, yi is the label of sample in
training sets, f(xi) is the predictive value of the sample in training sets.

4 Experiments

In this section, the details of experiments are presented, we conduct some exper-
iments on three real-world datasets of Amazon1, and the results show that our
model is better than some classical models. Moreover, the evaluation metric,
experiment setup, model comparison and the corresponding analysis are also
included in this paper.

4.1 Datasets and Experiment Setup

The three Amazon datasets are Electronics, Health And Personal Care and
Movies And TV. And the Electronics contains 192403 users, 63001 goods,
801 categories and 1689188 samples, the Health And Personal Care con-
tains 1851132 users, 252331 goods, 977 categories and 2982326 samples, the
Movies And TV contains 123960 users, 50052 goods, 29 categories and 1697533
samples. And the following table is the statistical informations of those datasets,
Users is the number of users, Goods is the number of items, Categories is the
number of categories of items, and Samples is the number of datasets.

For all models, the learning rate is set between 0.1 and 1, the dimension
embedding vector is set to 128, the training batch size is set to 32. In terms of
memory and time, the maximum browsing length of all users is limit 500.

Table 1. Statistics of datasets used in this paper.

Datasets Users Goods Categories Samples

Electronics 192403 63001 801 1689188

Health And Personal Care 1851132 252331 977 2982326

Movies And TV 123960 50052 29 1697533

4.2 Competitors

In order to verify the effectiveness of the model in this paper, we have carried out
some comparative experiments. Therefore, some classical deep learning models
in field of click-through rate prediction and recommender systems are chosen in
comparative experiments, and those deep learning models include Wide&Deep,
PNN, DeepFM, and DIN. And the BaseModel we choosen is to map the item in
users’ historical behavior sequence into a static vector directly.
1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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4.3 Evaluation Metrics

In the field of recommender systems and click through prediction (CTR), AUC
is the most common metrics used to evaluate the model, which is defined as the
area under the ROC curve and surrounded by the coordinate axis. Generally,
the value range of AUC is between 0.5 and 1. If the value of AUC is closer to 1,
the authenticity of the detection method is higher.

4.4 Comparative Experimental Results

From the experimental results of Table 2, we can know that the model of this
paper achieves better performance than other classical deep learning models
in CTR. In Table 2, DIN represents the original model proposed by Alibaba
Group, DIN EMB indicates that the embedding layer adopts the API named
Embedding in tensorflow 2.x based on DIN, and DAMIN is the model proposed
by us in this paper. And the experimental results show that DIN EMB can get
a better performance than DIN, and the DAMIN get the best performance.

Table 2. Comparative experimental results (AUC) on three real-world datasets.

Model Electronics Health And Personal Care Movies And TV

BaseModel 0.8651 0.8774 0.8837

Wide& Deep 0.8627 0.8701 0.8562

PNN 0.8639 0.8794 0.8794

DeepFM 0.8709 0.8743 0.9021

DIN 0.8758 0.8811 0.8976

DIN EMB 0.9141 0.9289 0.9306

DAMIN 0.9501 0.9386 0.9564

4.5 Ablation Experimental Results

In addition, in order to verify the function and effectiveness of each module of
DAMIN in this paper, we have conducted a large number of ablation experi-
ments. For each ablation experiment, we trained it for 10 epochs and took the
average value of AUC as the final experimental result in Table 3. Among them,
DIN EMB indicates that the embedding vector of DIN was embedd by the API
named Embedding in tensorflow 2.x, DIN O EMB adopts the novel calculation
method to calculate the reciprocal Euclidean distance of any two item vectors
as their attention weight, DAMIN NO CAN means that candidate item vectors
are not weighted into the item vectors of user’s behavior sequence. In the end,
DAMIN is the final model proposed by us in this paper.
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Table 3. Ablation experimental results AUC (mean±std) on three real-world datasets.

Model Electronics Health And Personal Care Movies And TV

DIN EMB 0.8766 ± 0.0343 0.8783 ± 0.0516 0.8971 ± 0.0196

DIN O EMB 0.8789 ± 0.0348 0.8837 ± 0.0515 0.8843 ± 0.0190

DAMIN NO CAN 0.9086 ± 0.0388 0.9045 ± 0.0456 0.9103 ± 0.0243

DAMIN 0.9234 ± 0.0408 0.9176 ± 0.0380 0.9289 ± 0.0308

Based on the experimental results in Table 3, we can obtain a conclusion
that every modul of DAMIN is effective. In the first place, we can find the
performance of DIN O EMB is slightly better than DIN EMB on two common
datasets. So, those experimental results prove it is effective to use the reciprocal
of Euclidean distance as the attention weight between two item vectors. Then,
the multi-head attention layer is added in DAMIN NO CAN, and the perfor-
mance of DAMIN NO CAN is better than the DIN O EMB. And the experi-
mental results show that multi-head attention layer makes the average of AUC
of DAMIN NO CAN increase by 1%–3%. And the possible reason is that multi-
head attention layer can effectively learn the relationship between any two items
in user’s historical behavior sequence and capture user’s kinds of interests. In
the end, DAMIN is the final model proposed by us in this paper. Compared
with DAMIN NO CAN, the candidate item vector is also weighted in DAMIN.
In order to make full use of the information of the candidate item vector, we
add the weighted candidate item vector and the weighted item vector in user’s
behavior sequence to get a new vector, and the new vector is used as the input of
the multi-head attention layer. The advantage of adding the weighted candidate
item vector and the weighted item vector clicked by users is that the similarity
will be greater between the two similar item vectors in user’s historical behavior
sequence, and the difference will be also greater between the two dissimilar item
vectors in user’s historical behavior sequence. And the experiment results show
that the performance of DAMIN is better than DAMIN NO CAN, the average
value of DAMIN is about improved by 1%–2%.

5 Conclusion

In this paper, we combined Deep Interest Network proposed by Alibaba Group
and multi-head attention mechanism of transformer proposed by Google Group,
and made some improvements based on those deep learning models. Compared
with Deep Interest Network, we change the calculation method of the activation
unit, and adopt the reciprocal of Euclidean distance square as the attention
weight of two item vectors. In addition, we weight the item vector clicked by user
and candidate item vector, then add the two weighted item vectors, and we think
the results can represent users’ dynamic interest feature. Meanwhile, we set the
activation unit before the multi-head attention layer. And the advantage of this
method is that it can highlight the effective information and suppress the invalid
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information. The information of users’ dynamic interest feature extraction layer
is more conducive to the multi-head attention layer to extract users’ various
interests. Finally, the experimental results show that our model achieves better
performance than some classical models.
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Abstract. In the Internet, categorical features are high-dimensional and
sparse, and to obtain its low-dimensional and dense representation, the
embedding mechanism plays an important role in the click-through rate
prediction of the recommendation system. Prior works have proved that
residual network is helpful to improve the performance of deep learning
models, but there are few works to learn and optimize the embedded rep-
resentation of raw features through residual thought in recommendation
systems. Therefore, we designed a self-residual embedding structure to
learn the distinction between the randomly initialized embedding vector
and the ideal embedding vector by calculating the self-correlation score,
and applied it to our proposed SRFM model. Extensive experiments on
four real datasets show that the SRFM model can achieve satisfactory
performance compared with the superior model. Also, the self-residual
embedding mechanism can improve the prediction performance of some
existing deep learning models to a certain extent.

Keywords: CTR prediction · Self-residual embedding · Neural
network

1 Introduction

Item recommendation and advertising ranking are essential for many Internet
companies (Amazon, Alibaba, and Google, etc.). Click-through rate (CTR) pre-
diction plays a crucial role in many recommendation systems [1,5,9,13]. Logistic
Regression [16] (LR), Bayesian Model [4] and Factorization Machines(FM) [18]
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have been used to accomplish this task. Based on the FM model, the field-aware
Factorization Machines [11] (FFM) model allows each feature to be mapped to
multiple vectors, which are associated with each other feature. Since FM model
has only a shallow structure, the expressive power of such models is limited by the
cost of computing. Deep Neural Network (DNN) can extract hidden structures
and inherent patterns of different levels of abstraction from training data, and
can implicitly learn high-order feature interactions [6,7,9,13]. Therefore, many
CTR prediction models based on neural networks have been proposed. For exam-
ple, the “Wide & Deep” [1] (WD) model proposed by Google takes into account
the exploration of the interaction between low-order features and high-order
features by Logical Regression and Deep Neural Network respectively. The Fac-
torization Machine Supported Neural Networks [25] (FNN) proposed by Zhang
et al. takes the implicit vector in FM as the initialization value of the embed-
ding layer. The Product-based Neural Networks [17] (PNN) proposed by Qu et
al. are used to model the interaction patterns of features through “Inner Prod-
uct” and “Outer Product” operations in the “Product” layer. Xiao et al. assign
different importance to different feature interactions in the model of Attentional
Factorial Machines [24] (AFM), and introduce the attention mechanism into the
feature interaction part. Residual Network has been successfully applied in image
processing, the “Deep & Cross” Network [23] (DCN) proposed by Wang et al.
extends the residual Network. Meanwhile, a novel “Cross Network” is proposed
to explicitly conduct feature interaction at each layer of the model. The DeepFM
[9] model proposed by Guo et al. combines the functions of FM and DNN in par-
allel to model low-order features and high-order features respectively. The Neu-
ral Factorization Machine [6] (NFM) proposed by He et al. is similar to FNN in
that they both combine the advantages of FM and DNN. Lian et al. designed
a Compressed Interaction Network (CIN) in the proposed Extreme Deep Fac-
torization Machine (xDeepFM) [13] model to explicitly learn high-order feature
interactions. Cheng et al. proposed an Adaptive Factorization Network (AFN)
[2], which can adaptively learn any low-order and high-order cross features from
data. The Automatic Feature Interaction [20] (AutoInt) model proposed by Song
et al. can automatically learn the high-order Interaction of input features. Then
the input features are explicitly modeled using a multi-head self-attention neural
network with residual connections.

To model the raw categorical feature, what the above models have in common
is to obtain a low-dimensional dense embedding vector to represent it through an
embedding mechanism. The generation of embedding vectors is to randomly gen-
erate a set of feature vectors through some strategies. This approach may not be
sufficient to obtain the optimal embedding vector. Some studies [20,22,27] have
shown the successful application of residual modules in deep learning. Inspired by
this, we proposed a self-residual embedding method to better learn and optimize
feature embedding. The main contributions of this paper are as follows:

– A method of Self-residual Embedding is proposed to better learn and opti-
mize of original feature embedding vector. On this basis, combined with Deep
Neural Network, we designed a novel Self-residual Embedding Factorization
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Machines model. Extensive experiments on four real-world datasets demon-
strate the effectiveness of the proposed method.

– For different application scenarios, some baseline models combined with the
method of Self-residual Embedding can improve the predictive performance
of these models to a certain extent.

2 Problem Definition

In the recommendation system, predicting the likelihood of a user clicking on
an item (e.g. product, advertisement) is called the click-through rate estimation.
The click-through rate (CTR) prediction can be defined as: let x represent all
the features of the user u and all the features of the item v in a record, where
x ∈ R

m, m is the total number of all the different features. The purpose of
click-through rate prediction is to predict the probability ŷuv of users u clicking
items v according to the feature vectors of users and items, which can be used
as the ranking basis for products, news, and advertisements displayed to users
by the system.

3 Methodology

In this section, we will describe the architecture of Self-residual Embedding Fac-
torization Machines(SRFM). It includes Embedding layer, Self-residual Embed-
ding layer, Second-order Feature Interaction layer, and Hidden layer. The com-
plete SRFM model is shown in Fig. 1.

Fig. 1. The overview architecture of SRFM
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3.1 Input and Embedding Layer

The raw input features include numerical features and categorical features.
Therefore, the typical processing method is to convert the categorical fea-
tures of users and items into a vector, which is encoded by one-hot or multi-
hot. These vectors are usually high-dimensional and sparse. Finally, all the
encoded features are concatenated to obtain the corresponding feature vectors
x = [x1,x2, · · · ,xm]. Where m is the total number of features, xi represent-
ing the i-th feature. If the i-th feature is categorical, then xi is a one-hot or
multi-hot vector, and if the i-th feature is a numerical feature, then xi is a
scalar. Since the one-hot or multi-hot vector adopted usually has a very high
dimension, in order to reduce the feature dimension, the raw feature needs to be
embedded into a low-dimensional and dense space to obtain a real-value vector
of the corresponding feature, as shown in the Fig. 2.

Fig. 2. The architecture of embedding

In order to map the high-dimensional sparse vector xi to a low-dimensional
dense vector ei, the feature embedding layer is used to accomplish this task, as
follows:

ei = Vixi . (1)

If xi is a one-hot vector, then Vi ∈ R
d×ni is a matrix, d is the dimension

of the low-dimensional vector ei, and ni is the number of different values of the
i-th feature. If xi is a numerical feature, then Vi is a vector, and the dimension
of Vi is d. If xi is a multi-hot vector, we express the feature field as the mean
value of the corresponding feature embedding vector:

ei =
1
z
Vixi . (2)

where z denote the number of values of one instance has for i-th feature field.
The function of the embedding layer is to map the raw features x of the input
to a low-dimensional space, and the output of the embedding layer is expressed
as e = [e1, e2, · · · , em].

3.2 Self-residual Embedding Layer

In order to obtain sufficient expressive power of features and optimize the original
embedding vector of features to transform input features into advanced features,
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we propose a Self-residual Embedding mechanism, as shown in the Fig. 3. We
can take the feature embedded in each dimension of the vector as an implicit
attribute corresponding to this feature, and learn the dimensional interaction
among the feature vector attributes of the sample with auxiliary parameters. A
score is calculated by the activation function, which is called the self-correlation
score s of the corresponding feature. Then the s is integrated with the original
embedding vector, and finally, the new embedding vector is obtained by adding
the original embedding vector. Detailed calculation steps are as follows:

Fig. 3. The overview of self-residual embedding unit

First of all, for each feature field ei, we calculate the self-correlation score si

of the feature. The formalized steps are as follows:

si = σ(Wemb ⊗ ei) . (3)

where ⊗ denotes matrix multiplication. If Wemb ∈ R
d×d, this is an self-

correlation score s calculated at the vector level, we call it a “vector-wise score”
sv ∈ R

d. If Wemb ∈ R
1×d, this is the self-correlation score calculated at the

bit level, we call it the “bitwise-wise score” sb ∈ R. The σ is the non-linear
activation function. The difference between the original embedding vector of the
feature and the optimal representation of the feature field is calculated with the
self-correlation score s.

e′
i = si � ei + ei . (4)

where e′
i is the new embedding vector obtained through the transformation

of the Self-residual Embedding layer, corresponding to the original embedding
vector ei. � represents the element-wise product of two vectors. So we can get
the output e′ = [e′

1, e′
2, · · · , e′

m] of the Self-residual Embedding layer.

3.3 Second-Order Feature Interaction

Then, we send the embedding vector set obtained by the Self-residual Embed-
ding layer into the Second-order Feature Interaction layer, aiming to capture
the lower-order feature interaction. In order to reduce the time complexity,
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the higher-order feature interaction realizes implicit exploration through DNN.
According to the existing research work [14,15,20], there are less effective explicit
low-order feature interactions and higher-order feature interactions. Liu et al.
found that for Avazu datasets (Avazu published in Kaggle’s click-through pre-
diction contest), the removal of about 70% of the second-order explicit cross fea-
tures not only reduces the training time of FM and DeepFM models, but leads
to further performance improvements [14] too. Further research shows that less
than one tenth of the effective third-order explicit cross features are effective,
and the ineffective interaction features introduce noise. Explicit learning of all
high-order feature interactions costs too much, so we still use the DNN struc-
ture to implicitly learn high-order feature interactions. For features e′

i and e′
j ,

feature interaction is formalized as follows:

e′
i,j = e′

i � e′
j . (5)

The result e′
cross of the second-order interaction layer contains m (m − 1) /2

cross feature vectors, e′
cross = [e′

1,2, · · · , e′
i,j, · · · , e′

m−1,m].

3.4 Hidden Layer

Next, e′
cross and e′ are fed to two sets of multilayer perceptrons, respectively.

The input of the multilayer perceptron is ẽ0(e′
cross or e′). The hidden layers are

made up of multiple fully connected layers that can be stacked to learn advanced
interactions between features. The output of each layer is defined as follows:

ẽ(l+1) = σ
(
BN

(
Wlẽl + bl

))
. (6)

where Wl, ẽl and bl are input, model weight and bias of the l-th layer respec-
tively. The ẽl+1 is the output of layer l-th and serves as the input of layer
(l + 1)-th. Finally, the outputs of the two sets of multilayer perceptrons are
added together to obtain ymlp. σ is the activation function. In order to avoid
the problem of gradient disappearance, the Batch Normalization (BN) keeps the
input of each layer of neural network the same distribution through certain Nor-
malization methods during the training of the model [10]. Using BN to train deep
neural network can achieve fast convergence and better performance [14,19]. BN
is formalized as follows:

x̂i =
xi − μB√
σB + ε

. (7)

yi = γx̂i + β . (8)

where xi is the input, μβ and σβ are the mean and standard deviation of xi

on a mini-batch B, respectively. γ and β are two adjustment parameters corre-
sponding to Scale operation and Shift operation respectively. ε is a numerical
constant. We use the Dropout mechanism [21] in each layer of the hidden layer
to alleviate the occurrence of overfitting and achieve the regularization effect to
some extent.
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3.5 Output Layer

Finally, the output of hidden layer ymlp is mapped to a scalar between 0 and 1,
which serves as the final prediction score ŷ:

ŷ =
1

1 + e−ymlp
. (9)

3.6 Model Training

We use Logloss as the loss function, which is defined as follows:

L = − 1
N

N∑

i=1

(yi log (ŷi) + (1 − yi) log (1 − ŷi)) . (10)

where N represents the total number of samples, i represents the index of training
samples, yi represents the actual label when users click on the i-th sample, and
ŷi represents the estimated estimate of the probability of the i-th sample being
clicked by the model. In order to alleviate the over-fitting of the model and
increase the generalization ability of the model, some regularization methods
are adopted. The optimization objective function of the final model is as follows:

L = L + λ‖W‖2 . (11)

where ‖W‖2 represents the L2 regularization term of the model to avoid over-
fitting, and λ is the hyper-parameter of the regularization term.

4 Experiments

In this section, we conduct experiments to answer the following questions: (1)
Whether our proposed SRFM method can achieve satisfactory prediction perfor-
mance compared with other state-of-the-art click-through rate prediction meth-
ods. (2) The influence of hyper-parameters and different network structures on
the performance of the proposed SRFM model. (3) Whether the Self-residual
Embedding mechanism can enhance the click-through rate prediction perfor-
mance of other baseline models.

4.1 Experimental Settings

Datasets. To evaluate the performance of the SRFM algorithm, we conducted
experiments on four data sets: 1) Avazu Dataset1: It has 40,428,967 records, each
of which has 23 categorical fields. This data set was released in Kaggle’s click-
through estimation contest. 2) Criteo dataset2: It contains 45,840,617 records,
each of which has 39 categorical fields. The feature field, consisting of numerical
1 https://www.kaggle.com/c/avazu-ctr-prediction/data.
2 https://www.kaggle.com/c/criteo-display-ad-challenge/data.

https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
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features and categorical features, serves as the benchmark dataset for the Click-
through Rate Prediction (CTR) algorithm and has been used in the Display
Advertising Challenge hosted by Kaggle.

For Avazu and Criteo dataset, categorical feature values with less than 20
times of feature occurrence are uniformly replaced with the same categorical
value “NULL”. 3) Movielens1M dataset3: It contains 10,0209 anonymous ratings
for 3,900 movies from 6,040 users. It is necessary to binarize users’ ratings of the
movie. We regard the samples with ratings less than or equal to 3 as negative
samples, indicating that users do not like the movie. We regard the samples with
ratings greater than 3 as positive samples, indicating that users like the movie.
4) Book-Crossing dataset4: It contains 278,858 anonymous user rating records
for approximately 271,379 books. Similarly, those with a score greater than 5
are considered positive samples, and those with a score less than or equal to 5
are considered negative samples. According to the ratio of 8:1:1, we divided all
data sets into training data, validation data, and test data respectively.

Baselines. We chose the following widely used click-through rate prediction
models to compare with our proposed SRFM model: LR [16] is a linear approach
to modeling only individual features. Some models take into account second-
order feature interactions, such as FM [18], AFM [24]. Models that explore
higher-order complex feature interactions, such as WD [1], AFI [20], AFN [2],
DCN [23], DeepFM [9], FNN [25], xDeepFM [13], NFM [6], and DRM [26] are
also included.

Metrics. In the click-through rate prediction task, AUC [3] and Logloss are
often used to evaluate the prediction performance of the model. AUC : It refers
to the area under the ROC curve, which represents the possibility that the
prediction score of positive examples is higher than that of negative samples.
The better the model performance, the higher the AUC value. Logloss: Its
formal definition is shown in formula (10), and refers to the logarithmic loss.
The smaller the Logloss value, the better the performance of the model.

Some prior works [8,14,20,26] also show that in the CTR prediction task of
the recommendation system, the increase of AUC or the decrease of Logloss at
0.001-level or 0.0001-level will bring significant improvement.

Implementation Details. All methods are implemented in PyTorch. The
dimension of the embedding vector of all the baseline models is d = 16. The
parameter of learning rate is selected from {1e-3, 1e-4, 1e-5}, the coefficient λ
of L2 regularization is selected from {1e-3,1e-4,1e-5,1e-6}, and the batch size
is selected from {2e12, 2e10, 2e7}. Set the same structural parameters for all
baseline methods involving hidden layers (16, 16, 1). We use Adam [12] to opti-
mize all deep neural network-based models. The conditions for the algorithm to
3 https://grouplens.org/datasets/movielens/1m/.
4 https://grouplens.org/datasets/book-crossing/.

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/book-crossing/
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stop: AUC values in the validation data converge or decrease, and perform early
stopping if necessary. The optimal model obtained from the validation data was
used to evaluate the test data.

4.2 Experimental Results

In this part, in order to answer Question 1, we demonstrate the perfor-
mance improvement of the SRFM relative to the selected baseline model. The
experiments are conducted on Avazu, Criteo, Movielens1M, and BookCrossing
datasets. The results are shown in Table 1.

Table 1. Effectiveness comparison of different algorithms. AVG column denotes the
average AUC increase and average LogLoss decrease of the SRFM relative to other
baseline models on different datasets

Model Avazu Criteo MovieLens1M BookCrossing AVG

AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss

LR 0.7576 0.3922 0.7942 0.4561 0.7900 0.5426 0.7752 0.5126 0.0216 −0.0184

FM (2010) 0.7810 0.3794 0.8035 0.4482 0.7987 0.5338 0.7772 0.5095 0.0107 −0.0102

WD (2016) 0.7817 0.3788 0.8050 0.4464 0.8001 0.5307 0.7816 0.5090 0.0087 −0.0087

FNN (2016) 0.7810 0.3793 0.8044 0.4504 0.8008 0.5305 0.7842 0.5038 0.0082 −0.0085

AFM (2017) 0.7769 0.3825 0.8048 0.4465 0.8014 0.5306 0.7730 0.5148 0.0118 −0.0111

DCN (2017) 0.7829 0.3787 0.8064 0.4454 0.8085 0.5219 0.7871 0.5003 0.0046 −0.0041

DeepFM (2017) 0.7860 0.3764 0.8059 0.4459 0.8104 0.5224 0.7838 0.5049 0.0043 −0.0049

NFM (2017) 0.7853 0.3766 0.8097 0.4420 0.8037 0.5277 0.7727 0.5123 0.0080 −0.0072

xDeepFM (2018) 0.7872 0.3766 0.8102 0.4420 0.8070 0.5247 0.7879 0.5019 0.0028 −0.0038

AFI (2019) 0.7858 0.3770 0.8106 0.4412 0.8087 0.5214 0.7868 0.5014 0.0029 −0.0028

AFN (2020) 0.7822 0.3801 0.8115 0.4403 0.8079 0.5221 0.7852 0.5027 0.0041 −0.0038

DRM (2020) 0.7851 0.3769 0.8096 0.4425 0.8072 0.5229 0.7868 0.5010 0.0036 −0.0034

SRFM (ours) 0.7881 0.3750 0.8119 0.4399 0.8115 0.5186 0.7918 0.4964 – –

From the data in Table 1, we can observe that: 1) Compared with other
baseline methods, the SRFM proposed in this paper has achieved satisfactory
results on different datasets. Compared with other baseLine models, the average
AUC increase value and average Logloss decrease value of SRFM on different
datasets are both significant at 0.001-level. The slight increase of AUC in the
offline experiment may also bring a great increase in the click rate when tested
online [14], which brings significant benefits in the context of large user groups
on the Internet. 2) By comparing the experimental results of its baseline method
with LR, it can be observed that: for Avazu dataset, the suboptimal xDeepFM
improved by 3.89% on AUC and 3.96% on Logloss on average. SRFM improved
by 4.02% on AUC and 4.37% on LogLoss. For the Criteo dataset, the sub-
optimal AFN improved by an average of 2.18% on AUC and 3.46% on Logloss.
SRFM improved by 2.23% on AUC and 3.56% on LogLoss. For the Movielens1M
dataset, the suboptimal DeepFM improved by an average of 2.18% on AUC and
3.46% on Logloss. SRFM improved by 2.23% on AUC and 3.56% on LogLoss.
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For the BookCrossing dataset, DRM improved by an average of 1.5% over LR
on AUC and 2.26% on LogLoss. SRFM improved 2.15% on AUC and 3.16% on
LogLoss. From the perspective of improvement relative to LR, SFRM is higher
than the suboptimal model. 3) On the four datasets, the experimental results of
all deep learning models are better than LR, indicating that it is meaningful to
explore second-order feature interactions or even higher-order complex feature
interactions.

4.3 Influence of the Network Structure

In order to further study the influence of network structure and model parame-
ters on the performance of SRFM, we conducted several experiments.

Ablation Study. The Self-residual Embedding layer and the Second-order Fea-
ture Interaction layer are removed from the proposed SRFM model respectively,
and the new structural models are respectively called SRFM*1 and SRFM*2.
We compared the performance of SRFM, SRFM*1 and SRFM*2 in the four
datasets, and the results are shown in Table 2. For different datasets, we observed
that the Self-residual Embedding layer and the Second-order Feature Interac-
tion layer generally reduce the performance of the complete structure SRFM at
0.001-level. Compared with the Self-residual Embedding layer, the Second-order
Feature Interaction layer can bring more obvious improvement.

Table 2. Ablation experiments about SRFM. Δ1(Δ2) column denotes the AUC
increase and LogLoss decrease of the SRFM relative to SRFM*1 (SRFM*2 ) on differ-
ent datasets.

Model SRFM SRFM*1 Δ1 SRFM*2 Δ2

Avazu AUC 0.78812 0.78875 −0.00063 0.783807 0.00431

LogLoss 0.37503 0.37518 0.00015 0.378091 −0.00306

Criteo AUC 0.81189 0.81141 0.00049 0.807194 0.00470

LogLoss 0.43985 0.44131 −0.00145 0.444322 −0.00447

MovieLens1M AUC 0.81152 0.81066 0.00086 0.807119 0.00440

LogLoss 0.51861 0.51927 −0.00066 0.522878 −0.00427

BookCrossing AUC 0.79180 0.79048 0.00133 0.785926 0.00588

LogLoss 0.49643 0.49760 −0.00117 0.501284 −0.00486

Self-correlation Score. We conducted experiments to study the effects of
different activation functions and different self-correlation scores, sv and sb,
on the performance of SRFM. The experimental results are shown in Table 3.
We observed that the best results were obtained using sigmoid and sv on the
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Movielens1M and BookCrossing datasets. For Movielens1M and BookCross-
ing datasets, the combination of activation functions and self-correlation scores
yielded mean AUC scores of about 0.81051 and 0.79021, respectively, still higher
than other baseline models. To explore the best performance, an experimental
search is required to determine which σ and which s are used on the self-residual
embedding layer for different datasets.

