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Abstract. This work studies the problem of multi-period multi-sourcing
supply planning with stochastic lead-times, quantity-dependent pricing,
and delivery flexibility costs. We present a problem formulation that
takes also into account holding and backlog costs and finite capaci-
ties of suppliers. The objective is to minimize the expected total cost
while respecting suppliers’ capacity constraints and satisfying customer
demand. In this paper, the proposed stochastic integer linear program is
detailed and the first results of experiments are presented and discussed.
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1 Introduction and Literature Review

In order to ensure their competitiveness, while guaranteeing a high service level
to their customers, industrial companies need to optimize not only their pro-
duction processes, but also other related downstream and upstream processes
like replenishment, inventory, and transportation. Therefore, it is necessary to
coordinate material, information and financial flows in an integrated manner to
guarantee a competitive and profitable supply chain (SC) for all stakeholders
[1]. However, because of its interdependent network structure, any incident or
disturbance occurring in one of the elements of the chain can propagate and
amplify, creating more effects which degrade the performance of the whole SC.
In fact, incidents and disturbances are inherent in such a complex systems and
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are due to uncertainty, even the ignorance, of one or more influencing parameters
of the system and the absence of countermeasures to predict and prevent them.

Controlling uncertainty and reducing its effects on Supply Chain perfor-
mance has become, for several decades, a major concern for decision-makers
and research communities in Supply Chain Management (SCM) [2,3]. This con-
cern is reinforced by the recurrent observation of the vulnerability of SC to the
disturbances generated by the uncertainty on some SC parameters [4,5]. Various
sources of uncertainty have been identified and studied through SC risks analysis
and many of them have been formalized and integrated into supply planning and
inventory control models [6].

To reduce the effect of uncertainty in SC, several studies introduced safety
stocks [7]. However, safety stocks are not all the time efficient and advanta-
geous when the uncertainty is on lead times [8–10]. Other approaches based on
stochastic optimization techniques have also been proposed in supply planning
and inventory control [11–13]. The most of these models consider a one-period
supply planning or multi-period supply planning with a constant demand, and
independent and identically distributed lead-times. These models have some lim-
itations from the perspective of optimization and economies of scale because
they ignore and/or neglect the effect of dynamic parameters such as demand
and capacity. However, multi-period supply planning with stochastic lead-times
represents the difficulty to deal with order crossovers and the randomness char-
acterising the quantities received within periods [8]. The problem of crossover is
generally avoided by either ignoring them or building models that dissipate its
effect or prevent it [14–16]. Another common practice to deal with uncertainty
in SCM is multi-sourcing, which has the advantages of working with several
competing suppliers. However, SC managers need to define adequate strategies
to select and manage several suppliers. Concerning suppliers selection, several
attributes are usually used, such as quality, price, delivery performance, etc.
Although no unanimous ranking of the importance of these attributes exists,
delivery performance is always identified as one of the three most important
[17]. Another study in [18] indicates flexibility attribute as the most important
overall, followed by cost and delivery performance.

The first suppliers selection techniques proposed in the literature are mostly
based on mono- or multi-objective functions that are optimised within a static
environment, where the decisions are made for a strategic level horizon. Since few
decades, dynamic supplier selection (DSS) problems have emerged and different
models have been proposed while considering a dynamic environment where one
or several parameters vary over time, such as demand, capacity, prices, etc. The
majority of DSS approaches seek to minimize an average total cost while finding
the order quantities for selected suppliers [19,20]. For the case of stochastic lead-
time with multiple suppliers, [21] developed a mathematical model of a single-item
continuous review (s, Q) inventory policy. As in our model, orders replenishment
can be split among several suppliers. The objective is to optimize the inventory
policy parameters, namely the reorder level and quantity ordered to each supplier,
while minimizing the expected total cost per time unit. [22] proposed a two-phase
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framework for supplier selection and order allocation with different possible trans-
portation alternatives (TAs) per supplier. The proposed optimization model allo-
cates a set of optimal order quantities to the selected suppliers for each time period
in the planning horizon. Recently, [11] propose a mathematical formulation for the
problem of dynamic supplier selection strategy in multi-period supply planning
under stochastic lead-times. The authors propose a stochastic integer non-linear
program (SINLP) aiming to optimize suppliers selection and planned lead-times
while minimising the expected total cost.