Table 3. Effects of Self-residual Embedding layer with different activation functions σ
and Self-correlation Scores s on SRFM performance

MovieLens1M BookCrossing

σ sv sb sv sb

sigmoid AUC 0.81152 0.81003 0.79180 0.79098

LogLoss 0.51860 0.52032 0.49643 0.49715

Softmax AUC 0.81080 0.81078 0.78893 0.79098

LogLoss 0.52038 0.51896 0.49938 0.49715

tanh AUC 0.81124 0.80972 0.78866 0.79017

LogLoss 0.51875 0.54474 0.50027 0.49786

relu AUC 0.81072 0.80928 0.78993 0.79027

LogLoss 0.52084 0.52752 0.49778 0.49788

Embedding Size. We set the embedding size of the feature embedding layer
from 8 to 64 to study the impact of different feature embedding dimensions
on the performance of SRFM model, as shown in Fig. 4. It can be observed
that for the Movielens1M dataset, the model performance tends to be stable
as the embedding dimension increases, and the model performance is generally
higher when the “vector-wise score” is adopted. For the BookCrossing dataset,
the results of the two self-correlation scores were similar. On both datasets, the
optimal performance can be achieved when the feature dimension is set to 16.
This indicates that SRFM can obtain the optimal result with a small number of
parameters.

Stacking Self-residual Embedding Layer. We stack the self-residual embed-
ding layer to study its effect on the performance of the SRFM model. As shown
in Fig. 5, the model’s performance did not improve significantly on the Movie-
lens1M dataset and decreased somewhat on the BookCrossing dataset as the
number of self-residual embedding layer increased. This shows that the stacking
of the self-residual embedding layer is not necessarily efficient and only one layer
can be used.

The Extensibility of the Self-residual Embedding Layer. A helpful app-
roach should not only improve performance, but also have better extensibility.
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Fig. 4. The performance of SRFM on different embedding sizes. (a), (b), (c) and (d)
respectively represent AUC on Movielens1M, AUC on BookCrossing, Logloss on Movie-
lens1M and Logloss on BookCrossing in different embedding size

(a) Movielens1M (b) BookCrossing (c) Movielens1M (d) BookCrossing

Fig. 5. Effect of stacked Self-residual Embedding layer on model performance. (a),
(b), (c) and (d) respectively represent AUC on Movielens1M, AUC on BookCrossing,
Logloss on Movielens1M and Logloss on BookCrossing in different number of Self-
residual Embedding layers

In this section, we investigate whether the self-residual embedding layer can be
migrated to some widely used deep learning model for click-through rate pre-
diction, with the aim of improving its performance. We transfer the method
proposed in Sect. 3.2 to other models such as Wide & Deep, AFM, DCN, and
NFM. The new name for the model is called “Model*”. Table 4 lists the exper-
imental results of the original model and the new model “Model*” on different
datasets.

By observation of the experimental results in Table 4, it can be seen that
“model*” has different degrees of improvement in AUC and Logloss compared
with the original model, and can reach an improvement of orders of magni-
tude from 0.0001-level to 0.001-level in different scenarios. Note that this is not
always valid, and DeepFM* and xDeepFM* show some performance degrada-
tion on the Avazu and Criteo datasets. The performance of DCN* and WD*
on MovieLensm is degraded. We have also carried out experiments on other
models, and the results show that the self-residual embedding layer is also not
stable in these models, and maybe the optimal network parameter that cannot be
searched. These experiments show that under certain scenarios, the Self-residual
Embedding layer can improve the performance of some known click-through rate
prediction models and has a certain expansibility.
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Table 4. model* vs model. Performance improvements are indicated in bold text.

Model Avazu Criteo Movielens1m Bookcrossing

AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss

WD 0.78172 0.37879 0.80498 0.44635 0.80006 0.53073 0.78162 0.50903

WD* 0.78214 0.37866 0.80532 0.44601 0.79996 0.53067 0.78406 0.50357

AFM 0.77689 0.38246 0.80482 0.44653 0.80135 0.53062 0.77295 0.51485

AFM* 0.77995 0.38087 0.80536 0.44606 0.80176 0.53097 0.77619 0.51216

DeepFM 0.78597 0.37642 0.80585 0.44586 0.81042 0.52243 0.78383 0.50486

DeepFM* 0.78547 0.37698 0.80196 0.44999 0.80699 0.52320 0.78638 0.50135

DCN 0.78288 0.37871 0.80638 0.44538 0.80852 0.52190 0.78711 0.50032

DCN* 0.78328 0.37808 0.80656 0.44526 0.80745 0.52246 0.78821 0.49938

NFM 0.78533 0.37660 0.80967 0.44200 0.80368 0.52772 0.77265 0.51231

NFM* 0.78619 0.37615 0.80994 0.44173 0.80574 0.52538 0.77179 0.51254

xDeepFM 0.78716 0.37664 0.81022 0.44200 0.80695 0.52468 0.78791 0.50194

xDeepFM* 0.78595 0.37716 0.80971 0.44237 0.81244 0.51899 0.79158 0.50001

5 Conclusion

The embedding layer is an important part of most CTR models. Good input
affects the upper limit of model performance. In order to better represent and
model the raw features, we propose SRFM model for CTR prediction. Exten-
sive offline experiments on large-scale standard datasets show that the proposed
model has a satisfactory performance. The second-order feature interaction layer
of SRFM can bring more significant improvement, but its computational com-
plexity is nonlinear. The self-residual feature embedding mechanism can improve
the performance of some models and has certain expansibility. At present, the
performance of the CTR prediction task has reached a bottleneck. In the future,
we will further study the method to learn and optimize feature embedding repre-
sentation, aiming to better optimize the current CTR prediction model in terms
of performance and efficiency.
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Abstract. In recent years, tremendous efforts have been made to explore features
contained in user-item graphs for recommendation based on Graph Neural Net-
works (GNN). However, most existing recommendation methods based on GNN
use weighted sum of directly-linked node’s features only, assuming that neighbor-
ing nodes are independent individuals, neglecting possible correlations between
neighboring nodes, which may result in failure of capturing co-occurrence sig-
nals. Therefore, in this paper, we propose a novel Graph Convolutional Network
with Neighbor complex Interactions for Recommendation (GCNNIRec) focused
upon capturing possible co-occurrence signals between node neighbors. Specif-
ically, two types of modules, the Linear-Aggregator module and the Interaction-
Aggregator module are both inside GCNNIRec. The former module linearly
aggregates the features of neighboring nodes to obtain the representation of tar-
get node. The latter utilizes the interactions between neighbors to aggregate the
co-occurrence features of nodes to capture co-occurrence features. Furthermore,
empirical results on three real datasets confirm not only the state-of-the-art per-
formance of GCNNIRec but also the performance gains achieved by introducing
Interaction-Aggregator module into GNN.

Keywords: Recommender system · Graph neural networks · Neighbor
interactions

1 Introduction

To cope with information overload, recommender systems are widely used in life. Col-
laborative filtering is one of the most commonly used techniques in many modern rec-
ommendation systems [1]. It assumes that similar people tend to own similar preferences
on similar items. The interactions between users and items can naturally be regarded as
a graph structure, therefore graph neural networks [2–4] can be applied in recommen-
dation. STAR-GCN [5] utilizes GNN to aggregate the structural information. NGCF [6]
uses stacked graph convolutional layers to obtain the high-order relationship information.
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These models show the remarkable ability of GNN in aggregating feature information in
recommendation systems. Based on assumption that neighboring nodes are independent
individuals, these approaches take a weighted sum of all neighbors’ features to obtain
the representation of the target node. In fact, there are latent interactions between some
neighboring nodes. The interactions may be a strong signal of the characteristics of tar-
get node, which can indicate the user’s preferences. The example below shows that the
interactions between neighbors can be a strong signal—user’s preferences.

Fig. 1. A shopping example: (Left) A transaction graph. (Right) Two aggregation methods, linear
aggregation and interaction aggregation.

Figure 1 illustrates a scenario in a shopping dataset. A user purchased two items
as the picture depicted, which are a watch and a T-shirt. It can be seen from the figure
that the user paid more attention to the feature “cost-effective” when purchasing the
watch and the T-shirt. In the case of linear aggregation that takes summation without
weight in Fig. 1, it can be found that the user paid attention to features such as “price”,
“cost-effective”, “portability” and “appearance”, but it fails to correctly capture user
preferences. Employing the linear aggregation method that takes weighted summation,
it can filter out some irrelevant features such as “appearance” and “portability”, but
also fail to capture the user’s main preference characteristics; In the case of interaction
aggregation, it can capture the co-occurrence feature—“cost-effective” between the two
products and filter out two irrelevant features, “appearance” and “portability”. Therefore,
the potential interactions between neighbor nodes may be a strong cooperative signal,
which contribute to the learning of user preference features. But most recommendations
based on GNN failed to capture such signals.

To obtain user preference information, we propose an end-to-end deep model GCN-
NIRec, which can capture co-occurrence signals between neighboring nodes. Specif-
ically, the key component of GCNNIRec consists of two modules: Linear-Aggregator
module and Interaction-Aggregator module. Given a user-item interaction graph, the
Linear-Aggregator module takes the weighted sum of the features of the connected
nodes to obtain general feature representation of target node; The Interaction-Aggregator
module utilizes the interactions between neighbors to learn the co-occurrence feature
information for target nodes. Moreover, a sparse regularizer [7] is applied to solve the
over-parameterization and over-fitting problems.
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2 Related Works

Graph neural networks have been widely used in recommendation system, and have
made remarkable achievements. Lots of previous works based on GNN are to obtain
node features by linearly aggregating features of neighbors, which may fail to capture
some co-occurrence features between neighbors.

According to the method of information aggregation in GNN, the existing recom-
mendation models are mainly divided into unweighted linear aggregation models and
weighted linear aggregation models. GC-MC [8] applies the graph neural network to
the matrix completion, which uses an unweighted linear aggregator to aggregate node
feature information and treats each adjacent node equally, which may lead to the intro-
duction of some noise caused by some disliked items. GAT [4] could be considered as a
weighted linear aggregation method, which can solve the noise problem caused by non-
weighted linear aggregation, and it makes the weighted linear aggregator more common
in GNN recommendation system. GraphRec [9] utilizes a dynamic attention network to
learn the impact of different neighbor nodes. HGMAP [10] uses a multi-head attention
mechanism to distinguish users’ preferences for different aspects of POI. LightGCN
[11] applies a simple weighted linear aggregator to aggregate features of neighbors and
learns node features efficiently and quickly. MCCF [12] uses a hierarchical attention
network to learn multiple potential purchase intentions. Linear aggregation method is
widely used in graph neural networks.

GraphSage [3] also proposed several nonlinear aggregation methods such as pooling
aggregation and LSTM aggregation. GATNE-T [13] utilizes the mean aggregator and
max-pooling aggregator to obtain edge embedding. The mean aggregation and pooling
aggregation method can learn the main characteristics, but they cannot learn the possible
co-occurrence preference characteristics of neighbor nodes.

Fig. 2. The framework of GCNNIRec.
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3 Our Approach

Figure 2 provides an overview of GCNNIRec. In the following, this paper will introduce
each part of GCNNIRec in detail.

3.1 Raw Input and Embedding Initialization

GCNNIRec requires user-item bipartite graph G as input. The raw input of user node or
item node is a one-hot vector, a high-dimensional sparse vector, which is not conducive
to the calculation and representation of the model. Therefore, an embedding layer is
applied to convert it into a low-dimensional dense vector to obtain user node’s initial
embedding xu and item’s initial embedding xi.

After obtaining the initial embedding of each node, the target node can update its
feature embedding by message passing and message aggregation. The following section
will introduce two message aggregation methods respectively.

3.2 Linear-Aggregator Module

GNN has been extensively employed in recommendation systems and achieved great
success. For graph attention networks (GAT) [4], users can give different attentions to
different purchased items, which can reduce the noise caused by some disliked items.
Therefore, we apply GAT to Linear-Aggregator module to learn feature information of
target node by aggregating the features between neighboring nodes, as shown in formula
(1).

LiAgg(hv) = hv = LinearAgg
(
{hi}i∈Ñ (v)

)
=

∑
i∈Ñ (v)

aivhiW (1)

Where hv represents target node v; Ñ (v) is the set of expanded adjacent nodes of
node v, including target node v;W is a weight matrix (a trainable parameter) to do feature
transformation; aiv is the attention coefficient of the target node v to neighboring node
i, which can be calculated by formula (2).

aiv =
exp

(
ReLU

(
�aT

[
W

−→
hv ||W−→

hi
]))

∑
k∈N (v) exp

(
ReLU

(
�aT

[
W

−→
hv ||W−→

hk
])) (2)

Where hi denotes the representation of the neighbor node i; N (v) represents the neigh-
bors of node v; || is the concatenation operation; �a is a weight vector;.T represents
transposition; ReLU is an activation function.

Applying Linear-Aggregator module, GCNNIRec can learn general feature infor-
mation from all neighboring nodes. But Linear-Aggregator module cannot learn the
co-occurrence feature information (a strong signal) from purchased items. Therefore,
we introduce a new information aggregation method, interaction aggregation.
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3.3 Interaction-Aggregator Module

Wedesigned a new Interaction-Aggregator module for GCNNIRec. This module utilizes
the interactions between neighbors to aggregate the co-occurrence features of nodes.

As shown in Fig. 3, we first utilize a weighted random sample strategy [14] on
user-item ratings to select a fixed number of neighboring nodes for efficiency of model
training. Then, we will generate a complete graph based on the target node and the fixed
number of neighboring nodes selected by the sampling. After that, we will use formula
(3) to make all nodes on the graph interact in pairs, and finally perform a weighted
summation of the interactive results to obtain the aggregated characteristics of the target
node.

hv = InteractionAgg
({hi}i∈N (v)

) =
∑

i∈N (v)

∑
j∈N (v)&i<j

hiW � hjW (3)

WhereN (v) represents the set of directly connected neighbors of node v; i and j are node
index from N (v); � denotes element-wise product.

Fig. 3. The framework of Interaction-Aggregator module.

Inspired by BGNN [15], we consider interactions between target nodes and all
neighboring nodes, as shown in Eq. (4).

hv = InteractionAgg
(
{hi}i∈Ñ (v)

)
= 1

nv

∑
i∈Ñ (v)

∑
j∈Ñ (v)&i<j

hiW � hjW (4)

Where Ñ (v) = N (v) ∪ {v}; i and j are node index from Ñ (v); nv denotes the num-
ber of all interactions. Interaction-Aggregator module has a high computational time
complexity, which is not conducive to model training. Inspired by [15], We can rewrite
formula (4) equivalently as follows:

InteractionAgg
({

hi
}
i∈Ñ (v)

)
= 1

2nv

(∑
i∈Ñ (v)

∑
j∈Ñ (v)
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∑
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)

(5)

InAgg(hv) = hv = 1
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(6)
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Where si = hi W denotes the transformed feature vector of node i. We can compute
the Interaction-Aggregator module in linear time and the complexity is the same as the
Linear-Aggregator module.

3.4 Final Embedding

We can learn lots of node features from the Linear-Aggregator module and the
Interaction-Aggregator module. Specifically, from the Linear-Aggregator module, we
can obtain some general feature information; From the Interaction-Aggregator module,
we can obtain some co-occurrence features and capture the user’s possible preferences.
Then, we obtain the final embedding of the target node by weighted sum of the two
embeddings obtained by the two modules, as shown in Eq. (7).

ev = (1 − α) ∗ LiAgg(hv) + α ∗ InAgg(hv) (7)

Where α is a hyper-parameter, which controls the ratio of node embedding obtained
from the Interaction-Aggregator module and from the Linear-Aggregator module.

3.5 Rating Prediction

Once getting the final embedding of the user u and the item i (i.e., eu and ei), accord-
ing to Matrix Factorization (MF) model, we utilize the dot product between user final
embedding and item embedding to predict the user-item interaction rating, as shown in
formula (8).

r̂ui = eu ∗ ei (8)

Objective Function. Our task is the rating prediction. The objective function is as
follows:

Lossr = 1

2|o|
∑

(u,i)∈o

(
rui − r̂ui

)2 (9)

whereO donates the set of observed interaction ratings, and rui is the ground truth rating
of the user u on the item i. To alleviate overfitting and over-parametrization, the L0
regularization [7] is introduced in our objective function.

The final objective function is shown below.

min
�

Loss = Lossr + λ‖�‖0 (10)

where Θ denotes the trainable model-parameter set and λ is a hyper-parameter, which
controls the strength of L0 regularization to alleviate overfitting. We adopt the Adam as
the optimizer to optimize and update the model.
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4 Experiments

4.1 Experimental Settings

Datasets. The effectiveness of our model is evaluated on three real datasets: Yelp,
Movielens-100K, Amazon. Yelp is a business recommendation dataset that contains
30838 ratings from 1286 users to 2614 items.Movielens-100K is an extensively adopted
movie dataset in recommendation, which consists of 100,000 ratings from 943 users to
1682 movies. Amazon is a product recommendation dataset containing 65170 ratings
from 1000 users to 1000 items. In each dataset, 80% of historical ratings are randomly
selected as training set, and the remaining are the test set.

Metrics. In our rating prediction task, we adopt two widely-used evaluation metrics:
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) [12].

Baselines. We compare GCNNIRec with the following approaches:

– BiasMF [16] is an improved method based on MF model, which takes into account
the biases of different users and items.

– AUTOREC [17] is an auto-encoder based method. In our experiments, we use I-
AUTOREC to represent, for it has better performance than U-AUTOREC.

– GC-MC [8] is a collaborative filtering model based on graph convolutional networks,
which linearly aggregates features of neighboring nodes to encode nodes.

– MCCF [12] is a novel recommendation approach based on graph attention networks,
which employs hierarchical attention networks to explore user intents.

4.2 Performance Comparison

Table 1. Performance comparison of rating prediction.

Yelp ML-100K Amazon

RMSE MAE RMSE MAE RMSE MAE

BiasMF 0.3862 0.1494 0.9217 0.7238 0.9021 0.6752

AUTOREC 0.3814 0.1185 0.9383 0.7319 0.9163 0.7024

GC-MC 0.3837 0.1264 0.9145 0.7126 0.8915 0.6601

MCCF 0.3806 0.1029 0.9070 0.7050 0.8876 0.6428

GCNNIRec-LA 0.3750 0.1069 0.9135 0.7103 0.8895 0.6521

GCNNIRec-IA 0.3801 0.1103 0.9226 0.7215 0.8864 0.6408

GCNNIRec 0.3636 0.0997 0.9012 0.7028 0.8823 0.6312

We compare the recommended performance of all models mentioned above.
GCNNIRec-LA and GCNNIRec-IA are two variants of GCNNIRec. Specifically,
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GCNNIRec-LA removed the complex interactions between neighboring nodes from
GCNNIRec and only retained the linear aggregator. On the contrary, GCNNIRec-IA
only kept the interaction aggregator. From Table 1, we can see experimental results of
all methods and compare these models in terms of RMSE and MAE. We have several
observations.

• Our model GCNNIRec consistently outperforms all benchmark methods, which
shows the significance of introducing interactions between neighboring nodes to
recommender systems.

• It is observed that MCCF and GC-MC outperform BiasMF, which indicates the power
of neural network models. Among these baselines, MCCF and GC-MC show signif-
icant performance, suggesting that the GNNs and attention mechanism are powerful
in representation learning for graph data.

• GCNNIRec outperforms GCNNIRec-LA, which suggests that the model GCNNIRec
with the Interaction-Aggregator module has more powerful representation capabil-
ities and implies that the complex interactions between neighbors are effective for
improving the recommendation performance. Similarly, since it ignores the Linear-
Aggregatormodule, GCNNIRec-IA performsworse thanGCNNIRec.We can see that
both the Interaction-Aggregatormodule and the Linear-Aggregatormodule contribute
to the improvement of the model performance.

4.3 Hyper-Parameter Analysis of GCNNIRec

Fig. 4. Impact of the hyper-parameter α on Amazon dataset.

Impact of the Hyper-Parameter α. The hyper-parameter α controls the contributions
of Interaction-Aggregator module and Linear-Aggregator module to the model. When
α is greater than 0.5, the Interaction-Aggregator module contributes more to the model.
When α is 1, the model only contains Interaction-Aggregator module; When α is less
than 0.5, the model is more contributed by Linear-Aggregator module. When α is 0, the
model only consists of Linear-Aggregator module. In Fig. 4, we can see that when α

is 0.4, GCNNIRec achieves the best performance, which means that the model learns
more from the Linear-Aggregator module. Since user’s purchase behavior is usually
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affected by many intentions, the Interaction-Aggregator module can only learn the main
co-occurrence preference features such as the “cost-effective” feature in Fig. 1, while
the Linear-Aggregator module can learn all features such as “appearance”, “price” and
“cost-effective”, although it cannot capture co-occurrence preference information; when
α is close to 0 or 1, the model performance will gradually deteriorate, suggesting that
when only learning the general features or co-occurrence features of neighboring nodes,
the model cannot get the optimal performance. It demonstrates the effectiveness of
Interaction-Aggregator module and Linear-Aggregator module.

Fig. 5. Impact of embedding dimension d on Yelp and Movielens-100K datasets.

Impact of the Hyper-Parameter d (Embedding Dimensions). Since the embedding
dimension d plays a key role in controlling the complexity and expressive capacity of
GCNNIRec, we evaluate how it impact on recommendation performance. Generally
speaking, when we gradually increase the embedding dimension d, its performance will
be improved, since a smaller dimension is not capable of expressing the features of
nodes, and when d is increased, the expression ability of each node will be improved to
an optimal value. However, when d is greater than the optimal value, increasing d will
affect performance. When d further increases, the node expression ability will be further
enhanced, whichmay lead to overfitting and introduce corresponding noise. Figure 5 can
prove this. Therefore, an appropriate embedding dimension d is employed to balance
the trade-off between complexity and performance.

5 Conclusion

In this paper, we proposed a novel model GCNNIRec based on GNN for recommenda-
tion, which explores features contained in user-item bipartite graph by utilizing complex
interactions between neighboring nodes. Specifically, GCNNIRec contains two designed
modules, Linear-Aggregator module and Interaction-Aggregator module. The former
module uses a weighted sum of the features of the connected nodes to represent the
target node. The latter utilizes the interactions between neighboring nodes to aggregate
the co-occurrence features, which can capture possible co-occurrence signals between
neighboring nodes. And then combine the modules to extract node features. Our exper-
imental results demonstrate that our model outperforms existing models in terms of
recommendation metrics, RMSE and MAE.
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Abstract. Location-based services recommend points of interests
(POIs) which are nearer to the user’s position q. In practice, when
the user is moving with a velocity −→v , he may prefer the nearer POIs
which match his moving direction. In this paper, we propose the velocity-
dependent nearest neighbor query (VeloNN query), which selects the
POIs that are nearer and best match the user’s moving direction. In
the VeloNN query, if the direction of a POI o highly matches the direc-
tion of −→v , o is likely to be preferred. Since computing the directional
preferences of all POIs is time-consuming, we propose rules to filter out
the POIs with low directional preferences. We also divide the space into
tiles, i.e., rectangular areas, and compute a candidate set for each tile in
advance. The VeloNN candidates can be quickly prepared after finding
the tile where the user is. We conduct experiments on both synthetic and
real datasets and the results show the proposed algorithms can support
VeloNN queries efficiently.

Keywords: Spatial database · Direction-aware · Nearest neighbor
query · Von Mises distribution

1 Introduction

In spatial databases, the traditional nearest neighbor queries (NN queries) find
the point of interest (POI) with the minimum distance to the user’s position
q. As Fig. 1(a) shows, the result of the NN query is oi since it is the closest
one to q. However, in real applications, users often issue queries when they are
moving. They may prefer the POIs that are closer and more consistent with
their moving directions. In this paper, we propose the velocity-dependent nearest
neighbor query (VeloNN query), which finds nearer POIs which are in consistent
with the user’s moving direction. As Fig. 1(b) shows, the result of the VeloNN
query is oj which is nearer and also close to the user’s moving direction.
c© Springer Nature Switzerland AG 2021
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Our assumption is a user likes his moving direction better if he moves at
a greater speed. To model a user’s preference on directions, we consider both
the speed and the direction of his velocity −→v . An extreme case is he likes every
direction equally if he stands still. We employ the Von Mises distribution [1]
to quantify this assumption. The Von Mises distribution is a special normal
distribution with the support (−180◦, 180◦] and the mean value 0◦. We use the
support to indicate all directions around the user, use the mean value to indicate
the direction of −→v , and use a more concentrated distribution if the speed is
greater. According to this distribution, we can compute each POI’s probability
of being liked directionally. The VeloNN query aims at finding nearer POIs whose
probabilities are higher than a preference threshold τ .

(a) An NN query example (b) A VeloNN query example

Fig. 1. An NN query versus a VeloNN query

To answer a VeloNN query, a baseline algorithm is to compute POIs’ proba-
bilities one by one in the ascending order of their distances and return the ones
who have satisfactory probabilities. However, this algorithm is slow due to the
sorting. Since in spatial databases, POIs are often indexed by R-Tree, we pro-
pose an R-Tree-based algorithm, which runs faster than the baseline algorithm.
Observing properties of the Von Mises distribution, we derive a pruning strategy
to reduce the search space and also derive conditions to terminate earlier.

In addition, we find that the VeloNN query results change little if the query
positions are limited to a small area. It means that we can pre-compute the
candidates for small areas and identify the results among candidates. So we
propose two tile-based algorithms which divide the whole space into many tiles
and compute the candidates for each tile beforehand. When the user issues a
query, we first find the tile where the user locates, and then identify the results
from the candidates the tile holds. The tile-based algorithms can answer VeloNN
queries faster than the R-Tree-based algorithm for the candidate set is quite
small. One of the tile-based algorithms, i.e., the adaptive tile-based algorithm
can guarantee that the number of candidates for each tile is at most K.
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2 Velocity-Dependent Nearest Neighbors

We define velocity-dependent nearest neighbors in the two-dimensional
Euclidean space R

2. Let the user q and POIs O = {o1, o2, . . . , on} be points
in R

2. The velocity −→v is a vector starting from q, which indicates both the
user’s speed ‖−→v ‖ and his moving direction. Taking his moving direction as a
reference direction, we define the direction of a POI oi as the included angle ωi

between −→qoi and −→v . For example, in Fig. 2(a), The direction of o3 is ω3 = 112◦,
while the direction of o6 is ω6 = −27◦.

Fig. 2. A toy example

According to the directions of POIs, we define the directional service ranges
and occupied ranges of POIs.

Definition 1. Service Range. The service range of a POI oi is the angular
range servi = (ωi − θ, ωi + θ).

The service range of o3 is shown in Fig. 2(b) when θ = 30◦. In common
sense, assuming the user prefers a direction ω∗, the user regards oi is acceptable,
if ω∗ is in the service range of oi. For instance, the user may roughly consider
o3 is directionally acceptable if he prefers a direction in o3’s service range. The
service ranges of the POIs may overlap, for example, serv7 and serv1 overlap
because |ω7 −ω1| < 2θ. See the dark range in Fig. 2(c). Both o7 and o1 can serve
this range. Comparing their distances to q, o7 is better. Further, we define the
occupied range of oi.
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Fig. 3. A toy example (Cont.)

Definition 2. Occupied Range. The occupied range of oi is an angular range
occi ∈ servi. Comparing with the other POIs, whose service ranges include occi,
oi is the nearest one.

Figure 3(a) shows the occupied ranges of the POIs in different colors. For
example, the purple range indicates the occupied range occ0 of o0. It means that
if the user prefers any direction in this range, o0 is the nearest one. Specially,
there are some vacant ranges because no POI can serve these directions. There
are also some POIs who have no occupied ranges, for example, o1 and o5, because
in their service ranges they are not the nearest ones.

Now we define the directional preference of the user, which is heavily depen-
dent on the user’s velocity −→v . In common sense, the user may prefer the POIs
that are in consistent with his moving direction. A larger moving speed ‖−→v ‖
indicates the user likes this direction much. Specially, a zero speed indicates the
user likes every direction in [0◦, 360◦) equally. We model the distribution of the
preference by using the Von Mises distribution [1]. The Von Mises distribution
is similar to the normal distribution, except the support is ω ∈ (−180◦, 180◦].
Its density function for ω is

f(ω) =
eκ cos(ω−μ)

2πI0(κ)
, (1)

where μ is the mean value of the distribution, κ is the concentration parameter
like σ in the normal distribution, and I0(κ) is the modified Bessel function with
order zero. When κ is close to zero, the distribution is close to uniform. When
κ is large, the distribution concentrates about μ. In this paper, μ is set to be 0◦

and κ is in proportion to ‖−→v ‖ (i.e., κ ∝ ‖−→v ‖), since the larger the speed is, the
more the user likes his moving direction.

Definition 3. Directional Preference. The directional preference of oi is the
probability that the user prefers some direction in occi, i.e.,

P (ω ∈ [occi.s, occi.e]) =
∫ occi.e

occi.s

f(ω) dω, (2)
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where occi.s and occi.e denote the starting and ending angle of occi.

In the following parts of this paper, P (occi) is short for P (ω ∈ [occi.s, occi.e]).
Figure 3(b) shows the Von Mises distribution with κ = 2 and μ = 0◦, and the
colored areas indicate the directional preference of o6, i.e., P (occ6) = 0.19, and
the directional preference of o7, i.e., P (occ7) = 0.3, respectively. We select the
POIs with high directional preferences, and we call such POIs velocity-dependent
nearest neighbors (VeloNNs).

Definition 4. VeloNN Given a threshold τ , if a POI oi has a directional pref-
erence P (occi) higher than τ , oi is a VeloNN.

For example, in Fig. 3(b), given τ = 0.2, o7 is a VeloNN, while o6 is not a VeloNN.
The VeloNN query aims at finding such VeloNNs.

Related Work. Traditional spatial queries only consider POIs’ distances, such
as kNN queries. However, the directions and distances are equally critical factors
in location-based services. DESKS [2] retrieves POIs constrained by directions,
distances and keywords. DCkNN query [3] recommends k POIs which are clos-
est and constrained by directions, and it uses an index structure called MULTI
to improve query efficiencies. Considering the distances and directions, RDBS
query [4] searches a user who is seeing the POI as one of his direction-based sur-
rounders [5]. Based on DESKS, [6] proposes optimization technology to deal with
the situation where the results are lost because the user cannot fully describe the
query. [7] uses a pie-shaped heat map to visualize the multiple views of the POIs
set. The heat map can be widely used in decision-making applications where the
tasks are directionally sensitive. Studies [8,9] search for POIs scattered around
and close enough to the user. [10,11] study direction aware kNN queries in road
network. Additionally, [12] proposes k-aggregate nearest neighbor query method
of mobile objects in road network and designs a kANN query algorithm to answer
the query. [13] presents a location privacy preserving nearest neighbor query in
road network environment and proposes a local index mechanism to help solve
the query. [14] studies the nearest neighbor query of line segment group in obsta-
cle environment. Based on [14,15] studies the problem of group visible nearest
surrounder query in obstacle space, and proposes the hybrid index structure to
speed up the query. Our VeloNN query is the first work that considers the user’s
velocity to recommend POIs.

2.1 Baseline Algorithm

To answer a VeloNN query, we check oi’s in the ascending order of their distances,
and identify the VeloNNs with P (occi) > τ . The algorithm terminates when all
POIs have been checked, or the union of occupied ranges of the present results
can cover (−180◦, 180◦].
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Algorithm 1: Baseline Algorithm
input : O, q, θ, τ , −→v , κ.
output: The results R.

1 O ← SortPOI(O, q);
2 Occ ← ∅;
3 for i ← 0 to n − 1 do
4 ωi ← GetDir(oi,

−→v );
5 servi ← (ωi − θ, ωi + θ);
6 occi ← servi − Occ ∩ servi;
7 if GetDirPref(occi,

−→v ) > τ then
8 R ← R ∪ {oi};
9 Occ ← Occ ∪ occi;

10 if Occ = (−180◦, 180◦] then break ;

11 return R;

As Algorithm 1 shows, first we sort all POIs (line 1) and initialize the total
occupied range Occ as ∅ (line 2). Next, we use a for loop to check every oi. In
the loop, we compute oi’s direction (line 4), find its service range servi (line 5),
and further find its occupied range occi (line 6). Note that it cannot occupy the
ranges which have been covered by the POIs nearer than it, i.e., the POIs that
have been checked. Line 7 employs the Von Mises distribution to compute its
directional preference. If the preference is larger than τ , it is a VeloNN (line 8).
At last, we update Occ by adding occi (line 9). If Occ covers the whole range, the
algorithm terminates (line 10), since farther POIs cannot have occupied ranges
and they cannot be VeloNNs. The time complexity is O(n log n + mn) where n
is the number of POIs and m is the number of VeloNNs found.

3 R-Tree Based Algorithm

In spatial databases, POIs are commonly organized by an R-Tree structure. To
improve the baseline algorithm, we propose an R-Tree based algorithm. We check
MBRs and POIs in the order of their distances. We maintain a priority queue to
retrieve the R-Tree in the depth first order. In the priority queue, the distance of
each element (a POI or an MBR) acts as the key. Each time we pop and check
the top element with the minimum key. If it is a VeloNN, we add it into the
result set and update the total occupied range Occ. If it is an MBR, we push its
useful child mbri into the priority queue.

Here useful means (1) mbri contains VeloNN candidates or (2) mbri contains
POIs that may influence the occupied ranges of the candidates, in spite of they
are not VeloNNs in themselves. The algorithm terminates when all VeloNNs are
found.

3.1 Useful MBRs

First, we discuss how to determine whether mbri contains no VeloNN. It means
that in mbri no point has a directional preference which is larger than τ . Let
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[ω⊥
i , ω�

i ] denote the direction range of POIs in mbri. For example, in Fig. 4, the
direction range of mbr1 is [ω⊥

1 , ω�
1 ]. We have the following theorem.

Fig. 4. An example to illustrate Theorem 1

Theorem 1. The mbri must contain no VeloNN, if

[ω⊥
i , ω�

i ] ∩ (bs−, bs+) = ∅, (3)

where bs− and bs+ are boundary directions satisfying

P (ω ∈ (bs−(+) − θ, bs−(+) + θ)) = τ. (4)

As Fig. 4 shows, two blue areas illustrate the preferences P (ω ∈ (bs−−θ, bs−+
θ)) and P (ω ∈ (bs+ − θ, bs+ + θ)), respectively. Both of them equal to τ . The
yellow area illustrates P (servi) < τ , which is the upper bound of the preference
of oi. We can see that if a POI’s direction falls out of (bs−, bs+), the preference
should be lower than τ . For simple, we use Φ1 to denote (bs−, bs+). The POIs
whose direction falls into Φ1 are VeloNN candidates. According to the theorem,
mbr1 in the left of Fig. 4 contains no VeloNN, since its direction range does not
overlap Φ1. On the contrary, mbr2 and mbr3 overlap Φ1 and they contain VeloNN
candidates.

Next, we discuss how to determine whether mbri contains POIs that may
influence the occupied ranges of VeloNN candidates. We call such POIs influen-
tial POIs. For example, in Fig. 5(a), mbr1 falls outside of Φ1, however, it contains
om, which is nearer than the VeloNN candidate on and its service range having
intersections with on’s service range. Thus, on’s occupied range should exclude
these intersections. Here, om can influence the occupied range of a VeloNN candi-
date (i.e., on), it is an influential POI. We have the following theorem to identify
the MBRs who may contain influential POIs.
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Fig. 5. Examples of Φ1, Φ2, Φ3 and Φ4

Theorem 2. The mbri may contain influential POIs, if

[ω⊥
i , ω�

i ] ∩ (bs− − 2θ, bs+ + 2θ) �= ∅. (5)

For simple, we denote the angular range (bs− − 2θ, bs+ + 2θ) as Φ2 and denote
[−180◦, 180◦) − Φ2 as Φ3, as Fig. 5(a) shows. Further, we have the following
theorem.

Theorem 3. The mbri should be pruned, if

[ω⊥
i , ω�

i ] ⊆ Φ3. (6)

It means that an mbri satisfying

mbri ∩ Φ2 �= ∅ (7)

is useful and should be pushed into the priority queue.
At last, we discuss when the algorithm terminates. All VeloNNs are found

when either of the two conditions is met. The two conditions are (1) there is no
element in the priority queue and (2) the total occupied range Occ has covered
Φ4 = (bs−−θ, bs++θ). As Fig. 5(b) shows, the current Occ covers Φ4. On the one
hand, assuming ox’s service range servx ⊆ Φ4, it is not a VeloNN for its occupied
range is ∅. On the other hand, assuming oy’s service range is servy � Φ4, oy is not
a VeloNN for the preference P (occy) < τ . Thus, we cannot find more VeloNNs
in the future if condition (2) is satisfied.

3.2 Search Algorithm

We summarize the R-Tree based algorithm in Algorithm 2. First, we compute
the bounds (bs−, bs+) (line 1), initialize the total occupied range Occ (line 2),
and push the root node of R-Tree into the priority queue (line 3). Next, we
pop and process the top element of the queue until the termination condition is
satisfied (line 4). On the one hand, when the top element is a POI (line 6), we
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Algorithm 2: R-TreeBasedAlgorithm
input : tree, q, θ, τ , −→v , κ.
output: The result set R.

1 (bs−, bs+) ← GetBounds(κ, τ, θ, −→v );
2 Occ ← ∅;
3 Push e(tree.root, 0) into the priority queue que;
4 while que �= ∅ ∧ Φ4 � Occ do
5 Pop and get top of que;
6 if top is a POI then
7 occtop ← servtop − Occ ∩ servtop;
8 if GetDirPref(occtop,

−→v ) > τ then
9 R ← R ∪ {top};

10 Occ ← Occ ∪ occtop ;

11 else
12 foreach child ct of top do

13 if [ω⊥
t , ω�

t ] ∩ Φ2 �= ∅ then
14 Push ct into que;

15 return R;

compute its service range servtop and its occupied range occtop (line 7). If the
preference of top is larger than τ , we add it into the result set R (line 8 and line
9). Then we update the current Occ by adding occtop (line 10). On the other
hand, when the top element is a tree node, we check its child one by one (line
12). According to Theorem 3, we can determine whether the child is useful (line
13). If the child is useful, we push it into the queue (line 14). At last, we obtain
all VeloNNs (line 15). This algorithm runs faster than the baseline algorithm,
because (1) we can identify useless POIs in groups and prune them immediately
(line 13) and (2) we can confirm all VeloNNs are found once the termination
conditions are met (line 4).

4 Tile-Based Algorithms

Observing that VeloNNs change little when the user moves in a small area, we
propose the following tile-based algorithms. In the preprocessing step, we cut the
whole space into small rectangular areas, i.e., tiles. For each tile Ti, we find and
store candidates Candidi from which we can further identify VeloNNs. To answer
a VeloNN query, we find the tile Tq where the user q locates, then we identify
the real results among Candidq considering the user’s velocity −→v . Such query
runs faster than the R-Tree-based query, since we only search for results from
a very small set Candidq, at the expense of finding and storing the candidates
beforehand.

For a query point q, the candidates are the POIs that having occupied ranges.
For a small area Ti, the candidates are the POIs that may have occupied ranges
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w.r.t. a point in Ti. Such candidates for Ti can be found by using the range-DNN
algorithm in [9]. To save space, we will not introduce this algorithm. Next, we
will introduce two ways of making tiles and the query algorithms based on the
two kinds of tiles.

(a) Fixed tiles (b) Adaptive tiles

Fig. 6. Two types of tiles

Queries on Fixed Tiles. A straightforward way of making tiles is to divide
the whole plane R

2 into a M × N grid. In the grid, each cell is a tile Ti,j and
we compute candidates for Ti,j . As Fig. 6(a) shows, we divide R

2 into a 20 × 20
grid. For example, the blue stars around T6,16 and T17,3 are the candidates for
them. We find and store the candidates for each tile beforehand. When a user
issues a query, firstly we find the tile Ti,j where the user is, secondly we select
the real results from the candidates for Ti,j using Algorithm 1. Since the tiles
are fixed for different POI sets, we call this method fixed tiles based algorithm.
The disadvantage of this method is we cannot control the number of candidates
per tile. The query will be slow if users locate at “rich” tiles who own too many
candidates.

4.1 Queries on Adaptive Tiles

To control the number of candidates per tile, we propose the adaptive tiles struc-
ture. The adaptive tiles are incrementally generated from seeds. As Fig. 6(b)
shows, let [Xmin, Ymin,Xmax, Ymax] denote the entire space R

2. At the begin-
ning, we randomly generate initial seed points T 0

(i,0)(Xmin + i ∗ Δx, Ymin)(i =
0, 1, . . . , n − 1) where Δx = (Xmax − Xmin)/n and n is a specified positive inte-
ger. For each initial seed T 0

(i,0), we gradually expand T 0
(i,0) to larger rectangles

T 1
(i,0), T 2

(i,0), . . ., T j
(i,0) by enlarging height Δy. The superscript j denotes the

times of enlargements. The enlargement terminates once the number of candi-
dates exceeds K and T j

(i,0) becomes a tile. After generating T j
(i,0), we generate the
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next tile. We choose T 0
(i,1)(Xmin + i∗Δx, Ymin + j ∗Δy) to be the next seed, and

gradually enlarge T 0
(i,1) until the number of candidates reaches K. Figure 6(b)

shows an example of such tile and its candidates (i.e., the blue stars). In this
way, we make tiles one by one until all tiles cover the whole space R

2. To locate
users fast when queries are issued, we organize the tiles by using an R-Tree.

Algorithm 3: Generate Adaptive Tiles
Input: K, O, θ, Xmin, Xmax, Ymin, Ymax, n
Output: rtree

1 Δx ← (Xmax − Xmin)/n;
2 T(i,j) ← (Xmin + i ∗ Δx, Ymin);
3 for i : 0 → n − 1 do
4 j ← 0;
5 while T(i,j).y �= Ymax do
6 T(i,j).candid ← GetCandid(T(i,j), Δx, θ, O);
7 while |T(i,j).candid| < K do
8 T(i,j).y+ = Δy;
9 T(i,j).candid ← GetCandid(T(i,j), Δx, θ, O);

10 Insert T(i,j) into rtree;
11 j+ = 1;
12 T(i,j+1) ← (Xmin + i ∗ Δx, T(i,j).y);

13 return rtree;

Algorithm 3 summarizes the procedure of generating tiles. Line 1 to line 2
calculate n initial seeds T(i,j)(Xmin + i ∗ Δx, Ymin)(i = 0, 1, . . . , n − 1). For each
initial seed T(i,j), we execute the while loop. When T(i,j).y �= Ymax, we calculate
its candidates using the algorithm in [9] (line 6). The inner while loop enlarges
the current tile T(i,j) until the number of its candidates reaches K (line 7 to
line 9). After the inner loop, the tile T(i,j) is ready and we insert it into the
index rtree (line 10). Next, we obtain the next seed T(i,j+1) (line 12) and repeat
the above process until the whole space is completely covered. This algorithm
generates tiles which are adaptive to the distribution of POIs. The adaptive-
tiles structure is better than the fixed-tiles structure because we can control the
number of candidates per tile by using the parameter K.

To answer a VeloNN query, we find a tile Tq where the user q is by retriev-
ing rtree, and then we identify the real results among the candidates of Tq

by employing Algorithm 1. Using the adaptive-tiles R-Tree, we can answer the
queries faster since the number of candidates is guaranteed to be at most K.
The price is the storage space taken by the structure and the time consumed by
generating and organizing the adaptive tiles.
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5 Experiment

Experimental Environments. We implemented the proposed algorithms
using Java and ran the programs on a PC with an Intel(R) Core(TM) i5-8300H
CPU(2.30 GHz), 8 GB Memories and a Windows 10 operating system.

Datasets. We used three real datasets that contain 163031, 18549 and 9244
POIs of Shanghai, Kunshan and Changshu. We name them Dsh, Dks, and Dcs,
respectively. We also made three synthetic datasets that contain 103, 104, and
105 random points. We name them D1k, D10k, and D100k, respectively.

We ran the baseline algorithm (named as baseline), the R-Tree-based algo-
rithm (named as rtree), the fixed-tiles based algorithm (named as fixed), and the
adaptive-tiles based algorithm (named as adaptive) on these real and synthetic
datasets. Next, we will report the query performances of the four algorithms and
the efficiencies of constructing tile-based structures.

5.1 Query Performances

Figure 7 shows the query time consumed by using baseline, rtree, fixed, and adap-
tive on both real and synthetic datasets. The baseline consumes much more time
than the other three algorithms. Its query time has a dramatic increase when the
dataset becomes large, because the time complexity of baseline is O(n log n+mn)
where n is the dataset size. The rtree consumes less time than the baseline due
to its pruning strategy and early termination conditions. However, the rtree
consumes more time than fixed and adaptive, because the last two algorithms
retrieve results from a candidate set which is far smaller than the full POI set.
The adaptive is faster than fixed since it can guarantee a small candidate set.

(a) On real datasets (b) On synthetic datasets

Fig. 7. Query time w.r.t. different datasets (κ = 2, θ = 25◦, τ = 0.25)

Figure 8 shows the time consumed when the parameter θ is 15◦, 25◦, and 35◦.
Although θ varies, the baseline runs slowest, while fixed and adaptive run fastest.
For baseline and rtree, when θ increases, the occupied ranges are easier to cover
the angular range (−180◦, 180◦], which makes the number of POIs checked less,
so the query time will be less. Similarly, for fixed or adaptive, the larger the θ is,
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the fewer candidates each tile has, and the less time it takes to find the VeloNNs.
Therefore, the four algorithms consume less time when θ becomes larger.

(a) Queries on Dsh (b) Queries on D100k

Fig. 8. Query time w.r.t. different θ’s (κ = 2, τ = 0.15)

Figure 9 shows the time consumed when κ (i.e., the concentration parameter
in Von Mises distribution) is 1, 2, and 8. When κ is bigger, the distribution
concentrates more on 0◦. The adaptive and fixed run faster than baseline and
rtree when κ varies. As the Algorithm 1 shows, when κ increases, the number of
POIs satisfying the directional preference decreases, which makes the union of
the occupied ranges have been found can not completely cover (−180◦, 180◦], so
it needs to check all POIs before the program stops, so the query time will be
more. Therefore, in Fig. 9, when κ increases, the query time of baseline increases.
However, the time of rtree decreases because bs+ and bs− will be closer to 0◦

and more tree nodes can be pruned. The time of fixed and the time of adaptive
are not influenced by κ because they are tile-based methods which calculate
candidates in advance.

(a) Queries on Dsh (b) Queries on D10k

Fig. 9. Query time w.r.t. different κ’s (θ = 25◦, τ = 0.25)

Figure 10 shows the time consumed when τ is 0.15, 0.25, and 0.35. When the
preference threshold τ varies, the baseline still runs slowest, the rtree is in the
medium, and the tile-based algorithms run fastest. When τ changes, the curve
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of baseline is smooth, because it is not affected by τ . The rtree takes less time
because when τ becomes larger, bs+ and bs− go towards 0◦ and more nodes can
be pruned. The tile-based algorithms, i.e., adaptive and fixed, are not influenced
by τ .

(a) Dsh (b) D10k

Fig. 10. Query time w.r.t. different τ ’s (κ = 2, θ = 15◦)

5.2 Efficiencies of Tile-Based Structures

In this section, we evaluate the performances of the tile-based structures on
both real and synthetic datasets, and we analyze the experimental results. In the
experiments, fixed(len) means to set the side length of the tile to len in fixed-tile
based algorithm and adaptive(K) means the candidates number of each tile does
not exceed K in adaptive-tile based algorithm.

(a) Real datasets (b) Synthetic datasets

Fig. 11. The number of tiles w.r.t. different datasets (κ = 2, θ = 30◦, τ = 0.35)

Figure 11 shows the number of tiles generated by our two tile-based algo-
rithms, i.e., fixed and adaptive, when the dataset changes. Figure 11 shows when
the dataset increases, the number of the tiles generated by the two algorithms
both increases. In fixed, a larger len means a smaller number of tiles, and in
adaptive, a larger K means a smaller number of tiles too.
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(a) Real datasets (b) Synthetic datasets

Fig. 12. Average number of candidates per tile w.r.t. different datasets (κ = 2, θ =
30◦, τ = 0.35)

Figure 12 shows the average number of candidates per tile when the dataset
changes. In fixed, the average number is larger for bigger datasets, and it is also
larger for bigger len. Because a larger len leads to a larger tile, which makes
more candidates per tile. In adaptive, the average number is not influenced by
the dataset size, and it is influenced by K. Therefore, the average number is
stable in adaptive when dataset varies.

(a) Real datasets (b) Synthetic datasets

Fig. 13. Query time w.r.t. different datasets (κ = 2, θ = 30◦, τ = 0.35)

Figure 13 shows the time consumed by fixed when len is 10 and 50, and the
time consumed by adaptive when K is 20 and 40. When the dataset changes, the
time consumed by adaptive does not change significantly, because the efficiency
of adaptive depends on K and does not depend on the dataset size. However,
the efficiency of fixed is influenced by the dataset size, because a larger dataset
size will lead to more candidates per tile.
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(a) Real datasets (b) Synthetic datasets

Fig. 14. Performances of building tile-based structures (κ = 2, θ = 30◦, τ = 0.35)

Figure 14 shows the time consumption of building the tile-based structures on
different datasets. We have to spend more time on larger datasets. The fixed(10)
spends more time than the fixed(50), because it should build more tiles. The
adaptive(40) spends more time than the adaptive(20), because it takes more time
to build per tile.

6 Conclusions

In this paper, we propose VeloNN query to recommend the POIs considering
the user’s location and his moving velocity. In the VeloNN query, we model the
user’s directional preferences by using the Von Mises distribution, where a POI
o has a high probability to be selected if it is consistent with the user’s moving
direction. To answer VeloNN queries, we propose an R-Tree-based algorithm
which can reduce the search space according to the boundaries directions. We
also propose tile-based structures to store the candidates for rectangular areas
beforehand. The fixed tile-based structure divides the whole space into M × N
tiles, while the adaptive tile-based structure consists of tiles in which the number
of candidates does not exceed K. We conduct experiments on real and synthetic
datasets to evaluate the performances of these proposed algorithms.
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Abstract. Given a record of geo-tagged activities, how can we suggest
groups, or cohorts of likely companions? A brute-force approach is to
perform a spatio-temporal join over past activity traces to find groups
of users recorded as moving together; yet such an approach is inherently
unscalable. In this paper, we propose that we can identify and predict
such cohorts by leveraging information on social ties along with past
geo-tagged activities, i.e., geo-social information. In particular, we find
groups of users that (i) form cliques of friendships and (ii) maximize a
function of common pairwise activities on record among their members.
We show that finding such groups is an NP-hard problem, and propose
a nontrivial algorithm, COVER, which works as if it were enumerating
maximal social cliques, but guides its exploration by a pruning-intensive
activity driven criterion in place of a clique maximality condition. Our
experimental study with real world data demonstrates that COVER out-
performs a brute-force baseline in terms of efficiency and surpasses an
adaptation of previous work in terms of prediction accuracy regarding
groups of companions, including groups that do not appear in the train-
ing set, thanks to its use of a social clique constraint.

1 Introduction

Advances in positioning and communication technologies enable sharing geo-
tagged content, and hence location-based social networking services. Location-
Based Social Networks (LBSNs) such as Weeplaces, Foursquare, Gowalla, Geo-
Life, and Twinkle are built around positioning capabilities, while Facebook and
vKontakte provide a consensual option to check-in at visited locations.

Such online LBSNs can utilize user mobility in consensual recommendation
services directed to groups, as opposed to individuals. For instance, a discount
offer for a concert may be recommended to a group of friends that have habitually
visited similar concerts and other events together; a car-pooling service may
suggest group formations to its customers who may be unaware of their similar
activities; or a travel agency may promote an offer for a group travel package
to groups of users potentially interested in traveling together. Past research has
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 368–383, 2021.
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proposed location-based recommendations of locations, routes, users, activities,
and media [4]; while some works refer to individual predictions [15], others detect
groups based on location histories and mobility profiles [10]. Yet these studies
rely on clustering trajectories and co location traces [22] and Bayesian learning
so as to predict co-location features [11], hence do not scale well. Further, there
has been work on clustering static locations using geo-social information [18],
and a long line of works on detecting communities of interest [6,7,13] Yet to
our knowledge, no attempt has been made to suggest groups of users using both
social and mobility data, i.e., geo-social information.

In this paper, we propose a method that suggests cohorts of social compan-
ions without clustering trajectories or traces; instead, it leverages social and
co-location connections, which LBSNs record. We conjecture that recommend-
able groups of companions are prone to be directly or transitively connected in
both the social domain—i.e., to form cliques in a graph of social ties—and the
activity domain—i.e., to engage in common geo-tagged activities manifested as
frequent pairwise location check-ins. Our rationale is that each person may have
a large circle of friends and acquaintances, yet may engage in specific activities
only with particular ones, with whom they share related interests. For instance,
consider a socially linked group of people who have visited museums, at least
in pairs; our method can detect such a cohort, so as to propose new interesting
locations. We utilize location categories to tailor cohorts to particular interests,
and test the power of our method to predict cohorts on real world data.

We build a graph GA from geo-tagged activities, distinct from a graph of
social ties, G, yet defined over the same vertex set; in GA, a pair of nodes is
connected by a weighted edge expressing the pairs’ history of co-location in
common activities. We reason that a group of tightly-connected users engaging
in common activities frequently appear in GA as a connected subgraph with high
edge density, i.e., form a quasi-clique of high edge weight in GA, and a clique
in G. We formally define the problem as retrieving sets of nodes that induce
subgraphs maximizing edge density in GA and also induce cliques in G.

The rest of this paper is structured as follows. Section 2 discusses related
work. In Sect. 3, we formulate the problem and study its hardness. Section 4
presents COVER, an efficient heuristic drawing from graph mining techniques
to address the spatiotemporal cohort discovery challenge. Section 5 presents an
extensive experimental study that showcases the effectiveness and predictive
power of our technique. Section 6 concludes the paper.

2 Related Work

In our problem, groups are sought after and have no labels. That is different from
group recommendation, in which we recommend items to a given group [1], and
from group discovery, which retrieves labeled groups of users from collaborative
rating data sets [19]. Our problem relates rather to the problems of finding
cliques, dense subgraph discovery, and multi-layer community detection.

Tomita et al. [20] studied the worst-case complexity of enumerating maximal
cliques on a graph. Such cliques can be used to define communities; for example,
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one may consider only maximal cliques of size above a threshold, and define
communities as the disconnected components of the graph formed by the union
of those cliques [8]. Alternatively, one may use cliques of fixed size, k; the clique
percolation method [16] finds all such k-cliques in a network, and then finds
clusters made out pairs of k-cliques sharing k − 1 nodes.

The densest subgraph problem asks for a vertex subset S ⊆ V on graph G(V,E)
such that its induced subgraph achieves the maximum average degree; it is solv-
able in polynomial time with a maximum flow algorithm [9], while a greedy 1

2 -
approximation scheme requires linear time [12]. Asahiro et al. [2] study the k−f(k)
dense subgraph problem, which calls for finding a k-vertex subgraph of a given
graph G that has at least f(k) edges, for different functions f(k). When a restric-
tion is imposed on the size of set S, the problem becomes NP-hard [12]. Recently,
the problem has been studied in streaming and MapReduce models [3].

Boden et al. [5] mine multi-layer coherent subgraphs, i.e., subgraphs that con-
tain vertices densely connected by edges with similar labels in a subset of layers
in an edge-labeled multi-layer graph; this technique applies the same density cri-
terion on multiple layers. We aim to apply different density criteria per layer: a
clique constraint vs. quasi-clique optimality, a distinction consequential on pre-
dictive power—as we show, if we relax the clique constraint, we lose predictive
power.

3 Problem Formulation

Let V be a set of LBSN users and U a universe of categories (i.e., types, based
on function and audience) to which locations of interest are associated.

3.1 Preliminary Concepts

Definition 1. A point of interest (POI) is a geographical location (e.g., the
Metropolitan Museum of Art) represented by a quadruple (l, lat, lon, cat), where l
is the identifier, lat and lon the latitude and longitude of the GPS coordinates
of the center of the POI, and cat ∈ U a category that this location belongs to.

Definition 2. An activity refers to a visit of a user u ∈ V at a location l at a
discretized time interval t, represented as a triplet (u, l, t); when the user u is
implied from context, we omit it and represent an activity by the pair (l, t).

Definition 3. The activity set of user u, A(u), is the set of activities user u
has engaged in; likewise, the activity set for a category cat, A(cat), is the set of
activities associated with category cat among users in V ; last, A(u, cat) is the set
of all activities by user u over POIs of category cat. We overload these notations
to also denote ordered sequences of activities depending on context.

Definition 4. A spatiotemporal join operation among sets of activities S and
T , S �� T , returns the set of pairs of activities {(l, t) ∈ S, (l′, t′) ∈ T }, where
locations and times match, i.e., l = l′ and t = t′ Furthermore, a consecutive
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spatiotemporal join is defined among two temporal sequences of activities S and
T , S ��

c T , and returns the set of quadruples of activities {(l, t), (lsuc, tsuc) ∈
S, (l′, t′), (l′suc, t

′
suc) ∈ T }, where (lsuc, tsuc) is the successor activity of (l, t) in

sequence S and (l′suc, t
′
suc) the successor activity of (l′, t′) in sequence T , such

that locations and times match, i.e., (l, t) = (l′, t′) and (lsuc, tsuc) = (l′suc, t
′
suc).