The aim of this work is to study the problem of multi-period replenishment
with multiple suppliers under stochastic lead-times and to study the effects of
suppliers capacity limit, digressive pricing policy and delivery flexibility cost.

The structure of the remainder of this paper is as follows. Section 2, contains
the description of the stochastic integer linear programming formulation of the
problem. Then, we report and discuss the first experimental results in Sect. 3.
Finally, principle conclusions from this work and future research directions are
stated in the concluding section.

2 Problem Formulation

We consider the problem of multi-period replenishment planning of a system of
single-product, single-buyer, and multiple-vendors. The demand of each period is
known and can be ordered from one or several suppliers, each having a stochas-
tic discrete lead-time defined by its probability mass function. Each supplier is
also characterised by its capacity limit for each period and its own digressive pric-
ing policy. The latter is applied to the whole quantity ordered over the planning
horizon. We suppose that each period’s not satisfied quantity is back-ordered and
the equivalent backlogging cost is incurred to the buyer. The latter covers also the
inventory holding cost. Note that backlog and inventory quantities are stochastic
because of the randomness of suppliers lead-times and that we have no restrictive
assumptions concerning orders’ crossover nor the structure of the demand over
the planning horizon. We consider the case where each demand can be split into
small batches over different suppliers and/or periods (splitting) and that suppliers
release separately the deliveries of different batches ordered at the same period via
a supplementary cost for each batch (delivery flexibility cost).

For this problem formulation, we use the following notations for input data
and decision variables:

T ordered set of time periods indices of the planning horizon
S ordered set of suppliers indices
Is ordered set of indices of quantity intervals defining supplier s pricing

policy
Dt demand of period t
Cst capacity limit of supplier s at period t

[lsi, usi] lower and upper limits of the i-th quantity interval of supplier s pricing
policy

csi unit selling price of the i-th quantity interval of supplier s pricing policy
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co
s ordering cost of supplier s

ch unit inventory holding cost per time period
cb unit backlogging cost per time period

[L−
s , L+

s ] range of possible discrete lead-time values of supplier s
Lω

sτt actual lead time, in scenario ω, of the quantity released by supplier s
at period τ to satisfy demand of period t

Fs(.) cumulative distribution function of supplier s lead-time
Qsτt integer decision variable that gives the quantity to be ordered from

supplier s at period τ to satisfy demand of period t
Ksi integer decision variable that gives the total quantity to order from

supplier s within the i-th interval of its pricing policy
Ysi binary decision variable indicating if the total ordered quantity from

supplier s is within the i-th interval of its pricing policy
Zsτt binary decision variable indicating a non-zero quantity is ordered

from supplier s at period τ to satisfy demand t

Before giving the problem formulation as a stochastic integer linear program
(SILP) model integrating the uncertainty of lead-times and the notion of flexi-
bility, let firstly introduce the following definitions.

Definition 1. For all s ∈ S and t, τ, i ∈ T , let Mt be the set of indices of all
ordered quantities Qsτi that can be involved in the calculation of the backlogging
level at period t. It is defined as follows:

Mt = {(s, τ, i) ∈ S×T 2 : t−L+
s +1 ≤ τ ≤ t−L−

s and τ +L−
s ≤ i ≤ τ +L+

s } (1)

Corollary 1. If the planned lead time of each supplier s is between Ls
− and Ls

+,
the cardinality of Mt is equal to

∑
s∈S(Ls

+ − Ls
− + 1) × (Ls

+ − Ls
−).

Definition 2. Let αω
sτi = 1{Lω

sτi ≤ t − τ} : (s, τ, i) ∈ Mt be a boolean variable
that indicates for a given scenario ω if the quantity ordered from supplier s at
period τ to satisfy the demand of period i arrives before period t:

αω
sτi =

{
1 if τ + Lω

sτi ≤ t, with probability Fs(t − τ)
0 if τ + Lω

sτi > t, with probability 1 − Fs(t − τ)
(2)

As αω
sτi is binary for each triplet (s, τ, i), the number of possible scenarios

is equal to |Ωt| = 2|Mt|. A given scenario ω is composed of a set of αω
sτi for all

(s, τ, i) ∈ Mt. This allows to define the set of all possible aggregated scenarios
as follows:

Ωt =
{

(αω
sτi)(s,τ,i)∈Mt

: w ∈ {1, . . . , 2|Mt|}
}

(3)