The spatiotemporal join between S and T returns all pairs of activities occur-
ring in S and T , by the discretization we employ; a consecutive spatiotemporal
join returns all quadruples of activities occurring, as two consecutive pairs, in
sequences S and T . We use these concepts to define weights in activity graph GA.

3.2 Objective

Given a data set of users, their relationships, and records of activities, and a set
of categories of interest, L ⊂ U , we are interested to identify any group of users
C ⊂ V that are likely to participate, as a group, in future activities related to L.

We leverage (i) a social graph G(V,E), where V is the set of users and E the
set of friendship relationships; and (ii) an activity graph GL

A(V,E′), coterminous
with (i.e., defined over the same set of vertices V as) G, built out of the log of user
co-locations associated with L; an edge (u, v) ∈ E′ between users u, v ∈ V has
a non-zero weight wuv ∈ (0, 1], representing the extent to which these two users
participate in common activities associated with L, by the following definition.

Definition 5. The edge weight wuv between the pair of users (u, v) in GL
A is

defined via the (consecutive) spatiotemporal join
⋃

cat∈L{A(u, cat) �� A(v, cat)},
normalized by dividing by the highest value obtained among all pairs of users, as
follows:

wuv =
|
⋃

cat∈L{A(u, cat) ��
(c) A(v, cat)}|

maxx,y∈V |
⋃

cat∈L{A(x, cat) ��
(c) A(y, cat)}|

(1)

We aim to retrieve groups, or cohorts, of users that have a track record of
pairwise common activities associated with L, and also form a clique (i.e., are
related to each other) in the social graph. Such cohorts are likely to act together,
hence may be used for recommendation, prediction, and social analysis.

Problem 1. [Cohort Retrieval] Given a set of LBSN users V , a set of
categories L, a social graph G(V,E) among users in V , and an activity
graph GL

A(V,E′) among users in V with edges in E′ weighted according to activ-
ities in L, and letting C denote the set of all cliques in the social graph G, where
∀C ∈ C, C ⊆ V , find the top-k cliques in C in terms of an activity density function
fL calculated on the subgraphs they induce in GL

A, i.e., arg maxk
C∈C

{
fL(C)

}
.

3.3 Maximizing Activity Density

Problem 1 requires an activity density function: (i) relying on edge weights of GL
A,

and (ii) independent of subgraph (i.e., group) size, allowing for comparison
among larger and smaller groups. A function that satisfies these properties is the
edge surplus function fα, maximized by an Optimal Quasi-Clique (OQC) [21]:
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Definition 6. [OQC] Given a graph G = (V,E) and α ∈ (0, 1), an optimal
quasi-clique of G is a subset of vertices S∗ ⊆ V such that:

fα(S∗) = e[S∗] − α
(|S∗|

2

)
≥ fα(S), for all S ⊆ V. (2)

where e[S] is the number of edges in the subgraph of G induced by S.

This edge surplus function provides a size-independent measure of edge den-
sity without favoring large subgraphs: a subgraph achieves a high value of edge
surplus fα not merely by means of a high average degree, as large subgraphs
may have, but by coming close to completing a clique among its nodes. Besides,
rather than imposing some arbitrary threshold on edge weights so as to obtain
binary edges, it takes all weights in consideration, regardless of their values, and
can be straightforwardly generalized to the weighted edges in an activity graph.
We thus define our activity density function based on the edge surplus function:

Definition 7. Given an activity graph GL
A =(V,E′), a vertex subset C ⊆V , and

a parameter α∈(0, 1), the activity density on C is:

fL
α (C) = w[C] − α

(
|C|
2

)

(3)

where w[C] is the sum of normalized edge weights for all edges in the subgraph
induced by C: w[C] =

∑
u,v∈C wuv.

We aim to retrieve cohorts under the constraint of forming a clique in a social
graph and the objective of maximizing edge surplus in the activity graph. To
that end, it is useful to investigate the hardness of the problem of finding an
OQC, which we henceforward name OQC. After all, in case our social graph is
a complete graph, and all non-zero edge weights in the activity graph are equal
to 1, then Cohort Retrieval is reduced to OQC, hence it is at least as hard
as OQC. Tsourakakis et al. [21] suspect OQC to be NP-hard, yet provide no
formal proof of hardness. We provide such a proof in the following, starting out
with some results regarding the nature of the OQC problem.

Lemma 1. For α ∈ (0, 1), any clique in G = (V,E) has positive edge surplus.

Proof. By definition, the number of edges in a clique S ⊆ V is e[S] =
(|S|

2

)
.

Then, the edge surplus of S is fα(S) = e[S] − α
(|S|

2

)
= (1 − α)

(|S|
2

)
> 0.

Lemma 2. For any α ∈ (0, 1), a maximum clique of a graph G = (V,E) has
the maximum edge surplus among all cliques in G.

Proof. By Lemma 1, the edge surplus of a clique S ⊆ V is fα(S) = (1−α)
(|S|

2

)
>

0. A maximum clique achieves the maximum number of vertices |S| among all
cliques in G; therefore, it also has the maximum edge surplus.

Theorem 1. Given a simple undirected graph G = (V,E), for α = 1 −
(|V |

2

)−1
,

a subset of vertices S ⊆ V has positive edge surplus if and only if it is a clique.
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Proof. The ⇐ direction is provided by Lemma 1. We now prove the ⇒ direction:
The edge surplus of a subset of vertices S ⊆ V is fα(S) = e[S] − α

(|S|
2

)
= e[S] −

(1 −
(
n
2

)−1)
(|S|

2

)
= e[S] −

(|S|
2

)
+ |S|(|S|−1)

|V |(|V |−1) . If S has positive edge surplus, then

fα(S) > 0 ⇔ e[S] >
(|S|

2

)
− |S|(|S|−1)

|V |(|V |−1) . Since S ⊆ V , it follows that |S|(|S|−1)
|V |(|V |−1) ≤ 1.

Thus, fα(S) > 0 ⇒ e[S] >
(|S|

2

)
− 1. Yet the only subgraph of |S| vertices that

has more than
(|S|

2

)
− 1 edges is a clique.

Theorem 2. Finding an OQC is NP-hard.

Proof. We construct our proof by reduction from the NP-hard Clique problem,
which calls for deciding whether a clique of certain size k exists in a simple undi-
rected graph. Assume we are given a polynomial-time algorithm A(G,α) that
can find an OQC in any simple undirected graph G(V,E) for any parameter
α ∈ (0, 1). Then, given any instance of the Clique problem on a simple undi-
rected graph G(V,E), we invoke A(G,α) with α = 1 −

(|V |
2

)−1
. We emphasize

that an elaborate reduction is not necessary, as we use the same graph in both
problems. By Theorem 1, if the returned optimal quasi-clique (OQC) has non-
positive edge surplus, it follows that G has no cliques; otherwise, if the returned
OQC has any positive edge surplus, it is a clique. Moreover, by definition, the
returned OQC has the maximum edge surplus among all such cliques in G, hence,
by Lemma 2, it is a maximum clique of G. In effect, an algorithm that finds an
OQC in G in polynomial time would also effectively decide whether G contains
a clique, and, if so, what the maximum clique size is; thus, it would solve any
instance of Clique, effectively deciding that a clique of size k exists if and only
if k is no less than the maximum clique size. It follows that finding an OQC is
at least as hard as any problem in NP.

Our proof resolves a question left open in [21]. Given this result, we should
strive for non-optimal solutions to Cohort Retrieval, which is at least as
hard as the problem of finding an OQC.

4 COVER Algorithm

We present COVER, our algorithm for the cohort retrieval problem; COVER
merges and builds upon techniques for maximal clique enumeration [20] and
the OQC problem [21]. It searches for cliques on the social graph, yet, instead
of striving to satisfy just a maximality condition upon them, it checks, for any
possible clique candidate, the edge surplus of its induced subgraphs on the activ-
ity graph, pruning nodes that cannot lead to higher edge surplus than already
found. Eventually, it outputs the top-k results by our problem definition.

A cohort should form a social clique and also achieve as high activity density
as possible, as outlined in Sect. 3.3. COVER explores the social graph in order
to find cliques, as an algorithm for maximal clique enumeration would do. Yet,
for each clique it finds in the social graph G, it searches locally for its subgraphs
of high activity density in the activity graph GA, maintaining a queue of the
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top-k results, and, thereby, also a global queue of the top-k cohorts overall. In
this process, when considering a new node v, it evaluates its strength, in terms
of marginal activity density, that it may bring to any cohort under construction;
node v is further considered only if its marginal activity density can bring an
advantage compared to the top-k cohorts retrieved so far.

Algorithm 1: COVER: retrieving top-k geo-social cohorts
1 Input: G(V, E), GL(V, E), k, TMax, α
2 Output: Set of k traveler groups : CO
3 begin
4 C = ∅ /* a clique in G */
5 cohG = ∅ /* queue of top-k cohorts within C */
6 CO = ∅ /* global queue of top-k cohorts */
7 searchCliques(V, V, C) /* recursive function */

Algorithm 2: searchCliques(Sub,Cand,C)
1 begin
2 /* Sub: seed set to be searched for cliques */
3 /* Cand: expansion set for building cliques */
4 /* NG(u): friends of u in G*/
5 if Sub �= ∅ then
6 u ← vertex ∈ Sub maximizing |Cand ∩ NG(u)|
7 foreach v ∈ Cand\NG(u) do
8 Subv ← Sub ∩ NG(v)
9 Candv ← Cand ∩ NG(v)

10 cohGM ← Candv ∪ C ∪ {v}
11 /* cohGM : largest possible clique on v */

12 if
(|cohGM |

2

)
(1 − α) > minS∈CO (fα(S)) then

13 searchCliques(Subv, Candv, C ∪ {v})
14 Cand ← Cand\{v}
15 else
16 cohG ← findCohorts(GA, C, k)
17 CO ← CO ∪ cohG

Algorithm 1 is the shell of COVER; it initializes variables and priority queues
and finds top-k activity-based cohorts recursively on the back of social cliques.
Algorithm 2 searches for promising cliques C in the social graph G. We start with
the set of all users V , and recursively explore subgraphs having a clique property
in depth-first-search manner. We maintain two set variables: Sub maintains the
intersection of the neighbor sets of all nodes already entered in the clique C
currently under construction. On the other hand, Cand maintains the intersec-
tion of such neighbor sets minus any nodes that have already been checked, i.e.,
included, or considered for inclusion, in C. We use Cand to generate new candi-
dates for checking at each iteration (Line 7). Besides, to accelerate the search, at
each iteration we pick up a high-degree pivot node u ∈ Sub having many neigh-
bors NG(u) in Cand (Line 6). Then, we check candidate nodes v ∈ Cand\NG(u)
(Lines 7–14) for inclusion in C. We exclude those neighbors from the search
(Line 7), since, if we have not already considered them, we consider them recur-
sively later by virtue of them being neighbors of u. A critical check is performed
in Line 12: if the largest possible clique that can be built by including v and
its neighbors can yield a best-case activity density among the current top-k
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values, then C is recursively expanded with v (Line 13); otherwise, we discard
the depth-first search path leading to v, as it cannot bring forth new results,
and thereby we avoid redundant computations. Lastly, when clique C cannot be
expanded further, we search for the top-k cohorts therein by calling Algorithm 3
and update the global priority queue CO accordingly (Lines 16–17).

Algorithm 3 finds top-k cohorts within GA and social clique C by local search.
A candidate cohort S starts out as the node u ∈ C of highest ratio of adjacent
triangles to degree and its neighbors (Line 3). We iteratively revise S, first by
adding nodes, as long as that can bring a benefit in activity density, choosing the
best such option (Lines 8–12); then by removing the best node whose removal
brings benefit (Lines 13–16); we repeat until we reach a local optimum or the
maximum iterations Tmax. In each iteration, we insert the running S to the
priority queue cohG, and eventually merge the result in priority queue CO.

Algorithm 3: findCohorts(GA, C, k)
1 begin

2 u : vertex with max #triangles
degree ratio in GA[C]

3 S ← N(u) ∪ {u} /* u and GA neighbors */
4 cohG ← {S}
5 b1 ← True, t ← 1 /* local search begins */
6 while b1 and t ≤ Tmax do
7 b2 ← True
8 while b2 do
9 if ∃v ∈ C \ S such that fα(S ∪ {v}) ≥ fα(S) then

10 S ← S ∪ {v}; cohG ← cohG ∪ S
11 else
12 b2 ← False /* growth of S stops */

13 if ∃x ∈ S such that fα(S \ {x}) ≥ fα(S) then
14 S ← S \ {x}; cohG ← cohG ∪ S
15 else
16 b1 ← False /* local search stops */
17 t ← t + 1 /* iteration counter */

Given the worst-case complexity of clique enumeration [20], which forms the
backbone of COVER, the worst-case complexity of COVER is O(3

n
3 +cTmaxm),

where n is the number of nodes, c the number of enumerated cliques that reach
Line 12 of Algorithm 2, m the number of activity graph edges, and Tmax the
maximum number of iterations in Algorithm 3, which touches each edge at most
once per iteration [21]. We avoid this worst-case scenario by a massive discarding
of paths in Line 12 of Algorithm 2. Therefore the algorithm is efficient in practice.

5 Experimental Study

We present an extensive experimental evaluation of COVER, including its capac-
ity to predict convoys of mobile companions, regardless of whether they form a
social clique. We ran all experiments on a 2.3 GHz, 4 AMD Opteron 6376 Linux
machine with 512 GB of RAM. All algorithms are implemented1 in Scala.

1 The code is available at http://bit.ly/2tUTEuu.

http://bit.ly/2tUTEuu
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Datasets. We utilize three real-world datasets from Foursquare, Gowalla, and
Weeplaces [14] (The Gowalla and Weeplaces data are available at https://www.
yongliu.org/datasets/). Table 1 gathers information about the data. Each of the
datasets consisted of three parts: the social friendship graph, an ordered list of
check-ins, and a collection of Venues. A check-in record contains the user-id,
check-in time, GPS coordinates, and a location-id. Venues provide the details of
locations, i.e., city, country, and semantic categories of those locations.

Table 1. Dataset characteristics

Users Locations Checkins POIs Friend pairs Duration Categories

FourSquare 4K 0.2M 0.47M 0.12M 32K 1322 days 35

Gowalla 77K 2.8M 18M 2M 4M 913 days 363

Wee 16K 0.9M 8M 0.76M 0.1M 2796 days 770

Data Preprocessing. The data required cleaning, as many locations were asso-
ciated with multiple identifiers, each having slightly different GPS coordinates.
We applied grid-based spatial clustering on GPS points, with a grid of size
10 m × 10 m, as in [17]. We assign a unique location Id to each resulting cluster
and use these Ids as POIs in all experiments. All three datasets presented sim-
ilar multiplicity problems, which we addressed in the same manner. Statistics
regarding these new POI Ids are reported in Table 1.
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Fig. 1. CDF of time between consecutive activities

5.1 Brute-Force Convoy Retrieval

We first present a brute-force baseline that retrieves groups of users moving
together, i.e., convoys. We divide all activities into a series of time intervals, or
snapshots, using a time-stamp threshold ts, recording one activity per interval:
the last recorded activity. We can tune ts so as to strike a fine balance in the
tradeoff between time granularity and computation time. With larger ts values,
it becomes likelier to miss activities within a time snapshot. To set a suitable ts
value, we plot the cumulative distribution of time differences between consecutive
user activities in Fig. 1. By this plot, we set ts = 1 hour, which covers more than
90% of activities.

https://www.yongliu.org/datasets/
https://www.yongliu.org/datasets/
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Fig. 2. Statistics on convoys: all convoys vs. convoys that also form social cliques

We detect convoys based on recorded activities. A convoy should: (i) contain at
least two users moving together across locations; and (ii) involve at least two con-
secutively visited locations.We maintain a convoy listL and iterate over data snap-
shots in temporal order. In each snapshot, we group activities by location and check
each group against L. If a group extends an existing convoy C, we update C accord-
ingly; if a group forms a new convoy, we insert it in L. We store away items in L that
are no longer expandable, and go on til the last snapshot. This approach is more
computationally demanding than COVER’s activity density estimation: it detects
all groups in the training set, while COVER only considers pairs of users and at
most pairs of consecutive activities, and social links. Figure 2 shows statistics on
convoys so retrieved vs. those whose members also form social cliques. About 76%
of all convoys form social cliques. This finding validates our conjecture that people
are likely to move in social cliques, hence justifies our clique constraint.

5.2 Use Case: Convoy Prediction

We surmise that the cohorts COVER retrieves predict convoys of mobile com-
panions; we design an experiment to assess that conjecture. We do not test
an ability to predict social cliques; we claim that the clique constraint in our
problem helps predict convoys. We use a holdout approach: we sort activities by
timestamp and divide them into training (earlier) and test (later) sets, having an
equal number of activities. A group retrieved from the training data that forms
a convoy in the test data is a true positive. We apply two prediction regimes:

Without Input Categories: We find groups likely to form future convoys.
COVER ranks groups by activity density; brute-force by appearances.

With Input Categories: In this case, we are given a set of categories of loca-
tions of interest L. We find groups deemed likely to form future convoys, mov-
ing among locations of the given categories. To identify such groups, we filter
the dataset so that we maintain only activities at locations of L. Then, we
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retrieve groups as explained above; again the brute-force methods ranks convoys
by count, while COVER ranks geo-social cohorts by surplus.

We measure a method’s capacity to predict future convoys in the test data
by averaging an accuracy measure, defined as follows:

Acc =
|C ∩ T |

min{|C|, |T |} (4)

where C is the returned set of top-k groups and T the set of convoys in the test
data. We sanitize the measure, dividing by the minimum of |C| = k, and |T |.
The rationale is that the denominator should exceed neither k, since the top-k
results cannot be more than k, nor the number of existing convoys in the test
data, which may be less than k, especially when we filter by input categories. In
effect, this measure is the maximum of precision and recall ; we think this is a
reasonable measure given the sparsity of real-world LBSN data.

5.3 Revalidating the Social Clique Constraint

Before we proceed, we revalidate our social clique conjecture. To do so, we test
COVER without considering the social graph. We extract top-k groups in terms
of activity edge surplus in the training data, for k = 1, 3, 5. This way, we only
get a positive prediction with the Wee dataset for k = 3, which is five times
less accurate than what we achieved using the clique constraint. This result
reconfirms the logic of that constraint: users who engage in common a activity
but do not form a social clique are not likely to do so again. Further, we relaxed
the clique constraint to find quasi-cliques in the social graph for several α values.
Unfortunately, this way we could not predict any group of travel companions.
We reiterate that the groups (convoys) we aim to predict are not required to form
social cliques. We simply observe that groups of future travel companions form
social cliques, and we can well predict them using this constraint.

5.4 Prediction Without Input Categories

We first present prediction results for the case without a restrictive set of given
categories of interest L.

Brute-Force Method. We run the brute-force method of Sect. 5.1 on the train-
ing data, retrieving the k most frequently observed convoys, and test its predic-
tions on the test data. The last three columns in Table 2 show top-k convoy
prediction accuracy for k = 1, 3, 5, reaching 100% in all but two cases.
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Fig. 3. Use Case: COVER’s performance on convoy prediction with three datasets

COVER on Plain Activity Density. We test COVER on the same problem,
setting weights in the activity graph without considering consecutive activities.
Figures 3a, 3e, and 3i present results on top-k group prediction as a function of
density surplus α. The top prediction becomes correct at α = 0.1 and remains
so for larger values of α; for top-3 and top-5 returned groups, the accuracy is
lower. This is due to variations among training and test data; similar divergences
appear in Table 2 even with the brute-force method. The fact that COVER does
almost as well is remarkable, as it is up to 3 orders of magnitude faster, as we
will see in Fig. 4b. In most cases, accuracy drops as k increases; it is easier to
get a correct top group than the whole group of top 3 or 5.

COVER on Consecutive Activity Density. Next, we set density by con-
secutive spatiotemporal join. As Figs. 3c, 3g, and 3k show, smaller α achieve
maximum accuracy. A large α forces the detection of small, tightly connected
groups; the consecutivity requirement creates smaller cohorts on its own, ren-
dering the impact of α less significant. COVER performs remarkably well.

5.5 Prediction with Input Categories

Now we examine the case with a restrictive set of categories of interest, L. We
construct 10 instances of L, each consisting of 2–3 categories that appear together
in real-world contexts, and report the average accuracy over all queries. For
COVER, edge weights in activity graph GL

A are based solely on locations in L.
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Brute-Force Method. The brute-force method achieves accuracy up to 66%
(Table 2), as convoys specific to the input categories may not be met in the
training data, but appear in the test data.

Table 2. Accuracy in brute-force convoy prediction

k Input Cat All Cat

FS GW Wee FS GW Wee

1 0.60 0 0.50 1 1 1

3 0.66 0.17 0.60 1 1 1

5 0.64 0.20 0.70 0.30 0.80 1

COVER on Plain Activity Density. Figs. 3b, 3f, and 3j present the average
top-k set prediction accuracy for COVER with plain activity density. While the
problem is more challenging due to data sparsity, we still obtain high accuracy
in most cases. Less accuracy variation with varying α appears on Foursquare,
the smallest of our data sets, as fewer convoys arise in it. Accuracy still drops
with increasing k, except for the case of the Wee data, where enlarging the set
of results raises the chances they exist in the test data.

COVER on Consecutive Activity Density. Lastly, Figs. 3d, 3h, and 3l show
the results for COVER with consecutive activity density. Remarkably, accuracy
is either similar to or significantly higher than that in the non-consecutive case
reaching 67% for the top-5 cohorts. This result vindicates the use of consecutive
activity density. On Foursquare and Gowalla, accuracy increases sharply as α
grows by virtue of smaller returned group sizes, then stabilizes above 60%.

5.6 Effect of Surplus Parameter α

Prediction accuracy grows with α, yet the size of retrieved geo-social cohorts
decreases with α, as higher values demand stronger cohesion. To study this
tradeoff, we measure the average retrieved cohort size vs. α on the top-5 cohorts
with input categories and consecutive activity density. The results in Fig. 4a
show that cohort size decreases with α up to 0.6, then stabilizes at 2; α = 0.4
yields both large size and predictive power. We employ this value in Sect. 5.7.

5.7 Scalability and Prediction Quality

As there is no previous work on the problem we study, we juxtapose COVER
with fixed α = 0.4 vs. the following methods:

– BF: The Brute-Force convoy retrieval method of Sect. 5.1.
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– GroupFinder: A method that finds groups of a given size k for a given user u
and set categories [6]. We adapt this method to our problem so as to conduct
a reasonable comparison: Given a set of categories, we apply GroupFinder to
each user in the data set and then choose the best group of size k, where k
is the most popular group size returned by COVER (in all cases, 2). We
utilize both pairwise user-item relevance measures proposed in [6]: pairwise
aggregated voting (PAV) and pairwise least misery (PLM).

– OQC2: A COVER variant that relaxes the clique constraint, finding groups
of high edge surplus on both graphs, using two α values, one for each sur-
plus component; we try out α values with step 0.1 and weights for the two
components in {0, 0.25, 0.66, 1, 1.5, 4,∞}, and present best results.

First, we assess all methods in terms of scalability, measuring runtime on
6.25%, 12.5% 25%, 50% and 100% of the Wee data. Figure 4b shows the results
(Brute-Force as Naive, OQC2 with α = 0.6). Despite an exponential worst-
case complexity, the practical runtime of COVER is comparable to that of
GroupFinder, and the most scalable of all examined algorithms, while Brute-
Force (Naive) does not scale well. Other data produces similar trends.
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Fig. 4. Effect of α and scalability in data size

Next, we evaluate the following measures of prediction quality on the Wee
data, which has the highest number of observed convoys:

– Accuracy, the metric we have used in previous results;
– Precision@K, the ratio of the number of true top-k convoys by frequency

returned, over k or the total number of true convoys, whichever is smaller;
– Mean Average Precision (MAP), the mean of Precision@K for all k values

up to the examined one; and
– Normalized Discounted Cumulative Gain (NDCG), on the ranking of returned

results vs. their frequency ranking in the test data.

Table 3 shows results on consecutive activity density, with input categories,
for five values of k. Brute-Force sometimes outperforms COVER, yet COVER
stands its ground in several measures, while avoiding an exhaustive calculation.
GF-PAV, GFPLM and OQC perform poorly by all measures; their results are
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not in the top-20, resulting in 0 value for P@K and MAP. GroupFinder falters
as it does not consider activities, but only interests; OQC performs poorly as it
abolishes the social clique constraint; this finding corroborates that constraint.
Table 3. Comparative evaluation on Wee (α = 0.4 for COVER, best OQC values)

Accuracy P@K MAP NDCG

K BF GF PAV GF PLM OQC COVER BF GF- PAV GF- PLM OQC COVER BF GF- PAV GF- PLM OQC COVER BF GF- PAV GF- PLM OQC COVER

1 0.5 0.01 0.01 0.25 0.6 0 0 0 0 0 0 0 0 0 0 0.5 0.09 0.1 0.25 0.35

5 0.7 0.03 0.03 0.1 0.4 0.35 0 0 0 0.15 0.18 0 0 0 0.17 0.7 0.25 0.1 0.5 0.76

10 0.6 0.03 0.03 0.05 0.63 0.22 0 0 0 0.15 0.22 0 0 0 0.16 0.79 0.25 0.15 0.5 0.81

15 0.5 0.08 0.05 0.03 0.57 0.18 0 0 0 0.15 0.22 0 0 0 0.16 0.81 0.1 0.25 0.5 0.81

20 0.47 0.08 0.05 0.025 0.53 0.14 0 0 0.01 0.14 0.2 0 0 0 0.16 0.8 0.25 0.25 0.5 0.82

5.8 Analysis on Retrieved Groups

Figure 5 presents the cumulative density function of characteristics for all
retrieved geo-social cohorts (5a) and those forming mobility convoys (5b), i.e.,
their size and number of activities performed by their members (i.e., individuals
or pairs). Group size goes from 2 to 3 (green line), while we predict convoys
correctly even when they have not performed any activities together on input
categories. This capacity of COVER sets it apart from the brute-force baseline
that can only predict convoys that appear in the training set.
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Fig. 5. Analysis of Retrieved Groups (Wee) (Color figure online)

6 Conclusion

We proposed the problem of finding geo-social cohorts of frequent companions
in LBSNs, defined in terms of (i) a selective clique constraint on a social graph,
and (ii) a density objective on a coterminous graph (i.e., defined on the same set
of nodes) capturing common (and consecutive) pairwise activities. We designed
COVER, a nontrivial algorithm for that problem. Our experimental study with
real-life data sets showed that COVER is effective, scalable, and efficient; more-
over, it predicts future convoys (i.e., groups moving together), including convoys
that do not appear in the training set, while neither an adaptation of previous
work nor a brute-force approach based on user traces can deliver such a result.

In the future, we intend to (i) expand our techniques so as to include different
activity density functions, and (ii) study the robustness of our method, in terms
of its predictive power, in the face of missing, incomplete, uncertain, noisy, and
privacy-aware data.
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Abstract. Air quality prediction is an important task benefiting both
individual outdoor activities and urban emergency response. To account
for complex temporal factors that influence long-term air quality,
researchers have formulated this problem using an encoder-decoder frame-
work that captures the non-linear temporal evolution. Besides, as air
quality presents natural spatial correlation, researchers have proposed to
learn the spatial relation with either a graph structure or an attention
mechanism. As well supported by atmospheric dispersion theories, air
quality correlation among different monitoring stations is dynamic and
changes over time due to atmospheric dispersion, leading to the notion
of dispersion-driven dynamic spatial correlation. However, most previous
works treated spatial correlation as a static process, and nearly all mod-
els relied on only data-driven approaches in the modeling process. To this
end, we propose to model dynamic spatial influence for air quality predic-
tion with atmospheric prior. The key idea of our work is to build a dynamic
spatial graph at each time step with physical atmospheric dispersion mod-
eling. Then, we leverage the learned embeddings from this dynamic spatial
graph in an encoder-decoder model to seamlessly fuse the dynamic spatial
correlation with the temporal evolution, which is key to air quality predic-
tion. Finally, extensive experiments on real-world benchmark data clearly
show the effectiveness of the proposed model.
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1 Introduction

With the fast pace of urbanization and industrialization, air pollution has been
an endemic threat to human health and the environment, especially in metropoli-
tan cities. Air pollution generally refers to the release of pollutants into the air,
which is detrimental to human health and the planet as a whole. To prevent
human beings from long-term exposure of pollution and reduce air pollution,
accurately predicting future air quality is essential. For example, policy mak-
ers can properly choose guides or policies, such as temporary traffic control or
production ban for heavy-polluting factories, according to the future air quality
trend in order to reduce the severity of local pollution levels.

Precisely predicting air quality, often in terms of the major pollutant PM2.5
value, is non-trivial. This is due to the fact that air quality depends on mul-
tiple complex factors, such as meteorology, road networks, and point of inter-
ests (POIs), and evolves over time. While previous works carefully designed
sophisticated static features and temporal features for air quality prediction,
recent studies have begun to use recurrent neural networks (RNNs) to capture
the non-linear temporal evolution. In particular, researchers proposed to use an
encoder-decoder framework, with the encoder fusing heterogeneous features and
the decoder predicting long-term PM2.5 values [21].

Besides temporal correlation, PM2.5 values among different air quality mon-
itoring stations naturally exhibit spatial autocorrelation, with nearby stations
having similar PM2.5 values. Researchers have proposed to incorporate spatial
correlation by including nearby stations’ features in the input space [12,14] or
by further considering the Pearson correlation of geo-context features between a
target station and its neighboring stations [4,23]. Instead of having nearby sta-
tions defined by spatial distance contribute equally to a target station, attention
mechanisms have been increasingly used to differentiate the weights of different
monitoring stations, where the attentive weights are either static over time [5] or
dynamic (i.e., having different weights at different time steps) [13]. Researchers
have also proposed to leverage a graph structure to capture the higher-order
spatial correlations among stations and to learn the graph structure to facili-
tate weather prediction [19]. These attempts have demonstrated that modeling
spatial correlations among stations can boost air quality prediction performance.

In view of the importance of spatial correlation for air quality prediction,
we argue that the current solutions for spatial modeling are still far from sat-
isfactory. In fact, the well-established and widely-used atmospheric dispersion
models [2,17] have pointed out that air quality correlation among different mon-
itoring stations is inherently dynamic and changes over time. In particular, how
air pollutants disperse from a station to another relies on not only their spatial
distance and direction, but also other dynamic factors, such as wind direction
and speed, leading to the notion of dispersion-driven dynamic spatial correla-
tion. Atmospheric dispersion modeling provides a mathematical simulation of
how air pollutants disperse in the ambient atmosphere, and is built on top of
expert knowledge. For example, in the Gaussian plume model, the concentra-
tion of pollutant downwind from a source is treated as spreading outward from
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the centerline of the plume following a Gaussian statistical distribution in both
vertical and horizontal directions [1]. These physical models provide us a solid
theoretical foundation to guide air quality prediction. By far, atmospheric dis-
persion models are still the dominant models used in air quality policy making.
However, most related works adopted only static spatial correlation modeling
methods. What’s worse, almost all of these works relied on a purely data-driven
approach, which may introduce unnecessary noise and violate well-established
dispersion theories due to the black box nature of deep learning models.

In this paper, we focus on modeling the dynamic spatial influence for air
quality prediction with atmospheric prior. This is particularly challenging as it
is still unknown how to leverage atmospheric prior to model dynamic spatial
correlation among stations and integrate these well-established theories into a
data-driven air quality prediction process. To tackle these challenges, we first
build a dynamic spatial graph at each time step with the simple yet effective
Gaussian plume model, which can well capture the dynamic higher-order spatial
correlations among monitoring stations. Then, we incorporate the embeddings
learned from dynamic spatial graphs using graph convolutional networks (GCNs)
into an encoder-decoder model to seamlessly fuse the dynamic spatial correlation
with the temporal evolution. The key technical contribution of this paper lies
in combining knowledge-driven atmospheric dispersion models with data-driven
deep learning techniques for air quality prediction in an elegant way. Finally,
experimental results on real-world benchmark datasets clearly demonstrate the
superiority of our proposed model over the state-of-the-art methods.

2 Related Work

Air quality prediction has been a long-standing research problem with practical
importance. Existing methods roughly fall into two categories: classical physical
models and data-driven models. Physical models have been widely used in the
early stage of air quality prediction research. They explicitly simulate the actual
physical dispersion process of air pollutants and feature a rigorous mathematical
foundation. Gaussian plume models [2] and Street Canyon models [17] are most
widely-used physical models that estimate future pollutants’ concentration by
considering a few important factors, such as meteorological conditions, source
term, emissions or release parameters, and terrain elevations. While these phys-
ical models work well in relatively simple conditions, they lack the capability of
learning from more complex urban big data involving a large number of external
factors, and fall short of expectations in practice. In this paper, we propose a
novel method to integrate such atmospheric prior into a data-driven approach,
resulting in better performance.

With the availability of more urban big data that can be used for air
quality prediction, data-driven models have gained increasing attention. Some
early studies consider Gaussian processes as a nonparametric method to predict
the average pollution level [6,10]. A semi-supervised method is used to make
PM2.5 inference based on an PM2.5 affinity graph structure [7]. Another semi-
supervised method focuses on the spatial correlation between a target area and
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its top-k nearest neighbors [4]. Multi-task learning based strategies are also used
to incorporate spatio-temporal smoothness [22].

More recent research addresses the air quality prediction problem by deep
learning techniques. Modeling the temporal and/or spatial correlation is key to
air quality prediction because air pollutant dispersion is inherently a spatio-
temporal process. A simple idea is to directly aggregate the air quality read-
ings, spatial features (e.g., POIs, road networks) and meteorological data from
neighboring stations to improve accuracy [23]. More advanced spatial partition
and aggregation methods are also introduced to better model spatial correla-
tion [20,24]. Attention mechanisms are another popular way of capturing spatial
correlations. Cheng et al. [5] introduce an attention mechanism to learn the
contributions of different monitoring stations to a target station’s PM2.5 value.
Liang et al. [13] further learn different attentive weights for different stations
at different time steps while considering the geospatial similarities between sta-
tions. In a slightly different application, Wilson et al. [19] propose to capture
the higher-order spatial correlations of monitoring stations by graph convolution
operations. In contrast, our paper considers a novel type of dispersion-driven
dynamic spatial correlation that betters prediction accuracy.

As to temporal correlation, RNNs have been a widely-used choice. For exam-
ple, Li et al. [12] employ a stacked long short-term memory (LSTM) network
to extract features from historical air quality data and other auxiliary data. To
support long-term air quality prediction, encoder-decoder networks are used to
model the non-linear temporal evolution [14,21].

There are also some very recent studies [8,16] that address the air quality
prediction problem by considering social media information (e.g., tweets) as an
auxiliary data source. Our contributions are orthogonal to them and can be used
to further improve their performance.

3 Problem Formulation

Similar to previous studies [5,21], we consider the problem of air quality pre-
diction based on multi-source heterogeneous data. We brief the data sources
below.

Air Quality Data. It contains hourly readings of multiple pollutants (e.g.,
PM2.5, PM10, O3, NO2, CO, SO2, etc.) from each air quality monitoring station
si ∈ S, where S is the entire set of stations under consideration. We denote all
stations’ air quality data by M.

Weather Data. The weather data of a station si at time t is denoted by wt
i . It

contains multiple weather attributes, such as temperature, humidity, wind speed
and wind direction. We consider both historical weather data of all stations,
denoted by W, and forecast weather data, denoted by W.

Geospatial Topology Data. We consider the geospatial topology of all sta-
tions, which is denoted by T . It contains the latitude and longitude of each
station, and thus allows to calculate the distance and direction (i.e., bearing)
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Fig. 1. Architecture overview of the proposed model

between two stations. The geospatial topology data itself is static, but we com-
bine it with the above data sources to compute the stations’ dynamic spatial
correlation at each time step.

Geo-Context Data. The geo-context data ci ∈ C of station si includes infor-
mation about road networks and point of interests (POIs) extracted from si’s
affecting area (i.e., the area surrounding si). Note that this type of data does
not change over time.

Now we are ready to present the problem definition.

Problem Definition. Consider a target station si ∈ S, a historical time window
T , and a forecast time window γ. Given all stations’ air quality data M =
{Mt}T

t=1, historical weather data W = {Wt}T
t=1, forecast weather data W =

{Wt}T+γ
t=T+1, geospatial topology data T , and geo-context data C, the goal is to

predict the PM2.5 values of station si in the next γ hours, denoted by ŷ =
(ŷT+1, ŷT+2, · · · , ŷT+γ). That is, we aim to learn a prediction function f such
that

ŷ = f(M,W,W , T , C, Θ), (1)

where Θ denotes the set of parameters of f to learn.

4 Proposed Method

In this section, we elaborate our proposed method that makes use of atmospheric
dispersion theories to model the dynamic spatial correlations among monitoring
stations in order to improve air quality prediction. The overall architecture of
the proposed method is illustrated in Fig. 1.
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4.1 Feature Representation

To predict the PM2.5 values of station si in the next γ hours, we construct three
types of features as explained below.

Local Features. This set of features includes station si’s air quality data, his-
torical and forecast weather data, and geo-context data. Air quality data and
weather data are observed or forecasted each hour, and naturally form time
series. Thus, they lay the foundation for temporal correlation modeling.

Global Features. This set of features includes the local features of all nearby
stations, defined by the Euclidean distance. While the air quality data and
weather data of the neighboring stations change over time, global features fail
to capture the dynamic spatial influence of neighboring stations on the target
station si due to air dispersion, which is critical to achieve better prediction
performance.

Dynamic Spatial Features. This is a set of novel features driven by atmo-
spheric dispersion. Guided by atmospheric dispersion models, dynamic spatial
features explicitly measure the spatial influence of neighboring stations by con-
sidering multiple external factors at each time step. We detail how to generate
dynamic spatial features in the next section.

4.2 Dynamic Spatial Graph Construction

At time step t, we represent the dispersion-driven dynamic spatial influence of all
other stations on a target station si by a weighted directed graph Gt

i = (S, Et
i ),

where an edge eij ∈ Et
i gives the dynamic spatial influence of station sj on the

target station si as per atmospheric dispersion modeling. Note that normally
the dynamic spatial influence of station si on station sj is different from that
of sj on si as shown in Fig. 2. In the following, we omit the superscript t as

(a) time t (b) time t+ j

Fig. 2. Illustration of the dynamic spatial influence. s1, s2 and s3 are the associated
stations of the star as the northwest wind in time t, and changed to s1 and s5 in time
t + j as the northeast wind
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all discussions are for time t. Previous studies normally consider the geographic
proximity between stations as the key factor to model their spatial correlations.
For example, the top-k nearest neighbors’ features are used to predict a target
station’s PM2.5 value. Wilson et al. [19] propose to use a graph structure to
explicitly model the spatial correlations. All elements in the adjacency matrix
of the spatial graph are model parameters that need to be learned from training
data. However, the adjacency matrix is assumed to be static, that is, it is fixed
at different time steps. This assumption directly violates the well-established
dispersion models. In addition, considering all elements in the adjacency matrix
as trainable parameters substantially increases the model complexity. Therefore,
Wilson et al. [19] further assume that the adjacency matrix is either sparse or
low rank to mitigate the number of parameters. However, this assumption is not
backed up by any theoretical ground. To this end, we propose a novel domain
knowledge driven method that not only allows to dynamically learn a different
adjacency matrix at each time step, but also fully uses atmospheric dispersion
theories to mitigate model complexity.

The first step is to select an appropriate atmospheric dispersion model
that can be seamlessly integrated into a data-driven approach. Eulerian and
Lagrangian models are used to predict air pollution in urban areas, which assume
pollutants to be evenly distributed within the boundary [3]. Computational fluid
dynamic (CFD) models are used to better understand fluid dispersion, but can
also be used in urban air quality prediction [9]. The Gaussian plume model is
one of the most widely-used models to assess the impacts of emission sources on
local and urban air quality [2]. The dispersion of pollutants can be described in
both horizontal and vertical directions by a Gaussian distribution, which well
suits our setting. As such, we choose the Gaussian plume model as the domain
model for modeling dispersion-driven dynamic spatial correlation. The spatial
dynamics of pollutant dispersion in a Gaussian model can be described by the
following equation [15]:

c(r, s) =
Q

2πσyσzū
exp

(
−1

2

(
Y

σy

)2
)

exp

(
−1

2

(
he − zr

σz

)2
)

, (2)

where c(r, s) is the concentration at point r = (xr, yr, zr) due to the emissions
at point s = (xs, ys, zs), Q is the emission rate, Y is the crosswind distance
between r and s, σy and σz are the Gaussian plume dispersion parameters,
which are a function of the downwind distance X, ū is the average horizontal
wind speed, and he is the effective emission height (i.e., he = zs + Δh, and
Δh is the emission plume rise, which is a function of emission parameters and
meteorological conditions).

Based on the available data (see the experiment section for more details),
we adapt Eq. (2) as follows. First, since emission sources are unavailable in
the dataset, we consider other stations as the second-hand pollutant sources for
the target station [20]. Second, since all stations in the data are point sources
(i.e., without elevation information), we ignore all items related to height in Eq.
(2). Third, we propose to use a data-driven method to learn a function φ(X)
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to determine σy. Then the dispersion-driven spatial influence of station sj on
target station si at time t can be formulated as:

c(si, sj) =
Qj

2πφ(X)ūj
exp

(
−1

2

(
Y

φ(X)

)2
)

, (3)

where Qj is the air quality of station sj , ūj is the horizontal wind velocity at
sj , and X and Y are the downwind and crosswind distances between si and sj ,
respectively. Here we model φ(·) as a linear function, that is, φ(X) = γX, where
γ is a learnable scalar. We can also model φ(·) as a more complicated function
that can be learned by a multi-layer perceptron (MLP). But our experiments
indicate that a linear formulation already strikes a reasonable trade-off between
performance and model complexity.

We further normalize the influence of station sj on target station si among
all other stations:

aij =
c(si, sj)∑

sk∈(S−si)
c(si, sk)

. (4)

aij is the weight of the edge eij . All aij values form the adjacency matrix Ai of
the dynamic spatial graph Gi for target station si.

It can be seen that with the help of atmospheric dispersion theories, we
successfully reduce the number of learnable parameters of a dynamic spatial
graph from O(|S|2), where |S| is the number of stations, to O(1). Note that the
learnable parameter γ is shared among all time steps.

4.3 Dynamic Spatial Graph Embedding

After constructing the dynamic spatial graph Gi for target station si at time
t, we need a way to convert Gi into a low dimensional space so that its spatial
information can be effectively fused with the temporal correlation in an encoder-
decoder network. We omit the subscript i when it is clear from the context. We
consider graph convolutional networks (GCNs) [11] for this purpose due to its
flexibility and good performance. For a K-layer graph convolutional network,
the output of the l-th layer can be represented as Hl ∈ R

|S|×d(l)
. Each row in Hl

represents the embedding of a station whose dimension is d(l). The embedding
of a station after the (l + 1)-th layer will be computed as the aggregation of its
connected stations’ embeddings from the l-th layer. This operation performed in
a GCN layer can be formulated as:

H(l+1) = σ(AH(l)W(l)), (5)

where σ(·) is a non-linear activation function, A is the adjacency matrix of the
dynamic spatial graph G, and W(l) ∈ R

d(l)×d(l+1)
is a layer-specific trainable

transformation matrix for the l-th layer. The target station si’s embedding in
HK is used as part of the input to encoder-decoder network.
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4.4 Encoder-Decoder Based Spatio-Temporal Fusion

To support long-term air quality prediction, we use an encoder-decoder LSTM
model [18] to fuse spatial and temporal information and infer future PM2.5 val-
ues. Let el,t

i and eg,t
i denote station si’s local feature embeddings and global

feature embeddings at time t, where eg,t
i =

∑
sj∈(S−si)

el,t
j . Let ed,t

i denote the
embedding learned from the GCN over the dynamic spatial graph Gt

i . We con-
catenate el,t

i , eg,t
i and ed,t

i , and feed it into the LSTM cell for time t in the encoder
part. For ease of presentation, we drop all the subscripts. Then the hidden state
ht can be learned by

ht = LSTM(el,t ‖ eg,t ‖ ed,t, ht−1), (6)

where ‖ means the concatenation operation, and ht−1 is the hidden state at time
t − 1. The resultant hidden state ht is regarded as the latent representation of
the air quality status of si at time t.

The last hidden state hT produced from the encoder part encapsulates the
information of all historical data and serves as the initial hidden state of the
decoder. The input to an LSTM cell for time t in the decoder consists of the
forecast weather data at station si, denoted by w̄t, and the predicted PM2.5
value of station si at time t − 1, denoted by ŷt−1. Similarly, we concatenate w̄t

and ŷt−1, and calculate the hidden state ht at time t as

ht = LSTM(w̄t ‖ ŷt−1, ht−1). (7)

4.5 Model Learning

Since we are tasked with a regression problem, we employ the mean squared error
(MSE) as the objective function, which measures the average of squared distances
between predicted PM2.5 values and the actual ones. We apply L2 regularization
to mitigate overfitting. Formally, the objective function L we optimize is:

L =
1
M

M∑
i=1

(yi − f(xi, Θ))2 + λ ‖Θ‖2 , (8)

where M is the number of training instances, xi is a training instance, Θ is the
set of trainable parameters in our proposed model, and λ is the regularization
parameter. Early stopping is also used to reduce overfitting.

Recall that Θ = {Θ1, Θ2} consists of two subsets of parameters, where Θ1 =
{γ, {W(l)}K

l=1} includes the parameters to learn the embeddings from a dynamic
spatial graph, and Θ2 includes the parameters of forget gates, input gates, and
output gates in the encoder-decoder LSTM network.

5 Experiments

In this section, we conduct a comprehensive experimental study to demonstrate
that our proposed method outperforms the state-of-the-art competitors. In addi-
tion, we provide a case study to intuitively show the benefits of dispersion-driven
dynamic spatial modeling.
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5.1 Datasets

We utilize the following real datasets in the experiments, which are commonly
used in extensive literature.

Air Quality Data. We collect air quality data, including AQI, PM2.5, PM10,
O3, NO2, CO, SO2, from all 35 ground-based air quality monitoring stations in
Beijing.1 Since PM2.5 is the major pollutant widely used by government agencies
for public communication, we predict the PM2.5 values in the experiments. We
use linear interpolation to fill in missing values that occur within 3 h. Continuous
missing data spanning over 3 h are discarded [21].

Meteorological Data. Following the previous study [21], we consider grid-based
weather data obtained from the Global Data Assimilation System (GDAS).2 The
spatial resolution of the grid data is 0.25◦. We extract the region with latitudes
between 39.5◦ and 40.75◦ and longitudes between 115.75◦ and 117.25◦, which cov-
ers all the monitoring stations in Beijing. We select five weather attributes: tem-
perature, humidity, wind speed, and wind directions (including wind-u and wind-v
in GDAS). As suggested in [21], we conduct a temporal linear interpolation to con-
vert the 3-hourly raw data to hourly data.

POIs. POI types and density in a region directly affect its air quality. Similar
to [23], we consider 12 types of POIs from Amap of Beijing,3 and compute the
number of POIs in each category within the affecting region of a station as a fea-
ture.

Road Networks. We download the road network data of Beijing from Open-
StreetMap (OSM).4 There are five types of roads, namely primary road, sec-
ondary road, tertiary road, residential road and footway road. Similarly, we cal-
culate the number of each type of roads as a feature.

In addition, similar to the previous study [21], we extract 3 time features,
including hour of day, day of week, and month, from the timestamp of each data
point.

5.2 Experimental Settings

We process air quality data and meteorological data from January 1st, 2016 to
January 31st, 2018, together with POI and road network data. The portions of
training, validation, and test data are split by the ratio 8:1:1. In particular, training
data and test data are split in temporal order in order to avoid data leakage. The
historical time window T is set to 48, and we aim to predict the PM2.5 values in the
next 24 h. We use 64 hidden units (i.e., the dimension of a hidden state) in an LSTM
cell for feature representation, and optimize the objective function using the Adam
1 http://beijingair.sinaapp.com.
2 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-

assimilation-system-gdas.
3 https://lbs.amap.com/api/webservice/download.
4 https://www.openstreetmap.org/.

http://beijingair.sinaapp.com
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://lbs.amap.com/api/webservice/download
https://www.openstreetmap.org/
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Table 1. Performance comparisons of different models

1–6 h 7–12 h 13–18 h 19–24 h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Naive approach 14.87 26.33 26.00 43.16 32.21 50.70 35.45 54.79

LSTM 14.17 20.91 25.88 33.83 32.67 40.23 37.03 44.08

Seq2seq 14.13 21.39 23.99 32.59 30.14 38.55 33.61 41.89

DeepAir [20] 19.18 25.15 23.13 29.64 25.20 31.88 28.43 35.37

GeoMAN [13] 14.03 19.10 19.42 25.06 22.95 29.31 24.23 32.14

WGC-LSTM [19] 12.78 18.24 18.05 23.59 18.92 28.00 25.42 29.74

MGED-Net [21] 13.44 17.35 18.05 22.83 20.95 26.01 21.91 26.88

Our method 10.82 15.71 16.54 21.10 17.52 24.54 19.13 24.91

Table 2. Performance comparison of different spatial correlation modeling methods

1–6 h 7–12 h 13–18 h 19–24 h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Without dynamic spatial 15.52 23.53 20.02 25.81 21.13 30.71 24.80 32.66

Fixed A 15.30 19.99 19.63 24.71 22.03 29.97 25.07 32.12

Shared A [19] 12.78 18.24 18.05 23.59 18.92 28.00 25.42 29.74

Our method 10.82 15.71 16.54 21.10 17.52 24.54 19.13 24.91

optimizer with learning rate 0.001. To address overfitting, we use L2 regularization
with the regularization coefficient of 0.0001, and employ early stopping according
to the validation error. Our code is implemented in PyTorch.

5.3 Compared Methods

We compare our proposed model with a wide range of representative approaches
described below.

– Naive approach uses the PM2.5 value of the current time step as the pre-
dicted values for all future hours.

– LSTM uses a typical LSTM model to predict the 24 h’ PM2.5 values.
– Seq2seq is an encoder-decoder network with stacked LSTMs in both encoder

and decoder.
– DeepAir [20] is a distributed fusion network, which consists of 5 subnets

powered by a FusionNet structure. Then, these subnets are merged to generate
prediction results according to their weights.

– GeoMAN [13] is based on an encoder-decoder architecture with a multi-
level attention mechanism. External factors are fused with the output of the
encoder as the input to the decoder.

– WGC-LSTM [19] is a weighted graph convolutional LSTM network, which
considers the adjacency matrix of the spatial graph as model parameters. The
adjacency matrix is static and shared among all time steps.
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– MGED-Net [21] is a multi-group encoder-decoder network with multiple
encoders and a single decoder. All features are divided into different groups
by correlation and merged by the encoder fusion strategy.

5.4 Experimental Results

Following the previous studies [13,21], we use two widely-used evaluation met-
rics, root mean squared error (RMSE) and mean absolute error (MAE), to mea-
sure the performance of different prediction models. Similarly, we report the
prediction results in four time intervals (1–6 h, 7–12 h, 13–18 h, and 19–24 h).

We report the main experimental results in Table 1. Among all models, our
proposed model obtains the best results in all four time intervals on both met-
rics. Specifically, our method shows 12.6% to 19.4% improvement and 5.6% to
9.4% improvement over the state-of-the-art approach MGED-Net on MAE and
RMSE, respectively. Compared to LSTM, encoder-decoder-based methods (i.e.,
Seq2seq, GeoMAN, MGED-Net and our model) achieve significant improvements
in long-term predictions due to the decoder component. This justifies the adop-
tion of an encoder-decoder architecture in our method to model the long-term
temporal evolution. Moreover, it can be seen that our method’s short-term pre-
diction performance (e.g., 1–6 h and 7–12 h) is also much better than that of
WGC-LSTM. We deem that it is due to the dispersion-driven dynamic spatial
correlation modeling. In contrast, modeling the spatial influence by a static adja-
cency matrix in WGC-LSTM does not reflect the real air pollutant dispersion
process well, and thus leads to less desirable prediction performance. In the fol-
lowing sections, we provide more experiments to study the effects of different
spatial correlation modeling methods.

Benefits of Dynamic Spatial Graph. To demonstrate the benefits of mod-
eling dynamic spatial influence with atmospheric prior, we conduct a set of
experiments with different methods of modeling spatial correlation.

– Without dynamic spatial is a variant of our method that removes all
dynamic spatial features. The rest is the same as the proposed method.

– Fixed A considers the geographic proximity (e.g., the Euclidean distance)
between stations as edge weights of the spatial graph, which is set in advance
before the training.

– Shared A is essentially the method in [19], where the elements in the adja-
cency matrix of the spatial graph are considered as learnable parameters.
Note that the adjacency matrix here is shared among all time steps.

Table 2 shows the performance of different spatial correlation modeling meth-
ods. We can draw a few important observations. First, explicitly modeling
the spatial correlations among monitoring stations, even only considering their
Euclidean distance, is beneficial. Second, the spatial influence among different
stations is indeed not simply determined by their geographic proximity. This
explains why Fixed A’s performance is much worse than those of Shared A and
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(a) Fixed A (b) Shared A (c) Our method

Fig. 3. Visualization of the spatial influence of different spatial correlation modeling
methods on a target station

our method. Third, modeling dynamic spatial influence using well-established
atmospheric prior is rewarding. It not only achieves much better performance,
but also leads to a less complex model that is easier to train.

Dynamic Spatial Graph Visualization. Finally, to better understand how
the dynamic spatial graph helps improve air quality prediction accuracy, we
visualize the spatial influence of different stations on a target station (marked as
a red star) at two representative time steps t1 and t2 in Fig. 3. The yellow dots
represent the top-10 stations that have the most spatial influence on the target
station. The size of a dot represents its pollution level. The larger a dot, the
higher its PM2.5 value. The direction of an arrow indicates the wind direction
at a station, and the length indicates the wind speed. The grey triangles denote
other stations. Similarly, their sizes represent their air pollution level.

We have a few interesting observations. First, the most influential stations
of our method at different time steps well align with the Gaussian plume model
and one’s intuition. The most influential stations at different time steps for a
target station are also different, which are determined by multiple factors defined
by the Gaussian plume model, such as the geographic distance, air quality, and
meteorological conditions. This reflects the dynamic nature of the spatial cor-
relation modeling in our method. Second, the most influential stations in both
Fixed A and Shared A are fixed over time. For Fixed A, it is because the geo-
graphic proximity among stations does not change over time; for Shared A, it is
due to the fact that the same adjacency matrix is shared among all time steps.
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In particular, the most influential stations of Shared A are counter-intuitive.
Third, while in general Shared A performs better than Fixed A, at time steps
t1 and t2, its MAE values are worse than those of Fixed A. This is not difficult
to understand—the adjacency matrix learned by minimizing the average error
over all time steps cannot guarantee reasonable performance at every time step.

6 Conclusion and Future Work

In this paper, we took on a new perspective of air quality prediction, which mod-
els dynamic spatial influence among monitoring stations guided by atmospheric
dispersion modeling. We proposed to construct a dynamic spatial graph based
on the Gaussian plume model, generate graph embeddings by a GCN, and finally
fuse spatial and temporal information seamlessly in an encoder-decoder LSTM
network. Experiments on real-world benchmark datasets validate the superior-
ity of the proposed model. In addition, we provided a case study to intuitively
understand the benefits of dynamic spatial correlation modeling. In future work,
we will investigate other possible factors to improve dynamic spatial correlation
modeling, and explore more advanced prediction models to improve prediction
accuracy (e.g., stacked LSTMs).
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Abstract. Traffic signal control problems are critical in urban inter-
sections. Recently, deep reinforcement learning demonstrates impressive
performance in the control of traffic signals. The design of state and
reward function is often heuristic, which leads to highly vulnerable per-
formance. To solve this problem, some studies introduce transportation
theory into deep reinforcement learning to support the design of reward
function e.g., max-pressure control, which have yielded promising perfor-
mance. We argue that the constant changes of intersections’ pressure can
be better represented with the consideration of downstream neighboring
intersections. In this paper, we propose CMPLight, a deep reinforcement
learning traffic signal control approach with a novel cooperative max-
pressure-based reward function to leverage the vehicle queue informa-
tion of neighborhoods. The approach employs cooperative max-pressure
to guide the design of reward function in deep reinforcement learning. We
theoretically prove that it is stabilizing when the average traffic demand
is admissible and traffic flow is stable in road network. The state of deep
reinforcement learning is enhanced by neighboring information, which
helps to learn a detailed representation of traffic environment. Exten-
sive experiments are conducted on synthetic and real-world datasets.
The experimental results demonstrate that our approach outperforms
traditional heuristic transportation control approaches and the state-of-
the-arts learning-based approaches in terms of average travel time of all
vehicles in road network.