Each scenario ω ∈ Ωt has the probability of occurrence pw
t defined in Eq. (4)

below:

pω
t =

∏

(s,τ,i)∈Mt

(αω
sτi × Fs(t − τ) + (1 − αω

sτi) × (1 − Fs(t − τ))) ∀ω ∈ Ωt (4)

where αω
sτi ∈ {0, 1} and

∑

ω∈Ωt

pω
t = 1.
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In the proposed model formulation, it is assumed that each demand can be
split into several quantities that are ordered from different suppliers and/or at
different periods. Delivery flexibility is also allowed via an additional cost, i.e.
ordered batches from each supplier at a given period are released separately and
have independent lead-times occurrences. This strategy can be formulated as the
SILP given in Eqs. (5)–(16).

SILP: min
∑

t∈T

∑

ω∈Ω

pω
t .

(
chI+tω + cbI−

tω

)
+

∑

s∈S

(∑

j∈Is

csj .Ksj +
∑

t∈T

∑

τ∈T
co
sZsτt

)
(5)

s.t.

I+tω − I−
tω =

∑

s∈S

t−L+
s∑

τ=1

τ+L+
s∑

i=τ+L−
s

Qsτi

+
∑

(s,τ,i)∈Mt

αω
sτiQsτi −

t∑

τ=1

Dτ ∀t ∈ T ,∀ω ∈ Ωt (6)

Qsτt ≤ Dt ∀s ∈ S,∀t, τ ∈ T (7)
∑

t∈T
Qsτt ≤ Csτ ∀s ∈ S,∀τ ∈ T (8)

∑

s∈S

t−L−
s∑

τ=t−L+
s

Qsτt = Dt ∀t ∈ T (9)

∑

j∈Zs

Ysj ≤ 1 ∀s ∈ S (10)

lsjYsj − Ksj ≤ 0 ∀s ∈ S,∀j ∈ Is (11)
Ksj − usjYsj ≤ 0 ∀s ∈ S,∀j ∈ Is (12)

∑

j∈Is

Ksj −
∑

t∈T

∑

τ∈T
Qsτt = 0 ∀s ∈ S (13)

∑

i∈T
Di.Zsτt − Qsτt ≥ 0 ∀s ∈ S,∀t, τ ∈ T (14)

Ysj , Zsτt ∈ {0, 1} ∀s ∈ S,∀j ∈ Is,∀t, τ ∈ T (15)

I−
tω, I+tω,Ksj , Qsτt ∈ N ∀s ∈ S,∀j ∈ Is,∀t, τ ∈ T (16)

In the SILP model described by Eqs. (5)–(16), we consider all possible aggregated
scenarios (see Definition 2) and minimize the Expected Total Cost (ETC) that
is composed of inventory, backlogging and purchasing costs, while determining
which proportion of a given Dt is ordered from a given supplier s at a given period
τ . Purchasing costs are dependent on the selected suppliers and the number of
orders and related quantities.

Constraints (6) express the inventory level Itω at the end of each period t for
each scenario ω. Constraints (7) mean that each quantity ordered from supplier
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s at period τ to satisfy the demand of period t is less than Dt. Constraints (9)
force the sum of quantity ordered to satisfy the demand of period t to be equal
to Dt. It also guarantees the satisfaction of all demands. Constraints (10) to (13)
allow to select the pricing level to apply by each supplier, dependently on the
total ordered quantities. Constraint (14) ensures that Zsτt is equal to 1 if Qsτt

is non-zero. Constraints (15) and (16) define the domains of decision variables.

3 Numerical Example and Discussion

The SILP model of the problem has been coded in C++ and solved using IBM
ILOG CPLEX solver. The numerical example presented here concerns a test
instance with 10-period planning horizon, 5 non-zero demands (see Table 1), and
3 suppliers. Inventory cost parameters are ch = 10 and cb = 15. Suppliers have
constant capacities, with C1,t = 60, C2,t = 50 and C3,t = 100 for all t = 1, . . . , 10.
Suppliers are characterised by their lead-times probability distributions given in
Table 2a and their pricing policy parameters given in Table 2b. Here, the total
number of scenarios is equal to 1024 (see Corollary 1). The optimal solution of
the numerical example is shown in Table 3, where the three last rows give the
optimal quantities to order from each supplier at each time period. One can
see that, even if the third supplier has the highest price (75) and ordering cost
(1000), it is solicited for three orders (Q3,4,5 = 70,Q3,4,6 = 100 and Q3,8,9 = 80)
which represent 62.5% of the total demand. This proves that the selling price as
well as the ordering cost are not the only levers for choosing a supplier. However,
buying exclusively from a single supplier does not seem to be the best strategy for
lowering prices and protecting against uncertainties. The model that we propose
makes it possible to find a good compromise between the various costs associated
to inventory, purchasing and ordering.