Keywords: Deep reinforcement learning · Traffic signal control ·
Cooperative max-pressure · Downstream information

1 Introduction

With the population growth and the rapid development of cities, the problem
of urban traffic congestion has become more and more serious, and optimizing
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traffic signal control is becoming increasingly important. Traditional traffic sig-
nal control approaches usually work with a fixed period, a fixed phase sequence,
manual intervention or expert knowledge. These approaches have difficulties in
adapting to the dynamic change of traffic flow, and their performance are not
satisfied in complex traffic situations [1–4]. Recently, researchers have begun
applying deep reinforcement learning techniques to traffic signal control prob-
lems, resulting better performance than traditional approaches [5–8]. One of
the main problems of current deep reinforcement learning based approaches is
that the design of the state and the reward function is mostly heuristic. The
reward function can be defined by queue length [6,7], vehicle delay [9,10] or the
combination of weighted traffic parameters [11,12]. Its selections usually rely on
arbitrary experience, leading to unstable performance.

Fig. 1. The illustration of cooperative max-pressure by considering the information
of downstream neighboring intersections (left part); the calculation of phase pressure
based on max-pressure (right part).

Recent studies have pointed out that the design of reward function driven
by transportation theory can alleviate the above problems. The state-of-the-arts
max-pressure [3] in transportation literature has been applied to the control of
traffic lights [7,13]. The key idea of max-pressure is to minimize the “pressure” at
the intersection, which can be roughly defined as the difference in vehicle queue
length between an incoming lane and an outgoing lane. Through theoretical
analysis of max-pressure approach, we observe that traffic light phase control
is ineffective when the queue length on downstream segment of intersection is
greater than the queue length on upstream segment, or when two vehicle queues
are close. As the right part of Fig. 1 illustrates, for intersection i, its pressure
of phase0(W-E straight) is 2 and that of phase1(N-S straight) is 6 based on
max-pressure. Then phase1 will be activated in the next time step for a larger
pressure, but accurately phase0 needs to be prioritized because there are more
vehicles waiting to pass through the intersection. The same is applied to the W-E
and N-S left turn phases. The max-pressure approach considers the vehicle queue
information of an intersection, which leads to an inaccurate phase pressure. In
the left part of Fig. 1, the intersection i has a downstream intersection j, and the
pressure of phase0 will increase when the phase pj of downstream intersection j
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is activated at the same time step t. The pressure of phase1 will decrease likewise
for the influence of neighboring intersections. It is obvious that the pressure of
an intersection is easily affected by its neighboring intersections. Therefore, not
only the queuing information of the intersection but also the information of
downstream neighboring intersections need to be considered.

Inspired by the concept of traffic process ability [14] and cooperative max-
pressure (CMP) control approach [15] in the transportation field, the phase
pressure of an intersection can be learned by a cooperative way. As Fig. 1 illus-
trates, some vehicles leave the lane m, and the pressure on the lane l increases.
In max-pressure control, the phase pressure can be loosely defined as xl − xm,
while considering the leaving vehicles dm in cooperative max-pressure, the phase
pressure can be roughly defined as xl − (xm − dm). xl and xm are the number of
the vehicle queue on the lane l and m respectively. dm is the number of vehicles
preparing to pass through the intersection. However, the traditional solution of
cooperative max-pressure control approach is greedy and easily falls into local
optimization for maximize throughput by minimizing intersection “pressure”.

To address the above problem, we propose Cooperative Max-Pressure light
control (CMPLight) based on deep reinforcement learning, theoretically driven
by transportation theory. Most importantly, we apply neighboring information
for traffic light control in two ways. Firstly, we leverage the vehicle queue length
from downstream neighboring intersections to define cooperative max-pressure
as the reward function. Not only the vehicle queue information at the intersection
is considered, but also the information about its neighboring intersections is
included. It accurately reflects the “pressure” conditions at the intersection.
Secondly, we tranform the intersection states with lane-wise queue information
from neighboring intersections as vectors into the deep reinforcement learning,
which can help deep neural network extract effective state features and learn
accurate states representation. The state transition of traffic flow in cooperative
max-pressure is the same as the evolution equations of Markov chain in deep
reinforcement learning. Deep Q-Network [16] is applied to control traffic signals
by interacting with the environment for learning optimal policies in complex
scenarios. In this paper, our main contributions are as follows:

1. The start-of-the-arts cooperative max-pressure theory in transportation lit-
erature is considered into the traffic signal control approaches as the reward
function in deep reinforcement learning. It contributes to alleviating unstable
performance of heuristics traffic signal control.

2. We prove that the design of reward function still maintains the stability of
queuing traffic flow in road network by leveraging the information from down-
stream neighboring intersections.

3. A series of experiments are conducted on both synthetic and real-world
datasets. Experimental results on different traffic flow and network structure
scenarios show that our CMPLight outperforms the state-of-the-arts deep
reinforcement learning based approaches and benefits from the transporta-
tion theoretical support.
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2 Related Work

Traditional traffic signal control strategies such as Webster [1], Greenwave [2],
Fixed-time [4] and Max-pressure [3] usually work with pre-designed fixed-cycle,
fixed-phase sequences or expert knowledge, which are not well adapted to
dynamic traffic flow environments. Reinforcement learning algorithm can learn
from the environment and adapt to dynamic traffic flow well, and it demonstrates
superior performance in traffic signal control [6,7,17,18].

The most commonly used value-based Q-learning [19] for reinforcement learn-
ing is applied in traffic signal control at single intersection. Q-learning has also
been employed to solve multi-intersection traffic signal control problems in com-
bination with the multi-agent model [11,17,18]. However, the key challenge
comes from the dimensional curse for multi-intersection traffic control prob-
lems [16]. To effectively alleviate the above problems, Deep Q-Network is applied
to traffic signal control with impressive performance [6,20], as well as to search
problems [21] and car-sharing problems [22].

The design of reward function plays a major role in reinforcement learning
based traffic signal control. The travel time of a vehicle is affected by multi-
ple effects of traffic signals and traffic movements. If the travel time is used as
reward directly, it would be delayed and ineffective in indicating the effect of traf-
fic signals [7]. Therefore, the existing reinforcement learning based approaches
have a tendency to apply more complex reward definition that can be effectively
measured after an action. Some traffic parameters, such as queue length, vehi-
cle delay, vehicle waiting time, etc. are used as reward function in traffic signal
control [6,7,9–12]. However, different weight parameters may lead to different
results in terms of average travel time, and the weight of each factor is tricky to
set in the reward function. Some researchers explore the support from the trans-
portation literature. The max-pressure is applied to deep reinforcement learn-
ing in traffic signal control and shows promising improvements [7]. Since then,
researchers have proposed MPLight with max-pressure to address large-scale
traffic signals control problems [13]. PDLight has redesigned the reward func-
tion, but lacks guideline from the transportation theory [23]. The max-pressure-
based approach focuses on the phase pressure of a single intersection without
considering the influence of the downstream neighboring intersections informa-
tion. Inspired by the state-of-the-arts cooperative max-pressure approach [15]
in transportation literature, we design the state and reward functions in deep
reinforcement learning by leveraging the neighboring information. It can allevi-
ate the risk of over-saturation in road network by balancing the queue lengths of
neighboring intersections and minimize the pressure in each phase of intersection.

3 Preliminary

This paper focuses on multi-intersection traffic signal control scenarios. In
Fig. 2(a), as an example, each intersection has four incoming approaches l ∈ Lin

and four outgoing approaches m ∈ Lout, and each road consists of three lanes.
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Traffic movement (l,m) is the traffic flow that vehicles travel through the inter-
section from lane l to another lane m. There are eight traffic movements in each
intersection. A phase p is a set of traffic movements that do not conflict with
each other. Note that different intersection environments have different phase
definitions, and we use the general representation here [7].

Fig. 2. (a) The illustration of phases and traffic movements in traffic signal control
of an intersection. (b) Cooperative max-pressure description. The pressure of straight
phase is affected by downstream intersection j, likewise for left-turn phase is affected
by downstream intersection j′. It should be noticed that the number of neighboring
intersections is not only one. There are four neighboring intersections generally.

The max-pressure traffic signal controller is the properties of being scalable,
distributed over intersections, and provable stability [3]. It have been used as
the reward function in deep reinforcement learning with achieved impressive
performance in recently studies [7,13]. However, the pressure of a phase is simply
defined as the difference between the queue lengths of upstream and downstream
of an intersection, which is easily affected by the neighboring intersections.

In this paper, the pressure of phase is defined by a cooperative way lever-
aging the information of downstream neighboring intersections. As illustrated
in Fig. 2(b), there are vehicle queues in lane l and lane m. Some vehicles (ql,m)
pass through the intersection i from lane l to lane m when straight phase pi

2

is activated. For the intersection j, there is phase pj
1 and pj

2, and dm,k denotes
the number of vehicles departing from lane m to lane k. If the phase pj

2 is acti-
vated at the same time step, the number of vehicles on downstream lane will
decrease and the phase pressure will increase. The same condition can also occur
under the left turn phase pi

1 of intersection i. Therefore, the phase pressure at
the intersection i is affected by the phase state and vehicle queues of the down-
stream intersections. By leveraging the neighboring information to correct the
calculation of phase pressure in max-pressure control, an accurate phase pres-
sure situation is obtained. Then the phase pressure is minimized to balance the
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distribution of all vehicles in road network and maximize throughput. Based on
the above analysis, the calculation of phase pressure in cooperative max-pressure
is as follows:

pl,m(t) = ql,m(t) −
∑

p∈Lout

rm,k · (qm,k(t) − dm,k(t)) , (1)

where dm,k represents the number of vehicles leaving from m to k; ql,m is the
number of vehicles passing through the intersection i from lane l to lane m; Lout

is the set of outgoing lanes of intersection j; rm,k is the proportion of vehicles
leaving m and entering k. The definition of dm,k is as follows:

dm,k(t) =
{

pnqm,k(t) qm,k(t) < fmax

pnfmax qm,k(t) ≥ fmax
, (2)

where fmax is the maximum number of vehicles passing through the intersection
when the downstream light phase pn is activated. If phase pn is activated, the
value of pn is 1, otherwise, 0. The second term in Eq. (2) can be thought of as
the overall average queuing situation at the downstream intersection.

However, the approach is also a greedy algorithm like max-pressure control
and it is difficult to obtain the global optimal strategy among intersections with
complex traffic environment. Deep reinforcement learning has the ability to find
a better solution for traffic signal control. It is a challenge to combine them
together. Whether cooperative max-pressure as the reward function can optimize
traffic signal control and with the assurance of the stability of traffic flow in road
network will be an challenging yet rewarding study.

4 Our Approach

4.1 Agent Design

The traffic light control problem is described as the Markov Decision Process
(MDP) that is represented as a tuple < S,A,R, P, γ >. Traffic signal light at each
intersection is controlled by an agent set for each intersection in road network.
At each time step t, the agent receives state st ∈ S and selects an action at ∈
A based on its observation. After taking the action, the state of environment
transitions to the next state st+1 ∈ S. P is the state transition matrix which is
the probability of moving among the environment states. Then the agent receives
a reward rt which is determined by the reward function Rt =

∑∞
k=0 γkrt+k+1.

• State: This paper follows the earlier work [7], the state includes the current
phase p, the number of vehicles in each outgoing lane qm(m ∈ Lout) and the
number of vehicles in each incoming lane ql(l ∈ Lin). In addition, the num-
ber of vehicles queue and the phase status of the downstream neighboring
intersection are taken into the state definition, which helps the agent learn
accurate environment state representation. There are many ways to intro-
duce this information, such as convolutional neural network, and the simple
concatenation is used to verify that it works.
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• Action: Phase-based and step-based definitions are usually used as standard
actions in traffic signal control. At each time step t, each agent chooses a
phase p as its action at from action set A. Then the agent chooses whether to
continue the current phase step or switch to the next phase as the learning
progresses. As shown in Fig. 2(a), four phases of the traffic light are consid-
ered, i.e., W-E straight, N-S straight, W-E left, N-S left.

• Reward: The pressure of each intersection is defined by leveraging the infor-
mation of downstream neighboring intersections in the cooperative max-
pressure-based approach. It can be expressed as the difference between the
number of vehicles in incoming lanes and the overall average queuing condi-
tion or average pressure of neighboring intersections. The reward definition
based on the cooperative max-pressure is defined as:

Ri = −|
∑

(l,m)∈Mi

pl,m|, (3)

where Mi is the set of all the traffic movements of an intersection i and pl,m

is defined as the Eq. (1).

The action with the minimum intersection pressure calculated by the CMP-
Light is selected as the action of the next time step. In contrast to the max-
pressure-based approaches, the intersection pressure of CMPLight is effected by
the downstream neighboring intersections conditions. As the exact way of calcu-
lating reward, it avoids conflicts caused by the number of passing vehicles over
the maximum carrying capacity of neighborhoods.

4.2 Learning Process

In this paper, Deep Q-Network [16] is adapted to control traffic signal at each
intersection. The pseudocode of CMPLight algorithm is shown in Algorithm 1.
One of focuses in our approach is the redesigned reward function driven by trans-
portation theory. It obtains the intersection pressure by leveraging information
from downstream neighboring intersections. The other is that the neighboring
information is considered into the input of the deep neural network to learn
relevant and accurate state features. They are employed in Step 5 and 6 in
Algorithm 1, respectively.

To stabilize the learning process, frozen target network is applied to provide
temporal difference for updating the primary network, and the sample batches
from replay memory are used to train the deep neural network. Step 6 shows that
each agent observes the state of intersection environment at each time step t.
Then the states are taken into the deep neural network to extract state features.
The agent predicts the Q-value to choose actions, and the Q-function in Step 4
is updated by:

Qπ (st, at) ← Qπ (st, at) + α (yt − Qπ (st, at)) , (4)

where α is learning rate, and yt is temporal difference. During the training
process in Step 11 to 14, the main network parameter θ is updated after each
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action, and the target network parameter θ̂ is updated after a period of step.
The goal of action selection is to maximize the reward R by choosing the action
at each time step t with the highest Q-value as be shown in Step 4.

Algorithm 1. CMPLight
Input: replay buffer size M , batch size d, the number of episodes E, learning rate α,

the number of simulation step T , discount factor γ, update frequency C
Initialize Main network Q with weights θ, Target network Q̂ with weights θ̂, Replay
memory with M

1: for e = 1, . . . , E do
2: Initialize state s1, and action a1

3: for t = 1, . . . , T do
4: Take action at = argmaxaQπ(st, a; θ) with probability 1 − ε or a random

action with probability ε
5: Calculate cooperative max-pressure as the reward rt by Equation.(1)
6: Observe next state st+1

7: Append (st, at, rt, st+1) to replay memory
8: if Replay buffer M is full then
9: Delete the oldest memory

10: end if
11: Sample random d from memory

12: yt =

{
rt if t = T

rt + γ maxa Qπ
(
st+1, at+1; θ̂t

)
, otherwise.

13: Update θ by policy gradient
14: Every C steps update Target network θ̂ = θ
15: end for
16: end for

5 Stability Analysis

Stabilization on Traffic Movements with Our Proposed Reward Func-
tion. Some researchers have analyzed the stability and rationality of combining
max-pressure and deep reinforcement learning as an optimization problem [3,7].
However, with the help of downstream neighboring intersections information to
achieve cooperative max-pressure, it is necessary to prove that it is stable.

Definition: Movement Process Stability. Firstly, the traffic movement process
stability is defined as follows: the vehicle queuing length process Xt = {ql,m(t)}
is stable in the mean if for some K < ∞

1
T

T∑

t=1

∑

l,m

E[ql,m(t)] < K, ∀T, (5)

where E denotes exceptation. The stability of the mean implies that the link is
circular and has a unique stable probability distribution.
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Theorem: The Cooperative Max-Pressure Control is Stabilizing. Considering
the information of downstream neighboring intersections in deep reinforcement
learning policy, the cooperative max-pressure control is stabilizing and still main-
tains the stability of traffic flow in road network, whenever the average demand
is admissible.

Proof: Based on Theorem 1 in [3], the Lyapunov function still can be
used to provide sufficient conditions for stability in traffic road network
with vehicle queuing information of neighborhoods. Suppose E{Xi(t)} <
∞ for all i ∈ {1, 2, . . . , N}, and there exist B > 0 and ε > 0 satisfies

E{L(X(t + 1)) − L(X(t))|X(t)} <= B − ε

N∑

i=1

Xi(t), (6)

then the network is stable, where the Lyapunov function is defined as

L(X) =
N∑

i=1

X2
i . (7)

The queue length ql,m of lane l waiting from lane l to m can be computed as
follows:

ql,m(t + 1) = ql,m(t) + qin
l,m(P (t)) − qout

l,m(P (t)), (8)

where qin
l,m(P (t)) and qout

l,m(P (t)) denote the vehicles entering ql,m(t) and vehicles
leaving from ql,m(t) under the current traffic light phase switching strategy P (t)
at each time step t, respectively.

According to the Lyapunov function and the properties of the traffic network:

L(X(t + 1)) − L(X(t)) =
∑

l,m

((qin
l,m)2 + (qout

l,m)2)

− 2
∑

l,m

(ql,m(t) −
∑

p

rm,k(qm,k(t) − qout
m,k))qout

l,m.
(9)

Let B = max(
∑

l,m((qin
l,m)2 + (qout

l,m)2)), we have:

L(X(t + 1)) − L(X(t)) ≤
B − 2

∑

l,m

(ql,m(t) −
∑

p

rm,k(qm,k(t) − qout
m,k))qout

l,m. (10)

Since the queuing network model is similar to that in [3]:
∑

l,m

(ql,m(t)[qin
l,m − qout

l,m] =
∑

l,m

∑

P

μl,m[ql,m(t) −
∑

p

rm,k · qm,k]

≤
∑

l,m

∑

P

μl,m[ql,m(t) −
∑

p

rm,k · (qm,k(t) − dm,k(t))].

(11)
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According to the above theorem, the traffic flow and road network controlled
by the proposed cooperative max-pressure-based approach is stable under the
admissible arrival rate in the capacity region. Then we have:

L(X(t + 1)) − L(X(t)) ≤ B − 2
∑

l,m

ql,m(t)[qout
l,m − qin

l,m]. (12)

Finally, we obtain:

E{L(X(t + 1)) − L(X(t))|X(t)} <= B − 2ε
∑

l,m

ql,m(t). (13)

The modified cooperative max-pressure approach still satisfies the basic con-
cept of max-pressure control and maintains the stability of traffic flow in road
network. With the same traffic signal switching strategy, if the pressure of the
downstream intersections can cooperative with the pressure of the upstream
intersection, better throughput performance can be achieved. When the number
of vehicles at the downstream intersection is zero, the cooperative max-pressure
approach is degraded to the max-pressure approach.

6 Experiments

6.1 Datasets and Baselines

Datasets. In the experiments, we employ two kinds of synthetic and real-world
datasets1. Each traffic dataset includes a road network data and traffic flow data.
Traffic flow is defined as (t, l1, l2, · · · , ln). t is the time when the vehicle enters the
road network. l1 is the rim edge lane of the vehicles entering the road network.
ln is the end lane of the vehicles leaving the road network.

• Synthetic dataset: The traffic flow datasets are extracted from the real
traffic patterns of Jinan and Hangzhou with 6 intersections in arterial road
network. Each intersection in the road network is a four-way intersection with
each road being 300 m. There are two types of average vehicle arrival rates:
300 vehicles per hour/lane and 700 vehicles per hour/lane.

• Real-world dataset: The real-world datasets from New York City (NYC)
are applied as benchmarks, which enable us to verify the performance of
our approach in different real-world scenarios. The dataset contains a road
network file of 16 intersections and four different traffic flows. There are 6,790,
4,513, 6,083 and 4,030 mean arrival rates (vehicles/hour) respectively.

Baseline. Our approach compares with the following baselines including con-
ventional transportation control approaches and learning-based approaches.

1 Open source, https://traffic-signal-control.github.io.

https://traffic-signal-control.github.io
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• Fixed-time [4]: This approach periodically cycles through the list of feasible
phase configurations while not considering the traffic volume on the lanes of
the road network. Each phase is under a fixed time of 15 s. There are four
phases in traffic flow with turning vehicles.

• GreenWave [2]: It is the most classical approach in the transportation field
to implement coordination, which aims to optimize the offset and reduce the
number of stops for vehicles traveling at one certain direction. Each phase
duration equals the ratio of the demand of an approach to total demand. The
offset is the travel time of vehicles pass through the lane.

• Max-Pressure [3]: This approach favors control schedules that maximize
the release of pressure on incoming and outgoing roads. The max-pressure
controller tends to minimize the difference in the number of vehicles for the
incoming and outgoing lanes.

• GRL [6]: GRL is a deep Q-learning approach for coordinated traffic signal
control. Specifically, transfer planning and the max-plus coordination algo-
rithm are employed for multi-intersection coordination.

• LIT [8]: LIT is a deep reinforcement learning approach that presents a sim-
ple but effective state and reward function to solve the traffic signal control
problems. It uses the queue length as the reward function.

• PressLight [7]: It is a recently developed learning-based approach that incor-
porates pressure in the state and reward design for the deep reinforcement
learning model. It has shown superior performance in multi-intersection con-
trol problems. And the baseline source code can be found in Github2.

6.2 Experimental Settings

Experiments are conducted on Cityflow3, an emerging open-source traffic simu-
lator optimized for reinforcement learning. Our source code runs on the Intel(R)
CPU Xeon(R) and NVIDIA GPU TITAN Xp. The average travel time as our
evaluation measure is widely used in transportation field [7]. It is calculated as
the average travel time of all vehicles spent in road network.

The state of each agent is represented by twelve-dimensional vectors. The
queue information of intersection can be obtained through API in Cityflow, and
there are sensors in the real world to obtain similar data. Each vehicle is set
5 m. In the synthetic dataset road network, each lane is 300 m. However, the
length varys for the lanes in the real-world dataset. Generally, we use dynamic
traffic flow to input into the road network. There are two different traffic flow
modes: light and heavy. The speed of traffic flow on the road is set to 40 km per
hour. Note that, the number of neighboring intersections relies on the structure
of traffic road network with range two to four. After each phase switches, there
is a 5 s yellow light to clear the vehicles in the intersection, which is in line with
the setting of traffic lights in the real world. The right turn is not controlled
by the signal light. The shortest green light time is set 10 s, that is, switch the

2 https://github.com/wingsweihua/presslight.
3 https://cityflow.readthedocs.io/en/latest/index.html.

https://github.com/wingsweihua/presslight
https://cityflow.readthedocs.io/en/latest/index.html
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phase in every 10 s. The length of each episode is 3,600 s. The training rounds
are set to 600 and 700 for synthetic and real-world datasets respectively. Each
experiment takes the last 50 rounds of results from the test round as the final
verification data. In the deep Q-learning network, the discount factor γ is 0.8,
the maximal sample size is 10,000, and the target network is updated every 10
steps. The source code of PressLight is provided by [7], and the experimental
settings are retained.

6.3 Experimental Results

Performance Comparison. Table 1 shows the results of experiments on syn-
thetic and real-world datasets in terms of average travel time (a.t.t.). Experimen-
tal results show that our approach outperforms traditional transportation control
approaches and deep reinforcement learning approaches based on transporta-
tion theory. Our approach makes 31% and 30% performance improvement over
state-of-the-arts deep reinforcement learning approaches on synthetic datasets
and real-world datasets, respectively. Other interesting findings includes:

(1) The performance of traditional traffic signal control approaches [2–4] is
unsatisfactory. Traditional approaches cannot adapt to the dynamical changing
traffic flow since they overly rely on historical data and expert knowledge, and
cannot handle complex scenarios.

(2) Our approach is superior to the other deep reinforcement learning
approaches in about 30%. As the complexity of the traffic flow increases, it
clearly outperforms the max-pressure-based approach PressLight [7]. We intro-
duce downstream neighboring intersections information into the reward function
and state features in deep reinforcement learning to help agents learn the pres-
sure situation at the intersection and accurately estimate the Q-value better.

(3) Our CMPLight approach is comparable to the max-pressure-based app-
roach in about 4% performance degradation when the traffic flow is relatively
gentle and the number of vehicles is limited. In this case, downstream neighbor-
ing intersections have a negligible impact on the current intersection and our
approach cannot obtain sufficient information from neighborhoods.

Table 1. Performance comparisons with all baselines in terms of a.t.t.

Synthetic data (1× 6 intersections) Real-world data (1× 16 intersections)

Light Light Heavy Heavy 8th Ave. 9th Ave. 10th Ave. 11th Ave.

flat peak flat peak NYC NYC NYC NYC

Fixed-time [4] 93.29 109.50 325.48 246.25 432.60 469.54 347.05 368.84

GreenWave [2] 98.39 124.09 263.36 286.85 451.98 502.30 317.02 314.08

Max-Pressure [3] 74.30 82.37 262.26 225.60 412.58 370.61 392.77 224.54

GRL [6] 123.02 115.85 525.64 757.73 704.98 669.69 676.19 676.19

LIT [8] 65.07 66.77 233.17 258.33 471.30 726.04 309.95 340.40

PressLight [7] 59.96 61.34 160.48 184.51 223.36 149.01 161.21 140.82

CMPLight(ours) 61.7 64.1 119.37 116.4 147.51 106.82 110.50 104.00
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Performance in Different Network Scales. We compare the performance
differences of our approach under different road network scales. Table 2 shows
the results of different experimental settings. Our approach outperforms tradi-
tional traffic approaches and the max-pressure-based approach, achieving about
26% performance improvement on the grid road network (3× 3 intersections).
This is because intersections can take into account more downstream neighbor-
ing intersection information in grid road network. In the arterial network (1× 6
intersections and 1× 20 intersections), an intersection can consider up to two
adjacent neighbors as downstream intersections. While in the grid road network,
information about even four neighboring intersections can be included. However,
in some small-scale scenarios (Light flat and Light peak in Table 1), leverag-
ing downstream neighboring information to calculate intersection pressure well
comparing with max-pressure-based reinforcement learning approaches. This is
because in the case of small traffic flow situations, the pressure change at the
intersection is not sensitive, and as a result, not easily affected by the intersec-
tions. In this case, the introduction of downstream neighboring information still
has a comparable performance with about 4% degradation.

Table 2. Performance comparison under different traffic network scales.

1× 6 intersections 1× 20 intersections 3× 3 intersections

Heavy Heavy Heavy Heavy Heavy Heavy

flat peak flat peak flat peak

Max-pressure [3] 262.26 225.60 310.95 271.39 539.67 485.03

PressLight [7] 160.48 184.51 155.84 188.92 251.02 262.46

CMPLight(ours) 119.37 116.4 113.68 109.68 164.13 218.72

Visualising the Stability of Our Approach. Figure 3 shows the stable per-
formance of our approach, which has been theoretically proven in stability anal-
ysis. At the beginning of the training, process max-pressure-based approach
has a sharp peek, then it slowly reaches stability. In contrast to that, our app-
roach reaches stability with smooth peak. Because the agent can learn more
useful information in the road network with the help of queuing information
from downstream neighboring intersections, our approach converges faster than
state-of-the-arts approach of combining reinforcement learning and transporta-
tion theory. The queue information of neighboring intersections is considered in
the pressure of target intersection as the reward function to provide accurate
description of the effect of an action in road network.
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Fig. 3. The results of 1× 6 intersections on synthetic datasets with heavy and peak
traffic flow.

7 Conclusion and Future Work

In this paper, we introduce cooperative max-pressure in the transportation field
as the reward function in deep reinforcement learning to control traffic signals.
We prove that the reward function still maintains the stability of the network by
theoretical analysis. In the future, we will try to introduce this reward function
design in other deep reinforcement learning approaches. An open issue is how
to deal with all the traffic flow planned for the network when there are more
complex traffic network and more traffic flow.
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Abstract. Technological advancements have led to generation and collection of
big data from various data sources including mobile devices. For instance, to pre-
vent, combat and detect COVID-19, citizens of many countries were encouraged
to use contact tracing apps on their mobile devices. Collection of their trajectories
can be analyzed and mined for social goods. At the same time, their privacy also
needs to be preserved. In other words, the advent of COVID-19 has made releas-
ing of patient records become imperative and yet privacy of individuals must be
protected. Releasing spatio-temporal COVID-19 data plays a significant role in
contact tracing andmay help in reducing the spread of the disease due to likelihood
of increasing adherence to social distancing and other health related guidelines by
the people around the cluster of the released data. In this paper, we examine the
problem of preserving privacy of spatio-temporal trajectory data and introduce a
hierarchical temporal representative point (HTRP) differential privacy model. We
evaluate our framework using a South Korean COVID-19 patient route dataset.
Empirical results show a balance of utility and privacy provided by our framework
with our HTRP for privacy-preserving healthcare data analytics.