Table 1. Vector of demands

Periods 5 6 7 8 9

Demand 180 100 30 10 80

Table 2. Characteristics and parameters of suppliers

(a) Lead-times probability distributions

s l: lead-time values

1 2 3 4

1 P(Ls = l) 0.24 0.76 - -

2 P(Ls = l) - 0.53 0.16 0.31

3 P(Ls = l) 0.95 0.05 - -

(b) Pricing policies parameters

s Pricing levels Ordering

Level 1 Level 2 Cost

ls1 us1 cs1 ls2 us2 cs2 cos

1 1 20 69 21 500 65 800

2 1 30 67 31 500 65 700

3 1 500 75 - - - 1000
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Table 3. Solution of the numerical example using the ILP−WFNS model.

t 1 2 3 4 5 6 7 8 9 10

Dt - - - - 180 100 30 10 80 -

E(I+t ) - - - - 31.3 14.6 4.8 - - -

E(I−t ) - - - - 8.9 8.9 7.7 - 4.0 -

(Q1t5, . . . , Q1t9) - - - (60, . . .) - - - - - -

(Q2t5, . . . , Q2t9) - - (50, . . .) (. . . , 30, 10, .) - - - - - -

(Q3t5, . . . , Q3t9) - - - (70, 100, . . .) - - - (. . . , 80) - -

ETC* = 74041.5; CPU time = 14.3 s

4 Conclusion

In this preliminary work, we propose a stochastic integer linear program (SILP)
that minimises the expected total cost for the problem of multi-period multi-
sourcing supply planning with stochastic lead-times, quantity-dependent pricing,
and delivery flexibility costs. The results show the effectiveness of using multi-
supplier strategy to cope with uncertainty of lead times. They also prove the
relevance of considering other aspects related to suppliers, such as capacity,
ordering costs and pricing policy. This approach could help decision maker to
optimize its ordering policy. This work will be continued to focus on improving
the model and its resolving approach in order to be able to study large and real-
life sized instances. In fact, the weakness of the current model is its exponentially
increasing number of scenarios with the number of suppliers and their ranges of
lead-times distributions.
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15. Huang, K., Küçükyavuz, S.: On stochastic lot-sizing problems with random lead
times. Oper. Res. Lett. 36(3), 303–308 (2008)

16. Riezebos, J.: Inventory order crossovers. Int. J. Prod. Econ. 104(2), 666–675 (2006)
17. Verma, R., Pullman, M.E.: An analysis of the supplier selection process. Omega

26(6), 739–750 (1998)
18. Van der Rhee, B., Verma, R., Plaschka, G.: Understanding trade-offs in the supplier

selection process: the role of flexibility, delivery, and value-added services/support.
Int. J. Prod. Econ. 120(1), 30–41 (2009)

19. Ware, N.R., Singh, S., Banwet, D.: A mixed-integer non-linear program to model
dynamic supplier selection problem. Exp. Syst. Appl. 41(2), 671–678 (2014)

20. Ahmad, M.T., Mondal, S.: Dynamic supplier selection model under two-echelon
supply network. Exp. Syst. Appl. 65, 255–270 (2016)

21. Abginehchi, S., Farahani, R.Z.: Modeling and analysis for determining optimal
suppliers under stochastic lead times. Appl. Math. Model. 34(5), 1311–1328 (2010)

22. Songhori, M.J., Tavana, M., Azadeh, A., Khakbaz, M.H.: A supplier selection
and order allocation model with multiple transportation alternatives. Int. J. Adv.
Manuf. Technol. 52(1–4), 365–376 (2011)


	Multi-period Multi-sourcing Supply Planning with Stochastic Lead-Times, Quantity-Dependent Pricing, and Delivery Flexibility Costs
	1 Introduction and Literature Review
	2 Problem Formulation
	3 Numerical Example and Discussion
	4 Conclusion
	References