Keywords: Big data · COVID-19 · Data analytics · Data mining · Privacy ·
Spatial and temporal data

1 Introduction and Related Works

Evolution and advancements in ubiquitous computing and communication technologies
have led to pervasive and reliable computing solutions and communication services.
For example, residents of many countries have used internet of things (IoT) like mobile
devices for contact tracing, which helps identify people whomay have come into contact
with an infected person. Examples include contact tracing apps [1, 2] for monitoring
the spread, and notifying the exposure, of the coronavirus disease 2019 (COVID-19). It
broke out in 2019, became a pandemic in 2020 and is still prevailing in 2021.

We are witnessing huge volumes of patient data due to the outbreak of COVID-
19. Data science [3, 4], data analytics [5–7], data mining [8–16] and machine learning
[17–19] have become important tasks in understanding previously unknown symptoms,
spreading patterns and other potentially useful data to prevent the spread of COVID-19.
At the same time, preserving privacy [20–22] of individuals has become crucial to prevent
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stigmatization and societal bullying. For example, releasing detailed information such
as school name, transportation route and classroom about a student who tested positive
for COVID-19 may increase the risk of identifying the student and the spiral effects
on the student’s mental and psychological well-being could be enormous. Hence, it is
desirable to have a privacy-preserving framework for healthcare analytics of COVID-19
data (e.g., trajectory of COVID-19 cases).

Privacy-preserving techniques have been applied to various tasks, such as privacy-
preserving data mining (PPDM) [23], privacy-preserving keyword data search [24], and
privacy-preserving data publishing (PPDP) [25–27]. Common techniques for preserving
privacy include k-anonymity [28], l-diversity [29], t-closeness [30] and differential pri-
vacy [31]. For instance, Doka et al. [32] treated k-anonymization as a network problem
with the objective to minimize information loss. They used mixed integer programming
to obtain a minimal solution. In contrast, our framework is simpler but yet effective.
We group data points with temporal hierarchy and adding noise (ε) to further protect
the privacy of individual record. Kasiviswanathan and Smith [33] used (ε, δ)—which
is a relaxed notion of privacy based on distance measure on probability distribution
using Bayesian formulation—to define differential privacy. The additive error parame-
ter δ depends largely on the size of the dataset. Conversely, we require only ε for our
definition of differential privacy. Tschantz et al. [34] examined associations and cause
views of differential privacy. However, they made independence assumption on the dif-
ferential privacy association property. Instead, we relate data using temporal and spatial
associations, i.e., individual data points are related in time and space. With or without
the addition of noise (ε), temporal and spatial grouping limits the amount of inference
an adversary can obtain from a dataset.

Our key contributions of this paper is our privacy-preserving framework for health-
care analytics of COVID-19 data. Specifically, our differential-privacy framework pre-
serves privacy of spatio-temporal trajectory data by representing the corresponding
information by hierarchical temporal representative points (HTRP). Evaluation of real-
life South Korean COVID-19 patient route dataset show a balance of utility and pri-
vacy provided by our framework with our HTRP for privacy-preserving healthcare data
analytics.

The remainder of our paper is organized as follows. The next section describes our
framework for privacy-preserving healthcare analytics of trajectory data. Evaluation and
conclusions are presented in Sects. 3 and 4, respectively.

2 Our Differential-Privacy Framework for Analytics
of Spatio-Temporal Trajectory

In this section, we describe our differential-privacy framework for analytics of spatio-
temporal trajectory. In particular, we present its key components—namely, spatio-
temporal hierarchy, hierarchical temporal representative point (HTRP), and Laplace
mechanism of differential privacy.

Spatio-temporal hierarchy is the aggregation of both spatial and temporal dimen-
sions. More specifically, the temporal hierarchy aggregates time series data to a pre-
defined periodic level. For instance, given a timestamp of a data point in the trajectory
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time series, our framework computes yearly information Y by aggregating four quarterly
informationQi, each of which is obtained by aggregating three monthly informationMj.
Similarly, each monthly information is obtained by aggregating all d daily information
Dk within a month (where d = 28, 29, 30 or 31 for the corresponding number of days
in the month):

Y =
∑4

i=1
Qi where Qi =

∑3

j=1
Mj where Mj =

∑d

k=1
Dk (1)

Along this direction, each daily information is obtained by aggregating 24 hourly infor-
mation, and each hourly information is obtained by aggregating information of every
minute within the hour.

Similarly, spatial hierarchy helps represent spatial geometric data at the appropriate
level of hierarchy in the sense of revealing essential spatial geographic location infor-
mation for healthcare analytics while preserving privacy of individuals. It generalizes
specific named location (e.g., restaurant X, store Y, hospital Z) into a street, which is
then generalized into a neighborhood. Along this direction, the neighborhood is gen-
eralized into a district, which is then generalized into a city. The city is generalized
into a province. Our framework represents the resulting generalized location by a hier-
archical temporal representative point (HTRP). The (x, y)-coordinates of this HTRP
is computed as the average of (xi, yi)-coordinates of all data points in the time series
trajectory during a hierarchical temporal unit (e.g., a day) and over N individuals within
the same hierarchical spatial unit (e.g., a district within a city):

HTRP(x, y) =
(∑

i xi
N

,

∑
i yi
N

)
(2)

In the unlikely event that the (x, y)-coordinates of the HTRP happens to be the
actual (x, y)-coordinates of a single point in the time series during a hierarchical tem-
poral unit at a specific hierarchical spatial unit (e.g., the only diner in a restaurant at
late night), our framework preserves privacy via Laplace mechanism by adding noise.
By doing so, it guarantees that the both temporal and spatial information (e.g., actual
timestamp, true location) is protected—via the spatio-temporal hierarchy and the HTRP
differential-privacy mechanism. In general, at any temporal hierarchy level t, a random-
ized mechanism R satisfies ε-differential privacy on temporal representative point if, for
any location output from a spatio-temporal dataset is not significantly different from its
neighboring spatio-temporal dataset produced via addition or removal of a record:

Pr(R(xt = zt))

Pr
(
R
(
x∗
t = zt

)) ≤ eε (3)

Then, the probability density function for the Laplace mechanism is given by:

f (x|μ, ε) = 1

2ε
e
−

∣∣∣ x−μ
ε

∣∣∣
(4)
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3 Evaluation

We evaluated our framework on a computer with 2.6 GHz Intel(R) core™ i7 64-bit
operating system and 8 GB installed memory. The framework was programming in
Python on Spyder scientific integrated development environment. Here, we used a real-
life dataset1 [35] capturing trajectory of some South Korean COVID-19 cases a few
days prior to their positive test results. The dataset contains 5,321 trajectory points for
939 cases collected from the report materials of Korea Centers for Disease Control and
Prevention (KCDC), which have now become Korea Disease Control and Prevention
Agency (KDCA), and local governments in January–March 2020.

Table 1. 10 Sample trajectory data points collected for March 05–06, 2020.

ID Date District
(“gu”)

City
(“si”)

Province (“do”) Type Lat Long

89 Mar 06 Dongnam Cheonan Chungcheongnam Hospital 36.8156 127.1136

92 Mar 06 Dongnam Cheonan Chungcheongnam Hospital 36.7754 127.1800

98 Mar 06 Dongnam Cheonan Chungcheongnam Hospital 36.8074 127.1512

142 Mar 05 Guro Seoul Restaurant 37.4954 126.8873

143 Mar 05 Guro Seoul Restaurant 37.4954 126.8873

154 Mar 05 Guro Seoul Restaurant 37.5065 126.8840

170 Mar 05 Gwanak Seoul Misc 37.4626 126.9383

177 Mar 05 Guro Seoul Restaurant 37.5031 126.8820

192 Mar 05 Gwanak Seoul Store 37.4679 126.9217

194 Mar 05 Gwanak Seoul Misc 37.4779 126.9343

Table 2. Privacy-preserving HTRP.

#ind.
per grp

Date District
(“gu”)

City
(“si”)

Province (“do”) Type Lat. Long.

3 Mar 06 Dongnam Cheonan Chungcheongnam Hospital 36.7995 127.1483

4 Mar 05 Guro Seoul Restaurant 37.5017 126.8844

3 Mar 05 Gwanak Seoul Misc 37.4695 126.9314

As an illustrative example, let us consider Table 1 that shows trajectory data of 10 of
these 939 cases who tested positive for COVID-19. Our framework first builds temporal
hierarchy and generalizes temporal data into daily information. It then builds spatial
hierarchy and generalizes spatial data to the district level. So, the three visits to the same

1 https://www.kaggle.com/kimjihoo/coronavirusdataset.

https://www.kaggle.com/kimjihoo/coronavirusdataset


418 C. K. Leung et al.

hospital (by three individuals) in the district of Dongnam-gu (i.e., southeast district) in
the city of Cheonan-si in the province of Chungcheongnam-do onMarch 06 are grouped
and represented by a single HTRP with coordinate (36.7995N, 127.1483E). Similarly,
the four dine-outs in the same restaurant in the district of Guro-gu in the special city
of Seoul on March 05 are grouped and represented by a single HTRP with coordinate
(37.5017N, 126.8844E). As for the two miscellaneous visits and one store visit (all in
the district of Gwanak), each of these groups consists of fewer than the threshold number
of individuals (say, three). They are grouped into a mega-group. See Table 2.

We varied the input parameter ε from0.01 to 0.1, and found that ε= 0.09 gave the best
protection in preserving privacy. When generalizing data into daily privacy-preserving
HTRP within a district for the spatio-temporal hierarchy, our framework gave a spatial
compression ratio of 34.7% (wrt the number of unique original coordinates) and a file
compression ratio of 31.8% (wrt the number of original data points), which led to a small
root mean square error (RMSE) of 0.355.

4 Conclusions

In this paper, we presented our privacy-preserving framework for healthcare analyt-
ics of trajectory data. To provide users with differential privacy, our framework first
builds spatio-temporal hierarchy, and then groups and represents similar data points by
hierarchical temporal representative points (HTRP). It adds Laplace noise if needed.
Evaluation on real-life datasets capturing trajectory of South Korean COVID-19 cases
shows a balance of utility and privacy provided by our framework. As ongoing and future
work, we explore further enhancements to our framework, determine optimal levels of
hierarchy, and transfer the learned knowledge to preserve privacy for other data analytics
tasks.

Acknowledgement. This work is partially supported by NSERC (Canada) and U. Manitoba.
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Abstract. With the development of e-commerce, it is necessary to build
an online shopping guidance system to help users to choose the products
they desired. Task-oriented dialogue systems can be used as an online
shopping guidance system in e-commerce websites. Current dialogue sys-
tems can only extract basic attributes which are the inherent attributes of
products. These systems can not process users’ requests containing high
level attributes which describe products’ functions and user experience.
These requests, however, appear frequently in real scenarios. To solve
this problem, we build PARROT, an adaptive online shopping guidance
system. PARROT can extract both basic and high level attributes from
dialogues and recommend suitable products to users. The novel features
of PARROT are as follows: (1) We propose a new architecture of task-
oriented dialogue systems which can extract both basic and high level
products’ attributes (functional attributes and experience attributes). (2)
We construct knowledge base to map from high level attributes to basic
level attributes or products. (3) We build a task oriented dialogue system
which can finish the task of shopping guidance in websites. We test PAR-
ROT in three main scenarios and these tests demonstrate that PARROT
can successfully recommend suitable products to users by extracting both
basic and high level attributes.

Keywords: Online shopping guidance · Dialogue system · E-commerce

1 Introduction

With the development of the Internet, E-commerce gets remarkable develop-
ment. More and more people buy products on e-commerce websites (e.g., Ama-
zon). There are a large number of products on e-commerce websites. People
can hardly find the products they desired quickly. Therefore, it is important for
merchants to employ shopping guides for customers. Shopping guides can help
customers to find their desired products quickly. It can not only improve the
shopping experiences of customers but also increase the volumes of transactions.

However, employing shopping guides is not a proper way in the scenarios of
online shopping. People may browse websites and ask questions at any time. It
is difficult for shopping guides to finish such heavy works.
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 423–428, 2021.
https://doi.org/10.1007/978-3-030-85899-5_31
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Fig. 1. Traditional task-oriented dialogue systems

One alternative way is to build a task-oriented dialogue systems [4,5,7], which
can collect the demands of customers during the dialogues between customers,
to be a shopping guidance system. Traditional task-oriented dialogue systems
extract attributes from dialogues. There is an example in Fig. 1 (a). A user
wants to buy a computer with “8G RAM”. Dialogue systems will extract the
attributes “RAM: 8G” from dialogues. Then systems may ask questions about
products’ attributes or recommend products to users according to the extracted
attributes. We denote such inherent attributes of products as basic attributes.

However, traditional task-oriented dialogue systems can not extract other
attributes which do not reflect the inherent attributes of products directly.
We define this kind of attributes as high level attributes. In our system,
we focus on two high level attributes: functional attributes and experience
attributes. According to our observations, high level attributes are frequently
used when customers are finding the product they want.

Functional attributes are the attributes related to products’ functions. There
is an example in Fig. 1 (b). A user wants to find a smartphone, and use it to
“play mobile games”. However, this user does not know the basic attributes
of the products. In this case, traditional dialogue systems can not extract any
information, since there are no basic attributes in dialogues. According to our
observations, customers who do not have sufficient knowledge about professional
products (e.g., computers, cameras and smartphones), always fail to describe
the products directly and professionally. We consider that functional attributes
should be related to basic attributes rather than certain products. Therefore, in
PARROT, we construct knowledge base to bridge the gap between functional
attributes and basic attributes.

Experience attributes are the attributes highly related to user experiences.
People may concern about user experiences of products. However, user experi-
ences can not be reflected from basic attributes directly. For example, people
may want to buy a computer with “good battery life” (as shown in Fig. 1 (c)).
It is difficult to judge the battery life according to the basic attributes. What’s
more, traditional dialogue systems can not extract experience attributes from
dialogues. Different with functional attributes, these attributes should be related
to certain products rather than basic attributes. The reason is that products
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with same basic attributes may have different user experiences. Thus, we con-
struct knowledge base to build the connection between experience attributes and
products.

PARROT is an adaptive dialogue system since the system can extract differ-
ent kinds of attributes adaptively. Users can have a better experience based on
this feature, since they can describe products in both basic attributes and high
level attributes. Our contribution can be summarized as follows:

– We propose a new architecture of task-oriented dialogue systems which can
extract both products’ basic attributes and high level attributes (functional
attributes and experience attributes).

– We construct knowledge base in PARROT. There are two kinds of knowledge
base. One is the knowledge base which maps from functional attributes to
basic attributes. The other is the knowledge base which connects the experi-
ence attributes and products.

– We build a task-oriented dialogue system which can finish the task of shopping
guidance. People can communicate with this system in natural language. We
use a website to build a friendly interface between humans and systems. Users
can communicate with PARROT on smartphones or computers.

This paper is structured as follows. In Sect. 2, we introduce the structure of
PARROT. In Sect. 3, we elaborate the scenarios of our systems. Finally, we draw
a conclusion in Sect. 4.

2 System Implementation

As shown in Fig. 2. There are three main modules in PARROT: Natural Lan-
guage Understanding (NLU), states tracking and Natural Language
Generation (NLG). Different with traditional task-oriented dialogue systems,
we adopt knowledge base in PARROT. The details of each modules are described
in the following.

Fig. 2. General structure of PARROT
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Natural Language Understanding. In this module, PARROT needs to extract
both basic attributes and high level attributes. For the basic attributes, we train
and adopt a Bi-LSTM [1] with CRF [3] model. It is a classical model in infor-
mation extraction [2] and also gets satisfied performance in our scenarios. In
PARROT, the high level attributes are stored in knowledge base. We manu-
ally extract high level attributes from products’ comments and connect them
with basic attributes and products. We use pattern matching to find high level
attributes in dialogues.

States Tracking. We use a finite-state machine (FSM) in states tracking. It is a
reliable way to use FSM in PARROT. What’s more, it is convenient to update
FSM in order to adapt to more complex scenarios.

Natural Language Generation. We consider that it is difficult to control the
responses generated by generation models like Sequence-to-sequence models [6].
Therefore, we use predefined patterns to generate responses. In this way, PAR-
ROT can generate reliable responses.

3 Demo Scenarios

We choose the shopping guidance of smartphones as our scenarios. We crawl
products’ basic attributes and products’ comments from websites. All our corpus
are in Chinese. The demonstration video of PARROT is public online1.

3.1 Scenario 1: Products’ Descriptions with Basic Attributes

This scenario is the traditional scenario of task-oriented dialogue systems. Users
describe the products with products’ basic attributes. For example, a user may
want to find a smartphone with “8G RAM” (as shown in Fig. 1 (a)). PARROT
can extract a basic attribute “RAM: 8G”. Then PARROT will continue the
dialogue according to the states. There are some customers who can describe
the basic attributes accurately. In this time, PARROT can help these users to
find the products they desired quickly.

3.2 Scenario 2: Products’ Descriptions with Functional Attributes

Instead of describing the basic attributes, some customers may describe the func-
tional attributes. For example, a user may want to buy a smartphone, and use
it to “play mobile games” (as shown in Fig. 1 (b)). Traditional dialogue systems
can not extract this attribute. However, our system can successfully extract this
attribute and find the corresponding basic attributes from the knowledge base.

1 https://youtu.be/Ut71-8y1wgs.

https://youtu.be/Ut71-8y1wgs
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3.3 Scenario 3: Products’ Descriptions with Experience Attributes

A customer may use phrases like “good battery life”, when this customer con-
cerns about user experience of products (as shown in Fig. 1 (c)). Similarly, tra-
ditional dialogue systems can not find products according to these attributes.
PARROT can extract the experience attributes from dialogues. Then, it will
find suitable products from knowledge base and continue the dialogues with
these products.

4 Conclusion

In this paper, we introduce PARROT. PARROT is an adaptive online shop-
ping guidance system. Different with traditional task-oriented dialogue systems,
PARROT can help users to choose products based on both basic and high level
attributes. We implement PARROT with the data collected from the Internet
and test PARROT in three main scenarios. Our test shows that PARROT can
guide users to buy products in more scenarios and recommend products to cus-
tomers more accurately.
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Abstract. RDF systems are widely applied in many areas such as
knowledge base, semantic web, social network. Traditional RDF systems
focus on speed up SPARQL queries on large RDF data but disregarding
the performance of updates and transaction processing. In this demon-
stration, we propose a new transactional RDF system based on multi-
version and MVCC. We introduce a lightweight optimistic lock upon
atomic variables and operations that provides fine-grained locking and
avoids scalability issues. The methods are fully implemented in an open-
source RDF system gStore. And it outperforms other state-of-art RDF
systems solutions on transactional workloads.

Keywords: Resource Description Framework (RDF) · Concurrency
control · Optimistic lock · Online transaction processing

1 Introduction

Resource Description Framework (RDF) has been introduced for around two
decades. This data model is designed for data of weak-schema or no-schema. Due
to the flexibility of RDF, RDF data is blooming in recent years. The requirements
of querying, indexing, storing over large RDF data have promoted many RDF
systems. However, most RDF engines focus on speeding up SPARQL queries over
large RDF data while disregarding updates and transaction processing. These
highly read-optimized systems that employ aggressive indexing suffer serious
downgrading and low throughput when run updates workload. Even so, there
are still few transactional native RDF systems supporting transaction processing
on RDF data, such as Apache Jena [2,9] and RDF-3X [4,5]. Both Jena and RDF-
3X employ a lock-based method to achieve ACID compliance. RDF-3X uses a
heuristic approach to gain proper lock granularity of predicate locks. Other RDF
systems based on relational DBMS like Virtuoso [1] also can support transaction
processing.

gStore [10] is a graph-based RDF system where a subject-predicate-object
(SPO) triple can be viewed as two nodes (S and O) and an edge (P) in a labeled
directed graph G (RDF graph). More details have been covered in past work
[6,11]. Though gStore supports storage and fast query over billions of triples, it
lacks efficient updates and transaction processing. We introduce a novel method

c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12859, pp. 429–433, 2021.
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to overcome the shortcomings and provide concurrent control. This method is
fully implemented by extending the open-source system gStore. We refer to our
extension as gStore-C; gStore-C is fully ACID-compliant with three isolation
levels: read committed (RC), snapshot isolation (SI), serializable (SR).

In this demonstration, we design and implement a new transactional RDF
system: gStore-C. A novel lightweight optimistic locking mechanism is the key
to transaction processing in gStore-C. We build a web demo to illustrate online
transaction processing (OLTP) with multiple isolation levels of gStore-C.

2 System Overview

gStore-C is constituted by two parts: offline part and online part. The offline part
consists of an RDF parser and RDF graph builder for RDF data pre-processing;
an encoding module to build a two-way mapping of literals and identifiers stored
in a dictionary. The online part consists of a transaction manager for concurrency
control, a SPARQL parser, and a SPARQL executor for queries and updates.
As for the storage layer, a native multi-version key-value store for RDF graph
storage is the key to MVCC in gStore-C. The architecture overview of gStore-C
is illustrated in Fig. 1.

RDF Data SPARQL RDF Parser

RDF Graph 
Builder

Encoding 
Module

Transac on
Manager

SPARQL 
Parser

SPARQL 
Executor

Dic onary Store
(B+ Tree)
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Offline Online

Storage

RDF Triples

Two-Way
Mapping

RDF Graph

Transac onal
Opera ons

Query Graph/
Update Triples

Results
(Commit)

Restart
(Abort)

Fig. 1. gStore-C system architecture overview

Transaction Manager. Compared with gStore, gStore-C adds a transaction
manager for concurrent transaction control. If a transaction issued by users
aborts due to lock acquisition failure or rollback, the transaction manager will
reclaim all locks held by the aborted transaction and restart it in a specified time.
This “no-wait” policy we adopt can gain better performance and scalability in
multi-core platforms.
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Multi-version Key-Value Store. We extend the old key-value store to a
multi-version implementation in gStore-C. Triples with the same subject or
object are in an aggregation form, where a subject or object (vertex) is a key,
pairs of predicate and another vertex (edge) constitute value. A large RDF graph
contains billions of triples, so we should carefully choose the versioned object to
minimize possible overheads. The appending-only versioning like Postgres [8] is
not a practical method in our situation because the degree of nodes in an RDF
graph follows some form of a power-law distribution. It suggests that a few nodes
may have a large number of edges. We version value in a delta approach and only
store the updated part of the value in a new delta version created when a trans-
action updates a key. This method can save up lots of space during transaction
processing compared with other version approaches.

TimeStamp. Each version owns a pair of timestamps [begin ts, end ts] which
depicts its complete lifespan. In gStore-C, we combine logical counter and UNIX
timestamp as the timestamps of a version. The whole multi-version layout of
value is illustrated in Fig. 2.

Versions 
Head

Delta1 

[TS1,∞ )
Delta2 

[TS2,TS1)
Deltak

[0,TSk)

Base 
Value

Read

Search By Timestamp

Query

Merge

Fig. 2. Multi-version layout of value in key-value store

Concurrency Control. Multi-version concurrency control based on multi-
version provides a data access method via timestamps. Select SPARQL queries
can run on snapshots without any obstruction in gStore-C. Compared with
gStore, gStore-C only adds an extra merge stage between master version and
list of delta versions on the fly. The procedure of garbage collection keeps ver-
sion lists at a proper length to avoid downgrading of the system. The write-write
conflicts are resolved by a lightweight locking mechanism. We will discuss it fur-
ther in Sect. 3.

3 Lightweight Optimistic Lock

Multi-version concurrency control (MVCC) guarantees that read operations
never are blocked in snapshot isolation. However, two transactions will conflict
if they try creating a new delta version of the value that belongs to the same
key. To resolve write-write conflicts, We adopt the “first updater wins” [7] policy
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and use a read-write lock to decide which transaction creates a new version. We
develop a lightweight read-write lock by using atomic variables and operations
such as CAS instruction. In gStore-C, the locked object is vertex so that the
attached lock can also be resident in memory. The read-write lock consists of
two atomic integers, one integer stores 64-bits transaction identifier as an exclu-
sive lock while the other stores 64-bits read counter that records the number
of active transactions reading this key as a shared lock. Each transaction must
acquire proper locks before it is allowed to perform reads or writes. For example,
if a key’s transaction ID is not zero, it suggests that a transaction is executing
a write operation on it. So other transactions which try to write the same key
will fail and abort. In SI or RC, read lock is unnecessary because a transaction
always reads the latest committed versions or committed versions according to
timestamp.

It is more complicated for a serializable transaction to perform a read oper-
ation. A transaction may find no proper version to read in a write-locked key
then abort due to violating the principle of full serializability. Read-counter
will increment by one if one transaction reads the latest committed version. So
any transaction plan to perform a write operation have to abort after that. A
transaction that performs a write operation will set transaction ID as its owned
identifier and read counter as one only if both transaction ID and read counter
are zero.

In practice, gStore-C adopts a decentralized lock management approach to
avoid a global lock table, which is a bottleneck of scalability [3]. As mentioned
before, locks are attached to each vertex in the key-value store. To eliminate
possible occurred deadlock in the system, gStore-C implements an optimistic
locking mechanism. Transactions have to abort and release all locks holding
instead of waiting when conflicts happen. If all transactions run concurrently in
the same no-wait manner, it is not difficult to prove that there will be no deadlock
condition in our system. There are many advantages of the approach: 1) avoid
a large global lock table. 2) simple deadlock avoidance. 3) better throughput in
a low-contention situation. 4) better-grained and lightweight locking.

4 Demonstration

In this demo, we illustrate how to use gStore-C to perform the concurrent trans-
action processing. A simple web demo is built for online transaction processing
(OLTP). As Fig. 3 shows, there is a “New Transaction” button to start a new
transaction with a selected isolation level on the top. A user issues a transaction
executing under RC then a transaction processing window is created below. The
transaction information including transaction ID, isolation level, and the current
state is showed in the left-up corner. On the other end, the user can perform
four operations: executing SPARQL, commit, rollback, and delete this window.
Under the information and control panel, the user can enter a SPARQL query
in the box then the corresponding result is shown on the right. Users can run
several transactions concurrently by creating several transaction processing win-
dows and performing operations. Compared with other RDF engines, gStore-C
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Fig. 3. A transaction processing window on web demo

maintains the fast query over massive RDF data and provides online transaction
processing by adopting MVCC and a lightweight lock.
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Abstract. In this demonstration, we present Deep-gAnswer, a know-
ledge-based question answering system. gAnswer is based on semantic
parsing and heuristic rules for entity recognition, relation recognition, and
SPARQL generation. By making use of a pre-trained model, we imple-
ment new entity and relation recognition networks. Also, it is found that
the traditional method works better when information of entity and rela-
tion is correctly given. Therefore, we combine entity and relation recogni-
tion networks with the previous SPARQL generation process to get Deep-
gAnswer. Experimental results show that Deep-gAnswer outperforms the
previous one, especially on Chinese dataset.

1 Introduction

Knowledge graph has been through rapid development and is applied in many
fields. Knowledge-based question answering (KBQA) [9] is one of its most popu-
lar applications. Given a natural language question, KBQA systems are designed
to extract the answers from a background knowledge base. A common solution
in previous systems is transforming the question into a knowledge base query
such as SPARQL [3] to return answers. gAnswer [4] is one of such systems with
satisfying performance, which won the first place in QALD-9 [7].

However, gAnswer’s performance severely relies on its two components: the
dependency tree parser and paraphrase dictionary. gAnswer parses the question
into a dependency tree for node and relation recognition that decides which
parts of the question (usually called mentions) may refer to an entity, a relation,
or a variable. Paraphrase dictionary aims to find the proper matching between
relation mentions and predicates in the knowledge graph. However, most depen-
dency tree parsers only work well on simple questions. When the number of
relations in the question increases, errors often occur in the dependency parsing
stage and are passed to the following stages, severely harming the overall per-
formance. Meanwhile, the paraphrase dictionary requires a very large amount
of data and time to construct. What’s worse, the dictionary is closely related
to the background knowledge graph. So, when we change to another knowledge
graph, the former dictionary may become useless because the predicates in the
new knowledge graph vary.

To overcome the problems above, we make use of the up-to-date pre-trained
models. Such models like BERT [5] are trained on massive data and able to
c© Springer Nature Switzerland AG 2021
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extract underlying features from natural language sentences. In other words,
their generality is better than the old ways in gAnswer.

In this demo, we propose a novel KBQA framework based on gAnswer, named
Deep-gAnswer. We take node recognition as a sequence labeling task while rela-
tion recognition as a ranking task, and train two models respectively. The recog-
nition model is intended to improve mention detection and dependency tree
parsing while the relation ranking model can replace paraphrase dictionary.

We conduct a comparative experiment between gAnwser and Deep-gAnswer
and experimental results show that Deep-gAnswer prevails gAnswer in terms of
F1 score, especially on Chinese questions and complex questions.

2 System Architecture

The Deep-gAnswer system consists of four parts: question understanding, query
graph construction, SPARQL generation, and answer collection. The system
architecture is depicted in Fig. 1.

Fig. 1. The Deep-gAnswer architecture

Question Understanding. This is the first step for Deep-gAnswer to answer a
question. The purpose of this procedure is to detect all the mentions of entities
and variables via a node recognition network. Then, in entity linking module,
every entity mention will be mapped to a set of exact entity names in the knowl-
edge graph with a dictionary and string similarity. Notice that one mention may
be linked to multiple entities as long as their similarity is high enough. In prac-
tice, the system will maintain a fixed number of linking results of a mention and
generate a list of ranked SPARQL.
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Query Graph Construction. In this step, the system first parses the question
to find the relations among entity mentions and variable mentions. The system
builds a dependency tree of the question to extract the relation between men-
tions. Then, the system enumerates every relation and feeds it to the relation
ranking network to get its possible predicate. Having all entity, variable, and
relation information, the system builds a semantic query graph in a depth-first
search manner.

SPARQL Generation and Answer Collection. As mentioned before, most
errors of gAnswer come from node and relation recognition and we have improved
them with deep-learning-based models. Therefore, we simply follow the subgraph
matching strategy from gAnswer for SPARQL generation and answer collection.
The system generates a list of ranked SPARQLs and sends them as queries to a
graph database to get the final answers.

3 Techniques

In this section, we mainly focus on the implementation of the new node recog-
nition network and relation ranking network.

Node Recognition Network. In our definition, there are four kinds of nodes in
a question: entities, variables, literals, and types. Generally, an entity represents
a specific thing or person and a type refers to a category of entity. Sometimes
type itself can be taken as an entity. A literal means a value or an attribute.
For example, a specific actor is an entity, while his height and nickname are
literals. A variable is an unknown node that can indicate an entity, a type, or
a literal. We design the node recognition network to solve a sequence labeling
task with tag space {O,Eb,Ei,Vb,Vi, VTb,VTi,Tb,Ti,VLb,VLi,Lb,Li}. The
specific meanings of these tags are shown in Table 1.

In terms of the NER problem, BERT-based models have been proved suc-
cessful in previous works [1,5]. Therefore, we adopt this strategy to use a BEAT-
based model as an encoder. A question first goes through RoBERTa [6] encoder

Table 1. Tag meanings

Tag Meaning

O Not an entity nor variable

Eb,Ei Mention to an entity

V b, V i Mention to variable that refers to an entity

V Tb, V T i Mention to variable that refers to a type

Tb, T i Mention to a type

V Lb, V Li Mention to a variable that refers to a literal value

Lb, Li Mention to literal value
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Fig. 2. Workflow of the node recognition network and the relation ranking network

and then to the output layer for the tag sequence. We choose RoBERTa because
it outperforms other models in our experiments.

To train the model, we also developed a dataset by ourselves annotating node-
to-mention mappings. We manually tagged natural language questions with the
previously mentioned tag space. The questions come from the existing KBQA
question sets. We mainly used LC-QUAD question set [8] for English questions
and CCKS question set [2] for Chinese questions. Both question sets provide
natural language questions and corresponding SPARQLs. Tagged questions serve
as the input of our node recognition network and relations extracted from the
given SPARQLs are feed to the relation ranking model.

Relation Ranking Network. The goal of relation recognition is to find all
pairs of related nodes and their predicates. Due to the complexity of the natural
language questions and lack of training data, an end-to-end model may not
handle this task very well. However, we can first attain all related node pairs
and use a ranking model to get the top k most likely predicates easily.

Our experiments show that with node mentions given, a dependency tree
parser can reach a satisfying accuracy. Therefore, we can extract all related node
pairs from the dependency tree. For each pair, we query the knowledge graph
for candidate predicates. If one of the nodes is an exact entity set, we can simply
search for its connected predicates. If both nodes are variables, we search the
query graph to find an entity and get its k-hops-away predicates as candidates.
For each candidate predicate, we concatenate the question, the mentions of the
two related nodes, and the predicate itself to form an input sentence and sent
it to RoBERTa encoder. We use a full connected layer as a decoder to output a
score. The encoder is shared between both node recognition and relation ranking
network to learn global information. In this way, we get a ranked predicate list
for each relation. The workflow of the two models is in Fig. 2.

4 Demonstration

We build a website to demonstrate how Deep-gAnswer answers a natural lan-
guage question, providing users with a friendly interface and straightforward
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Fig. 3. Demonstration of Deep-gAnswer

visual results of the translation from natural language questions to SPARQL.
We use an English knowledge graph, DBpedia, to set up the background system.

Figure 3(a) is our query page. Users can input a question freely in the center
text box and ask the system. Here we use a complex question, In which films
directed by Garry Marshall was Julia Roberts starring? as an example.

Figure 3(b) shows the result demonstration page. At the top is the query
graph. We can see Gary Marshall, Julia Roberts and films are recognized as
mentions. In the middle, user can see the result of relation detection. With
correct node mentions given, the dependency parser can successfully identify
the relation and its corresponding mentions. The generated SPARQL list is at
the bottom. Relation mentions become actual predicates with the help of the
relation ranking model and the score of a SPARQL here is based on the score of
each predicate. To check the final answer, users can jump to the answer page as
shown in Fig. 3(c).
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Abstract. Index is an indispensable part of database. As we enter the
era of big data, the traditional index structure is found not to support
large-scale data well. Although many index structures such as learned
indexes based on machine learning have been proposed to solve such
problems of traditional indexes, it is a great challenge to select the most
suitable learned indexes for the specific application. To solve this prob-
lem, we design ALMSS, an automatic learned index model selection sys-
tem, which provides a user-friendly interface and can help users auto-
matically select the learned index model. In this paper, we introduce
the overall architecture and main technologies of ALMSS, and show the
demonstration of this system.

Keywords: Learned index · Model selection · Machine learning

1 Introduction

Most of the existing database systems adopt traditional index structures, such as
B+ trees. However, for big data, the traditional index structures have exposed
some shortcomings. For example, B+ tree may cost too much space. At this
time, the learned index was put forward. In 2018, Kraska et al. [1] first proposed
the concept of combining machine learning with traditional index structures.
Compared with traditional indexes, learned index can reduce the cost of index
space and improve index query performance. In the following years, scientists
have successively proposed many learned indexes to solve the problems of the
initial version of learned index that cannot support insertion.

At present, most researches on one-dimensional learned indexes focus on data
partition and data insertion strategy. For example, AIDEL [2] and ALEX [3] use
the local insertion strategy, while PGM-index [4], XIndex [5] and FITing-Tree [6]
use the remote insertion strategy. Local insertion strategy is to reserve a certain
gap in the sorting array of leaf nodes. When some data needs to be inserted, we
insert the data into gaps by using some policies. We update the model when gaps
are reduced to a certain number. For example, ALEX predicts the location of
data insertion through a model. If there is a gap in the predicted location, then
the data can be inserted into the gap. On the contrary, if the location predicted
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by the model is not a gap, ALEX uses an exponential search method to search a
gap and inserts the data into the gap. And the remote insertion strategy inserts
the data into the buffer, and then formulates the strategy to merge the data
in the buffer with the data corresponding to the original model. For example,
XIndex sets a two-phase compacting strategy to support data merging. Their leaf
node design strategy is relatively simple, mostly using linear regression model.
However, in many cases, simple linear regression models cannot fit the data well.
Therefore, how to choose the leaf node model has become an urgent problem to
be solved.

In order to solve the above problems, we first designed an automatic learned
index model selection system(ALMSS), which can automatically select the model
according to the data set selected by users and provide a user-friendly interface.
The main functions of the system are as follows:

– Automatic Index Selection: Our system implements the automatic index
selection function, including not only the selection of traditional indexes such
as B-tree, hash tree, etc., but also the selection of learned indexes for the
automatic selection model that we design. Users can choose to use traditional
indexes, such as hash, B-tree, or learning index according to their own needs.
If the users choose learning index, the node model of learning index is auto-
matically selected by our system. Users do not need to select the internal
model of learning index.

– Friendly interface: ALMSS provides a graphical interface, and users can
accomplish the automatic selection function of the index by simple opera-
tions such as selecting data sets and inputting SQL query statements. Users
only need simple operations to achieve the required functions. At the same
time, our ALMSS system will provide users with system information as much
as possible, so that users can understand the internal implementation steps
in our ALMSS more clearly.

Our paper is structured as follows. In Sect. 2, we will introduce the overall archi-
tecture of our ALMSS system in detail. Then in Sect. 3, based on the under-
standing of the overall architecture, we will introduce the key technologies of
ALMSS system in more detail. Finally, in Sect. 4, we will show the demonstra-
tion scenarios of the system.

2 System Overview

Figure 1 shows the architecture of ALMSS. Users can select the appropriate
dataset for the following operation, and then enter the SQL statement of the
query. In the learned index module, according to the results of the automatic
selection model, users can obtain accurate query location and model information
involved in the query process. The learning index module includes traditional
index models, such as b-tree, and machine learning models such as RMI. For
example, in the upload dataset module, when the user selects the dataset from
the existing dataset in the system, the corresponding dataset information will
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be displayed, including data set content, data distribution, etc. In SQL parsing
module, users input SQL statements that need to be executed. ALMSS parses
this statement regularly, and gives a large range of key location description of
related fields according to uploading dataset. This description will be transmit-
ted to the learning index module for further processing. This part provides some
models or algorithms for users to reduce the scope of the key at the maximum
speed. In addition, we show the training time and other information through
visualization. The Automatic Selection module receives the results of the previ-
ous module, automatically selects the most suitable regression model to analyze
and obtain accurate query location, and provides the selected model and its
parameters to users (Fig. 1).

Fig. 1. System architecture

3 Key Technologies

In this section, we will introduce the key technologies of ALMSS from two parts.
The core module of ALMSS is to select the best index suitable for the dataset
for users. We divide the model selection part into two parts. One is the best
distribution model fitting for the data set, called automatic model selection
module. The other part is to combine the learned index with the automatic
model selection module to generate the best index for users.

3.1 Automatic Model Selection Module

Considering the diversity of data stored in the database, it is difficult to ensure
that the exact location is always queried at a faster speed and high accuracy
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if the same model has been used. Therefore, in ALMSS, we propose to use
multiple regression models with diversity and accuracy guarantees such as linear
regression, polynomial regression, elastic regression, etc. At the same time, we
use the random forest as the classifier, so as to ensure that ALMSS has fast
and accurate characteristics in the diversity of data for the whole database.
The specific measures are as follows. Firstly, for the received key range input,
training is carried out in the existing multiple regression models. We obtain the
evaluation data of the regression effect of each model, such as R2-score, Median
absolute error, RMSE, etc. Then we establish the evaluation function and use
random forest classifier for classification training. Finally we optimize the model
performance. The model trained in this way, in the face of new data test, also
has the ability to select the data characteristics of the excellent model regression
analysis. At the same time, we note that due to the establishment of an excellent
evaluation function, the Median absolute error of the trained model is very low,
which also indicates that our model has excellent regression performance.

3.2 Learned Index with Automatic Model Selection Module

The existing leaf nodes of learning index are fixed single models, such as linear
regression. This is not suitable for all datasets. At the same time, when the
data distribution is complex, the model of leaf node using artificial selection
is inefficient and it is not easy to choose. Therefore, on the basis of learning
index, we change the leaf nodes in the learning index from the fixed model
to our automatic model selection module. First, the RMI module divides the
dataset into smaller ones. Then, on a small-scale dataset, we can use the machine
learning method to automatically fit the most suitable model for this dataset
as the leaf node model. It is worth noting that over-fitting is allowed in the
process of training the model of leaf node. Overfitting means that the model we
choose fully fits the dataset corresponding to the model. This is allowed in the
database. We also use the same strategy as the original learning index. We set
an error threshold for leaf nodes in advance. If the actual error is greater than
the threshold we set, the leaf node will degenerate into a traditional index such
as B-tree. If the actual error is within the threshold range we set, we use the
automatically generated model as the leaf node. This ensures the accuracy of
the index and improves the efficiency of the index.

4 Demonstration Scenarios

We plan to demonstrate our ALMSS system in four steps:

– Upload Dataset. As in Fig. 2(a), we provide an operation button and infor-
mation display interface. Users can browse the existing dataset and select the
data set they need according to the content of the dataset, data distribution
and other information. At the same time, users can choose which index struc-
ture to use. The currently available index structures are B-Tree, hash, and
learning index.
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– Sql Parsing. As in Fig. 2(b), users enter SQL statements that need to query,
and then our system will be regular parsed. We associate SQL statements
with corresponding fields and calculate a large range of key. At the same
time below the page, we give the diagram of the whole process.

– Learned Index. As Fig. 2(c), ALMSS provides three schemes for rapidly reduc-
ing the range of key. We use the recursive learning index technology (RMI
Model), and compare it with the traditional B-tree and hash index. Users
can view the time and other information of the visual index establishment
process of different schemes provided by us.

– Automatic Selection. As Fig. 2(d) presents, ALMSS automatically selects the
appropriate regression model for training in the key range. Users can see
some relevant information such as the selected optimal model, model-related
parameters, training and evaluation results, and the precise location of the
final query (Fig. 2).

(a) Upload Dataset (b) Sql Parsing

(c) Learned Index (d) Automatic Selection

Fig. 2. Demonstration scenarios
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Abstract. In this demonstration, we present a GPU-enhanced product
knowledge retrieve system called GPKRS, which stores product knowl-
edge based on the sparse matrix compression, and introduces a query
transformation module to transform the query operation into the corre-
sponding matrix operations. By this way, we can take advantage of the
powerful parallel computing power of GPU to accelerate the processing
of SPARQL query. Further, GPKRS adopts an optimized pipeline query
strategy to speed up the query execution. The experiments show that
the GPKRS achieves state-of-the-art query performances on the LUMB
dataset and a synthetic product knowledge dataset.

Keywords: Knowledge graph · RDF data · Knowledge retrieval

1 Introduction

Knowledge graph has become the infrastructure of lots of intelligence systems.
However, with a dramatic growth of the knowledge size, the effectiveness of query
processing is turning into a bottleneck for providing users with high-quality knowl-
edge service. Resource Description Framework (RDF) provides a unified specifi-
cation for describing resources on the Web. A RDF triple is a statement repre-
senting data as the form of <subject, predicate, object>. Many works focus on
engines for SPARQL query over various datasets with CPU. Among these works,
two paradigms are dominant: the relational paradigm such as RDF-3X [1], SW-
Store [2] and the graph-based paradigm such as gStore [3]. The former usually
manage RDF data by establishing tables like triple tables, attribute tables and ver-
tical tables, which results in additional storage pressure. The latter usually trans-
forms query into subgraph matching. But such methods rely on the graph struc-
ture, which may effect the performance over large-scale RDF datasets. In recent
years, some works try to take advantage of GPU to speed up the query processing
of RDF data, such as [4–6]. On the other hand, product knowledge has the traits of
massive volume, sparsity, heterogeneous and high scalability of query, which makes
the query processing of product knowledge graph more challenging.

In this demonstration, we present a GPU-enhanced Product Knowledge
Retrieve System (GPKRS), which adopts the sparse matrices to store large-scale
c© Springer Nature Switzerland AG 2021
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RDF-based product knowledge. In order to give full play to the advantages of
GPUs’ parallel computing, we put forward a SPARQL query mode to transform
the common database retrieval tasks into the corresponding matrix dot product
operations. Furthermore, GPKRS utilizes a pipeline query strategy to decrease
the unnecessary retrieval waiting time for improving the retrieval efficiency.

2 System Overview

In our work, the product knowledge graph includes the objective product tax-
onomy and the subjective user opinion, which consists of five layers: category
layer, product layer, attribute layer, opinion layer and user layer The upper two
layers, and the lower three layers are the subjective product knowledge. Figure 1
shows a fragment of the constructed product knowledge graph. For example, s1
is a subcategory of product category c1, product p1 has two attributes a1 and
a2, user u1 holds the opinion o1 on product p1’s attribute a1.

Fig. 1. The organization of product knowledge

GPRKS is composed of five components: RDF Parser, Matrix Builder, Map-
ping Dictionary, SPARQL Parser & Transformer, Dot Product & Join, as shown
in Fig. 2.

RDF Parser. This module is responsible for decomposing RDF data into a
large collection of triples and loading them into GPKRS.

Matrix Builder. Since a fact of product knowledge graph is a triple, such
product knowledge corresponds to a cube in a three-dimensional space, as shown
in Fig. 3(a). Based on this cube, we construct the matrices for each subject and
each predicate. The Fig. 3(b) shows the process of generating P-O matrix for
subject sj . We slice the cube along the subject dimension to generate a P-O
plane for each subject. In si’s plane, the point (pj , ol) means the fact (si, pj ,
ol). Then, we can construct a matrix for each plane, in which the element is
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Fig. 2. The framework of GPKRS

1 or 0, and the matrix label is the corresponding IDS presented as the data
format in the first module. Compared with IDS of different lengths, the sparse
matrix can reduce the occupation and dependence on GPU memory as much as
possible. The transmission speed of digital IDS is faster than text between CPU
and GPU. In the end, we store the sparse matrix in this module, which is the
real data we need during the execution of query, not IDS in the first module. We
construct the S-O matrix for each predicate by the same operations, as shown
in Fig. 3(c).

Fig. 3. The organization of product knowledge

SPARQL Parser and Transformer. This module firstly loads the SPARQL
queries, and then filters the intermediate results according to the known vari-
ables. If the elements in both matrices are 1, then we set the corresponding
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elements in the result matrix to 1, otherwise 0. At last, the module outputs
the final query matrix. For the simple query, such as the single condition query
shown in Fig. 4(a), we can obtain the values of the object variable by projecting
the column corresponding to the known subject in the predicate matrix.

Fig. 4. Transforming SPARQL queries into matrix operations

Dot Product and Join. For the complex query, such as the conjunctive query
show in Fig. 4(b), we use the sparse query matrix and sparse data matrix for
point multiplication and join operation during the execution of query. We filter
out invalid intermediate results and connect the two sparse matrices according
to the same matrix label. We also adopt the pipeline query strategy to speed up
the execution of SPARQL. And it is unnecessary to execute the next subquery
until all the intermediate results.

Mapping Dictionary. This module parses the output of Dot Product & Join
according to the mapping dictionary and returns the result of query.

3 Demonstration

Experiment Settings. Two datasets are used in our experiments. The first
one is standard LUBM datasets: LUBM1, LUBM8, LUBM32, which contains
11 thousand, 139 thousand and 1.2 million triples respectively. The second one
is a synthetic product knowledge dataset, which contains 643 million triples
conducted based on Amazon products. Nine queries are used in our experiments,
which are shown in Table 1. Notably, Q7-Q9 are three queries frequently used
by users in E-commerce. All of the experiments were conducted ten times, and
the averages are shown as the experiment results. GPKRS is compared with two
state-of-the-art RDF engines: RDF-3X and gStore.
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The experimental workstation houses six 3.20 GHz Intel dual-core CPUs and
16 GB of RAM. An NVIDIA GeForce GTX 1060 graphics card is added to enable
the use of CUDA, which contains 1280 SIMD processors and 6 GB of device
memory. The version of CUDA is 9.0.

Table 1. The testing SPARQL queries

Q1 – Q6 SIX BENCHMARK SPARQL QUERIES of LUBM DATASETS

Q7 SELECT ?p WHERE { C1 <hasProduct> ?p. ?p <hasAttribute> A1. }
Q8 SELECT ?p ?o WHERE { ?p <hasAttribute> A1. A1 <hasOpinion> ?o. }
Q9 SELECT ?a ?o WHERE { C1 <hasProduct> ?p1. C1 <hasProduct> ?p2

?p1 <hasAttribute> ?a. ?p2 <hasAttribute> ?a. ?a <hasOpinion> ?o. }

Results and Discussion. In the first experiment, we verify the performance
of GPKRS on the LUBM datasets with different sizes. Table 2 shows the query
performance of RDF-3x, gStore and our GPKRs for the Q1, Q2, Q3, Q4, Q5
and Q6 respectively. We can find that GPKRS achieves the best scores for most
queries, which means the optimized pipeline strategy could speed up the execu-
tion of SPARQL query. Since RDF-3x stores a fully aligned subset of data, it is
very effective for the simple query Q1. With the increase of the size of LUBM
datasets, query performance improvement of GPKRS is more obvious than the
other two. On the other hand, gStore achieves better query performance in the
case of different amount of data.

Table 2. Query time (ms) on LUBM datasets. The best scores are highlighted in bold.

SPARQL Datasets

LUBM1 LUBM8 LUBM32

- RDF-3X gStore GPKRS RDF-3X gStore GPKRS RDF-3X gStore GPKRS

Q1 3 23 12 5 34 19 9 45 32

Q2 76 8 16 417 11 22 53 13 29

Q3 11 5 3 15 8 4 17 9 7

Q4 6 3 8 8 4 11 14 5 16

Q5 5 3 2 9 5 3 12 6 4

Q6 141 21 11 183 27 17 296 37 26

Average 40.3 10.5 8.7 106.2 14.8 12.7 66.8 19.2 19.0

The Q7 is used to seek out those products with specific attributes under same
category C1. The Q8 is used to query specific product with specific attribute
and opinion. The Q9 is used to find out all attributes and opinions shared by
product P1 and P2 under same category C1. In fact, the user’s query problems
used by users are mostly similar to such questions as Q7, Q8 and Q9. Our
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query system is inferior to RDF-3x and gStore as shown in Table 3. The simpler
and more uncomplicated the query, the higher the efficiency of GPKRS, since
GPKRS could take full advantage of the characteristics of GPU’s multi-threading
to realize maximized parallel to improve the retrieval efficiency.

Table 3. Query time (ms) on the synthetic product datasets. The best scores are
highlighted in bold.

SPARQL RDF-3X gStore GPKRS

Q7 796 543 475

Q8 1,758 891 549

Q9 4,324 3,517 2,453

Average 2,293 1,650 1,159
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Abstract. Standard is an important normative files in different indus-
tries, which can effectively guide the production process and ensure the
quality of the products. However, the establishment and applications of
the standards are time-consuming and human-intensive. Motivated by
this, the technique of knowledge graph can effectively model the text
data with the multiple triples. Considering the special characteristics of
standard documents, we propose an architecture framework for the con-
struction of standard knowledge graph and design two applications in
our system.

Keywords: Standard · Knowledge graph · Recommendation · Conflict
detection

1 Introduction

Standard is a kind of normative document which is designed to be used as a
rule, guideline or definition in various industry domains. It effectively guides the
design of industrial products, standardizes the production process and ensures
the quality of product production. However, current standard documents are
mainly organized in text format (i.e., natural language) and each industry has
a large amount of standards. The establishment, understanding and usage of
standard documents rely heavily on manual work, which are time-consuming
and human-intensive. Currently, the technique of knowledge graphs (KGs) (e.g.,
DBpedia, Wikidata and Google KGs) can effectively model the text data by con-
structing graphs with multiple triples [5,7,8]. Each triple consists of two entities
and the relation between them. KGs benefit a board range of intelligent applica-
tions such as question answering, personalized recommendations [6] and so on.
Different from other domains, however, the standard domain has its own charac-
teristics. For example, the description of a standard documents is often not the
pure text (i.e., sentences) but a procedure which introduces the standard oper-
ation flow for testing the product and a set of semi-structured data (e.g., figure
c© Springer Nature Switzerland AG 2021
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and table). Nevertheless, most of current information extraction techniques (e.g.,
named entity extraction [1,2,4] and relation extraction [3,9,10]) only focus on
the text data and cannot effectively extract triples from unstructured data (e.g.,
procedure data). To solve these problems mentioned above, we propose an archi-
tecture framework for constructing the standard-oriented standard knowledge
graph. What’s more, two applications: standard template recommendation and
standard conflict detection are also designed based on the standard knowledge
graph in our system.

Fig. 1. Framework of the construction of standard knowledge graph

2 Architecture of Standard Knowledge Graph

The architecture framework of the standard-oriented standard knowledge graph
mainly composes of five layers: Data Layer, Schema Layer, Standard Knowledge
Structure Layer, Standard Knowledge Storage Layer and Application Layers, as
shown in Fig. 1. According to the different characteristics of standard data, we
can divide the data into three categories: structured data (e.g., table data),
unstructured data (e.g., text description of standard requirement) and graph
data (e.g., symbol standard data). Two kinds of special characteristics can be
concluded for the standard document data. Firstly, the standard data is mul-
timoddal, which contains text and picture data. Second, the procedure data,
e.g., the specific testing operation steps, often emerge in the standard docu-
ments. Based on the data layer, the schema layer aims to construct the concept
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model. Specifically, it defines the schema of standard knowledge graph, includ-
ing entities, entity attributes and relationships among entities. Our system deals
with five types of entities (i.e., Standard file, Standard object, Standard termi-
nology, Standard requirement aspect and Standard process aspect) and four rela-
tions (i.e., Standard association, Terminology association, Technical requirement
association and Standard process association). Guiding by the concept model
created in schema layer, three kinds of information extraction techniques (i.e.,
Entity Extraction, Attribute Extraction and Relation Extraction) are utilized to
respectively obtain the defined entities with their attribute values and relations.
Then, the extracted triples data are stored in two kinds of database (i.e., table
structure and graph structure). Finally, two applications (i.e., standard template
recommendation and standard conflict detection) are designed in our systems,
which are introduced in detail in the following section.

3 Standard-Oriented Knowledge Graph Based
Algorithms

Fig. 2. The framework of standard recommendation algorithm

3.1 Standard Template Recommendation

With the continuous proposal and establishment of standards in various indus-
tries, the standards have the characteristics of standardization, diversity, and
domain dependency. It is difficult for the standard writers to normatively-use
standard terminologies, select standard materials and normalize the standard
document format. Therefore, the application of standard template recommenda-
tion aims to assist the writers quickly and correctly obtain the standard writing
materials and standard writing templates. The framework of this application is
shown in Fig. 2. Specifically, given a draft version of standard documents, the
entity recognition model [2] are applied to detect the key entities of the standard
contents. Then the key entities are linked to the constructed standard knowledge
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graph and we can obtain the standard sub-graph. Finally, based on the semantic
information of draft standard content and the graph feature of constructed sub-
graph, we can search the top-k related standard materials and templates from
the corresponding databases.

Fig. 3. The framework of conflict detection algorithm

3.2 Standard Conflict Detection

Standard conflict detection is an important step in the establishment and appli-
cation of standards. However, standard conflicts detection heavily relies on the
human work. The lack of a technique that quickly and automatically detect the
standard conflicts makes it become time-consuming and human-intensive. Moti-
vated by this, the algorithm of detecting conflicts between standards are designed
based on the standard-oriented standard knowledge graph in our system. The
framework of this application is shown in Fig. 3. Specifically, the similarity degree
between the given sentences are calculated by the following equation.

similarity value =
2 × L

L1 + L2
(1)

where L denotes the matched char numbers between the given two sentences;
L1 and L2 respectively denote the number of char numbers of the corresponding
sentences.

4 Visualization and Case Study

As shown in Fig. 4, the standard-oriented standard knowledge graph is stored in
the Neo4j database. In our system, around 10,000 standard knowledge triples are
extracted to build the knowledge graph. Specifically, each standard document
has one sub-graph, as shown in Figure 4(b). What’s more, two cases for the
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(a) (b)

Fig. 4. Visualization of the standard-oriented standard knowledge graph

Fig. 5. A case for the content based Standard Template Recommendation

Fig. 6. A case for the Standard Conflict Detection

designed applications (i.e., Standard Template Recommendation and Standard
Conflict Detection) are shown in Fig. 5 and 6. Specifically, Fig. 5 shows the case
for the applications of standard template recommendation given the research
key. Given the input key words (e.g., Mask belt), we can search the related
standard file and the corresponding sentences. Meanwhile, the Fig. 6 describes
the case of detecting the standard conflicts between the given two standards.
Given the input standard file, our designed algorithm can effectively detect the
specific conflict content. For example, the conflict between the two terms (i.e.,
“filtering efficiency” and “filter efficiency”) can be effectively detected, as shown
in Fig. 6.
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